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Resumen

Entre todas las enerǵıas marinas disponibles, la enerǵıa de las olas (undimotriz)
es la que exhibe el mayor potencial futuro porque, además de ser eficiente desde el
punto de vista técnico, no causa problemas ambientales significativos. Su conversión
eficiente se basa en una considerable variedad de convertidores “WECs” (wave en-
ergy converters), que transforman la enerǵıa cinética de las olas en enerǵıa eléctrica
mediante la oscilación vertical de las olas o el movimiento lineal de éstas. Su impor-
tancia práctica radica en dos hechos: 1) es aproximadamente 1000 veces más densa
que la enerǵıa eólica, y 2) hay muchas regiones oceánicas con fuertes recursos de
olaje que están cerca de zonas muy pobladas que demandan enerǵıa eléctrica.

La contrapartida negativa se encuentra en que las olas son más dif́ıciles de carac-
terizar que las mareas debido a su naturaleza estocástica. Tal caracterización puede
llevarse a cabo esencialmente a través de dos familias de técnicas: modelos f́ısicos y
enfoques basados en datos. Los modelos f́ısicos se basan en la ecuación del balance
de enerǵıa de las olas, una ecuación diferencial que se resuelve numéricamente. Son
más precisos en la predicción de grandes dominios espaciales y temporales (dentro
de una ventana de unos pocos d́ıas) pero a costa de requerir una gran cantidad de
datos y esfuerzo computacional. Este no es el caso del segundo grupo de técnicas.
Estas se basan en series de datos medidas por boyas, radares o satélites, y abarcan
desde métodos estad́ısticos convencionales (como ARMA) hasta enfoques de Soft
Computing (SC) (métodos neuronales, difusos y evolutivos). Las técnicas SC ex-
hiben resultados similares e incluso superiores a los de los métodos estad́ısticos en
las estimaciones a corto plazo (hasta 24 h), y tienen la ventaja adicional de requerir
un esfuerzo computacional mucho menor que los métodos numérico-f́ısicos. Esta es
una de las razones por la que hemos decidido explorar el uso de técnicas de SC en
enerǵıa undimotriz. La otra se encuentra en el hecho de que su intermitencia puede
afectar a la forma en la que se integra con la red eléctrica.

Estas dos son las razones que nos han impulsado a explorar la viabilidad de
nuevos enfoques de SC en dos ĺıneas concretas de investigación en enerǵıa undi-
motriz.

En la primera ĺınea de investigación, hemos abordado el problema de reconstruir
un parámetro importante utilizado en la enerǵıa de las olas llamado “altura de ola
significativa”, Hs. Espećıficamente, nos hemos centrado en un tipo de problema
que consiste en reconstruir Hs en la ubicación de una boya de medición (fuera de
operación y cuyas medidas se han perdido) mediante el uso de parámetros del oleaje
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medidos en otras boyas cercanas. Esta situación es bastante común en ciertas oca-
siones en las que, debido a una tormenta u otro tipo de accidente, se destruye o
desactiva una boya, de modo que se pierden los datos de las olas que se teńıan que
medir con dicha boya y en esa ubicación particular. Los datos en las boyas cer-
canas se pueden usar para reconstruir los datos “perdidos” de la boya dañada. Esta
reconstrucción es importante porque, como se ha mencionado, Hs, juega un papel
clave en el diseño y operación de los WEC. Nos hemos enfrentado al problema de
rellenar los huecos o valores perdidos de Hs en el marco del aprendizaje automático
(Machine Learning, ML), en un proceso de dos pasos, que ha dado lugar a dos
contribuciones. El primero consiste en diseñar un algoritmo evolutivo h́ıbrido que
selecciona, entre los parámetros de oleaje disponibles (de las boyas cercanas), un
subconjunto más pequeño FnSP con nSP parámetros que minimiza el error de recon-
strucción. Para hacer esto, hemos propuesto un enfoque novedoso en aplicaciones
de enerǵıa marina que consiste en un Algoritmo Genético (GA: Genetic Algorithm)
que calcula la aptitud de los individuos candidatos (soluciones de prueba) en cada
generación mediante el uso de una Máquina de Aprendizaje Extremo (ELM: Ex-
treme Learning Machine). En este contexto, la ventaja clave de las ELMs cuando se
comparan con otros enfoques (redes neuronales o máquinas de vectores de soporte,
por ejemplo) es que las ELM aprenden muy rápido, lo cual es esencial en algoritmos
evolutivos basados en poblaciones, como los GAs. Esa es precisamente la razón por
la que hemos hibridado la ELM con el GA en detrimento de otros regresores alterna-
tivos. El método GA-ELM h́ıbrido propuesto genera un subconjunto FnSP de nSP

parámetros que minimiza el error cuadrático medio (RMSE) de la reconstrucción
Hs, RMSE(Ĥs) (m). Para valorar la viabilidad del algoritmo en condiciones de
oleaje distintas hemos explorado dos casos de estudio: uno en el Mar Caribe, y el
otro, en la costa atlántica oeste cerca de Florida. Los resultados sugieren que, en
ambos casos, el método funciona muy bien, seleccionando 5 parámetros (entre los 60
disponibles) y consiguiendo errores pequeños: RMSE(Ĥs) < 0.5 m en el mar Caribe,
y RMSE(Ĥs) < 0.75 m en el Atlantico Oeste.

La segunda ĺınea de investigación explorada en esta Tesis ha sido motivada de-
bido a la existencia de dos problemas mutuamente vinculados. El primero está
relacionado con la forma en que los WECs deben estar conectados eléctricamente
entre śı (formando un parque de WECs) para suministrar suficiente enerǵıa eléctrica.
El segundo aspecto está relacionado con la forma de conectar eficientemente el par-
que de WECs con la red eléctrica en la costa. Esto se debe a que la variabilidad e
intermitencia de la enerǵıa de las olas puede afectar la estabilidad de la red eléctrica.
Este segundo problema se puede englobar dentro de un marco conceptual más am-
plio, que es común a todas las enerǵıas renovables masivas (RE). En este marco más
amplio, el paradigma Smart Grid (SG) permite integrar el creciente número actual
de generadores distribuidos basados en enerǵıa renovables, sin afectar significativa-
mente la estabilidad de la red eléctrica. La novedad de nuestro enfoque es doble, en
el sentido de optimizar la robustez de la SG (nodos de conexión que generan, con-
sumen o almacenan electricidad) contra “condiciones de funcionamiento anormales”
–por ejemplo, el fallo o la rotura de un WEC (o un conjunto de ellos) causado por
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una tormenta– por (1) usar un Algoritmo Evolutivo (EA) que optimiza la estructura
de la SG modelada mediante (2) la aplicación de conceptos de la Ciencia de Redes
Complejas (CN).

Nuestro enfoque aprovecha algunas propiedades importantes del paradigma SG:
una red inteligente permite el intercambio bidireccional de enerǵıa eléctrica a escala
local, mediante la integración eficiente de generadores RE distribuidos utilizando tec-
noloǵıas de comunicación y detección inteligente. Gracias a la integración eficiente
de RE distribuidas en la red, los consumidores de electricidad también pueden con-
vertirse en productores (“prosumers”), ayudando a los usuarios finales a obtener
beneficios económicos vendiendo la enerǵıa generada en exceso. En una abstracción
similar, un Smart Wave Farm (SWF), formado por WECs y dispositivos de alma-
cenamiento de enerǵıa, se puede ver como un conjunto de nodos que intercambian
enerǵıa eléctrica a escala local. En este contexto, hemos modelado la SG como un
grafo no dirigido de modo que cada enlace (cable eléctrico) permite el intercambio
bidireccional de enerǵıa eléctrica entre los nodos.

Con el objetivo de optimizar la estructura de dicho SG contra condiciones anor-
males, hemos propuesto una nueva función objetivo (que debe minimizarse) que
combina elementos de coste, relacionados con la cantidad de cables eléctricos y
varias medidas que cuantifican las propiedades que son beneficiosas para el SG (in-
tercambio de enerǵıa a escala local y alta robustez y resiliencia). La estructura
optimizada de la SG se obtiene aplicando un EA en el que el cromosoma que codi-
fica cada grafo potencial (o individuo) es la matriz triangular superior de su matriz
de adyacencia. Esto permite adaptar completamente los operadores de cruce y mu-
tación a dicha codificación. Dado que se ha descubierto que las redes small world son
beneficiosas para las SGs, hemos propuesto una población inicial espećıfica que in-
cluye redes aleatorias y redes small world. Esto ayuda al EA propuesto a converger
rápidamente. El trabajo experimental señala que el método propuesto funciona
bien y genera una estructura óptima, sintética, no dispersa, de tipo small world,
que conduce a propiedades beneficiosas tales como la mejora tanto del intercam-
bio de enerǵıa a escala local como de la robustez y resiliencia. Espećıficamente, la
topoloǵıa óptima cumple un equilibrio entre coste moderado y suficiente robustez
frente a condiciones anormales.





Extended Abstract

Among all the available marine energies, wave energy is the most used because,
in addition to being e�cient from a technical viewpoint, it does not cause significant
environmental problems. Its e�cient conversion is based on a variety of wave energy
converters (WECs), which transform the kinetic energy of waves into electric energy
by means of either the vertical oscillation of waves or the linear motion of waves. Its
practical importance lies in two facts: 1) it is about 1000 times denser than wind
energy, and 2) there are many ocean regions with strong wave resources that are
near populated zones demanding electric energy.

The counterpart is that waves are more di�cult to characterize than tides be-
cause of the stochastic nature of waves (although they are less variable on an hourly
basis than wind). Such characterization can be carried out essentially through two
families of techniques: physical models and data-driven approaches. Physical mod-
els are based on the wave energy balance equation, a di↵erential equation which
is solve numerically. They are more accurate in forecasting over large spatial and
temporal domains (within a window of a few days) but at the expense of requiring
a huge amount of data and computational e↵ort. This is not the case of data-driven
models. These are based on data series measured by buoys, radars, or satellites.
Data-driven models involve statistical regressive methods (such as auto regressive
moving average) and Soft Computing (SC) approaches (neural, fuzzy, and evolu-
tionary methods). SC techniques exhibit similar and even superior results than
statistical methods in short term estimations (up to 24 h), and have the additional
bonus of requiring much smaller computational cost than numerical-physical meth-
ods.

Furthermore, the intermittency su↵ered by massive renewable energies (mainly
solar, wind and wave energies), in general, and wave energy, in particular, is another
problem that must be tackled in the e↵ort of e�ciently integrating wave energies in
the electricity network (or power grid).

These are the reasons that have compelled us to explore the feasibility of novel SC
approaches in wave energy applications. Specifically, in this thesis we have focused
on two research lines with applications in wave energy and its integration in the
power grid.

In the first research line we have centered on characterizing the wave energy
resource. In particular, we have tackled a problem of reconstructing an important
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parameter used in wave energy called “significant wave height”, Hs. Specifically, we
have focused on a kind of problem which consists in reconstructing the significant
wave height Hs at the location of an out-of-operation measuring buoy by using wave
parameters from other nearby buoys. This situation is quite common in certain
occasions in which, due to a storm or other type of accident, a buoy is destroyed
or deactivated, so that those wave data that had to be measured by such buoy at
that particular location are lost. Data at near buoys can be used to reconstruct
the missing data that had to be measured in the damaged buoy. This reconstruc-
tion is important because, as mentioned, Hs, plays a key role in the design and
operation of WECs. We have faced the problem of filling up missing values of Hs

within the framework of Machine Learning (ML), in a two-step process, which has
led to two contributions. The first one consists in designing a hybrid evolution-
ary algorithm that selects, among the available wave parameters (from the nearby
buoys), a smaller subset FnSP with nSP parameters that minimizes the Hs recon-
struction error. For doing this, we have proposed a novel approach in marine energy
applications consisting of a Genetic Algorithm (GA) that computes the fitness of
the candidate individuals (trial solutions) in each generation by using an Extreme
Learning Machine (ELM). In this context, the key advantage of the ELM when
compared to other ML approaches (Neural Networks, or Support Vector Machines,
for instance) is that ELMs learn very fast, this being essential in population-based
evolutionary algorithms such as GAs. This is why we have hybridized the ELM with
the GA in the detriment of other alternative ML regressors. The proposed hybrid
GA-ELM method generates a subset FnSP of nSP parameters that minimizes the
root mean square error of Hs reconstruction, RMSE(Ĥs)(m). In the e↵ort of testing
its performance in two di↵erent coastal regions, we have explored two case studies:
one in the Caribbean Sea, and the other, in the West Atlantic coast nearby Florida.
The results suggest that:

� The proposed GA-ELM algorithm works very well in the sense that it selects a
very reduced subset of parameters (nSP = 10 parameters) among the available
60 parameters. Using 5 6 nSP 6 10 parameters lead to small reconstruction
errors: RMSE(Ĥs)Caribbean . 0.50 m, and RMSE(Ĥs)Atlantic . 0.75 m.

� The selected wave parameters in subset FnSP assist other ML regressors�Extre-
me Learning Machines, Support Vector Regression (SVR), and Gaussian Pro-
cess Regression (GPR)� in reconstructing Hs. All the ML method explored
have Hs reconstruction errors below 1m in the two di↵erent locations studied:
RMSE(Ĥs) < 0.5 m in the Caribbean Sea, and RMSE(Ĥs) < 0.75 m in the
West Atlantic scenario.

As a general conclusion, the twofold approach explored in our first publication
seems to be a feasible tool to fill missing wave parameter values by using data from
neighbor buoys.

The second research line explored in this Thesis has been motivated because
of the existence of two mutually linked issues. The first one is related to the way
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in which the WECs must be electrically connected to each other (forming a WEC
farm) to supply enough electrical energy. The second aspect is related to how to
e�ciently connect the WEC farm with the on-shore power grid. This is because the
variability and intermittency of wave energy can a↵ect the stability of the power grid.
This second problem can be encompassed within a broader conceptual framework,
which is common to all massive renewable energies (REs). In this wider framework,
the Smart Grid (SG) paradigm aims at integrating the current growing number of
distributed renewable energy-based generators, without significantly a↵ecting the
stability of the power grid. The novelty of our approach is twofold, in the sense
of optimizing the robustness of a distribution SG (connecting nodes that generate,
consume or store electricity) against “abnormal operating conditions” –for instance,
the breakdown or the operation stop of a WEC (or a set of them) caused by a storm–
by (1) using an Evolutionary Algorithm, (EA) that optimizes the structure of the
SG modeled by (2) applying concepts from Complex Networks (CN) Science.

Our approach takes advantage of some important properties of the SG paradigm:
a smart grid allows for the bidirectional exchange of electric energy at the local
scale and aims at supplying reliable and safe electric power by e�ciently integrat-
ing distributed RE generators using smart sensing and communication technologies.
Thanks to the e�cient integration of distributed REs in the grid, electricity con-
sumers can also become producers (“prosumers”), helping end-users obtain economic
benefits by selling the energy generated in excess. In a similar abstraction, a Smart
Wave Farm (SWF), formed by WECs and energy storing devices, can be viewed as
a set of nodes that exchange electric energy at local scale. In this context, we have
modeled the SG as an undirected graph so that each link (electric cable) allows for
the bidirectional exchange of electric energy between nodes.

Aiming at optimizing the structure of such SG against abnormal conditions,
we have proposed a novel objective function (to be minimized) that combines cost
elements, related to the number of electric cables, and several metrics that quantify
properties that are beneficial for the SG (energy exchange at the local scale and high
robustness and resilience). The optimized SG structure is obtained by applying an
EA in which the chromosome that encodes each potential graph (or individual) is
the upper triangular matrix of its adjacency matrix. This allows for fully tailoring
the crossover and mutation operators to such encoding. Since small-networks have
been found to be beneficial for SGs, we have proposed a domain-specific initial
population that includes both random networks and small-world networks. This
assists the proposed EA to converge quickly.

The experimental work points out that the proposed method performs well and
generates an optimum, synthetic, non-sparse-like small-world structure that leads
to beneficial properties such as improving both the energy exchange at the local
scale and the robustness and resilience. Specifically, the optimum topology fulfills a
balance between moderate cost and robustness against abnormal conditions.

We would like finally to emphasize two aspects of the second publication of this
Thesis:
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� The proposed approach should be considered as a high level analysis and plan-
ning tool in the e↵ort of estimating to what extent the smart grid topology
can su↵er from vulnerabilities. It cannot and does not intend to replace the
conventional methods used by power engineers. In fact, the low level, detailed
design must be carried out using electrical engineering techniques.

