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Abstract

Acoustic events most commonly associated with security threats such as gunshots, explosions,
collisions or glass shattering, among others, are impulsive in nature. This category of sounds is
characterized by a large sudden onset, a short time duration (typically a few milliseconds) and
wide spectral dispersion, which make them suitable candidates for real-time automated detection.
Yet detection alone is not relevant enough for some applications in which the localization and/or
identification of the impulsive source are the main concerns, so further analysis is required.

By means of a network of acoustic sensors it is possible to locate the emitting source by exploiting
the differences within the signals recorded at each microphone, and having previous knowledge
about the time instant and location of each of the captures. Although proper node localization and
synchronicity on wireless networks are currently unresolved issues undergoing active research.

On the matter of identification, impulsive sound event recordings usually have more to do with
the impulse response of the environment rather than the source itself, which proves as a problem for
robust classification. However it is possible to take advantage of the spatial diversity provided by a
sensor network to identify the source collaboratively using different data fusion strategies.

This thesis focuses on the research and development of novel multichannel algorithms for impul-
sive sound source analysis, including four distinct but not necessarily independent problems, namely:
acoustic event detection and classification, sound source localization and node self-localization. In
general terms, this proposal aims at developing a framework for collaborative processing in which
the spatial diversity provided by a group of microphones is exploited to solve each of the presented
problems. At the same time, the goal is to improve multichannel acoustic analysis of impulsive
events by taking advantage of the information obtained from the resolution of some of the problems
to increase the performance of later stages. Additionally, the aim of the thesis is to develop effi-
cient techniques suitable to be implemented on a wireless acoustic sensor network in which using
other methods may not be feasible due to a series of constraints, such as limited computing power,
or wireless bandwidth. Thus, throughout the whole thesis, there is a constant tradeoff between
performance and computational complexity.

The proposals in this thesis come from the necessity for better automated impulsive sounds anal-
ysis systems given that they have practical applications in many fields such as forensics, surveillance
and security, gun control or military tactics, to name a few.





Resumen

Los eventos acústicos que más comúnmente son asociados con amenazas para la seguridad, como
pueden ser disparos, explosiones, golpes o rotura de cristales, entre otros, tienen una naturaleza im-
pulsiva. Esta categoría de sonidos se caracteriza por tener un ataque pronunciado y casi instantáneo,
muy corta duración (típicamente pocos milisegundos) y un amplio contenido espectral, lo que los
convierte en buenos candidatos para su detección automatizada en tiempo real. Sin embargo, la
detección por si misma puede no ser suficientemente relevante para algunas aplicaciones en las que
el objetivo principal sea la localización o la identificación de la fuente, haciéndose necesario un
análisis más profundo.

Mediante el uso de una red de sensores acústicos es posible localizar la fuente que ha originado el
sonido aprovechándose de las diferencias entre las señales captadas por varios micrófonos, siempre y
cuando se tenga información sobre los instantes de recepción y la posición de los distintos sensores.
Aunque la obtención de sincronismo en la red y la estimación de las posiciones de los nodos son
problemas que aún no están completamente resueltos y siguen bajo estudio.

Respecto a la identificación de los sonidos, las grabaciones de eventos impulsivos normalmente
están más relacionadas con la respuesta al impulso del entorno que con el sonido generado por la
fuente, lo cuál es un gran problema de cara a una clasificación robusta. No obstante, es posible
aprovecharse de la diversidad espacial proporcionada por una red de sensores para identificar la
fuente colaborativamente mediante la aplicación de varias estrategias de fusión de información.

Esta tesis está enfocada a la investigación y desarrollo de nuevos algoritmos multi canal para
el análisis de sonidos impulsivos, lo que incluye cuatro problemas diferenciados pero no necesari-
amente independientes: detección y clasificación de eventos acústicos, localización de fuentes de
sonido y auto localización de nodos. En términos generales, la intención de esta propuesta es el
desarrollo de un sistema colaborativo en el cual la diversidad espacial proporcionada por una red
de sensores sea explotada para resolver cada uno de los problemas mentados. Al mismo tiempo, el
objetivo es la mejora del análisis de eventos impulsivos mediante el aprovechamiento de la infor-
mación obtenida al resolver algunos de los problemas de cara a mejorar el desempeño en etapas
posteriores. Adicionalmente, con esta tesis se pretenden desarrollar técnicas eficientes que permitan
su implementación en una red inalámbrica de sensores acústicos en la cual el uso de otros métodos
puede que no sea viable debido a restricciones tales como una capacidad de computo limitada o un
ancho de banda restringido. De esta forma, a lo largo de toda la tesis se mantiene un constante
compromiso entre las cualidades técnicas y la carga computacional de los algoritmos.

Las propuestas de esta tesis vienen dadas por la necesidad de encontrar nuevas soluciones para el
análisis de fuentes acústicas impulsivas dado cuenta con aplicaciones prácticas en múltiples campos
tales como: vigilancia y seguridad, control de armas, análisis forense o táctica militar, por nombrar
unos pocos.
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PARTI Preliminary Work

If we had machines that could hear as humans do, we would expect them to be able to
easily distinguish speech from music and background noises, to pull out the speech
and music parts for special treatment, to know what direction sounds are coming

from, to learn which noises are typical and which are noteworthy.

Richard F. Lyon





CHAPTER1 Introduction and Motivation

1.1 Obtaining Information from Sound

Most living things have the ability to perceive sound in one way or another, from humans to
insects and even some kinds of plants1. Life forms have evolved to obtain information about their
surroundings by different means, one of the most prevalent being the ability to sense vibrations.
These vibrations, propagated as pressure waves either thought solids or fluids (see Figure 1.1), are
what we commonly refer to as sound. When our inner ear detects small changes in air pressure,
i.e., we hear a sound; the information we extract from it is the result of a series of complicated
processes that are automatically performed by our brain. Wether the sound we hear is a human
voice, music or even a random noise, our brain is capable of perceiving it in background noise,
getting an approximate idea of its place of origin and identifying the source that produced it. In the
context of signal processing these abilities can be seen as sound source detection, localization and
classification.

By the time a sound reaches our ears it conveys information about its source of origin, by means
of its frequency content and temporal evolution, and it also contains spatial information in the form
of subtler cues, such as the appearance of reflections and reverberation and the timing differences
between the signals received at each ear. Our ability to get information from sound is greatly related
to our previous experiences (i.e. what we have learned so far). We are capable of recognizing a
familiar voice in a crowd and we are ‘somewhat’ able to locate our phone when it rings. These two
examples, while both related to a priori knowledge are not exactly alike. Generally speaking, we
don’t need spatial information to recognize sounds and we don’t need to identify the source of the
sound in order to locate it, although in any case, we first need to notice the sound in question.

We recognize sounds because we have learned about their particularities through exposure; iden-
tical twins’ parents may be able to tell their voices apart, unlike the rest of the world, and an
experienced car mechanic may be able to find the problem with a car just by hearing it. Usually, the
more we hear something, the better our training gets, therefore, the better we are at recognizing
it. In a similar way, we easily notice certain sounds because they feel out of place, i.e., they do not
match what we have learnt to expect from a certain environment.

Our sound localization mechanisms are also rooted in learning, perhaps on a different basis since
they are adapted to our particular physique. Based mostly in the cues derived from the way sound
interacts with us, we have unconsciously learnt to interpret them to locate sounds using accurate
spatial feedback from other sensorimotor systems. The shape our ears, the distance between them,
the shape of our head, and many other factors are what makes us able to locate sound. If we were to

1Studies show that plants are capable of responding to certain sounds, e.g., bee buzzing at a particular frequency
has been shown to stimulate pollen release, and caterpillar chewing sounds showed an increased production of
chemical toxins.
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Compression Rarefaction

Figure 1.1: Schematic representation of pressure wave propagating through air.

alter some of this factors we would lose some (if not all) of our sound localization ability2, at least
until we relearn how sound interacts with our new “configuration”.

In the greater scheme of things we do not even have a good sense of hearing. It is common
knowledge that bats and dolphins use echolocation to navigate their environment and to find prey,
and any dog/cat owner would know that his pet is much more reliable at detecting sound.

For a long time now, we have been trying to replicate (or even to increase) our cognitive abilities
artificially, and hearing is not an exception. However, emulating these seemingly trivial tasks on
a machine is not an easy feat, so it should not come as a surprise that they have been the subject
of innumerable research efforts over the last decades. Detection, classification and localization are
classic signal processing paradigms, found in many fields, not only those based on acoustic signals.
Detection and classification are closely related to each other since they are two of the main objectives
of machine learning. It is possible to find examples of both of them in the literature for every
imaginable application, ranging from self-driving cars to medical diagnosis. Localization is also a
widely studied topic, more so in recent years with the increased interest in sensor networks and
array-based techniques. Applications of localization can also be counted by the thousands, ranging
from GPS navigation to seismology.

Even though many of the mentioned applications are based on a common set of principles, the
methodologies followed by every field are not alike, thus this thesis builds upon previous work more
closely related to the case in point; acoustic signals and more specifically impulsive sound events.

1.2 Impulsive sound sources

Natural occurring sound is for the most part a random non-stationary signal than can take many
different forms. In audio signal processing, sound is basically divided into three categories: speech,
music and “noise”, the latter including every sound that does not fit into the other labels. The word
noise most often than not relates to an unwanted signal, however for some applications a particular
type of noise might be the signal of interest, as it is the case.

An impulsive sound source is an acoustic source that generates impulse-like noise3; a generic
term which includes all forms of high-intensity short-duration sounds, e.g., gunshots, explosions,

2Localization of sound elevation can be dramatically degraded by a temporal modification of the outer ear (pinnae)
shape, using silicone molds [HVRVO98].

3Do not confuse with the interpretation of impulse noise as an almost instantaneous sharp sound (e.g, clicks
and pops) appearing on audio equipment, usually caused by electromagnetic interferences or electric/mechanic
disturbances.
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Figure 1.2: Schematic representation of three basic impulse noise pressure-time profiles.

collisions etc. The range of parameters that define an impulse is large. Impulse durations may vary
from tens of microseconds to several hundred milliseconds and intensities (Sound Pressure Level
SPL) may vary from less than 100dB to in excess of 194dB peak SPL (one atmosphere). The energy
of an impulse is most often broadly distributed, but it is possible to find spectral concentrations of
energy at various frequencies for some impulses [HH86]. A common characteristic of this sounds is
that they are highly dependent upon the environment in which they propagate, i.e., their transmis-
sion path.

In more proper terms we should make a distinction between different types of impulse noise
transients [HH91], some of the more prevalent being:

Blast wave: a noise transient produced by a sudden change in pressure as the result of a
rapid energy release (most often chemical or electrical). The most representatives sources of
such waves are explosive discharges. The physical characteristics of these impulses are largely
dependent upon the geometry and scale of the source, i.e., the shape and size of the explosive
charge, etc.

Impact noise: a noise transient that follows the impact between two objects as the result of a
rapid release of energy through primarily mechanical mechanisms, e.g., a hammer strike or a
snare drum hit. The physical characteristics of these impulses are largely dependent upon the
mechanical properties of the impacting objects.

Shock wave: a noise transient produced by an objet (or disturbance) moving trough a fluid
faster than the local speed of sound, e.g., a jet fighter breaking the sound barrier, a whip
crack, etc. Shock waves are characterized by a positive overpressure maximum, followed by
a corresponding under-pressure minimum. The physical characteristics of these impulses are
mostly dependent upon the size of the object and its speed.

Figure 1.2 shows an schematic representation of the pressure-time profile of different types of
impulse noise. Please note that for the remaining of this document we will use use the terms
impulsive sound source and impulse noise interchangeably for any sound falling within the described
categories.

Impulse noise has been a subject of study for a long time [WK74a, Aka78], specially in terms of
noise control and audiological effects prevention [HH86]. Large blast waves produced by cannon
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Figure 1.3: Schematic representation of spatial sampling on a microphone array.

fire and explosives have been characterized and modeled [FTCP93], and the same goes for shock
waves produced by supersonic ammunition [Whi52] and airplane’s sonic booms [ML65].

On a real scenario the recorded waveform may be very different from that described by an ideal
model [Emb96] . In close range recordings, ground reflections and turbulences are most likely to be
overlapped with the direct signal. While, in long range recordings, the influence of the propagation
path has a huge impact on the received sound [MS08]. Additionally, nonidealities on the recording
equipment can also produce some artifacts, the most relevant being signal saturation and low pass
filtering, either at the microphone or at the analog front-end. Saturation is very likely to occur given
the high sound pressure levels created by some impulses that can easily exceed the threshold of pain
of the human ear.

1.3 Multichannel Sound Processing

Over the last decade multichannel sound processing has gained widespread usage. Nowadays
a group of microphones working in tandem can be found in many devices, e.g. most smartphones
and laptop computers are equipped with two (sometimes more) microphones in order to perform
speech enhancement. In case an audio processing system has more than one microphone we can
then speak of a microphone array.

1.3.1 Microphone Arrays

In general, a sensor array can be considered a sampled version of a continuous aperture [BCH08].
In acoustics, an aperture is a spatial region that behaves as an electroacoustic transducer transform-
ing acoustic waves into electrical signals (microphone), or vice-versa (loudspeaker). The most direct
implication of this, is that whenever working with a sensor array, signals are sampled both in time
and space simultaneously. Spatial sampling is closely related to discrete-time sampling, since the con-
tinuos propagation of a signal though space is sampled at discrete points (the microphone locations).
Figure 1.3 shows a schematic representation of a sound wave being sampled by four microphones
at distinct locations and their recorded signals.

The basic problems that can be solved using multichannel (or array) processing techniques are:
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Enhancing the signal to noise ratio SNR of a signal of interest: e.g., ‘beamforming’, which consists
in using a microphone array to form a spatial filter which can extract a signal impinging from
a specific direction while reducing the contamination of signals coming from other directions.
This process is analogous to digital ‘temporal’ filtering, only instead of combining samples of
different time instants, a spatial filter combines samples taken at different spatial points.

Determining number and locations of emitting sources: Microphone arrays can be used to extract
spatial information from the recorded signals. The most common approach is to calculate the
time it takes for a certain sound to travel between microphones and use that information to
find the location of the emitting source.

Tracking moving sources: Tracking builds upon the previous point although it requires addi-
tional techniques that also take in consideration the temporal evolution of the signals.

Acoustic array processing has already been applied to multitude of real-world applications including:
Ultrasonic medical imaging, speech enhancement, advanced noise control, SONAR imaging, virtual
3D sound, sniper detection, etc.

1.3.2 Wireless Acoustic Sensor Networks

Despite their obvious advantages of multi-microphone systems over a single microphone setup,
sometimes a microphone array is not good enough for the task at hand. The next-generation tech-
nology for audio applications are Wireless Acoustic Sensor Networks (WASNs) [Ber11], sometimes
called Wireless Microphone Arrays (WMAs). The main advantage of WASNs over traditional micro-
phone arrays is their ability to easily cover larger areas which translates into greater spatial diversity.

A traditional ‘wired’ microphone array is most often intended to sample a sound field4 locally,
mainly due to the inefficiency of a large setup, both in terms of size and number of microphones.
This means that sometimes the microphone array is far away from the target source(s) resulting in a
low Signal to Noise Ratio (SNR). On the contrary, the dynamic nature of WASNs allows the wireless
microphones (nodes) to be placed at almost any position without major concerns, which results in
a wider coverage of the sound field, therefore, an increased chance of getting a high SNR. Figure
1.4 illustrates this situation with a schematic representation of two microphone array geometries in
a sound field.

Together with their advantages, due the decreasing price of many of the components needed for
implementing WASN nodes (in part thanks to the surge of interest in portable electronics), WASNs
are believed to be gaining widespread usage over the next decade. Some of the more prevalent
applications of WASNs include:

Acoustic monitoring: The most prevalent applications of WASNs in the literature are related
to surveillance, e.g., gunshot detection, shooter localization, acoustic vehicle detection, etc.
Using microphones to monitor an environment is cheaper than other common solutions such
as cameras, and they are not constrained by line of sight. WASNs are well suited for this

4Sound field can be defined as the dispersion of sound energy within a region in a material medium in which sound
waves are being propagated
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Figure 1.4: Schematic representation of two different microphone array distributions in a sound field.

task since they allow to quickly and easily cover a large area, e.g., the perimeter of a critical
structure or building.

Acoustic tracking: Many of the same techniques used for acoustic monitoring can be applied
to source tracking. Notable applications in this field include indoor positioning systems and
vehicle tracking. In those situations in which the use of traditional positioning systems such as
GPS are not feasible, acoustic tracking is seen as a viable alternative. Vehicle tracking based
on WASNs is still in its infancy but shows a great potential for some applications that are not
succeeding using traditional methods (Radar or cameras), such as small unmanned aircraft
tracking.

Speech/Signal enhancement: Improving the quality of human speech is a critical part of
hands-free telephony, teleconferencing, hearing aids, smart assistants, and many other appli-
cations. In most cases the number of microphones (and the distance between them) is con-
strained by the size of the device in charge of the processing. This problem can be bypassed
resorting to a WASN by making use of external microphones. Since wireless devices loaded
with microphones and wireless connectivity are getting smaller and cheaper, this is expected
to evolve towards heterogeneous WASNs with many nodes of different kinds, e.g., worn by the
user or strategically placed around a room.

In brief, WASNs can easily cover a larger area, can be quickly deployed, and more often that not,
they are less expensive than a centralized solution of comparable size. However WASNs do have a
long list of challenges to overcome [RM04] when compared to traditional microphone arrays. Some
of the most important considerations when working with WASNs are:

Array geometry: For most array-based algorithms, precise knowledge about the location of
the microphones is a basic requirement, thus locating the nodes becomes one of the bigger
concerns. Since some algorithms (e.g. beamforming or cross-correlation-based localization),
rely on sample-to-sample differences, any error in the microphone location estimates effectu-
ally transforms into a temporal bias that has a negative impact on the performance. On such
applications, common positioning solutions such as GPS are not precise enough and WASNs
have to rely on ‘self-localization’, or the ability of the nodes to locate one another collabora-
tively. In some cases it is possible (and usually preferred) to use “blind” algorithms that not
require a priori knowledge of the node locations.

Synchronization: Each node in the network is an independent device with its own clock
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source. This has two major implications: the nodes need to be synchronized in order to es-
tablish a common timebase within the network (clock offset correction), and each node has a
slightly different sampling frequency (clock skew). Failure to do so will result in decreased per-
formance for all algorithms based on temporal differences between microphones (e.g. source
localization), and it can also affect communication protocols. Synchronization is specially
complicated in networks composed of heterogenous nodes with hardware made by different
manufacturers.

Bandwidth: To perform traditional array-based processing on a WASN, the signals captured by
every microphone must be shared with the network. This posses a main challenge, specially for
large networks, since the available bandwidth is limited and transmitting multiple audio signals
is data-intensive. Usually, data compression is employed to minimize data transmissions at the
cost of higher computing power. Another problem that arises from wireless communications
are packet losses and reception errors, that affect network throughput and should be taken
into account by the algorithms.

Topology: Topology selection and efficient routing are critical for data-intensive WASNs. For
some applications it is advisable to have a master node, or Fusion Center (FC) to take care
of the most compute-intensive tasks. In this situation, ‘star’ and ‘tree’ topologies are recom-
mended depending on the physical size of the network. When most of the processing can be
done locally at each node, ‘mesh’ topologies are favored, either fully connected or partially
connected depending again on the distance between nodes. It is important to notice that long
distance transmission requires more power, specially at high data-rates. Figure 1.5 shows three
of the most common WASN topologies.

Processing: Traditional microphone arrays rely on centralized processing. This is not manda-
tory in WASNs since each node has its own processor. Performing centralized processing when
a large number of signals need to be processed/transmitted simultaneously could prove prob-
lematic, therefore, in case the algorithms and the network topology allows it, distributed pro-
cessing is highly encouraged to lessen the work load. Another factor that must be taken into
account is the minimization of the input-output delay, critical for real-time applications.

Scalability: Since the number of nodes of a WASN is not fixed, the algorithms should be able
to adapt to different number of microphones. On a scalable network adding a new node should
not have a significative impact on the computational load or data traffic at the nodes that are
not directly connected to the new node.

Power Consumption: Many array-based algorithms require lengthy correlations, matrix in-
versions and/or other compute-intensive calculations. Computing power is directly related to
power consumption which in turn reflects in size, price and battery life (whenever relevant).
Another major factor for power consumption is transmission power, ideally it should be op-
timized based on the network size. Strategies such as the implementation of or low-activity
mode are also encouraged for battery powered nodes.

Subset selection: In some instances, such as when working with very large networks or in
the presence of faulty nodes or reception errors, there should be some mechanisms to select a
certain subset of microphones to perform the task at hand. In large networks where the nodes
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Figure 1.5: Schematic representation of three common wireless network topologies.
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Figure 1.6: Simplified diagram of a typical wireless acoustic node.

are far apart, some of them might have a low SNR resulting in a decrement in terms of both
performance and computing efficiency. The same goes for any kind of spurious information. If
some data is known to be unreliable with a high probability, it should be discarded.

The most basic configuration of WASN node is composed of: at least one microphone and its per-
tinent analog front-end, an Analog to Digital Converter (ADC), a microcontroller(µC) and a Radio
Frequency (RF) transmitter (Tx). Although, the hardware configuration of the nodes is ultimately
subjected to the application. A more typical node configuration improves upon the basic setup by
having a Digital Signal Processor (DSP) that allows for more complex algorithms to be implemented,
an RF transceiver (TRx), capable of both transmitting and receiving data for inter-node communi-
cations, and some elements to perform self-localization; either a GPS module for long distance
low-precision localization, or a Digital to Analog Converter (DAC) and a speaker for acoustic-based
short-distance high precision localization. Other than the mentioned components, it is common to
find general purpose nodes equipped with multiple RF-TRx on different frequency bands that allow
for independent data and control channels, a temperature sensor for estimating the speed of sound,
or an Inertial Measurement Unit (IMU) for obtaining the node orientation, among others. Figure 1.6
shows a simplified diagram of a typical wireless acoustic node, where the elements in black are basic
components, while those in grey are optional components. It is worth noticing that current smart-
phones include most of the above mentioned components, thus there have been numerous efforts
to implement smartphone-based WASNs. However due to the lack of optimization for real-time ap-
plications of such devices (specially in terms of low-level hardware control) and the heterogeneous
nature of such a network (different hardware specifications at each node) there is a clear preference
for ad hoc hardware in the literature.
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1.4 State of the Art

The following state of the art review divides previous work relevant to this thesis into two dis-
crete, although not necessarily independent categories:

Localization: Algorithms that deal with source localization and node self-localization, either
as separate problems or as one self-contained problem. Typically algorithms based on inter-
microphone time delay estimation using cross-correlation both for traditional microphone ar-
rays and WASNs.

Detection/Classification: Algorithms most often based on machine learning for tackling
acoustic event detection, classification or both simultaneously. Most of the examples in the
literature are intended for single-channel systems, nevertheless multi-channel solutions based
on data fusion can also be found in the literature to a lesser extent.

1.4.1 Localization

The are multitude of examples of acoustic source localization in the literature; ranging from those
that focus on locating a single source to those that simultaneously find the location of a number of
sources and microphones. All these algorithms have in common their use of data-intensive calcula-
tions that may not be suitable for their implementation on a resource restricted WASN. Localization
algorithms are typically based on relative spatiotemporal measurements between microphone/node
pairs that are combined to infer the desired spatial information [PAK+05]. Such measurements are
taken either from acoustic, infrared, RF or magnetic signals. On wireless networks these measure-
ments need first to be exchanged among the nodes or transmitted to the FC. The most commonly
used measurements are Time of Arrival (ToA), angle or Direction of Arrival (DoA) and received en-
ergy or Received Signal Strength (RSS). However, their use is not straightforward because of the
random component introduced by time-varying errors (e.g., additive noise and interferences) and
environment-dependent errors (wall reflections, furniture obstructions, etc.). Wireless and acoustic
RSS are seen as poor estimators of range due to these problems and methods relying on it usually
lack the precision required for audio localization applications.

Acoustic source localization using the Time Difference of Arrival (TDoA) of an acoustic event
between a group of microphones is an old topic [SR87]. This approach involves the use of cross-
correlations for the estimation of the time delays [AH84], usually with Phase transform (PHAT)
weighting due to its robustness to reverberation[BS97]. A technique known as Steered Response
Power (SRP), typically in the form of SRP-PHAT, is very popular for source localization on indoor
environments using traditional microphone arrays [DSY07] [CML11]. However, PHAT weighting
does not perform equally well with all kinds of sound sources. On [MSK+09] the overall localiza-
tion scheme is based on SRP-PHAT, although they claim that its performance decreases when used
to locate impulsive sources due to their short time duration. They use the activation duration of an
energy-based event detector to discern between impulsive and non-impulsive sources. For impul-
sive events they use a modified localization algorithm that pre-align the signals and uses a smaller
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window. Some sources take a different approach to locate impulsive sources. In [SCK14] gunshot
localization with a linear array in an anechoic chamber is done via time-domain beamforming by
finding the angle in which the sum of the signals is maximized according to two different metrics. A
different strategy is proposed In [Par08], the use of time reversal for impulsive source localization
with a low number of receivers by analyzing the reflections. Using a ray propagation model they are
able to locate a source in a known geometry simulated space containing rigid bodies that blocked
the direct path to some of the microphones.

Most examples in the literature tackle indoor localization where the main problem is the rever-
beration, however, outdoor scenarios have a different set of complications. The effect of wind and
temperature variations is explored in [FCL02] where the localization of far-field impulsive sound
sources is done by triangulation using data recorded during field experiments for a variety of im-
pulsive sound sources: artillery guns, mortars, and grenades. Outdoor localization usually involves
larger distances between microphones in order to cover larger areas, thus it is convenient to use a
WASN.

Those algorithms intended to work on WASNs have to overcome the particular challenges asso-
ciated with them, such as unknown node locations, clock offset and skew between nodes, limited
bandwidth and scallability [JW00]. Synchronization is a big concern for WASN processing, some
techniques assume that thigh clock synchronization between the nodes is achieved via networking
messages [EGE02] while on other techniques the estimation of the clock offset between nodes is part
of the processing. In [CAST13] source localization on an asynchronous network is proposed using
nodes equipped with at least two microphones. The proposed method is based on the minimization
of a global cost function that combines individual hyperbolic constraints associated to the TDoA
measurements on microphone sub-arrays at local nodes. Since cross-correlation and beamforming
require the transmission of sound signals between nodes, the available bandwidth can pose a prob-
lem on WASN. Data transmission constraints have also been explored. In [SH05] an energy-based
Maximum Likelihood (ML) 2D localization scheme for multiple sources is proposed. The model
based on acoustic RSS assumes omni-directional sources and does not account for the potential
effects of the propagation path, thus its performance in real scenarios may be affected.

A specialized type of outdoor sound localization system mod often based on WASNs are sniper de-
tection systems. These systems commonly work by detecting the shockwave created by supersonic
projectiles [SPS98]. The characteristic time-pressure profile of the shockwaves is related to the
physical properties of the projectile [Dan06] allowing bullet trajectory, speed and caliber estimation,
while the shooter localization is typically obtained using the muzzle blast. The work on [SHV+11]
uses soldier wearable nodes equipped with 4 microphones. They perform a simple detection via a
finite state machine and temporal measurements of the shock wave. In addition to shooter localiza-
tion and trajectory estimation they perform weapon classification by matching the speed profile of
the projectile with a series of known templates. Other similar approaches include: [MP10] based
on two synchronized subarrays with 4 microphones and [DKW10], that exploits the time difference
between the shock wave and the muzzle blast to locate the source on a WASN without synchronicity.

The most active area of research related to WASNs is the localization of the nodes themselves
known as self-localization. This is not a new problem either [NS96], a popular method to calibrate
traditional microphone arrays is to use a number of acoustic sources at known positions [SSP02].
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The initial proposition of such techniques did not have to deal with the lack of synchronicity between
microphones. However, more recent approaches adapted to the constraints of WASNs can be found,
such as [HMdC+16] that proposes a method using controlled sources surrounding the nodes, where
the emitted signals and source positions are known a priori. The proposed technique also tackles
typical practical issues such as reverberation, unknown speed of sound, line-of-sight obstruction,
clock skew.

In general, self-localization methods can be categorized as active methods when they require
sound emission, and passive when they rely on environmental sounds. Passive methods are generally
more complex and slower (they need to collect enough measurements), although the sounds emitted
by active methods can be an annoyance to the end user. Self-localization in WASN has been solved in
many different ways, in [PJHUF16] they differentiate between methods based on single microphone
nodes and methods using sub-arrays and in [CAA+17] categorization is made depending on the type
of measurement employed.

When more than one microphone is available at each node, self-localization can be performed
by finding the location and orientation of each sub-array using Direction of Arrival (DoA) measure-
ments. However, DoA-based algorithms can only find the relative geometry, and additional informa-
tion is required to scale it. Node orientations can be obtained using an electronic compass, a device
composed of a magnetometer and an accelerometer. Unfortunately, magnetometer measurements
are sensitive to disturbances from electric equipment (and even large metallic objects) and must be
frequently calibrated to avoid large errors [LLW09], thus, most algorithms tackle node orientation as
an additional unknown for improved accuracy. Some examples include: [JSHU12] where 4 arrays
with 2 microphones are located assuming that the nodes are located along the walls of a room of
known dimensions, [PF14] where 3 synchronized sub-arrays with 5 microphones embedded on a
table are calibrated, and [AHM+14], where a network of nodes equipped with 3 microphones are
located using RF RSS measurements to solve the scaling.

Single microphone methods based on ToA are more prevalent. Early passive methods assume
internode synchronization. Notably in [Thr06], a method known as affine structure from sound
proposes a solution that approximates self-localization under a far field approximation defined in
the calculus of affine geometry, and that relies on Singular Value Decomposition (SVD) to recover
the affine structure of the problem. It estimates the locations of both nodes and sources in 2D space
and the emission time of the sources. [CDBBM12] breaks the far-field approximation and proposes
a closed-form solution by finding an approximate solution of a ML problem by transforming the orig-
inal nonlinear Least Squares (LS) cost function minimization into a two step procedure Closed-form
source localization techniques are attracting due to computational efficiency, but involve lineariza-
tion of quadratic equations negatively affecting the precision. In [PPH14] a group of smartphones
lying on a table are located using the voice from the speakers seated at the table and relying on data-
association for relating the ToA at different sensors. Here the closed-form expression is used to ini-
tialize an iterative refinement. These type of passive techniques can be adapted to an asynchronous
network by using an active approach. In [CPSB+16] syncronization is estimated via pairwise time
differences using cross-correlations called “BeepBeep”, a strategy proposed in [PSZ12].

There are also a number of methods that take self-localization, source localization and synchro-
nization as a single minimization problem, although, they are harder to solve and more sensible to
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measurement errors due to the increased number of unknowns. The work on [GKH13] proposes a
method based around low-rank-approximation using SVD for the minimization, that requires a min-
imum of five microphones and 13 sound source events. Similarly, [WHRC16] proposes a method
based on a Gauss-Newton low-rank approximation algorithm aided by a multi-initialization scheme
to avoid local minima. Also, [PP17] proposes a self-localization method for user-worn nodes. A user
here acts as a sound source and the node positions are recovered using Multidimensional Scaling
(MDS). Their method requires node tracking and prediction of spatial information during periods of
node silence.

Generally speaking, the implementation of acoustic localization methods on WASNs require high
bandwidth for the transmission of the signals, and significative computational power for the esti-
mation process. These requirements are more relevant when the processing has to be performed
in real-time or close to real-time (e.g., continuos source localization), but can be relaxed when
throughput is not a priority (e.g., ‘one-off’ self-localization when the nodes are first deployed).

1.4.2 Detection and Classification

Numerous examples of pattern recognition techniques applied to the detection of gunshots and
other impulsive events can be found in the literature over the last decade, however, little work has
been done on the classification of similar impulsive events. Classification poses a harder problem,
specially when applied within a same “family” of sounds, since the captured signals are strongly
related to the recording environment and the positioning of the sources and receivers. Moreover,
multi-channel classification has not yet been widely studied with only a few precedents available.
Unlike localization algorithms, machine-learning based detection and classification are not manda-
torily constrained by a lack of knowledge about node locations or the need for tight synchronization.
These methods usually work with blocks of data or frames, the duration of which can go from a few
milliseconds to around one second and the information carried by the sound waves is condensed
into a series of parameters, thus, the requirements to implement such algorithms on a WASN are
relaxed.

Most reported work on audio-based machine learning is related to speech and music, however
there is a much more broad set of problems that are of interest. Recently, the term ‘machine hearing’
[Lyo10] has been used to refer to all the problems that can be solved using computers and sound.
The most represented problem that deals with ‘noise’ signals is Acoustic Event Detection (AED)
that aims at processing a continuous acoustic signal to attach symbolic descriptions to the sound
events present on it. An early example that compares various methods developed for Automatic
Speech Recognition (ASR) and musical instrument recognition for their application to AED can be
found in [CS03]. Over the last decade, AED starts appearing in the literature as a trend parting
from application specific detection/classification, aiming at more generalist goal by introducing a
(relatively) high number of classes describing different types of acoustic events. Some examples
based on different sets of standard features and various classifiers include [TN09] and [ZZHJH10].
A comparison of different features for event detection can be found on [CK14,KLP+13].

The most recent AED systems are based on deep neural networks inherited from computer vision.
These systems, such as [CHHV15] usually implement one ore more convolutive layers that intended
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to extract high level features from an input spectrogram, followed by a recurrent neural network
intended to learn the temporal evolution of the signals. These kind of systems are commonly used
for polyphonic detection, that is, when more than one class is present at the same time. Some work
is also being done in multichannel systems, such as [APP+17] where a stereo signals is feed to the
network together with a series of spatial features extracted from the inter-microphone differences.
Unfortunately, the type of deep neural networks that are being applied to AED commonly require
hundreds of thousands of operstions per input sample and are executed on massively parallel pro-
cessing systems.

Interest on audio surveillance systems predates the modern interpretation of AED. Audio surveil-
lance involves the detection of hazardous acoustic events such as gunshots and explosions and other
indicators such as the detection of distress in the human voice, most often in the form of screams. A
compilation of audio surveillance contributions can be found in [CCTM16]. These kind of acoustic
events (specially the impulsive ones) are sometimes called “rare” events which are both abnormal
and random in nature. From a detection point of view, abnormal implies that a disproportionate
amount of time is spent monitoring noise, while random implies that continuous sensing is needed
since predicting event arrival times is not feasible. These factors are accounted for in [CRJC+11]
that evaluates various low-power gunshot detection schemes intended for continuous use preceding
a more complex classification stage.

Creating an acoustic event database is a laborious task, furthermore, recording certain types of
impulsive events, such as gunshots and explosions, is dangerous, tedious and sometimes technically
difficult. Therefore, most reported work rely on examples obtained from sound libraries (usually
processed samples that do not reflect “real” recordings) or a small number of recordings taken in
a safe environment (i.e., gun range) that typically do not reflect the diversity created by different
propagation paths. An early example of impulsive event detection is presented in [DBAP99] where
the database is composed of recordings of glass breaking,door slams and explosions extracted from
a sound library. Most proposals use Mel Frequency Cepstral Coefficients (MFCC) as part of their
feature vector, and classic classification algorithms such as Gaussian Mixture Models (GMM), Hid-
den Markov Models (HMM) or Support Vector Machines (SVM). Some examples include:[GVT+07]
where gunshot and scream detection is performed on audio recordings taken from movies sound-
tracks and internet repositories mixed with ambient noise. The proposed method is based on MFCC
and other standard features with a GMM classifier. In [FAJ10] correlation against templates is pro-
posed as features together with MFCCs. The system uses a HMM classifier for gunshot detection on
real recordings taken at an army training session against speech balloon explosions and handclaps
recorded in a laboratory environment. Also using real recordings, in [AUM13] gunshots are detected
using a linear kernel SVM overMFCCs and other standard features in the presence of other impulsive
noises.

A common trend in acoustic surveillance is the implementation of a multi-stage classifier. The
work on [NPF09] proposes a two stage approach: an abnormal event detector followed by a clas-
sification into gunshot or scream using HMM and MFCC. A similar two staged approach for the
detection of screams and cries in an urban environment using standalone smartphones (without
networking) can be found in [SK16]. In [MSVG11] another two step process is presented, first dis-
tinguishing between impulsive a non impulsive sounds with a Bayesian classifier and some proposed
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energy-based features together with MFCCs. The same impulsive non-impulsive pre-classification
can be found in [CRHK12], using multiple standard features and a GMM. It is also possible to find
some acoustic surveillance examples that depart from the use of MFCC such as [GH15], where Gabor
features are reported to outperform MFCCs using GMM classification on gunshots, explosion, glass
breaking and screams. Similarly, [VA12] proposes the use of gamma tone filters with a SVM for the
classification of various events including gunshots and screams extracted from sound libraries.

From these examples it is clear that gunshot detection is a priority for audio surveillance systems
not only due to its threatening nature but also for its usability as part of gunshot localization systems.
The natural next step in the evolution of gunshot detection is to recognize the type of weapon that
was fired. An early proposal can be found in [CER05], where a hierarchical approach to weapon
classification, based on MFCC and other standard features with a GMM classifier is used to distin-
guish between pistol, rifle, submachine gun, grenade and cannon fire sounds obtained from a sound
database and mixed with background audio. More recent proposals include [PR12] where a set of
specialized features that are compared to MFCCs in the classification of gunshots recordings of 10
weapons obtained from a sound library, and [DT13] that presents a a pre-emphasis filter preceding
the extraction of standard features and followed by GMM Hierarchical Classification intended for
distinguishing between two types of rifle using signals recorded at a gun range. Note that none of
these works provide information about the distance between the microphone and the guns.

Most of the literature on audio-based machine learning is based on a single microphone setup,
however the spatial diversity of a multi-channel system can be exploited to increase the accuracy of
the system. In order to do so, the information captured by each microphone has to be combined
either as signals (usually via beamforming), features or decisions. The most popular choice is to
combine the decisions taken by individual classifiers, using a technique known as decision fusion,
specially on WASNs since it requires less data transmission than beamforming and feature fusion
and does not require tight synchronization. The most basic form of decision fusion is majority voting
[LS97] where the winner class is the most represented among available decisions, although there
are many alternatives that assign a weight to each decision. A distance-based decision fusion scheme
is proposed in [DH04] for vehicle classification with a distributed array. The system uses spectral
energy band features and ML classification. Node-source distance is estimated from the received
SNR thus the distance fusion scheme does not provide a significative benefit when compared to
other fusion methods. In [ZML10], a WASN performs multi-class classification using SVMs and
decision fusion with a nearest neighbor weighting scheme, where the decision of the node closest to
the source is selected as the final decision and is shown to perform better than majority vote. The
work in [GPKM14] compares signal fusion (delay-and-sum beamformer) and decision fusion using
standard features and GMM and concludes that weighted average fusion works the best among the
tested techniques. Also, [PMH+15] presents the positive impact on accuracy of decision fusion for
multi-class classification in a system with just 4 microphones. Examples of other fusion techniques
can also be found: in [AEQGC06] a traditional microphone array is used to perform fusion via
beamforming on a simulated indoor environment as part of system that classifies an audio segment
first into speech or non-speech and then into various classes (including impulsive noises). Regarding
feature fusion: [SNM13] presents a graphical model-based feature fusion framework to identify
the launch/impact of rockets and mortars using a traditional array. Also in [GNM15], a WASN
is used to classify sound as speech music and noise, using feature fusion with modified MFCCs
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and Linear Discriminant Analysis (LDA) on simulated rooms with various reverberation coefficients.
The feasibility of implementing a classification system on a WASNs is studied in [SH15] where the
accuracy and execution time of different sound classification tasks using WASNs is compared.

The potential of WASNs for combined detection, location and classification of targets [LWHS02]
is of great interest for many security related applications. An early approach to WASN acoustic
surveillance is presented in [DGA+05] where a network of ad-hoc multimodal (acoustic, Infrared
and magnetic sensors) nodes detects and classifies civilians, soldiers and vehicles using statistical
analysis with a focus on scalability (up to thousands of nodes) and long battery life. [SSSS13] tack-
les acoustic detection, tracking and classification of low flying aircrafts using a centralized WASN
where each node is equipped with five microphone clusters (8 microphone subarrays) adding up
to 64 microphones per node. Detection and classification are based on the spectral signature of
the aircrafts, 3D localization is possible by triangulation with 2 or more nodes. In [MNH08] a net-
work of sensors located along a road to classify vehicles based on their spectral signature using a
distributed implementation of K-Nearest Neighbors (K-NN). The first node that detects a vehicle
(adaptive threshold) triggers a process that involves the selection of a subset of microphones and the
distributed computation of the classification using simulated signals. Precedents of WASN surveil-
lance based on impulsive events can also be found in the literature: [ASJS07] proposes joint source
localization and signal estimation based on ML estimation for gunshots, RPG, and artillery fire in a
simulated environment formed by 9 sub-arrays equipped with 8 microphones . It also proposes the
use of statistics obtained from wavelets showing a high degree of separability in a 2D feature space.
The work in [KLC14] also tackles joint detection and localization of selected acoustic events in an
acoustic field for smart surveillance applications.

1.5 Scope of the Thesis

The main objective of this thesis is the research and development of novel multichannel algo-
rithms for impulsive sound source analysis, including detection, classification, localization and self-
localization methods. The aim is to develop efficient techniques that can be implemented on a WASN
in which other methods cannot be used due to a series of constraints, such as restricted computa-
tional loads, or limited wireless bandwidth. In general terms, this proposal aims at developing a
framework for collaborative processing in which the spatial diversity provided by a group of micro-
phones is exploited to solve each of the presented problems simultaneously. At the same time, the
focus is to improve multichannel acoustic analysis of impulsive events by taking advantage of the
information obtained from the resolution of some of the problems to increase the performance of
later stages. This philosophy is in clear contrast with off-the-shelf approaches where each problem
is addressed independently on a centralized structure.

The particular problems arising from the main objective addressed in this thesis are:

To develop efficient self-localization algorithms for the simultaneous localization and synchro-
nization of the nodes that allow their implementation in a resource restricted WASN.

To improve impulsive acoustic event detection by merging the information obtained from a
network of distributed sensors.
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Figure 1.7: Simplified flow diagram of the proposed algorithms.

To formulate new solutions to the problem of acoustic source localization by exploiting the
information obtained from event detection.

To minimize the cost of the localization process both in terms of computational load and data
transmission.

To design an efficient classification system that exploits the spatial diversity provided by the
network.

To improve impulsive source classification by taking advantage of the spatial information ob-
tained from source localization.

The hierarchical relationship between the presented problem in shown in Figure 1.7 as a flow
diagram.

1.6 Structure of the Thesis

This thesis is divided in two main blocks organized as follows:

The first block contains a preliminary study of the studied problem. It is divided into two
chapters:

• Chapter One (the current one), contains an introduction to the problem in the form of
a brief description of the elements that play a role on it, followed by a comprehensive review
of the state of the art of the different areas of interest addressed in this thesis, and finally a
description of the main objectives of this work.

• Chapter Two briefly introduces the theoretical basis needed for easily understanding the
problems tackled in this thesis, and offers a brief description of some well-known algorithms
that are to be used for the solution of said problems.

The second block, which is the main block of the document, contains a detailed description of
the work done to accomplish the objectives of this thesis, and a comprehensive description of
the experimental work and obtained results. The chapters of this block correspond to each of
the problems tackled in this thesis as follows:
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• Chapter Three addressed the self-localization problem on a WASN. A novel closed-form
self localization algorithm based on pairwise DoA and range estimates is proposed in this chap-
ter. Additionally, network synchronicity can be achieved as a result of the method employed to
obtain the range between a pair of nodes using acoustic signals.

• Chapter Four tackles the problem of impulsive sound event detection on a spatially di-
verse scenario. A novel classification algorithm that combines clustering and supervised train-
ing is proposed. The algorithm is shown to obtain a comparable performance to more complex
algorithms, making it a suitable candidate for implementation in resource restricted devices.

• Chapter Five deals with sound source localization. Two novel schemes for performing
source localization on a WASN are proposed. The first one takes advantage of a network with
acoustic event detection capabilities to reduce the length of the signals used in classic localiza-
tion algorithms. The second approach bypasses the need for cross-correlations by working with
ToA estimates and is capable of obtaining better results while minimizing the computational
load.

• Chapter Six tackles impulsive sound source classification on a spatially diverse scenario.
First the problem of gunshot classification on a WASN with technical restrictions is studied.
Second, a more generalist impulsive source classification system is proposed in a WASN tack-
ing advantage of the capabilities described in the previous chapters. In both cases spatial
information is used to improve the results of the classification via weighted decision fusion.

• Chapter Seven summarizes the most relevant results obtained by this research and lists
the main contributions of the thesis. This chapter also contains a description of possible future
research lines that have been opened or broaden by the work done in this thesis. Finally, a list
of publications derived from this thesis is also included.





CHAPTER2 Background

2.1 Introduction

This chapter intends to serve as an introduction to the theoretical basis needed to better under-
stand the problems that will be explored later. First the main properties of sound propagation and
the concept of spatial mixing model are introduced. Audio signal processing is commonly tackled
in the time-frequency domain. Hence, the motivation for the use of such domain is presented, and
the mathematical basis for the transformation of the sound signals into the time-frequency domain
is described. Since most of the proposed techniques are based around some kind of mathematical
optimization, the concept is briefly discussed. Once the most fundamental notions have been intro-
duced, the discussion shifts towards the use of acoustic signals in spatial applications. The problem
of time lag estimation and its use for sound source localization and self-localization is introduced.
Finally, the last section of this chapter offers a small overview of machine learning for audio-based
applications. Some concepts such as features, classification and performance metrics are described.

2.2 Sound Mixtures and Propagation

A common approach to model spatial audio is defining the signal recorded by a microphone
as a mixture of sounds emitted by different sources that travel trough different propagation paths
towards the receiver. This implies that sounds produced by different sources are (for the most part)
independent to each other until they get combined into a single acoustic signal (i.e., mixed) by the
receiver, thus a receiver at a different location will perceive a different mixture.

2.2.1 Mixing Model

Prior to the description of the mixing model, it is worth clarifying the notation used in this thesis.
In signal processing, the most common convention assumes that variable (t) represents continuos
time, while variable [n] represents discrete time (i.e. [n] = (n/fs), where fs is the sampling fre-
quency). However, in this document, all the signals are defined in discrete time, thus (t) is adopted
to represent discrete time signals.

Let us consider a set of M microphones that receive the signals emitted by N sources, sn(t),
n œ {1, ..., N}, generating M mixtures, xm(t), m œ {1, ..., M}. The general expression for the
additive mixing model is given by:

xm(t) =

Nÿ

n=1
sn(t) ú hmn(t) , (2.1)
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Figure 2.1: Schematic representation of an Impulse Response.

where hmn(t) is the impulse response of a Linear Time-Invariant (LTI) filter that describes the acous-
tic channel (i.e, the propagation path) between the nth source and the mth microphone, and operator
ú represents linear convolution. The filter hmn(t) is commonly called acoustic impulse response, and
its frequency domain transform is known as acoustic transfer function (ATF). The signals received
by the microphones are then the result of the convolution between the original signal emitted by
source sn(t) and the filter hmn(t) that depends on the environment, as well as the location of the
source and the microphone inside said environment.

Mixing models can be expressed in matrix notation to simplify their formulation. Let us define
x = [x1(t), ..., xM (t)]T as an M ◊ 1 vector of mixtures and s = [s1(t), ..., sN (t)]T as an N ◊ 1 vector
of sources, where operator (.)T denotes matrix transposition.The mixing matrix can then be defined
as:

A =

Q

cca

h11(t) · · · h1N (t)
...

. . .
...

hM1(t) · · · hMN (t)

R

ddb . (2.2)

Accordingly, the general mixing model is given by x = As. Please notice that we are following the
linear algebra convention by which vectors are represented in bold lower case and matrices in bold
uppercase.

2.2.2 Acoustic Impulse Response

Impulse responses used to represent acoustic environments are composed of three parts: direct
sound, early reflections, and late reverberations (See Figure 2.1 for a schematic representation).
Direct sound represents the earliest arriving (typically strongest) sound wave. Early reflections
describe the sound waves that arrive within the first tenths of milliseconds, when the density of re-
flected waves is low enough that the human ear is able to distinguish individual paths. These early
reflections (and possibly diffractions) are what provide human listeners with most of the spatial
information about an environment, because of their relatively high strengths, recognizable direc-
tionalities, and distinct arrival times. The late reverberation phase is composed of reflections with
such a high density that the ear is no longer able to distinguish them independently. They typically
convey information about the size of the environment and the materials of the reflective surfaces.
During this phase the impulse response resembles an exponentially decaying noise function with
overall low power.



2.2 Sound Mixtures and Propagation 23

S

R

S

R

Image source method Ray tracing method

Figure 2.2: Schematic representation of two common methods for room impulse response modeling.

An impulse response can either be measured or modeled. Measurement techniques work based
on the deconvolution of a known, and perfectly reproducible excitation signal [SEA02]. The first
challenge of acoustic impulse response modeling is to find the significant propagation paths along
which sound waves travel from source to receiver. Assuming that sound waves travel as rays that
follow the shortest path when the propagation medium is homogeneous, the problem is reduced
to finding piecewise-linear paths from source to receiver with vertices on the surfaces of obstacles
and then obtaining the time lag and attenuation for said path [Rin00]. Two of the most common
approaches to this problem (shown in Figure 2.2) are:

Image source method: reflection paths are computed by considering virtual sources generated
by mirroring the location of the audio source (S) over each surface of a polygonal environment.
Reflection paths are computed up to any order by recursive generation of virtual sources. This
method is particularly efficient in modeling rectangular shaped environments, due to rectilin-
ear symmetries, thus complex geometries are commonly approximated by rectangular sections.

Ray tracing method: reverberation paths are found by generating rays that emanate from the
source (usually in random directions) and following them through the environment for a fixed
amount of reflections or until they reach the receiver. A primary advantage of this method
is the simplicity of the ray-surface intersection calculations, however important reverberation
paths may be missed and since the results are dependent on particular positions, this method
is not directly applicable when either the source or receiver is moving.

2.2.3 Sound Propagation

Generally speaking, generating accurate sound propagation models is a very challenging task
[BGBBJ03] since acoustic waves are subjected to a wide variety of effects such as: attenuation,
reflection, absorption, refraction, diffraction, diffusion, interference with other sound waves, etc.
However, we have seen that a simple model for an acoustic impulse response can be obtained as a
series of time lags with an associated amplitude. Consequently, we are just going to briefly describe
the two main mechanisms required for this approximation: attenuation, and propagation speed.

Assuming that a particular sound source can be modeled as an acoustic point source, we can
define a basic attenuation model based on the principle that, in a homogeneous medium, wave
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propagation from a point source is purely spherical. This is formally known as the standard inverse
square law for point sources and can be expressed as:

SPL = SPL0 ≠ 10log(4fir2
), (2.3)

where r is the radius of the sphere (i.e., the distance to the source), and SPL0 represents the original
sound pressure of the sound source (in dB). However this model is too simplistic since it fails to
capture the fact that sound energy absorption is frequency-dependent and it changes (most notably)
with air humidity. A more advanced model will then consider absorption as a function of distance,
frequency and humidity. In addition to this, it is common to include the directivity of the source as
a parameter that scales the result as a function of the emission angle.

Another crucial factor, specially relevant for multichannel sound processing, is the speed at which
sound propagates, that is directly related to the time it takes for the sound waves to travel from
its source to a receiver. The speed of sound in air is highly dependent on temperature, higher
temperatures producing higher sound speeds. The relationship between the temperature of air and
the speed of sound can be expressed as:

c = c0

Ú
1 +

T
273.15

, (2.4)

where T is the temperature in degrees Celsius (ºC) and c0 represents the sound speed at 0°C (331.5
m/s). Generally speaking, for each degree increase in temperature, the speed of sound increases by
0.61 m/sec.

2.2.4 Outdoor Sound Propagation

Sound propagation can be assumed to be time invariant in uniform mediums such as the interior
of a room. However, propagation in outdoor environments is anything but uniform. Changing
meteorological conditions can easily cause large fluctuations in sound levels over time periods of
minutes. In general, the longer the transmission path, the larger the fluctuations. Outdoor sound
propagation is affected by many mechanisms, including:

Source geometry and type (e.g., point, directional, coherent, incoherent).

Meteorological conditions (e.g., wind and temperature gradients, atmospheric turbulence).

Atmospheric absorption of sound (e.g., air temperature and humidity).

Terrain type and contour (e.g., ground absorption, reflections).

Obstructions (e.g., buildings, vegetation, etc).

Some of these mechanisms, such as the effect of source geometry or surface absorption are also
found in indoor propagation, thus, they are contemplated by some of the more complex impulse
response modeling techniques. On the contrary, dynamic and/or non-linear effects more common
on outdoor environments, such as air temperature gradients or wind speed gradients, are harder to
model and most often ignored. Figure 2.3 shows a schematic representation of refraction caused
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Figure 2.3: Schematic representation of refraction caused by air temperature gradients (left) and wind
speed gradients (right).

by a change in the speed of sound due to air temperature and wind gradients. Generally speaking,
these mechanisms have not been widely studied yet in terms of signal processing, although, they
are very relevant for noise control. In the same way as impulsive sound source modeling, outdoor
sound propagation has been studied for decades in order to better predict sound pressure levels
for noise control applications. The existing models go from simple tables generated by empirical
measurements to very complex numerical models based on fluid dynamics [Ras86].

2.3 Time-frequency representation of sound

The non-stationary nature of most sound sources (specially impulsive noises), motivates the
analysis of sound in both the time domain and the frequency domain simultaneously. The frequency
content of sound signals changes trough time, so it can only be considered stationary in short-
time segments (typically tenths of ms). The classical Fourier series of a ‘whole’ signal obtains an
accurate representation of the frequency content of said signal, but at the same time it fails to
provide information about quick changes of frequency content or sudden changes in energy. This is
commonly known as the time-frequency resolution tradeoff. The most commonly used time-frequency
representations of sound is the Short-Time Fourier Transform (STFT) [AR77] which divides the input
signal into segments, or frames, and performs the Fourier analysis of each frame independently.
There are other widely used methods for time-frequency representation such as the Discrete Wavelet
Transform (DWT) [AH01] or the Constant-Q Transform (CQT) [BP92] . However, all the algorithms
described in this thesis are based on the STFT, which is described bellow.

2.3.1 Discrete Short-Time Fourier Transform

The discrete STFT is a time-localized spectral transformation based on the discrete Fourier trans-
form (DFT). The DFT is an orthogonal transformation which turns a finite sequence of samples
equally-spaced in time into a same-length sequence of complex sinusoids equally-spaced in fre-
quency. The DFT of a discrete time signal x(t) of L samples in length is calculated according to:

X(k) =

Lÿ

t=1
x(t)e≠i 2fi

L kt, k = 1, ..., L , (2.5)
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where X(k) are the DFT coefficients, k is the frequency index and i is the unit imaginary number.
Note that coefficients X(k) are complex values that represent the amplitude and the phase offset of
each frequency component.

In the same way as the frequency components are obtained from the time signal, x(t) can be
obtained from X(k) using the Inverse Discrete Fourier transform (IDFT) given by:

x(t) =

1

L

Lÿ

k=1
X(k)ei 2fi

L kt, t = 1, ..., L , (2.6)

The DFT is a frequency localized transformation, where the analog equivalent to the normalized
frequency of the basis functions is dependent on the sampling frequency fs and fixed according to
fk =

fs(k≠1)
L . Audio signals are composed of real valued samples (x(t) œ R), which causes the DFT

to be symmetric. Due to this fact, only the first K =

L
2 + 1 frequency bands are considered since the

upper components are a just mirrored and conjugated version of the lower components.

In order to calculate the STFT the input signal is split into equal-length segments by using a
sliding window and then the DFT of each of the segments is computed and stored as a column
in a matrix. This way the STFT can be viewed as a two-dimensional transformation which axes
represent frequency and time. The segments (frames) are usually overlapped to avoid artifacts at
the boundaries.

xl(t
Õ
) = w(tÕ

)x(t + lD), tÕ
= 0, ..., L , (2.7)

where xl(t
Õ
) is the lth frame of signal x(t) windowed by function (wtÕ

), (tÕ
) is the local time index,

L is the window length, and D is the hop size: the number of samples that the sliding window
advances between two consecutive frames. The STFT can then be expressed as:

X(k, l) =

Lÿ

k=1
w(tÕ

)x(t + lD)e≠i 2fi
L ktÕ

, k = 1, ..., L , (2.8)

where X(k, l) is a point of the STFT corresponding to the kth frequency bin on the lth frame.

The STFT is invertible, which implies that the original signal can be reconstructed by applying
the inverse STFT (ISTFT). The process involves applying the IDFT to each frame and reversing the
windowing process, commonly with a method called overlap-add. It is important to highlight that
the choice of the window function is important to obtain a good reconstruction. Some widely used
windows that take into account frequency resolution and sidelobe level (spectral leakage) are the
Hanning and Hamming windows [Har78].

The time resolution and frequency resolution provided by the STFT are linked and both depend
on the window length (L). A wide window gives better frequency resolution but poor time reso-
lution, while a narrower window gives good time resolution but poor frequency resolution. The
window length should then be matched to the particular characteristics of the sound signals being
processed. Additionally, window length is restricted in real-time systems by the maximum allowed
input-output delay. Figure 2.4 shows the well known frequency-time tradeoff of the STFT with the
spectrogram of a logarithmic swept sine from f = 0 to f = fs/2 obtained with three different win-
dows lengths; from left to right it is possible to see the effect of an increasing window length. A
spectrogram is a common method to visualize sound signals which represents the variation in en-
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Figure 2.4: Spectrogram of a sine sweep from f = 0 to f = fs/2. From left to right,increasing window
length.

ergy of the spectral components with time. It can be computed as the squared magnitude of the
STFT, usually in dBs with: SPG = 20log10(|X(k, l)|2), where operator |.| represents absolute value,
or magnitude.

2.4 Optimization

Optimization, or in more proper terms mathematical optimization, is a field dedicated to finding
the best solution to a problem from some set of feasible alternatives. Optimization has applications
in almost every engineering and scientific field. In this thesis it is required for both sound source
localization and machine learning, which will be later discussed.

In the simplest case, an optimization problem consists in finding the value that minimizes a given
function by choosing different values from within an allowed set and evaluating them. A general
optimization problem can be represented in the following way:

Given a function F : A æ R, for some subset A to the real numbers, find and an element x0 in A
such that F (x0) Æ F (x) for all x in A.

Typically, A is a subset of the Euclidean space Rn specified by a set of constraints (i.e., equalities
and/or inequalities that the members of A have to satisfy). A is often called the search space, while
its elements are called candidate solutions or feasible solutions. The function F (x) is called by
various names depending on the field, e.g., objective function, loss function, cost function or fitness
function, among others. A feasible solution that finds the global minimum of the objective function
is called an optimal solution. By convention, the standard form defines optimization as minimization
problem, considering that a maximization problem can be treated as a minimization problem just by
negating the objective function. Most often there is a single objective function which output is an
scalar, however it is not uncommon to find problems involving more than one objective function to
be optimized simultaneously (multi-objective optimization).

Depending on the optimization problem, it may be possible to use optimization algorithms that
find the solution in a finite number of steps (sometimes called closed-form solutions), iterative meth-
ods that converge to a solution, or heuristics that provide an approximate solution. An exhaustive
search (i.e., evaluating every element contained within the search space) is not usually feasible,
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therefore different iterative strategies are based on different methods to ensure that some sequence
of actions, or iterations, converges to an optimal (or close to optimal) solution. One major criterion
for choosing an optimization method is the complexity of the evaluation and the required number
of function evaluations to find the solution, as these are often related to a large computational cost.

Optimization problems are commonly multi-modal, i.e, they have more than one optimal (or
close to optimal) solution. To some problems, there could be various global minima (same value of
the evaluation function) or there could be a mix of global and local minima. As a direct implication
of this, iterative and heuristic algorithms tend to be sensitive to the starting point. Most iterative
algorithms are deterministic, i.e, they always reach the same result under the same conditions,
however, small changes to the starting point can yield different results even when following the
exact same rules. In case multiple solutions are wanted, or in order to check the convergence, it is
common practice to make multiple runs of the algorithm with different starting points.

Optimization is itself a vast field of research that is divided into a series of subfields based on
the particularities of the optimization problems that they are intended to solve (e.g. whether the
variables are continuous or discrete).

2.4.1 Gradient Methods

Gradient methods can be described as iterative methods in which the search direction is defined
by the gradient1 of the objective function at the current point, where the term point is used here
instead of feasible solution .

Most algorithms for unconstrained gradient-based iterative optimization can be described as fol-
lows:

1. Initialize the algorithm by selecting a random initial point x.

2. Compute a search direction. Compute the vector g that defines the descent direction in the
n-dimensional search space.

3. Compute the step length. Find a positive scalar, µ such that F (x + µg) < F (x).

4. Update the point position x Ω x + µg .

5. Test for convergence. If the stopping criteria satisfied, the current point is the solution, if not
go back to step 2.

The difference between the various types of gradient-based algorithms is the method that is used
for computing the search direction: gradients, Hessians2, or only function values. The general idea
behind gradient-based optimization is shown in Figure 2.5, which also illustrates the influence of
starting points in the minimization process.

The computational cost of each iteration depends on what is to be evaluated. Evaluating gradi-
ents and Hessians improves the rate of convergence for functions in which these quantities exist and

1The gradient is a multivariable generalization of the derivative.
2A Hessian is a square matrix of second-order partial derivatives of a scalar-valued multivariable function, that

describes the local curvature at the evaluated point.
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Figure 2.5: Schematic representation of gradient-based iterative optimization.

are sufficiently smooth, however, such evaluations are more computationally expensive, thus there
is a trade-off between the number of iterations and the complexity of the evaluation.

2.4.2 Evolutionary Algorithms

Evolutionary algorithms are inspired by the process of natural selection. They use mechanisms
such as reproduction, recombination and mutation, with candidate solutions playing the role of
individuals in a population. They are part of a larger group of algorithms knows as heuristics. A
heuristic is any algorithm which has not mathematical guarantee of finding the optimal solution
to a problem. Nevertheless heuristics are useful for getting an approximate solution when classic
methods fail to find any exact solution or take too much time to find it.

A typical implementation of an evolutionary algorithm follows the next outline:

1. Initialize the algorithm by creating a population of random individuals.

2. Evaluate the fitness of each individual in the population.

3. Sort the individuals according to the fit criterion, select the best performing individuals for
reproduction and dispose of the remaining individuals.

4. Breed new individuals (offspring) from the selected best- performing individuals (parents).

5. Renew the population with the newly breed individuals (new generation).

6. Repeat the process starting from step 2 until the stop criterion is met (fitness level, number of
generations, time limit, etc.).

There are many types of evolutionary algorithms, of which Genetic Algorithms (GA) are the most
popular. In GAs a candidate solution to the optimization problem is often presented in the form
of a string of numbers (commonly binary) referred to as the ‘genome’ where each of said numbers
is called a ‘gene’. The best solution is found by evolving an initial set of genomes using the basic
genetic operators:

Selection, the process of allowing the best solutions (genomes) to pass on their ‘genes’ to the
next generation of the algorithm.
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Figure 2.6: Schematic representation of population evolution on an genetic algorithm.

Crossover, the process of taking two (sometimes more) of the best performing genomes and
recombining portions of them to produce a new genome. By recombining portions of good
solutions, the genetic algorithm is intended to create a better solution

Mutation, the process of introducing random changes to the genome of an individual. Mutation
attempts to prevent the genetic algorithm converging to a local minimum by stopping the
genomes becoming too similar to one another.

These operators work in conjunction with each other to make the algorithm successful in finding
a good solution. Also, the specific method in which the operators work should match the chromo-
some’s representation of the solution; e.g., performing the crossover in predefined blocks of genes
when some variables are known to be grouped together. Figure 2.6 shows a schematic representation
of population evolution on a genetic algorithm.

GAs are a valid option for certain optimization problems but they suffer from a series of limita-
tions, the most relevant being:

Repeated fitness function evaluation. Every individual of every generation has to be evaluated.
This specially becomes a problem when the evaluation function has a high computational cost.

Poor scaling. The search space grows exponentially with the number of variables (genes).
Problems with many variables need very large populations and a large number of generations
to converge, which relates to the previous point.

Tendency to converge towards local optima. The population can quickly become too similar.
Although this can be alleviated by forcing a heterogeneous population by different methods
such as increasing the mutation rate.

The best solution is found only by comparison to other solutions. The stop criterion is not often
clear.

In general the suitability of GAs is dependent on the amount of knowledge of the problem; well
known problems often have specialized approaches that may be more efficient in terms of speed of
convergence.
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2.4.3 Least Squares

The Least Squares (LS) method is an important technique used to approximate the solution of a
system with more equations than unknowns, i.e, an overdetermined system. LS is widely used for
obtaining estimates of the parameters in a statistical model based on observed data. The unknown
values of the parameters in the model function are estimated by finding the numerical values that
minimize the sum of the squared residuals between the observed responses and those predicted by
the model. The problem can be described as follows: Assuming a physical phenomenon is modeled
by:

y = F
!
x; ⁄1, ..., ⁄N

"
, (2.9)

where y is a dependent variable, x a independent variable, and ⁄n, n = 1, ..., N is an adjustable
parameter. In order to find the best parameters we need a dataset composed of M data pairs
(xj , yj), j = 1, ..., M . The goal is to find optimal parameter values by minimizing S, the sum of
squared residuals:

S =

Mÿ

j=1
r2

j , where: rj = yj ≠ F
!
xj ; ⁄1, ..., ⁄N

"
. (2.10)

The parameters (⁄n) are treated as variables for the optimization and the predictor variable values
(xi) are treated as coefficients. It is important to note that the estimates of the parameter values are
not the same as the true values of the parameters, and are usually denoted by ˆ⁄n to emphasize this
fact.

Depending on whether or not the residuals are linear in all unknowns; LS problems can be di-
vided into linear and nonlinear models. For linear models, the LS minimization is usually done
analytically using calculus and it commonly has a closed-form solution. On the other hand, for non-
linear models, the minimization must almost always be done using iterative numerical algorithms.

Let us consider a linear model given by:

yj = ⁄1xj1+, ..., +⁄N xjN + ‘j , j = 1, ..., M, (2.11)

or in matrix form: y = X⁄ + ‘, where ⁄ is the parameter vector of length N , X, is a M ◊ N

matrix denoting the values of all the independent variables associated with a particular value of
the dependent variable vector y of length M and ‘ is the error vector also of length M . From
here, the parameters can be estimated as: ˆ⁄ = X≠1y, where X≠1 is the inverse of X. However, a
vector that solves the system may not exist, or if one does exist, it may not be unique (X could be
non-invertible). In these situations, the system can be still be solved by using different numerical
methods such as the Moore-Penrose pseudoinverse matrix, given by: X≠1 ¥ (XT X)

≠1XT . The
solution can then be found with:

ˆ⁄ = (XT X)

≠1XT y. (2.12)

Although this equation can work in many applications, it is not computationally efficient so it is
preferable to use more specialized solutions based on known properties of X.

In case the model is nonlinear, a direct solution is likely nonexistent or at least much more
difficult to find, so iterative solutions are commonplace. The basis of nonlinear LS is to approximate
the model by a linear one and to refine the parameters by successive iterations. Although, there are
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many examples in the literature where different methods are used for a great variety of non-linear
data-fitting problems. Some of the most widely employed solutions for nonlinear LS are the Gauss-
Newton method [Har61] and its variations such as Levenberg-Marquardt algorithm [Mor78]. As
any other iterative algorithm the most immediate implication is the need for initial parameters, thus
convergence is not guaranteed.

A variation of the LS method is the Weighted Least Squares (WLS), useful for estimating the
parameters of models with differing degrees of variability over the combinations of the predictor
values. Each term will then include an additional weight, wj , that determines how much each
observation in the data set influences the final parameter estimates. The criterion that is minimized
then becomes:

S =

Mÿ

j=1
wjrj

2. (2.13)

Weighted LS is usually solved analytically for linear models and numerically for nonlinear models.

2.5 Maximum Likelihood

Maximum Likelihood (ML) estimation is a technique to find the most likely parameters of a
function that explains a set of observed data. Assumming that the distribution of the observed
random variable(s) is governed by a Probability Density Function (PDF): F

!
x; ⁄1, ..., ⁄N

"
, where ⁄n,

n = 1, .., N are the hidden parameters, the likelihood function associated to a set of observations xj ,
j = 1, ..., M is:

L =

MŸ

j=1
F

!
xj ; ⁄1, ..., ⁄N

"
. (2.14)

In most cases it is convenient to work with the natural logarithm of the likelihood function, called
the log-likelihood:

log(L) = (

Mÿ

j=1
log

1
F

!
xj ; ⁄1, ..., ⁄N

"2
. (2.15)

The logarithm is a strictly increasing function, thus, the logarithm of a function and the function itself
achieve their maximum value at the same point. The general technique for solving ML problems
involves setting partial derivatives of log(L) (taken with respect to the unknown parameters) equal
to zero and solving the resulting equations (usually non-linear) to find the maximum. Log-likelihood
is favored since the logarithm of a product of terms is a sum of individual logarithms, and the
derivative of the latter often easier to compute. The ML estimator is then found by solving:

ˆ⁄ = arg max

!
log(L)

"
. (2.16)

It is worthwhile to note that, the least squares estimator we saw on the previous section is equiva-
lent to the maximum likelihood estimate when the experimental errors follow a normal distribution
[Dij83].
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2.6 Sound Source Localization

Source Location Estimation relates to how the sound signals received by a group of microphones
can be used to estimate the location of an emitting sound source. This can be achieved by measuring
the individual time instants at which a particular signal of interest appears on the recorded signals
and combining those measurements to pinpoint the location of origin of the signal. The basic types
of measures used for sound source localization are:

Time of Flight (ToF): the travel time of an acoustic signal from a single source to a single
receiver.

Time of Arrival (ToA): the time at which an acoustic signal reaches a single receiver without
knowledge about its emission time.

Time Difference of Arrival (TDoA): the difference in ToA between a pair of receivers.

Direction of Arrival (DoA): the angle formed by an acoustic wavefront and a pair of receivers.

All of these measures are related to the time lag caused by the propagation of acoustic signals be-
tween two points in space. Therefore, they can be obtained by estimating the displacement between
two audio signals which is commonly done using the cross-correlation function.

2.6.1 Cross-Correlation

Cross-correlation is a measure of the (linear) similarity of two signals as a function of the dis-
placement of one relative to the other. The cross-correlation of two discrete real valued signals x(t)

and y(t) is defined as:

rxy(·) =

Œÿ

t=≠Œ
x(t)y(t + ·), · = 0, ..., ±L , (2.17)

where · represents the time lag, or displacement, between the signals. Cross-correlation is similar to
convolution, for discrete real valued signals, they differ only in a time reversal in one of the signals
so cross-correlation can also be defined as:

rxy(·) = x(≠·) ú y(·). (2.18)

The most common way of computing the cross-correlations is to do so in the time-frequency domain
since the convolution becomes an element-wise multiplication in the frequency domain and the time
reversal becomes complex conjugation. The DFT of the cross-correlation function can be calculated
with:

Rxy(k) = X(k)Y ú
(k), (2.19)

where operand (.)ú indicates the complex conjugate. By performing the calculation in the frequency
domain and then taking the IDFT it becomes:

rxy(·) =

1

L

L≠1ÿ

k=0
X(k)Y ú

(k)ei 2fi
L k· , · = 0, ..., L ≠ 1 . (2.20)
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Note that expressions (2.19) and (2.20) are actually defining the circular cross-correlation. In or-
der to obtain the full length rxy, x(t) and y(t) have to be padded with a string of L zeros before
computing their DFT.

Once the cross-correlation between the two signals is calculated, the maximum (or minimum
when the signals are negatively correlated) of the resulting function indicates the point in time
where the signals are best aligned; i.e., the time lag between the signals is found as the argument of
the maximum (arg max), of the cross-correlation, given by:

·̂d = arg max

·
(rxy(·)) (2.21)

In some situations cross-correlation fails to correctly estimate the time lag between the signals,
mainly due to the appearance of strong reflections and coherence loss between the signals caused by
different propagation paths. In those situations is common to use the Generalized Cross-Correlation
(GCC) [KC76] which introduces a weighting function into equation 2.20 in order to alleviate unde-
sired effects. The GCC function can be defined as:

gxy(·) =

L≠1ÿ

k=0
Â(k)X(k)Y ú

(k)ej 2fi
L k· . (2.22)

Notice that the scaling factor 1
L of the IDFT has been ignored since it has no effect on the estimation

of the time lag between the signals.

Various algorithms can be defined by using different weighting functions, some of which depend
on the specific observations while others are based on statistical properties or estimates. Some
weighting functions have been shown to work well empirically in many situations, such as the
PHAse Transform (PHAT), in which the the magnitudes of the signals are canceled (sometimes
called whitening). The PHAT weights are defined by:

ÂPHAT(k) =

1

|X(k)||Y ú
(k)| , (2.23)

so that the GCC function becomes:

gxy(·) =

L≠1ÿ

k=0
Â(k)

X(k)

|X(k)|
Y ú

(k)

|Y ú
(k)|e

i 2fi
L k· . (2.24)

This is commonly known as GCC-PHAT and it is a widely used method for time lag estimation with
acoustic signals. It is worth noting that the whitening effect works well for broadband signals, but
when the target signal is narrowband it amplifies background noise.

Since we are working with discrete signals, the cross-correlation can only be evaluated at non-
integral values of · dictated by fs. In certain applications its is good practice to increase the reso-
lution of the cross-correlations by using some method such as signal up-sampling or quadratic peak
interpolation [CHOS95].

It is important to notice that the cross-correlation is affected by coherence loss in the received
signals between different propagation paths. A direct implication of this fact is that signals recorded
at distant locations or in an environment with low SNR are prone to produce false time lag estimates.
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2.6.2 Time Measures

The time lag estimate obtained from the cross-correlation can have different meanings depending
on which signals have been used to obtain it. Let us have a group of M microphones, where xj(t)

and pj = [xj , yj , zj ]

T (coordinates in the 3D euclidean space) denote the received signal and location
of the jth microphone respectively. Let us also have a sound source at ps emitting signal s(t). Since
we are working on the euclidean space, the distance between points pj and pk is given by:

djk = ||pj ≠ pk|| =

Ò
(xj ≠ xk)

2
+ (yj ≠ yk)

2
+ (zj ≠ zk)

2, (2.25)

where operator ||.|| is the euclidean distance, also known as the L2 norm.

In those situations in which the source signal is known a priori; assuming a point source and a
direct propagation path, the cross-correlation between s(t) and xj(t) yields an estimate ·̂j of the ToA
at the jth microphone. Furthermore, if the emission time of the source (ts) is known in relation to
the time base of the microphone it is possible to obtain the ToF as ”j = ·j ≠ ts.

On the other hand, the most usual situation is to not have any knowledge of s(t). If a direct path
from the source to both the jth and kth microphones exists, the TDoA can be measured as the time
lag in between the two microphone signals (·̂jk). In case the ToAs of both microphones are known
the TDoA can also be calculated as: ·̂jk = ·̂j ≠ ·̂k. The theoretical TDoA can be calculated from the
distance difference of the microphone pair to the source, the speed of sound (c) and the sampling
frequency (fs), as:

·(p, pj , pk) =

||ps ≠ pj || ≠ ||ps ≠ pk||
c

fs . (2.26)

The DoA is closely related to the TDoA between the two microphones, it can be obtained from
the former by applying basic trigonometry. Usually the DoA is calculated under the assumption that
the source is in the far field of the array, so that the impinging wavefront becomes planar. A sound
source may be considered to be in the far-field of the microphone pair if: ||djk|| Æ 2r2

⁄MAX
, where r is

the range, or the minimum distance between the source and the microphones, and ⁄MAX is the longest
wavelength emitted by the source [McC01]. Under this condition the DoA is given by:

–jk = cos

≠1
3

c

fs

·jk

djk

4
. (2.27)

Figure 2.7 shows a schematic representation of how DoA can be estimated using the described
relations. Unfortunately, a linear array (1D) in a 2D scenario can only discern DoAs between ≠fi/2

and fi/2 radians, which leads to a problem known as ‘DoA ambiguity’. Since cos(–jk) = cos(≠–jk),
for every ·jk , there are two equally feasible DoAs. It is possible to use additional DoA estimations
between different microphone pairs to solve the ambiguity, although, an n-dimensional microphone
array on a higher dimensionality space will still suffer from DoA ambiguity. It is also important to
notice that the accuracy of the DoA estimate depends on ·jk, being maximum when ·jk = 0 and
minimum when ·jk = ±djk

c fs.
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Figure 2.7: Schematic of a planar sound front impinging a microphone pair.

2.6.3 Efficient Cross-Correlation Computation

Time estimates are obtained from the time lag between an emitted signal and a received signal.
Most often the emitted signal is unknown, hence, time lag has to be obtained by cross-correlating the
signal received by two microphones. However, time lags obtained with direct cross-correlation tend
to be related to the strongest signal, which is not necessarily the signal of interest. In some instances
it is possible to control the signal being emitted so that the time lag can found from the cross-
correlation of the received signal with a known reference signal. This is commonly used in active
methods where the nodes are equipped with a speaker so that they become sources. Since long
reference signals allow for accurate time lag estimates even on low SNRs conditions, typically, the
time duration of such signals ranges from hundreds of milliseconds to a few seconds. Unfortunately,
long cross-correlations are not well suited for small embedded systems in which the computing
power and memory space are limited.

As we discussed on section 2.6.1, the cross-correlation is often performed in the frequency do-
main using the DFT for improved efficiency. Furthermore, almost every implementation is done
using the Fast Fourier Transform (FFT) [CLW69] for the same reason. The FFT is a very well-known
algorithm that re-expresses the DFT of a signal of an arbitrary composite length L = L1L2 in terms
of L1 DFTs of size L2, and does so recursively to reduce the computation time. In Big O notation3

[Knu76], the direct implementation of the DFT using equation (2.5) has complexity O(n2
), whereas

using the FFT the complexity is reduced to O(n log n), where n represents the length of the signal
(L). Due to the way the FFT works, the algorithm is more efficient when the length of the input
signal is a power of two (L = 2

n, n œ Z), although it is possible to use it for any L by means of
various strategies. Additionally, specific FFT algorithms for real signals (e.g., audio) take advantage
of the symmetry properties of the FFT and have a speed advantage over complex algorithms of the
same length. Either way, increasing the length of the input signal has a direct impact on the com-
putational complexity of the cross-correlation. Please note that for the remainder of this document
we will use the terms DFT and FFT interchangeably, yet, experimental results are obtained using the
FFT.

3Big O notation is a mathematical notation that provides a theoretical measure of the execution of an algorithm. It
can be used to describe how the execution time or the space used (e.g., in memory or on disk) scales in relation to a
given problem size (n).
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Figure 2.8: Schematic representation of the cross-correlation of a known signal and an audio stream.

Let us assume the worst case scenario in which the emission time of a reference signal of length
LR is unknown. In this case we need to continuously compute the cross-correlation of the received
signal with the reference signal until the latter is found. This can be done computing a framed
cross-correlation. In order to obtain the best performance, we need to correlate a signal segment
long enough to encompass the whole reference signal, so that, frame length L Ø LR. To keep things
simple, let us have L = 2LR and a 50% overlap (LR), this way we can ensure that the whole refer-
ence signal is contained in one of the frames. The cross-correlation of each frame is then obtained
by computing the DFT of the input signal, multiplying it element-wise with the precomputed DFT
of the reference signal (note that it has to be padded with zeros to make it L samples long), and
then applying the IDFT to the product. It is important to keep in mind that for the task at hand, the
objective is not the computation of the cross-correlation itself, but accurate estimation of the time
lag between the signals. Therefore, obtaining a continuous output is not a priority. This way each
frame can be evaluated independently, and the global time lag can be estimated as the time lag at
the frame that contains the whole reference signal plus the starting time of said frame. Please note
that if the frames are seen as independent to each other it is first necessary to detect which frame
contains the received signal. An alternative method is to produce a continuous cross-correlation for
a fixed amount of frames using some ‘overlapping’ technique, such as overlap add, and then find-
ing the global maximum. Figure 2.8 shows a schematic representation of the cross-correlation of a
known signal and an audio stream using overlapped frames.

2.6.4 Source Location Estimation

Different localization algorithms employ one or more of the time measures described in the
previous section and various mathematical techniques to determine the position(s) of the source(s).
Any such algorithm is inherently affected by the measurement error, therefore, finding an exact
solution is not feasible. A solution to the problem can still be found by defining an objective function
and minimizing it using some optimization method.

Let us assume that the locations of the receiving microphones are fixed and known. It is then
possible to estimate the source location by defining an objective function as a sum of errors between
the time lag estimates and the theoretical time lags calculated for a candidate position p. The
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Figure 2.9: Schematic representation of three sound source localization methods in 2D space.

minimization is typically done by casting the problem as a least squares problem. Depending on
what measurements are available, different methods can be used to locate the source. Some of the
most common methods are: trilateration, triangulation and multilateration. Figure 2.9 shows an
schematic representation of these methods with 3 microphones in 2D space.

Trilateration is the process of determining the absolute or relative locations of points using dis-
tance measurements, based on the geometry of circles or spheres. The basic concept is that given
the distance to an anchor (microphone), the source must be located along the circumference of a
circle with a radius equal to the source-anchor distance centered at the anchor. In two-dimensional
space, at least three non-collinear microphones are needed. The source position can be estimated
from the ToF by solving:

ˆps = arg min

p

A
Mÿ

j=1

1
ˆ”j ≠ ||p ≠ pj ||

c
fs

22
B

. (2.28)

Triangulation involves angle (bearing) measurements. As the name implies, it uses the geometric
properties of triangles to estimate the source location. Given a number of bearing lines emanating
from anchor points, the source is located at the point in space where the lines intersect (a minimum
of two bearing lines are needed in two-dimensional space). The anchor points in triangulation are
the center of the array formed by a microphone pair. The total number of microphone pairs with
M microphones is: P =

M(M≠1)
2 . The source position can be estimated from the DoA estimates by

solving:

ˆps = arg min

p

A
Pÿ

j,k

!
–̂jk ≠ –jk(p)

"2

‡jk
2

B

, (2.29)

where –jk(p) is the theoretical DoA for the jth and kth microphones and ‡jk is the standard deviation
of the DoA estimates that can be obtained from ·jk, djk and fs.

Multilateration works based on TDoAs between microphone pairs. Measuring the distance/time
difference at a microphone pair results in an infinite number of possible source locations along
a hyperbolic curve. To find the exact source location along that curve, multilateration relies on
multiple measurements: a second measurement taken to a different pair of receivers will produce a
second curve, which (ideally) intersects with the first. Unlike triangulation, multilateration does not
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make a far-field assumption. The source location can be found solving:

ˆps = arg min

p

A
Pÿ

j,k

1
·̂jk ≠ ||p ≠ pj || ≠ ||p ≠ pk||

c
fs

22
B

, (2.30)

Another popular method is the Steered Response Power (SRP), in which the objective function is
expressed as a sum of GCCs (commonly used with PHAT weighting) for al the possible microphone
pairs at the time-lag corresponding to a particular point in space p. The SRP algorithm consists in
a grid-search that evaluates the objective function on a grid of candidate source locations G . The
location of the sound source is estimated as the point that maximizes the SRP:

ˆps = arg max

pœG

1 Pÿ

j,k

gjk

!
·jk(p)

"2
, with: ·jk(p) =

||p ≠ pj || ≠ ||p ≠ pk||
c

fs, (2.31)

Notice that · is only defined for integer values, so ·jk(p) has to be either rounded to the closest
integer or interpolated from the closest existing values. This method can be interpreted as finding
the candidate location that maximizes the output of a delay-and-sum beamformer.

A common problem that affects every source localization method is the presence of multiple
sound sources. Most methods do not have the ability to select a particular sound source and tend
to locate the higher energy source. The problem arises from the way the delay is obtained from the
correlation and it is very difficult to solve without a priori knowledge of the signal emitted by the
source. In order to locate multiple sources, some methods assume a known number of sources while
others apply some kind of threshold to the correlation.

Acoustic source localization is evaluated in terms of the localization error which is given by the
euclidean distance between the true source location and its estimate.

2.6.5 Self-Localization

Self-Localization is closely related to source localization with the added constraint of the micro-
phone locations being unknown. The objective is then not only to locate sound sources but also
the microphones themselves. There are three main scenarios to be considered depending on the
microphone configuration:

Array shape calibration: microphones forming a compact array and sharing a common time
base.

Microphone configuration: individual microphones distributed in space and (commonly)
lacking synchronization.

Microphone array configuration a group of independent (no synchronicity) microphone ar-
rays whose internal array shape is already known.

Self-Localization methods are based on relative differences on the measurements taken at each
microphone, which means that only relative positions can be estimated. In order to obtain the
actual positions, it is possible to use some a priori knowledge to translate the relative estimates
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into positions within a global reference frame. Note that lack of synchronicity impedes the direct
estimation of time differences between microphones. In those cases in which the microphones
do not share a common time base, the clock offset at each microphone also has to be estimated.
Generally speaking, acoustic self-localization is an open ended problem, the solution of which is
greatly dependant on a particular set of conditions. That is, what kind of measurements are available
and how many unknowns have to be accounted for.

The most restrictive scenario is that in which every source and microphone are independent
to one another. Let us have M microphones and N sources located in a p-dimensional space at
the points defined by a vector pm œ Rp for the mth microphone and pn œ Rp for the nth source.
We consider that we have K time measurements, from each source to each receiver, so that in
a fully connected scenario K = MN , where each measurement is the reception time ·nm (ToA).
Concerning the lack of synchronization, we consider tn as the transmission time of the nth source
and �m as the clock offset of the mth microphone. Defining the ToF of a source-microphone pair as
”nm = ·nm ≠ tn ≠ �m, we can then set an error function given by:

E =

Nÿ

n=1

Mÿ

m=1
e2

nm, with: enm = ·nm ≠ ”nm ≠ tn ≠ �m. (2.32)

Error function E can be minimized by different means, provided that the number of equations is
higher than the number of unknowns: (p + 1)N + M < K. The computational load associated
with such minimization is usually significative, being convenient to relax the problem constraints
whenever possible.

In contrast to this, the simplest scenario is found when N = M and pn ¥ pm for n = m. That
is, when each microphone has a source located close enough to it so that, the microphone-source
pair can be considered to be located at the same point. A typical example of this configuration is a
Wireless Audio Sensor Network (WASN) in which the nodes are equipped with a microphone and
a speaker. In such scenario it is possible to use Multidimensional Scaling (MDS) [Kru64], a family
of algorithms designed to arrive at an optimal low-dimensional configuration. Given a dissimilarity
(distance) matrix D = (djk), MDS seeks to find P = [ˆp1, ..., ˆpN ] œ Rp so that ||ˆpj ≠ ˆpk|| approximates
djk as close as possible. The estimation of P can be solved by different means depending on the type
of MDS algorithm and the number of elements available on the dissimilarity matrix D (it is possible
to solve the problem when some of the pairwise measurements are missing).

A common problem shared by most self-localization methods is their sensitivity to outliers. With-
out a proper strategy to asses the quality of the measurements, the minimization can fail to converge
due to large time lag estimate errors. This problem is sometimes tackled using outlier detection tech-
niques from simple methods such as limiting the maximum distance between the nodes to iterative
solutions like Random sample consensus (RANSAC) [FB87]. Different self-localization algorithms
are capable of dealing with different amounts of error; although, in general terms the solution can
only be as precise as the measurements themselves.

Acoustic self-localization is often evaluated in terms of the mean localization error which is given
by the average distance between the true microphone locations and the obtained estimates.
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2.7 Machine Learning

Machine learning is a very broad field that focuses on the design of automated systems that can
make decisions and predictions based on data. Such a system “learns” to look for patterns in data
based in observation without explicit programming.

Machine learning algorithms are often categorized as supervised or unsupervised depending on
whether there is a learning “feedback” available to the system. Supervised systems are those that
are “trained” on a pre-defined dataset formed by labeled examples, while unsupervised systems can
automatically find patterns and relationships in a given dataset. Another categorization of machine
learning algorithms can be made according to the type of output of the system. The most basic
distinction for supervised systems is: Classification systems when the predictions are of a discrete
nature, Regression systems when the output falls somewhere on a continuous spectrum. In this
thesis the main focus is going to be on supervised Classification/Detection algorithms.

In recent years, machine learning has lead to many technological advancements such as computer
vision and speech recognition systems. Some of the more relevant tasks of audio-based machine
learning are:

Source identification

Automatic speech recognition

Sentiment/emotion recognition

Speaker recognition

Source separation

Automatic music transcription

Audio stream labeling/tagging

Audio fingerprinting

2.7.1 Feature Representation

Most machine learning techniques are based around feature space representation. This can be
viewed as dimensionality-reduction problem, where an observation in the form of data vector z of
length L: z œ RL, is mapped into a lower dimensionality feature vector x, with x œ RM , M <

L, such that uninformative variance in the data is discarded. The typical approach involves the
generation of the feature vector by using a certain set of functions, where each function transforms
the input data into a single value or small number of values. The output of all these functions in
then concatenated to form the feature vector.

There are many features (i.e., descriptors) that can be used to characterize audio signals [Ler12].
Generally speaking they can be separated into: time-domain and frequency-domain features accord-
ing to wether they represent the temporal evolution of the signal or its spectral content. Frequency-
domain descriptors can also be divided intro spectral and perceptual features. Spectral descriptors,
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Figure 2.10: Example of a Mel filter-bank with 8 coefficients.

as their name implies, are obtained from the spectrum of the signals, while perceptual descriptors
are derived from psycho-acoustic models; their objective is to adapt acoustic measurements to the
way humans perceive sound. According to the extent of the description, a given feature could
be seen as global or instantaneous. Global descriptors are those obtained from the ‘whole’ signal
(usually requiring segmented events or time localization), while instantaneous descriptors are those
obtained from a single time frame.

Perhaps the most widely-used acoustic features are the Mel-Frequency Cepstral Coefficients
(MFCCs) [HLM80] which are a compressed perceptual representation of the short-term power spec-
trum of the signals. MFCCs take into account the logarithmic response of the human auditory system,
both in terms of frequency resolution and magnitude. As their name implies, MFCCs are based on
the Mel scale, a non-linear frequency scale of pitches judged by listeners to be equal in distance
from one another. In order to compute the MFCCs, the magnitude of the DFT of a signal frame
is mapped onto the mel scale, using N triangular overlapping windows, formally known as a mel
filter-bank (shown in Figure 2.10 with 8 coefficients). The resulting values are known as mel-band
energies. The next step is to take the logarithm of each value and then calculating the Discrete
Cosine Transform (DCT) [ANR74] of the list of mel log-energies. The output of the DCT are the
MFCCs.

The objective of the DCT is to compress the information carried by the MFCCs to the lower
coefficients, making it possible to discard some of the higher frequency components further reducing
the dimensionality. In many applications this step is ignored in order to reduce computational load
and the mel-band log-energies are directly used as features. There are similar approaches to the
MFCCs that achieve comparable results, although far less popular such as gammatone filter-banks
[PAG95], or the CQT.

Some other of the most commonly used audio descriptors are:

Temporal descriptors: Obtained from the signal waveform, e.g., zero-crossing-rate, auto-
correlation coefficients, amplitude, etc.

Energy descriptors: Obtained either in the time-domain or the frequency domain and refer-
ring to various energy contents, e.g., global energy, harmonic energy ratio, noise energy, rise
time, etc.