� The model is su�ciently general to be applied to any set of generators and
loads (consuming energy) as well as to the Smart Wave Farm system formed
by WECs, energy storing devices, and the connection(s) to power grid.
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Chapter 1
Motivation and introduction

1.1 Motivation

Currently, the global electricity sector is facing a large-scale transition, driven ba-
sically by three inter-related and mutually reinforcing trends, which are impacting on
both the production and demand of electric energy [1]. The first one is the so-called
“de-carbonization” trend, in the e↵ort of reducing CO2 emissions by increasing at a
great extent the use of renewable energies [2] along with the electrification of the mo-
bility sector [3]. The second driving force is the “digitalization”. This is based on a
variety of impressive advances, which combine great innovations in microelectronics,
communications technologies and novel soft computing techniques [4]. Digitalization
is allowing to put into practice the concepts of Internet of Things [5] and “smart
grids” [6]. These assist in optimizing the integration of an ever increasing number
of distributed renewable energy generators, which can locally exchange the energy
they produce in excess with others nodes that consume it (“prosumers” –consumers
and producers of energy–) [7]. The third point, related to the latter, is the “decen-
tralization” [8, 9], caused by the growing number of distributed renewable energies,
the advances in energy storage [10] and the aforementioned emerging use of smart
grids.

Indeed, this profound transformation of the energy sector worldwide is an un-
avoidable necessity : one of the biggest challenges humanity is facing today is how
to use energy not only e�ciently but also environmentally friendly. This is be-
cause of its essential influence on economy [11], global warming [12, 13], climate
change [14–19], and ecosystems [20,21]. These points are stimulating great research
e↵orts not only in renewable electric energy systems [22] –including their integration
in electric networks (“power grids”) [10,23,24] and their influence on the power grid
resilience [25]– but also in the design of algorithms and procedures to estimate the
potential and exploitability of primary energy sources [26–29]. Among renewable en-
ergies, wind energy [2,30–32], solar energy [2,33] (both thermal [34] and photovoltaic
(PV) [35–38]), and solar photovoltaic-wind hybrid energy systems [39] are currently
playing a key role. Wind and photovoltaic energy systems are attracting currently
a huge interest from both the industrial and scientific communities [2, 30, 33], the
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latter being focused mainly on the search for novel energy converters [40–43].

In addition to renewable wind and solar energies, which are already being used
in a massive way in many countries [2, 30, 33], other renewable energy sources that
show a clear potential for sustainable growth are those based on marine energy. Ma-
rine or ocean energy refers to any energy obtained from oceans by means of ocean
waves, tidal movements (rise and fall), ocean (permanent) currents, and temperature
gradients [2]. Among all of them [44–49], the two energies that exhibit the greatest
potential are wave energy [50] and tidal energy [51]. These do not generate CO2 and
are potentially able to transform part of the huge energy of oceans (80,000 TWh
a year [52]) into electricity [53–57] and, as a consequence, to reduce oil imports,
a critical geo-economical concern. These are the causes why many governments
throughout the world, international institutions and companies are increasingly in-
terested in the development and deployment of marine energy systems [58–62], and,
in particular, in wave energy. The most representative examples of these scientific,
technological and industrial interests are the European Commission [2], the Nordic
Countries, Ireland and the UK, in which a number of public institutions and compa-
nies [62–64] are aiming at exploiting their tremendous wave energy resource [55,57].
For instance, the total amount of wave energy in UK and Ireland is equivalent to
approximately 50% of the total European wave energy resource [59]. The UK ma-
rine energy resource has the potential to provide about 20% of demanded electricity,
preventing the yearly emission of 30 million tonnes of CO2. The positive influence
of marine energy on economy is increasingly [65]: more than 1500 people work in
the marine energy sector of the UK, with almost £450 million economic value in
the British industry [58]. Another illustrative examples in which marine energy can
have a key role are o↵shore islands. This is because wave energy has the potential
to provide the clean electric energy demanded without significant environmental
impact, an important concern in o↵shore islands, committed to the protection of
ecological systems [66]. In addition, wave energy has continued to progress very
favorably in 2017 with novel pilot and demonstration projects in Spain, Sweden, the
United States, the Republic of Korea and China [2]. For further details about the
current situation of marine energy, the interested reader is referred to [2, 67–71].

The previous paragraphs suggest that the conversion of ocean energy into elec-
tricity could play a key role in meeting the rising worldwide energy demand, along
with mitigating climate change, diversifying the energy supply and strengthening
the economic activity in those countries with high marine energy potential [72].
However, as will be shown in the present chapter, only a small number of marine
energy deployments are currently being operated commercially [2]. Some of the
causes lie in the high costs of some marine technologies, the negative environmental
impacts on ecosystems (modifying the natural movement of water, in the case of
tidal energy), or the electric connection to the on-shore power grid without a↵ecting
its stability (in the case of wave energy, because of its stochastic and intermittent
nature), among others. In fact, there are many important and challenging aspects
from the technological and scientific point of view that remain to be solved and
that should be studied [71]. Specifically, some recent interesting reviews focus on
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integrating wave energy at large-scales [73], strategies to reduce the cost of array
of converters [74], the potential applications of small scale wave energy installa-
tions [75], the cost-based study of marine energy farms [44], the research on novel
concepts for wave energy converters [53, 76–78], the durability and control of wave
energy converters [79, 80], the modeling of ocean wave energy converters [81–83],
storage prototypes for o↵shore wave and tidal energy systems [84], general aspects
about the generation of electricity from oceans [71, 85–87], a novel methodology
to estimate the long-term power performance of wave converters [88], related eco-
logical issues [89, 90], the potential of a number of ocean regions worldwide to be
exploited [70, 91–104], the combined use of wave and o↵shore wind energy [56], the
economics of wave energy [45, 105], its social acceptance [46, 49], and political and
legal aspects in the emerging marine energy industry [106].

Thus wave energy involves a good number of issues to be researched. Although
wave energy systems do not su↵er from the problem of a↵ecting marine ecosystems
they do have two di↵erent problems related mainly to 1) the prediction of wave
phenomena, which have a stochastic nature, and 2) the e↵ective connection to the
electricity grid without appreciably a↵ecting its quality. As will be shown in this
thesis, these are the two problems the research carried out focuses on, by using novel
approaches based on soft computing methods (for the first problem [107]), and a
combination of soft computing, smart grids, and complex networks concepts (for the
second one [108]). The question that arises now is why we have focused on wave
energy to the detriment of others. This is just the purpose of the following section.

1.2 Introduction: Why wave energy?

Despite the vast potential of marine energy, not all available technologies to
transform the di↵erent types of marine energies into electricity have the same e�-
ciency, feasibility and applicability. This is because of the ever-growing importance
of environmental concerns [89,90], which along with economical [44,45,73,109], so-
cial [46,49] and technical considerations [67–71] make the decision for one or another
technology be sometimes complicated. These latter technical points are based on
the class of energy conversion involved [51,110].

In this respect, a marine energy technology may be feasible from a technical
viewpoint [71], but not adequate from an ecological standpoint (for instance, if it
adversely a↵ects a coastal ecosystem) [111]. Regarding this, there are several tech-
nologies to transform ocean energy into electrical energy. Among them, the most
important are wave energy conversion, tidal energy conversion, and ocean thermal
energy conversion. Very briefly, these technologies consist of [71, 112]:

� Ocean thermal energy converter (OTEC) is a technology that takes advantage
of the fact that there are some ocean regions with large temperature gradients
(> 15 degree Celsius) between the surface and waters less than 1 km deep [113–
116]. Regions with this property are rather scarce, and thus, the contribution
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of ocean thermal energy is much smaller than that of tidal and wave energies.
However, ocean thermal energy could be useful on a small scale in combination
with other renewable energies. For instance, a novel multi-generation system
based on an OTEC system combined with photovoltaic and thermal solar
collectors and a reverse osmosis desalination unit has been proposed to produce
desalinated water [71, 117].

� Tidal energy is a technology that is based on tidal flow and reflux. During
rising tides, a barrier traps sea water, while, during low tides, such water
accumulated by the barrier flows through a turbine, which generates electric
power [51]. The problem is that it is only suitable for those ocean regions
having high tides (> 5 meters) [71]. Although this is a simple and feasible
technology [118], however, their full-scale use could be problematic because
of the potentially severe environmental impact of modifying tides and their
related costal ecosystems [119]. See [71] for further details.

� Wave energy technology, however, does not cause significant environmental
problems. Wave energy converters (WECs) transform the kinetic energy of
wind-generated waves into electricity by means of either the vertical oscilla-
tion of waves or the linear motion of waves [110,120,121]. They exhibit some
important advantages when compared to the other converters [120, 122, 123],
namely: 1) WECs usually cause much lower environmental impacts on ecosys-
tems than tidal devices; 2) There are ideal areas (in the sense of having consid-
erable wave power density near populated regions demanding energy) in north
and west coast of Europe (Norway, UK, Ireland, Portugal), north coast of US
and Canada, southern cost of Australia, northern coast of New Zealand, Japan,
and India [102]; 3) Wind-generated wave energy (hereafter, wave energy) is the
densest renewable energy (about 1000 times more concentrated than wind en-
ergy) and is less changing on an hourly basis than wind energy [79]. More
details about these and other beneficial properties of WEC-based technologies
can be found in [47, 53, 54, 88, 111, 124–130].

Albeit wave energy exhibits the aforementioned advantages when compared to
tidal energy, however, it su↵ers, in addition to the disadvantage of intermittency, the
problem of being more di�cult to characterize than tides because of the stochastic
nature of waves [131–133] (although they are less variable on an hourly basis than
wind). Furthermore, wave energy flux can exhibit nonlinear variability, with irregu-
lar extreme events [134]. This complex variability also emerges in other weather and
climate processes, and has been characterized as multifractal [135]. As a consequence
of this complexity, both the design, deployment, and control of WECs [79,136–139]
become key points that require a characterization of the resource as accurate as
possible.

The characterization of the oceanic energy resource can be carried out essentially
through two families of techniques: physical models or data-driven models. Although
they will be reviewed in Chapter 3, we advance here some basics:
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1. Physical models are based on the wave energy balance equation [140], a di↵er-
ential equation which is solve numerically. There are several numerical wave
models depending on the numerical methods and the physical parameteriza-
tions adopted [141], as will be shown in Chapter 3.

2. Data-driven models. Data from wave stochastic processes can be basically
obtained from radars, satellites or buoys, which generate time data series.
Data-driven models use such data to forecast, for instance, wave parameters.
There are basically two data-based approaches in this field:

2.1. Statistical regressive methods [142, 143] like autoregressive (AR) model,
auto regressive moving average (ARMA), auto regressive integrated mov-
ing average (ARIMA) [144]. See [71] for further details.

2.2. Soft Computing (SC) approaches, also known, computational intelligence
(CI) methods (neural, fuzzy, evolutionary methods) [145]. Although it
will be shown in more detail in Chapter 3, in which their current state
of the art will be reviewed, we mention here in advance that SC tech-
niques [145] are artificial intelligence (AI) methods that may be useful
in wave energy problems. SC techniques have already proven to be very
useful and feasible tools in many fields of Science and Engineering, and
include Neural Computation (Neural Networks [146], Extreme Learning
Machines [147,148], Support Vector Machines [149]), Evolutionary Com-
puting [150] (Genetic Algorithms [151], Genetic Programing [152]), and
Fuzzy Computation [153]. In spite of the fact that there are more SC
approaches, the aforementioned groups of techniques mentioned are the
only ones that have been applied to wave energy problems till now, to
the best of our knowledge.

As shown in [71], data-driven methods have some advantages over numerical
models: simple modeling, smaller computational e↵ort, lack of errors arising
out of wind-to-wave conversion, and absence of exogenous data (except the
wave time series themselves) [154]. However, numerical models, which take
into account a great variety of physical phenomena, are more accurate over
large spatial and temporal domains. This analysis will be carried out in greater
depth in Chapter 3.

Within this context, in this thesis we have focused on exploring the use of SC
approaches in wave energy applications, as will be shown in the next section.

1.3 Purpose and contributions

The purpose of this thesis is to investigate the use of SC techniques applied
to wave energy. Specifically, we have focused on two case studies, whose research
contributions have been published in [107] and [108], respectively. Very briefly, these
contributions are:
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1. We have proposed in [107] a novel approach in wave energy applications that
combines a Genetic Algorithm (GA) [155] hybridized to an Extreme Learning
Machine (ELM) [156], called henceforth GA-ELM. It is able to select those
wave parameters that maximize the reconstruction of the significant wave
height, Hs, one of the most used parameters in wave energy applications.
Data have been obtained from public databases, based on buoys measure-
ments. Typically, a scalar buoy located at a point r = (x, y) on the sea surface
is able to measure, at each time instant t, the vertical water surface eleva-
tion, ⌘(r, t), leading thus to time series. Using Fourier analysis, the spectral
wave density S(f) can be computed, and, in turn, based on S(f), a number of
“integrated wave parameters”, such as the spectral moments, the significant
wave height Hs, or the mean wave period, to name a few, can also be esti-
mated [71,157]. Specifically, our GA-ELM selects (in the set of available wave
parameters in the neighbor buoys) a smaller subsets FnSP with nSP parameters
that will help an algorithm reconstruct Hs at the target buoy.

2. We have proposed in [108] a novel SC-based approach that aims at tackling –in
a general framework common to all intermittent renewable energies (mostly,
solar, wind and wave energies)– the problem of integrating them into the power
grid. The smart grid (SG) concept is a feasible technology able to e�ciently
integrate into the power grid a quickly increasing number of intermittent gen-
erators, with the target of a↵ecting as slight as possible the stability and
robustness of the grid [158]. Within this state-of-the-art framework, we have
proposed in [108] an approach whose novelty is twofold, in the sense of opti-
mizing the robustness of a distribution SG –connecting nodes that generate
(regardless of whether this is a WEC, or photovoltaic generator or a wind tur-
bine), consume or store electricity– against “abnormal operating conditions”
–for instance, the breakdown or the operation stop of a WEC (or a set of
them) within a WEC farm caused by a storm, or by intermittent generation–
by (1) using an Evolutionary Algorithm (EA) that optimizes the structure of
the SG [158] modeled by (2) applying concepts from the Complex Networks
(CN) Science.

Once the general purpose and the particular contributions have been specified,
the structure of this thesis will be as described in the following section.

1.4 Thesis structure

Taking into account all the aspects mentioned above, we have structured the rest
of this thesis as follows:

� Chapter 2 focuses on providing a solid foundation the remaining chapters
are based on. In particular, Chapter 2 pursues the twofold objective of 1)
characterizing wave processes and 2) introducing the basic concepts of WECs.
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All of them are necessary to understand and motivate the use of SC techniques
in wave energy.

� Chapter 3 describes the methodology and state of the art of SC techniques in
the field of wave energy, in the e↵ort of showing the novelty of our research.
The reason why we focus on wave energy is because it is the most relevant
marine energy, as previously explained in Chapter 2. The reason why we
address the review from the viewpoint of SC techniques is because, as will be
shown throughout the chapter, they perform (accuracy, computational e↵ort)
mostly as well (or even better) than traditional techniques. The review chapter
includes not only those works that study wave parameters (to characterize the
wave resource) but also others that focus on the design and control of WECs
using SC methods.

� Chapter 4 focuses on explaining our GA-ELM approach [107], which is able
to select those wave parameters that maximize the reconstruction of the sig-
nificant wave height at a missing buoy’s location by using wave data from
nearest buoys. The method and the results described in this chapter have
been published in [107].

� Chapter 5 has been motivated by two important, mutually interrelated points
that, until such a chapter, had not yet been addressed in this thesis: 1) how sev-
eral WECs should have to be electrically interconnected to each other (forming
a WEC farm), and 2) how the WEC farm should be connected to the electric
network (or “power grid”) [159–161].

⇧ With respect to the first point, the main reason why WECs are electri-
cally connected with each other is that a single standalone WEC cannot
generate su�cient electric power for commercial-scale grid integration.
Although linked WECs help soften the fluctuation of electric power asso-
ciated to wave variability, such fluctuation is still important and can a↵ect
the quality of the power grid. A feasible solution consists in using electric
energy storage systems, embarked on-board or shared among WECs in
the farm, aiming to smooth the produced electric power without reduc-
ing energy e�ciency [161, 162]. Thus, conceptually, a WEC farm can be
considered as a set of nodes (either generating or absorbing electricity)
connected following certain design criteria [159,161,163].

⇧ Regarding the second aspect, the electric connection of WEC farms to
on-shore power grid [159–163], aims at seamlessly integrating it into the
power grid. To do this, wave farms should become into “smart wave
farms” (SWFs). The SWF approach allows for predicting waves using
in-ocean sensors and forecasting algorithms. These predictions in turn
can be used to: 1) adapt the WECs’ energy capture, 2) make e�cient
energy storage decisions [164], and 3) control the quality of the power
that the SWF injects into the on-shore power grid. The final goal is to
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integrate them smoothly to the electric grid [159, 161, 163]. The vari-
ability and intermittency of wave energy can be encompassed within a
broader conceptual framework, which is common to all massive renewable
energies. In fact, variability and intermittency are the two most serious
problems that the emerging SG technology [158] aims to face. The SG
concept is able to e�ciently integrate into the power grid a rapidly in-
creasing number of intermittent generators, with the target of a↵ecting
as slight as possible the stability and robustness of the grid [158].

The SWF and its connection to the on-shore power grid can be viewed as a SG
whose structure needs to be optimized against random failures or abnormal
operating conditions –for instance, intermittent generation or the breakdown
or the operation stop of a WEC (or a set of them) within a WEC farm caused
by a storm–. The novelty of Chapter 5 is twofold, in the sense of optimizing
the robustness of such SG (connecting nodes that generate, consume or store
electricity) against abnormal operating conditions by (1) using an EA that
optimizes the structure of the SG modeled by (2) applying concepts from the
Complex Networks Science. The model and results of this chapter have been
published in [108].

� Chapter 6 finally summarizes the main results and suggests future research
lines.

A final aspect that we would like to emphasize here is that the structure of
this doctorate thesis has been designed so that the reader can study each chapter
separately, according to his/her interests and/or previous background. Figure 1.1
represents the structure of chapters in which we have organized this thesis and
indicates possible reading sequences. For example, a reader who is an expert in wave
energy can go directly from the motivation and introduction in Chapter 1 to Chapter
4. This sequence has been represented by a solid line in Figure 1.1. Conversely, if the
reader is an expert in SC but it is not in wave energy, he/she needs to read Chapter
2 (dashed line) before going directly to the chapter to Chapter 4 or to Chapter 5.

That is, the thesis structure represented in Figure 1.1 helps the reader specialized
in wave energy or in SC leap directly to Chapter 4 (GA-ELM approach to Hs

reconstruction) or to Chapter 5 (EA optimizing the structure of the SWF combining
SG and CN concepts) without necessarily having read Chapter 2 (wave energy and
WECs characterizations) or Chapter 3 (review and background of SC methods in
wave energy applications).

With this approach, each of the chapters has been designed to stand by itself as
far as possible.
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Chapter 1
Motivation and Introduction

Chapter 2
Fundamentals and review of 
marine energies and wave 

energy converters

Chapter 3
Fundamentals and review 
of Soft Computing applied 

to wave energy.

Chapter 4
proposes a hybrid approach that 

combines a Genetic Algorithm and an 
Extreme Learning Machine to 

reconstruct the significant wave height 
at a missing buoy’s location by using 

wave data from nearest buoys. 

Chapter 5
models the smart wave farms and its 

connection to the on-shore power grid 
as a smart grid, whose structure is  

optimized by combining Evolutionary 
Algorithms and Complex Networks 

concepts.

Chapter 6
summarizes the main results 
and suggests future research 

lines

Figure 1.1: Representation of the structure of the thesis. The dashed lines represent
optional reading sequences. In those cases in which the reader is an expert in either
wave energy or in soft computing algorithms, he/she can read directly Chapter 4 or
Chapter 5 without having read before the Chapter 2 or Chapter 3.





Chapter 2
A Brief Introduction to Wave

Energy

2.1 Introduction

As motivated in Chapter 1, nowadays there is a serious concern worldwide about
the e�cient and ecological use of energy because of its key e↵ect on economy [11],
global warming [12, 13], climate change [15–19], and ecosystems [20, 21]. These
elements are fostering great research e↵orts not only in renewable electric energy
systems [22] – including their integration in power grids [10,23,24] and influence on
grid resilience [25] – but also in the design of algorithms and methods to estimate the
potential and exploitability of primary energy sources [26–29]. Among renewable
energies, wind energy [31, 32], solar energy (both thermal [34] and photovoltaic
(PV) [35–38]), and solar photovoltaic-wind hybrid energy systems [39] are currently
playing a key role. Wind and photovoltaic energy approaches attract a huge interest
from both the industrial and scientific community, the latter being focused on the
search for novel energy converters [40–43].

However, we have also discussed in Chapter 1 that there are other renewable en-
ergies that despite their great potential are not being used with the same intensity
as wind and photovoltaic energies. This is just the case of marine energies [44–49],
especially, wave [50] and tidal [51] energies. Marine energies could become very
important because they do not generate CO2, are potentially able to transform
part of the huge energy of oceans (80,000 TWh a year [52]) into electricity [53–57],
and reduce oil imports, a crucial geo-economical issue. These are the reasons why
many governments, international institutions and companies are increasingly inter-
ested in the development and deployment of marine energy systems [58–62], and,
in particular, in wind-generated wave energy. The most representative example of
this technological and industrial interest is occurring in the British islands, where a
number of public institutions and companies [62–64] are aiming at exploiting their
tremendous wave energy resource [55, 57]. The total amount of wave energy in UK
and Ireland is estimated is equivalent to approximately 50% of the total European
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wave energy resource [59]. The UK marine energy resource has the potential to
provide 20% of demanded electricity, preventing the yearly emission of 30 million
tonnes of CO2. The positive influence of marine energy on economy is increasingly
(specially in Scotland [65]): over 1500 people work in the UK marine energy sector,
with almost £450 million economic value in the British industry [58]. Another il-
lustrative examples in which marine energy can have a key role are o↵shore islands.
This is because marine energy has the potential to provide the clean electric energy
demanded without significant environmental impact, an important concern in o↵-
shore islands, committed to the protection of ecological systems [66]. For further
details about the current situation of marine energy, the interested reader is referred
to [67, 69,71].

These features illustrate the growing magnitude of marine energy, from both
scientific, technological, and socio-economical viewpoints [71]. Specifically, there are
many recent interesting works focused on integrating wave energy at large-scales [73],
strategies to reduce the cost of array of converters [74], the potential applications
of small scale wave energy installations [75], the cost-based study of marine energy
farms [44], the research on novel concepts for wave energy converters [53, 76–78],
the durability and control of wave energy converters [79,80], the modeling of ocean
wave energy converters [81–83], storage prototypes for o↵shore wave and tidal energy
systems [84], general aspects about the generation of electricity from oceans [71,85–
87], a novel methodology to estimate the long-term power performance of wave
converters [88], related ecological issues [89, 90], the potential of a number of ocean
regions worldwide to be exploited [70,91–104], the combined use of wave and o↵shore
wind energy [56], the economics of wave energy [45,105], its social acceptance [46,49],
and political and legal aspects in the emerging marine energy industry [106].

Despite the booming of publications in marine energy, however we have men-
tioned in Chapter 1 that not all the available technologies have the same feasibility
and applicability [71]. This is because of the key role that environmental con-
cerns [89, 90], and economical [44, 45, 73, 109] and social aspects [46, 49] play along
with technical considerations [71]. These latter are related to the class of energy
conversion involved [51, 110]. A conversion technology may be feasible from a tech-
nical viewpoint [71], but not adequate from an ecological standpoint (for instance,
if it adversely a↵ects a coastal ecosystem) [111].

As explained in more detail in Chapter 1, each of the marine energy converters
has advantages and disadvantages [71], and its potential use is a balance between
pros and cons. On the one hand, ocean thermal energy converters –which take
advantage of the fact that there are ocean regions with large temperature gradients
(> 15 degree Celsius) between the surface and waters less than 1 km deep– cannot
be used massively because regions with this property are scarce. On the other hand,
tidal energy, based on tidal flow and reflux, is only suitable for those ocean regions
having high tides (> 5 meters) [71]. As described in Chapter 1, during rising tides,
a barrier traps sea water, while, during low tides, such water accumulated by the
barrier flows through a turbine, generating thus electric power [51]. Although this
is a feasible technology [118], however, its mass use could modify tides and currents
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and, consequently, a↵ect negatively their related costal ecosystems [71, 119]. So,
among the three main marine technologies, wave energy is the one that exhibits
the greatest potential for practical application, taking into account a global positive
balance between advantages and disadvantages.

Wave energy thus exhibits a good balance between e�ciency and environmental
protection since it does not cause significant environmental problems. Wave energy
converters (WECs) transform the kinetic energy of wind-generated waves into elec-
tricity by means of either the vertical oscillation of waves or the linear motion of
waves [110, 120, 121]. They exhibit some important advantages when compared to
the other converters [120,122,123]: 1) WECs usually cause much lower environmen-
tal impacts on ecosystems than tidal devices; 2) There are ideal areas (in the sense of
having considerable wave power density near populated regions demanding energy)
in north and west coast of Europe (Norway, UK, Ireland, Portugal), north coast of
US and Canada, southern cost of Australia, northern coast of New Zealand, Japan,
and India [102]; 3) Wave energy (hereafter, wave energy) is the densest renewable en-
ergy (about 1000 times more concentrated than wind energy) and is less changing on
an hourly basis than wind energy [79]. More details about these and other beneficial
properties of WEC-based technologies can be found in [47, 53,54,88,111,124–130].

Though wave energy has the aforementioned advantages when compared to tidal
energy, however the problem is that waves are more di�cult to characterize than
tides because of the stochastic nature of waves [131–133] (although they are less
variable on an hourly basis than wind). Furthermore, wave energy flux can exhibit
nonlinear variability, with irregular extreme events [134]. This complex variability
also emerges in other weather and climate processes, and has been characterized as
multifractal [135], which are outside the scope of this thesis. As a consequence of
such complexity, both the design, deployment, and control of WECs [79, 136–139]
become key points that require a characterization of the resource as accurate as
possible.

As pointed out in the previous paragraphs, marine energy encompasses a con-
siderably extensive set of very di↵erent aspects that require a strong background.
This is the reason why the motivation of the present chapter consists in providing a
solid foundation on which the remaining chapters can be supported. In particular,
this chapter pursues the twofold objective of 1) characterizing wave processes and 2)
introducing the basic concepts of WECs. With these considerations in mind, and in
the e↵ort of making this chapter stand by itself, its structure is as follows. Section
2.2 starts by presenting the wave energy resource and some key wave parameters.
The significant wave height (Hs) and wave energy period (Te) are the most impor-
tant in wave energy applications. Understanding the physical meaning of these and
other parameters will assist us in better explaining the operation of WECs (Section
2.3), and in motivating the need for using SC strategies, whose main concepts, for
the sake of clarity, will be postponed and introduced in Chapter 3. Finally, Section
2.4 completes the chapter with a summary of the main conclusions.
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2.2 Wave energy resource: a short introduction

Put it simple, when planning the deployment of a WEC (and arrays of WECs
[165, 166]), it is essential to previously characterize, as accurately as possible, the
amount of wave energy available in such particular location. The underlying funda-
mentals are as follows.

2.2.1 Wave energy resource: fundamentals

The wave energy resource in a region is caused by both local and far winds
blowing over the ocean surface, which transports the wave energy (up to 95% of the
this energy is between the water surface and one-quarter of its wavelength below it
[167]). Focusing thus our attention on the water surface, and within the framework of
the linear wave theory, the vertical wave elevation, ⌘(r, t), at a point r = (x, y) on the
sea surface at time t can be assumed as a superposition of di↵erent monochromatic
wave components [157, 168–170]. This model is appropriate when the free wave
components do not vary appreciably in space and time (that is, statistical temporal
stationarity and spatial homogeneity can be assumed [170]).

In this model, the concept of “sea state” refers to the sea area and the time inter-
val in which the statistical and spectral characteristics do not change considerably
(statistical temporal stationarity and spatial homogeneity). The total energy of a
sea state is the combined contribution of all energies from di↵erent sources. The
“wind sea” occurs when the waves are caused by the energy transferred between the
local wind and the free surface of the sea. The “swell” is the situation in which the
waves have been generated by winds blowing on another far area (for instance, by
storms), and propagate towards the region of observation. Usually, sea states are
the composition of these two pure states, forming multimodal or mixed seas.

In a given sea state, the wave elevation ⌘(r, t) with respect to the mean ocean
level can be assumed as a zero-mean Gaussian stochastic process, with statistical
symmetry between wave maxima and minima. A buoy at a point rB can take
samples of this process, ⌘(rB, tj) j = 1, 2, · · · , tMAX, generating thus a time series
of empirical vertical wave elevations. The Discrete Fourier Transform (DFT) of this
sequence, using the Fast Fourier Transform (FFT) algorithm, allows for estimating
the spectral density S(f). Its spectral moments of order n can be computed as

mn =

Z 1

0

fnS(f)df, (2.1)

and help compute many wave parameters, as will be shown in Subsection 2.2.3

Once S(f) has been estimated, wave energy flux, a first indicator of the amount of
wave energy available in a given area for WECs deployment, can also been estimated.
This is just the purpose of the next section.



Wave energy resource: a short introduction 15

2.2.2 Resource: Wave energy flux

Wave energy flux or power density per meter of wave crest [171–177] can be
computed as

P =
⇢g2

4⇡

Z 1

0

S(f)

f
df =

⇢g2

4⇡
m�1 =

⇢g2

4⇡
H2

s · Te (2.2)

where ⇢ is the sea water density (1025 kg/m3), and g the acceleration due to gravity.
Expression (2.2), for Hs in meters and Te in seconds, leads to P = 0.49 · H2

s · Te

kW/m, and helps engineers estimate the amount of wave energy available when
planning the deployment of WECs at a given location.

The significant wave height Hs and the wave energy period Te can be computed
as shown in Subsection 2.2.3.

2.2.3 Computing some useful wave parameters

The objective of this section is to present, in a coherent and organized way, the
parameters that will be used in this thesis. The main wave parameters are:

� The significant wave height,

Hs = 4(m0)
1/2, (2.3)

is the parameter related to the wave height that is most used in wave energy
(in combination with Te) and in the design of ships and marine structures
(dams, oil platforms, etc.) and coastal protection (beaches, etc.).

� The wave energy period, which can be computed by using, among others, the
estimator T�1,0 [171] as

Te = T�1,0 =
m�1

m0

, (2.4)

is an estimate of the average period used in the design of turbines for wave
energy conversion.

� The spectral moments m�1, m0, m1, and m2, whose general definition has been
stated by Expression (4.4). They provide information on di↵erent statistical
and physical characteristics of waves. For instance, m0 is the variance of the
wave elevation.

� The peak period is defined as

Tp = 1/fp, (2.5)

where fp is the spectral peak frequency (the frequency where the spectrum
S(f) reaches its maximum value).



16 Wave energy resource: a short introduction

� The average zero-cross wave period:

Tz =

r
m0

m2

(2.6)

� The mean periods Tm01, Tm02 and Tm�10 are defined as

Tmxy =
mx

my

, (2.7)

mx and my being spectral moments (Expression (4.4)). These mean periods
are important because:

1. Tm01 is an estimator of the mean period used in the study of the giant
waves and wave forecast.

2. Tm02 is an estimate of the mean period used in the design of marine
structures.

3. Tm�10 has already been defined in (2.4) and is one of the feasible esti-
mators for Te, the wave energy period. It is an estimation of the mean
period used in turbine design calculations for wave energy extraction.

� The Goda’s peakedness parameter [178], which can be computed as [170]

Qp =
2

m2
0

Z 1

0

f · S2(f) · df, (2.8)

has the potential to describe the statistical features of consecutive wave heights
[178].

� The Longuet-Higgins spectral bandwidth (or spectral narrowness parameter),
⌫, defined as [179]

⌫ =

r
m2 · m0

m2
1

� 1, (2.9)

quantifies the degree to which spectral energy spreads over the frequency range.

� The spectral width parameter [180]

Sp = ✏ =

s
m0m4 �m2

2

m0m4

(2.10)

� The wave height correlation coe�cient, �, is a parameter that measures waves
grouping properties (a property in which the waves tend to propagate forming
high waves groups followed by lower waves). It can be computed using [179,
181,182]
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� =
E()� (1� 2)K()/2� ⇡/4

1� ⇡/4
(2.11)

where E() and K() are the complete elliptic integrals of first and second
kind, respectively, and  parameter can be estimated [179] as

 =

����
1

m0

Z 1

0

S(f) · ei2⇡fTCdf

���� , (2.12)

TC being a characteristic time that can be estimated by using either the Tm01

or Tm02.