Spectral descriptors: Typically obtained from the STFT of the signal and intended to describe
the shape of the spectrum, e.g, centroid, skewness, kurtosis, slope, roll-off, etc.

Perceptual descriptors: Derived from a perceptual auditory model, e.g., loudness, brightness,
pitch, tonality, etc.
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An ideal feature set should be robust (i.e., can be reliably estimated from the available audio),
relevant to the classification task, and as invariant as possible to the changes within its natural range.
To avoid bias towards features with a wider range, it is good practice to normalize all the features
to have zero mean and unit variance, so that a normalized observation becomes:

xÕ
=

x ≠ µ

‡
, (2.33)

where µ and ‡ are the mean and standard deviation of the training set.

On certain applications it is commonplace to start from a large set of features and reduce it to
a subset of the most relevant features [LD11] . This process is known as feature selection and has
some important implications such as; dimensionality reduction. increased computational efficiency
and enhanced generalization (by reducing overfitting). There are many methods that can be used
for feature selection, including Principal Component Analysis (PCA)[VDMPVdH09], and heuristics
such as genetic algorithms among others.

2.7.2 Computation of Mel Log-Band Energies

Let us consider an audio stream in the time-frequency domain, S(k, l), k = 1, . . . , L, where k is
the frequency bin index, and l is the frame index. Considering the DFT of a given time frame as a
vector sl = [s1l, . . . , sLl]

T , we can define the periodogram-based power spectral estimate of the tth

frame as st, with pkl = |skl|2. Audio is a real-valued signal, so the negative frequency bins of the
DFT can be discarded since they are just a reflected and conjugated version of the positive frequency
bins. For simplicity let us consider k = 1, . . . , L

2 + 1, for even values of L. We want to obtain a
perceptual representation of the short-term power spectrum of the input signal compressed into F

features, so we are going to reduce the length of sl using a Mel filter bank. Each of the F filters of
the filter bank is defined as a weighted linear combination of a number of frequency bins of sl. Let
the frequency of the kth bin be fk = (k ≠ 1)

fs

L , so that we can define a function to convert Hertz to
Mel scale:

M(fHz) = 1125 log

1
1 +

fHz

700

2
, (2.34)

and its inverse:
M≠1

(fMel) = 700

1
e(fMel/1125) ≠ 1

2
. (2.35)

Defining a vector v = [v1, . . . , vF +2] that contains F + 2 Mel-spaced frequencies (in Hertz) from 0 to
fs

2 , whose elements are obtained with:

vfl =

I
0, if j = 1

M≠1! fl≠1
F +1M(

fs
2 )

"
, if 1 < fl Æ F + 2

, fl = 1, . . . , F + 2, (2.36)

it is then possible to represent the filter bank as a matrix (H) of size F ◊ (

L
2 + 1), whose elements

are given by:

hjk =

Y
_____]

_____[

0, if fk < flj
fk≠vf

vf+1≠vf
, if vf Æ fk Æ vf+1

vf+2≠fk

vf+2≠vf+1
, if vf+1 Æ fk Æ vf+2

0, if fk > vf+2

, j = 1, ..., F, (2.37)
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This way the Mel log-band energies can be computed as the element-wise natural logarithm of a
matrix product given by:

xl = log
!
H st

"
. (2.38)

Please note that implementing expression 2.38 is a highly inefficient method of computing the
feature vector, due to matrix H being largely composed of zeros. The maximum number of elements
not equal to zero in H is < L, for any F , therefore it makes sense to compute the output of each
filter independently by only considering those frequency bins relevant to the result. It is also worth
mentioning that taking the logarithm at the last step also reduces the computational complexity
(compared to taking the logarithm of the squared magnitude of the DFT). It is well known that
some functions such as divisions, exponentiations or logarithms take longer to compute than simpler
operations such as additions or multiplications, on most digital processors. In fact, base n logarithms
are commonly approximated using the base 2 logarithm as: logn(x) =

log2(x)
log2(n) . This has to do with the

existence of very efficient techniques to compute the base 2 logarithm that exploit the binary nature
of digital computations. In any case, computing the DFT is likely to be the most time expensive step
of the process.

2.7.3 Classification and detection

In machine learning, classification can be described as the process to automatically assign an
item to one of a number of categories (classes), based on its characteristics. In supervised learning
these categories are predefined in the design stage, where a set of examples called “Training Set” is
used to define the rules by which the classification system will operate.

Detection can be seen as a particular case of classification, closely tied to binary classification, in
which only two classes exists: the target class and noise. In terms of implementation there is no clear
distinction between classification and detection, with binary classification often seen as the default
case from where multi-class (more than one target class) classification can be derived. However, the
term detection is commonly used when the classification process (binary or otherwise) is applied to
a continuous stream of data, in which the most represented class is none of the target classes.

In feature space representation, each observation is a point in an F -dimensional space repre-
sented by a vector x = [x1, ..., xF ]

T . The objective of the classification is to set boundaries to said
vector space so that the categories can be defined by discrete regions. Any point falling within a
certain region of the vector space will then be assigned to the corresponding category. The ‘decision
making’ process can be expressed as:

D = F (y), with: y = G(x), (2.39)

where y is the output obtained by classifier functionG , F is the decision rule and D is the decision.
In the case of binary classification, the decision function is most often a threshold function, defined
as:

D =

I
0, if y Æ y0

1, if y > y0
, (2.40)

where y0 is the threshold value. The decision rule for multiclass systems is typically the argument of



2.7 Machine Learning 45

Figure 2.11: Example of linear and nonlinear classification boundaries

the maximum over an output vector y = [y1, ..., yC ], where each elements represent the ‘score’, or
predicted probability, of observation x belonging to one of C classes.

There are multitude of algorithms and many different implementations to perform classification
which can be categorized by many attributes; of which we will just mention linear vs nonlinear
classification. The decision boundary of a linear classifier is an hyperplane obtained from linear
combinations of the feature vector (in two dimensions the decision boundary of a linear classifier is
a line). Nonlinear classifiers can be defined as those classifiers that are not linear. The difference
between them can easily be seen in figure 2.11 where the boundary between two classes is shown
in a two dimensional vector space.

While nonlinear classifiers are capable of achieving better class separation with complex data
sets, they are more prone to a phenomenon called overfitting. In almost any data set there is always
a region on the vector space with overlapping classes i.e. non separable observations. Some nonlin-
ear classifiers are able to pinpoint small regions in the vector space, sometimes containing as little as
a single observation. By doing this, some classifiers are often capable of achieving perfect classifica-
tion of the training set. However, the data set used for the training is just a small set of pre-classified
observations that gives an indication of the “true” class distribution in the vector space; thus, spe-
cially for small training sets, the boundaries tend to be adjusted in excess resulting in overfitting.
An overfitted classifier will sometimes fail to classify new observations due to excessive “learning”
leading to what is known as poor ‘generalization’.

2.7.4 Least Squares Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is a well-known method for dimensionality reduction and
classification that plays an important role in the presented work. In LDA, the output is computed
as a linear combination of the inputs via a transformation matrix first introduced by Fisher [Fis36].
There is a close connection between multivariate linear regression and LDA, thus, it is possible to
cast LDA as a least squares problem [Ye07] in what is known as Least Squares Linear Discriminant
Analysis (LS-LDA).

Let us consider a set of O observations, each one containing F input features, xj = [xj1, ..., xjF ]

T ,
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j = 1, ..., F . The output of a linear discriminant is obtained as a linear combination of the L inputs
(observation), according to:

y = b +

Fÿ

j=1
wjxj , (2.41)

where wj are the weights applied to each feature and b is the bias term.

For a given system with C possible classes, having O available observations and with L inputs
per observation, we can rewrite (2.41) in matrix form using a weight matrix V of dimensions
C ◊ (L + 1) and an input matrix Q of dimensions (L + 1) ◊ O:

V =

S

WWU

w11 . . . wL1 b1
...

. . .
...

...
w1C . . . wLC bC

T

XXV , Q =

S

WWWWWU

x11 . . . x1O

...
. . .

...
xL1 . . . xLO

1 . . . 1

T

XXXXXV
, (2.42)

where the output Y of dimensions C ◊ O is calculated as Y = VQ.

Let us also define a binary target matrix T of dimensions O ◊ C representing the desired outputs
(correct classes), so that the error can be expressed as the difference between the predicted output
and the true outputs:

E = Y ≠ T, with: T =

S

WWU

t11 . . . t1N

... . . .
...

tC1 . . . tCN

T

XXV , (2.43)

As we have seen in section 2.4.3, in order to use the LS criterion to obtain weight matrix V, we need
to minimize the sum of squared residuals given by:

S =

Oÿ

o=1

Cÿ

c=1
eon

2
= ÎVQ ≠ TÎ2

, (2.44)

where eoc are the elements of error matrix E. According to [Ye07], the problem is solved by
differentiating (2.44) with respect to every weight in V, which yields the following expression:

V = TQT
(QQT

)

≠1 (2.45)

The main advantage of LS-LDA is its simplicity. The computational computational cost of the
classification is directly proportional to the number of features, thus, limiting the computational
cost of the classifier is equivalent to limiting the number of features. Another advantage comes from
its fast training times since the weights are found using a closed expression. LS-LDA is often used
as the cost function for heuristic feature selection in some applications where training the intended
classifier takes a long time.



2.7 Machine Learning 47

Input

Output
layer

layer

Hidden layers{
Figure 2.12: Schematic representation of a multilayer perceptron.

2.7.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) are computing systems inspired by biology that are based on
a series of interconnected units or nodes called artificial neurons. A typical ANN is composed of a
number of layers of units where each artificial neuron computes a value as a non-linear function of
the weighted sum of its inputs and then “propagates” it to other neurons in different layers. The
learning ability of ANNs resides in the weights that a neuron gives to each one of its inputs that are
adjusted during the training stage.

One of the most common types of ANNs (and one of the simplest) is the Multilayer Perceptron
(MLP), a class of feedforward network (there is no feedback between layers) composed of a series
of fully connected layers (every neuron in one layers is connected to every neuron in the following
layer). A typical MLP used for classification is formed by an input layer, one or more hidden layers
and and output layer (typically with one output neuron per class). No computation is performed at
the input layer, it just passes on the information (i.e., the features) to the hidden neurons. Figure
2.12 shows a schematic representation of an MLP with two hidden layers. For some artificial neurons
on any layer, let there be N inputs, so the output of the kth neuron is:

yk = A
1

bk +

Nÿ

j=1
wkjxj

2
, (2.46)

where xj , i = 1, ..., N are the kth neuron inputs, wkj , i = 1, ..., N are the assigned weights, bk is the
bias term, and A is the activation function or transfer function. The number of inputs for any layer,
other than the input layer, is the number of neurons in the previous layer. The activation function
serves different roles in ANNs, the most significative being to provide the network with the ability to
produce non-linear decision boundaries via linear combinations of weighted inputs. This is achieved
by introducing a non-linear activation function, typically a sigmoid function defined as:

A(yk) =

1

1 + e≠yk
, (2.47)

although, there are many types of activation functions intended for different situations [KO11].

Supervised learning is usually tackled using ‘backpropagation’ [Wer90], an algorithm based on
gradient descent. Given an ANN and an error function, the method calculates the gradient of the
error function with respect to each neuron’s weights. The “backwards” part of the name refers to the
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Figure 2.13: Binary decision tree with 6 nodes and 4 levels.

fact that the calculation of the gradient proceeds backwards through the network, from the output
layer to the input layer. The partial computations of the gradient of one layer are reused in the
computation of the gradient of the previous layer, allowing for an efficient computation.

2.7.6 Decision Trees

A decision tree is a tree-like graph or model that predicts the value of an observation following a
simple set of rules inferred from a training dataset. Growing (training) a decision tree is a recursive
process that involves deciding which features to choose and what conditions to use for splitting.

Decision trees are formed by a series of decision nodes and leaf nodes. A decision node tests
some feature for some condition(s) that determine which ‘branch’ to follow. The topmost decision
node in a tree (which corresponds to the best predictor) is called root node. In the simplest case,
any decision has at most two outcomes (i.e., a binary tree). Leaf nodes represent a classification or
decision and are reached by following a path of decisions.

The size of a given tree is best described by its ‘depth’, or the number of levels of decision nodes.
A binary decision tree without leaf nodes until the very last level is formed by 2

K≠1 decision nodes,
where K is its depth. However, a trained decision tree typically has leaf nodes at multiple levels,
making it possible to reach a decision by traversing various paths of various lengths (i.e., levels).
Figure 2.13 shows a simple decision tree formed by 6 decision nodes and spanning 4 levels with
multiple path lengths.

The size of a decision tree depends on the size and quality of the training set, so that an optimal
decision tree is defined as a tree that accounts for most of the data, while having the minimum
possible number of nodes, therefore minimum depth. There are a number of techniques to reduce
both the size of the tree and overfitting. The most popular is ‘pruning’ that works by removing
sections of the tree that provide little performance improvements based on a posteriori probabilities.

The type of decision tree most relevant for this thesis is called Random Forest (RndF). This
classifier is formed by multiple decision trees each of which is trained using different subsets of
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features and/or examples from the training data. In more formal terms, a RndF is an ensemble of
bootstrap-aggregated (or bagged) [Bre96] decision trees, where the output is obtained by consensus.

2.7.7 Other Classification algorithms

Some other popular classifiers include:

Support Vector Machine (SVM): SVMs define one or more hyperplanes in a high-dimensional
space. However, since it is common to have data that is not linearly separable in the original
space, SVMs use a technique called the “kernel trick”. It consists on using a function known as
a ‘kernel’, that transforms the original low dimensional input space into a higher dimensional
space with the goal of making linear separation possible. With a suitable kernel function SVMs
can perform non-linear classification.

K-Nearest Neighbors (K-NN): In K-NN classification, the output is a class membership. The
output is obtained by using some functions to measure the “distance” of an input to each
element in a database (training set) and then selecting the mode of the class of the k nearest
elements. It is one of the simplest machine learning algorithms and has the particularity of
deferring all the computational load to the classification stage.

Gaussian Mixture Model: GMMs assume that the observed data is made up of a mixture of
several Gaussian distributions with different means and variances, and fits one such a mix-
ture over those samples in the training data belonging to each class. GMMs can be applied
to different tasks. When they are used as a classifier the probability of a given observation
is obtained by multiplying each mixture component (i.e., feature) by its associated mixture
weight and adding them together (the mixture weights must add to one). The observation is
then assigned to the class with the highest probability.

Hidden Markov Model: A HMM is defined by a finite set of states, each of which associated
with a multidimensional probability distribution, and related by a set of transition probabilities
between states. The states are not directly visible, only the output is, hence the term ‘hidden’.
HMMs can be used to classify sequences of observations. Given a set of HMMs, each trained
on data belonging to one class, it is possible to compute the likelihood that a given sequence
has been generated by any of the HMMs. Then, the sequence can be classified as belonging to
the class with the highest likelihood.

2.7.8 K-means Clustering

In contrast to supervised classification, unsupervised learning methods do not require a pre-
defined set of examples. The objective of this family of methods is to infer a function that describes
some hidden structure learnt from unlabeled data.

One of the simplest unsupervised learning algorithms K-means clustering [Jai10]. The goal of
K-means is to find K distinct groups (clusters) in the input data. The algorithm works iteratively
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to assign each observation to one of K groups, where observations are treated as data points in a
F -dimensional space and are clustered (i.e., grouped) based on feature similarity.

Let us have a set of observations X = {xn} in an F -dimensional space, xn œ RF , that are to be
assigned to one of K clusters in Z = {zk œ RF , k = 1, . . . , K}, where cluster zk contains a number
of xn. Let µk be the centroid, or the mean of the points in the kth cluster (zk). The goal of K-
means is to minimize the sum of the squared distances between µk and the observations belonging
to cluster zk over all K clusters, given by:

S(Z) =

Kÿ

k=1

ÿ

xnœzn

!||xn ≠ µk||"2
. (2.48)

Typically, K-means obtains the centroids using F -dimensional Euclidean distances, as shown by
expression 2.48, although, it is possible to use various distance measures. Therefore, the location of
the centroids depends on the selected distance measure since they are computed differently.

Regarding computational complexity, finding the optimal solution of K-means clustering is con-
sidered a NP-hard problem4. However, it is worth noting that this fact only affects the training time
of the algorithm, and that, there is a good number of efficient strategies to find an approximate
solution

Assigning an observation to one of the clusters is a very simple process. Each centroid defines one
of the clusters, thus, each data point is assigned to its nearest centroid based on a squared distance
metric. In more correct terms, if µk, k = 1, . . . , K are the centroids found by the algorithm, then
each data point xn is assigned to a cluster based on:

k = arg min

k

!
dist(µk, xn)

2"
, (2.49)

where operator dist(x) is the distance metric used to obtain the centroids.

2.7.9 Multiobservation Classification

Multi-observation classification, which can also be referred to as joint classification or classifi-
cation fusion, has similarities with ensemble methods such as Bootstrap Aggregation (bagging) or
boosting [OM99]. Classic ensemble techniques take advantage of an ensemble of “weak” classifiers
in order to “boost” the classification using decision fusion. As we previously mentioned, when work-
ing within a spatially diverse scenario, the signal received at each of the microphones is subjected
to variations that cannot be predicted during the training stage, decreasing the performance of the
classifier. However, since there are multiple observations of a single acoustic event available, it is
possible to combine the decision taken for each observation to achieve higher accuracy [LS97] in
the same way as ensemble methods.

Let us have an ensemble of M classifiers providing an output Y = [y1, ..., yM ] with ym = G(xm),
l = 1, ..., M, where G is a function shared by every classifier in the ensemble and xm is a local obser-
vation of x. By combining the individual outputs, we aim at obtaining a higher accuracy than that of

4NP is the set of problems solvable in polynomial time, which is defined by a time complexity O(nP ). For some K
and F (dimensions), K-means can be exactly solved in time O(nF K+1) , where n is the number of samples to be
clustered.
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the best classification. The decision taken by the classifier team is then: D = F (y1, ..., yM ), where
F is the fusion method. Previous research shows that the major factor for a better accuracy is the
diversity in the classifier team and so, the fusion method is of secondary interest [TDVB97]. How-
ever, choosing an appropriate fusion method can further improve the performance of the ensemble.
For the time being we are going to focus on averaging and majority vote since they are the most
commonly used, although it goes without saying that there are more alternatives [CV86,ZHNZ11].

Averaging is self explanatory; the output of the ensemble is averaged so that it can be treated as
that of a single classifier. In majority vote, the outputs are first “hardened”, turning them into indi-
vidual decisions, so that the final decision is obtained by selecting the class label most represented
among the M outputs. Majority vote and Averaging are closely related, in fact, they are equivalent
when the output of the classifier ensemble is already a local decision vector (there is no access to
real valued outputs). If we were to perform one-against-all multi-class classification using averag-
ing, where the output of each classifier in the ensemble is a vector ym = [ym1, ..., ymC ]

T , the final
decision D would be obtained with the following expression:

D = arg max

c

A
1

M

Mÿ

m=1
ymc

B

(2.50)

Since it is very likely for some of the classifiers to perform better than others, it is only logical to
assume that their decisions should be given a certain degree of priority or weight [LW94] . Weighted
decision fusion adds an additional step to the methods previously discussed. The basic idea is to
assess the contribution of each classifier to the ensemble according to some performance metric
[YS06], so that, the accuracy of the system gets increased. Fusion function F remains the same but
there is an additional variable to consider, a weight vector w = [w1, ..., wM ], so that the final decision
becomes: d = F(w1y1, ..., wM yM ). One common solution (e.g., used in Adaboost [HRZZ09]) is to
use the accuracy of each classifier to weight its contribution using:

D = arg max

c

A
Mÿ

m=1
wmymc

B

, with: wm = 0.5 log((1 ≠ em)/em), (2.51)

where em is the error rate of the mth classifier. It goes without saying that there are many valid
methodologies to compute w, ranging from statistical analysis to heuristics.

2.7.10 Performance Metrics

The most common way of measuring the performance of supervised classification is with a con-
fusion matrix (sometimes called error matrix), a table layout that allows visualization of the perfor-
mance of an algorithm on an specific task. In binary classification, the confusion matrix is is a table
with two rows and two columns (shown in Figure 2.14) that assigns every observation to one of four
categories according to the correspondence between the predicted class and the true class:

True Positives (TP): Samples the classifier has correctly classified as positives.

True Negatives (TN): Samples the classifier has correctly classified as negatives.
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Figure 2.14: Confusion matrix of binary classification

False Positives (FP): Samples the classifier has incorrectly classified as positives.

False Negatives (FN): Samples the classifier has incorrectly classified as negatives.

These metrics are typically expressed as a ratio between the number of ‘hits’ and the total number
of samples. Every observation must be accounted for by one of these four values, so that their sum
adds up to 1 (or 100%) of the observations.

Accuracy is the number of correct predictions made by the model over all the predictions made,
it can expressed as:

Accuracy =

TP + TN
TP + TN + FP + FN

. (2.52)

Accuracy is not a reliable metric for the real performance of some classifiers, because it yields
misleading results when the data set is unbalanced (i.e, when the numbers of observations in
different classes vary greatly).

Error Rate (ER) is the complementary of accuracy:

ER = 1 ≠ Accuracy =

FP + FN
TP + TN + FP + FN

. (2.53)

Precision measures the proportion of correct predictions over those predicted as true:

Precision =

TP
TP + FP

. (2.54)

Recall or sensitivity, is a measure of the proportion of correct predictions over all those labelled
as true:

Recall =

TP
TP + FN

. (2.55)

Specificity is a measure of the proportion of correct predictions over all those labelled as false:

Specificity =

TN
TN + FP

. (2.56)

Specificity is the exact opposite of Recall.

F1-Score or F1-measure, is a single value that combines precision and recall. It is obtained as
the harmonic mean of precision and recall, given by:

F1 = 2

Precision ◊ Recall
Precision + Recall

. (2.57)
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F1-score is often used as an alternative way of measuring the accuracy of the system. However,
it is important to note that it does not take the TN into account.

In detection it is common to use the Receiver Operating Characteristic (ROC) curve to illustrate
the performance of a binary classifier as a function of its discrimination threshold. The ROC curve
is obtained by plotting sensitivity against the probability of false alarm for various threshold values.
The probability of false alarm is also known as false-positive rate or fall-out and can be calculated
as the complementary of the specificity (1≠specificity).

Most of the described metrics can be applied to multiclass classification. Multiclass problems are
commonly reduced to C binary classification problems, where C is the number of classes. This is
known as “one-vs-all” strategy and it consists on labeling the observations belonging to one class as
true and those belonging to the remaining classes as false for each of the C classes. The complete
confusion matrix of a multiclass problem is often used to check wether the system is confusing two
or more classes (i.e. commonly mislabelling one as another).





PARTII Methods and Results

Everything should be as simple as it can be, but no simpler.

Roger Sessions





CHAPTER3 Self-Localization

3.1 Introduction

Locating the nodes in wireless networks is an essential step for many applications [PAK+05],
where the location of the sensors gives meaning to the collected data; thus, self-localization in
wireless sensor networks is currently a very active area of research due to an increasing interest
on such systems. Regardless of the type(s) of sensor(s), to make networks with a large number of
nodes viable, device costs should be as low as possible, nodes need to have a long operating time,
and the network needs to auto-manage without significant human intervention. Most traditional
node localization techniques are not well suited for these requirements, e.g., having a GPS receiver
on each device since obtains limited precisions, only works outdoors and can be cost and energy
prohibitive for some applications. The alternative is then to use measurements taken by the nodes
to estimate their location collaboratively. The most common measurements are ToA, TDoA, DoA
and RSS obtained from acoustic, infrared, or RF signals exchanged between devices (or from the
environment) that provide relative timing and/or distance information.

Classic approaches for ‘collaborative’ node localization rely on beacon nodes (sometimes called
anchor nodes), nodes whose coordinates are known a priori to a certain extent and often, they do
not have the same restrictions as the “basic” nodes (e.g, a powerful processor and connection to
the electrical grid). When a number of beacon nodes is available, the locations of the remaining
sensors can be estimated using source localization techniques. However, in ad hoc networks, such
as an opportunistic network formed by smartphones, the probability of having beacon nodes is
low because of their dynamic nature. Without the beacons, relative locations can be estimated
using various methods and establishing an arbitrary coordinate frame of reference, to what we are
referring to as self-localization in this thesis.

Wireless networks composed of readily available devices, such as smartphones, have gained par-
ticular interest, mainly due to the high availability and low price of such devices. Current generation
smartphones pack sufficient hardware so that a group of devices with the correct software can be
used for many applications; however, despite their potential, smartphones have several hardware
and software limitations that must be considered such as the limited number of available specialized
sensors, their limited sampling rate, the lack of optimization of the operative system for real-time
applications, and restricted hardware access that makes precise timing of the audio playback and
record buffers difficult if not impossible.

In the context of WASNs, acoustic-based self-localization is preferred to RF methods since it is
more precise and more cost-effective (especially the passive methods), although the implementation
of large distance self-localization is not feasible, since the sources have to be within ‘hearing’ range
of the nodes, typically a few tens of meters. The actual working distance is subjected to many factors
such as: the source sound pressure level, the background noise level or the presence of obstructions
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Figure 3.1: DoAs between three wireless nodes.

or strong winds. Generally speaking, the longer the propagation path the lower the SNR and the
coherence between signals, thus, the larger the measurement error due to ‘poor’ cross-correlations.

It is worth noting that self-localization is an ill-posed problem1, thus, it is often re-formulated
before giving it a full numerical analysis, which commonly involves taking some assumptions to fully
define the problem and narrow it down.

3.2 Distributed Array Configuration Calibration

The objective of distributed array configuration calibration is to infer the location and orientation
of a number of independent small microphone arrays, (i.e., nodes with more than 1 microphone with
known local geometry), using DoA measurements. Since each node is equipped with more than one
microphone, the location of each of the microphones within a node is given in terms of the node
position and orientation combined with a priori knowledge about the sub-array geometry. Figure
3.1 shows a wireless network composed of three nodes and the DoA relations between them.

This family of methods takes advantage of the sub-array local timebase to bypass the need for
tight synchronization between nodes, although, DoA-based localization is unable to determine the
scale of the network geometry, thus, scale ambiguity needs to be resolved by employing additional
measurements. Most methods find first the “constellation” (i.e., scaleless geometry) formed by the
nodes by minimizing an error function based solely on DoAs and then apply the information inferred
from the additional measurements to properly scale the geometry. Scaling can be resolved either by
inter-node measurements such as the TDoA between nodes pairs (requires synchronization) or by
local measurements such as RSS.

The proposed solution to self-localization problem is an active method where each node has at
least two microphones and a speaker, and works based on DoA and range estimates taken between
nodes. DoA estimates are obtained using an efficient cross-correlation technique that assumes the
emitted signals are known. Range is estimated from the ToF. Inter node synchronization is not

1An ill-posed problem meets one or more of the following criteria: it does not have an exact solution, the solution
is not unique, the solution’s behavior does not change continuously with the initial conditions.
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Figure 3.2: Configuration of an smartphone acting as the jth node

necessary, because the clock offset is canceled out by exchanging ToAs. The location and orientation
of the nodes in a 2D space are obtained with a closed-form expression, provided that the nodes
are with three or more non collinear microphones. The solution is still possible with only two
microphones per node, but in that case optimization is required to solve the DoA ambiguity.

3.2.1 Problem Formulation

Let us consider a fully-connected WASN composed of N nodes, where each node contains M

microphones forming an array of known geometry. If we have a number of acoustic sources that
emit from unknown locations, we can obtain a series of DoA estimates from each node to each
source. Now, if we also consider the nodes themselves as sources, we can obtain pairwise DoA
estimates between the nodes and since we control the emission, pairwise range estimates also. In
the most basic configuration, which is the most common setup found in “off-the-shelf” portable
devices such as smartphones, tablets or laptops, each node is equipped with two microphones and a
speaker.

Our goal is to find the location and orientation of the N nodes that form the network. We fo-
cus on the 2D case, where all nodes lie flat on the XY plane. Note that a 3D generalization will
require more than two non collinear microphones per node. We use an active approach by hav-
ing the nodes be the sound sources, so that we can define a node location as the location of its
speaker. Then, the localization problem is reduced to the estimation of 2N speaker coordinates
p = (x1, · · · , xN , y1, · · · , yN )

T and N orientations(azimuth) „ = („1, · · · , „N ) based on a combina-
tion of DoA and range estimates between node pairs. Figure 3.2 represents a typical smartphone
configuration that acts as the jth node, where dmj is the distance between the microphone pair (m1j

and m2j), dsj and —sj are the distance and angle between the center of the array and the speaker,
respectively, and „i is the orientation of the node.

3.3 Obtention of the estimates

The proposed localization algorithm is based on the combination of N ◊ N DoA (–̂jk) and range
(r̂jk) estimates, and N orientation (ˆ„j) estimates. Please note that from now onwards we are
dropping the hat operator on estimates for simplicity. Each –jk, rjk pair is an estimate of the relative
location of the kth speaker with respect to the jth node in polar coordinates, while „j is an estimate
of the orientation of each node inside a common reference frame.
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3.3.1 DoA estimation

Let the two microphones of node j be a linear array, so that, if we assume that a source (kth

speaker) is in the far field of the array, a plane wavefront impinges it with an angle –jk. The
DoA at the microphone pair is reflected as the TDoA between the two sensors, which is given by
·jk = fsdmj cos(–jk)/c, where dmj is the inter-microphone distance, and c is the speed of sound.
Unfortunately, a linear array (1D) in a 2D scenario can only discern DoAs between ≠fi/2 and fi/2

radians, which leads to DoA ambiguity. For every ·jk, there are two potential DoAs, therefore, the
measurement of the angle between node pairs is biased by the node orientation and affected by DoA
ambiguity. We can define the angle between node pairs (“jk) as:

“jk = ujk–jk + „j , (3.1)

where ujk = {≠1, 1} is the DoA ambiguity correction variable. Please note that nodes with three
or more non collinear microphones are capable of finding DoAs between ≠fi and fi radians and so
DoA ambiguity (in 2D) is not longer a problem [ASMM11]. DoA ambiguity is easily eliminated by
the addition of a third microphone which can resolve from which ‘side’ the sound is impinging in
relation to the original microphone pair [KS06]. Without DoA ambiguity the angle between node
pairs becomes: “jk = –jk + „i.

The classic approach to DoA is to cross-correlate the signal received at each microphone to obtain
the time lag between them, or TDoA. Time lags obtained with direct cross-correlation tend to be
related to the strongest signal, which is not necessarily the signal of interest. Since we are using an
active approach, it is advisable to obtain the time lag between some known reference signal an the
signal received at each microphone independently. This method has two main advantages: first, the
correlation of the received signals with a known signal removes uncorrelated noise, and second, we
ensure that the TDoA estimates originate from the reference signal.

Using this approach, each node emits a reference acoustic signal which is received by every node
in the network. Let these reference signals be known and denoted by sk(t), where k indicates the
emitter node. It is then possible to obtain two ToA estimates for every node pair: ·1jk and ·2jk ob-
tained from the respective cross-correlation of microphone signals m1j(t) and m2j(t) and reference
signal sk(t). The TDoA between microphones can be easily computed as the difference between
their ToAs: ·jk = ·2jk ≠ ·1jk, from which the DoA is directly obtained as: –jk = cos≠1

(

·jkc
fsdmj

).

DoA estimates are affected by error. It is clear that failure to obtain the correct TDoA implies a
wrong DoA estimate. However, even in the case of finding the best possible TDoA value, the DoA
estimate still has some error due to its limited resolution. The range of potential TDoA values is
restricted to a finite interval determined by the physical separation between the microphones and
the sampling frequency. Furthermore, DoA resolution is not constant over the whole range. Since
we are working with discrete signals, the obtained resolution depends on the arc of possible DoAs
covered by a discrete TDoA value, which in turn, depends on the sampling frequency (fs), the
distance between microphones (dmj) and the actual impinging angle of the signal. In general, the
accuracy of the DoA estimate is better the greater dmjc

fs
. Assuming that the DoA of a node pair follows
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Figure 3.3: Effect of the inter-microphone distance in DoA resolution.

an uniform distribution, the limited resolution introduces and error with a standard deviation (‡–):

‡– =

!
–(· + 0.5) ≠ –(· ≠ 0.5)

"2

Ô
12

, (3.2)

where –(·) represents the DoA obtained for a given TDoA value (in samples). Figure 3.3 shows how
the inter-microphone distance affects the accuracy of the estimation in relation to the actual DoA.

3.3.2 Orientation Estimation

Once the DoAs have been obtained, the angle between the jth and kth nodes (“jk) can be found
by adding the jth node orientation („j) to –jk. As we will later see, knowing “jk eases the local-
ization process when compared to its counterpart using –jk. Thus, it is advisable to also obtain the
orientation of each of the N nodes within a common reference frame.

The orientation of each node can be easily obtained locally using an accelerometer and a mag-
netometer (i.e., a digital compass), hardware commonly included in portable devices. However,
acceleration and magnetic field measurements are subjected to noise, and so, orientation errors are
unavoidable. Noise is especially problematic on the magnetometer; the existence of strong magnetic
fields and the presence of electric equipment, and even large metallic objects, affect the magnetic
sensor readings making it necessary to calibrate it frequently to avoid large errors [LLW09]. Because
the digital compass is uncalibrated more often than not, it introduces a large error (commonly in
excess of 15o) that typically outweighs that of the DoA estimation. Thus, we decided to estimate the
orientation of the nodes using the available information instead of relying on an imprecise measure-
ment.

Let us consider that the nodes have their sound source at the center of their microphone array
(dsj = 0) and that we know the value of the true angle between node pairs Ïjk (i.e., the actual
value without any error). In this scenario, we know that: Ïjk ≠ Ïkj = ±fi rad, for k ”= j. Now, if we
introduce the approximation from (3.1), substitute Ïjk with “jk and substitute the first assumption
with dsj << rjk (i.e., the distance between the center of the array and the speaker is much smaller
than the distance between the nodes), we arrive to: “jk ≠ “kj ƒ ±fi, from where the following
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Figure 3.4: Schematic representation of the angular relation between two nodes.

generalization is obtained:

ujk–jk + „j ≠ ukj–kj ≠ „k ƒ
I

±fi, if j ”= k

0, if j = k
(3.3)

Figure 3.4 shows the angular relations between node pairs. Notice that when the distance be-
tween the nodes is sufficiently large, the error introduced by the speaker not being located at the
array center is negligible since it is smaller than the DoA resolution. For the time being, let us drop
the DoA ambiguity (“jk = –jk + „j), so that taking expression (3.3) into the complex plane, after
exponentiation and some operations it becomes:

ei(„k≠„j) ƒ
I

ei(–jk≠–kj≠fi), if j ”= k

1, if k = j
(3.4)

Now, to estimate the orientations, we can force a relative orientation reference, where „1 = 0,
arriving to the following expression:

e≠i„j ƒ
I

ei(–j1≠–1j≠fi), if j ”= 1

1, if j = 1

(3.5)

Plugging expression (3.5) into (3.4) we obtain the the final expressions for the orientation estima-
tion:

ei„k ƒ

Y
____]

____[

ei(–jk≠–kj≠–j1+–1j), if j ”= k, j ”= 1

ei(–1k+–k1≠fi), if j = 1, k ”= 1

ei(–1k+–k1≠fi), if j = k, k ”= 1

1, if k = 1

(3.6)

By combining DoA estimates we have produced N ◊ N ‘partial’ orientation estimates, N per node,
which are averaged to obtain „j . This way the quality of „j is directly related to the error in –jk.
With the orientation of the first node fixed at zero, we are establishing a relative coordinate system.
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The points in this space are a rotated version of those in a different reference space (e.g, using the
magnetic north as a global reference).

When the nodes only have two microphones, each of the DoA estimates is affected by ambiguity
(ujk) turning (3.6) into:

ei„k ƒ

Y
____]

____[

ei(ujk–jk≠ukj–kj≠uj1–j1+u1j–1j), if j ”= k, j ”= 1

ei(u1k–1k+uk1–k1≠fi), if j = 1, k ”= 1

ei(u1k–1k+uk1–k1≠fi), if j = k, k ”= 1

1, if k = 1

(3.7)

In this scenario each ‘partial’ orientation estimate is affected by various ambiguities, and ujk is an
unknown that also needs to be estimated. ujk has the particularity of being binary, thus, failure
to correctly estimate it, implies a change of sign in –jk which has a significative impact on the
orientation estimate. Due to this fact, in the presence of DoA ambiguity, „k is obtained by taking
the 70% trimmed mean of the N available estimates, thus, making the results more robust against
outliers created by erroneous ujk values.

3.3.3 Range Estimation and Synchronization

The simplest way of obtaining the range between node pairs is by measuring the ToF (”jk) of
a reference signal. Assuming that the nodes are perfectly synchronized, that is, every node in the
network shares a common timebase and has an identical sampling frequency (fs), the problem of
range estimation is reduced to:

rjk =

c

fs

1qM
m=1 ·mjk

M
≠ tk

2
, (3.8)

where tk is the emission time of the kth node reference signal and ·mjk are the ToAs at the M

microphones of the jth node. Note that because the nodes have more than one microphone, taking
the average of the ToAs gives us the reception time at the center of the array.

Unfortunately, the most likely situation is to lack synchronization between nodes, although it is
possible to obtain the ToF by having each node receive its own reference signal, a method some-
times called ‘BeepBeep’ [PSZ12, CPSB+16]. Assuming that clock jitter and drift (differences in fs

between devices) are negligible, the clock offset between nodes can be bypassed by exchanging time
references. Let the nodes receive their own reference signal, so that ·mj denotes the ‘self-ToA’ at
the mth microphone of the jth node. Defining ·jj as the average ·mj , or the ‘self-ToA’ at the center
of the array, the range between a given node pair (rjk), can be obtained by exchanging the ToA of
both reference signals at both nodes. The clock offset between the node pair (�tjk) is cancelled by
subtracting the TDoA of both reference signals at both nodes, thus, the range can be estimated as:

rjk ¥ c

2fs

!
(·̄jk ≠ ·jj) ≠ (·kk ≠ ·̄kj)

"
, (3.9)

where ·̄jk is average ToA of the kth reference signal at the M microphones of the jth node. Figure
3.5 shows an schematic representation of the time references used to estimate the range between
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Figure 3.5: Schematic representation of the time references used for range estimation

two nodes.

Note that this method obtains the ToF between the speaker of one node and center of the array of
the other node, resulting in two distinct ToFs (see Figure 3.4). In case the speaker is not located at
the center of the microphone array, its displacement will introduce an error in the TDoA estimation,
which is carried into the rjk estimate. Assuming that the speaker position introduces a random
error2 with a mean value equal to the average of the speaker distances, adding it as an offset rjk

becomes:
rjk ¥ c

2fs

!
(·̄jk ≠ ·jj) ≠ (·kk ≠ ·̄kj)

"
+

dsj + dsk

2

, (3.10)

where dsj and dsk are the speaker distance to the center of the jth and kth node respectively. Note
that the average of the speaker displacements is added in order to compensate the time it takes for
the signal emitted by the nodes to reach their own microphones. On a network formed by N nodes,
the standard deviation of the range estimation error (‡r) can then be approximated by the average
of speaker displacements as:

‡r ¥ 1

N

Nÿ

j=1
dsj (3.11)

Instead of being used to find the ToF between node pairs, this method can be used to establish a
common timebase by finding the clock offset between nodes. The main methodology is analogous to
the obtention of rjk only instead of pairing the time references to cancel the clock offset, we search
to estimate it, bypassing the ToF. This way, the clock offset between a given node pair (�tjk) can be
obtained as:

�tjk ¥ (·̄kj ≠ ·jj) ≠ (·jk ≠ ·̄kk)

2

. (3.12)

We want to establish a common time base in the network, so we need to find N clock offsets (�tj)
that cancel the difference in the reception start times among the nodes. This can be done by using
the start time of one node as an arbitrary reference for the remaining nodes and combining different
�tjk in relation to it. Let �t1 = 0 so that it becomes the global time reference, defining �

Õtjk as the
clock offset between nodes j and k biased by �t1:

�

Õtjk =

I
�t1k ≠ �tjk , if j Æ k

�t1k + �tjk , if j > k
. (3.13)

2It should be possible to lessen the impact of the speaker displacement by knowing the angle formed by the nodes,
however DoA estimates lack the required resolution.
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The clock offset of the jth node can be estimated by averaging its biased pairwise estimates as:

�tj ¥ 1

N ≠ 1

Nÿ

k=1
k ”=j

�tÕ
jk, j > 1. (3.14)

Again, the displacement of the speaker from the center of the microphone array introduces an error
in the estimation. However since we are averaging N ≠ 1 estimates, the error gets smaller for larger
values of N . The maximum error of the estimation (when the time estimates are correct to the
sample) is approximately ± fs

cM

qN
j=1 dsj , which is good enough for many applications but might be

to restricting for tasks requiring sub-sample level synchronization such as beamforming.

This method of range and clock offset estimation is robust to a lack of control over the emission
time. An implementation on an operative system not optimized for real-time applications will still
work as long as the recording starts before the emission. It is important to highlight again, that accu-
rate timing is a must for audio-based spatial applications: a timing error of just 1ms would translate
in a range estimation error over 0.3m. In relation to this, the clock drift between nodes also intro-
duces an error that we have not considered. Time drift is inherent to every audio recording device,
resulting from the effects of temperature and random errors in oscillators. A typical sound recording
system can present time drifts of around 30ms per hour recorded between two identical devices
[GLB15]. Clock drift should be taken into account, specially for the validity of the synchronization
over long periods of time.

3.4 Maximum Likelihood Estimator of Node Locations

This section describes how the proposed self-localization method combines the angle and range
estimates taken by the nodes in order to obtain their locations.

Let us consider that a full set of estimations of the range rjk and incidence angle “jk from the
kth node to the jth node are available, and that each of these estimates has an associated standard
deviation error, ‡r(j, k) and ‡“(j, k) respectively. The objective of the self-localization process is
to estimate the node position vector p = [px, py]

T from the estimate pairs taking into account the
standard deviation of each estimate.

Defining each estimate pair (“jk, rjk) as a vector in polar coordinates that describes the location
of the kth node in relation to the jth node, the vector in Cartesian coordinates beacomes: djk =

[vjk, wjk], where vjk = rjk cos(“jk), and wjk = rjk sin(“jk), with rjk Ø 0 and “jk œ [≠fi, fi] for all j

and k from 1 to N . Let us also consider the joint PDF of the estimates in cartesian coordinates as a
multivariate normal distribution, given by

Fjk(p) =

1

2fi|Cjk| 1
2

e(

≠ 1
2 (pj≠pk≠djk)C

≠1
jk

(pj≠pk≠djk)T
), (3.15)

where Cjk is the covariance matrix of the PDF related to the vector that the jth node estimates to the
kth node and pk is a column vector containing the two components of the position of the kth node.

In simpler terms, this can be seen as node j providing the relative location of node k by pointing
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Figure 3.6: Relative location of the kth node obtained by the jth node.

towards a region of probable locations in the cartesian space, that is positioned by djk and delimited
by ‡r(j, k) and ‡“(j, k) as shown in Figure 3.6.

If we combine all the pairwise relative locations it is possible to obtain the most probable node lo-
cations inside a common reference frame. Using a maximum likelihood estimator, the log-likelihood
L of a given geometry is calculated as:

L =

Nÿ

j=1

Nÿ

k=1
k ”=j

log(fjk(p)). (3.16)

Replacing equation (3.15) in (3.16) and simplifying, the next expression is obtained:

L = b ≠ 1

2

Nÿ

j=1

Nÿ

k=1
(pj ≠ pk ≠ djk)Djk(pj ≠ pk ≠ djk)

T , (3.17)

where b = ≠ log(2fi|Cjk| 1
2
), and Djk = C≠1

jk for j ”= k, and a zero matrix for j = k:

Djk =

A
flxx(j, k) flxy(j, k)

flyx(j, k) flyy(j, k)

B

, ’ j ”= l. (3.18)

In order to maximize the log-likelihood function, expression (3.17) has to be differentiated with re-
spect to each term of vector p = [x1, · · · , xN , y1, · · · , yN ]

T . After equaling each resulting expression
to zero, a system of 2N linear equations is obtained. This system of equations can be written in
matrix notation according to:

A
diag(Rxxn) ≠ Rxx diag(Rxyn) ≠ Rxy

diag(Ryxn) ≠ Ryx diag(Ryyn) ≠ Ryy

B

· p = s, (3.19)

where n is a column vector of length N of all ones, diag(x) is a diagonal matrix with the elements
of vector x on its main diagonal, and Rxy = Hxy + HT

xy. Matrix Hxy is a N ◊ N square matrix
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containing the corresponding x-y terms of Djk, given by:

Hxy =

Q

ccccca

0, flxy(1, 2), · · · , flxy(1, N)

flxy(2, 1), 0 · · · , flxy(2, N)

...
...

...
flxy(N, 1), flxy(N, 2) · · · , 0

R

dddddb
(3.20)

Finally, the independent term of the system of equations (s) can be determined using the following
expression:

s =

Q

cccccccccccccccccca

Nq
j=1

flxx(1, j)v1j ≠ flxx(j, 1)vj1 + · · · + flxy(1, j)w1j ≠ flxy(j, 1)wj1

...
Nq

j=1
flxx(N, j)vNj ≠ flxx(j, N)vjN + · · · + flxy(N, j)wNj ≠ flxy(j, N)wjN

Nq
j=1

flyx(1, j)v1j ≠ flyx(j, 1)vj1 + · · · + flyy(1, j)w1j ≠ flxy(j, 1)wj1

...
Nq

j=1
flyx(N, j)vNj ≠ flyx(j, N)vjN + · · · + flyy(N, j)wNj ≠ flxy(j, N)wjN

R

ddddddddddddddddddb

(3.21)

Unfortunately, the system of equations described by (3.19) can not be solved directly. There are
2N equations and the rank of the coefficient matrix is 2N ≠2, making it an underdetermined system
of equations. In order to solve it, two additional constrains have to be added. The simpler solution
is to to place the center of mass of the nodes in the origin of coordinates, so that

qN
j=1 xj = 0 and

qN
j=1 yj = 0. These two equations can be added to the system of equations given in (3.19), allowing

to solve the self-localization problem by means of the inversion of a 2N ◊ 2N matrix.