In this work, �01(�02) and 01(02) represent the values of � and  when using
Tm01(Tm02), respectively.

Understanding the need for applying SC techniques to the design, deployment
and control of WECs (to maximize power conversion) requires to have some knowl-
edge about the way they work. This is just the purpose of the following subsection.

2.3 Wave energy converters

2.3.1 Classification and description

As pointed out in [71, 112], there are many di↵erent WECs [54, 79, 88, 111, 125–
128,130,137,167,183]: there are more than 1000 WEC-related patents and about 100
projects at di↵erent degree of development. However, only a small fraction of these
projects have been deployed and tested in oceans. Since there is a great variety of
WECs, their classification can be tackled from di↵erent viewpoints and complexity
levels, and there is no unanimity of what is the most appropriate one [71,167].

A simple, first classifying viewpoint is related to water depth and location, lead-
ing to “shoreline”, “near-shore”, and “o↵shore” WECs. Shoreline WECs, situated
near the electric grid, are the easiest to maintain, and exhibit the lowest prob-
ability of being destroyed under extreme conditions, because waves have usually
lower energy near the coast than o↵shore. However, this also leads to the disadvan-
tage of producing lower electric power. The second class corresponds to nearshore
devices. They are located in relatively shallow waters (a depth of less than one-
quarter wavelength [167] is one of the criteria used, although, again, there is no
general agreement), and produce less energy than o↵shore devices. Finally, o↵shore
WECs are in deep waters, and can generate more energy because of the greater
energy of deep waters. The negative counterpart is that o↵shore WECs have to be
designed to endure the most extreme waves, being thus considerably more di�cult
to construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical part
that is moved by waves, absorbing their energy: “large” absorbers (flag-like), as the
one shown in Figure 2.1 (a), and “point absorbers” (Figure 2.1(b)).
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Sea surface
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[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].

In this respect, a simple, first classifying viewpoint is related to water depth
and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
ever, this also leads to the disadvantage of producing lower electric power.
The second class corresponds to nearshore devices. They are located in rel-
atively shallow waters (a depth of less than one-quarter wavelength [112] is
one of the criteria used, although, again, there is no general agreement), and
produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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ever, this also leads to the disadvantage of producing lower electric power.
The second class corresponds to nearshore devices. They are located in rel-
atively shallow waters (a depth of less than one-quarter wavelength [112] is
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produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.
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absorber” (Fig.2 (c)), which absorbs energy from all directions.
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and the di↵erent approaches the authors adopt.
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In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI

10

3 Wave energy converters: a short introduction

Subsea pipeline

to the cost facility

There is a huge variety of wave energy converters [77,81,79,80,26,82], [74,128],
[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].

In this respect, a simple, first classifying viewpoint is related to water depth
and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
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(a)

There is a huge variety of wave energy converters [77,81,79,80,26,82], [74,128],
[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].
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and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
ever, this also leads to the disadvantage of producing lower electric power.
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produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
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3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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“Large” absorber

There is a huge variety of wave energy converters [77,81,79,80,26,82], [74,128],
[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].

In this respect, a simple, first classifying viewpoint is related to water depth
and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
ever, this also leads to the disadvantage of producing lower electric power.
The second class corresponds to nearshore devices. They are located in rel-
atively shallow waters (a depth of less than one-quarter wavelength [112] is
one of the criteria used, although, again, there is no general agreement), and
produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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“Point” absorber

There is a huge variety of wave energy converters [77,81,79,80,26,82], [74,128],
[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].

In this respect, a simple, first classifying viewpoint is related to water depth
and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
ever, this also leads to the disadvantage of producing lower electric power.
The second class corresponds to nearshore devices. They are located in rel-
atively shallow waters (a depth of less than one-quarter wavelength [112] is
one of the criteria used, although, again, there is no general agreement), and
produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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Seabed

There is a huge variety of wave energy converters [77,81,79,80,26,82], [74,128],
[91,84,112,129,52]: over 1000 WEC-related patents and 100 projects at di↵er-
ent degree of development. However, only a small portion of these projects have
been deployed and tested in oceans. Since there is a great variety of WECs,
their classification can be tackled from di↵erent points of view and levels of
complexity, and there is no unanimity of what is the most appropriate one
[112].
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and location, leading to “shoreline”, “near-shore”, and “o↵shore” WECs. Shore-
line WECs, situated near the electric grid, are the easiest to maintain, and
exhibit the lowest probability of being destroyed under extreme conditions,
because waves have usually lower energy near the coast than o↵shore. How-
ever, this also leads to the disadvantage of producing lower electric power.
The second class corresponds to nearshore devices. They are located in rel-
atively shallow waters (a depth of less than one-quarter wavelength [112] is
one of the criteria used, although, again, there is no general agreement), and
produce less energy than o↵shore devices. Finally, o↵shore WECs are in deep
waters, and can generate more energy because of the greater energy of deep
waters. The negative counterpart is that o↵shore WECs have to be designed
to endure the most extreme waves, being thus considerably more di�cult to
construct/manufacture and maintain.

A second viewpoint to classify WECs is based on the size of the mechanical
part that is moved by waves and that captures their energy: “large” absorbers
(flag-like, as the one shown in Figure 1.(a) and (b)), and “point absorbers”
(for example, the buoy-like in Figure 1(b) and (c)).

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
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of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
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Figure 2.1: Illustration of the second classifying criterium for WECs: large (a) vs
point (b) absorbers.

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “attenu-
ator” (Figure 2.2.(a)), perpendicular or “terminator” (Figure 2.2.(b)), and “point
absorber” (Figure 2.2 (c)), which absorbs energy from all directions.

Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

“attenuator”

Wave direction

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
this paper, and only pursues to make the paper stand by itself and motivate
the need for CI techniques. A comprehensive description of these devices can
be found in [84]. Other illustrative tutorials on WECs are [112,129,131].

3.1 Attenuator WEC

As shown in Fig. 2(a), an attenuator is a “large” floating WEC that works
parallel to the (predominant) wave direction, and, put it simple, surfs the
waves [112,43]: as the waves pass, the device absorbs energy from the rela-
tive movement between the di↵erent components it consist of. The “Pelamis”

Point absorber

Wave

Wave

 direction

(a)

(b) (c)

“attenuator” or 
 parallel to the wave 

“terminator”
perpendicular to 
the wave

Wave direction

Point absorber
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to the wave)

Wave
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Fig. 2. Illustration of the third classifying criterium (attenuator, terminator, point

absorber). (a) Attenuator WEC: parallel to the predominant wave direction. (b)

Terminator WEC: perpendicular to the predominant wave direction. (c) Point ab-
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Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or “at-
tenuator” (Fig.2.(a)), perpendicular or “terminator” (Fig.2.(b)), and “point
absorber” (Fig.2 (c)), which absorbs energy from all directions.

“attenuator”

Wave direction

As mentioned, there is no consensus about what can be considered the most
appropriate classification. See for instance the classifications in [84,112,129,130]
and the di↵erent approaches the authors adopt.

In this context, we have considered a combination of viewpoints, similar to
that of [43], which will assist us in clearly describing those WECs for which CI
technologies are currently being used. The description below (subsections 3.1,
3.3, 3.4,3.5, 3.6, and 3.7) is not exhaustive, what would be out of the scope of
this paper, and only pursues to make the paper stand by itself and motivate
the need for CI techniques. A comprehensive description of these devices can
be found in [84]. Other illustrative tutorials on WECs are [112,129,131].

3.1 Attenuator WEC

As shown in Fig. 2(a), an attenuator is a “large” floating WEC that works
parallel to the (predominant) wave direction, and, put it simple, surfs the
waves [112,43]: as the waves pass, the device absorbs energy from the rela-
tive movement between the di↵erent components it consist of. The “Pelamis”
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Fig. 2. Illustration of the third classifying criterium (attenuator, terminator, point

absorber). (a) Attenuator WEC: parallel to the predominant wave direction. (b)

Terminator WEC: perpendicular to the predominant wave direction. (c) Point ab-

sorber: it captures energy from all directions.
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Figure 2.2: A simple representation of the third classifying criterium: (a) Attenuator
WEC: parallel to the predominant wave direction. (b) Terminator WEC: perpen-
dicular to the predominant wave direction. (c) Point absorber: it captures energy
from all directions.

As mentioned, there is no consensus about what can be considered the most
adequate classification. In this respect, it is illustrative to see, for instance, the
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classifications in [47, 130, 167, 183, 184] and the di↵erent approaches the authors
adopt.

In the present chapter, we have considered a combination of viewpoints, similar
to that of [60], which will assist us in clearly describing those WECs for which SC
technologies are currently being used. The description below (Subsections 2.3.2,
2.3.4, 2.3.5,2.3.7, 2.3.8, and 2.3.6) is not exhaustive (contains only the most used
WECs), and only pursues to make the thesis stand by itself and to motivate the
need for SC techniques. A comprehensive description of these devices can be found
in [130]. Other illustrative tutorials on WECs are [167, 183, 185]. There are recent
works that study electrical topics of WECs [128, 166, 186], general techniques is-
sues [111], control techniques [79,138,139], and models for oscillating-water-column
WECs [129]. All these aspects, extremely technical, are out of the scope of this
thesis. In this regard, the sections that follow only seek to introduce the concepts of
the most used WECs that are strictly necessary for the achievement of the purposes
of this thesis. The reader interested in more in-depth details of WECs can refer to
the references listed above.

2.3.2 Attenuator WEC

As shown in Figure 2.2 (a), an attenuator is a “large” floating WEC that works
parallel to the (predominant) wave direction. It works as follows [60, 167]: as the
waves pass, the device absorbs energy from the relative movement between the dif-
ferent components it consist of. The “Pelamis” WEC, illustrated in Figure 2.3, is the
most representative example of attenuator WEC. It is made up of semi-submerged
cylindrical structures, which are attached by joints that allow them flexing in the
represented two di↵erent directions: vertical (Figure 2.3 (a)) and horizontal (Figure
2.3 (b)). As waves go along this structure, its sections fold, and the relative move-
ment between its parts is converted into electricity by means of hydraulic power
take-o↵ systems housed inside each joint [60,130,167]. The generated electric power
is transmitted to shore by using subsea cables [71].

2.3.3 Oscillating Wave Surge Converter

Figure 2.1 (a) shows an Oscillating Wave Surge Converter (OWSC). It consists
of a large, flag-like absorber hinged to the seabed (at depths of between 10 and
15 meters), and placed perpendicular to the prevailing wave direction (Figure 2.2
(b)). The hinged absorber swings backwards and forwards in the waves, driving two
pistons. Thanks to a subsea pipeline, these pistons inject high pressure water to the
shore-based electric generator. This simple concept exhibits some important advan-
tage [71]: 1) The mechanical and the electric components are separated from each
other, what makes the shore-based electricity generation be extremely reliable. 2)
The mechanical part exhibits a superb survivability and is able to work even under
extreme storms. 3) It has a minimal ecological impact, which is becoming of great-



20 Wave energy converters

est importance. Finally note that, according to the third classification mentioned
(Figure 2.2.b), the OWSC is a terminator WEC since its mechanical component is
perpendicular to the predominant wave direction.
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Figure 2.3: Simplified structure of the attenuator WEC called Pelamis. (a) Side
view: vertical flexing as it surfs the passing wave. (b) Top view: horizontal flexing.

2.3.4 Point absorber

A point absorber WEC is a device that has small dimensions when compared to
the incident wavelength. As represented in Figure 2.1 (b), a point absorber WEC
is a floating structures that heaves up and down on the sea surface. Because of its
small size, wave direction is not important for it [167], or alternatively, it is able to
absorb energy from all directions via its movements at the water surface (Figure 2.2
(c)).

2.3.5 Submerged pressure di↵erential WEC

A submerged pressure di↵erential WEC consists of a structure submerged near
the sea surface, like the Archimedes Wave Swing (AWS) represented in Figure 2.4.
It works as follows. The motion of waves makes the sea level move up and down,
producing a changing di↵erential of pressure through the device. The varying pres-
sure thus pumps a fluid through a system to generate electricity. They are usually
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Figure 2.4: Representation of the way the AWS works. Sea level move up (a) and
down (b), producing a changing di↵erential of pressure through the device.

2.3.6 Rotating mass-based WECs

According to [71], Figure 2.5 will assist us in explaining how these WECs work.
In these devices, the swaying motion caused by waves induces the rotation of a
gyroscope (or an eccentric weight) inside the device (positions (a) and (b) in Fig.
2.5).

Incident wave

Gyroscope (or eccentric weight)

(a) (b)

Figure 2.5: Rotating mass-based WEC. The swaying motion produced by waves ((a)
and (b)) makes rotate an eccentric weight, which drives an electric generator housed
within the structure.
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The rotating component drives an electric generator housed within the partially
hollow structure. A representative instance, with an overall e�ciency of up to 90%,
is the Salter’s duck (nodding duck or Edinburgh duck), in which the wave motion
makes it sway, what, in turn, induces the rotation of a gyroscope, an electric gener-
ator transforming its rotation into electricity. It is also an example of “terminator”
device because it has its principal axis perpendicular to the predominant wave di-
rection, intercepting thus waves [167].

2.3.7 Oscillating water column

Figure 2.6 will assist us in explaining how this WEC works. As illustrated in this
figure, an oscillating water column is an empty structure, built on the seabed, that
is partially submerged. It is open to the sea below the water surface so that waves
entering the chamber make the water column move up and down. This movement
makes the air on top of the water column be compressed and decompressed. This, in
turn, makes the air flow to and from the atmosphere via a turbine, which generates
electricity [129].
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Figure 2.6: Simplified representation of the concept the Oscillating Water Column
is based on.

2.3.8 Overtopping/Terminator device

As shown in Figure 2.7, an overtopping WEC stores sea water as waves enter the
storage reservoir. The trapped water goes back to the sea through a conventional
turbine which generates electric power.
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Fig. 7 will assist us in explaining how these WECs work. In these devices,
the swaying motion caused by waves induces the rotation of a gyroscope (or
an eccentric weight) inside the device (positions (a) and (b) in Fig. 7). The
rotating component drives an electric generator housed within the partially
hollow structure. A representative instance, with an overall e�ciency of up
to 90%, is the Salter’s duck (nodding duck or Edinburgh duck), in which the
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Figure 2.7: Simplified representation of the concept of Overtopping/Terminator
device.

2.3.9 Comments: WECs and wave resource

According to [71, 112], there are some important points that should be high-
lighted:

1. Because of design restriction and fundamental thermodynamical issues, only
a fraction of the energy flux available at a site can be captured and converted
into electricity [71]. This fraction is not yet well established because there is
no consensus on the optimum conversion mechanism [110,120].

2. Regardless limiting performance considerations, there are some very recent
papers that study WECs’ performance in real conditions. In this respect, the
work [82] provides an excellent review of the performance of the most impor-
tant, state-of-the-art WECs in those worldwide locations having the highest
wave power resource. Similarly, [187] has recently compared the performance
of floating and fully submerged quasi-point absorber WECs.

3. Another important factor to consider from an engineering point of view is
the e↵ect of the resource variability on WEC performance. This is because
sea states with power larger than a threshold are unexploitable and even can
destroy the WEC. This power threshold depends on the WEC hydrodynamics
and is a complex issue. In [188] the WEC power threshold has been estimated
as four times the mean incident wave power.

4. In this respect, WECs’ survivability depends on extreme sea states [189] and
winds [190]. The probability density function of significant wave heights is very
useful because Hs is the most significant parameter related to the intensity of
extreme loads [189].

5. Besides having to be able to withstand long term and extreme distributions
of Hs, floating WECs require bivariate distributions of significant wave height
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and characteristic (mean or peak) periods [189]. The dynamic response of a
floating WEC depends on the sea states defined by Hs and associated peak
period Tp [191]. That is, while WEC survivability depends on the extreme sea
states, their operational performance depends mostly of the wave period.

6. This is why the operation of many WECs have to be controlled to work as
e�cient as possible. Its control should ideally help a floating WEC operate in
its resonance mode. Thus it is necessary for most WECs to tune the oscillating
mechanical part to the wave period. This is the reason why many works aims at
characterizing wave periods, as will be shown in the survey. Improving wave
energy competitiveness requires better resource analysis in terms of periods
[192].

7. Finally, although a given WEC has a range of significant wave heights in which
it can perform, its e�ciency mostly depends on the response amplification
factor [189], which is governed only by the mean wave period. This is why it is
necessary for improving WEC e�ciency to have a probability distribution of
characteristic wave periods. Controlling WECs is a very di�cult task. Recent
reviews in this subject are [124,125].

As shown, the design, survivability, e�ciency and control of WECs depend
strongly on the knowledge that we have of sea states. This can be acquired us-
ing SC techniques, whose fundamentals will be introduced in the following chapter.

2.4 Conclusions

In this chapter we have introduced two groups of concepts the rest of the chapters
(and the research work described in them) are based on. The first set of concepts is
related to the characterization of the waves, while the second focuses on introducing
the basic issues of the converters that transform wave energy into electricity.

Regarding the first, wave energy flux or power density per meter of wave crest,
P , –stated by Expression (2.2)– depends on two important parameters: the signif-
icant wave height, Hs, and the wave energy period Te. These can be calculated
from statistics obtained from series of wave measurements, carried out, basically,
by buoys. Oceanographic buoys are, and have been, probably one of the most used
measuring instruments to characterize wind-generated wave properties [193]. In
particular, a scalar buoy located at a point r = (x, y) on the sea surface is able to
measure, at each time instant t, the vertical water surface elevation, ⌘(r, t), leading
thus to time series. Using Fourier analysis, the spectral wave density S(f) can be
computed, and, in turn, based on S(f), a number of integrated wave parameters,
such as the spectral moments, the significant wave height Hs, or mean wave period,
to name just a few, can also be estimated [157]. As will be shown in Chapter 3,
there are many SC techniques that can be used to estimate Hs and Te. After certain
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mathematical operations, this expression ends up being P / H2
s · Te. This helps en-

gineers estimate the amount of wave energy available when planning the deployment
of WECs at a given location.

The second group of notions described in this chapter, and which are strongly
related to the former, focus on the essential concepts of WECs. In this respect, we
have shown that there are many di↵erent WECs, at a greater or lesser degree of
development. Despite this, only a small fraction of them have been deployed and
tested in oceans. Since there is a great variety of WECs, their classification has
been tackled from di↵erent viewpoints and complexity levels, and we have shown
that there is no unanimity of what is the most appropriate one.

� The simplest, first classifying viewpoint is related to water depth and loca-
tion, leading to shoreline, near-shore, and o↵shore WECs. Shoreline WECs,
located near the electric grid, are the easiest to maintain, and exhibit the low-
est probability of being destroyed under extreme conditions (since waves have
usually lower energy near the coast than o↵shore). However, this also leads
to the disadvantage of generating lower electric power. The second class cor-
responds to nearshore devices. They are located in relatively shallow waters
(a depth of less than one-quarter wavelength [167] is one of the criteria used,
although, again, there is no general agreement), and generate less energy than
o↵shore devices. These last ones are in deep waters, and are able to generate
much more electric energy because of the greater energy of deep waters. The
negative counterpart is that o↵shore WECs have to be designed to resist the
most extreme waves, being thus considerably more di�cult to manufacture
and maintain.

� A second viewpoint to classify WECs is based on the size of the mechanical part
that is moved by waves, absorbing their energy: “large” absorbers (flag-like),
as the one shown in Figure 2.1 (a), and “point absorbers” (Figure 2.1(b)).

� Finally, the third approach to classify WECs is based on the relative position
of the device with respect to the predominant wave direction: parallel or
“attenuator” (Figure 2.2.(a)), perpendicular or “terminator” (Figure 2.2.(b)),
and “point absorber” (Figure 2.2 (c)), which absorbs energy from all directions.

In this chapter, we have considered a combination of viewpoints, similar to that
of [60, 112], which will assist us in clearly describing those WECs for which SC
technologies are currently being used.

Regardless of the classification considered, what does seem certain is that the
e�ciency, control and survivability of WECs depend strongly on sea states:

� Resource variability has great influence on WEC performance from a purely
operational point of view. This is because sea states with power larger than
a threshold are unexploitable and even can destroy the WEC. This power
threshold depends on the WEC hydrodynamics and is a complex issue. In [188]
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the WEC power threshold has been estimated as four times the mean incident
wave power.

� WECs’ survivability depends on extreme sea states [189] and winds [190]. The
probability density function of significant wave heights is very useful because
Hs is the most significant parameter related to the intensity of extreme loads

The analysis of the di↵erent wave parameter and WECs that we have carried
out points out that the design, survivability, e�ciency and control of WECs depend
strongly on the knowledge that we have of sea states. This can be acquired using
SC techniques, whose fundamentals will be introduced in the following chapter.



Chapter 3
Soft Computing Techniques in

Wave Energy: Methodology and
State of the Art

3.1 Introduction

As shown in Chapter 2, among all the available marine technologies, wave en-
ergy is the one that exhibits the best future potential because, in addition to
being e�cient from a technical viewpoint, it does not cause significant environ-
mental problems. We have explained in Chapter 2 that wave energy converters
(WECs) transform the kinetic energy of wind-generated waves into electric en-
ergy by means of either the vertical oscillation of waves or the linear motion of
waves [71, 110, 120, 121]. WECs have some key advantages when compared to the
other converters [120,122,123], namely:

� Wave energy is the densest renewable energy (about 1000 times more con-
centrated than wind energy) and is less changing on an hourly basis than
wind energy [79]. More details about these and other beneficial properties of
WEC-based technologies can be found in [47,53,54,88, 111,124–130].

� There are ideal areas (in the sense of having considerable wave power density
near populated regions demanding energy) in north and west coast of Europe
(Norway, UK, Ireland, Portugal), north coast of US and Canada, southern cost
of Australia, northern coast of New Zealand, Japan, and India [2, 71, 72, 102];

� WECs usually cause much lower environmental impacts on ecosystems than
tidal devices.

Despite exhibiting these advantages, that have been discussed in more detail in
Chapter 2, wave energy nevertheless has some serious practical problems: waves
are more di�cult to characterize than tides because of the stochastic nature of
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waves [131–133] (although they are less variable on an hourly basis than wind),
and are intermittent (as are solar and wind energy). Furthermore, wave energy
flux can exhibit nonlinear variability, with irregular extreme events [134]. This
complex variability also emerges in other weather and climate processes, and has
been characterized as multifractal [135]. As a consequence of this complexity, both
the design, deployment, and control of WECs [79,136–139] become key points that
require a characterization of the resource as accurate as possible.

The characterization of the oceanic energy resource can be carried out essentially
through two families of techniques: physical models or data-driven models [71]:

1. Physical models are based on the wave energy balance equation [140], a dif-
ferential equation which is solve numerically. There are several numerical
wave models depending on the numerical methods and the physical param-
eterizations adopted [71, 141]. Some important numerical models are WAM
(Wave Analysis Model), SWAN (Simulating WAves Nearshore) [194–197] and
WAVEWATCH III [198, 199]. In the SWAN model, waves vary their shape,
height, and direction as a consequence of wind action, wave breaking, energy
transfer between waves, white capping, and variations in the seabed and cur-
rents [140, 195, 200]. The initial wave conditions (wave height, wave direction
and wave period) are inputs to the model, which computes the aforemen-
tioned wave changes as these move toward shore. The results are numerically
computed on a 500-m ⇥ 500-m grid. The model provides output informa-
tion (wave height, wave speed, and wave direction) in each cell of the grid.
SWAN accounts for the following physics [188, 194, 201]: 1) Wave generation
by wind. 2) Wave propagation in time and space, refraction due to current
and depth, shoaling, frequency shifting due to currents and non-stationary
depth. 3) Three- and four-wave interactions. 4) Whitecapping, bottom fric-
tion and depth-induced breaking. 5) Dissipation caused by aquatic vegetation,
turbulent flow and viscous fluid mud. 6) Reflection (specular and di↵use)
against obstacles, and di↵raction. While WAN and WAVEWATCH III are
used at global scale for o↵shore locations, linking meteorological parameters
to the generation of ocean wave states, SWAN is used to accounts for the wave
transformations that occur near the coast (whitecapping, bottom friction and
depth induced wave breaking, as mentioned) [188]. As shown, numerical wave
models are very powerful but demand a huge amount of meteorological and
oceanographic data and computational e↵ort. Numerical models are more use-
ful for forecasting over a large spatial and temporal domain (within a window
of a few days) [202]

2. Data-driven models. Data from wave stochastic processes can be basically
obtained from radars, satellites or buoys, which generate time data series.
Data-driven models use such data to forecast, for instance, wave parameters.
There are basically two data-based approaches in this field [71, 112]:

2.1. Statistical regressive methods [142, 143] like autoregressive (AR) model,
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auto regressive moving average (ARMA), auto regressive integrated mov-
ing average (ARIMA) [144], etc.

2.2. Soft Computing (SC) methods (neural, fuzzy, evolutionary methods)
[145]. As will be shown throughout this chapter, SC techniques [145]
are artificial intelligence (AI) methods that may be useful in wave en-
ergy problems. SC techniques have already proven to be very useful
and feasible tools in many fields of Science and Engineering, and include
Neural Computation (NC) –Neural Networks [146], Extreme Learning
Machines [147,148], Support Vector Machines [149]–, Evolutionary Com-
puting (EC) [150] (Genetic Algorithms [151], Genetic Programing [152]),
and Fuzzy Computation (FC) [153]. Albeit there are more SC approaches,
the techniques mentioned below are the only ones that have been applied
to wave energy problems till now, to the best of our knowledge [71,112].

Data-driven methods have some advantages over numerical models: simple mod-
eling, smaller computational e↵ort, lack of errors arising out of wind-to-wave conver-
sion, and absence of exogenous data (except the wave time series themselves) [154].
However, numerical models, which take into account a great variety of physical
phenomena, are more accurate over large spatial and temporal domains [71].

Taking into account the framework described in the previous paragraphs, the
purpose of this chapter is to review the use of SC techniques in the field of wave
energy. The reason why we focus on wave energy is because it is the most relevant
one, as mentioned before. The reason why we address the review from the viewpoint
of SC techniques is because, as will be shown throughout this survey, they perform
(accuracy, computational e↵ort) mostly as well (or even better) than traditional
techniques. The review includes not only those works that study wave parameters
(to characterize the wave resource) but also others that focus on the design and
control of WECs using SC techniques.

Note that there are many works dealing with WECs issues, wave resource char-
acterization, and related topics (economic, social, environmental issues), as shown
in this Introduction. In this chapter, we only focus on those that tackle wave en-
ergy problems by using SC techniques (which is the target of our work), and discard,
with few exceptions, those works that do not use SC techniques. The methodological
approach that we have adopted consist in [71, 112]:

1. Explaining how each technique can be applied to tackle problems in the field
of wave energy, discussing its advantages, disadvantages and limitations.

2. Comparing their results to those obtained from traditional approaches.

3. Discussing them in terms of accuracy and computational e↵ort. Many of the
papers evaluated do not use the same measures to assess the e�ciency of the
methods (which can be very di↵erent, as will be shown). As a comparison
criterium, we will use the statistical measures that follow. If P represents the
observed wave parameter, which in general has stochastic nature (µP and �P
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being its mean value and its standard deviation), and P̂ labels an estimate of
it, them:

3.1. The root mean square error (RMSE) between P̂ and P is

RMSE(P̂) =

r
E
h
(P̂ � P)2

i
, (3.1)

E[·] being the mean value operator.

3.2. The correlation coe�cient (R) between P̂ and P is

R = ⇢P,P̂ =
E
h
(P � µP)(P̂ � µP̂)

i

�P�P̂
(3.2)

The main contributions of this chapter are:

1. Explaining the essential concepts of the SC techniques that will appear later
on in our review;

2. Discussing their advantages, disadvantages, limitations and usefulness;

As shown in Chapter 2, the design, survivability, e�ciency and control of WECs
depend strongly on the knowledge that we have of sea states. This can be acquired
using SC techniques, whose fundamentals will be introduced in the following section.

In this present chapter, we have adopted a point of view similar to that of the
reference [71, 112], which combines the use of SC techniques in wave energy within
an unified framework including both converters and resource characterization issues
(which have already been presented in Chapter 2 of this thesis). There are some
papers, which inspired by [71], have recently explored partial aspects related to the
use of SC techniques for obtaining medium-to long-term predictions of global wave
energy resources [203, 204], or optimal wave parameter relationships [205].

The rest of this chapter has been organized as follows. Sections 3.2, 3.3 and 3.4
focus on summarizing the main concepts that NC, EC and FC are based on. Section
3.5 reviews and analyses the use of SC approaches in di↵erent fields of wave energy,
ranging from estimations of wave resources to control of WECs. Finally, Section 3.6
summarizes the main contributions of this chapter.

3.2 Neural Computation approaches: fundamen-
tals

Neural Computation is inspired by the way human brain works in the sense it is
able to generalize, that is, it is able to learn from representative examples, and to
solve a similar problem never seen before [71, 112].
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In the particular case of ANN, this is achieved by mimicking the human brain
connectivity. An ANN neural network is a parallel and distributed information
processing system based on single processing units, which, for analogy, are called
“neurons”. Multi-Layer Perceptrons (MLPs), a particular implementation of neural
network, are by far the most used Neural Computation technique in wave parameter
estimation, as will be shown later on.

In this paper, we consider Neural Computation in a broad sense, including also
kernel methods such as Support Vector Machines (SVMs), which, strictly, are not
ANNs. The following subsections, 3.2.1 and 3.2.2, introduce, respectively, the basic
concepts these approaches are based on.

3.2.1 Multi-Layer Perceptron (MLP)

The MLP concept

Figure 3.1 will assist us in introducing the MLP concept. It represents a network
in which their neurons are organized forming layers. The input layer, on the leftmost
part of Figure 3.1, is the one that receives the input data vector [x1, · · · , nN ]. The
output layer, on the rightmost part, is one that provides the result, z, for instant, a
prediction.

hidden 
layer

x1

x2

x3

xN

output 
neuron

z

w1,1

input
data

Figure 3.1: Simplified structure of a single hidden layer perceptron. It consists of
a number of simple computing units (neurons) connected forming an input layer, a
hidden layer and an output layer.

For simplicity we have represented only one output neuron, although in a more
general case, the network could have multiple output neurons. The layer in between
the input and output layers is called “hidden” layer [206]. Note that neurons are
connected by links. Any link is associated to a weight wi,j, which quantifies to what
extent a connection is important. The particular values of weight wi,j are adjusted
in a learning process.

In the learning or design process, an MLP is trained and validated by using,
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respectively, a “training set” (for which the input and the corresponding outputs are
known), and a “validation set” (whose samples have not been used in the training
process). The final performance is computed over a “test set”, not used during
the design stage [206, 207]. The MLP is able to learn in the sense it will be able
to predict (or classify) samples di↵erent from those used in the aforementioned
design process. This is the so-called “ability to generalize”, and is the capability
why MLPs are known to be universal approximators of many functions. MLPs have
been successfully applied to a great amount of nonlinear prediction and classification
problems [206,207].

The way the neurons are linked to each other during the design stage is the
key property that makes the complete network exhibit the mentioned beneficial
properties. The relationship between the input signals (xj, for j = 1, 2, . . . , n) and
the output (yk) of a given neuron k is

yk = '

 
nX

j=1

wj,k · xj � ✓

!
, (3.3)

where wj,k is the weight associated to the j-th input, ✓ is a threshold, and ' is a
transfer function. Although there are several functions, the logistic function

'(x) =
1

1 + e�x
. (3.4)

is a widely used.

Generally, as will be shown, in wave energy problems, the Levenberg-Marquardt
method is the most used algorithm to train the MLP [208]. This algorithm is based
on the Jacobian matrix, which can be computed via a standard back-propagation
method, much less complex than computing the Hessian matrix [208]. The Levenberg-
Marquardt algorithm works by using the following Newton-like update,

xk+1 = x
k

� �JTJ + µI
��1

JTe, (3.5)

where J is the Jacobian matrix, e is a vector of network errors, and µ is a parameter
which controls the process: when µ = 0, it becomes the Newton’s method, while
when µ is large, it leads to a gradient descent method with small step size.

A novel and much faster learning method based on the MLP structure is the
so-called Extreme Learning Machine (ELM) [209–213].

The ELM concept

The key characteristic of the ELM training consists in randomly setting the
network weights and computing then the inverse of the hidden-layer output ma-
trix [147]. The main benefits of this technique are its simplicity, which makes the
training algorithm extremely fast, and its exceptional e�ciency, usually superior to
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other more conventional approaches such as classical MLPs or Support Vector Ma-
chines. Additionally, the universal approximation capability of ELMs, along with
its classification ability, have been already proven [147,148,211–213].