The proposed method provides an analytical solution to the self-localization problem, but it re-
quires knowledge about the covariance matrices of the estimates (Cjk), and its solution requires
in the order of O((2N)

3
) operations. For certain applications, the additional precision obtained by

taking into consideration the standard deviation of the individual estimates might not be desired,
or perhaps, the computational load associated with the solution is too large. For this reason we
propose two solutions: first, a simple version that assumes all the covariance matrixes equal and
proportional to the identity matrix, which we call Naive Covariance Matrix Estimation (NCME), and
second, a solution in which the covariance matrixes are estimated taking into account the errors of
both DoA and range estimates, or Full Covariance Matrix Estimation (FCME).

3.4.1 Naive Covariance Matrix Estimation

On a first approach, we suppose that all the covariance matrices are equal and proportional to
the identity matrix (I), so that Djk = flI, with fl = 0 when j = k. This is equivalent to assume that
the variables of the PDF are independent and their standard deviation is constant. In this scenario
‡r(j, k) and ‡“(j, k) are not longer considered, thus, every estimation has the same weight.

Under this conditions, Hxx = Hyy = fl(N ≠ I), N being a N ◊ N matrix of all ones, and
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Hxy = Hyx = 0. After this simplification, the system of linear equations given in (3.19) can now be
expressed as:

A
NI ≠ N 0

0 NI ≠ N

B

· p =

Q

cccccccccccccccccca

1
2

Nq
j=1

v1j ≠ vj1

...
1
2

Nq
j=1

vNj ≠ vjN

1
2

Nq
j=1

w1j ≠ wj1

...
1
2

Nq
j=1

wNj ≠ wjN

R

ddddddddddddddddddb

, (3.22)

where I is a N ◊ N identity matrix. Finally we need two add two constraints to lower the rank.
Adding the constraint

qN
j=1 xj = 0 to the first N equations (x coordinates), and the constrain

qN
j=1 yj = 0 to the last N equations (y coordinates), the system of equations becomes now trivial,

its solution being given by:

p =

Q

cccccccccccccccccca

1
2N

Nq
j=1

v1j ≠ vj1

...
1

2N

Nq
j=1

vNj ≠ vjN

1
2N

Nq
j=1

w1j ≠ wj1

...
1

2N

Nq
j=1

wNj ≠ wjN

R

ddddddddddddddddddb

(3.23)

Since every estimate has the same weight and we have place the origin of coordinates at the
center of the constellation, the location of the nodes can be found by simply averaging the relative
position estimates obtained by each node. Taking the original estimates into expression (3.23), the
location of the jth node, is obtained as:

pk =

1

2N

Ë Nÿ

j=1

!
rjk cos(“jk) ≠ rkj cos(“kj)

"
,

Nÿ

j=1

!
rjk sin(“jk) ≠ rkj sin(“kj)

"ÈT
. (3.24)

This simple method of self-localization is made possible by the existence of a common orientation
reference (i.e., known „j). Without knowledge about the node rotations, the relative location es-
timations of a given each would reside on a rotated space, making direct averaging averaging not
feasible.

The NCME method estimates the position of the nodes very fast, so it is of special interest when
the computational cost is relevant. Due to this fact, the NMCE method is of special interest in solving
the ambiguity problem, as it will be described later.
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3.4.2 Full Covariance Matrix Estimation

It is possible to improve the precision of the self-localization by taking into consideration the error
in each of the estimates, although, the resolution of the equation system requires the covariance
matrices to be known.

Let us consider that every DoA and range estimate has has the same error, so that subindex
jk associated to said errors can be dropped for clarity. In order to determine an analytical
expression for the covariance matrix Cjk, the polar to cartesian transformation can be carried
out using an approximation of the non-linear function at the estimated point. Let us consider
the transformation functions x = (rjk + �r) cos(“jk + �“) and y = (rjk + �r) sin(“jk + �“),
where E{�r} = E{�“} = 0, E{f(�r)g(�“)} = E{f(�r)}E{g(�“)}, and E{�r2} = ‡2

r , and
E{�“2} = ‡2

“ . Then, E{x} = rjk cos(“jk) and E{y} = rjk sin(“jk). Applying trigonometric proper-
ties, the following approximations are obtained:

x = (rjk + �r) · (cos(“jk) cos(�“) ≠ sin(“jk) sin(�“)), (3.25)

y = (rjk + �r) · (sin(“jk) cos(�“) + cos(“jk) sin(�“)), (3.26)

where �“ and �r represent the error of a DoA and range estimation respectively. Considering that
the value of �“ is small (i.e. the DoA is correctly estimated), it is possible to take the approximations:
sin(�“) ƒ �“ and cos(�“) ƒ 1. In order to estimate the terms of the covariance matrix, we must
determine its values one by one, so that: ‡2

xx(j, k) = E{x2} ≠ E{x}2, ‡2
yy(j, k) = E{y2} ≠ E{y}2,

and ‡2
xy(j, k) = ‡2

yx(j, k) = E{xy}≠E{x}E{y}. After evaluating these terms, covariance matrix can
be estimated as:

Cjk ƒ Rjk ·
A

‡2
r 0

0 ‡2
a(r2

jk + ‡2
r)

B

· RT
jk, (3.27)

where Rjk is a rotation matrix, given by:

Rjk =

A
cos(“jk) ≠ sin(“jk)

sin(“jk) cos(“jk)

B

. (3.28)

Taking into account that R≠1
jk = RT

jk, the inverse of the covariance matrix (Djk), whose elements
where unknown in (3.18), can easily be obtained using the following expression:

Djk = C≠1
jk ƒ RT

jk ·
Q

a
1

‡2
r

0

0

1
‡2

“(r2
jk

+‡2
r)

R

b · Rjk. (3.29)

This is an interesting way of estimating Djk as a function of the values of the pairwise estimates,
rjk and “jk, and the variances of the errors associated to these estimations: ‡2

r and ‡2
“ . Please

note that ‡2
r and ‡2

“ have different effect on the weight applied to a given estimate, the latter being
modulated by the range. This can be explained by seeing the effect of the angle estimate on the
relative position estimate as a circumference arc, whose length increases as a function of the radius.
This way, the zone of probable locations of the kth node in relation to the jth node will get larger
as a function of the distance between them (rjk) for any given value of ‡2

“ . It is also important to
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Figure 3.7: Relation between the log-likelihood and the pairwise distance error for all possible values of U
with N = 4

highlight that the errors can either be considered constant for all the estimates, or alternatively, they
can be modeled or estimated for every pairwise estimation. On previous sections describing how the
DoA and range estimates are obtained in this proposal, there were some mention of the standard
deviations of said estimates. In this particular case, we decided to keep ‡2

r constant, while modeling
‡2

“(j, k) as a function of the resolution of each individual –jk.

3.5 DoA Ambiguity Solution

Up until this point, we have considered two different scenarios: either the DoA estimates are
affected by ambiguity or not. The proposed solution to the self-localization problem requires the
angle measurements between nodes to be known. For this to be feasible, we first need to estimate
each node orientation („j) within a common reference frame. However, expression (3.7) shows
that the orientation estimation is affected by ambiguity, which in turn is carried into the subsequent
node location estimates. This posses a new problem: when the nodes are equipped with just two
microphones, the whole self-localization problem depends on an unknown DoA ambiguity correction
matrix U composed of N ◊ N ujk values.

Solving the DoA ambiguity of an isolated microphone pair is a very hard problem that requires
additional knowledge and specialized techniques3, however, since we are obtaining pairwise DoA
estimates between a number of microphones pairs randomly located within a 2D space, it is possible
to jointly solve the pairwise ambiguities by setting some fitness function and minimizing it. We have
found a clear relation between the log-likelihood obtained for a certain U and the self-localization
error. Thus, we propose to use expression (3.17) as the fitness function. Figure 3.7 shows the
relation between the log-likelihood (using the NCME method) and the pairwise node distance error
for all possible values of U in a network with N = 4.

Since the node locations (p) for a given U are obtained using a closed-form expression, U can
be seen as the variable in an optimization problem, on which, p is obtained as a byproduct. The
ambiguity correction is a binary variable (ujk = {≠1, 1}), thus, there are 2

N2
unique U values.

3On an ideal scenario it is possible to solve DoA ambiguity by having directional microphones pointing in opposite
directions perpendicular to the line formed by them and comparing the energy of the received signals.
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Figure 3.8: Example of elimination tournament with Nr = 3 rounds, Ng = 8 generations per round, and
Np = 100 individuals per stage of the tournament.

Taking into consideration that the main diagonal of U is of no interest (the case when j = k) and
does not need to be estimated, the maximum number of combinations is reduced to 2

N(N≠1). The
number of unique U values, grows exponentially with N , making it unfeasible to test every single
value. Thus, we decided to use a Genetic Algorithm (GA) to find the solution.

To improve the convergency of the optimization algorithm with respect to the total number of
performance evaluations, instead of using a single GA and several runs (i.e., the standard scheme),
we use an elimination tournament of small GAs. We start with a set of 64 small GAs (each GA
denoted as and stage of the tournament) with a population of Np = 10N individuals and Ng = N

generations each. The best solutions of the first round are then paired, generating a new population
for every two winners, which are set to compete in the next round. The process is repeated until a
global winner is obtained. For illustrative purposes, Figure 3.8 shows an example of the elimination
tournament with a total of Nr = 3 rounds. In our case, we used Nr = 7 rounds, since it empirically
gave us good convergence results.

The GA algorithm used at each each stage is implemented as described in section 2.4.2. Popu-
lation size is Np = 10N individuals. Each individual (Up) contains N(N ≠ 1) genes corresponding
to ujk. On the first round of the tournament the genes are randomly selected, for every subsequent
round, they are created by reproduction and mutation from the previous stage winners. The fitness
function is computed with (3.17) using the NCME method. Each generation, the top performing
10% individuals are selected to breed a new population and the remaining 90% of the population
is discarded. The full population is mutated by selecting 1% of their genes at random and invert-
ing their value, except for the best performer. Since the probability of a change in ujk involving a
change in ukj is very high, 75% of the mutations produce a change of sign in both genes. After Ng

generations, the best Up is selected as a candidate and is set to compete in the next round of the
tournament. After the GA tournament is completed, the best individual becomes U and is used to
estimate the final node positions and orientations.
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It is important to highlight that, while the the computational cost of the optimization algorithm is
quite high, the parallelization of the elimination tournament is trivial, and the various small GAs can
be easily divided by the total number of nodes of the network. In a rough approximation, taking the
computation time of the closed-form expressions of the ML estimator and the orientation estimation
as a single operation, in Big O notation, the parallelized tournament has a complexity O(N). The
tournament is composed of 127 GAs divided among N nodes. In the worst scenario a node has to
take care of Nga = Á127/NË GAs. Each GA performs N iterations with a population size of 10N ,
so in total, each node needs to compute Á127/NË ◊ N2 operations. In average, the computational
load of the optimization algorithm (for one node) is around 1300J times higher than that of the
estimations using the NCME closed-form expression.

Please note that the need for an iterative algorithm is a direct consequence of the DoA ambiguity.
Provided that each node was capable of resolving 360

o DoAs (by having 3 or more microphones
arranged in a 2D array), the solution to the self-localization problem can be found directly using the
analytical expression presented in the previous section.

3.6 Experimental work and Results

This section describes the experiments conducted to evaluate the performance of the self-
localization algorithm proposed in this chapter, as well as a discussion of the results obtained. We
decided to evaluate the algorithm using just two microphones per node for three main reasons: first,
it is the most common configuration of “off-the-shelf” smartphones and other portable devices; sec-
ond; to prove the feasibility of performing distributed array configuration calibration in the presence
of DoA ambiguity; and third; to show that even in the presence of DoA ambiguity it is preferable to
estimate the orientations of the nodes rather than using an uncalibrated digital compass.

3.6.1 Description of the Experiments

To evaluate the proposed algorithm, we generated a realistic database of acoustic signals, which
contains 300 different scenarios that include both reverberation and background noise. Each sce-
nario contains 10 nodes (equipped with two microphones and a speaker) at random locations and
with random orientations and is defined by a random a combination of the next parameters: room
dimensions of 6-12 m long/wide and 2-3 m high; absorption coefficient of 0.5-1; SNR of 5-20 dB.
Background noise was added as additive white noise (simulated diffuse noise field) with an energy
level controlled by the SNR. The positions of the nodes were restricted as if they were lying on
a table of dimensions 5x2 m (a large-sized conference table) with a minimum distance between
nodes of 15 cm. The internal geometry of the nodes is modeled after a BQ Aquaris 4 smartphone,
whose physical characteristics are the following: dm = 0.106m, ds = 0.096m, and —s = 5.9¶. The
acoustic signals received by the microphones of each node were generated using a room impulse
response generator, which was computed using the simple image method described in Allen and
Berkley [AB79] at a sampling frequency of 44100 Hz. The method considers the dimensions of the
room, the absorption coefficient of the walls, the location of the sources and the location, directivity
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pattern and frequency response of the microphones. The frequency response of the microphones
has been experimentally measured in an anechoic chamber for various angles over a whole sphere
(360¶). The obtained directivity patterns can be approximated by a cardioid pattern with a front-to-
back ratio of 10 dB4. In order to generate the database we assume that every devices lies flat on a
table with its back pointing upwards. This assumption affects the directivity of the microphones in
the following way: the directivity of the first microphone depends on the orientation of the device
(it points toward „ ) and the main lobe of the second microphone points upward, so it is considered
omnidirectional.

The acoustic reference signal emitted by the nodes is a band-limited white noise signal (500 Hz -
16 kHz). The time duration of the reference signals is a tradeoff between computational complexity
and robustness against low SNR, hence, in order to see the effect of the cross-correlation of the
self-localization results, we tested 3 different reference signal lengths. The selected lengths are
LR = {8192, 4096, 2048} samples, or 18.58, 9.29, and 4.65 ms respectively at fs = 44100 Hz. Each
device emits a unique reference signal, which is known by every node in the network. The reference
signals were obtained from normally distributed random sequences filtered in the aforementioned
bandwidth. The sequences were generated with LR = 8192 and were cropped to obtain the shorter
reference signals. The selected frequency bandwidth is related to the frequency response of the
integrated microphones as well as the typical frequency response of smartphone speakers. The
time lag between the received signals and the reference signals was obtained using framed cross-
correlation with a frame length L = 2LR and PHAT weighting for robustness against reverberation.
The conducted simulations show that less than 4% of the DoAs are missed when using the selected
parameters with 4096 samples long band-limited white noise reference signals. A chirp signal with
the same frequency range needs to be double the length (8192 samples) to achieve comparable
results under the same conditions, which implies a higher computational cost. In addition to this,
we have conducted an informal listening test where the noise signal was tagged as less disturbing
than a chirp signal by most of the participants. Note that using short reference signals also has the
benefit of making the localization process less disturbing to users who are exposed to them.

The pairwise estimates between nodes are obtained using the methods described in section 3.3.1
for the DoAs, and section 3.3.3 for the range. Regarding the orientation we have evaluated the
performance of the algorithm under two conditions, assuming that the node orientations in relation
to the magnetic north are obtained with a digital compass; and estimating the orientations as de-
scribed in section 3.3.2, thus setting an arbitrary orientation reference. DoA ambiguity is solved as
described in section 3.5 using the NCME method as the fitness function. When the orientations are
obtained with a digital compass, we have considered the ideal scenario, in which the orientations
are measured without any error (‡„ = 0

¶), and a more realistic scenario, in which the typical error
of a digital compass is considered (‡„ = 15

¶). The final node location estimates are obtained using
the FCME method in every case.

The last consideration is the coordinate system. We have previously mentioned that the origin of
coordinates was set at the center of mass of the node locations in the localization process; however,
without loss of generality, we can assume that the first node is located at the origin of the coordinates.
Then, the transposed locations are found by subtracting the coordinates of the first node. Hence,

4The microphones are rated as omnidirectional, the cardioid directivity is a result of the ‘shadowing’ effect produced
by the body of the smartphone.
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Figure 3.9: Localization results (transposed and rotated) for one example in the database with N = 6.
The true positions are in black, and estimates are in grey.

together with the condition set for the orientation estimation, the localization results are provided
in relation to the first node. With a localization example in Figure 3.9, we observe that when this
reference system is used, the estimated and true locations of the first node are identical, thus it is
not considered for computing the results. Regardless of where the origin of coordinates is set, the
location estimates produced by the algorithm reside on a relative coordinate system. The points
in this space are translated (and rotated in case the orientation of the nodes is also estimated); it
suffices to know the actual position and orientation of one of the nodes (i.e., having a beacon node)
to transform the results to a global coordinate system.

In order to set a comparison with the proposed method we have implemented 2 of the self-
localization methods available on the literature, namely: Jacob et al. [JSHU12], that was selected
to represent DoA-based distributed array configuration calibration; and Crocco et al. [CDBBM12],
that was selected to represent range-based distributed microphone configuration. All the tested
methods work with the same set of estimates, and under the same conditions. The differences
between their performance are limited to the specific methodologies by which the various estimates
are combined in order to find the node locations.

The method presented in Jacob et al. [JSHU12] is based on DoA estimates alone. The method
originally uses 4 sub-arrays with 2 microphones, assuming that the sub-arrays are located along
the walls of a room of known dimensions (i.e., sound never impinges from the back if the array).
However, we have adapted the described method for the use of range estimates, so that, the solution
is scaled to minimize the difference with the measured range values as described in Schmalenstroeer
et al. [SJHU+11]. It is important to highlight that this method only works without DoA ambiguity
and so, in order to obtain the results we assumed that the nodes were capable of measuring 360¶

DoAs using only 2 microphones which is physically impossible.

The method described in Crocco et al. [CDBBM12] is closely related to MDS, it describes a
closed-form solution for the self-localization problem. This method is intended for nodes with a
single microphone, so it is based on range measurements alone. Note that we obtain the range
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Table 3.1: Localization error (centimeters) for different algorithms and network sizes (N). LR = 4096.
DoA estimates with ambiguity have a range of 180¶ instead of 360¶.

Crocco et al. [CDBBM12] Jacob et al. [JSHU12] Proposed
Known orientationsú Without ambiguity With ambiguity

length N Mean Std Trim Mean Std Trim Mean Std Trim

4 13.0 10.7 10.8 18.5 35.9 12.3 10.3 9.6 8.5
5 13.9 12.3 11.2 16.3 23.1 11.7 10.6 12.3 8.5
6 14.5 14.2 11.4 15.2 22.2 11.4 10.1 11.0 8.4

2LR 7 14.5 13.1 11.6 14.2 19.8 10.6 10.2 10.3 8.3
8 14.7 13.0 11.6 13.5 14.7 10.7 9.8 8.3 8.2
9 14.6 12.4 11.7 14.5 21.0 10.7 10.9 11.8 8.3

10 14.8 12.6 11.8 13.4 13.7 10.5 11.5 11.0 8.8

4 13.3 11.2 10.8 17.3 25.6 12.4 10.1 8.5 8.5
5 14.1 12.7 11.2 15.1 16.1 11.5 10.2 9.1 8.5
6 14.6 14.7 11.4 14.3 14.9 11.2 10.1 9.6 8.4

LR 7 14.6 13.4 11.6 13.9 15.2 10.8 10.0 8.5 8.3
8 14.7 13.5 11.7 15.4 30.6 11.0 10.1 9.8 8.2
9 14.9 13.5 11.7 14.0 18.0 10.7 10.5 10.2 8.3

10 14.9 13.0 11.8 13.4 13.3 10.6 11.4 10.8 8.7

4 28.7 40.4 17.0 27.6 58.7 12.7 14.8 19.3 9.2
5 33.7 41.7 22.9 23.9 43.2 12.7 14.9 18.1 9.8
6 41.1 45.4 31.2 27.6 57.7 12.8 15.2 16.2 10.7

LR

2 7 42.6 43.7 33.5 27.0 42.1 14.2 14.4 12.4 11.2
8 43.3 42.4 34.6 28.5 40.1 17.0 13.9 11.8 11.0
9 43.9 40.1 36.5 31.0 41.2 20.1 14.6 12.4 11.6

10 46.6 40.0 40.4 35.7 41.4 26.3 15.9 12.9 12.8
ú‡„ = 0

¶

estimates by averaging the ToAs at both microphones, thus, this method is not capable of obtaining
orientation estimates. In case the ToAs were obtained at each microphone it should be possible
to also estimate the orientations by adding some constraints (known distance between microphones
inside a given node), although in [CDBBM12] this is not considered. In order to obtain the presented
results we assummend that node orientations were obtained with a digital compass.

It is important to mention that, none of these methods are capable of discerning between re-
flected solutions, therefore, in order to obtain the results we considered all the possible reflections.

3.6.2 Experimental Results

Table 3.1 shows the Mean, the standard deviation (Std) and the 25% trimmed mean (Trim) of
the localization error obtained with the proposed algorithm and those obtained with Jacob et al.
[JSHU12] and Crocco et al. [CDBBM12]. Please note that, Crocco et al. [CDBBM12] is using per-
fectly known orientations (‡„ = 0

¶), and that Jacob et al. [JSHU12] its using 360¶ DoA estimates,
while the presented method works with 180¶ DoA estimates. Among the tested self-localization
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Table 3.2: Localization error (centimeters) for the proposed algorithm with known and estimated
orientations for different network sizes. LR = 40196.

Proposed (‡„ = 0

¶) Proposed (‡„ = 15

¶) Proposed
Known orientations Known orientations. Estimated orientations.

length N Mean Std Trim Mean Std Trim Mean Std Trim

4 9.1 7.1 8.0 22.1 13.4 19.7 10.3 9.6 8.5
5 9.1 7.1 7.9 21.9 12.2 20.0 10.6 12.3 8.5
6 9.2 7.8 7.9 21.9 11.2 20.3 10.1 11.0 8.4

2LR 7 9.2 8.0 7.8 21.3 9.9 19.9 10.2 10.3 8.3
8 9.1 7.9 7.8 21.0 9.8 19.6 9.8 8.3 8.2
9 8.9 6.2 7.8 20.6 8.4 19.5 10.9 11.8 8.3

10 8.7 5.3 7.7 20.2 7.9 19.3 11.5 11.0 8.8

4 9.0 6.1 8.0 22.1 13.3 19.6 10.1 8.5 8.5
5 9.0 6.1 7.9 21.8 11.5 20.0 10.2 9.1 8.5
6 8.9 6.2 7.9 21.8 10.7 20.3 10.1 9.6 8.4

LR 7 8.9 6.7 7.8 21.2 9.4 19.9 10.0 8.5 8.3
8 8.8 6.3 7.8 20.8 8.9 19.6 10.1 9.8 8.2
9 8.6 4.7 7.8 20.5 8.0 19.6 10.5 10.2 8.3

10 8.6 4.6 7.7 20.0 7.1 19.4 11.4 10.8 8.7

4 13.9 19.1 8.7 25.6 19.9 21.2 14.8 19.3 9.2
5 13.4 15.0 9.1 25.2 16.3 22.2 14.9 18.1 9.8
6 13.7 12.9 10.1 25.6 14.6 23.4 15.2 16.2 10.7

LR

2 7 13.1 10.9 10.5 24.6 12.8 22.9 14.4 12.4 11.2
8 13.0 10.1 10.5 24.2 11.9 22.4 13.9 11.8 11.0
9 13.0 9.8 10.8 24.0 11.4 22.4 14.6 12.4 11.6

10 13.3 9.2 11.3 23.9 10.4 22.7 15.9 12.9 12.8

algorithms, the proposed method consistently obtains the best results, while having to solve DoA
ambiguity. Regarding the length of the reference signals, the results obtained for the longer refer-
ence signals (2LR = 8192 and LR = 4096) are practically equivalent, however when the shorter
reference signals are used (LR

2 = 2048) the localization error is notably increased. This is explained
by the number of erroneous ToA estimates growing larger when the length of the reference signals
is not enough to counter the effects of low SNR and reverberation. The proposed method also shows
a better behavior in the presence of estimation errors. In contrast to this, Crocco et al. [CDBBM12]
and Jacob et al. [JSHU12] performance is highly affected by failed cross-correlations. The sensi-
bility of these method to estimation errors clearly shows when comparing the results obtained with
increasing LR values, and it is best reflected by their Std values. The influence of larger network
sizes is also more noticeable on the Std values that, for the most part follow a descending trend with
N , except with the proposed method where larger networks start affecting the convergence of the
DoA ambiguity solution.

Table 3.2 shows the Mean, Std and Trim of the localization error obtained with the proposed
algorithm working with known orientations (assumed to be obtained with an electronic compass),
with and without orientation measurement error, and those obtained when the orientations are
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Table 3.3: Orientation estimation error (degrees) for different algorithms and network sizes. DoA
estimates with ambiguity have a range of 180¶ instead of 360¶.

Jacob et al. [JSHU12] Proposed
Without ambiguity With ambiguity

lenght N Mean Std Trim Mean Std Trim

4 4.6¶ 4.7¶ 3.7¶ 6.6¶ 15.7¶ 4.0¶

5 4.3¶ 4.6¶ 3.4¶ 5.9¶ 12.8¶ 3.7¶

6 4.0¶ 4.3¶ 3.2¶ 5.1¶ 9.6¶ 3.4¶

2L 7 4.2¶ 5.7¶ 3.1¶ 5.6¶ 12.5¶ 3.2¶

8 4.4¶ 7.3¶ 3.1¶ 5.0¶ 10.9¶ 3.0¶

9 4.4¶ 8.0¶ 3.0¶ 8.6¶ 19.1¶ 3.1¶

10 4.3¶ 6.1¶ 3.0¶ 12.3¶ 21.9¶ 5.7¶

4 4.5¶ 4.9¶ 3.7¶ 6.3¶ 14.3¶ 3.9¶

5 4.2¶ 4.2¶ 3.4¶ 5.8¶ 12.0¶ 3.7¶

6 4.1¶ 4.3¶ 3.3¶ 5.0¶ 9.0¶ 3.4¶

L 7 4.1¶ 4.7¶ 3.1¶ 6.0¶ 14.1¶ 3.2¶

8 4.6¶ 8.5¶ 3.1¶ 6.0¶ 14.5¶ 3.0¶

9 4.5¶ 7.6¶ 3.0¶ 8.3¶ 17.3¶ 3.2¶

10 4.3¶ 5.8¶ 3.0¶ 13.1¶ 24.3¶ 5.3¶

4 8.9¶ 23.3¶ 3.9¶ 9.2¶ 22.1¶ 4.1¶

5 8.5¶ 20.7¶ 3.6¶ 9.5¶ 23.1¶ 3.9¶

6 10.2¶ 20.9¶ 3.6¶ 9.3¶ 22.4¶ 3.6¶

L
2 7 10.5¶ 19.5¶ 4.2¶ 8.2¶ 18.3¶ 3.4¶

8 10.9¶ 18.9¶ 5.1¶ 7.2¶ 17.4¶ 3.2¶

9 11.5¶ 17.3¶ 6.5¶ 9.3¶ 19.9¶ 3.3¶

10 12.7¶ 16.5¶ 8.8¶ 13.1¶ 23.9¶ 5.6¶

estimated. Comparing this table with the previous one, we observe that the error obtained using
orientation estimates is between those obtained using measured orientations: it is larger than that of
the ideal case but much smaller than when the typical error of an uncalibrated compass is introduced.
Thus we can conclude that, in the presence of an uncalibrated electronic compass, it is more reliable
to estimate the node orientations rather than measuring them. Note that when the orientations
are known a priori there is no need for solving the DoA ambiguity, thus, the STD values show a
descending trend when N is increased.

Although not show in the results, the use of NCME algorithm for the final node location estima-
tion increases the localization error by 12% on average, compared to the FCME solution. On the
other hand, obtaining the solution with the NCME method requires on average 21% less operations
than doing so with the FCME method, thus, favoring one method over another is a tradeoff between
computational complexity and accuracy.

Table 3.3 also shows the Mean, Std and Trim, in this case of the orientation estimation error
with the proposed method and Jacob et al. [JSHU12]. The proposed method gets larger errors that
Jacob et al. [JSHU12], although it is worth recalling that the latter is not dealing with DoA ambiguity.
From the table we can observe that, orientation estimation is less affected by estimation errors, but
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Figure 3.10: Boxplot of the self-localization results for the tested algorithms with different number of
nodes and LR = 4096.

Table 3.4: Standard deviation of the clock offset (samples) for different network sizes and reference signal
lengths (LR = 4096).

4 5 6 7 8 9 10

2LR 9.60 8.70 8.59 7.88 7.06 6.75 6.39

LR 11.08 8.48 8.25 7.38 6.88 6.42 6.32
LR

2 34.60 25.52 26.08 24.87 24.54 26.56 28.65

again the proposes method is more robust. With both methods the orientation estimation error is
lower than that of a typical digital compass, rendering them useless for this particular application.

Figure 3.10 shows a boxplot of the results obtained for all the tested algorithms with LR = 4096,
from where is easier to compare how the different algorithms perform. In general, large localiza-
tion errors are associated to large time lag estimation errors, i.e., those instances when the largest
peak of the correlation corresponds to a reflection instead of the direct signal. Some proposals in
the literature use outlier detection techniques to reduce the effect of spurious measurements. Jacob
et al. [JSHU12] used random sample consensus (RANSAC) for the minimization algorithm (not
implemented in our version); while in Plinge and Fink [PF14], outliers are detected by applying a
threshold to the estimation error. Our current implementation does not contemplate outlier detec-
tion; therefore, the obtained localization errors have large variances.

Regarding the number of nodes, localization accuracy usually increases with larger networks.
This result is expected because there is more information available; thus, it is easier to compensate
for small pairwise estimation errors (either DoA or range) in one or several nodes. However, due
to DoA ambiguity, the proposed method has some convergence problems with large networks that
need to be addressed.

Finally, Table 3.4 shows the standard deviation of the clock offset (‡�)for the 3 tested reference
signals lengths with different array sizes. The obtained results show that when the time lags are
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successfully estimated, it is possible to obtain a fairly reasonable synchronization. Note that the
results are larger than that predicted in 3.3.3 because of the time lag estimation errors. It is worth
remembering that this method does not account for clock drift, thus, clock offsets will grow larger
in time if not additional action is taken.

3.7 Conclussions

In this chapter, a new active self-localization algorithm for WASNs has been presented. The
algorithm assumes that the nodes are equipped with at least two microphones and one speaker. The
entire localization process is based on the combination of DoA and range estimates between node
pairs obtained from acoustic signals, and it does not require synchronization between the nodes.

The main novelty of the proposed method is the ML estimator of node locations, that obtains
a simple closed form solution to the self-localization problem by treating pairwise angle and range
estimates as polar coordinates pointing towards the possible relative location of the nodes. Perhaps
most importantly, the proposed method is capable of solving the self-localization problem even with-
out prior knowledge about the orientation of the nodes and in the presence of DoA ambiguity. To the
best of our knowledge, our proposal is the only method capable of 2D DoA-based self-localization
using nodes equipped with only 2 microphones.

A byproduct of the proposed self-localization method is the obtention of synchronization within
the network. With a simple modification, the method used for obtaining the range estimates can
be used to estimate the clock offset between the nodes. The error of these clock offset estimates is
directly related to the distance between the center of the array and the speaker of the nodes, thus, it
is better classified as ‘loose’ synchronicity method. Although, as we will see on the next chapter, the
precision of this synchronization suffices for the problems that we are to be tackled.

In summary, the performance of the proposed algorithm is on the same scale as other DoA-based
algorithms without requiring ad-hoc hardware or synchronization between nodes. The localization
error obtained with estimated orientations is lower than that obtained when an uncalibrated elec-
tronic compass is used. Furthermore, the computational cost of the algorithm is assumable for
current mobile processors, and since it is able to work on unsynchronized networks and it only re-
quires 2 microphones per node, is a good candidate for implementation on a WASN composed of
commercial ‘off-the-shelf’ smartphones.

However, the solution to the DoA ambiguity using a GA tournament adds a significative computa-
tional load, since it requires an iterative minimization. Furthermore, its convergence is compromised
in networks with a large number of nodes. At this point, it is worth mentioning that the GA tourna-
ment is not intended as a definitive solution to this problem, but as a proof of concept, showing the
feasibility of the DoA ambiguity solution. It is worth exploring more efficient solutions that exploit
the relations between the DoA estimates of various nodes.

Another aspect worth of consideration is the ability to assert the quality of the cross-correlations.
Most of the work on acoustic-based self-localization and other related fields rely on accurate time
lag estimates, and oddly enough, the quality of the correlations is often overlooked. The techniques
applied to self-localization are very sensitive to large estimation errors, more often than not, one
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wrong enough estimate can inhibit the convergence to the correct solution. Some proposals use
outlier detection techniques to lessen the problem, such as making an statistical analysis of the esti-
mates, or taking a ‘brute force’ approach by evaluating the results with multiple subsets of estimates.
However if there was a direct method to ‘measure’ the confidence of individual cross-correlations, it
would then be possible to apply a weighted optimization scheme, that would improve the quality of
the results without a significative impact to its computational complexity.

As with any other sound-based algorithm, the proposed self-localization method can only be
used when the distance between the nodes is relatively small. Although, in a hypothetical scenario
in which the nodes where equipped with a RF-TRx with more than one antenna and the ability
to measure the angle-of-arrival of the RF signals, the proposed algorithm could also be applied.
In that scenario range and DoA estimates would be substituted by RF RSS and angle-of-arrival
respectively. Working with RF signals instead of audio, synchronization could not longer be obtained
and localization error would likely be much higher, but the localization procedure would works with
much larger distances, which can be desirable in many applications.

Future work will address spurious estimates and will study different approaches to the DoA
ambiguity estimation because they are the main sources of error.

3.8 Summary

The main contributions described in this chapter of the thesis are the following:

1. A simple closed form solution to the self-localization problem that uses pairwise DoA and range
estimates obtained from acoustic signals exchanged between devices, without requiring prior
synchronization.

2. Two different solutions to the maximum likelihood estimator that either consider the estimates
equally accurate or assigns a different weight to each estimate based on its confidence level.

3. A solution to the DoA ambiguity problem that makes it possible to obtain the node locations
and their orientation using only two microphones per node.

4. An efficient set of methods for obtaining DoA, range, orientation and clock offset estimates, that
work by combining various time lag estimates between the signal recorded at a microphone
and a reference signal.

The contributions described in this chapter have originated publications [P3] and [P1] which are
detailed in section: Publications.



CHAPTER4 Impulsive Sound Detection

4.1 Introduction

Over the last decades, there has been a surge in the presence of surveillance systems in our living
environment, so it should not come as a surprise that the most prevalent applications of WASNs
in the literature are related to automated acoustic surveillance. Using acoustic signals as a means
to autonomously monitor an environment is cheaper than other common solutions, such as video
monitoring, and has a series of benefits when compared to them: no need for direct line of sight,
the sensors have an unrestricted field of view (i.e., onmidirectional microphones), illumination and
temperature are not relevant issues, some audio events relevant to surveillance, such as screams, do
not clearly show on other sensors, etc.

WASNs are specially well suited for this task since they can be easily deployed to cover a large
area, with a minimal setup. Aditionally since sound signals are less data intensive than other alter-
natives, the cost and physical size of the nodes can be kept low, so that the size of the network can
grow.

Generally speaking, the kind of acoustic events that automated audio surveillance systems are
set to detect, can be catalogued as “rare” acoustic events (specially the impulsive ones), which
implies that their occurrence can no be predicted, thus, creating the need for continuous monitoring.
Moreover, a disproportionate amount of time is spent monitoring background noise, thus every
node in a WASN-based detection system needs to process their input audio stream continuously to
maximize probability of detection.

Most recent work in the more generalist sub-field known as AED, that deals with many different
types of audio events, tends to focus on very large ANNs inherited from ASR and computer vision.
Such systems, while capable of achieving the best detection results to this day (for multiple simulta-
neous detections), are far too complex to be implemented on a small wireless node. On the contrary,
impulsive audio events are fairly easy to detect given their particularities, hence the detection sys-
tem does not need to be overly complex, thus traditional machine learning techniques, often seen
as ‘outdated’, can still serve the purpose.

Rather than relying on a single very complex detector, it is possible to take advantage of an
ensemble of simpler, spatially distributed detectors so that their combined performance surpasses
that of any of the members. Thus, sound event detection on WASNs can be made to be both reliable
and computationally efficient.
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4.2 Feature Extraction

The most common approach to acoustic impulsive event detection is to transform an audio
stream, frame by frame, into a series of feature vectors that can be individually evaluated with some
classification algorithm. The features are computed from a segment of raw audio data of length L,
using a set of functions whose outputs are concatenated to form the feature vector of length F < L.
Feature extraction serves two main purposes: to reduce the dimensionality of the raw input data,
and to produce data that is mathematically and computationally convenient to process.

Perhaps the most popular features for all applications rooted in audio-based machine learning
are the MFCCs, which are a compressed perceptual representation of the short-term power spectrum
of the input signal. Computing F MFCCs requires computation of a F point DCT, intended to fur-
ther compress the information onto the lower frequency bands. Thus, in those cases in which better
computational efficiency is wanted, or if the objective of the feature vector is to approximate a log-
arithmic frequency scale, the DCT can be omitted. The DCT-less version of the MFCCs is sometimes
called Mel log-band energies. These features are also widely used for audio-based detection and
classification and they have been shown to obtain results comparable (sometimes better) to those
of obtained with the MFCCs [CHHV15, GPAR+15]. In order to keep the feature extraction process
as simple as possible, the proposed detector system works with Mel log-band energies (and linear
combinations of them) as the only features. This way the basic feature vector for the lth frame (xl)
is computed as described in section 2.7.2.

4.2.1 Efficient Feature Temporal Context

Given that sound is a time evolving signal, it makes sense to feed the evolution of its spectral
content to the classification algorithm in order for it to find temporal patterns. Certain types of
classifiers are able to work with time evolving feature vectors, such as recurrent neural networks or
HMMs, that use their internal state to process a sequence of inputs. However, most classification
algorithms work by examining isolated inputs, thus the possible relations between the current time
instant and those preceding it are not considered by the classifier.

A common workaround for this issue, often used in conjunction with the MFCCs, are the differen-
tial (delta) and acceleration (delta-delta) coefficients. They can be be described as the trajectories of
the MFCCs over time, which are the difference between jth coefficient on the current frame and the
jth coefficient on the previous frame, for the delta, and the same thing but with that of two frames
ago for the delta-delta. These time-relative features are then concatenated with the MFCCs, so that
the length of the feature vector increases by 2F , where F is the number of coefficients.

Instead of using the differences between the coefficients at various time instants, it is also com-
monplace to just concatenate multiple frames, to provide the classifier with some temporal context.
This way the feature vector becomes:

xÕ
l =

S

WWU

xl

...
xl≠�

T

XXV , (4.1)
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where � is the number of past frames that get concatenated with the current one. Note that the
feature vector grows by F features for every past frame added to it, so both the dimensionality of
the problem and the computational complexity of the evaluation are increased by a factor F ◊ �.
Although the size of the feature vector is most likely to be negligible for most target platforms, it
should be mentioned that memory space requirements are also increased by the the same factor.

In order to increase the temporal information available to the classifier without excessively in-
creasing the dimensionality of the problem, we propose to use a ‘compressed’ feature temporal
context scheme. The main idea is to reduce the resolution of the past frames that get concatenated
to the current feature vector, such that the further away in time a given frame is, the lower its
resolution.

Let us consider a past feature vector xl≠Î , Î = 1, . . . , �, defining the compression ratio as cR =

[1, cR,1, . . . , cR,�], we can also define the compressed version of a given feature vector ˙xl≠Î of length
F

cR,Î
, where F is divisible by cR,Î . Compressed feature vectors can be computed in a multitude of

ways. Regardless of the selected method, the best results are to be obtained when the original vector
xl≠Î is used as an input for the compression. However, by doing this, the complexity of the process
will increase at least proportionally to the number of past frames included as temporal context.
We propose to use a sequential compression scheme, where the length of a given feature vector is
reduced progressively by computing the Î-times compressed vector as a linear combination of the
elements in the (Î-1)-times compressed vector. This way, we can define a series of matrices BÎ of
size ( F

cRÎ
◊ F

cRÎ≠1
) such that: ˙xl≠Î = BÎxÎ≠1, Î = 1, . . . , �. Using compressed temporal context, the

feature vector becomes:

xÕ
l =

S

WWU

xl

...
˙xl≠�

T

XXV , where F Õ
= F +

�ÿ

Î=1

F

cR,Î
. (4.2)

The simplest version of this algorithm, which is the one that is being used in the proposed detection
system, is to set F and cR,Î so that the relative compression ratio equals 2 between successive
compression stages. Then, one feature on the Î-times compressed vector is easily computed as
the average of two features of the (Î-1)-times compressed vector. Note that it is not mandatory to
compress the past feature vectors each time a new frame arrives. cR can share the same compression
ratio for various values of Î, and by doing so, the computational complexity of the process is further
reduced.

Figure 4.1 shows a schematic representation of two methods for adding feature temporal context,
a 2-frame “full” context feature vector, and 4-frame compressed context feature vector with cR =

[1, 2, 4, 4]. The resulting length of the extended vector is the same with both techniques.

4.3 Local Detector

After transforming the raw input audio into a number of descriptive values (i.e., features) we
have to define the process by which each observation is automatically assigned to one of a number
of categories. The most common approach is to train some classifier on a pre-defined dataset formed
by labeled examples, so that it can learn how to recognize the class of an observation based on its
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Figure 4.1: Schematic representation of feature time context, showing extended feature vectors with 2
frames full context, and 4 frame compressed context.

features. In this particular case, the classifier, or more properly the detector, has to be able to
find observations belonging to the target classes on a continuous stream of data, in which most
observations do not belong to any of the classes.

This section describes the algorithm used by each of the nodes forming a WASN to perform im-
pulsive audio event detection locally. At this point, there is no collaboration from the network, thus,
every node must process its own input data in isolation. Generally speaking, complex algorithms
often obtain better results at the cost of a larger computational load, however, the main objective
of this thesis is to develop efficient techniques, thus, a tradeoff solution between performance and
efficiency must be found.

4.3.1 K-LDA

In order to increase the performance of the detection while keeping computational complexity as
low as possible, we propose to use a modified LS-LDA classifier that can use one of various weight
matrices, depending on where a given observation resides within the feature space. We are calling
this proposal K-piecewise LDA, or K-LDA for short.

We have already mentioned that LDA is a linear classification method, thus, it is not a good
tool when the classification boundary can not be described as a linear combination of the feature
vector. However, it is possible to assign different classifiers to different regions of the feature space
to approximate nonlinear boundaries with a piecewise linear function. The main idea is to divide the
feature space into a number of discrete regions according to some metric derived from the features
themselves, so that, a set of ‘specialized’ LDAs can be trained for each region.

Let us consider a training set in the form of an input matrix Q = {qn}, where qn =

[xn1, . . . , xnF , 1]

T , from which it is possible to derive a segmentation function such that: k = F (xn),

k = 1, . . . , K. Let us also consider that the segmentation function is used to divide set Q into K

disjoint subsets: Q1 fi · · · fi QK = Q. Defining Qk as the set of C-dimensional binary target vectors
associated to each observation xn œ Tk, then it is possible to train a LS-LDA over the observations
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assigned to the kth input subset with:

Vk = TkQk
T !

QkQk
T "≠1

, k = 1, . . . , K, (4.3)

where Vk is one of K ‘specialized’ weight matrices of dimensions C ◊ (F + 1) given by:

V
k

=

S

WWU

wk11 . . . wkF 1 bk1
...

. . .
...

...
wk1C . . . wkF C bkC

T

XXV . (4.4)

Since this chapter of the thesis deals with detection, let us consider a binary classification prob-
lem, so that C = 1 and vk = [wk1, . . . , wkF , bk]

T . In that scenario the output of the proposed K-LDA
classifier for a given observation xt can be obtained as:

y = bk +

Fÿ

j=1
wkjxtj , with: k = F (xt). (4.5)

Please note that the computation of the output is equivalent to that of a regular LS-LDA, first de-
scribed in section 2.7.4. The particularity is that the weights and bias have first to be selected
among K candidates, by finding the correspondent spatial region in which xt resides, which re-
quires previous computation of F (xt).

To better illustrate the basic behavior of the proposed classifier let us formulate a toy problem.
Let us consider a pair of two dimensional normally distributed variables with zero mean but different
standard deviation. We want to to classify a set of random observations xn = [x1, x2]

T as belonging
to distribution A or B. With a linear classifier, the error rate would tend to 50% since it can only
separate 2D space with a line. However, if we have some a priori knowledge about the obervations,
such as that both variables have zero mean in both its components, we can take advantage of
this knowledge to segment the feature space accordingly. On a real problem we would not have
knowledge about the true distributions, thus, defining µ1 and µ2 as the mean value of the samples
in the training set, the feature space can be divided into 4 zones with:

k =

Y
____]

____[

1, if x1 Ø µ1 and x2 Ø µ2

2, if x1 Ø µ1 and x2 < µ2

3, if x1 < µ1 and x2 Ø µ2

4, if x1 < µ1 and x2 < µ2

(4.6)

Figure 4.2 illustrates this problem, by showing the classification boundaries obtained by a a LS-LDA
and a a K-LDA using a specialized classifier for each quadrant of the feature space, delimited by the
mean value of the samples in the training set. This toy problem clearly illustrates how the accuracy
of the classification can sometimes be improved while using linear combinations by simply trying to
find some underlying structure within the feature space.

In order to be able to use the proposed K-LDA classifier with different sets of data; we need a
reliable method to divide the feature space, that does not require any a priori knowledge. Conse-
quently, we have decided to use clustering as the segmentation method, more specifically, the well
known K-means algorithm described in section ??. From a clustering perspective, X is some data
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Figure 4.2: Classification boundaries of a LS-LDA and a K-LDA (K = 4) for 2 classes with 2D gaussian
distributed features.

set that gets partitioned into K subsets X
k

= {xn œ zk}, in this particular case using K-means.
Once the train set has been clustered, defining tn as a binary target vector associated to each xn, is
then possible to train a LS-LDA over the observations assigned to one of K clusters using expression
(4.3).

This way the proposed K-LDA classifier has a hybrid learning process with an initial unsupervised
clustering stage followed by traditional supervised training for each of the clusters (i.e., subsets of
the training data). The improvement obtained with the use of K classifiers is directly related to
the existence of K ‘valid’ clusters in the data. Clustering algorithms tend to find clusters in the
data whether or not any clusters are really present. Furthermore, automatically determining the
number of clusters is one of the most difficult problems in data clustering. We have found that for
most classification applications, a good initial guess is to set the number of clusters K equal to the
number of classes C.

Assuming that some target processor is capable of performing a Multiply-ACcumulate (MAC)
operation1 as a single operation, and dismissing memory operations; the computation of a regular
LS-LDA output takes F ◊ C operations. In comparison, the proposed classification scheme, using
the L2 norm, requires approximately K ◊ F 2 additional operations. This computational overhead
is composed of: F subtractions and F MACs for each of the K squared L2 norms, and K ≠ 1

comparisons for finding the minimum distance. Considering K = C, finding out which specialized
classifier to use, takes approximately F times more operations than the classification itself. One
might think that using a simpler distance measure, such as the L1 norm, can even things out, however
any distance measure is going to require a number of operation proportional to F . Using the L1

norm, multiplications of differences are exchanged for the absolute value of differences, and since
the evaluated distances are squared, it requires an additional multiplication, thus, computational
complexity stays in the same order as that of the squared L2 norm.

1A MAC operation can be defined as the sequence of two elementary operations: two operands b and c are
multiplied and the result is added to accumulator a, such that a Ω a + (b ◊ c).
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4.4 Multichannel Detection

This section describes how the local decisions taken by a group of nodes are combined to generate
a ‘global’ detection with the objective of obtaining a result more trustworthy than that of any local
detection. We have decided to use decision fusion, again, for the sake of efficiency. Compared to
decision fusion, data fusion in the time domain (i.e., beamforming) requires much higher bandwidth
(audio signals need to be continuously exchanged with the network), and an ordinary implementa-
tion2 also requires thigh time synchronization and knowledge about the geometry of the network
and the source location. In contrast to this, combining multiple outputs, or multiple feature vectors,
greatly reduces data transmissions since usually L ∫ F ∫ C. Regarding synchronization, the de-
tection system is very likely to work with framed audio signals, thus the synchronization constraints
when combining either features or decisions are greatly relaxed. Even more so, assuming that the
combined transmission time of all the messages needed to perform the data fusion is lower than

L
2fs

, there is no real need for inter-node synchronization. The technical differences between feature
fusion and decision fusion are narrower. Fusing feature vectors typically requires a larger number of
operations than fusing decisions, although, with a single ‘unified’ feature vector only one evaluation
is needed (i.e., ideally computed using a distributed algorithm). However, using a naive approach,
decision fusion is overall the simplest data fusion method, and it has been shown to outperform both
feature fusion [MSDC10] and beamforming [GPKM14].

4.4.1 Proposed Decision Fusion scheme

Let us consider a WASN formed by N nodes, where every node is loaded with the same detection
algorithm. For simplicity, let us also consider binary local detectors (C = 1) capable of producing a
probabilistic output yn(t) œ R, n = 1, . . . , N , where t is the frame index. Using the average fusion
rule, the global decision taken by the ensemble of detectors can de expressed as:

D(t) =

I
0, if y(t) < y0

1, if y(t) Ø y0
, with: y(t) =

1

N

Nÿ

n=1
yn(t), (4.7)

where y0 is the threshold value for considering the averaged probabilistic output of the ensemble
as a detection. In order to avoid problems due to malfunctions or false local detections, it is good
practice to clip the individual outputs at the value assigned to the labels of the training set, e.g.,
0 Æ yn(t) Æ 1.

Expression (4.7) defines how the global decision is obtained for every time frame (i.e., instanta-
neous decision). However, it is worth remembering that it is very likely for nodes on a WASN to be
separated by distances greater than the time difference between consecutive frames times the speed
of sound. Assuming perfect local detection, the detection instant at each channel (i.e., node) is
directly related to the local ToA of the event. At this point there is no knowledge about the location

2Ordinary beamforming involves the weighted combination of multiple time-aligned data channels, where the
weights and time lags depend on the array geometry an the source location (array response). There is also a group of
techniques known as ‘Blind Beamforming’ capable of enhancing the SNR of a signal without explicit knowledge about
the array response.
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of the source, thus, the TDoA can not easily be obtained. Differences among arrival times cause the
outputs of each channel to have a unknown time lag between them that affects the instantaneous
global decision making it unstable. Under a perfect local detection assumption, average fusion is
equivalent to majority voting, thus, the global decision can be seen as that taken by the majority of
the detectors in the ensemble. In fact, as a direct result of sound propagation, it is possible to have
various simultaneous local detections and no global detection and vice versa.

In order to avoid multiple detections of a single acoustic event, and to minimize data transmis-
sions, we propose to use a windowed detection algorithm. The main idea is to only compute the
global decision, once an event has been detected locally, and to only do so for a fixed amount of
time. Defining the local decision of the nth node as Dn(l), which is computed applying a threshold
function to ynl; the frame index of a given detection is ÿ. We denote the global detection window
length as TD so that the the global decision is computed for l = ÿ, . . . , ÿ + TD ≠ 1. This way, once a
local detection has been produced, the result of the windowed detection can be expressed as:

D = arg max

lœW

!
D(l)

"
, where: W = {l œ Z : ÿ Æ l < ÿ + TD}. (4.8)

The critical factor for the success of this operation in avoiding multiple detections of a single event
is the window length TD. The window length should be set to match the expected duration of a
given event detection (i.e., the number of active decision frames). Multiple detections can also be
reduced by only considering Dn(l) a local detection when it produces a rising edge, that is Dn(l) = 1

with Dn(l ≠ 1) = 0. This way it is possible to avoid the start of a new detection cycle right after the
ending of the previous one.

Even after combining multiple channels, the output of the detector can still be too noisy. It is
commonplace to use some post-processing on the decision vector, such as applying median filtering.
The median filter is a nonlinear digital filter, often used to remove noise from a signal. The algorithm
runs through a signal frame by frame, replacing each entry with the median of a number of neigh-
boring frames. The number of frames is called the ‘window’, which slides though the signal resulting
in a ‘smoothing’ effect. The median filter window length can be also adjusted to the expected length
of a detection (in frames) so that sudden decision changes can be dismissed.

It is important to mention that, as long as the maximum distance between microphones has
an associated time lag smaller than the expected duration of the detection, there is no need to
align the individual outputs. However for very large networks time lag could posse a problem, so
further processing is required. Also, this detection strategy lacks the quick response needed in the
presence of multiple audio events in rapid succession (e.g., a shootout in a war zone), although in
that situation the bigger concern would be dealing with overlapped audio events, that is multiple
target events from different sources inside a single time frame.

Figure 4.3 shows the probabilistic outputs (grey) and decision outputs (black) of a multichannel
detection system (N = 8) where the light grey area indicates the detection window. The global
decision is post-processed with a median filter (3 frames window length), the dashed line represents
the raw decision output that has a sudden decision change removed in the filtered version. Note
that in this example only one detection cycle is initiated since none of the channels has a rising edge
after the decision window.
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The proposed collaborative detection process has the following steps:

1. Every node in the network continuously monitors its input stream frame by frame with the
selected local detector.

2. If a node detects an event locally, it broadcasts the detection to the network, and gets in charge
of the global detection.

3. Every node in the network acknowledges by sending the probabilistic output of their local
detector to the node in charge and set a counter a = 1.

4. The nodes wait for the next frame and then send the new output to the node in charge and
increase their counter a Ω a + 1.

5. If a < TD, the previous step is repeated.

6. If a = TD, the node in charge computes the average of the received signals and checks for a
global detection. The result is broadcasted to the network.

7. If there was a global detection every node sets a local flag DF = 1.

8. The nodes wait for the next frame, if they do not get a local detection they set DF = 0 and go
back to step 1.

9. If DF = 1 the previous step is repeated.

Considering that the local probabilistic output is computed in single-precision floating-point for-
mat (32 bits), the required wireless data rate during a windowed detection cycle (ignoring transmis-
sion overhead) is: 32 ◊ N ◊ C ◊ TD ◊ fs

LH
, where LH is the hop length in samples, i.e., the number

of non overlapped samples between consecutive frames.

4.5 Experimental Work and Results

This section describes the experiments conducted to evaluate the performance of the impulsive
sound event detection scheme proposed in this chapter, as well as a discussion of the obtained
results. The evaluation was done using a multichannel database of real impulsive source recordings
on a spatially diverse scenario, that is described bellow.

4.5.1 Description of the Database

To evaluate the proposed algorithm, we purposely recorded a spatially diverse database of im-
pulsive sound sources using a wired microphone array. The impulsive noises were generated on site
using various sources at multiple locations. The acoustic events of interest included on the database
correspond to one of the 5 following impulsive sounds:

Firecracker explosion.
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Figure 4.3: Probabilistic outputs (grey) and decision outputs (black) of a multichannel detection system.
Top: Local signals, Bottom: Global signals.

Balloon pop.

Compressed air gun shot.

Drum hit.

Handclap.

Recordings were taken on a laptop computer using the following equipment:

Sony ECM-TL3 compact omnidirectional electret condenser microphones (frequency response
20-20,000Hz and -35dB sensitivity according to specification).

TASCAM US-16x08 USB sound interface.

T-bone PPA 200 phantom power adapters for the electret microphones.

All sounds were recorded using digital audio editor ‘Audacity’ on 24bit/44100Hz WAV format with-
out any preprocessing.

Recording took place on a backyard in a rural environment. The recording area was a grass
yard with several trees and surrounded by roads and small buildings. Sound was recorded using
a 12 microphone “unstructured” array, with a maximum microphone distance of 16.2 m and a
minimum microphone distance of 1.3 m. The location of the sources was set at random throughout
the recording area (close to 1000 m2), but trying to cover as much ground as possible. The maximum
distance between a source and a microphone is 39.5 m, while the minimum distance is 3.2 m. In
total there are 12 ◊ 16 = 192 unique propagation paths, providing an adequate amount of spatial
diversity.
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Figure 4.4: Recording extracted from the database showing 25 impulsive events of interest and the
temporal windows of 5 source locations.

The database recording was divided in two sessions with a time lapse between them of around
4 hours (i.e., morning and evening). Each session is composed of recordings of the 5 sound sources
at 16 different locations (every sound was generated at every location), adding up to 80 sound
events per session. Locations are mantained within sessions, thus, each location appears twice on
the database. The total number of sound events included in the database is: 5 ◊ 12 ◊ 16 ◊ 2 = 1920.
Each session is composed 3 sets of 12 track recordings (one per microphone), that captured the
sound events generated at various locations (5 locations for the first two takes and 6 locations
for the third take). The total running time of the recordings (i.e., adding up every channel) is
approximately 6.5 hours. The recordings include natural occurring background noise such as speech,
human activity and passing cars. For the most part, unless a noise source is in close proximity to one
of the microphones, the SNR of the of the impulsive events is very high due to their elevated energy,
which is to be expected. The microphones were covered with foam windshields, but especially on the
first session, wind can still be heard on ocassion. Figure 4.4 shows one of the raw recordings included
in the database, where the relative amplitudes of the target impulsive events and background noise
can be appreciated.

Labeling was done manually by selecting the class, ‘onset’ time and ‘offset’ time of every event on
every recording as precisely as possible. We define onset time as the time instant when a sound first
reaches a microphone (i.e., start time), and offset time as the time instant when the majority of the
energy has been received, excluding reverberations (i.e., finish time). The average time duration of
the labeled sound events is approximately 150ms. Please note that time series labeling is based on
a subjective assessment that it is prone to human error, specially in the case of offset time labeling.
In contrast to this, class labels are perfectly defined since the impulsive sounds were generated
following the same exact sequence each time, thus, the time labels can ben regarded as ‘weaker’
than the class labels. It is important to mention that there is an additional set of time labels that are
related to the source locations. These labels mark the temporal window in which the 5 sound events
generated at one location are contained within the recorded signal. The temporal windows for each
microphone-source location combination were obtained adding a guard interval of 3s before the
onset time of the first event and after the offset time of the fifth event. The average time duration
of the location windows is approximately 43s. On Figure 4.4 the time windows of 5 locations are
represented by a grey area.

For the purpose of testing the prosed detection system, the 5 class labels were collapsed into a
single ‘activity’ label. This way the database is divided into target impulsive audio events and back-
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Figure 4.5: Histogram of 20 normalized Mel log-band energies with 11.6 ms frames and 5.8 ms hop
length. Background represents frames labeled as ‘0’, while Activity represents frames labeled as ‘1’.

ground noise without explicitly pointing out the type of source that produced the events. Figure 4.5
shows the histogram of 20 normalized Mel log-band energies with 11.6 ms frames and 5.8 ms hop
length, where Background represents frames labeled as ‘0’, while Activity represents frames labeled
as ‘1’. The histograms clearly show that the impulsive audio events have an overall higher energy in
all bands. Note that, the artifacts appearing in the higher bands of the Background histogram are
the result of the reverberation of the target events not being included in the activity labels.

4.5.2 Description of the Experiments

The features are obtained from the STFT of the signals included on the database with a frame
length L = 512 and 50% overlap, resulting in a hop time of approximately 5.8 ms. For every frame
of the STFT 20 log Mel-band energies are computed as described on section 4.2. In order to test the
validity of the proposed time context scheme, the results are presented with three different set of
features containing: 5-frame context, resulting in a feature vector length F = 100, 3-frame context,
resulting in F = 60, and 9-frame compressed context with ratios cR = [1, 2, 2, 4, 4, 4, 10, 10, 20],
adding up to a feature vector of length F = 60. The features are normalized (between 0 and 1)
according to the mean and standard deviation of the training set

Our objective is to test the detection system in as close to real conditions as possible. This
implies that, for any given event, both the source location and the receiving microphone are going
to be new to the system (i.e., not included in the samples used to train the detector). Since our
database is not large enough for the complexity of the problem, a simple division of the data into
two equally sized train set and test set is not efficient. In order to obtain the presented results
we used a cross validation technique known as Leave-One-Out Cross-Validation (LOOCV) [Efr79].
In LOOCV a single observation is used as the test set and the remaining observations (O ≠ 1) as
the training set. The process is repeated O times, until every observation has been tested, and
then, the results are averaged to obtain the final performance metrics. In this particular application,
one observation is considered as the signal recorded by one microphone during the time window
corresponding to one source location. Therefore, O = 12 ◊ 16 = 192 observations. Note that the
database contains two recording sessions that share identical microphone and source locations, thus,
there are 5 ◊ 2 = 10 impulsive events per observation. This way, at every iteration of the LOOCV,
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the database is divided into a test set that contains the signal captured by the microphone under
test, during the tested source location time window; and a train set that contains the bulk of the
database: the signals captured with the remaining 11 microphones, excluding the time window in
which the tested events are generated (i.e., 15 of the locations plus background sound).

By using this training scheme, we can assess how the results of the detection will generalize
to a larger dataset. More importantly, since the classifier of each microphone (i.e., channel) is
trained using a specific train set designed to isolate it, the results obtained on a multichannel setup
can be considered independent to one another. Note that for every microphone-source location
combination, the training is done without using any information about the tested source location
at the remaining microphones, therefore, it is fair to use decision fusion to obtain multichannel
detection results.

The results for each microphone are obtained from the concatenated outputs of the 16 source-
location specific detectors. Each channel is then presented with 16 ◊ 5 ◊ 2 = 160 impulsive
events of interest. Multichannel results are obtained by averaging all the possible combinations
of M = 1, . . . , 12 channels. Multichannel detection is implemented as described on section 4.4 with
a detection window TD = 20. Prior to the averaging, the amplitude of the individual outputs is
clipped to the interval [0, 1]. For any number of channels, the thresholded output (i.e., decision vec-
tor) is post-processed with a median filter (3 frames window) in order to smooth it, so as to avoid
spurious detections.

The evaluation metrics for the detection are event-based and are calculated using an onset-only
condition with a collar of 150 ms (average event label length). That is, a given detection is consid-
ered a TP if the difference between the detection time and the onset label of the event (true ToA) is
smaller than the collar time. Multiple detections of one event are considered a single detection as
long as they fall within the allowed collar time (i.e., refractory period). Any further detection of an
event outside this time window is considered a FP. This way, a single acoustic event can produce one
TP and various FP. Consequently, if an event does not produce a suitable detection it is considered
a FN. Also, since the evaluation metrics are event-based, TN are not being computed. Figure 4.6
shows a schematic representation of the evaluation process, in which one FN, one TP and two FP
are generated. Please note that, in the multichannel results, true ToA is considered as the average
time of the onset label of M microphones. Compared to a frame-based evaluation, event-based
metrics offer a better representation of the behavior of the detection system in the presence of a
series of well defined impulsive events, moreover, the intent is to design a detection system capable
of producing a single detection per event.

For the experiments, we compared the performance of the proposed K-LDA classifier and two
well established classifiers using the three different set of features. The classifiers are a RndF using
NT = 16 trees, and a fully connected feedforward ANN, or MLP, with a number of neurons per layer
NL = [20, 10, 1], trained for 300 epochs, with 0.5 parameter regularization, and assigning an error
weight Ew = [1, 1000] to the train set samples in order to counter class imbalance. The results of
the K-LDA were obtained for various values of K. During the experiments, the exact same data set
divisions were used for every classifier tested.
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Figure 4.7: F1-Score of various detectors for different number of microphones (M) using 3 different
temporal contexts.

4.5.3 Experimental Results

Tables 4.1 and 4.2 show the F1-score obtained with various detectors for different number of
microphones (M) and using 3 different temporal contexts on the feature vector, namely: 3-frame
and 5-frame full context, and the proposed 9-frame compressed context. Table 4.1 shows the F1-
score of the proposed K-LDA with K = 2 and K = 6, while Table 4.2 shows the F1-score of the MLP
and the RndF. In all cases the detection threshold is fixed at y0 = 0.5. For the sake of clarity the
most relevant results from the tables are represented graphically on Figure 4.7

From these results it is clear that all the detectors, except the K-LDA with K = 2, are capable
of achieving a remarkable performance with any of the tested temporal contexts. The best results
of the MLP and the RndF are obtained with 5-frame full temporal context, which seems reasonable
since the number of features is much larger than that of the other two cases (F = 100 vs F = 60).
Although the K-LDA detector obtains its best performance with the proposed 9-frame compressed
temporal context (F = 60). In general, for most multichannel setups with any of the detectors, the
proposed temporal context outperforms the classic 3-frame full context with an equal feature vector
length (F = 60) in both cases.

From the results in tables 4.1 and 4.2 it may seem that using multichannel detection has little ben-
efit given the elevated F1-score when only one microphone is considered. However it is worthwhile
to explore the results a little further to see the true impact of spatial diversity on the detection.
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Table 4.1: F1-Score of the proposed K-LDA detector (K=2 and K=6) for different number of
microphones (M) and using 3 different temporal contexts.

K-LDA (K = 2) K-LDA (K = 6)

M 9-comp 3-full 5-full 9-comp 3-full 5-full

1 93.5% ±2.1 56.0% ±5.8 77.1% ±4.1 88.7% ±3.3 86.3% ±4.1 89.5% ±3.9

2 93.4% ±1.7 45.3% ±11.1 71.3% ±5.5 93.5% ±2.7 91.3% ±3.2 93.5% ±3.7

3 93.5% ±2.0 38.5% ±14.1 67.8% ±7.5 95.6% ±2.1 93.5% ±3.7 95.2% ±3.6

4 93.4% ±2.4 33.6% ±16.4 64.8% ±9.8 96.3% ±2.1 94.4% ±4.0 95.9% ±3.7

5 93.4% ±2.8 29.9% ±17.9 62.6% ±11.8 97.0% ±2.2 95.0% ±4.4 96.4% ±3.8

6 93.4% ±3.2 27.2% ±19.0 61.0% ±13.5 97.4% ±2.3 95.4% ±4.8 96.7% ±3.9

7 93.5% ±3.5 25.2% ±19.8 59.5% ±14.9 97.7% ±2.3 95.7% ±5.1 97.0% ±3.9

8 93.6% ±3.8 23.6% ±20.4 58.4% ±16.1 97.9% ±2.4 95.8% ±5.3 97.2% ±4.0

9 93.6% ±4.1 22.3% ±21.0 57.6% ±17.3 98.0% ±2.6 95.9% ±5.5 97.3% ±4.1

10 93.5% ±4.4 21.4% ±21.4 57.2% ±18.6 98.2% ±2.7 96.0% ±5.7 97.4% ±4.2

11 93.6% ±4.7 20.5% ±21.9 56.4% ±20.6 98.2% ±2.7 96.1% ±6.1 97.4% ±4.3

12 93.7% ±5.3 20.0% ±22.4 55.3% ±22.6 98.7% ±3.1 96.6% ±6.5 97.6% ±4.5

Table 4.2: F1-Score of the MLP and the RndF for different number of microphones (M) and using 3
different temporal contexts.

MLP (NL = [20, 10, 1]) RndF (NT = 16)

M 9-comp 3-full 5-full 9-comp 3-full 5-full

1 86.1% ±8.8 84.5% ±9.7 87.9% ±8.5 90.7% ±3.1 89.7% ±2.8 91.1% ±3.0

2 92.2% ±5.2 91.0% ±6.3 91.8% ±5.9 96.6% ±1.6 96.4% ±1.5 96.9% ±1.3

3 96.1% ±3.9 94.9% ±4.5 95.9% ±4.1 98.2% ±1.0 98.0% ±1.1 98.5% ±0.9

4 97.2% ±3.1 96.2% ±3.5 97.0% ±3.1 99.1% ±0.6 98.9% ±0.8 99.2% ±0.5

5 97.8% ±2.8 97.0% ±3.0 97.8% ±2.5 99.4% ±0.5 99.3% ±0.6 99.5% ±0.4

6 98.1% ±2.5 97.5% ±2.8 98.2% ±2.3 99.6% ±0.4 99.6% ±0.4 99.7% ±0.3

7 98.3% ±2.3 97.8% ±2.6 98.5% ±2.1 99.8% ±0.4 99.8% ±0.3 99.9% ±0.2

8 98.4% ±2.2 98.1% ±2.6 98.7% ±2.0 99.8% ±0.3 99.9% ±0.1 99.9% ±0.1

9 98.6% ±2.0 98.2% ±2.6 98.8% ±1.9 99.9% ±0.2 99.9% ±0.1 100.0% ±0.1

10 98.7% ±2.0 98.3% ±2.5 98.8% ±2.0 99.9% ±0.1 100.0% ±0.0 100.0% ±0.0

11 98.7% ±1.9 98.5% ±2.5 98.8% ±2.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0

12 98.5% ±2.2 98.6% ±2.7 98.8% ±2.1 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0
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Table 4.3: TPR (white background) and FPR (grey background) of various detectors for different number
of microphones (M) and using 2 different temporal contexts.

M K-LDA (K = 6) MLP (NL = [20, 10, 1]) RndF (NT = 16)

9-comp 5-full 9-comp 5-full 9-comp 5-full

1
96.5% ±2.6 95.9% ±3.3 99.8% ±0.5 100.0% ±0.0 99.6% ±1.0 99.7% ±0.7

21.3% ±7.1 18.5% ±8.2 34.7% ±25.4 29.7% ±23.3 20.3% ±7.5 19.4% ±7.2

2
96.0% ±3.5 95.4% ±4.8 100.0% ±0.1 100.0% ±0.0 99.8% ±0.5 99.9% ±0.4

9.4% ±3.1 8.7% ±4.1 17.6% ±12.7 18.7% ±14.6 6.8% ±3.4 6.4% ±2.4

4
96.5% ±4.2 95.6% ±5.7 100.0% ±0.0 100.0% ±0.0 99.9% ±0.3 100.0% ±0.2

3.9% ±1.1 3.6% ±2.1 5.9% ±6.9 6.3% ±6.8 1.8% ±1.1 1.5% ±1.0

8
97.0% ±4.8 95.7% ±7.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0

1.1% ±0.8 1.0% ±1.0 3.3% ±4.6 2.8% ±4.2 0.3% ±0.6 0.1% ±0.2

12
97.6% ±5.7 95.6% ±8.1 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0 100.0% ±0.0

0.0% ±0.0 0.0% ±0.0 3.1% ±4.7 2.4% ±4.4 0.0% ±0.0 0.0% ±0.0

Table 4.3 shows the True Positive Rate (TPR) and the False Positive Rate (FPR) of three of the
tested detectors. with two temporal contexts. Note that the offered metrics are event-based, hence,
TPR represents the number of detected events in relation to the total number of events, while FPR
represent the number of FP in relation to the total number of events (i.e, random FP plus multiple
detections of one event). The table shows that fusing multiple detections does not justify the effort
in terms of TPR, however, it greatly reduces FPR in all cases, obtaining an overall drop of around
20%. This effect can be explained by the influence of decision averaging. While the chosen decision
fusion technique can not produce a global positive when most of the outputs are lower than the
threshold, it is very effective at reducing the impact of spurious detections in some of the channels.
The obtained results indicate that decision fusion is a valuable tool for obtaining a robust impulsive
event detection system capable overcoming spatial uncertainty. It is important to highlight that,
when the 12 microphones are combined with either temporal context, the results are remarkable.
The RndF is capable of perfect detection, while the proposed detector obtains a 0% FPR and the
MLP a 100% TPR.

Although not shown, it is worth mentioning that a regular LS-LDA was also tested. We opted for
omitting its results since it completely failed to achieve an adequate performance. Upon inspection,
the cause of its lackluster performance is that the output level of the detector rarely reaches the
threshold, furthermore, by combining multiple channels the problem is worsened. Hence, for the
LS-LDA detector to work, the threshold must be lowered. This can be explained due to the extreme
class imbalance of the database (less than 2% of the frames are labeled as true) which the LS-LDA is
not capable of overcome, since it assigns the same weight to each observation during training.

In relation to database imbalance, the performance of the proposed detector in Table 4.1 shows
the importance of the clustering stage. Compared to a regular LS-LDA, the K-LDA with K = 2

and the proposed temporal context obtains much better results (with y0 = 0.5). In this particular
case, the improvement is due to K-means clustering doing most of the detection, that is, the clus-
tering stage is capable of separating target events and background well enough that class imbalance
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Figure 4.8: Probabilistic output of the K-LDA detector with K = 2 for two acoustic events using three
different temporal contexts. Labelled frames shown as a gray area.
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Figure 4.9: Multichannel detection TPR and FPR for various values of K using the K-LDA classifier with
9-frame compressed feature context.

becomes much less of an issue. This way, the specialized LS-LDA detectors trained on samples be-
longing to one of two clusters are capable of ‘refining’ the class separation. However, the ability of
K-means clustering to separate the classes depends on the chosen feature set. Figure 4.8 shows the
differences in the probabilistic output of the detector when the feature vector is changed. From the
figure, is possible to see that clustering (K = 2) using the proposed temporal context is better at
separating the “attack” of the impulsive events from the main body of the database, as shown by the
sudden drop in the detector’s output. The bad performance of full temporal contexts on Table 4.1
for K = 2 can then be explained by the low level outputs, in the same was as that of the LS-LDA.

Again, the output level of the detectors plays an important role in the results. For K = 2 and
K = 4, combining multiple microphones is decremental to the TPR since their low output level
makes it harder to obtain an average higher than the selected threshold. Moreover, using a wrong
number of clusters affects class imbalance which in turn is shown on the results. Figure 4.9 shows
the influence of the number of clusters on TPR and FPR for different number of microphones using
the proposed temporal context. The effect of class imbalance on the clusters can be seen when
comparing TPR and FPR for 2 to 6 clusters, where K = 4 shows the poorest results due to the classes
not being correctly captured by the clustering. These results also show that increasing the number
of clusters past a certain point does not significantly increase the performance of the classifier.

In order to asses the effect of the threshold in the detection, we also computed the ROC curve
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Figure 4.10: Average ROC and Worst-case ROC for various detectors using the proposed temporal context.

of some of the tested detectors. It is important to mention that in order to do so, the performance
metrics had to be changed from event-based to frame-based. This is due to event-based metrics
lacking a measure of the True Negative Rate (TNR) required for computing the FPR as used in
the ROC. Please note that, with event-based metrics FPR refers to the number of FP in relation
to the number of true events, while with frame-based metrics, FPR refers to the to the number of
FP in relation to the number of frames labelled as false. We computed the ROC curve of various
detectors with 9-frame compressed context in in two scenarios: Average, computed with the average
TPR and FPR over all microphones and source locations; and Worst-case: computed with the worst
TPR and FPR of all possible microphone-source location combinations. The curves were obtained
by evaluating the frame-based performance of every classifier under both scenarios, by gradually
increasing the threshold from 0 to 1 (y0 = [0, 0.05, . . . , 0.95, 1]).

Figure 4.10 shows the ROC curve of various detectors in both scenarios. Some important remarks
can be made about these results. First, the ROC curve of the averaged detectors shows how good
the detection is with any of the tested classifiers; even a LS-LDA with the correct threshold obtains
a TPR of 95% with only a 5% FPR. Again, this may lead to see the problem as trivial, since the more
complex detectors obtain an improvement that may not be relevant enough. However averaged
results are somewhat representative of the results obtained by fusing the decisions of 12 detectors.
Second, by looking at the Worst-case results a more proper representation of the spatial-dependence
problem can be seen. Note that the scale of the Average scenario corresponds to that of the top-left
grid quadrant in the Worst-case scenario. In this case the ROC curves show a large degradation
mainly due to previously ‘unseen’ propagation paths. Third, ROC curves of both scenarios together
with Tables 4.1 and 4.2 show that different classification techniques obtain different degrees of
improvement from decision fusion. Generally, The better the classification of a single observation is,
the lesser the impact of fusing multiple observation of the same event, and vice versa.

In conclusion, the proposed K-LDA classifier manages to improve the results of regular LS-LDA
by taking advantage of K-means clustering. The results obtained with the proposed classifier are
closer to that of more complex algorithms while having a lower computational complexity. K-LDA
can be seen as an overall improvement upon traditional LS-LDA that is not limited to impulsive
event detection. In addition to the classification algorithm, a compressed temporal context scheme
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for the feature vector was also proposed. The proposed approach outperforms the classic ‘full-frame’
approach with all the tested detectors when same feature vector length is used, and does so without
adding significative computational load to the detection system. It is also important to mention that
frame length was selected to be as low as possible (¥ 5.8 ms) in order to avoid the computation of
large DFTs. A shorter frame length makes the spectral variations from frame to frame larger, thus
providing some temporal context becomes a relevant matter in obtaining a low noise detection (i.e.,
free of rapid changes).

The presented results also show that detection of high SNR impulsive events is an easy task,
although, the difficulty comes from being able to do so in diverse (and unknown) spatial conditions.
While an isolated detector may not obtain an adequate performance in a spatially diverse scenario,
from the results it is also clear that combining the decisions of a group of detectors is an efficient
method to improve the global detection results. In general, the proposed impulsive sound event
detection system offers a good performance while keeping the complexity of the algorithms involved
as low possible, which makes it a good choice for automated surveillance on low-cost WASNs.

4.6 Complementary Results

This section presents some results intended to support the claims made about the proposed K-
LDA classifier.

4.6.1 Computational Complexity

We claim that the proposed classifier has a lower computational complexity than the other tested
algorithms, excluding the LS-LDA. To support this claim we have obtained the approximated number
of clock cycles that each algorithm needs to evaluate one observation on an ARM Cortex-M4F3

embedded processor. The selected platform is a low-cost, low-power 32 bit processor (up to 200
MHz) that includes floating-point arithmetic functionalities, making it ideal for WASNs.

The tested classifiers are the same used in the previous section, we consider F = 60 features in
every case and K = 6 clusters for the K-LDA. The average number of nodes and and the average
tree depth of the RndF were obtained empirically from the classifiers trained in Matlab, resulting in
approximately 5800 nodes and 36 levels for any given decision tree. The path length of the decision
taken for a given observation on a given decision tree may be greater or smaller than the average
tree depth, but for simplicity, we consider every path length equal to the average tree depth in the
calculations.

The computational complexity was computed assuming single-precision floating-point format (32
bits), and the number of clock cycles per operation was obtained from the ARM Cortex-M4 technical
manual [ARM10]. Please note that fetching a value from RAM memory takes 1 cycle, while fetching
a value from Program Memory (PM) takes 2 cycles, and that, contrary to DSPs, loops can not be
advanced in a single clock cycle and have a 3 cycle overhead. Additionally, there is no indication
of the number of cycles required to perform an exponentiation operation, so we considered it twice

3ARM Cortex-M4F is the denomination for processors in the M4 family that include a floating point unit coprocessor.
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Table 4.4: Estimated number of clock cycles (cc) on a Cortex-M4F for various functions. Looped
operations indicated by ‘xN’, where N is the number of iterations.

y = b +

q
wnxn y =

q
(wn ≠ xn)

2 y = argmin(x) y =

ex

ex+1 y = nodeB(x)

operation cc operation cc operation cc operation cc operation cc

fetch b 2 loop overhead 3N z = 0 1 fetch xn 1 fetch n 2

y = b 1 fetch wn 2N loop overhead 3N a = ex 28 fetch z 2

loop overhead 3N fetch xn 1N fetch xn 1N b = a+1 1 fetch B1 2

fetch wn 2N z = wn≠xn 1N xn < z 1N y = a/b 14 fetch B2 2

fetch xn 1N y = y+z2 3N if-else 1N fetch xn 1

y = y+wmxn 3N y = n 1N xn > z 1

if-else 1

y =B2‚B2 1

Table 4.5: Estimated number of clock cycles of the tested classifiers ruining on a Cortex-M4F for various
implementations.

Classifier
Looped Looped Unrolled Unrolled

PM load RAM load PM load RAM load

LDA 543 483 363 303

K-LDA 4186 3766 2908 2488

MLP 12828 11418 8598 7188

RndF 8640 - 6912 -

as expensive as the most expensive single operation described in the manual (division and square
root). Table 4.4 shows a breakdown of the estimated clock cycles of the various functions required
to implement the tested classifiers.

It is also important to mention that the Cortex M4 family has a maximum RAM size of 512 kBytes,
and a maximum PM size of 2 MBytes (depends on the manufacturer and model), thus, memory
pressure is a relevant issue. Considering that branching and feature indexes of a given decision
tree node are stored in 16 bit unsigned integer format, just storing all the information required to
implement the RndF takes: 16◊5800◊ (32+3◊16)/8/1024 ¥ 906 kBytes, while storing the weights
for the MLP and the K-LDA takes 5.6 kBytes and 2.8 kBytes respectively. This way, the efficiency
of both the MLP and the K-LDA can be improved by moving their weight values to RAM (i.e., 1
clock cycle per weight fetching). In addition to this, the manufacturer advises to implement critical
processes as ‘unrolled loops’, that is, a single large block of code listing all the individual operations.
Unrolling the execution loops saves the 3 clock cycle loop overhead, further increasing efficiency at
the cost of a larger program size.

Table 4.5 shows the estimated number of cycles required to implement the four tested algorithms
considering: Looped execution with PM loaded parameters, Looped execution with RAM loaded
parameters, Unrolled execution with PM loaded parameters, and Unrolled execution with RAM
loaded parameters. The results clearly show that the proposed algorithm is considerably lighter
than a MLP or a RndF, specially on the most efficient implementation. In fact, the increased number
of clock cycles of the K-LDA with respect to a regular LDA is a direct result of computing to which
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Table 4.6: Main attributes of 6 datasets from the UCI repository.

Dataset Classes Features Samples Class Balance

Iris flower 3 4 150 0.333/0.333/0.333
Adult income 2 14 32561 0.759/0.241

Wine origin 3 13 178 0.331/0.399/0.27
Car evaluation 4 6 1728 0.222/0.04/0.7/0.038
Breast cancer 2 9 699 0.646/0.354

of K clusters an observation belongs to. RAM loaded parameters with the RndF are not considered
since it size in almost twice as large as the maximum RAM size of the cortex-M4. Please note that the
presented results are intended as an indicative measure of the relative computational complexity of
the tested classifiers, and that true clock cycle count can differ from the obtained estimates. Likewise,
the presented figures are subjected to the target platform.

4.6.2 Evaluation of the K-LDA classifier

In order to further address the validity of the proposed K-LDA classifier, we tested its perfor-
mance with the 5 most popular datasets available on the UC Irvine machine learning repository
[DKT17]. Table 4.6 shows the main attributes of the selected datasets including their name, num-
ber of classes, number of features, number of samples, and percentage of samples per class (class
balance). We tested 5 classifiers on each dataset, namely: a LS-LDA, the proposed K-LDA (using
K clusters), a MLP (number of neurons per layer indicated by NL), a RndF (with NT trees) and a
K-NN (using the K nearest points).

The results are evaluated in terms of accuracy. They were obtained using ‘repeated random sub-
sampling validation’. Each time a dataset-classifier combination was tested, the available samples
were randomly divided in two equally sized, disjoint and equally balanced4 train and test subsets.
The split and test process was repeated 100 times, and then the results were averaged to obtain
the final performance metrics. All the classifiers were tested using the same dataset division at
each iteration. The testing was done in Matlab, all the classifiers, excluding the proposed one, are
implemented with Matlab’s built-in functions. Unless otherwise stated, the employed functions are
set to their default configuration.

Table 4.7 shows the accuracy (and its standard deviation) obtained with the 5 classifiers on the
5 datasets, as well as the configuration used for each classifier. The obtained results show that, on
3 of the 5 datasets, the proposed K-LDA classifier performs at a comparable level to some popular
classifiers with larger computational complexities, furthermore, it obtained the best accuracy on 2
of the 5 datasets. Special mention must be made about some of the datasets. In the Wine dataset,
the best classifier is the LS-LDA, which suggests that it is a linearly separable problem, thus, more
‘capable’ classifiers suffer from overfitting as shown by the standard deviation of their accuracy.
Also, on the car evaluation dataset the proposed classifier fails to perform adequately, even with a
large number of cluster. The Car dataset is derived from a simple hierarchical decision model, thus

4In those cases in which the number of samples per class is odd, the train subset contains one sample more that the
test subset, only for that class.
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Table 4.7: Accuracy of various classifiers on 6 datasets from the UCI repository, and the configuration used
in each case.

Dataset LS-LDA K-LDA RndF MLP K-NN

Iris
- K = 3 NT =8 NL =[8,3] k = 3

83.3% ±3.3 96.1% ±1.9 94.9% ±1.9 95.9% ±2.2 96.0% ±1.6

Adult
- K = 4 NT =16 NL =[14,6,1] k = 3

80.9% ±0.2 83.3% ±0.5 85.3% ±0.2 84.1% ±0.6 81.8% ±0.2

Wine
- K = 3 NT =8 NL =[12,3] k = 3

97.8% ±1.6 96.8% ±1.7 95.1% ±2.7 96.1% ±2.1 95.1% ±1.9

Car
- K = 8 NT =8 NL =[12,6,4] k = 1

70.1% ±0.0 76.2% ±1.9 91.8% ±1.1 80.4% ±6.2 87.2% ±1.0

Cancer
- K = 2 NT =16 NL =[18,9,1] k = 3

95.6% ±0.9 96.4% ±0.7 96.2% ±0.8 96.2% ±0.8 96.1% ±0.7

decision trees are specially well suited to this problem as shown by the accuracy of the RndF. It is
also worth to mention that, LS-LDA is an ineffective classification method when there is a large class
imbalances. Consequently, the worst performance of the proposed K-LDA classifier is found on the
2 most imbalanced datasets (Adult and Car).

4.7 Conclussions

In this chapter, an efficient impulsive sound event detection system for WASNs was presented.
The detection system is rooted on a novel classification algorithm based on LS-LDA and K-means
clustering, that takes standard audio analysis features with added temporal context as inputs. Each
feature vector contains multiple past frames stacked using an compressive scheme that avoids a
large increase of the dimensionality of the problem. The individual detections of a group of spatially
diverse nodes equipped with the proposed detection system is then combined using decision fusion
in order to increase the robustness of the system.

The proposed K-LDA classifier manages to improve the results of regular LS-LDA by taking ad-
vantage of K-means clustering to segment the feature space in order to train a specialized classifier
for each of the K clusters. Feature space segmentation can be done in multiple ways, clustering was
selected since it is a well-known unsupervised learning method that does not require any a priori
knowledge of the data. K-means in particular is rather easy to implement and apply even on large
data sets, furthermore, assigning an observation to one of the clusters is very simple.

Computational complexity was also considered in terms of feature vector length. Instead of
using the standard full-frame stacking scheme for added temporal context, a modified version is
proposed. The proposed temporal context scheme progressively reduces the length of past frames
by computing a linear combination of their features, so that the total length of the feature vector
does not increase linearly with the number of included past frames. The presented results show that
compressed temporal context outperforms the classic one when the same feature vector length is
used.
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The proposed detection system not only minimizes computational complexity, but also data trans-
mission. Considering that the probabilistic outputs are sent in single-precision floating-point format
(32 bits), the required data rate during a detection cycle of the proposed multichannel detection
scheme (using the parameters described in the experiments) is approximately 65 kbit/s, ignoring
overhead. This figure can be halved just by using a shorter data format such as 16 bit fixed-point,
and since the output range is defined, it is a very reasonable option. In any case the required data
rate is perfectly assumable for current wireless technology. It is also important to remember that
minimizing transmissions implies minimizing energy consumption.

It is important to mention that most work on impulsive ‘noise’ detection, does not take into
consideration the spatial aspect of the problem, when actually, it is one of the most relevant issues.
Moreover, detecting a high SNR impulsive event is an easy task, the difficulty comes from being
able to do so in multiple (unknown) spatial conditions. The results presented in this chapter take
into consideration the influence of the propagation path, hence, the detectors are tested with ‘new’
microphone and source locations not included in their training set.

Although the performance of the detection is remarkable (for all tested detectors), the possibility
of having transmission errors or faulty sensors was not considered. Likewise, every sensor received
the target events cleanly, with a high SNR and there are none other high energy sources in close
proximity to the array. Thus, the presented results represent close to ideal conditions. Future work
will then address less favorable conditions, that is, presence of transmission errors and/or faulty
sensors, lower SNR and further non-idealities in the recordings, such as saturation, non line of sight,
heterogeneous microphones, etc.

4.8 Summary

The main contributions described in the present chapter of the thesis are the following:

1. A simple method to increase the temporal context available on a single feature vector without
excessively increasing its length, that is based in linear combinations of past frames.

2. An efficient classification algorithm that combines K-means clustering and LDA classification
to obtain a piecewise linear classification boundary, that is capable of obtaining a competitive
performance with limited computational complexity.

3. An efficient solution to the data fusion problem for an ensemble of detectors that uses the first
local detection as the starting point for the multichannel fusion.

4. A multichannel impulsive sound event detection scheme capable of obtaining an adequate
performance on a spatially diverse scenario, suitable for a WASN with restricted technical
capabilities.

The contributions described in this chapter have been submitted for publication (currently under
review). Further details can be found in [P4] in section: Publications.





CHAPTER5 Impulsive Source Localization

5.1 Introduction

One of the most classic problems tackled in multichannel sound signal processing is source lo-
calization, thus, it frequently appears in the literature starting from a good number of decades ago
to this day. Ongoing interest in sound source localization is just natural given that it is a vital part
of many real world applications. These applications include some obvious ones, where source lo-
calization takes the spotlight, such as sniper localization systems, but it is also commonly present
in less evident applications, such as most beamformer-based speech enhancement systems and even
echolocation.

As it was already mentioned in the previous chapter, most interest in WASNs is generated by au-
tomated surveillance systems. Coincidentally, for many applications, event detection is not the main
objective but a prerequisite to locate the source of the sound. Typically, the localization algorithm
is subjected to previous event detection, just to ensure that the sound being located is in fact sound
emitted by a target source and not some random noise. Some notable examples of this trend of
research in WASNs include gunshot (sniper) or seismic localization systems, and vehicle tracking
systems.

Localization algorithms tend to be more computationally intensive than other multichannel al-
gorithms (excluding self-localization). The most typical approaches to sound source localization
involve the computation of multiple cross-correlations and also the resolution of a minimization
problem in order to produce a location estimate, which when put together require considerable
computing power to be solved. Although, unless the localization process is intended as part of a
source tracking system (i.e., continuous localization), there is no need for real-time execution, and
obtaining the results within a reasonable time frame suffices.

As with almost any other algorithm, implementing source localization on a WASN has a series
of problems that are not present in the classic ‘wired and centralized’ implementations. The most
pressing issues in this case are: node synchronization, and perhaps more importantly, long inter-
microphone distances. Thus, new solutions and adaptations of classic methodologies are needed for
their successful implementation on a WASN.

5.2 GCC-based Localization

The typical approach to acoustic source localization when the location of the microphones is
known and they share a common timebase, is to estimate the TDoA of every available microphone
pair using the GCC. There is a good number of techniques that take a set of TDoAs and microphone
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Figure 5.1: TDoA resolution for two inter-microphone distances at fs = 44100 Hz. Array center at the
origin of coordinates. Scale is TDoA in samples.

locations as inputs, and produce a source location estimation by solving a minimization problem.
Depending on the particular method, the objective function may change but the concept remains
the same, that is: given the microphone locations, find the point ps in search space P that best
predicts the estimated TDoAs. Some of the most popular source localization techniques that fit this
criteria are triangulation, multilateration and SRP.