Given a training set @ = {(xi, ti)|xi 2 Rn, ti 2 Rm, i = 1, · · · , N }, an activation
function, g(x), and and number of hidden nodes, Ñ , the ELM algorithm works as
follows:

1. It assigns at random inputs weights wi and bias bi, i being i = 1, · · · , Ñ .

2. It computes the hidden layer output matrix, H,

H =

2

64
g(w1 · x1 + b1) · · · g(wÑ · x1 + bÑ)

... · · · ...
g(w1 · xN + b1) · · · g(wÑ · xN + bÑ)

3

75

N⇥Ñ

(3.6)

3. It computes the output weight vector � as

� = H†T, (3.7)

where H† stands for the Moore-Penrose inverse of matrix H [209], and T is
the training output vector, T = [t1, · · · , tN ]T .

Note that the number of hidden nodes (Ñ) is a free parameter to be computed.
In general, scanning a range of Ñ values is a useful approach to this problem.

3.2.2 Support Vector Machines for regression problems

A second important method for prediction, we have included in this work within
the broadly considered Neural Computation paradigm, is the Support Vector Ma-
chine for regression problems (SVMr) [149]. Although there are di↵erent implemen-
tations of the SVMr concept, the classic model, ✏-SVMr, described in [149], will
assist us in explaining the basic concepts as follows.

Given a set of training vectors C = {(x
i

, yi), i = 1, . . . , l}, where x
i

is a feature
vector of the input space with dimension N , and yi labels the output value to be
estimated, the ✏-SVMr algorithm for regression consists in training a model

y(x) = f(x) + b = wT �(x) + b (3.8)

that aims at minimizing a risk function

R[f ] =
1

2
kwk2 + C

lX

i=1

L (yi, f(x)) (3.9)
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where, in Expressions (3.8) and (3.9), w controls the smoothness of the model, �(x)
is a function of projection of the input space into the feature space, b represents a
bias parameter, and L (yi, f(x)) labels a loss function. For instance, an ✏-insensitive
loss function [149],

L (yi, f(x)) = |yi � f(x
i

)|✏, (3.10)

leads to an L1-SVMr (L1 support vector regression) [149].

Aiming at training this model, it is required to solve the following optimization
problem [149]

min

 
1

2
kwk2 + C

lX

i=1

(⇠i + ⇠⇤
i )

!
, (3.11)

subject to the constraints:

yi �wT �(x
i

)� b  ✏ + ⇠i, i = 1, . . . , l (3.12)

�yi + wT �(x
i

) + b  ✏ + ⇠⇤
i , i = 1, . . . , l (3.13)

⇠i, ⇠
⇤
i � 0, i = 1, . . . , l. (3.14)

It is useful to formalize this optimization problem in a dual form as

max

 
�1

2

lX

i,j=1

(↵i � ↵⇤
i )(↵j � ↵⇤

j )K(x
i

,x
j

)�

�✏
lX

i=1

(↵i + ↵⇤
i ) +

lX

i=1

yi(↵i � ↵⇤
i )

!
(3.15)

subject to

lX

i=1

(↵i � ↵⇤
i ) = 0 (3.16)

↵i, ↵
⇤
i 2 [0, C] (3.17)

In addition to these constraints, the Karush-Kuhn-Tucker conditions must be
fulfilled, the bias parameter b having to be obtained too. See [149] for further
details.

In the dual formulation of the problem, function K(x
i

,x
j

) is the kernel matrix,
which is formed by the evaluation of a kernel function, equivalent to the dot product
h�(x

i

), �(x
j

)i. An common choice for this kernel function is a Gaussian function

K(x
i

,x
j

) = exp(�� · kx
i

� x
j

k2). (3.18)
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The final form of function f(x) depends on the Lagterm multipliers ↵i, ↵
⇤
i as

follows:

f(x) =
lX

i=1

(↵i � ↵⇤
i )K(x

i

,x) (3.19)

In this way it is possible to get an SVMr model by means of the training of a
quadratic problem for given hyper-parameters C, ✏ and �. Nevertheless, computing
these parameters is not simple, being necessary to implement search algorithms to
compute the optimal values or an estimation for them [214].

3.3 Evolutionary Computation

While Neural Computation is inspired by the human brain paradigm, Evolution-
ary Computation (EC) is inspired by both the biological principles of Genetics and
Natural Selection associated to the very varied relationships of predation, reproduc-
tion, etc., that occur in long populations. Within the framework of wave energy, the
most representative approaches belonging to Evolutionary Computation are Evo-
lutionary Algorithms (EAs), Genetic Algorithms (GAs) and, more recently, the
so-called Coral Reefs Optimization (CRO) algorithm. All of them are population-
based algorithms inspired by biological concepts. For the sake of clarity, we start
our description by the GA, whose concepts are more intuitive.

3.3.1 The concept of Genetic Algorithm

A GA [155, 215], an optimization and search technique that does not require
derivative information, is able to deal with a large number of variables, to provide
a global solution for multi-local extrema problems, to optimize functions with con-
tinuous or discrete variables, and to optimize variables with extremely complex cost
surfaces.

Put it simple, a GA is based on three key points [155, 215]:

1. Encoding the candidate solutions (individuals).

2. Generating an initial population of candidate solutions.

3. Applying genetic operators (selection, recombination or crossover, and muta-
tion).

These points emulate the way Nature works. Encoding a candidate solution is
analogous to the way Nature represents the external characteristics of a living being
by means of chromosomes (genetic information). In Nature, the creation of novel
chromosomes (via mutations or reproduction) may lead to the ability to survive:
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the better an individual is adapted to the environment, the higher its probability of
survival is, and thus the higher its chances of having descendants. Analogously, in
a GA, the selection operator evaluates fitness of individuals and selects the one (the
candidate solution to the problem) that best solves it (with the lowest error). In the
procreation process in Nature (crossover or recombination, in GA terminology), the
parent chromosomes are combined to generate a novel chromosome. Sporadically,
and because of inevitable errors in copying genetic information (or external factors,
for instance, radiation), mutations (random variations) can occur, leading to the ap-
pearance of individuals with some novel characteristics, di↵erent from those of their
parents. If the novel attribute makes the progeny better suited to the environment
(or equivalently, it solves better the problem at hand), the probabilities of survival
and of having descendants also increase. Part of the o↵spring could inherit the novel
chromosomes, and thus the corresponding external characteristic codify by them.

In this way, the initial population of individuals evolves and, for a number of gen-
erations, the described process results in the creation of individuals better adapted
to the environment (better solutions to the problem) and in the extinction of those
worse suited.

3.3.2 The concept of Evolutionary Algorithm

An EA is an optimization, population-based algorithm, inspired by the principles
of natural selection and genetics, which is able to tackle complex problems [150,216]
such as the one formulated. Among these advantages, EAs do not require derivative
information and are able to optimize functions with a large number of continuous or
discrete variables, finding the global solution for multi-local extrema problems [217].

Although GA and EA are sometimes used interchangeably in many works, in
this thesis, we prefer to use the term EA since, as will be explained in a practical
and detailed way in Section 5.7 of Chapter 5 (focused on integrating wave energy
in power grids by combining EA and CN concepts), we have encoded each feasible
solution as a binary triangular matrix, instead of a bit-string. For further details
about di↵erent encodings, the interested reader is referred to [218].

The underlying concepts of EAs and the way they are computationally imple-
mented are inspired by the way Nature finds out solutions to extremely complex
problems, such as the “survival of the fittest” individual in a evolving ecosys-
tem [216, 217]. Aiming at better explaining our approach, it is convenient to in-
troduce here two biological phenomena from which EAs are inspired: (1) the exter-
nal characteristics (“phenotype”) of living beings are encoded (represented) using
genetic material (“genotype”); and (2) evolution is the result of the interaction be-
tween the random creation of new genetic information and the selection of those
living beings that are best adapted to the environment [217].
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Genotype-Phenotype Relationship

As mention, in natural evolution, genotype is the genetic information that en-
codes and causes the phenotype (all external characteristics) of a living being (or
“individual”). Specifically, each characteristic is encoded by a “gene”, a “chromo-
some” being the set of these genes [217]. Each gene is located at a particular position
on the chromosome and can exhibit di↵erent values (“allele”).

Natural Evolution

The random creation of new genetic information in Nature may lead to a better
(or sometimes, worse) ability to survive. The better a living being is adapted to
its environment, the higher its probability of survival is. This is called “survival of
the fittest”. In turn, the longer the individual’s life is, the higher its probability of
having descendants. In the procreation process, the parent chromosomes are crossed
or combined (“recombination”) to generate a new chromosome (which encodes the
o↵spring). With very small probability, “mutations” (or random variations in genes)
can occasionally occur, caused by external factors (for instance, radiation) or sim-
ply by unavoidable errors when copying genetic information. This leads to o↵spring
with new external properties, which are di↵erent from those of their predecessors.
If such arising external characteristic makes the o↵spring better adapted to the en-
vironment, its probability of survival and having descendants increases. In turn,
part of the o↵spring can inherit the mutated genes (and thus the corresponding
external characteristic), which can be passed from generation to generation. These
natural processes make the population evolve, resulting in the emergence of individ-
uals better adapted to the environment and in the extinction of those less fitted. For
deeper details about the main similarities and di↵erences between natural evolution
and evolutionary algorithms, the interested reader is referred to [216].

Please note that these brief paragraphs are only intended to be an introduction
to the essential concepts to understand the review we have carried out in Section 3.5
of the present chapter. We postpone the details of our particular implementation of
the EA explored in this thesis to Section 5.7. As mentioned in Chapter 1, Chapter
5 will explore the feasibility of an approach that models a farm of WECs connected
to the on-shore grid as a smart grid, whose complex network structure is optimized
by using an EA.

3.3.3 The Coral Reefs Optimization algorithm

The Coral Reefs Optimization (CRO) algorithm is a very novel algorithm [219–
223] which has been recently used in renewable energy [224] and related topics
[225–227].

The CRO algorithm is a meta-heuristic approach inspired by corals’ reproduction
and coral reefs formation, proposed recently in [219]. Basically, the CRO is based
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on the artificial modeling of a coral reef, ⇤, consisting of a N ⇥ M square grid.
It is assumed that each square (i, j) of ⇤ is able to allocate a “coral” (or colony
of corals), ⌅i,j, representing a “solution” to a given optimization problem. This
candidate solution ⌅i,j is encoded as a string of numbers in a given alphabet I.

For instance, in the problem described in [71], which consists in selecting, among
the 60 wave-describing features, those that maximize Hs reconstruction, each can-
didate solution ⌅i,j is encoded using the string

Ii,j = [c1, · · · , c60], (3.20)

whose elements represent whether the i wave-describing feature in the candidate
vector will be used or not: ci = 1 codifies that i-th feature has been selected, while
ci = 0 means that this is not the case.

The CRO algorithm is then first initialized at random: some squares in the ⇤
grid are occupied by corals (i.e. solutions to the problem) while other squares in
the grid remain empty. Non-occupied squares or holes in the reef are sites where
new corals can freely settle and grow in the future. The rate between free/occupied
squares in ⇤ at the beginning of the algorithm is an important parameter of the
CRO algorithm. It is denoted as ⇢, and fulfills that 0 < ⇢0 < 1.

Each coral is then associated to a health function f(⌅i,j) : I ! R, that represents
the problem’s objective function. f(⌅i,j) quantifies the extent to which coral ⌅i,j

(or trial solution) accurately solves the problem.

In [71], the healthiest coral ⌅m,n represents the best solutions in the sense that
its encoding vector Im,n –Expression (3.20)– makes the estimating algorithm (an
ELM) minimize the root-mean-square error RMSE(Ĥs) –Expression (3.1)– between
the estimated value Ĥs and the real Hs sample available in the data base. That is,
coral ⌅m,n represents the best Hs reconstruction.

The CRO algorithm –like other evolutionary, population based ones– is based on
the fact that the reef will progress (or evolve in time), as long as healthier (stronger)
corals (which represent better solutions to the problem at hand) survive, while less
healthy corals perish.

This is why, after the reef initialization described above, a second phase, “reef
formation”, is artificially simulated in the CRO algorithm. It consist of the simula-
tion of the corals’ reproduction and novel larvae sitting in the reef by sequentially
applying di↵erent operators until a given stop criteria is met.

There are several operators to mimic corals’ reproduction and novel larvae sitting.
Some of them are: a modeling of corals’ sexual reproduction (broadcast spawning
(external sexual reproduction) and brooding (internal sexual reproduction)), a model
of asexual reproduction (budding), and also some catastrophic events in the reef, i.e.
polyps depredation. After the sexual and asexual reproduction, the set of larvae
formed (new solutions to the problem), try to find a place to grow in the reef. It
could be in a free space, or in an occupied once, by fighting against the coral actually
located in that place. If larvae are not successful in locate a place to grow in a given
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number of attempts, they are depredated in this phase. Some important details
about the implementation of these mechanisms are:

1. Broadcast Spawning (external sexual reproduction). It consists of two steps:

1.a. In a given step k of the reef formation phase, select uniformly at random
a fraction of the existing corals ⇢k in the reef to be broadcast spawners.
The fraction of broadcast spawners with respect to the overall amount
of existing corals in the reef will be denoted as Fb. Corals that are not
selected to be broadcast spawners (i.e. 1�Fb) will reproduce by brooding
later on, in the algorithm.

1.b. Select couples out of the pool of broadcast spawner corals in step k. Each
of such couples will form a coral larva by sexual crossover, which is then
released out to the water. Note that, once two corals have been selected
to be the parents of a larva, they are not chosen anymore in step k (i.e.
two corals are parents only once in a given step).

2. Brooding (internal sexual reproduction). As previously mentioned, at each step
k of the reef formation phase in the CRO algorithm, the fraction of corals that
will reproduce by brooding is 1 � Fb. The brooding modeling consists of the
formation of a coral larva by means of a random mutation of the brooding-
reproductive coral (self-fertilization considering hermaphrodite corals). The
produced larva is then released out to the water in a similar fashion than that
of the larvae generated in step 1.b.

3. Larvae setting. Once all the larvae are formed at step k either through broad-
cast spawning (1.) or by brooding (2.), they will try to set and grow in the
reef. First, the health function of each coral larva is computed. Second, each
larva will randomly try to set in a square (i, j) of the reef. If the square is
empty (free space in the reef), the coral grows therein no matter the value of
its health function. By contrast, if a coral is already occupying the square at
hand, the new larva will set only if its health function is better than that of
the existing coral. A number  of attempts for a larva to set in the reef is
defined: after  unsuccessful tries, it will be depredated by animals in the reef.

4. Asexual reproduction: in the modeling of asexual reproduction (budding or
fragmentation), the overall set of existing corals in the reef are sorted as a
function of their level of healthiness (given by f(⌅ij)), from which a fraction
Fa duplicates itself and tries to settle in a di↵erent part of the reef by following
the setting process described in Step 3. Note that a maximum number of
identical corals (µ) will be allowed in the reef.

5. Depredation in polyp phase: corals may die during the reef formation phase of
the CRO algorithm. At the end of each reproduction step k, a small number
of corals in the reef can be depredated, thus liberating space in the reef for
next coral generation. The depredation operator is applied with a very small
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probability Pd at each step k, and exclusively to a fraction Fd of the worse
health corals in ⇤.

The algorithm applies iteratively the aforementioned operators until the stopping
criterium is reached or if the lowest RMSE value remains unchanged for a given
number of iterations.

3.3.4 Genetic Programming: concept

Genetic Programming (GP) is similar to GA in the sense it evolves computer
programs and finally leads to a program able to solve a problem without having
had “telling” it how to do it [228,229]. It starts from a high-level description of the
problem at hand (“what needs to be done” instead of “how to do it”), and iteratively
evolves a population of computer programs into a novel generation of computer
programs by applying operators. Its steps are usually [230, 231]: 1) Generation of
the initial population of computer programs (individuals), usually represented as a
tree graph. 2) Evaluation of the fitness of the individuals. 3) Selection of the best
individuals as parents. 4) Creation of novel individuals (o↵-spring) via the genetic
operations (crossover, mutation). 5) Replace parents in the current population by
those best-suited o↵-springs. 6) Iterate steps 2-5 until a stop criterion is fulfilled
(either a number of generations or fitness criterion such as minimum error). A
more exhaustive description of GP can be found in [228, 229], while its particular
application to prediction in time-series can be found in [232].

3.4 Fuzzy Computation

Fuzzy Computation (FC) is inspired by the fact that humans exhibit the out-
standing ability to reason in an environment of incomplete information, uncertainty,
and partiality of class membership. Fuzzy Logic (FL) and Rough Set (RS) theories
are the two principal FC approaches applied to wave energy problems, as will be
shown later on.

3.4.1 Fuzzy Logic

Its original concept, proposed by Zadeh [233], is based on the concept of “fuzzy
set” (FS), which plays a key role in fuzzy logic. In conventional set theory, an element
either belongs to a set or it does not. However, in FS theory, an element can belong
to a set with a certain degree (“partial membership”). The degree of membership
is referred to as the “membership value”, and is commonly represented by a real
value in [0, 1], where 0 and 1 correspond, respectively, to “full non-membership” and
“membership”.
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Based on these ideas, predicates in FL can exhibit partial degrees of truth, in
the same way as elements can have partial membership in FS, the grade of truth
being represented by using a real number in [0, 1]. These concepts will assist us
in introducing two key ideas in FL: “graduation” and “granulation” [234, 235]. In
FL, everything is allowed to be graduated, that is, be a matter of degree. In FL,
everything is allowed to be granulated: for example, the concept “size” is granulated
when its values are described as “small”, “medium” and “big”. In this respect, the
key contributions of FL are the concept of “linguistic variable” (that is, using words
instead of numbers) [235], the fuzzy “if-then” rules, and the ability to compute with
information described in natural language. These are the fundamental concepts
of Fuzzy Inference Systems (FIS), whose details can be found in the review [235].
Recent applications of fuzzy logic in renewable energy systems are [236,237].

3.4.2 Rough Set

One of the Rough Set (RS) characteristics is its explicative nature, that is, the
generated model explains the knowledge hidden in the dataset, and is relatively
easy to understand. Put it very simple, RS theory is a mathematical method en-
visaged [238–240] to deal with the vagueness or uncertainty in decision making.
However, unlike other di↵erent methods that deal with uncertainty (such as sta-
tistical probability or FS theory), RS theory deals with the uncertainty generated
when indistinguishable elements (described by the same data or knowledge) can be
classified into di↵erent classes. This fact prevents them from being precise assigned
to a set. Thus, the classes in which the elements are classified are vague, but they
can be approximated with precise sets [241].

RS works by finding out dependencies between attributes, and simplifying the set
of attributes by eliminating those that are not necessary to properly characterize the
knowledge. The concept of “reduct” arises thus as the minimal attribute subset that
gives the same quality of classification as the initial set containing all the attributes.
The reduct leads to “if-then” rules of the form “if conditions then decisions”. These
rules stipulate what decisions should be taken up in the case in which some conditions
are fulfilled. The if-then rules can also be used to allocate novel elements to a class
by matching the condition part of one of the decision rule to the description of the
element.
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3.5 State of the art. Review of SC approaches in
wave energy applications

3.5.1 The importance of applying SC algorithms to estimate
wave parameters

Not all the wave parameters have the same practical importance in wave energy
applications. Among all the wave parameters that we have defined in Chapter 2 [P
(Exp. (2.2)), Hs (Exp. 2.3), Te (Exp. 2.4), Tp (Exp. 2.5), Tz (Exp. 2.6), Qp (2.8),
⌫ (2.9), ✏ (Exp. 2.10) or � (Exp. 2.11)], the parameter that has appeared most
times in the bibliographic review that follows is Hs. This is because two important
reasons:

1. It is necessary to compute the available resource at a location prior to WEC
deployment.

2. WEC survivability depends on extreme sea states, Hs being the most signifi-
cant parameter related to the intensity of sea states [189].

Other parameters that, although important, have appeared less often in the
revision of the literature are Te, Tp, Tm01 and Tm02.

� Te is useful to estimate P and in the design of turbines for wave energy con-
version.

� Tp is useful because the dynamic response of a floating WEC depends on
it [191].

� Tm01 is used in the study of the giant waves and wave forecast.

� Tm02 has applicability in the design of marine structures, including Oscillating
Water Column WECs (Figure 2.6) and overtopping WECs (Figure 2.7).

For further details about the state of the art in the use of SC techniques applied
to wave energy problems, the interested reader is referred to [71] and [203], this
latter being focused on medium-to long-term predictions of wave energy resources.
Reference [205], which has been published just when the writing of this thesis was
being completed, explores relationships between wave parameter.

The following sections analyze the main conclusions of our literature review.
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3.5.2 The use of neural networks in wave energy problems:
state of the art

MLP in wave energy

The MLP approach is the SC method that has appeared most often in our review.
There are some important conclusions about the applicability and usefulness of NNs
to estimate the mentioned wave parameters:

1. All papers [144,154,242–252] agree on the fact that MLPS are able to accurately
predict Hs with prediction intervals up to 12 hours, with high correlation coef-
ficient up to R ⇡ 0.97. MLPs achieve in general better results than statistical
methods (AR, ARMA, ARIMA) for prediction intervals up to 12 h [144,249].
For instance, RMLP = 0.964 > RARIMA = 0.824 > RARMA = 0.808 [144, 249].
Besides this higher performance, neural networks exhibit other practical ad-
vantages (model-free, flexibility, adaptability).

2. Even, a few studies [154,248,252] have reported on the fact that MLP models
are able to forecast Hs with good accuracy up to 24 h –with a correlation
coe�cient R ranging from 0.99 (3h lead time) to 0.95 (24h)–. The latter two
works combine wavelets and artificial neural network. The key idea behind
this SC approach is that Hs samples are first decomposed through discrete
wavelet transformation to obtain wavelet coe�cients, which are then used as
inputs to the NN.

3. MLPs have also proven to be useful to reconstruct missing Hs values [250,251]
with very high correlation coe�cient R = 0.98 [250]. In [251] Hs is also recon-
structed with high accuracy: the minimum mean square error is MMSEMLP =
0.0217 m (RMSEARX = 0.0235 m) in short-term predictions, while for long-
term predictions (48h) was found RMSEMLP = 0.0252 m, slightly superior to
RMSEARX = 0.0238 m.

4. Although Hs is the most studied parameter through MLPs, there are also a few
works [243,246] that have estimated values of other parameters of less utility in
wave energy. The main conclusion regarding the estimation of the remaining
parameters using MLPs is that they can be estimated with high accuracy in the
short-term [243, 246], with correlation coe�cients: RHs = 0.947, RTz = 0.945,
RQp = 0.953, RSp = 0.883, REmax = 0.901, RTp = 0.891. Please see [243, 246]
for further details.

5. Another interesting conclusion that can be obtained from [243] is the feasibility
of MLPs to construct relationships between Hs and other wave parameters
such as the average zero-cross period Tz (Exp. (2.6)), the spectral peak period
Tp (Exp. 2.5), the spectral peak energy Emax, the maximum wave high Hmax,
and in between spectral narrowness parameter ⌫ (Exp. 2.9) and spectral width
parameter ✏ (Exp. 2.10), two measures of the spectral width. The underlying



44 State of the art. Review of SC approaches in wave energy applications

motivation behind this work is that it is often necessary for some applications
to identify interrelationships between di↵erent parameters describing a short-
term sea state. For instance, obtaining the structural response of marine
structures [170] (platforms, ships, WECs such as OWSC or Oscillating Water
Column, whatsoever) requires to estimate the peak energy density Emax for
a given design value of Hs. The works [244, 245] have explored a similar
methodology to predict the significant wave height and zero-up-crossing wave
periods T02.

6. MLPs have been used to estimate the significant wave height Hs and other
wave parameters [246]: zero crossing period (Tz), spectral peakedness parame-
ter (Qp), spectral width parameter (Sp), maximum spectral energy (Emax), and
time period corresponding to maximum spectral energy (Tp). In particular,
the correlation coe�cients of the MLP designed with empirical data (field wave
analysis) were (over the test set): RHs = 0.947, RTz = 0.945, RQp = 0.953,
RSp = 0.883, REmax = 0.901, RTp = 0.891. The authors concluded that the
ocean wave parameters can be directly obtained from the measured spectra
using trained NN.

7. The MLP approach has also been exploited to estimate wave spectra [253] from
average values of some key wave parameters (significant wave height, average
zero-cross wave period, spectral width and peakedness parameter). The main
finding of this work is that the ANN approach helps estimate the spectral
shapes more accurately than those provided by some spectrum theoretical
models –JONSWAP and Scotts–. The correlation coe�cients over the test set
was found as high as R = 0.97. In [254] the performance of the NN approach is
even better than that achieved by SWAN model (RNN = 0.94 > RSWAN = 0.89)
with the exception of the most powerful peak.

8. Wave energy flux can be estimated with errors ranging from 16 to 20 percent at
an hourly horizon, and 28-29 percent at a daily resolution [255]. Finally, [254]
shows that ANNs are a powerful tool to forecast the wave energy potential at
particular coastal site with great accuracy. The performance of the NN is even
better than that achieved by SWAN model (RNN = 0.94 > RSWAN = 0.89) with
the exception of the most powerful peak [254].

9. Finally, an ANN to control an Archimedes Wave Swing WEC has been suc-
cessfully proven to increase the yearly average electricity production about
160% over the performance of the conventional controller [256].

ELM in wave energy

The use of ELMs in wave energy is very recent, and has been used in combination
with population-based approaches, such as GAs [107] and CRO [71] algorithms:

1. The recent work [107] has proposed the use of a ELM-based approach to recon-
struct Hs at a given buoy. Specifically, this study combines a GA and an ELM
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(hybrid GA-ELM algorithm) that selects wave parameters from surrounding
buoys in the e↵ort of minimizing the reconstruction error at the buoy under
study. The approach has been satisfactory proven using real data from two
locations near the Caribbean Islands. The GA-ELM selects the best parame-
ters (7 among 60) that make an optimized ELM estimator to reconstruct Hs

with an RMSE of 0.48 m.

2. In [71], the authors have proposed a hybrid CRO-ELM algorithm to recon-
struct the missing value of the significant wave height Hs at a given buoy by
using a number of wave parameters available at other surrounding buoys. The
explored CRO-ELM algorithm selects those parameters that make the ELM
estimator work optimally. In particular, the CRO-ELM proposed reconstruct
Hs at a buoy by using wave data from surrounding buoys in the Caribbean Sea,
and achieves a small error (Root Mean Square Error, RMSE[Ĥs] = 0.455 m)
after selecting, among the 60 wave-describing features, those 7 that maximize
the ELM performance.

3.5.3 SVM approach in wave energy

1. The SVM with Radial Basis Function (RBF) kernel predicts Hs slightly better
(R = 0.96) than the ANN approach (R = 0.94) with the added bonus of
requiring less computational time [257].

2. Wave spectrum has been estimated in [258] by using SVM for regression, and
has been found to be able to estimate the spectral shape with low values of
mean square error, RMSE(Hz/m2)= 0.03 and relative high correlation coe�-
cient R = 0.78.

3. The newly work [259] makes use of a SVR machine to estimate Hs using
the “shadowing e↵ect” of X-band marine radar images, avoiding the radar
calibration. The mean square error has been found to be 0.0154 m, lower that
that of the MLP (0.0176 m).

3.5.4 Fuzzy approaches in wave energy

With the technical standpoint we have stated in the Introduction, the second
class of SC techniques, Fuzzy Computation, has also been applied to predict wave
parameters, although at a lesser extent than the Neural Computation approach, as
will be shown in the paragraphs that follow. They include Fuzzy Inference Sys-
tem (FIS), Takagi-Sugeno (TS) fuzzy method, and Adaptive-Network-Based Fuzzy
Inference System (ANFIS). The main conclusions are:

1. The ANFIS approach is a feasible tool for modeling wave parameters [260]:
the scatter index of the ANFIS model in Hs prediction is less than that of the
CEM method.
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2. The TS fuzzy approach overcomes the classical ARMAX method [261–263]
when predicting Hs.

3. The ANFIS method exhibits a slightly higher accuracy than conventional ones
when estimating the parameters Hs and Tp [264].

4. The fuzzy logic controller (FLC) of a point absorber WEC help increase the
energy capture in about 16% [265]. An advanced version of this FLC, which
includes a particle swarm optimization algorithm [266], increases the average
power in 15%.

5. The combination of FL and GA assists in increasing the energy conversion of a
floating point absorber WEC in irregular waves compared to the case in which
this control is not applied [267,268].

3.5.5 Evolutionary approaches in wave energy

Among the Evolutionary Computation techniques applied to estimate wave en-
ergy resource parameters, the Genetic Programming (GP) approach is the most
used. They have been successfully used in:

1. Filling up missing values in wave time series provided by buoys [269,270]. An
example of its successful application is the problem of filling up missing values
in wave time series provided by buoys [269], in which particular GP models on
spatial correlation with neighboring values have been carried out. The results
suggest that GP achieves slightly better results than the ANNs explored by the
authors in previous works: RGP = 0.95 > RANN = 0.94, RMSEGP = 0.22 <
RMSEANN = 0.25 m. In a similar scientific standpoint, [270] leads to the
conclusion that gaps of missing values are slightly better computed by the
GP algorithm than those estimated by the ANN designed for comparative
purposes. Specifically, if the gaps of missing values are small: RGP = 0.99
> RANN = 0.98, RMSEGP = 0.14 < RMSEANN = 0.32 m.

2. Estimating wind data from wave data [271], with slightly more accurate results
than those computed by ANNs (RGP = 0.95 > RANN = 0.94).

3. Predicting Hs at short term [272]. The significant wave height predictions
have been made over time intervals of 3, 6, 12 and 24 hours, and the experi-
ments have pointed out that the GP approach is a feasible tool for short term
prediction with R = 0.9 for 12 h.

GAs have also been used:

1. Predicting wave significant height and peak spectral period, by using a hybrid
GA-adaptive network-based FIS (GA-ANFIS) model [273]. The key point in
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this work is that both clustering and rule-based parameters are jointly com-
puted by using GAs and ANNs. The prediction accuracy of the proposed ap-
proach has been compared to that of conventional ANFIS and Shore Protection
Manual (SPM) methods, leading to the conclusion the proposed GA-ANFIS
model works better.

2. Optimizing the shape of wave energy collectors [274]. A collector is described
in this work by using a parametric model of its geometry, based upon bi-
cubic B-spline surfaces. The cost functions are formulated using estimates of
the weighted mean power based on data from a site on the West Shetland
Shelf (North East Atlantic Ocean). The results show that the selected shapes
perform better than a comparable box-shaped collector. The authors suggest
that optimizing the collector shape with respect to its size as well as the overall
mean power delivery could improve its performance substantially. More work
need to be done in this respect.

3.6 Conclusions

In this chapter we have reviewed the use of Soft Computing (SC) techniques
(Neural, Fuzzy, and Evolutionary Computation) in the field of wave energy. The
benefits of applying SC techniques to wave energy problems resides on their great
potential to work with a huge amount of imprecise or missing data. This is just the
case of the design, deployment, and even control of (some) wave energy converters
(WECs), whose fundamentals have been summarized in Chapter 2 to make this
thesis stand by itself. In this regard, a first indicator prior to the deployment
of WECs at a given location is the amount of wave energy flux available. This
magnitude can be estimated by using the significant wave hight Hs and the wave
energy period Te, which, in turn, can be computed from espectral magnitudes of
buoy data. These and other wave parameters have been found to be estimated in
our review by means of a variety of SC techniques. In particular:

� Most of the applications of Neural Computation techniques, considered in this
paper in a broad sense, have been found to focus on the prediction of a number
of wave energy parameters by means of Multilayer Perceptrons (MLPs) and,
at a lesser extent, by Support Vector Machines (SVMs). Neural Computation
techniques have been applied to: a) Predict a variety of wave parameters,
in particular, Hs and Te; b) Estimate missing data in wave time series; c)
Estimate the wave spectrum; d) Forecast wave energy flux; and e) Control
WECs, in particular Archimedes Wave Swing WECs.

� The second class of SC techniques, Fuzzy Computation, has been found to be
applied: 1) To predict wave parameters, although at a lesser extent than the
Neural Computation approach; 2) To control WECs, by using a combination
of Fuzzy Computation and GAs, in particular a floating point (buoy-based)
absorber WEC.
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� Evolutionary Computation algorithms have been applied to: 1) Fill up missing
values in wave time series; 2) Predict Hs; and 3) Optimize the shape of wave
energy collectors.

These SC techniques have proven to reach similar and even superior results
than other data-driven models like statistical methods (AR, ARMA, ARIMA,...) in
short term estimations (up to 24 h). Data-driven methods have some advantages
over numerical models: simple modeling, smaller computational e↵ort, and lack of
errors arising out of wind-to-wave conversion. However, numerical models, which
take into account a great variety of physical phenomena, are more accurate over
large spatial and temporal domains.