In general terms, the greater the distance between microphones and the more diverse their lo-
cations, the better the localization for a wider target area. When we discussed DoA estimation in
chapter 3, we saw that the range of potential TDoA values is restricted to a finite interval determined
by the physical separation of the microphone pair, the sampling frequency and the speed of sound.
Therefore assuming that fs is fixed, TDoA resolution can only be directly increased by increasing
the inter-microphone distance. Although, it is worthwhile mentioning that it is possible to virtually
increase the resolution of TDoA estimation using peak interpolation on the cross-correlation max-
imum, or resampling the signals received by the microphones (the latter inducing a significative
efficiency loss). Figure 5.1 shows the range of possible TDoA values on 2D space as a function of
the distance between the microphones, where each shade in the scale represents a discrete TDoA
value. This way, for each discrete TDoA value there is a region of space (defined as an area between
two hyperbolic curves), along which the source can be located with equal likelihood. Thus, by com-
bining multiple estimates obtained from multiple microphone pairs, the feasible area grows smaller
and by increasing the spatial diversity of the microphone locations, the precision of the localization
increases.

Following this train of thought, given the wide spatial coverage that can be achieved with a
WASN, it seems like a good option to use such a device to locate distant sound sources. However,
even if we assume that node locations have been found, and that synchronization has been achieved,
source localization on WASNs involves the solution of some additional problems.

It is worth remembering that cross-correlation is a measure of the similarity of signals as a func-
tion of their relative time displacement, therefore increasing inter-microphone distance entails a
larger signal length. Let dm be the distance between some microphone pair and L the length of
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an audio frame captured by the microphones. The maximum TDoA of the microphone pair is di-
rectly proportional to dm (in samples) and given by: ·d = dmfs/c, hence, frame length needs to be
L > 2·d+ to contain all possible TDoAs, where ·d+ is the maximum TDoA of any microphone pair in
the array.

While minimum signal length is not commonly a problem for wired arrays, on large WASNs it has
two main implications. On the one hand, correlating longer signals requires higher computational
loads, and assuming that source localization is not a continuous process, more data transmissions.
On the other hand, and perhaps more importantly, long distances entails coherence loss between
the signal received at each microphone due to propagation effects and a other problems such as
interference caused by random sources in close proximity to some of the microphones. This way,
cross-correlating the signals of distant microphones is both more expensive, and more prone to
produce erroneous results.

In an array of M microphones, the total number of microphone pairs is M(M≠1)
2 . If we con-

sider a fully connected WASN with one microphone per node, it makes sense to distribute the
computing load equally among the nodes, so that each node is in charge of computing Á (M≠1)

2 Ë
cross-correlations maximum. It is good practice to have the nodes send the DFT of their signals
(pre-weighted for weighted-GCC) in order to alleviate the computational load, but in any case, the
number of element-wise vector multiplications and IDFTs per node grows linearly with M . This way,
the cost of computing the GCC on large WASNs (both in physical size and number of nodes) quickly
escalates since a sizable number of cross-correlation of long signals needs to be computed.

5.2.1 Long Inter-microphone Distance SRP

When the signals of two far apart microphones are to be cross-correlated, the influence of the
propagation path together with the appearance of overlapped strong reflections (either from nearby
objets or even the ground) can transform the received signals enough so that they can not longer be
considered a time lagged version of one another. Even the the speed of sound, largely considered
a constant, has a weak dependence on frequency and pressure due to the elastic properties of the
propagation medium [Kie77], and although the effect is most often negligible, a slight deviation
from ideal behavior can become noticeable over a large enough distance. Therefore, the time lag
estimate produced by such a cross-correlation is often erroneous.

The most common way of dealing with undesired effects when cross-correlating audio signals
is to use GCC-PHAT, specially in those situations in which reverberation is the main problem (i.e.,
indoor talker localization). Unfortunately, PHAT-weighting is not that good of a tool for outdoor
impulsive sound source localization. PHAT-weighting works by whitening the signals, which can be
seen as equalizing the amplitudes of every frequency so that only phase differences have an impact
on the result. However, impulsive acoustic events already have a rather flat spectrum (specially
in short frames) and phase differences between channels are heavily influenced by the propagation
path (propagation effects such as wind and temperature gradients can produce frequency-dependent
phase differences between the signals). Thus, PHAT-weighted cross-correlations do not show any
significant benefit compared to standard cross-correlation.

Since we are expecting large errors in the TDoA estimates, we decided to use SRP localization
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Figure 5.2: Two pairs of recordings of a firecracker explosion and their cross-correlation using different
methods. The 4 recordings are from the same acoustic event taken at different locations.

given that instead of using a single estimate to find the source position it makes use of the ‘whole’
cross-correlation. Additionally, in order to avoid the problems arising from ‘weak’ cross-correlations
we decided to cross-correlate the absolute value of the signals, so that:

rnm(·) =

Œÿ

t=≠Œ
|xn(t)||xm(t + ·)|, · = 0, ..., ±L , (5.1)

This can be seen as cross-correlating the energy envelope of the signals, thus, in contrast to GCC-
PHAT, the influence of phase differences is being reduced.

Figure 5.2 shows two pairs of recordings of a firecracker explosion and their cross-correlation
using different methods. From the figure it is possible to see that the cross-correlations obtained
with the proposed method look like those of the envelope of the signals, and that the standard and
PHAT-weighted cross-correlations present very noisy results. While this kind of signal is expected
from GCC-PHAT, in an ideal scenario the peak corresponding to the TDoA should be much higher, so
that the cross-correlation resembles a perfect impulse. Although in many cases the maximum peak
of the correlation does correspond to the actual TDoA, additional peaks corresponding to strong
reflections are often present. When multiple cross-correlations are combined for obtaining the SRP
surface, noisy signals in conjunction with small timing errors make for a very irregular surface,
hence, its maximum rarely corresponds to the actual source location.

Although the proposed method can be deemed as counterproductive to obtain an accurate TDoA
estimation, for SRP-based localization we are interested in the accumulation of ‘probable’ source
locations obtained from multiple microphone pairs. SRP can be interpreted as a method to find
the location that maximizes the output of a delay-and-sum beamformer, thus even when a single
microphone pair can not precisely determine the spatial region where the source is located, the
combination of multiple such coarse regions forms a smooth SRP surface.
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5.3 Detection-aligned Cross-correlations

It is very likely for any localization system to be specialized in some type(s) of source(s), such as
human speech, gunshots, vehicles, etc. The most common situation is then to have the localization
process be a ‘slave’ to some sort of detection system. Without a specific target, the localization
process will most likely be either triggered by random high-energy sources, or ran continuously,
thus, producing results that quickly jump between dominant sources. The preferred method is then
to only locate a sound when it is thought to have been produced by a target source. However, the
influence of the detection system on the localization process is typically limited to taking the decision
on when to locate a source. That is, some acoustic event detection, either local or global, causes the
system to launch the source localization process using audio signal frames of length L > 2·d taken
by every microphone at the same time instant.

In order to lessen the problems associated with the cross-correlation of signals acquired with
large inter-microphone distances, we propose to use the impulsive sound event detection system
described in the previous chapter to reduce the length of the signals being correlated, which in turn
can improve the quality of TDoA estimation. The main idea is to use the time stamps associated
to local detections to select the time interval of each signal frame, such that the full range TDoA
of a given microphone pair can be obtained from the cross-correlation of their respective signal
segments and their detection time stamps. We refer to the proposed method as detection-aligned
cross-correlation.

Let us have a WASNs composed of M nodes, where every node contains one microphone. At this
point we assume that the locations of the nodes are known, and that the network is synchronized.
Considering that every node is capable of perfect event detection, we denote a local detection instant,
or time stamp, as �m, m = 1, . . . , M . Let the audio signal captured by the mth microphone be
xm(t), where t œ Z is the time index. We can then define M signals of length Ls, such that:
�m ≠ Ls1 < t Æ �m + Ls2, where Ls1 and Ls2 denote the start time and end time of the signal
segment in relation to the detection instant, and Ls1 + Ls2 = Ls. Let Xm�(k) be the L-point DFT of
the mth signal segment, so that the cross-correlation of any two segments is obtained with:

r̃nm(·) =

L≠1ÿ

k=0
Xn�(k)Xú

m�(k)ej 2fi
L k· , · = 0, ..., L ≠ 1 . (5.2)

Then, the relative TDoA o the nth and mth segments is simply found as:

·̃nm = arg max

·
(r̃nm(·)). (5.3)

Note that the tilde represents, both r̃nm and ·̃nm being subjected to �n and �m, thus, the signals
segments do not share a common time base and the obtained time lag is relative.

Let us denote ·nm as the proper TDoA of some acoustic event, that is obtained from the cross-
correlation of two signals that share a common time base and have a length Ld+ > 2·d+ , where
Ld+ ∫ Ls. If we consider both TDoA estimates to be free of error, it is then possible to obtain ·nm
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from ·̃nm just by adding the difference between the detection instants as a bias, so that:

·nm = ·̃nm + �·nm, with: �·nm = �n ≠ �m. (5.4)

Proof of expression 5.4 can be easily traced back from the definition of TDoA as a difference of
ToAs: ·nm = ·n ≠ ·m. If we consider perfect detection time stamps, that is: �n = ·n and �m = ·m,
then: ·̃nm = 0, therefore ·nm = �n ≠ �m. This way, whenever the local detection time stamps are
precise enough, and Ls suffices to correctly estimate the TDoA; it is possible to bypass the theoretical
minimum L and obtain full range TDoAs using detection-aligned signal segments of length Ls π L.
However, most audio event detection systems work on a per-frame basis, hence the resolution of the
detection time stamps is dictated by LH , the frame hop length. This way, the resolution of �m is
limited, so far as it can only be obtained in LH (samples) intervals. Please note that this fact has to
be taken into consideration for the selection of Ls, as well as Ls1 and Ls2 in order to successfully
obtain the TDoAs using the proposed method.

The effect of obtaining the TDoA using shorter detection-aligned signals is two fold: first, it
minimizes the likelihood of a stronger source being contained within the signals, and second, in
case of failing to correctly estimate the TDoA, the maximum error is reduced. Both these effects are
closely related. When the signal emitted by a high-energy undesired source is overlapped with the
signal emitted by the target source, it is very likely for the peak of rnm to be caused by the undesired
source. Hence, defining · Õ

nm as the TDoA of the undesired source, the error induced by failing to
obtain the desired time lag is: ·nm ≠ · Õ

nm, consequently, the larger L, the larger the possible error.

In order to illustrate the possible benefits of using detection-aligned cross-correlations, let us
set a simulated scenario where an 8-microphone array is used to locate a target source (s1) in the
presence of 2 additional noise sources (s2 and s3) with SRP-PHAT. The emission time of the sources
is proportional to their index and their distance to the array is inversely proportional to it, that is,
s1 is the first source to emit and the most distant. Also, in relation to s1, the signal emitted by
s2 is twice as powerful and 8 times shorter, while that of s3 is half as powerful and equally long.
The length of of the target signal is 4096 samples, thus standard framed cross-correlations need
a frame length L = 8192 in order to contain it whole. We assume perfect detection, hence, the
detection-aligned signals are obtained using the ToF as �m and have a length Ls = 256. Figure
5.3 shows the 8 signals to be cross-correlated using framed cross-correlations and detection-aligned
cross-correlations, where signal overlapping and the effect of source distance is clearly visible on
the ‘full’ length signals. These 2 sets of signals are then used to estimate the location of s1, using
SRP-PHAT with a grid resolution of 0.1 m. Figure 5.4 shows a visualization of SRP-PHAT with both
sets of signals over the whole search space, where circles are microphones, numbered crosses are
sources, and diamonds are the estimated source location.

From the results it is clear that the standard approach fails to locate s1 (it is the second largest
peak) due to interference from other sources, while the proposed approach is unaffected due to re-
duced signal length. It is important to mention that this comparison is not completely fair. Although
not shown in the figures, on this example, classic detection-based localization would employ signal
segments selected around the global detection time (i.e., average ToF) with a length L = 2048 (the
minimum power of 2 greater than the largest microphone pair time lag). Given the shorter time
duration, s2 only appears in the last quarter of the signals (approximately), thus the localization of
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s1 is successful. However, the brief appearance of s2 suffices to impact the location estimate. The
localization error obtained with detection-aligned signals and Ls = 256 is approximately 5 cm, while
that of the standard detection-based approach with L = 2048 is approximately 17 cm.

Please note that these results should be seen as idealistic since perfect sample-accurate detection
time stamps are used in both cases, and the signal propagation model does not account for non-linear
effects which are a big concern in outdoor scenarios.

5.3.1 Detection Onset Estimation

Taking into consideration the detection system proposed in the previous chapter; in the event of
a global detection, there is no guarantee of having a local detection on all channels. Moreover, even
if there is a local detection, its frame index may not accurately reflect the ToA of the event. Thus
in order for detection-aligned cross-correlations to be feasible, a solution must be found to estimate
�m at every channel.

Instead of relying on local detections, we propose to use the probabilistic output of the mth

detector to estimate �m using curve fitting to find its onset1. This way, in the event of a global
detection, �m is estimated by fitting a step function to the probabilistic output of each local detector,
regardless of whether or not they produced a local detection.

Let ym(l) be the probabilistic output of the mth detector, and � be the frame index of a true global
detection. We can then affirm that �m is in the environment of �, so if we define a search space
l = {l œ Z : l + � ≠ T�

2 < l < l + � +

T�
2 }, where T� is an odd integer that controls the length

of a temporal window with � at is center, the probabilistic output of a given detector during that
temporal window should ideally approximate a shifted unit step function, or Heaviside step function,
given by:

u(l ≠ om) =

I
1, if: l ≠ om Ø �m

0, if: l ≠ om < �m

, (5.5)

where om is the frame index of the mth local detection, hence, on an ideal scenario om = �m.

Curve fitting can be defined as the process of finding the parameters of a mathematical function
(i.e., curve), that has the best fit to a series of data points, usually subject to constraints. Curve fitting
is closely related to other optimization problems, consequently, by casting the fitting of u(l ≠ om) on
ym(l) as a LS problem, a given detection onset can be estimated as:

om = arg min

l

1 l<�≠ T�
2ÿ

l>�≠ T�
2

!
ym(l) ≠ u(l ≠ o)

"22
, (5.6)

Estimating om is a simple problem that can be easily solved doing an exhaustive search. For the sake

1Onset is a term commonly used in audio signal processing to refer to the starting time of a sound event, in this
particular case we are using it to refer to the rising edge of a detector’s output.
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Figure 5.5: Example of unit step function fitting on a probabilistic detector output.

of clarity, let us define t1, . . . , T� as the frame index inside search space t , so that:

S =

T�ÿ

l=1

!
ym(l) ≠ u(l ≠ o)

"2 (5.7)

=

oÿ

l=1

!
ym(l) ≠ 0

"2
+

T�ÿ

l=o+1

!
ym(l) ≠ 1

"2 (5.8)

=

oÿ

l=1
y2

m(l) +

T�ÿ

l=o+1
y2

m(l) + 1 ≠ 2ym(l) (5.9)

=

1 T�ÿ

l=1
y2

m(l)
2

+ (N ≠ o ≠ 1) ≠ 2

T�ÿ

l=o+1
ym(l), (5.10)

where o is the frame index of the unit step function shift. The sum of y2
m(l) in expression 5.10 is

a constant for any time shift, so it can be dropped without affecting the minimization. Then the
estimation of om can be simplified to:

om = arg min

l

1
(N ≠ o ≠ 1) ≠ 2

l<�≠ T�
2ÿ

l>�≠ T�
2

ym(l)
2

. (5.11)

This is an efficient method of estimating om that only requires basic operations. It can be solved
by doing an exhaustive search over l without inducing a significant computational load. Figure 5.5
illustrates an example of the estimation of some detection’s offset using expression 5.11 by showing
the fitted unitary step, where ‘goodness of fit’ represents the value of the error function for every
possible shift of the unit step function.

Note that the proposed method produces a robust estimation of �m. Compared to simpler meth-
ods such as searching for the maximum value of ym(l) or the minimum l such that ym(l) > y0, the
proposed method takes into consideration the likelihood of a detector’s probabilistic output being
“active” for a number of consecutive frames. This way, even if the output does not reach the detec-
tion threshold, or in the presence of sudden drops or spikes in its level, �m is found by computing
at which point ym(l) first became active.
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5.4 Experimental Work and Results: GCC-based localization

This section describes the experiments conducted to evaluate the performance of the proposed
detection-aligned localization algorithm. The evaluation was done using real multichannel impul-
sive source recordings.

5.4.1 Description of the database

The evaluation of source localization algorithms was done using the same database described on
section 4.5.1. The database is composed of 12 channel recordings of 160 impulsive acoustic events
generated at 16 unique locations (10 events per location). Microphone locations were selected by
following three simple rules, which ordered by priority are: first, there must be direct line of sight
between microphones; second, the array must cover as large an area as possible given the available
equipment (i.e., finite amount of cables); and third, the array must mimic a random geometry.
Source locations were selected following just one general condition: sources must evenly cover as
large an area as possible given the recording area topology.

In order to obtain the 2D location of each element, a full set of microphone pairwise distances
and multiple source-microphone distances were measured with a BOSCH GLM 250 VF laser distance
meter, capable of measuring distances from 0.05 m to 250 m with a typical measuring accuracy of
±1 mm. Microphone locations were estimated with MDS using Matlab’s mdscale function, which
took the 12 ◊ 12 dissimilarity matrix (i.e., pairwise microphone distances), and returned an estimate
of 12 microphone locations in 2 dimensions. Microphone locations were then transposed so that
the location of the first microphone is at the center of coordinates. Source locations were instead
estimated one by one using the algorithm described in section 5.6 assuming gaussian noise. The
algorithm was modified to work with distances rather than time but the main methodology is exactly
alike. It is important to mention that there are missing distance measures due to trees and other
obstacles blocking the line of sight from some source locations to various microphones. There is a
minimum of 5 distance measures for any of the source locations. Figure 5.6 shows the numbered
locations of the microphones (circles) and sources (crosses) superimposed on a schematic map of
the recording area. Grey areas represent grass while white areas are roads and asphalt. Please note
that only large obstacles are represented (i.e., trees as circles and buildings as rectangles).

As mentioned in the previous chapter, recording took place in two sessions in which 5 impulsive
noises were generated with different sources at each of the 16 locations. An air temperature of
approximately 23¶ C was measured during the break between sessions, which translates into an
speed of sound c ¥ 345m/s.

The maximum distance between microphones is 16.2m, thus the minimum signal length required
to obtain all the possible TDoA values by cross-correlating the signals is L = 4142 samples. It is also
important to mention that the database was recorded with a wired microphone array so the 12
channels are perfectly synchronized.
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Figure 5.6: Locations of the microphones (circles) and sources (crosses) superimposed on a schematic
map of the recording area.

5.4.2 Description of the Experiments

In order to evaluate the performance of the proposed approach to sound source localization, two
SRP-based methods were tested using the multichannel database of real impulsive sounds described
in the previous section. The tested methods are:

SRP localization in conjunction with the standard detection-based approach (L > 2·d+ , chan-
nels sharing a common timebase).

SRP localization in conjunction with the proposed detection-aligned cross-correlations (Ls < L,
each signal aligned to a local detection).

Both methods were tested using multiple array sizes (M), from 3 to 12 microphones. Results
for each array size were computed using up to 100 random combinations of M microphones per
impulsive event in the database (for M = {10, 11, 12} the number of combinations is 66, 12 and 1

respectively). Microphone combinations are the same in every experiment regardless of the local-
ization method or other parameters. The database only contains 16 distinct source locations, but
since every evaluation is independent for any given event, the results for each array size and local-
ization method were obtained by averaging the localization error of every event and microphone
combination.

The results of the detection-aligned method were obtained using the detection system proposed
in the previous chapter (i.e K-LDA with K = 6 and 9-frame compressed temporal context). It is
important to mention that the selected detection system does not achieve perfect detection, hence,
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only 156 out of 160 events are considered for the results. Detection onset estimation (�m) was
computed as described in section 5.3.1 using a time window of 65 frames (T�), centered around the
global detection frame index obtained by the selected detection system with M = 12.

The results of the the standard detection-based approach were obtained assuming perfect detec-
tion, thus, onset labels were used. The onset labels were quantized according to the frame hop
length used in the experiments of the detection system described in chapter 4. The quantized la-
bels were obtained dividing the labels (time instant in samples) by the hop length (256 frames)
and then rounding the result to the closest integer. This way, the quantized labels are used as an
approximation to the frame index obtained by a perfect local detector for the detection-aligned
cross-correlations. Global time labels were obtained as the average of the local time labels of those
channels under evaluation.

Both methods were tested with various signal lengths. For every case, source locations were
obtained using SRP with a grid resolution of 0.1m, and cross-correlations were obtained using the
absolute value of the audio signals as discussed in section 5.2.1.

5.4.3 Experimental Results

Table 5.1 shows the mean localization error (and standard deviation) of SRP-based localiza-
tion with the proposed detection-aligned scheme and standard signal alignment for various cross-
correlation lengths and array sizes. Note that the selected signal lengths keep a relation � = 8 in
pairs (e.g., 8◊1024 = 8192). From the table it is clear that both methods are capable of of obtaining
reasonable accuracies when the cross-correlations are of sufficient length. The proposed method is
able to match, and even surpass, the accuracy of the standard approach while requiring significantly
less resources (computational power and bandwidth). Overall, the best of the tested SRP-based lo-
calization schemes is the one based on the proposed detection-aligned signal segments with a length
1024 samples (23.2 ms at fs=44100Hz), although the differences with some of the other tested con-
figurations are not relevant enough. Either method fails to maintain accuracy with the shorter signal
length tested (Ls = 256 and L = 2048). The drop in performance is explained by the misalignment
of the signals produced by the coarse resolution of the detection time stamps, that, in some cases
‘pushes’ the onset of the events outside of the selected signal segment. It is important to mention
that the standard deviation of the localization error is in every case, at least of the same order as the
mean localization error. Large variances are caused by ‘failed’ localizations. Each of the presented
results was computed averaging the localization error of 156 individual acoustic events and multiple
random combinations of microphones for each event. Therefore, the estimated location of a given
events also depend on the microphone combination. Figure 5.7 show the scatterplot of the mean
localization error of all the random microphone combinations for each event as a function of the
source distance to the origin of coordinates. The figure shows that the localization error is related
to both the source’s location and the emitted signal (specially at larger distances).

Regarding the precision of the detection onset estimation, Figure 5.8 shows the histogram of the
estimation error obtained from the onset labels and the estimated detection time stamps (�m). Note
that the former have a resolution of 1 sample while the latter have a resolution of 0.5 frames (256
samples). The standard deviation of the estimation error is 111.5, 98% of the estimates have an
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Table 5.1: Mean error of SRP-based localization with the proposed method and standard signal alignment
for various cross-correlation lengths and array sizes (M).

Detection-aligned Standard

M Ls = 256 Ls = 512 Ls = 1024 L = 2048 L = 4096 L = 8192

3 10.7m ±8.9 8.1m ±8.0 7.7m ±7.8 11.0m ±9.1 8.0m ±8.0 7.8m ±7.9

4 7.9m ±7.7 5.3m ±6.0 5.0m ±5.7 9.0m ±8.5 5.3m ±6.0 5.1m ±5.8

5 6.6m ±6.7 4.0m ±4.6 3.8m ±4.3 8.1m ±8.1 4.0m ±4.6 3.8m ±4.4

6 5.7m ±6.1 3.4m ±3.9 3.1m ±3.6 7.5m ±8.0 3.3m ±3.8 3.2m ±3.6

7 5.0m ±5.5 2.8m ±3.3 2.6m ±2.9 6.8m ±7.7 2.8m ±3.2 2.7m ±3.0

8 4.7m ±5.2 2.6m ±3.1 2.5m ±2.8 6.4m ±7.5 2.7m ±3.0 2.5m ±2.9

9 4.2m ±4.8 2.4m ±2.8 2.2m ±2.5 6.1m ±7.3 2.4m ±2.6 2.2m ±2.5

10 3.8m ±4.4 2.1m ±2.5 2.0m ±2.2 5.8m ±7.1 2.2m ±2.4 2.1m ±2.3

11 3.5m ±4.1 2.0m ±2.3 1.8m ±2.0 5.4m ±6.9 2.0m ±2.2 1.9m ±2.1

12 3.3m ±3.9 1.7m ±2.0 1.7m ±1.9 5.4m ±7.0 1.8m ±1.9 1.8m ±2.1
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Figure 5.7: Scatterplot of the localization error as a function of the source distance.
Circles: Detection-aligned (Ls = 1024), Crosses: Standard (L = 8192).

accuracy of ± 1 frame, thus, it can be said that the estimation is performing more than adequately.
Interestingly, almost 38% of the errors come from onset estimates preceding the onset label, which
may be an indication of human error in the onset labels.

Given the accuracy of the onset estimation, differences in performance between the two meth-
ods are limited mostly to the quality cross-correlations of the selected audio signal segments. On
section 5.2.1 we claimed that the main source of error is coherence loss between channels due to
the large inter-microphone distances involved in TDoA estimation. This claim can be easily justified
by showing an example of some impulsive acoustic event recorded at various microphones. Figure
5.9 shows the signals recorded by 6 of the 12 microphones included in the database for a ‘balloon
pop’ generated at two distant locations. The figure represents the signal segments selected to com-
pute the cross-correlations using the two tested methods for either source location. It is interesting
to see the large differences in the received signals even when the microphones are relatively close
to each other (m1, m2 and m3), and consequently, estimating the TDoA of some impulsive event
using standard cross-correlation is prone to large errors. Figure 5.10 shows the cross-correlation
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Figure 5.8: Histogram of the detection onset estimation error.

of some of the signals represented in Figure 5.9 (location 1, detection-aligned) using three differ-
ent cross-correlation methods, namely: standard cross-correlation, PHAT-weighted cross-correlation,
and the used absolute value cross-correlation. Figure 5.11 shows the SRP surface obtained with the
signals from Figure 5.9 (location 15, detection-aligned) using two cross-correlation methods, where
is possible to see that the location estimate using standard cross-correlations is on the edge of the
search space and the SRP surface is quite noisy. Note that the localization results obtained with
standard cross-correlations and GCC-PHAT are fairly worse than the presented ones, therefore they
were dismissed.

In conclusion, the proposed local detection-aligned cross-correlation method is capable of achiev-
ing the same, or even better results than the standard detection-based approach, while significantly
reducing the computational complexity. Note that reducing the length of the signals being cross-
correlated not only alleviates computational load but also reduces the bandwidth requirements for
the implementation on the algorithm.

It is important to mention, that the adequate performance of the proposed localization method
is due to the high SNR of the recorded impulsive events. If the target events where to be masked
by undesired noise or in the presence of additional strong sources, SRP-based source localization
estimates would become much less reliable.

5.5 ToA-based Localization

Typically, acoustic source localization is tackled using cross-correlations between the signals
recorded by different microphones because there is no knowledge about the signal emitted by the
source. We refer to this approach as TDoA-based source localization, however, in certain situations,
it is also possible to use ToA-based source localization.

When the localization process is preceded by a multichannel sound event detection system, it
could be said that, while the exact signal emitted by the target source is still largely unknown, there
is certain knowledge about its ToA. In chapter 3 we were able to obtain the ToA of the nth source at
the mth microphone with sample level precision because we knew the signal that was being emitted.
In the current situation, we can obtain a rough estimation of the local ToA using the detection onset
estimation (�m) described in the previous section. Although, the resolution of �m is too coarse to
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Figure 5.9: Example of signals to be cross-correlated (normalized amplitude) using two alignment
approaches. Recordings of a ‘balloon pop’ generated at two locations.
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produce a good source location estimation due to the wide time period between consecutive frames.
However, it is possible to entirely bypass the need for cross-correlations by estimating the local
onsets of a target impulsive event in the time-domain.

5.5.1 Time-domain Onset Estimation

In order to perform acoustic source localization without the need for cross-correlations, we pro-
pose to use a double onset estimation scheme, intended to obtain the ToA of a target acoustic event
at every channel. Local ToA estimation begins with a global event detection followed by a local
detection onset estimation as described in section 5.3.1. Once �m has been obtained, it is used to
select an audio signal segment over which time-domain onset detection is used to estimate the local
ToA.

Detecting the onset of an acoustic signal in the time domain is harder than doing so with the
probabilistic output of a detector. Onset detection of acoustic events is most often performed in
the time-frequency domain, where different existing methods exploit various sources of information
such as changes is spectral patterns or differences in phase between frames. In the presence of
multiple sound sources, it is generally not possible to detect onsets directly on the time-domain, that
is, unless the target events present an impulse-like onset [BDA+05] as it is the case. Such acoustic
events are characterized by large energies and sudden onsets that are reasonably simple to detect
just by looking at the energy evolution of the received signal. Thus, the first step to estimate the ToA
of an event is to obtain a representation of the input signal in terms of received energy.

It is common knowledge that impulsive audio events have a wide spectral content, and that most
undesired noise is going to be concentrated in the lower part of the spectrum because most sources
do not produce high frequency sounds and even if they do, the higher the frequency the faster its
dissipation in air. Therefore, it makes sense to filter out the low frequency components since it is
very likely that most high frequency energy is coming from the target event. Let xm(t) be the signal
received at the mth microphone, and h1(t) be the coefficients of a high-pass Finite Impulse Response
(FIR) filter of length LF 1. We can then define the high-pass filtered signal as xÕ

m(t) = xm(t) ú h1(t).
The next step is to obtain the relative energy level of the signal. This can easily be done by taking
the square of every sample and applying a moving average filter (h2(t) of length LF 2) in order to
approximate the energy envelope of the signal. Finally, the logarithm of the output is computed,
since energy is best evaluated on a logarithmic scale. This way, the approximate energy evolution of
the input signals can be obtained with:

qm(t) = log

1!
xm(t) ú h1(t)

"2 ú h2(t)
2

. (5.12)

Note that filtering can be performed either on the time-domain or the time-frequency domain, and
more importantly, as long as every channel uses the same filters, there is no need for correcting
group delay because it is equal in every channel. Ideally, in the presence of an impulsive event and
over a long enough period of time, qm(t) should resemble a shifted exponential decay function so
that the onset of the event can be detected by different means, such as curve fitting. However, in
outdoor environments the appearance of strong reflections will likely result in an irregular decay as
shown by Figure 5.12.
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Figure 5.12: Impulsive audio event and its logarithmic energy envelope (light gray area).

Obtaining the energy envelope involves certain processing that can be quite demanding, likewise,
the estimation of the event’s ToA gets more complex the longer the signal is (i.e., larger search
space). In order to produce the estimation as efficiently as possible, we propose to use the local
detection onset estimates to select an input signal segment, so that assuming perfect detection, it
can be affirmed that ·m is in the environment of �m. The methodology is equivalent to that of
the detection onset estimation, moreover, by selecting a suitable segment length the onset can be
estimated again with a shifted step function.

This way, a signal segment of length T� samples is selected around �m, such that it contains
enough of the signal for the onset to be contained within it, taking into consideration the coarse
resolution of �m. Each segment is then pre-processed as described by (5.12) to obtain its energy
envelope (qm(t)). It is important to mention that before computing the logarithm, the signal can
be decimated by an integer factor (�) in order to further increase the efficiency of the algorithm.
Note that a shorter signal implies a smaller number of logarithm computations and a smaller search
space for the curve fitting. Decimation can easily be performed by substituting the moving average
filter for a Cascaded Integrator-Comb (CIC) filter2. Once the signals has been pre-processed, instead
of using the Heaviside step function for the curve fitting, we propose to use the logistic function to
better model the finite rise time of real acoustic events. The logistic function is a common sigmoid
curve given by the following expression:

F
!
t ≠ ·

"
=

1

1 + e
!

≠a(t≠·)
" . (5.13)

where · is the the sigmoid’s midpoint and a is the steepness of the curve. Note that parameter a

does not need to be estimated, it can be fixed a priori to adjust to the expected rise time of the target
events.

Using a LS approach, the mth ToA is estimated by finding the value of · in search space � that
minimizes:

·m = arg min

�

!
S

"
, with: S =

T�ÿ

t=1

!
F (t ≠ ·) ≠ qm(t)

"2
, (5.14)

where � = {· œ R : t + �m ≠ T�1 < · < t + �m + T�2}, and T�1 + T�2 = T�. In contrast to
the method described in section 5.3.1, this time around, the minimization is best solved using an
iterative approach (i.e., gradient descent) given the increased complexity of each objective function

2A CIC filter can be seen an efficient implementation of a moving-average filter followed by a decimation stage that
is obtained by rearranging the operations needed to perform both operations.
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Figure 5.13: The 3 stages of time-domain onset estimation. A) raw audio signal segment, B) energy
envelope approximation, C) decimated (� = 8) log-energy and fitted logistic function.

evaluation. Note that this has the added benefit of making it possible to obtain a non integer value
of · as the solution, thus, in case qm(t) was decimated, the resolution of ·m is not proportional to
the decimation factor (i.e., resolution > � samples). It is also important to mention that for the
curve fitting to work, either qm(t) has to be normalized (between 0 and 1) or the logistic function
has to be transposed and scaled to match the span of qm(t).

Figure 5.13 shows an example of time-domain onset estimation by representing the employed
signals (fs = 44100Hz) at three stages. From top to bottom, A: raw audio signal, B: energy envelope
and C: decimated (� = 8) log-energy and fitted logistic function. From the figure it is possible to
see that by selecting a proper T� (approximately 2.3ms), exponential decay can be ignored and the
log-energy can be approximated by a step function.

Onset estimation in the presence of multiple sources (i.e., low SNR) is a difficult task, which
makes onset detection a very active area of research, specially in those sub-fields related to mu-
sic processing (e.g., finding the transients of the notes played by one of various instruments in a
recording). The proposed approach can be regarded as the simplest version of onset detection (i.e.,
energy-based detection). It is important to mention again that this approach can only work with
sound events that have a fast transient, and only under high SNR conditions. Fortunately enough,
impulsive events are likely to meet both conditions due to their high sound pressure and wide spec-
tral content.
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5.6 Maximum Likelihood Estimation

Most classic acoustic source localization algorithms are based on TDoA estimates. Therefore, in
order to perform ToA-based source localization, a non-classical algorithm has to be used. We pro-
pose to estimate the location of the source of some target acoustic event, from the known locations
of M microphones and M ToA estimates, using a ML estimator. The proposed method is derived
from the general self-localization problem formulation in which every source and microphone are
independent to one another and there is no knowledge of their positions or timings. For this particu-
lar application, it is possible to ignore most of the unknowns considered in the original formulation
(i.e., microphone locations and clock offsets), so that the problem becomes finding the location and
the emission time of one source.

Let us consider an acoustic source inside an euclidean space located at the point defined by a
vector p, and let us also consider M receivers (i.e., nodes equipped with one microphone), located
at the points defined by pm, m = 1, . . . , M . At this point we are going to assume a planar space,
but the methodology can be adapted to work in 3D space. Concerning timing, we consider t as the
emission time of the source and �m as the clock offset of the mth node. This way, the ToA at the mth

microphone is composed of three unknowns, and can be expressed as:

·m = ”m + t + �m, with: ”m =

||p ≠ pm||
c

, (5.15)

where ”m is the ToF between the source and the mth microphone, and c is the speed of sound.

If we consider that the microphone locations are known, and that the nodes are synchronized
(�m = 0), the objective then becomes to find the most likely source location and emission time (p
and t) that explain a set of ToA estimates. We propose two solutions to the ML estimator, assuming
that the distribution of the observed ToAs is governed either by a Gaussian PDF or a Laplacian PDF.

5.6.1 Gaussian Distribution

Let us consider that a full set of M ToA estimates of some acoustic event is available. In a first
approach we are going to assume that the error or said estimates can be modeled as a gaussian
distribution with zero mean and variance ‡2, so that the PDF of a given estimate can be described
with the next equation:

F (·m; p, t) =

1Ô
2fi‡2

e(

≠ 1
2‡2 (·m≠”m≠t≠�m)2

) (5.16)

The objective is to estimate the most likely source location and emission time, which can be done
from the likelihood function associated to a set of ToA observations, given by:

L =

MŸ

m=1
F (·m; p, t). (5.17)

The solution is then obtained by finding the values of the variables that maximize L, or more con-
veniently the log-likelihood. The log-likelihood function associated to all the observations obtained
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Figure 5.14: Histogram of the ToA estimation error for two array sizes using the database described on
section 5.4.1.

from some source can be determined using:

log(L) =

Mÿ

m=1
≠ log(

Ô
2fi‡2

) ≠ 1

2‡2 (·m ≠ ”m ≠ t ≠ �m)

2 (5.18)

Since we are interested in the relative value of log(L), its maximization can be performed just by
evaluating those terms in (5.18) that depend on the target variables. Thus, to maximize log(L) is
equivalent to minimize the next expression:

E =

Mÿ

m=1
(ym ≠ ”m ≠ t ≠ �m)

2 (5.19)

At this point we can introduce the assumption of synchronization (�m = 0) and rearrange the
objective function so that the solution to the problem can be found by solving an equivalent LS
problem given by:

{ps, ts} = arg min

{p,t}

1 Mÿ

m=1

1!||p ≠ pm||/c + t
" ≠ ym
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, (5.20)

where ps and ts are the estimated source location and emission time respectively.

The proposed estimation is a non-linear least squares problem, therefore solving it iteratively is
the easiest option. Nevertheless, the number of iterations can be reduced by using a second-order
iterative algorithm such as Levenberg-Marquardt. Defining the error em = ·m ≠ ||p ≠ pm||/c ≠ t the
Jacobian can be easily computed as:

ˆem

ˆt
= ≠1, and:

ˆem

ˆpmx
= ≠px ≠ pmx

c”m
, (5.21)

where subindex x represents the coordinate axis.

5.6.2 Laplace Distribution

The real distribution of the ToA estimation error does not necessarily follow a Gaussian distri-
bution, specially when a small number of nodes is used to locate a source. Figure 5.14 shows the
histogram of the ToA estimation error for two array sizes in order to illustrate this claim.
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Taking this into consideration, as a second approach, we are going to assume that the Laplace
distribution better describes the error of the estimates, so that the the PDF of a given estimation can
be expressed as:

F (·m; p, t) =

1

2b
e(

≠ 1
b |·m≠”m≠t≠�m|

), (5.22)

where operator |.| is the L1-norm and b > 0 is the scale parameter of the distribution.

In this case, the log-likelihood function associated to a set of ToA observations can be determined
using the following equation:

log(L) =

Mÿ

m=1
≠ log(2b) ≠ 1

b
|·m ≠ ”m ≠ t ≠ �m| . (5.23)

Again getting rid of the terms that do not depend on the target variables, to maximize the log-
likelihood is equivalent to minimize a simpler function, in this case a L1-norm error given by:

˜E =

Mÿ

m=1
|·m ≠ ”m ≠ t ≠ �m| =

Nÿ

m=1
ẽ2

m, (5.24)

where, by assuming synchronization:

ẽm =

Û
---
1 ||p ≠ pm||

c
+ t

2
≠ ·m

--- =

Ò
|em|, (5.25)

This time the problem can not be directly solved as a LS problem, although, note that expression
5.25 relates the error obtained for the Laplacian distribution (ẽm) with that obtained for the gaussian
distribution (em). Thus, the estimation can still be solved as a non-linear LS with some minor
modifications. Moreover, computation of the Jacobian is still rather simple, it can be determined
with:

ˆẽm

ˆpmx
= ≠sgn(em)

2ẽm

(px ≠ pmx)

c”m
, (5.26)

ˆẽm

ˆt
= ≠sgn(em)

2ẽm
, (5.27)

where sgn() is the signum function.

5.7 Experimental Work and Results: ToA-based localization

This section describes the experiments conducted to evaluate the performance of the proposed
ToA-based sound source localization algorithm.

5.7.1 Description of the Experiments

The ToA-based localization method was tested using the database described in section 5.4.1.
Additionally, the configuration of the experiments is the same as that described in section 5.4.2 for
the SRP-based methods, that is, an array size (M) from 3 to 12 microphones and up to 100 random
combinations of M microphones per impulsive event. Detection onset estimation (�m) is also the
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shared with section 5.4.2: the outputs of the K-LDA detector are processed as described in section
5.3.1 using a time window of 65 frames. Please note that only 156 out of 160 events are considered
for the results of ToA-based localization.

ToA estimation was computed as described in section 5.5.1 using audio signal segments of length
1024 samples (T�) each of them centered around their respective �m. Raw audio segments were
pre-processed first with a 64

th order high-pass FIR filter (2000 Hz cut-off frequency) an then with a
8

th order moving average filter. Regarding time-domain onset detection, curve fitting was performed
with 3 decreasingly complex variants, namely: Logistic function fitting on the full length signal
segments; Logistic function fitting on signal segments decimated by a factor of 8 (� = 8); and
unitary step sitting (the same used for detection onset estimation) on signal segments decimated by
a factor of 8 (� = 8). In both cases, logistic function fitting was done with Matlab’s curve fitting
tool.

Source locations were obtained using the ML estimator proposed on section 5.6 with both types
of probability distribution. The minimization was solved using Matlab’s implementation of the
Levenberg-Marquardt algorithm. In order to avoid local minima, we consider that source loca-
tions are estimated by every node using a different starting point, thus, the number of evaluations
is proportional to M . It is worthwhile mentioning that, convergence of the proposed ML estimator
depends on the assumed PDF. Location estimates assuming a Gaussian distribution were obtained
as the best among M evaluations (in terms of the objective function), while estimates assuming a
Laplace PDF showed some convergence problems and were evaluated twice per node (2M evalua-
tions).

Finally, the effect of clock offset in the localization results is tested with the proposed methods
(detection-aligned SRP and ToA-based localization). Note that the database recordings are properly
synchronized, thus, clock offset was simulated by offsetting the audio signals a random number of
samples. Clock offset was modeled as a normal distribution with multiple increasing variances (‡2

�)
in order to evaluate the influence of synchronization on the precision of the localization.

5.7.2 Experimental Results

Tables 5.2 and 5.3 show the mean localization error (and standard deviation) for various array
sizes of the proposed ToA-based localization assuming Gaussian an Laplace PDFs respectively, using
different sets of ToA estimates. The results show that for any of the tested ToA estimation methods,
the localization error is lower than those obtained with the SRP-based approaches. The best results
are obtained assuming a Gaussian PDF and estimating the ToAs by fitting a Logistic function as de-
scribed on section 5.5.1, expect for M Æ 4 where the Laplace PDF with the onset labels outperforms
it. Note that the results of the decimated version of the Logistic function (� = 8, T� = 128) are
practically undistinguishable from those obtained using the whole energy envelopes (T� = 1024),
while being fairly more efficient in terms of computational load per ToA estimate. Also, the re-
sults obtained with the simplest ToA estimation method, that being the unitary step fitting (� = 8,
T� = 128) are not far behind. Moreover, estimating the time-domain onsets with the unitary step
approach produces better results that any of the tested SRP-based methods. Special mention must
be made about the results obtained when the onset time labels are feed to the localization algorithm.
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Table 5.2: Mean localization error of the proposed ML estimator assuming Gaussian noise for various
array sizes (M) and different sets of ToA estimates.

M Onset Labels Logistic Logistic (�=8) Unitary Step (�=8) Best SRPú

3 6.3m ±15.8 6.1m ±15.3 5.9m ±14.7 6.3m ±15.2 7.7m

4 3.1m ±8.7 3.0m ±8.0 3.0m ±8.3 3.3m ±8.8 5.0m

5 2.1m ±5.6 2.0m ±5.0 2.1m ±5.9 2.3m ±6.1 3.8m

6 1.6m ±1.9 1.5m ±2.1 1.5m ±2.2 1.7m ±2.5 3.1m

7 1.4m ±1.9 1.4m ±2.3 1.4m ±2.6 1.6m ±2.5 2.6m

8 1.3m ±1.6 1.3m ±2.1 1.3m ±2.2 1.5m ±2.5 2.5m

9 1.2m ±1.4 1.1m ±1.8 1.1m ±1.8 1.4m ±2.3 2.2m

10 1.1m ±1.4 1.1m ±1.7 1.1m ±1.8 1.3m ±2.3 2.0m

11 1.1m ±1.3 1.0m ±1.4 1.1m ±1.5 1.3m ±2.1 1.8m

12 1.0m ±1.2 1.0m ±1.3 1.0m ±1.4 1.3m ±2.1 1.7m
úBest results obtained by the SRP-based methods.

For the most part, the results are equal (or worse) to those obtained with the Logistic Function. This
points out at manual labeling of the event’s onset times being subjected to an error comparable to
that obtained with the automated estimation. Although, the standard deviation of the localization
error is consistently lower for the onset labels.

Overall, source localization using the proposed ToA-based approach seems like the superior
method. This has two main implications. On the one hand, the computational complexity of ob-
taining the ToA estimates is lower than that of computing the GCC needed for the SRP, specially
if we take into consideration that for any network size there are M ToA estimates compared to
M(M ≠ 1)/2 cross-correlations. On the other hand, the minimization, which commonly is the most
costly procedure of any localization algorithm, has the potential of being simplified by taking some
additional assumptions.

The current implementation is using the proposed ML estimator to find the solution iteratively,
however there are a number of closed form algorithms that could be used instead [GS08, APH14]
as a tradeoff between accuracy and computational complexity. Note that such algorithms typically
work with TDoA estimates, which can easily be obtained from the estimated ToAs, and while it is
also possible to use a closed-form solution with TDoAs obtained from cross-correlations, at least for
the signals in the present database, the obtained TDoA estimates are not precise enough. In relation
to this, it is worthwhile mentioning that we tested the ML estimator with ToAs estimates obtained
from the GCC without success.

While on the matter of the proposed ML estimator, from tables 5.2 and 5.3 it seems like assuming
a Laplace PDF produces worse results than assuming a Gaussian PDF for almost every case. However,
taking a closer look at the results, the problem lies in the convergence rate of both methods. Figure
5.15 shows the histogram of the localization error of all the experiments for two array sizes (M = 5

and M = 10) using the proposed ML estimator with Gaussian PDF (dashed line) and Laplace PDF
(solid line), where it is possible to see that the number of individual experiments with the smaller
possible error is higher for the Laplace PDF. Overall, the Laplace version of the algorithm obtains



128 Chapter 5. Impulsive Source Localization

Table 5.3: Mean localization error of the proposed ML estimator assuming Laplacian noise for various
array sizes (M) and different sets of ToA estimates.

M Onset Labels Logistic Logistic (�=8) Unitary Step (�=8) Best SRPú

3 4.6m ±9.6 5.1m ±11.6 4.9m ±10.9 5.4m ±12.1 7.7m

4 2.7m ±4.2 2.8m ±5.4 2.7m ±5.2 3.1m ±6.3 5.0m

5 2.0m ±2.5 2.0m ±3.8 2.0m ±3.8 2.2m ±4.2 3.8m

6 1.6m ±2.0 1.7m ±3.2 1.7m ±3.2 1.9m ±3.5 3.1m

7 1.5m ±1.9 1.6m ±2.7 1.6m ±2.6 1.8m ±3.1 2.6m

8 1.4m ±1.8 1.4m ±2.1 1.4m ±2.1 1.6m ±2.5 2.5m

9 1.3m ±1.7 1.3m ±1.7 1.3m ±1.7 1.5m ±2.1 2.2m

10 1.3m ±1.6 1.2m ±1.6 1.3m ±1.6 1.4m ±2.1 2.0m

11 1.2m ±1.6 1.3m ±1.6 1.3m ±1.7 1.4m ±2.1 1.8m

12 1.1m ±1.5 1.2m ±1.6 1.2m ±1.6 1.3m ±1.9 1.7m
úBest results obtained by the SRP-based methods.
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Figure 5.15: Histogram of the localization error of all the experiments for two array sizes using the
proposed ML estimator with Gaussian PDF (dashed line) and Laplace PDF (solid line).

noisier results with a larger proportion of large localization errors, which points out as convergence
being a greater problem for that version of the ML estimator.

5.7.3 Effect of the Synchronization on the Localization

Up until now, the presented results were obtained assuming synchronized nodes. The database
was recorded with a multichannel sound interface, therefore every channel shares a common time-
base. In order to test the influence of synchronization errors in the localization results we introduced
random clock offsets to every channel, modeled as a normal distribution with various standard devi-
ations (‡�).

Figure 5.16 shows the the mean localization error for various array sizes of the proposed ToA-
based localization (Gaussian PDF) and detection-aligned SRP (Ls = 1024) when presented with
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Figure 5.16: Effect of clock offset in source localization with the two proposed methods. Clock offset
modeled as a normal distribution with standard deviation ‡� (samples).

synchronization uncertainty. The shown results were obtained by introducing 4 increasingly larger
random clock offsets to the raw audio signals governed by ‡�. The tested values of ‡� are: 6 samples
(the smallest clock offset error obtained in chapter 3), 13 samples, 64 samples and 256 samples. The
results show that synchronization uncertainty definitely has a significant impact on the localization
error, specially for larger values of ‡�. The localization error with ‡� = 256 is around 4 times
larger than that obtained without synchronization uncertainty for most array sizes and with both
algorithms. Overall, the proposed ToA-based ML estimator is capable of dealing with larger clock
offsets, although it should be noted that it is more accurate than the SRP-based algorithm to begin
with.

The results for the lower values of ‡� (Æ 13 samples) are interesting since they do not produce
a significant difference in the localization results. This is most likely due to the error inherent to
the microphone and source location measures. During the recording of the database, special care
was taken to place the microphones at the same height, nevertheless, the 2D space assumption in
conjunction with manual distance measurements are a certain source of small error. Synchronization
uncertainty can also be understood as an equivalent spatial uncertainty. For the tested values of ‡�,
from smaller to larger, it corresponds to approximately: 5 cm, 10 cm, 0.5 m and 2 m, at fs = 44100Hz
and with c = 345 m/s. Note that neither of the tested localization algorithms takes into consideration
the existence of clock offsets between the channels, thus, timing differences have the same effect as
their equivalent error in terms of microphone locations.

Generally speaking, these results prove that synchronization is a main concern for acoustic source
localization in WASNs. Clock offsets of just 1.5 ms (¥ 64 samples at fs = 44100Hz) can easily
double the localization error, thus, tight synchronization within the network is a basic requirement
for acoustic source localization.

On a side note; although we have not tested it, the proposed ML estimator can be modified to also
estimate clock offsets. However, for this to work multiple sets of ToAs need to be obtained from dif-
ferent sources before the minimization can be solved, and the convergence rate and computational
complexity of said minimization would be notably affected. Taking it even further, after collecting
ToA estimates from a large enough number of sources, even microphone locations could be esti-
mated. However, in that scenario the algorithm would become a passive self-localization method,
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similar to those proposed in [GKH13] or [PP17], which falls outside the scope of this chapter.

5.8 Conclussions

In this chapter two efficient methods for sound source localization have been proposed. The first
method is a modification of the classic approach based on cross-correlating signals captured by differ-
ent microphones. It takes advantage of the presence of a proper multichannel sound event detector
in order to select a shorter signal segment that that dictated by the sound propagation model, thus
increasing efficiency. The second method completely bypasses the need for cross-correlations and
works with a set ToA estimates of some acoustic event obtained at every channel also by exploiting
the detection capabilities of the system.

The main novelty resides in the ToA-based method, it demonstrates how the solution to a seem-
ingly independent problem (i.e., sound event detection) can be exploited to formulate new solutions
to a classic multichannel signal processing problem. Furthermore, the experiments showed that the
ToA-based method is more reliable (specially the Gaussian version) for the kind of signals expected
from impulsive noise sources recorded outdoors. Also, in terms of efficiency the ToA-based proposal
is superior to the GCC-based approach, even more so when the scalability of the algorithms is taken
into account.

Both proposed methods tackle some of the problems associated with performing classical source
localization in WASN where large inter-microphone distances call for long cross-correlations that
are heavily affected by coherence loss between the signals. The presented results show that the
main problem is again the large differences between propagation paths that make signals captured
at distant locations no longer resemble a time lagged version of one another.

The effect of synchronization uncertainty took a second place in the experiments, mainly due
to the recordings used for testing the algorithms being properly synchronized. However, synchro-
nization together with accurate knowledge about the microphone locations are part of the basic
requirements for most source localization algorithms. In fact, the experiments with simulated clock
offsets, show that the microphone and source location measurements used as the ground truth are
not free of error, thus the presented results are inherently affected by them.

It is important to mention that although source localization is not often required to be a real-
time process, the faster its solution the better. Sound source localization is closely related to self-
localization, so much so that the former can be seen as a simplified version of the latter. Contrary
to self-localization, which ideally only has to be solved when the WASN undergoes some physical
modification (i.e., changing the geometry or adding a new node) and it is a vital step for most mul-
tichannel algorithms, source localization is less critical and more frequent. That is, failing to locate
some acoustic event does not represent a critical failure for the system since additional information
can still be extracted from the received sound (i.e., identifying the type of source), and if the source
were to produce any new acoustic events that would represent a new chance to locate it. Given
the close relation of source localization and self-localization, is only natural that some of the conclu-
sions extracted on chapter 3 can also be applied to the present chapter. Most notably, assessing the
quality of the estimates is still a main issue. With any of the tested algorithms the results could be
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improved using a weighted optimization approach where the ‘quality’ of each estimate is taken into
consideration.

Future work will (again) address spurious estimates, and contemplate possible transmission er-
rors and other compilations arising from wireless data transmissions (e.g., collisions), what were
not considered in the present version. In addition to this, the validity of the results should be proven
by repeating the experiments with a larger database. Such a database should include more SNR con-
ditions, a larger number of elements (both microphones and sources) and most importantly, greater
source location diversity that contemplates new non-ideal situations (e.g., non direct line of sight,
very large source-microphone distances, multiple undesired sources, etc.).

5.9 Summary

The main contributions described in this chapter of the thesis are the following:

1. An efficient method to perform GCC-based localization that exploits local detections to mini-
mize the length of the signals being cross-correlated.

2. A simple unitary step fitting approach to obtain the onset of the local detections.

3. A novel ML-based source location estimator, that works with ToA estimates, hence, bypassing
the need for cross-correlations.

4. Two solutions for the ML estimator that assume either a Gaussian PDF or a Laplace PDF that
can be easily modified to absorb synchronization problems.

5. A simple method for obtaining the onset of the events in the time-domain (ToA) based on curve
fitting.

The contributions described in this chapter are being prepared for submission to a peer reviewed
journal. Further details can be found in [P5] in section: Publications.





CHAPTER6 Impulsive Event Classification

6.1 Introduction

The last problem that is going to be addressed in this thesis is the classification of impulsive
audio events. As part of an automated acoustic surveillance system, the objective of classification
is to tell apart sound events signaling a potentially dangerous situation from similar but ‘harmless’
sounds (e.g., a window being broken vs a coffee mug shattering). The line between classification
and detection gets blurred when these techniques are to be applied to continuous stream of data
and in that case, perhaps multi-class detection is a more proper term. Although, if we consider a
hierarchical system in which a generalist sound event detection system is followed by a classification
stage, then differentiating between both terms still makes sense since classification would work with
segmented acoustic events.

Impulsive sound event classification poses a harder problem than detection, specially when ap-
plied within a same “family” of sounds. This is mainly due to the differences between impulsive
sources being much less pronounced than the differences between impulsive noise and other sounds,
and on top of that, the captured signals are strongly related to the recording environment and the
positioning of the sources and receivers. Any acoustic event recorded at a distance from the source
is going to be convoluted with the environment and mixed with unwanted noise which negatively
affects the accuracy of the classification system, because it is not possible to predict all the possi-
ble variations a signal might be subjected to during the training stage. Albeit, this problem can
be lessen by using a spatially diverse receiver such as a WASN. Such a system can easily provide
multiple observations of an acoustic event taken at different locations, making it possible to obtain a
more robust classification by fusing the available data. Even more so, if the spatial relation between
the source and the receivers is known, this information can be used to aid the classification process
in different ways.

In this chapter the multichannel classification problem is tackled in two different approaches:
first, assuming that the network geometry is unknown due to technical limitations, hence, the spa-
tial relations have to be estimated by every node in isolation; and second, assuming the various
functionalities described in the previous chapters of this thesis have been successfully implemented,
therefore, both node and source locations are already known.

6.2 Unknown Spatial Relations

In an ideal scenario the locations of the nodes and the source would be known a priori so that
various array-based strategies could be applied to aid the classification. These could range from
enhancing the target signal using beamforming to, having the source localized, selecting the decision
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taken by the closest node as the most trustworthy. However, as we have seen in previous chapters of
this thesis, in the context of a WASN, precise node localization and inter-node synchronization are
basic requirements (for array processing) that are not easily met.

Even when the lack of internode synchronization or the poor knowledge about the location of
the nodes preclude the use of classic array processing, having multiple spatially diverse informa-
tion sources can be successfully exploited using decision fusion. Assuming that every node in the
network is capable of perfect detection, then the global decision regarding the class of a detected
acoustic event can be obtained using decision fusion without the need for synchronization. Asyn-
chronous decision fusion can easily implemented just by setting a time window (starting from the
first detection) inside which, those nodes that have detected the event can share their local decision
to be fused. This should be seen as an oversimplification, but serves to illustrate a possible solution
problem. Going further, it is also possible for the nodes to extract some spatial information about
an acoustic event on their own. A single channel system can be able to (approximately) tell if an
impulsive source is close or far away based on various cues such as: SNR, reverberation level or
even spectral content (i.e.,long propagation paths have a low pass effect), which could also prove
beneficial.

In this first approach we are going to tackle gunshot classification on a WASN with unknown
geometry assuming that proper gunshot detection is already available. For this scenario, we propose
to have each node estimate their relative to the source so that spatial information can also be used
during the decision fusion stage.

Weapon acoustic analysis has practical applications in many fields such as forensics, security, gun
control or military tactics to name a few. Thus, the acoustic signature produced by explosive pro-
pelled weapons has been subject of study for some decades now [WK74b,FTCP93,Mah07]. In recent
years, this field has become more relevant mainly due to the development of sniper detection and
localization systems [KPD06] aided by sensor fusion techniques and WASN. Renewed interest in this
topic has produced multiple approaches to gunshot detection over the last decade. Whereas, acous-
tic weapon classification has not been widely studied yet, hence there are few available precedents
(e.g., [CER05,SHV+11]) and the spatial dependence of gunshots is rarely addressed.

The biggest problem in this field, on top of the problems common to any impulsive noise, is
the strong dependence on the shooter’s location and orientation shown by the recorded waveforms,
mostly because the acoustic disturbance created by firearms is highly directional [MS10]. In fact,
this high directivity combined with undesired acoustic phenomena, commonly makes the differences
between recordings of the same weapon at distant locations greater than those of different weapons
recorded at the same location. Even recordings of the same gun firing different ammunition can
show large differences [BNM11], making acoustic gunshot classification a difficult task.

6.2.1 Gunshot Acoustic Model

Common firearms produce their characteristic sound as a result of the sudden expansion of gases
generated at the end of their barrel by the explosive charge used to propel the projectile, formally
known as ‘muzzle blast’. A simple approach that can be used to understand the acoustical excitation
produced by this kind of phenomenon is Weber’s spectrum model, accounted for in ISO norm 17201-2
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Figure 6.1: Schematic representation of a gunshot sound components. A) Blast wave radiation from an
ellipsoid volume at two points. B) Geometric model of shock wave propagation.

[IC06]. This model gives us an estimation of the Fourier spectrum of a blast wave on free air [FBP06]
as a function of the radius of the expanding gas sphere (Rw) created by the charge in the precise
instant that its propagation speed decreases enough to match the speed of sound (c). The energy
of the explosion is directly related to the volume of displaced gases, shifting the spectrum to lower
frequencies as the radius of the sphere increases. However, in the case of firearms, the constraining
effect of the barrel on the expansion of gases has a big impact on the emitted sound, making the
muzzle blast strongly directional. Applying Weber’s radius model, directivity can be explained as a
result of the divergence in the expelled gases shape from a perfect sphere, implying a dependence
between the listener location and the perceived radius [KWH13]. Figure 6.1-A shows the differences
in amplitude and time duration of the blast waves created by an ellipsoid volume at two points.

The second main component of a gunshot acoustic signature is the shock wave produced by a
projectile traveling at supersonic speed. While the muzzle blast can be seen as a global event, due to
the extensive range reached by the acoustical excitation generated by the propeller explosion, shock
waves have a local influence (i.e., for small sized bodies), they only appear when the microphone
is close enough to the trajectory of the projectile. For a projectile with a speed V > c, defining
Mach number as Ma = V/c, the generated shock wave propagates in conic shape forming an angle
◊Ma = arcsin(1/Ma) with the bullet trajectory as shown in Figure 6.1-B. This acoustic disturbance
is commonly known as ‘N-wave’ due to its characteristic geometry resembling a capital “N”. Its most
relevant parameter, its duration, can be approximated by knowing the physical dimensions of the
bullet, its velocity and the closest distance between the microphone and the projectile trajectory.
These physical relations are the basis for acoustic projectile trajectory estimation algorithms1.

It is important to mention that in a real scenario the recorded waveforms may be very differ-
ent from that described by the model, due to non-idealities such as reflections, signal saturation
and most of all, the influence of the propagation path. Figure 6.2 illustrates this claim with two
recordings of a .45 caliber handgun gunshot taken at distant locations.

1N-waves can not be used to estimate the shooter’s location since they are emitted by the projectile
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Figure 6.2: Recorded waveforms of a .45 caliber handgun gunshot at two distant locations.

6.2.2 Model-based Features

In contrast to detection, classification is not necessarily a continuous process. It can be integrated
as part of hierarchical system governed by acoustic event detection in the same way as the source
localization system proposed in the previous chapter. Coincidentally, this is a fairly common ap-
proach for gunshot detection, where many proposals use a simple acoustic event detector followed
by a classification stage (gunshot vs other sounds) based on classic pattern recognition techniques
[CER05,FAJ10,AUM13].

Under an assumption of perfect detection, given that the target acoustic event has already been
located in time by a detector, there is no longer need for instantaneous features. Since the acoustic
signature of gunshots has a short time duration (i.e., direct signal without considering reverbera-
tion), it makes sense to compute the feature vector from a signal segment that encompass the whole
signal and use global descriptors. Note that in this scenario, adding temporal context to the feature
vector simply by stacking previous frames becomes less relevant so that different approaches may
be preferred.

In this particular case we propose to compute a set of specialized global features based on the
ideal acoustic model of a gunshot, intended to capture some temporal information that is not clearly
reflected by standard features. We refer to theses features as model-based features.

Model-based features are computed from a signal segment (s(t)) selected using the gunshot
detection that ideally includes the ‘whole’ direct signal of the muzzle blast. The first model-based
feature is the the TDoA between the N-wave and the muzzle blast. Since the muzzle blast is always
appearing (perfect detection is assumed) and it is the main source of energy, a secondary energy
source preceding it with a lower energy level and shorter time duration must be an N-wave. N-
waves only appear with supersonic ammunition, and even then, the microphone has to be close
enough to the trajectory of the projectile to capture it. From here, two conclusions can be made:
weapons firing subsonic ammunition (such as shotguns) do not have N-waves and neither do those
recordings taken from the back of shooter. On top of this, the longer the distance to the shooter the
larger the TDoA between the N-wave and the muzzle blast. This information is obtained using the
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Figure 6.3: Energy moving average of a gunshot recorded at two locations. Signal segment containing the
muzzle blast represented by a light gray area.

TDoA between energy clusters obtained from the energy moving average of the raw audio signal. In
case only one cluster appears, it is set to a default value (zero). These two scenarios are represented
of Figure 6.3 which shows the energy moving average of a gunshot recorded at two locations.

The remaining model-based features are focused on the muzzle blast waveform. They have more
to do with the spatial aspect of the problem since the shape of the muzzle blast is a good range
indicator (overlapping reflections at close range and low-pass effects at long range).

We propose to extract some shape descriptors using the most prominent tipping points (peaks
and valleys) of the selected signal segment (s(t)). Since raw recordings of gunshots are prone to
be quite noisy due to turbulences, peak finding can be eased by first smoothing s(t). The typical
approach in such cases is to low-pass filter the signal, so that high frequency noise is eliminated
while the basic ‘shape’ of the signal is maintained, although, low-pass filtering affects the steepness
of rising edges in fast transients which is far from ideal for this particular case. To avoid this problem
we propose to process the signal segment using Total Variation Denoising (TVD) [FDON06], also
known as total variation regularization. TVD gets rid of the small variations in the signal but unlike
low-pass filtering it preserves sharp edges, it is commonly used for image processing (on its 2D form)
but it can also be applied to 1D signals.

Once the tipping points have been found, taking the index value of the first two (p1 and p2),
their Time Difference (TD) can be used as a representative value of the duration of the decay of
the muzzle blast (i.e., the duration of the positive phase), and their amplitude ratio (A1/A2) as a
symmetry measurement. Additionally, by finding the zero-crossing points of the the first cycle they
can be used to compute the half cycle ratio (TS1/TS2) of the muzzle blast. These three features
are related to the Weber’s radius of the muzzle blast, that although it depends on the shooter’s
orientation, it is also a good indicative of the weapon type. The number of tipping points and the
time difference between the first and the last found tipping points can also be used as features,
since they are a good indicator of the presence of early reflections (most likely from the ground)
which in turn gives a good measure of the distance of the microphone to the discharge (i.e., on long
range recordings the reflections are likely to be outside of the selected signal segment). Finally, the
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Figure 6.4: Original signal, TVD processed signal and reference points for model-based feature extraction.

energy of the first cycle of the signal can also be computed (20 log10(

qt2
n=t1

s(t)
2
)), which ideally

corresponds to the muzzle blast. This last feature is somewhat redundant but in conjunction with
other features, it can provide some information about the range or the energy level of the weapon
being fired.

Figure 6.4 shows a TVD processed signal and the reference points used for computing the pro-
posed model-based features

The proposed model-based features are:

TDoA between the N-wave and the muzzle blast.

6 muzzle blast shape descriptors:

• Time difference of the tipping points of the first cycle.

• Amplitude ratio of the first cycle.

• Half cycle ratio of the first cycle.

• Number of tipping points found in the signal segment.

• Time difference between the first and last tipping points.

• Log-energy of the first cycle.

6.3 Spatial Segmentation

In order to take advantage of spatial information without resorting to classic localization algo-
rithms, we have reformulated some of the classic problems of the field, turning them into simpler
problems that do not require the use of multiple information sources to be solved.

Using a single microphone, it is no longer possible to triangulate the shooter’s location. However,
some information can be obtained by making a rough estimation of his/her proximity to the node.
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Figure 6.5: Schematic representation of the spatial segmentation performed by the binary classifiers
(Range/Aligment).

For the time being, we are discerning between close and long range discharges, although, the
proposed methodology is valid for further subdivisions. Trajectory estimation also suffers from the
lack of spatial references. It has been replaced by a rough estimate of the proximity of the sensor
to the trajectory of the bullet into two broad alignment categories: on-axis and off-axis. On-axis
implies that N-waves might appear at a given microphone location, while off-axis represents any
other location.

We propose to segment the space into four regions by employing the outcomes of a pair of binary
classifiers (range and alignment), so that each node has a certain degree of knowledge about its
location in relation to the gunshot that can be exploited. Figure 6.5 shows a schematic representation
of the spatial segmentation.

Although segmenting the space into four regions does not seem like much, it is enough to improve
the accuracy of local classifications by means of a Divide and Conquer approach. Given the big
differences between gunshots recorded at distant locations, specialized classifiers can be trained
to work within each region so that the differences between weapons become more relevant than
the differences between locations. On top of that, by having various non-identical classifiers in the
ensemble, it is possible to derive a new fusion rule to take advantage of that situation and improve
the global classification.

6.3.1 LS-LDA Classification Tree

Since spatial effects on the signals are the main problem for the classification, we propose to
analyze different spatial regions independently. This is achieved with a classification tree that uses
the outcome of two binary classifiers to segment the space by selecting between a set of localized
weapon classifiers. The localized classifiers are designed using a specific subset of events, so that,
they do not contemplate the existence of the other regions. The main idea is the same one behind the
K-LDA classifier proposed in chapter 4, only this time, the feature space segmentation is performed
using the outcomes of two binary classifiers that happen to be assessing the source-node spatial
relation. Likewise, we are using LS-LDA on every stage of the classification tree for the sake of
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efficiency. Although the same approach could be used with any other classifier.

Multi-class LS-LDA is commonly tackled defining C binary classes and applying a one-against-
all scheme, which entails that only one class is labeled as true for a given observation (one-hot
encoding). This way, the output is a vector y = [y1, ..., yC ]

T where each element represents the
“score” of one of the classes, which can be seen as the estimated probabilities of the observation
belonging to each class. Final decision D is then taken by selecting the largest element of y with:

D = arg max

c
(yc). (6.1)

Let us consider a training set composed of N observations, where each element is qi =

[1, xi1, ..., xiF ]

T , i = 1, ..., O. In matrix form, we can define an input matrix Q of dimensions
(F + 1) ◊ O and a weight matrix V of dimensions C ◊ (F + 1), where C is the number of tar-
get classes, so that the output is computed as Y = V · Q. If we also define a binary target matrix
T of dimensions C ◊ O representing the desired outputs (true class labels in one-hot encoding), the
error can be expressed as E = V · Q ≠ T.

In order to obtain the weight matrices for the classifier tree, let us begin with the first stage by
defining two target vectors tA and tB of length O that represent the true range and alignment labels
respectively. From these two vectors and input matrix Q, using expression (2.45), the weights for
the first stage are computed with:

vA = tAQT
(QQT

)

≠1, and vB = tBQT
(QQT

)

≠1. (6.2)

From where the range and alignment estimations of each observation are obtained as:

Ri =

I
1 if vAqi > 0.5

0 if vAqi Æ 0.5
, and: Ai =

I
1 if vBqi > 0.5

0 if vBqi Æ 0.5
. (6.3)

Now, using the outputs of the first stage, let us make a partition of Q into four subsets Qk, k = 1, ..., 4

containing the observations of each of the four spatial regions and defined as:

Q1 = {qi| Ri = 0 and Ai = 0}, (6.4)

Q2 = {qi| Ri = 0 and Ai = 1}, (6.5)

Q3 = {qi| Ri = 1 and Ai = 0}, (6.6)

Q4 = {qi| Ri = 1 and Ai = 1}. (6.7)

The reason why we are using the outputs of the first stage instead of the true range and alignment
labels for the division of the training set, is to lessen the restrictions on the segmentation by letting
the classifiers select which observations belong where.

Since each of the observations belongs to one of the 4 subsets and has a true weapon label
associated, we can define matrix Tk as the target matrix of those observations within Qk, so that
the weight matrices of the localized weapon classifiers are obtained with:

Vk = TkQk
T

(QkQk
T

)

≠1, k = 1, ..., 4. (6.8)
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Note that this expression is the same as (4.3), thus, the spatial segmentation being performed here
is equivalent to the feature space segmentation employed in the K-LDA classifier.

6.4 Maximum Likelihood Decision Fusion

We propose a fusion rule based on ML estimation that takes advantage of a diverse classifier
ensemble to improve upon classic decision fusion techniques. This decision rule is based on giving
different weights to the decisions taken by each classifier in the ensemble, based on a discrete set
of performances known a priori, which in this case are derived from the location of a given node in
relation to the source.

Let us consider that a set of estimations of the likelihood of a given acoustic event belonging to
each class is available, where the estimates produced by each node have an associated error that
depends on its location in relation to the source’s location (i.e., the propagation path), on which
classifier among a discrete set was used, and also on the true class of the event. The objective is to
obtain the best possible estimate of the true class of the event by fusing the available information. Let
us also consider that the outputs of the mth node ym = [ym1, ..., ymC ] follow a gaussian distribution
so that its PDF is given by:

F (ym; t, Cm) =

1
(2fi)

C |Cm|e
(

≠ 1
2 (ym≠t)T

C

≠1
m (ym≠t)

), (6.9)

where t is a binary target vector (i.e., class labels) and Cm is the covariance matrix of the PDF. In
this general case we consider different covariance matrices for each member of the ensemble.

Following this approach it is possible to to use a ML estimator to obtain the most likely class
of some acoustic event (t) given a set of observations ym. Thus, the solution can be found by
maximizing the the log-likelihood log(L) of some observation set, which is given by:

log(L) =

Mÿ

m=1
log(f(ym; t, Cm)). (6.10)

Replacing equation (6.9) in (6.10) and simplifying, the expression to be maximized is obtained:

LL =

1

2

Mÿ

m=1

1
≠ log((2fi)

C |Cm|)≠(ym ≠ t)

T C≠1
m (ym ≠ t)

2
. (6.11)

In order to maximize log(L), expression (6.11) has to be differentiated with respect to t and equaled
to zero, leading to the following system of equations:

Mÿ

m=1
C≠1

m t =

Mÿ

m=1
C≠1

m ym, (6.12)

from where, t can be cleared arriving to:

t =

Mÿ

m=1

A
Mÿ

m=1
C≠1

m

B≠1

C≠1
m ym. (6.13)
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At this point, the solution can be easily obtained with the following expression:

D = arg max

c
(t), (6.14)

Finally, we can extrapolate this conclusion to define a fusion rule for our classifier ensemble, so
that node weights are obtained with:

Wm =

A
Mÿ

m=1
C≠1

m

B≠1

C≠1
m , (6.15)

where Wm is a C ◊ C matrix and the weights for each node and class are found using all the
covariance matrices of the ensemble. Now, defining an auxiliary vector zm = Wmym, the final
decision becomes:

D = arg max

c

A
Mÿ

m=1
zmc

B

. (6.16)

In the case of a multi-observation classification ensemble, where all the observations are evalu-
ated with the same classifier and influence of node locations has not been characterized, we have
Cm = C, thus, the presented fusion method becomes equivalent to average fusion. Defining I as the
identy matrix and B = C≠1, we know that B≠1B = I and (–B)

≠1B = (1/–)I, therefore wm = 1/M .
This result does not hold true when there is some degree of known error diversity and Cm takes
different values.

6.4.1 Covariance Matrix estimation

In order to take advantage of the ML decision fusion, we first need to characterize the covariance
matrix of every classifier on the ensemble. Let us assume a hypothetical scenario in which both the
location of the nodes and the sources is fixed. It would then be possible for each node to use its own
classifier trained for that particular scenario, from where Cm could be easily estimated. However,
on a real scenario, the relative position of the sources and the nodes is prone to change, notably
affecting the classification accuracy. Albeit, if we were able to properly characterize the relation
between the classifier output and the relative node-source location we could then estimate Cm as
a function of the relative location, even when there is a single classifier for the whole ensemble
similarly to [DH04].

For the time being, let us consider some discrete spatial division composed of K zones. Then,
for each region, the classifier has an associated covariance matrix Ck, k = 1, .., K. This entails that,
for every new observation, each node in the ensemble determines in which in zone it resides and
assigns Cm to one of the possible Ck based on this decision. Note that this solution is scalable, the
more spatial information available about the source, the greater the spatial segmentation can be.

In order to compute Ck, lets consider an output matrix Y = [y1, ..., yM ] and a target matrix
T = [t1, ..., tM ] so that the class estimation error is E = Y ≠ T. The sample covariance of the
estimation is:

C =

1

N
(Y ≠ T)(Y ≠ T)

T
=

1

N
EET , (6.17)
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For the LS-LDA tree, replacing in this expression with the variables from 6.3.1 we can estimate the
covariance matrix of the specialized classifiers as Ck =

1
N EkEk

T , where Ek = VkQk ≠ Tk.
Since training the classifier using a mean-square-error criterion gives outputs that approximate
posterior class probabilities [Gis90] it is good practice to saturate the outputs using the target
interval as limits (probability 0 to 1) before computing the error.

We have found that for those scenarios in which computational complexity is an issue, it is
possible to discard the values of Ck that are not part of the main diagonal which is equivalent to
assuming uncorrelated classes. While this method yields slightly worse results, it has the benefit of
turning matrix operations into element wise operations, since by doing this, matrix Wm becomes
vector wm. This is specially relevant for the inversion of the sum. Given that the values of Ck are
fixed during training, they can be stored as Bk = C≠1

k , making the inversion of the sum the only
matrix inversion computed during run time. Expanding further into computational complexity, it is
possible to completely avoid matrix inversions by storing all the possible values of

1qM
m=1 C≠1

m

2≠1

on a lookup table. In a system with M maximum nodes and K possible covariance matrices, adding
a zero matrix C0 as an additional covariance matrix, the table length can be found as the number of
combinations with repetition using:

A
(K + 1) + M ≠ 1

M

B

≠ 1 =

(K + M)!

M !K!

≠ 1, (6.18)

where (

a
b ) represents the combinatorial number. The table is valid for any WASN with a number

of nodes less or equal to M , since C0 is added in order to consider null contributions to the sum.
This solution is a clear tradeoff between memory and computing power, so whether or not it is
advisable to use a lookup table will depend on the target platform. With M = 8 and K = 4 there
are 494 possible combinations. If C = 3 and considering single-precision (32-bit) floating-point
representation, the table would require 17.37 kilobytes of memory.

6.5 Experimental Work and Results: Unknown Geometry

After introducing the specifics of the proposed gunshot classification system, in this section we
will describe the experimental setup and the obtained results. We are working with three broad
categories: rifles, handguns and shotguns.

6.5.1 Database Description

The gunshot sounds that make up the database used for evaluating impulsive sound event classi-
fication with unknown spatial relations are commercially available as part of a sound library offered
by the company BOOM Library under the name “GUNS - Construction Kit” [BOO11].

This sound library is intended for the creation of sound effects for audiovisual media. It contains
multiple recordings of 17 weapons (7 rifles, 6 handguns and 4 shotguns) including gunshots and
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various mechanical noises. All the signals included in the library are recorded at 96000Hz using var-
ious high-quality microphones and recording equipment. Raw gunshot recordings of each weapon
are available at 12 locations, 2 of which were excluded of the database; one of them because the
recording location is not the same for all weapons and another one because the recordings are highly
saturated and do not hold any resemblance to the model described in section 6.2.1. In addition to
this, 3 weapons were excluded from the database. This was done mainly to keep balance within
classes, that is, to keep the number of weapons within each class as similar as possible. Another
reason was to maintain coherence within the “rifle” class in particular. While 5 of the included rifles
are high power military weapons, 2 of them are low caliber (.22) sporting carbines, which are com-
pletely different weapons. Since at that point we had 4 shotguns and 5 rifles, we decided to dismiss
one of the handguns to keep the database balanced as previously stated. The excluded handgun is a
lower caliber version of another available handgun.

The vendor of the sound library offers information about every sound, including the weapon
model, which microphone was used and a vague description of its location. Further information
regarding the recording hardware is not available. While the provided spatial information is indeed
valuable, it is not detailed enough to tackle location-based fusion or array processing for that matter.
On top of this, various microphone types were used for the recordings, thus there are differences
between recordings in terms of frequency response and directivity. Having different microphones
can be beneficial towards diversity, although, it is far from ideal for array processing, where the
common approach is to assume identical microphones.

The database generated from this sound library contains recordings of 14 weapons: 5 handguns,
5 rifles and 4 shotguns. There are 6 recordings (shot repetitions) of every weapon at 10 different
locations (6 observations per weapon-location combination), adding up to a total of 840 gunshots.
Of the 10 unique locations, 4 are labeled as short-range and 6 as medium range, whereas 6 are
labeled as on-axis and 4 as off-axis. N-waves only appear in 22.1% of the recordings, not appearing
at all for 6 of the weapons (2 handguns and every shotgun) given that they use subsonic ammunition.

6.5.2 Description of the Experiments

The proposed feature set is composed of 29 features: 22 standard features and 7 model-based
features. It is computed using a signal segment s(t) of length 10.7 ms (1024 samples at 96kHz)
that contains the muzzle blast. This segment is selected from the starting point of the Muzzle blast
which is detected using a moving average of the squared input signal with a rectangular window
(length 0.67ms), shown in Figure 6.3 as a light gray area. The standard features are composed
of two temporal features extracted from s(t) and a series of spectral descriptors extracted from its
DFT S(k). From s(t) we compute its energy level in decibels (as 20 log10(

q
s2

(t))) and its zero-
crossing rate. From S(k) we compute 16 MFCCs, and we extract 4 spectral descriptors, namely:
centroid, kurtosis, slope and roll-off [Ler12]. Model-based features are computed as described in
section 6.2.2. The tipping points of each signal segment are obtained from the TVD processed signal
using Matlab’s findpeaks function (the negative section is first inverted). Local peaks are avoided by
setting conditions to the peak finding algorithm (based on heuristics), specifically, minimum peak
prominence and minimum distance between peaks.
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Regarding training, our objective is to test the system in as close to real conditions as possible.
This implies that, for any given gunshot, both the shooter’s location and the fired weapon are going
to be new to the system. Since our database is not large enough for the complexity of the problem,
a simple division of the data into a train set and test set is not efficient. In order to obtain the
presented results we used a hybrid cross validation method that mixes LOOCV [Efr79] and Repeated
random sub-sampling validation.

In every iteration the database is randomly divided into a train set and a test set equally sized in
terms of included positions (5 positions per set). Weapons are tested using LOOCV so that the test
set is formed by the sounds of one gun at 5 positions while the training set contains the sounds of
the remaining weapons at the remaining positions (13 guns ◊ 5 positions). This is done in order
to maximize the information available to the classifier about weapon classes while testing it with
a previously “unheard” gun recorded at unknown locations. To maintain class balance, in every
iteration, b random sounds of the train set that belong to the tested class are duplicated, b being
the number of observations in the test set. For each of the guns, r random location-wise database
divisions are tested. It is important to remark that since there are only 5 microphone locations
per division, we have decided to consider the 6 observations available per gun-location (og,l) as
additional microphone locations. Treating repetitions as different locations is justified by assuming
they are recordings of the same gunshot taken at 6 locations very close to each other. In total we
consider 30 possible locations (5 locations ◊ 6 repetitions).

The final step involves the generation of p random permutations of the test set without repetition,
that is, sorting the observations included of the test set randomly. For each permutation we obtain
the mth ensemble error rate by fusing the decisions obtained for the first m = 1, ..., M observations.
The final results are computed averaging the errors obtained in the whole 14 ◊ r ◊ p experiments
for each ensemble size. The presented data uses r = 32 and p = 8 adding up to a total of 3584
iterations.

Fig. 6.6 shows the rth division for the third gun (n = 3), the sounds highlighted in light gray
are used to train the classifiers while the sounds highlighted in dark gray are arranged in p random
permutations in order to test the system. Each cell in the table contains the six observations available
per gun-location combination. Notice that on each iteration half of the sounds remain unused.

The covariance matrices of the LS-LDA (full-covariance matrices) tree were obtained from the
train set using LOOCV with weapon-location combinations (13 guns ◊ 5 positions repetitions),
leaving out all the available sounds of a gun at a single position and training with the rest. We opted
to compute the train error using cross validation since the results are less prone to overfitting and
so, it yields a closer estimation to the covariance values found when testing the system with new
observations. As we have previously mentioned, the test set was never used in the design phase,
including the estimation of the covariance matrices.

The results were obtained under the assumption of perfect detection, hence, every observation
belongs to one of 3 target classes. The evaluation metric is error rate, or the percentage of incorrect
predictions made by the classifier over all the predictions made.

The features are normalized (between 0 and 1 according to the training set) prior to the train-
ing. For the experiments, first we compared the performance of the LS-LDA tree and some well
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Figure 6.6: Representation of the rth division of the database with n = 3. Light gray: Train set, dark gray:
Test set

Table 6.1: Classification error (and its standard deviation) for different ensembles of Mclassifiers using
the average fusion rule.

M LS-LDA tree LS-LDA MLP RndF K-NN

1 30.2% ±4.0 35.8% ±3.5 32.9% ±5.7 31.1% ±3.1 36.8% ±2.9

2 22.3% ±3.4 26.9% ±3.7 23.6% ±6.7 21.2% ±3.2 29.6% ±3.1

3 16.9% ±2.8 22.1% ±4.0 19.8% ±6.1 16.4% ±3.6 24.1% ±3.4

4 13.9% ±2.7 19.3% ±3.3 16.8% ±6.9 13.8% ±4.1 21.0% ±3.9

5 11.7% ±2.7 17.2% ±3.0 14.9% ±6.8 12.1% ±4.0 19.1% ±3.9

6 10.2% ±2.6 15.7% ±3.4 13.3% ±7.1 10.9% ±4.3 17.3% ±4.1

7 8.9% ±2.6 14.3% ±3.6 12.2% ±7.0 10.2% ±4.6 14.9% ±4.1

8 7.9% ±2.5 13.5% ±3.4 11.3% ±7.3 9.6% ±4.7 13.8% ±4.3

established classifiers using the average fusion rule under equal conditions. Later, we compared the
results obtained by the LS-LDA tree using different fusion rules. During the experiments, the exact
same data set divisions were used for every classifier and fusion rule tested.

6.5.3 Experimental Results

Table 6.1 shows the results obtained for various classifiers using the average fusion rule. The
tested classifiers are:

LS-LDA tree: The classifier described in section 6.3.1

LS-LDA: single stage LS-LDA. Trained using Matlab’s fitcdiscr function.

MLP: Multi-Layer Perceptron with 2 hidden layers (12 and 6 neurons) and 3 output neurons.
Trained using Matlab’s patternnet function.

RndF: A random Forest formed by 128 decision trees. Trained using Matlab’s TreeBagger func-
tion.
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Table 6.2: Classification error (and its standard deviation) for the LS-LDA tree using different fusion rules.

M average ML weighted maj. vote supervised

1 30.2% ±4.0 30.2% ±4.0 30.2% ±4.0 30.2% ±4.0 31.3% ±3.3

2 22.3% ±3.4 20.6% ±3.3 22.7% ±3.6 22.4% ±3.1 22.0% ±2.7

3 16.9% ±2.8 15.0% ±2.8 17.5% ±3.2 17.2% ±2.4 16.1% ±2.4

4 13.9% ±2.7 11.6% ±2.5 14.5% ±3.1 14.6% ±2.8 13.2% ±2.4

5 11.7% ±2.7 9.5% ±2.5 12.4% ±3.2 12.8% ±2.1 10.8% ±2.4

6 10.2% ±2.6 8.1% ±2.3 11.0% ±3.0 11.6% ±2.7 9.5% ±2.3

7 8.9% ±2.6 7.0% ±2.2 9.7% ±2.9 10.6% ±2.5 8.2% ±2.3

8 7.9% ±2.5 5.9% ±2.2 8.7% ±2.9 9.8% ±2.5 7.2% ±2.4

K-NN: K-nearest neighbors using L1 norm and the 5 closest neighbors. Trained with Matlab’s
fitcknn function.

We are using probabilistic outputs with every classifier and unless otherwise stated, the employed
functions and libraries are set to their default configuration.

The results show a similar error decrease for every classifier when more members are added
to the classifier ensemble. This clearly points at spatial diversity as a major factor for achieving
good accuracies, more relevant than the classifier itself. Nevertheless, among the tested classifiers,
the LS-LDA tree obtained the best results for large ensembles while having a lower computational
complexity than some of the other tested methods.

Table 6.2 shows the results obtained using the LS-LDA tree when different decision fusion rules
are applied:

Average: Average fusion described in (2.50).

Maximum Likelihood: fusion rule proposed in (6.16).

Weighted Average: weighted variation described in (2.51), with em computed from the train
set using LOOCV in the same way as Ck

Majority Vote: D is assigned to the class label selected by the most nodes. Ties resolved by
absolute maximum output.

Supervised Average: the weights for each zone and class are obtained using LS-LDA during
training. In this configuration wk is a 3 element vector out of 4 possible ones. The weight
vector of each zone is computed with M = 8, for every training iteration the outputs of the
nodes that have selected one particular zone are averaged, in case none of the M nodes did,
the observation is withdrawn from the training set.

Of all the tested methods, only the supervised average and the proposed rule were able to improve
upon average fusion. The proposed ML fusion rule yields the best results, obtaining a similar error
rate when 6 nodes are used to that of average fusion with 8 nodes. It is important to highlight that
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Table 6.3: Confusion matrix of the proposed classifier with M=1. Columns: true class,
Rows: predicted class.

H1 H2 H3 H4 H5 R1 R2 R3 R4 R5 S1 S2 S3 S4

Handgun 4.5% 5.2% 5.4% 5.7% 2.8% 1.2% 1.0% 1.8% 0.7% 0.9% 0.2% 0.9% 2.2% 0.6%

Rifle 1.2% 1.2% 1.5% 0.9% 3.3% 4.7% 5.5% 4.6% 5.4% 4.8% 1.5% 1.6% 1.0% 1.0%

Shotgun 1.4% 0.8% 0.3% 0.5% 1.0% 1.2% 0.6% 0.8% 1.1% 1.4% 5.5% 4.7% 4.0% 5.6%

Table 6.4: Confusion matrix of the proposed classifier using the ML fusion rule with M=8.
Columns: true class, Rows: predicted class.

H1 H2 H3 H4 H5 R1 R2 R3 R4 R5 S1 S2 S3 S4

Handgun 6.8% 6.9% 7.1% 7.1% 4.0% 0.2% 0.1% 0.4% 0.1% 0.2% 0.0% 0.2% 0.7% 0.1%

Rifle 0.1% 0.1% 0.1% 0.1% 2.3% 7.0% 7.1% 6.8% 7.1% 6.9% 0.1% 0.1% 0.0% 0.1%

Shotgun 0.4% 0.2% 0.0% 0.0% 1.0% 0.1% 0.1% 0.1% 0.1% 0.1% 7.1% 7.0% 6.5% 7.0%

naive weighted fusion can be counterproductive, as shown in the table for one common weighted
solution. Communication cost is fairly low regardless of the fusion method employed.

Assuming a network where the outputs are transmitted in single-precision (32 bit) floating-point
format, the total amount of data required to transmit the outputs of 8 nodes is just 768 bits per
evaluation (without considering protocol overhead). With a weighted scheme, since every node has
to have every weight stored, the only transmission needed is an index (per node) to represent the
selected weight. Encoding said index as a single byte, the total transmission would increase by 64
bits. Since the system works with framed audio, the required bit rate with the present configuration
is 78000 bps, although there is no need to take a decision every frame. In terms of computational
complexity, the proposed fusion rule is by far the most demanding, with a number of operations
proportional to M2 while for every other method it is proportional to M . However ML fusion can
also be made proportional to M by using a tabulated implementation as suggested in section 6.4.1.

The error rates obtained with the LS-LDA tree for range and alignment estimations are 3.5% and
5.8% respectively, which is in clear contrast with those obtained for weapon classification and it is
thanks to this degree of accuracy that the spatial division is able to boost the accuracy of the system.

The obtained results show a strong relationship between the spatial resolution of the classifiers
and the obtained error. From them, it is clear that the addition of spatial diversity to the system
is of the utmost importance. With the LS-LDA tree, just by adding a second node in conjunction
with the proposed fusion method, the classification error falls by almost 10% getting as low as 5.9%

when 8 nodes are used. It is worth remembering that the classifiers were trained without using any
observations of the tested guns neither the tested locations, so it is safe to say that we are working in
the most restrictive conditions that the current database allows. The proposed methodology can be
exploited with a larger number of weapon classes. For as long as a given weapon class encompasses
weapons with similar and characteristic features, such as barrel length, caliber, propeller load, pro-
jectile velocity, etc, it would be possible to differentiate those weapons as belonging to a particular
group.
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Finally, Table 6.3 shows the confusion matrix (breakdown by weapon) obtained with the pro-
posed classifier using the average fusion rule and M =1, and Table 6.4 shows that obtained with
the proposed ML fusion rule and M =8. These results show that the benefit of a multichannel setup
for gunshot classification is fairly consistent for all tested weapons. In almost every case, the classi-
fication error with the largest ensemble size is reduced significantly in comparison with the single
channel. The weapons that cause the largest amount of errors are H5, which coincidentally is the
largest caliber handgun in the database, and S3 which is the shotgun with the shorter barrel length,
thus, a larger error rate can be explained as a divergence from the common characteristics within
their class.

6.6 Known Spatial Relations

After tackling multi-observation classification on a network in which array processing is not feasi-
ble due to technical limitations, at this point we are going to assume that the various functionalities
described in the previous chapters of this thesis have been successfully implemented. This way, we
can consider that both node and source locations are known to a reasonable degree, that the network
is properly synchronized, and that it is possible to obtain the local ToAs of an acoustic event (i.e.,
local detections). In this scenario, it is not longer advisable to have the nodes estimate the relative
location of the source since it is already known. Thus, the focus will be how to take advantage of
previously obtained information in order to boost the classification.

Since we are considering that the nodes are already implementing various algorithms (at least
detection and source localization), and one of the objectives of this thesis is efficiency; the lower the
computational complexity of the classification the better for our goal. Thus, in this second scenario
we have decided to maintain the features used for the detection system, as to not to excessively over-
load the nodes. Therefore, the classification system must work with already available information
and the fusion scheme is again decision fusion.

6.6.1 Multichannel Classification

The simplest approach to multichannel classification is to combine the decision taken by the
whole ensemble at the same time instant t. Considering a network composed of M nodes, where
some global detection instant is � and each classifier provides C probabilistic outputs ymc(t), the
final decision taken by the ensemble is:

D = arg max

c

1 Mÿ

m=1
ymc(�)

2
. (6.19)

Given the short time duration of impulsive acoustic events this method of fusing decisions can prove
problematic for classification. If we were to combine the outputs of an ensemble of classifiers at the
same time instant, this would imply that by the time some of the nodes receive the transient of the
acoustic event, it is very likely for some other nodes to already be past that point, so that they are
receiving reverberations. This situation is far from ideal (specially when short time frames are used)
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given that the most reliable source of information about the event’s source is the direct signal (i.e.,
the noise transient).

The problem can be lessen by setting a time window for the classification in a similar way to that
described on section 4.4.1. The time offset between channels (i.e., TDoA) is not much of a problem
for detection since the time duration of the target acoustic events is very likely to be larger than the
TDoA between channels, thus local detectors are expected to remain active for a long enough period
of time. However, impulsive acoustic event classification is a harder problem than detection, given
that the differences between impulsive sources are far smaller than that between impulsive noises
and most other types of sound. Therefore, the output of a classifier is less likely to remain ‘steady’
for a long enough period of time to this direct approach to work. Thus, this time around, it is not
advised to combine time instants inside the window together, being preferable instead to have every
node compute an auxiliary output (i.e., time-domain decision fusion). Let TC be a temporal window
(in frames) sot that every member of the ensemble obtains a single output for each class as:

zmc = F
!
ymc(l )

"
, with: l = {l œ Z : � Æ l < � + TC}, (6.20)

where zmc is a representative score (e.g., average value, argument of the maximum, etc) for a given
class inside the time window. The final decision then becomes:

D = arg max

c

1 Mÿ

m=1
F (zmc)

2
. (6.21)

Note that this scheme is most effective when the signals are being framed with a short hop time,
since the spectral content of impulsive events significantly changes between consecutive frames,
worsening the effect of having misaligned classifier outputs.

If we consider that every node in the network is capable of obtaining the ToA of a target acoustic
event (i.e., detection onset �m), then individual classifier outputs can be aligned according to their
ToAs so that the the time offset between channels gets bypassed. This way it is possible to go back
to expression (6.19) and combine the outputs of the ensemble at the time instants corresponding
to their local ToA. However, in this particular case, we have decided to use the same features em-
ployed for detection, and unfortunately, a single frame lacks the information needed for accurate
classification. Note that in this case the feature vector includes temporal context, hence, the frame
corresponding to the ToA of the acoustic event is not the only frame that contains information about
its transient, being possible for some later output ymc(�m + t) to be the most reliable for classifica-
tion.

Therefore, we propose to use a detection-aligned decision fusion scheme in which every node
contributes a single value per class computed from the classifier output over a fixed time window.
Defining this time window as lm = {l œ Z : �m Æ l < �m + TC}, then zmc is the minimum value of
the classifier output for the cth class during the predefined TC frames an the final decision obtained
with proposed decision rule is:

D = arg max

c

1 Mÿ

m=1
arg min

lm

!
ymc(l)

"2
. (6.22)

Choosing the minimum value over the time window may seem counterintuitive. However, it is worth
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considering that since the classifier is trained using class labels that encompass a number of frames,
the true class is the most likely among all classes to remain active during the whole time window.
Additionally, the likelihood of a FP in a single frame is much higher than over the whole window,
thus, computing zmc as the mean or the maximum value of each class score during the classification
window is more prone to be affected by spurious outputs. Thus, by computing zmc as the minimum
value of each class output during the time window we are setting a tradeoff between the ability of
the classifier to recognize the class of some event during TC frames and the likelihood of having a
FP for the same amount of time.

6.6.2 Weighted Decision Fusion

We are tackling multi-observation classification of impulsive acoustic events in a spatially diverse
scenario, therefore, it is very likely for some of the classifiers to perform better than others. The
further away the source is from a microphone, the lower the SNR of the received signal, and the
higher the influence of the propagation path. Thus, without additional considerations (e.g., faulty
sensors, presence of undesired sources, etc), distance from a given microphone to the source and
SNR are good indicatives of the quality of the signal to be classified.

At this point we can consider that node locations (pm) are known, and that the location of the
source (ps) has been properly estimated, so that every node can simply compute its distance to the
source as a L2-norm: dm = ||ps ≠ pm||. Then, it is possible to weight the contribution of each
classifier to the decision fusion according to its distance to the source (similarly to [DH04]). The
standard inverse square law for point sources specifies that the received sound pressure is inversely
proportional to the square of the distance from the receiver to the source, thus we propose to use a
weighted decision fusion scheme derived from it. Taking expression 6.22 and introducing a weight
wm = 1/dm

2 to the contribution of every classifier in the ensemble, we can derive a simple distance-
based weighted decision fusion rule as:

D = arg max

c

1 Mÿ

m=1
wm arg min

lm

!
ymc(l )

"2
. (6.23)

Other than dm, the SNR of the signals can also be used to weight the decisions. SNR is defined
as the ratio of the power of the desired signal and the power of background noise. Since we do
not know neither of these elements we have to work with an approximation. Let us consider the
periodogram-based power spectral estimate of an audio stream as S(k, t), k = 1, . . . , L, where k

is the frequency bin index, and t is the frame index. If we assume that every node is capable of
estimating the ToA of some acoustic event as �m, then its instantaneous SNR can be approximated
with the following expression:

SNRm =

qL
k=1 S(k, �m) ≠ qL

k=1 S(k, �m ≠ 1)

qL
k=1 S(k, �m)

. (6.24)

For the sake of efficiency, we propose to obtain the SNR approximation from the Mel log-band
energies instead of the periodogram. Let vector xmt of length F be the Mel log-band energies
computed from the tth frame recorded by the mth microphone, and let TW be a parameter that
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controls the number of frames that are to be considered. Then the weight to be applied to the mth

classifier can be computed as:

wÕ
m =

q�m+TW ≠1
t=�m

qF
j=1 xmtj ≠ q�m≠1

t=�m≠TW

qF
j=1 xmtj

q�m≠1
t=�m≠TW

qF
j=1 xmtj

, (6.25)

Thus, replacing wm for wÕ
m in expression (6.23) yields a SNR-based fusion rule. Note that TW is

included in (6.25) to average the energy of various frames before and after �m in case a wider time
window is wanted.

Finally, since the classification is very likely to be affected both by SNR and microphone to source
distance, we propose a hybrid weighed decision fusion rule that takes these these two factors into
consideration. In a hypothetical scenario, some microphone may be close to the target source but
also affected by some undesired noise (i.e., wind) that could make its decisions unreliable, thus,
combining both proposed weighted schemes may prove beneficial. The weights for this ‘dual’ rule
are obtained simply by combining normalized versions of wm and wÕ

m, as expressed by:

wÕÕ
m =

wmqM
m=1 wm

wÕ
mqM

m=1 wÕ
m

. (6.26)

Again, plugging wÕÕ
m into expression (6.23) yields the proposed decision fusion rule. Note that there

is no need to normalize wm or wÕ
m when used independently because the argument of the maximum

function is not affected when all the elements are scaled by the same factor, and also that, the
normalization is used here just to equalize the contribution of each component.

6.7 Experimental Work and Results: Known Geometry

This section describes the experiments conducted to evaluate the performance of the proposed
multichannel impulsive sound event classification scheme as well as a discussion of the obtained
results. The evaluation was done using multichannel recordings of real impulsive acoustic events
generated with 5 different sources on a spatially diverse scenario.

6.7.1 Database Description

Evaluation of impulsive sound event classification with a known network geometry was done
with the same database used in chapters 4 and 5. As previously mentioned, the database is composed
of 12 channel recordings of 5 impulsive acoustic sources triggered at 16 unique locations. The
recorded impulsive sounds are: Firecracker explosion, Balloon pop, Compressed air gun shot, Drum
hit and Handclap. Recording took place in two sessions in which microphone locations and source
locations where maintained, adding up to a total of 160 acoustic events.

Database labeling was done manually. The labels describe the class, ‘onset’ time and ‘offset’ time
of every acoustic event. In contrast to chapter 4, where the 5 class labels where collapsed into a
single ‘event activity’ label, this time all 5 labels are used as targets for the classification system.
Figure 6.7 shows the average normalized Mel log-band energies of all the events (selected from
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Figure 6.7: Average normalized Mel log-band energies of the 5 classes included in the database with 11.6
ms frames and 5.8 ms hop length.

their onset labels) belonging to each of the 5 classes included in the database with 11.6 ms frames
and 5.8 ms hop length. For the figure it is possible to see that differences between the 5 sources are
mostly present in the lower half of the spectrum, which is somewhat representative of the ‘loudness’
of each source.

Regarding the type of impulsive transients of each source: a firecracker explosion is a blast wave,
a balloon pooping is a combination of a blast wave and a shock wave2, the sound of a compressed
air gun is a combination of a blast wave and impact noise (i.e. mechanically produced noise), and
finally a drum hit and a handclap are purely impact noise.

6.7.2 Description of the Experiments

The features used for impulsive sound classification are the same used for detection that are
described on section 4.5.2. The feature vector is composed of 20 log Mel-band energies plus 9-frame
compressed context, resulting in F = 60. Hop time between consecutive frames is 256 samples, or
approximately 5.8 ms. Note that, weights for the SNR-based approach described in section 6.6.2 are
obtained without considering the temporal context.

Training is also very similar to that of chapter 4. We consider that for any given event, both the
source location and the receiving microphone are very likely to be unknown to the system (i.e., not
included within the train samples), thus, the presented results were obtained using LOOCV over
microphone source location combinations. In total there are 192 such combinations with 2 events of
each class per combination. At every iteration of the LOOCV, the database is divided into a test set
that contains the signal captured by the microphone under test (10 events), during the tested source
location time window; and a train set that contains most of the combinations: the signals captured
with the remaining 11 microphones, during the remaining 15 source location time windows. Then,
the results for each microphone are obtained by selecting a number of output frames from the 16
source-location specific classifiers (32 events per class in total). Once again, by using this training
scheme, we try to assess how the results of the detection would generalize to a larger dataset, and
since each classifier is trained using a specific train set designed to isolate it, the results obtained

2The sound of a balloon pop is believed to be a combination of the release of internal pressure and a shock wave
produced by the contracting rubber breaking the sound barrier.
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Table 6.5: Error rate obtained by various classifiers for different decision fusion rules an different number
of microphones (M).

K-LDA (K = 6) MLP (NL = [20, 20, 5]) RndF (NT = 16)

M local-min global-mean local-min global-mean local-min global-mean

1 23.9% ±6.1 23.5% ±5.2 16.2% ±5.2 18.9% ±5.8 21.0% ±6.7 17.0% ±6.0

2 18.7% ±5.6 19.8% ±5.0 11.5% ±6.1 13.0% ±5.9 12.3% ±5.9 11.2% ±6.2

3 15.6% ±6.2 18.0% ±5.6 10.3% ±6.8 11.3% ±6.1 9.7% ±5.7 9.4% ±6.6

4 13.9% ±6.4 17.4% ±5.9 9.8% ±7.1 10.7% ±6.4 8.7% ±5.7 9.0% ±6.9

5 12.5% ±6.8 16.4% ±6.2 9.8% ±7.3 10.5% ±6.5 8.2% ±5.8 8.7% ±7.1

6 11.6% ±7.0 16.1% ±6.4 9.5% ±7.6 10.1% ±6.7 7.7% ±5.8 8.5% ±7.3

7 11.0% ±7.1 15.8% ±6.6 9.3% ±7.9 9.8% ±6.9 7.3% ±5.8 8.3% ±7.4

8 10.4% ±7.2 15.6% ±7.3 9.1% ±8.1 9.5% ±7.1 7.1% ±5.8 8.2% ±7.6

9 10.1% ±7.4 15.5% ±7.8 9.0% ±8.3 9.3% ±7.3 6.9% ±5.9 8.2% ±7.7

10 9.5% ±7.4 15.5% ±8.3 8.9% ±8.4 9.3% ±7.5 6.7% ±5.9 8.1% ±7.7

11 8.8% ±7.2 14.9% ±9.4 8.7% ±8.6 9.4% ±7.8 6.6% ±5.8 8.1% ±7.7

12 8.6% ±7.2 15.4% ±9.1 8.9% ±8.7 9.5% ±8.4 6.5% ±6.5 8.1% ±7.8

on a multichannel setup can be considered independent to one another, therefore, it is fair to use
decision fusion to obtain multichannel detection results.

The results were obtained under the assumption of perfect detection, hence, event onset labels
were used to select the frames used for the classification. Multichannel results are obtained by
averaging all the possible combinations of M = 1, . . . , 12 channels. Multichannel classification is
implemented as described on section 6.6.1 with a detection window TC = 15 samples. In contrast
to detection, this time around there are no negative observations, that is, every observation belongs
to one of 5 target classes. The evaluation metric is again error rate.

For the experiments, first we compared the performance of the K-LDA classifier proposed on
chapter 4 and two well established classifiers using two different temporal fusion schemes. The
classifiers are a RndF using NT = 16 trees, and a fully connected feedforward ANN, or MLP, with
a number of neurons per layer NL = [20, 20, 5], trained for 300 epochs, with 0.5 parameter regu-
larization, and assigning an error weight Ew = [1, 100] to the train set samples in order to counter
class imbalance. Temporal fusion on each channel was performed using the methods described in
expressions (6.21) and (6.22). We also compared the performance of various weighted decision
fusion schemes with the K-LDA classifier. During the experiments, the exact same data set divisions
were used for every classifier tested.

6.7.3 Experimental Results

Table 6.5 shows the error rate obtained by various classifiers for different decision fusion rules
an different number of microphones (M). Note that, “local-min” refers to the proposed detection-
aligned decision fusion scheme in which every node contributes the minimum value of each of
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Figure 6.8: Error rate of various time fusion methods as a function of the classification window (TC) with
the K-LDA classifier (K=6) and M = 12.

its outputs during the classification window, while “global-mean” refers to a globally-aligned (i.e.,
same time base) fusion scheme in which every node contributes the mean value of each output
during the classification window. For every ensemble size grater than one, best performance is
obtained by the RndF. The MLP is the best with a single microphone but it does not obtains the same
‘boost’ as the other tested classifiers for larger ensembles sizes. In almost every case, the proposed
decision fusion scheme outperforms the globally-aligned scheme, except for the RndF with M Æ3
where the latter works better. In general the combination of multiple channels via decision fusion
proves as a good strategy for impulsive sound event classification. The results with the proposed
fusion method with M = 12 are around 2 to 3 times better than that with a single classifier, which
demonstrates the importance of spatial diversity for this particular task. The accuracy of the K-
LDA classifier falls behind the other two tested classifiers, however, is worth remembering that even
with a larger number of classes it is still the least computationally expensive algorithm of the three.
It is worthwhile to mention that results of simpler classifiers have been dismissed due to a large
difference in performance. Just for illustrative purposes, a regular LS-LDA obtained an error rate
38% with all 12 microphones, while the K-LDA with 2 clusters obtained 31%.

Results shown on Table 6.5 were obtained with a classification window length TC = 15 samples.
Regarding this decision, due to the outputs of the classifiers being processed before the decision
fusion stage, the length of the window (together with its starting instant) and the function used
to select the representative value of each output both have a notable effect on the classification
accuracy. Figure 6.8 shows the error rate of and ensemble of 12 K-LDA classifiers using different
decision fusion schemes. From the figure it is clear that for most classification window lengths,
the proposed scheme (local detection alignment plus minimum value) is the most reliable for most
values of TC (i.e., until the window length is larger than the acoustic events). It is interesting that
the minimum value is also the best function for time fusion with globally aligned outputs, thus, this
points out at misclassifications on a few spurious frames being the most relevant problem. This claim
is also justified by the bad performance of the maximum value with either alignment. Considering
these results, the value of TC was chosen as the shorter window length offering the best performance.
Also these results prove that, at least under the tested conditions, performing decision fusion with
locally aligned signals is superior to doing so with signals sharing a common timebase.

Table 6.6 shows the error rate obtained with the K-LDA classifier (K=6) for various decision
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Table 6.6: Error rate of the proposed K-LDA classifier (K=6) for various decision fusion rules an different
number of microphones (M).

M Average Distance SNR Dual ML

1 23.9% ±6.1 23.9% ±6.1 23.9% ±6.1 23.9% ±6.1 23.9% ±6.1

2 18.7% ±5.6 17.9% ±5.8 16.3% ±6.2 15.7% ±6.2 18.2% ±5.7

3 15.6% ±6.2 14.6% ±6.1 12.8% ±6.8 12.3% ±6.8 15.2% ±6.4

4 13.9% ±6.4 12.6% ±6.4 11.6% ±6.6 10.8% ±6.7 13.6% ±6.6

5 12.5% ±6.8 11.1% ±6.6 10.3% ±6.8 9.4% ±7.1 12.2% ±6.9

6 11.6% ±7.0 10.2% ±6.8 9.7% ±7.2 8.9% ±7.4 11.4% ±7.3

7 11.0% ±7.1 9.4% ±6.9 9.2% ±7.2 8.6% ±7.5 10.8% ±7.2

8 10.4% ±7.2 8.9% ±7.2 8.9% ±7.2 8.4% ±7.5 10.4% ±7.4

9 10.1% ±7.4 8.4% ±7.4 8.7% ±7.5 8.4% ±7.7 9.9% ±7.7

10 9.5% ±7.4 8.0% ±7.1 8.4% ±7.7 8.3% ±7.8 9.3% ±7.7

11 8.8% ±7.2 7.6% ±6.8 8.1% ±8.2 8.1% ±8.3 8.4% ±7.4

12 8.6% ±7.2 7.3% ±6.8 8.3% ±7.2 8.2% ±7.0 8.6% ±7.2

fusion rules an different number of microphones (M). Note that ‘distance’, ‘SNR’ and ‘dual’ cor-
respond to the weighting schemes described by expressions (6.23),(6.24) and (6.26) respectively,
while ‘ML’ is the decision rule proposed in section 6.4. In order to use the ML rule, source to mi-
crophone distance was divided in 4 tiers, covariance matrices for every source location-microphone
combination were computed excluding the results of the microphone under test as described in sec-
tion 6.5.2. The distances used for both distance-based methods were obtained using the true source
and microphone locations.

The results presented on Table 6.6 show that the best decision fusion rule for most ensemble
sizes is the dual weight rule, while for large ensembles M Ø 9 distance-based decision fusion is
more accurate. The SNR-based rule obtains a notable ER decrease for smaller ensemble sizes but
stalls for larger ensemble sizes, while the distance-based rule offers a more even improvement for
any ensemble size. As it should be expected, the accuracy of the proposed dual weighted rule is
somewhat a combination of the improvement obtained by both rules independently, although it
seems like the SNR-based weights become more relevant for large ensemble sizes. The ML fusion
rule fails to obtain the same improvement as the simpler weighted decision fusion rules, most likely
due to the dissimilarities of the events generated at different locations not being large enough for
the classifiers of each zone to be considered as different. Additionally, in this case, segmentation
was done based on distance to the source, and given that source to microphone distance differences
are less pronounced than in the previous case (gunshot classification), it is possible that discrete
segmentation is not the best approach. In any case all of the proposed weighted schemes are able to
improve the results of standard average decision fusion.

Weighted decision fusion can also be applied to any other classifier. Figure 6.9 shows the results
obtained with the 3 tested classifiers using the average fusion rule and the proposed dual weighted
fusion rule. The weighted scheme outperforms the standard one in every case except for the RndF
with M >10. Note that error rate decrease is related to the performance of the unweighted classifi-
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Figure 6.9: Error rate of various classifiers for an increasing ensemble size with two fusion rules

Table 6.7: Confusion matrix of the K-LDA classifier (K=6) with M=1. Columns: true class, Rows:
predicted class.

Firecracker Balloon Air gun Drum Handclap

Firecracker 18.9% ±1.5 3.9% ±2.0 0.6% ±0.7 2.1% ±1.1 0.9% ±0.8

Balloon 0.4% ±0.5 7.7% ±4.0 0.7% ±0.7 1.4% ±1.4 0.1% ±0.3

Air gun 0.3% ±0.3 3.9% ±3.1 16.8% ±1.8 0.6% ±0.6 0.1% ±0.3

Drum 0.2% ±0.2 3.4% ±2.7 1.5% ±2.1 13.8% ±2.0 1.1% ±1.8

Handclap 0.2% ±0.2 0.8% ±1.1 0.3% ±0.4 2.6% ±2.7 17.9% ±4.3

cation, being notably larger for the K-LDA, so far as outperforming the MLP for M >6. The benefit
of using a weighted decision fusion scheme holds for any tested classifier. Although not shown in the
results, the error rate of a regular LS-LDA and a K-LDA with 2 clusters is reduced by approximately
3% and 7% respectively when the the dual weighted fusion rule is introduced.

Overall, the presented results show that spatial diversity obtained from an ensemble of classifiers
working with multiple observation of an acoustic event is a valuable tool for impulsive source clas-
sification, and that the performance of a multichannel classification system can be further increased
by using suitable weighted decision schemes. Additionally, the proposed system shows that it is
advisable to take advantage of previous information about the acoustic events to formulate novel
approaches to impulsive sound event classification.

Finally, Tables 6.7 and 6.8 show the confusion matrices obtained with the K-LDA classifier (K=6)
with M =1, and with M =9 using the proposed dual weighted fusion rule. The results clearly show
that some of the classes are better identified than others, specially ‘fireckacker explosion’ and ‘air
gun gunshot’, which are perfectly classified with M =9. The most problematic class is ‘balloon pop’;
even with a large ensemble it still produces a large amount of misclassifications (almost 40% of the
events). In contrast to this, ‘drum hits’ also produce a large amount of misclassifications with M =1
but performance is significantly increased with M =9 (note the difference in ‘air gun-drum hit’
confusions). This is most likely due to balloons producing a very short noise transient when popped,
making it harder to correctly classify. It is worthwhile mentioning that balloons are often used for
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Table 6.8: Confusion matrix of the K-LDA classifier (K=6) using the proposed dual weighted fusion rule
with M=9. Columns: true class, Rows: predicted class.

Firecracker Balloon Air gun Drum Handclap

Firecracker 20.0% ±0.4 1.9% ±3.4 0.0% ±0.0 0.0% ±0.0 0.2% ±0.9

Balloon 0.0% ±0.0 12.4% ±6.2 0.0% ±0.0 0.2% ±0.1 0.0% ±0.0

Air gun 0.0% ±0.0 2.6% ±3.9 20.0% ±0.3 0.0% ±0.0 0.0% ±0.0

Drum 0.0% ±0.0 2.7% ±3.9 0.0% ±0.0 18.9% ±2.0 0.1% ±0.6

Handclap 0.0% ±0.0 0.5% ±1.9 0.0% ±0.0 0.6% ±1.2 19.7% ±4.0

impulse response measurements [PKL11]. These results show again that, in general, multichannel
classification based on decision fusion is a suitable strategy for impulsive sound event classification.

6.8 Conclussions

In this chapter two efficient multichannel classification schemes for impulsive sound source classi-
fication that take advantage of spatial information have been proposed. The first method is intended
for networks lacking array processing capabilities, thus, nodes have to estimate their spatial relation
towards the source in order to lessen the impact of spatial uncertainty. The second methods takes
full advantage of some of the algorithms described throughout this thesis, therefore, every node
knows its own location as well as the source’s location, and is capable of estimating the ToA of the
acoustic event.

The main novelty resides in the use of spatial information to weight the decision taken by every
classifier in the ensemble based on different strategies. Regardless of the type of impulsive source
or the methodology used to exploit spatial diversity, the presented results show that weighted de-
cision fusion is a valuable tool for impulsive sound event classification on WASNs. The proposed
multichannel classification approaches are simple to implement, do not imply a significant compu-
tational complexity increase and data transmission requirements are fairly low. Since the proposed
classification methods rely on previous acoustic event detection, the whole system can be viewed as
a hierarchical multi-class detection system.

When the network is assumed not to be able to estimate the location of the source, spatial
diversity is exploited with a novel ML decision fusion rule that considers diversity in the classifier
ensemble. Classifier diversity comes from a modification of the K-LDA classifier proposed in chapter
4, in the form of a classification tree that uses the outcome of two binary classifiers to segment space
and select one of various spatially-specialized weapon classifiers. Then, during the decision fusion,
differences in performance between these specialized classifiers are exploited to further ‘boost’ the
system.

In the second scenario, spatial information is assumed to be known, thus, node to source distance
can be directly used to weight the decisions taken by the ensemble. Additionally, a combination of
distance-based and SNR-based weights is proposed. Adaptation of the ML rule to this scenario failed
to achieve the same performance as simpler weighted methods, thus, further research is needed in
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order to better capture how the accuracy of the classifiers changes in relation to the relative location
of the source.

It is important to remember that most work on impulsive ‘noise’ detection and classification does
not take the spatial aspect of the problem into consideration, with many proposals being developed
around examples extracted from sound libraries that are intended as audio effects and do not re-
semble real recordings of the impulsive sources they portrait. Coincidentally, the sounds used for
gunshot classification were indeed obtained from a sound library, however, in this particular case, it
is intended to serve as a source for gunshot sound design. The vendor markets this sound library as
a source of raw recordings to be processed and mixed together in order to provide a wide range of
possibilities when designing original sound effects. Sounds used in the second part of this chapter
come from the same database used on chapters 4 and 5. The database was purposely recorded for
the experiments described in this thesis, hence, we can ensure that the sound events contained on it
come from raw multichannel recordings.

Likewise in previous chapters, the possibility of having transmission errors or faulty sensors was
not considered. Additionally, for the most part, target acoustic events, have high SNR and direct line
of sight to the sensors. Therefore, future work should address less favorable conditions and consider
a wider spatial diversity, which could in part be approached by recording a more extensive database.
Muzzle blast directivity was a major point in the first part of this chapter and was not considered
on the second part since every source, excluding the compressed air gun, can be considered close
to omnidirectional. Then, a larger database should include not only more spatial diversity but also
more types of sources with different characteristics such as glass breaking, various explosive sources,
collisions, proper gunshots, etc. Some of this sources are more relevant than other for automated
acoustic surveillance, thus future work will be focused on combining detection and classification as
to produce a robust multi-class detection system capable of dealing with multiple types of sources.

6.9 Summary

The main contributions described in the present chapter of the thesis are the following:

1. An efficient classification algorithm based on the previously proposed K-LDA classifier, that
substitutes the clustering stage for a spatial estimation stage and is capable of obtaining a
competitive performance with limited computational complexity.

2. A ML decision fusion rule that considers diversity in the classifier ensemble.

3. An efficient solution to the data fusion problem for an ensemble of classifiers that uses local
detections to select the outputs employed for the multichannel fusion.

4. Various weighted decision fusion methods that take advantage of different sources of informa-
tion to improve the accuracy of the classification.

5. A multichannel impulsive sound event classification scheme capable of obtaining an adequate
performance on a spatially diverse scenario, suitable for a WASN with restricted technical
capabilities.
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The contributions described in the first half of this chapter have originated publication [P2] and
those described in the second half are being prepared for submission to a peer reviewed journal [P6].
Further details can be found in section: Publications.



CHAPTER7 Conclusions

7.1 Introduction

This chapter is divided in two parts. The first part summarizes the main contributions of the
thesis and the results presented throughout it. The second part offers a brief discussion about
possible future research derived from the presented work.

7.2 Summary of Conclusions

This thesis has presented a number of novel multichannel algorithms for impulsive sound analysis
in WASNs that address four distinct but not necessarily independent problems, namely: acoustic
event detection and classification, sound source localization and node self-localization.

This section serves as a recapitulation of the contributions derived from the research carried out
to fulfill each of the goals of this thesis. Each successive subsection bellow is related to one of the
goals of the thesis and offers a summary of contributions and some conclusions.

7.2.1 Efficient Self-localization and Synchronization

Accurate knowledge about the locations of the microphones that form an array is a critical step for
most spatial signal processing algorithms. Unfortunately, the process of determining the coordinates
of multiple microphones manually is tedious and prone to human error. Therefore, self-localization
has been an active research topic for a good number of years. Recently, focus has shifted from
traditional microphone array calibration to ad hoc acoustic sensor networks, mainly due to the high
availability and low price of portable devices that can be used to implement a WASN.

Acoustic-based self-localization methods work by combining one or more time measures taken
by every microphone (or by pairs of microphones) using some optimization algorithm, the objective
of which is to find the most probable node location given a set of observations (measurements). The
computational load associated with the solution of this problem is usually significative, although, the
complexity of the problem can have large differences depending on the particular set of conditions
set by a given method. That is, what kind of measurements are available and how many unknowns
have to be accounted for. In any case, most self-localization methods are very sensitive to outliers,
hence, without a proper strategy to asses the quality of the measurements, the convergence of the
estimation can fail due to a few large errors.

In chapter 3 we presented a closed-form active self-localization method. The algorithm assumes
that the nodes are equipped with at least two microphones and one speaker. The entire localization
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process is based on the combination of DoA and range estimates taken between node pairs and
obtained from acoustic signals without requiring prior synchronization of the nodes. The main
contribution is the ML estimator of node locations that works by treating pairwise angle and range
estimates as polar coordinates pointing towards the possible relative location of the node.

The proposed algorithm is capable of solving the self-localization problem even without prior
knowledge about the orientation of the nodes and in the presence of DoA ambiguity. However, the
presented solution to the DoA ambiguity problem takes away the benefit of having a closed-form
self-localization method. Therefore, more efficient solutions that exploit the relations between the
DoA estimates of various nodes should be explored. Although it is worth mentioning that this is only
relevant for the implementation of the proposed method with readily available devices equipped
with two microphones. The best solution, considering ad hoc hardware, is to equip the nodes
with 3 or more microphones, which would maximize efficiency by eliminating DoA ambiguity and
also increase DoA resolution. Another problem of the proposed method that can be effortlessly
eliminated using ad hoc hardware is the error introduced by the speaker not being located at the
center of the array.

The presented results show that the localization error is largely dependent on cross-correlations.
All tested algorithms obtained a mean localization error between 10 cm and 20 cm with the longest
cross-correlations. Localization errors were almost doubled in most cases with the shortest cross-
correlations due to erroneous ToA estimates. This clearly points out at time lag measurement being
a more relevant matter than the self-localization algorithm in terms of error.

In brief, the performance of the proposed algorithm is on the same scale as (or better than) other
self-localization algorithms without requiring ad-hoc hardware or synchronization between nodes,
while having a computational complexity that is assumable for current mobile processors (specially
without DoA ambiguity).

A byproduct of the proposed self-localization method is the obtention of synchronization within
the network. With a simple modification, the method used for obtaining the range estimates can
be used to estimate the clock offset between the nodes. Although, the obtained synchronization is
not without problems (most notably clock drift), thus, the use of more robust RF-based methods is
advised.

7.2.2 Multichannel Impulsive Acoustic Event Detection

The most prevalent applications of WASNs in the literature are related to automated acoustic
surveillance and almost every such application uses acoustic event detection in some form or an-
other. This type of acoustic detection systems are typically focused on one or more hazardous acous-
tic events such as gunshots, explosions, and/or other potential distress indicators such as human
screams.

In general, the kind of acoustic events that automated audio surveillance systems are set to
detect, can be catalogued as “rare” acoustic events, which implies that every node in a WASN-based
detection system needs to process their input audio stream continuously as to maximize probability
of detection. Most often than not, detection systems are based on supervised machine learning
techniques. It is important to mention that most previous work on impulsive acoustic event detection,
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does not take into consideration the spatial aspect of the problem, being commonplace to replace
real recordings of target acoustic events with sound effects extracted from sound libraries.

In chapter 4 we presented an efficient multichannel acoustic event detection scheme that takes
advantage of spatial diversity via decision fusion. The proposal is rooted on a novel classification
algorithm based on LS-LDA that manages to improve the results of regular LS-LDA by taking ad-
vantage of K-means clustering to segment the feature space so that a specialized classifier can be
trained for each of K clusters. Additionally, a ‘compressed’ feature temporal context scheme was pro-
posed, intended to increase the temporal information available to the classifier without excessively
increasing the dimensionality of the problem. The proposed temporal context scheme, progressively
reduces the length of past frames by computing a linear combination of their features.

The results obtained with the proposed classifier are close to that of more complex algorithms
while having a lower computational complexity. Furthermore, the proposed compressed temporal
context approach outperforms the classic ‘full-frame’ approach with all the tested detectors when
same feature vector length is used. The main advantage of the presented multichannel detection
system is not the improvement on the number of true detections but the improvement on false pos-
itive rejection. The FPR of the proposed detector (K-LDA with 6 clusters and compressed temporal
context) went from 21.3% when only one detector was used, to a perfect 0% when all 12 detectors
were combined.

In light of the presented results, it seems like impulsive event detection (with high SNR and at
a moderate distance) is not a difficult task, however, the problem gets increasingly difficult when
propagation path diversity is introduced. While an isolated detector may not obtain an adequate
performance in a spatially diverse scenario, the presented results clearly show that combining the
decisions of a group of spatially distributed detectors is an efficient method to improve the global
detection results. In general, the proposed impulsive sound event detection system offers a good
performance while keeping the complexity of the algorithms involved as low possible, which makes
it a good choice for automated surveillance on low-cost WASN.

7.2.3 Detection-based Sound Source Localization

Sound source localization is a classic problem of spatial signal processing. The most common
approach, when the location of the microphones is known and they share a common timebase, is
to estimate the TDoA of every available microphone pair using GCC. Localization systems are very
likely to be specialized in some type(s) of source(s), hence, source localization is typically governed
by some acoustic event detection system. However, the influence of the detection system in the
localization process is typically limited to taking the decision on when to locate a source.

In chapter 5 two methods for sound source localization based on previous impulsive event de-
tection were proposed. The first method takes advantage of the presence of a proper multichannel
sound event detector in order to use shorter signal segments that that dictated by the sound propa-
gation model for the GCC. The second method takes a different approach, it exploits the detection
capabilities of the system as to bypass the need for cross-correlations and works instead with a set
ToA estimates obtained with a double onset estimation scheme (local detection onset and event
onset).
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Both proposed methods tackle some of the problems associated with performing classical source
localization in WASN where large inter-microphone distances call for long cross-correlations that
are heavily affected by coherence loss between channels. Although, the main novelty resides in
the second method, specially in the ML estimator that works with ToA estimates. It demonstrates
how the solution to a seemingly independent problem (i.e., sound event detection) can be exploited
to formulate new solutions to a classic multichannel signal processing problem. Furthermore, the
presented results show that the ToA-based method is more reliable for the kind of signals expected
from impulsive noise sources recorded outdoors. When all 12 microphones were used, the ToA-based
method obtained an average localization of 1m while the best result of the GCC-based methods was
1.7m.

Regarding the effect of synchronization, the presented results prove that it is a main concern
for sound source localization in WASNs. Clock offsets of a few milliseconds can have a devastating
effect on the localization error, thus, tight synchronization within the network together with accu-
rate knowledge about the microphone locations are part of the basic requirements for most source
localization algorithms.

7.2.4 Efficient Sound Source Localization

Sound source localization computational complexity on large WASNs (both in physical size and
number of nodes) quickly escalates given that a sizable number of long cross-correlations needs to
be computed. Yet, the results presented in chapter 5 show that even long cross-correlations fail to
correctly capture TDoAs due to the large differences between propagation paths that make signals
captured at distant locations no longer resemble a time lagged version of one another.

The first of the source localization method presented in chapter 5 addresses this problem by
reducing the length of the signals being cross-correlated. This simple modification not only induces
an improvement on the localization results but also reduces the computational complexity and the
bandwidth requirements significantly.

However the ToA-based proposal is again the superior method. The computational complexity
of obtaining the ToA estimates is lower than that of computing the GCC used by most source local-
ization algorithms, specially if the scalability of the algorithms is taken into consideration (M ToAs
vs M(M ≠ 1)/2 TDoAs). Yet, it is worth mentioning that the minimization required to estimate the
source location is very likely the most computationally expensive part of sound source localization
algorithms, thus, development of a closed-form version of the proposed ML estimator would be very
beneficial towards efficiency.

7.2.5 Multichannel Impulsive Acoustic Event Classification

The objective of classification as part of an automated acoustic surveillance system is to tell
apart sound events signaling a potentially dangerous situation from similar but irrelevant sounds.
Impulsive sound event classification poses a harder problem than detection, given that differences
between impulsive sources are much less pronounced than differences between impulsive noise
and other sounds. Furthermore, the influence of the propagation path is a dominant factor, so
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much so that the recorded events can be completely dissimilar due to differences on the recording
environment and the relative locations of sources and receivers. Albeit, this problem can be lessen
by using a spatially diverse receiver such as a WASN. Such a device can easily provide multiple
observations of an acoustic event taken at different locations, making it possible to obtain a more
robust classification by fusing the available data.

In chapter 6 two efficient multichannel classification schemes for impulsive sound source classifi-
cation in two scenarios were proposed. The first method tackles the problem of gunshot classification
on a WASN without array processing capabilities, while the second method takes full advantage of
some of the algorithms presented in this thesis and deals with more generalist impulsive sources.

For the first scenario, since gunshot recordings present large differences depending on the prop-
agation path, we proposed a classification tree based on the K-LDA classifier that uses the outcome
of two binary classifiers to segment the space instead of clustering, in conjunction with some spe-
cialized features based on the acoustic model of gunshots. For the second scenario, multichannel
classification was carried out using the same basic elements described on 4. In order to lessen the
effect of the use of short signal frames, decision fusion was performed by first having every node
compute an auxiliary output representative of each class output during a ‘classification time win-
dow’.

Overall, the presented results show that spatial diversity obtained from an ensemble of classifiers
working with multiple observation of an acoustic event is a valuable tool for impulsive source classi-
fication that can be easily exploited using decision fusion. In both tested scenarios the results show a
similar error decrease for every classifier when more members are added to the classifier ensemble,
which clearly points at spatial diversity as a major factor for achieving good classification accuracies.

7.2.6 Classification Aided by Spatial Information

Recordings of impulsive acoustic events depend heavily on the propagation path, therefore, in
case the spatial relation between the source and the receivers is known, this information can be used
to aid the classification process by giving the decisions taken by an ensemble of classifiers a certain
degree of priority or weight.

Regarding the two methods presented in chapter 6; the first method is intended for networks
lacking array processing capabilities, thus, nodes have to estimate their spatial relation towards the
source in order to lessen the impact of spatial uncertainty. The second methods takes full advantage
of some of the algorithms proposed in this thesis, thus, node to source distances can be used directly
to weight the decisions taken by the ensemble.

The main novelty resides in the use of spatial information to weight the decision taken by every
classifier in the ensemble based on different strategies. When the network is assumed not to be able
to estimate the location of the source, spatial diversity is exploited with a novel ML decision fusion
rule that considers diversity in the classifier ensemble. Classifier diversity comes from the proposed
classification tree that uses the outcome of two binary classifiers to segment space and select one
of various spatially-specialized weapon classifiers. Then, during the decision fusion, differences in
performance between these specialized classifiers are exploited to further ‘boost’ the system. In the
second scenario, spatial information is assumed to be known, thus, node to source distance is directly
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used to weight the decisions taken by the ensemble. Additionally, a combination of distance-based
and SNR-based weights was proposed.

Regardless of the type of impulsive source or the methodology used to exploit spatial diversity,
the presented results show that weighted decision fusion is a valuable tool for impulsive sound
event classification on WASNs. In the first scenario, the classification error of the LS-LDA tree, fell
by almost 10% just by adding a second node in conjunction with the ML fusion method, getting as
low as 5.9% when 8 nodes are used. In the second scenario, error rate dropped from 23.9% with a
single K-LDA classifier to 7.3% with an ensemble of 12 classifiers and the distance-based weights.

7.3 Future Research

The research carried out during this thesis is not intended as a definitive solution to any of the
presented problems, but as a mere attempt at expanding the knowledge in the field of multichannel
audio signal processing and its application to engineering constrained problems such as WASNs.
Some of the ideas proposed in this thesis do indeed show potential for further research that could
eventually lead to new research lines. Considering the theoretical studies and the results derived in
this thesis, the next future research lines are proposed:

Assessing the quality of estimates. Results presented in chapters 3 and 5 show that the influ-
ence of spurious estimates is the main source of error for spatial signal processing algorithms.
Some outlier detection techniques deal with this problem by doing multiple evaluations each
time using a different subset of observations. However, this method is overkill, and it inher-
ently increases the computational load of an already data intensive problem. The ideal solution
would be to ‘measure’ the confidence level of individual estimates based on some metric, so
that weighted optimization could be applied. By doing so the quality of the results would be
improved without a significative impact to computational complexity. Thus, further research is
necessary in order to develop new solutions to this problem.

Obtaining ToA estimates using machine learning. In light of the good performance obtained
by the ToA-based sound source localization algorithm proposed in chapter 5, it should be pos-
sible to derive a similar methodology to work with ToA estimation during the self-localization
process. This way, long cross-correlations may be substituted by some method based on the
detection of a sequence of predetermined patterns, with the objective of lowering the compu-
tational complexity and improving the robustness of ToA estimation. Albeit this would imply
a large divergence from the classic methods used to estimate time lag, therefore, a thorough
study should take place before claiming the feasibility of machine learning based ToA estima-
tion.

Synchronization. As we have seen during this thesis, tight synchronization (ideally tens of
microseconds) is a crucial part of array processing in WASNs. It is worth mentioning that the
synchronization method presented on chapter 3 has two main weakness: clock drift and long
distances. Since nodes are subjected to clock drift, synchronization must be ‘refreshed’ period-
ically, and that can prove as a nuisance to end users due to the repeated emission of reference
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acoustic signals. Additionally, sound-based methods are not suitable for implementation when
large inter-microphone distances are involved, thus, RF-based solutions are favored. RF signals
take a little over 3‹s to travel 1km, so assuming an ad-hoc network, they could be easily ex-
ploited to obtain synchronization. There are already a number of networking synchronization
protocols available, although, new solutions tailored to the particularities of WASN can be a
valuable contribution.

Recursive detection. As we mentioned in chapter 4, sound event detection intended for acous-
tic surveillance typically deals with “rare” sound events, thus, most of the power spent on
continuously monitoring the environment is going to waste. Given that hierarchical detection
schemes are fairly popular in the literature, it is worth taking the time to study the possibility of
using a recursive detection strategy as to minimize energy consumption. Such a system would
start with a very simple detector (e.g., energy based as to avoid DFT computation) and use a
number of increasingly complex stages to obtain the final decision. Furthermore, since acous-
tic event detection is the starting point for multiple algorithms, minimizing detection energy
consumption would imply an overall efficiency improvement for the system.

Closed-form ToA-based sound source localization. Typically the most computationally expen-
sive part of sound source localization algorithms is the minimization, therefore obtaining a
closed-form solution would be a great aid towards efficiency. There are already various closed-
form solutions based of TDoA estimates, however it is worth developing a closed-form version
of the ToA-based algorithm presented on chapter 5.

Influence of network topology. All the work developed in this thesis was done considering
a fully connected network topology. It is important to notice that long distance transmission
requires more power, specially at high data-rates, thus, a fully connected topology is far from
ideal for (physically) large networks. Given that none of the algorithms proposed in this thesis
requires high transmissions rates, topology selection and routing have been overlooked, how-
ever they can be critical for other applications such as: synchronization algorithms, real-time
source-localization, beamforming, etc.

Microphone subset selection. Similarly to the previous point, all the work in this thesis was
done without considering the possibility of some nodes providing spurious information either
caused by transmission errors, faulty sensors or even spatial effects (i.e., very long distance to
the source, lack of direct line of sight, etc). Given that these problems are very likely to occur
in a real scenario, future research should address methods to detect their presence in order to
avoid their negative impact on the performance of the system. Additionally, selecting a subset
of the best signals can prove beneficial towards efficiency by means of reducing the amount
of information that needs to be processed (and/or transmitted), which is specially relevant for
algorithms with poor scalability.

Sub-array preprocessing for acoustic event detection and classification. The proposed solutions
for multichannel detection and classification were developed using a single microphone per
node. In case the nodes were equipped with a sub-array, it should be possible to use signal
enhancement techniques (e.g., beamforming, deconvolution, etc) locally without the need for
high transmission data rates or precise inter-node synchronization. In that scenario each node
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could obtain a ‘cleaner’ version of a target acoustic event which would potentially enhance the
accuracy of the system. By having a WASN composed of a group of distributed arrays instead of
single microphones a whole new group of techniques could be developed, thus further research
is greatly encouraged.

Source tracking and projectile trajectory estimation. Perhaps the only classic functionalities of
acoustic surveillance systems that were not addressed on this thesis are source tracking and
projectile trajectory estimation. These problems are closely related to sound source localization,
albeit, both of them have their own particularities. Source tracking requires continuous (or at
least periodical) sound emission such as that of a moving vehicle, thus, it is not feasible to
track most impulsive sources. Projectile trajectory estimation is a specialized technique; its
area of application is very narrow, yet it is a valuable tool nonetheless. In any case, it would
be interesting to research new efficient methods to implement these techniques on a WASN.
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