Chapter 4
A Hybrid Genetic Algorithm –

Extreme Learning Machine
approach for Significant Wave

Height Reconstruction

Up to this point of the thesis, we have presented in Chapter 2 the main concepts
of both wave resources and wave energy converters (WECs), whereas Chapter 3 has
presented and reviewed the use of soft computing (SC) techniques in the field of
wave energy, in the e↵ort of showing the novelty of our research.

Thus we are already now able to present our first research case in which we
have used SC algorithms in an innovative way to solve problems in marine energy.
This is just the purpose of the present chapter in which we summarize our approach
to reconstruct the significant wave height Hs by applying a hybrid approach that
combines a Genetic Algorithm (GA) and an Extreme Learning Machine (ELM). The
method and the results of this chapter have been published in [107].

Note that, as mentioned in Chapter 1, we have organized the structure of this
thesis so that the reader can study each chapter separately, according to his/her
interests and/or previous background. This helps the reader specialized in wave
energy or in SC leap directly to the present chapter without necessarily having
read Chapter 2 (wave energy and WECs characterizations) or Chapter 3 (review
and background of SC methods in wave energy applications). In this respect, this
chapter has been written in the e↵ort of standing by itself as far as possible.

4.1 Introduction

Oceanographic buoys are, and have been, probably one of the most used measur-
ing instruments to characterize wind-generated wave properties [193]. In particular,
a scalar buoy located at a point r = (x, y) on the sea surface is able to measure, at
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each time instant t, the vertical water surface elevation, ⌘(r, t), leading thus to time
series. Using Fourier analysis, the spectral wave density S(f) can be computed,
and, in turn, based on S(f), a number of integrated wave parameters, such as the
spectral moments, the significant wave height Hs, or mean wave period, to name
just a few, can also be estimated [157].

The availability and accuracy of wave data play a crucial role in the better un-
derstanding of numerical [275, 276] and statistical wave models [277, 278], and in a
number of marine-related activities such as the design of vessels and marine struc-
tures (oil platforms, breakwaters [279, 280], wave overtopping volumes [281], ports,
etc.), wave forecasting for safe ship navigation, or the design and operation of wave
energy converters [48] to generate renewable electricity without CO2 emission. Thus
the topic has a clear impact on human safety, economics, clean energy production,
and ecology (since the modification of coastal streams by ports may alter marine
ecosystems).

However, a number of unexpected events can make buoys break down (such as
storms [282], navigation accidents, or other incidents), often causing missing data
gaps, lasting from the causing event until the buoy is repaired. Considering the great
importance that wave data have in the aforementioned marine-related activities, the
reconstruction of missing wave data becomes a key topic. Just in this respect, in
this chapter, we tackle the problem of reconstructing the missing values of Hs at
a “target buoy”, based on a number of wave parameters of neighbor buoys. The
novelty of our approach is twofold:

1. We propose a hybrid evolutionary algorithm that selects those wave parame-
ters that maximize the Hs reconstruction. It consist of a Genetic Algorithm
(GA) [155] hybridized to an Extreme Learning Machine (ELM) [156], called
henceforth GA-ELM. It selects (in the set of available wave parameters in the
neighbor buoys) a smaller subsets FnSP with nSP parameters that will help an
algorithm reconstruct Hs at the target buoy.

2. We explore to what extent the selected parameters are useful in helping other
regression algorithms reconstruct Hs. In this respect we compare the accuracy
achieved by three Learning Machine (ML) methods �ELMs, Support Vector
Regression (SVR) [149], and Gaussian Process Regression (GPR) [283]� lead-
ing to the conclusion that they all achieve very good results in reconstructing
Hs.

Although other ML techniques have been applied to fill missing wave data gaps
(see next section of related work), to the best of our knowledge, our hybrid GA-
ELM approach is novel in the context of coastal engineering, although GAs have
been applied before to the modeling of wind waves at sea [284]. After reviewing the
related work in Section 4.2, the structure of the rest of this chapter is as follows:
While Section 4.3 summarizes the regression methods used, Section 4.4 describes
in detail the wave parameters and the database used. Section 4.5 centers on the
description of the proposed GA-ELM algorithm. Section 4.6 shows and discusses
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the results achieved by ELMs, SVRs, and GPRs when using the parameters selected
by the GA-ELM. Finally, Section 4.7 summarizes the main findings and conclusions
of this work.

The results on this chapter have been published in [107].

4.2 Related work

As mentioned in Introduction section, this chapter tackles the problem of filling
up missing Hs data at a target buoy by using a hybrid GA-ELM algorithm that
selects those parameters at neighboring buoy locations that help alternative ML
regressors (either ELM, SVR, or GPR) reconstruct Hs. A detailed description of all
the techniques used in this chapter is far beyond the scope of the work, however,
we would like to comment on several previous approaches that have been applied to
missing data reconstruction in the past, and also to provide some references of the
main techniques that will be applied in this chapter.

Among ML techniques, the Neural Network (NN) approach [285] has been ap-
plied to compute missing wave data in time series measured at the station Eu-
roplatform, placed in the North Sea [250]. This approach has been found to be
specially reliable to reach accurate estimations of missing wave data [251]. In that
work, feed forward Multi-Layer Perceptrons (MLPs) and recurrent neural networks
were trained by the steepest descent with momentum algorithm and the conju-
gate gradient algorithm, and their estimations were compared to those computed
by using conventional stochastic models. The recurrent neural network approach
trained by the conjugate gradient algorithm was found to predict wave height, pe-
riod, and direction more accurately than the feed forward MLP one. In [286] a
NN coupled to a numerical prediction model was used to obtain wave height pre-
diction/reconstruction values. Results in buoys located at lake Superior and in the
Pacific Ocean were used to validate the model. In [287] a NN with k-nearest neigh-
bor algorithm has been applied to a problem of wave estimation using significant
heights in previous hours. Results in two buoys located at Caspian sea have shown
a good agreement of the prediction with real data. NNs and Genetic Programming
(GP) [230] were successfully applied in [288] to estimate missing wave heights from
neighbouring stations heights measurements. Six buoys from Gulf of Mexico were
used, and results obtained showed a good reconstruction of weight heights using
these techniques. GP and NNs have also been applied to wave forecast from wind
data in [289], obtaining good results in data from the east coast of the USA and
India. Also using the data from adjacent buoys, significant wave height values at a
buoy location have been estimated by means of a Neuro-Fuzzy approach [262] based
on Sugeno-type fuzzy inference. In that paper, the antecedent and consequent part
parameters of the fuzzy IF-THEN rules have been inferred after training the fuzzy
inference system by the Adaptive Neuro Fuzzy Inference System (ANFIS) method-
ology [290]. The experimental work was also carried out by using data measured by
buoys located at the Gulf of Mexico. NN and ANFIS methods were tested in a prob-
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lem of wave parameters estimation in [264], over lake Ontario data obtained from a
deep-water buoy. In [269], particular GP models based on spatial correlation with
neighboring values have been applied to wave height estimation. The results suggest
that GP achieves slightly better results than the NNs explored by the authors in
previous works. In a similar scientific standpoint, [270] leads to the conclusion that
gaps of missing values are slightly better computed by the GP algorithm than those
estimated by the NN designed for comparative purposes, in particular if the gaps
of missing values are small. Radial basis functions (RBF) have also been applied
to similar problems like in [291], where this class of neural network was applied to
a problem of down-scaling waves data to shallow waters. There have been alterna-
tive approaches that hybridize physical/numerical methods with statistical or ML
approaches, such as [278], where di↵erent predictive variables from numerical mod-
els are hybridized with linear regression for wave height estimation, or [292], that
used predictive variables from numerical methods hybridized with di↵erent ordinal
classifiers for discrete wave height estimation in the gulf of Alaska.

In this chapter we also apply alternative ML algorithms to the reconstruc-
tion of missing data at target buoys. Specifically, we use Extreme Learning Ma-
chines [156, 213] hybridized with evolutionary algorithms [155, 293], and also Sup-
port Vector Regression algorithms (SVR) [149,294] and Gaussian Process Regression
(GPR) [283, 295] to improve the data reconstruction in buoys. Specific details on
the proposed GA-ELM algorithm will be given in a posterior section.

4.3 Methods: Machine Learning techniques used

As mentioned in Section 4.1, this chapter tackles the problem of filling up miss-
ing Hs data at a target buoy by using a hybrid GA-ELM algorithm that selects
those neighbor’s parameters that help ML regressors (either ELM, SVM, or GPR)
reconstruct Hs.

The fundamentals of ELM and SVM have already been explained in Sections
3.2.1 and 3.2.2 in Chapter 3. The only algorithm that remains to be explained is
GPR.

Gaussian Process (GP) Regression have recently attracted a lot of attention be-
cause of their good performance in regression tasks [283]. We give here a short
description of Gaussian Process Regression (GPR), the interested reader being re-
ferred to the more exhaustive reviews [295] or [296].

Given a set of N multi-dimensional inputs xn and their corresponding scalar
outputs yn, that is, the data set DS ⌘ {xn, yn}m

i=1, the regression task consists in
obtaining the predictive distribution for the corresponding observation y⇤ based on
DS given a new input x⇤.

The GPR model assumes that the observations can be modeled as some noiseless
latent function of the inputs plus independent noise, y = f(x) + ", and then sets a
zero-mean GP prior on the latent function f(x) ⇠ GP (0, k(x,x0)) and a Gaussian
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prior on " ⇠ N (0, �2) on the noise, where k(x,x0) is a covariance function and �2 is
a hyperparameter that specifies the noise power.

The covariance function k(x,x0) specifies the degree of coupling between y(x) and
y(x0), and it encodes the properties of the GP such as power level, smoothness, etc.
One of the best-known covariance functions is the anisotropic squared exponential.
It has the form of an unnormalized Gaussian, k(x,x0) = �2

0 exp
��1

2
xT⇤�1x

�
and

depends on the signal power �2
o and the length-scales ⇤, where ⇤ is a diagonal matrix

containing one length- scale per input dimension. Each length-scale controls how fast
the correlation between outputs decays as the separation along the corresponding
input dimension grows. We will collectively refer to all kernel parameters as ✓.

The joint distribution of the available observations (collected in y) and some
unknown output y(x⇤) is a multivariate Gaussian distribution, with parameters
specified by the covariance function:


y
y⇤

�
⇠ N

✓
0,


K + �2IN k⇤

kT
⇤ k⇤⇤ + �2

�◆
, (4.1)

where [K]nn0 = k(xn,xn0), [k⇤]n = k(xn,x?) and k⇤⇤ = k(x⇤,x⇤). IN is used to
denote the identity matrix of size N . The notation [A]nn0 refers to entry at row n,
column n0 of A. Likewise, [a]n is used to reference the n-th element of vector a.

From (4.1) and conditioning on the observed training outputs we can obtain the
predictive distribution

pGP (y⇤|x⇤, D) = N (y⇤|µGP⇤, �2
GP⇤)

µGP⇤ = kT
⇤ (K + �2IN)�1y

�2
GP⇤ = �2 + k⇤⇤ � kT

⇤ (K + �2IN)�1k⇤,
(4.2)

which is computable in O(N3) time, due to the inversion of the N ⇥ N matrix
K + �2IN .

Hyperparameters {✓, �} are typically selected by maximizing the marginal like-
lihood (also called “evidence”) of the observations, which is

log p(y|✓, �) = �1

2
yT (K + �2IN)�1y � 1

2
|K + �2IN |� N

2
log(2⇡). (4.3)

If analytical derivatives of (4.3) are available, optimization can be carried out
using gradient methods, with each gradient computation taking O(N3) time. GP
algorithms can typically handle a few thousand data points on a desktop PC.

When dealing with multi-output functions, instead of a single set of observations
y, D sets are available, y1 · · ·yD , each corresponding to a di↵erent output dimen-
sion. In this case we can assume independence across the outputs and perform the
above procedure independently for each dimension. This will provide reasonable re-
sults for most problems, but if correlation between di↵erent dimensions is expected,
we can take advantage of this knowledge and model them jointly using multi-task
covariance functions [297].
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4.4 Measured data, wave parameters, and database

Figure 4.1 will assist us in explaining the two case studies we have considered to
evaluate the performance of the reconstruction method we propose.
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Figure 4.1: Map representing the locations of the buoys involved in the case studies
considered. A blue dot represents the target buoy where Hs needs to be recon-
structed by using wave data from the corresponding neighbor buoys, represented by
red dots.

The first scenario represented in Figure 4.1, labeled “Caribbean Sea”, shows
the location of five buoys: “42056”, “42057”, “42058”, “42059”, and “42060” (Na-
tional Oceanic and Atmospheric Administration (NOAA) [298]). The arrows aim
at schematically illustrating the goal of reconstructing Hs at the buoy “42058” (or
“target”, represented by a blue dot) based on wave-describing parameters of the
other four neighbor red-dot buoys (“42056”, “42057”, “42059”, and “42060”, respec-
tively). These wave-describing parameters have been computed from the spectral
wave density measured hourly by NOAA at each buoy during 2011. Similarly, the
second scenario, “West Atlantic”, involves data from buoys 41044, 41046, 41047 and
41048 [298], which will be used to reconstruct Hs at the target buoy 41049. We have
used these two di↵erent locations in the e↵ort of exploring the feasibility of the pro-
posed method in di↵erent sea conditions. The Caribbean Sea is almost enclosed and
therefore the wave developed is a↵ected by the fetch limitation. On the contrary, in
the chosen Atlantic location other population of di↵erent wave fields can be found,
such as swell that present a more regular behavior in the spatial propagation than
short-crested and high directional spreading wind sea.
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4.4.1 Wave parameters and data structure

As mentioned, based on the hourly spectral wave density data at these buoys,
we have computed, for each buoy, 15 integrated sea state parameters, which will
be used to reconstruct Hs. Regarding the definition of those parameters used, and
as mentioned in the Introduction made in Chapter 1, this thesis report has been
organized so that each chapter is self-contained, with the aim that the reader can
focus exclusively on the chapter of interest. In this respect, the aforementioned
wave-describing parameters have been described in the paragraphs below to make
this chapter stand by itself.

Section 2.2.3 in Chapter 2 contains a broad description of wave parameters. For
simplicity, we summarize in the present section only those parameters that have
been used in the problem at hand. For more details the interested reader is referred
to Section 2.2.3. In this respect, the selection of wave parameters that can describe
sea states, which have been studied in the last twenty years [299], are the following:

� The wave spectral moments m�1, m0, m1, and m2, whose corresponding math-
ematical definitions can be obtained from that of the spectral moment of order
n,

mn =

Z 1

0

fn · S(f) · df, (4.4)

S(f) being the spectral wave density data from a given buoy, and n = �1, 0, 1, 2, · · ·
� The significant wave height, computed as

Hs = 4 · (m0)
1/2 (4.5)

� The peak period, defined as Tp = 1/fp, fp being the spectral peak frequency,
that is, the frequency where the spectrum S(f) reaches its maximum value.

� The mean periods Tm01, Tm02 and Tm�10, defined as

Tmxy =
mx

my

(4.6)

mx and my being spectral moments computed by Expression (4.4).

� The Goda’s peakedness parameter [178], which can be computed as [170]

Qp =
2

m2
0

Z 1

0

f · S2(f) · df, (4.7)

has the capability to describe empirically the statistical parameters of consec-
utive wave heights [178].
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� The Longuet-Higgins spectral band-width, ⌫, defined as [179]

⌫ =

r
m2 · m0

m2
1

� 1, (4.8)

indicates the degree of the spectral energy spreading over the frequency range.

� The wave height correlation coe�cient, �, firstly introduced by Kimura [181],
and that, after the contributions of Battjes and van Vledder [182] and Longuet-
Higgins [179], can be computed as

� =
E()� (1� 2)K()/2� ⇡/4

1� ⇡/4
(4.9)

where:

1.  parameter can be estimated by using the expression [179,193]

 =

����
1

m0

Z 1

0

S(f) · ei2⇡fTcdf

���� , (4.10)

Tc being a characteristic time that we have computed by using either
the estimator Tm01 or the estimator Tm02. Thus, we use the notation,
(Tc = Tm01) ⌘ 01, which represents the value of  parameter computed
by using Tm01 as an estimator of Tc, while (Tc = Tm02) ⌘ 02 is the one
estimated with Tm02.

2. E() and K() are the complete elliptic integrals of 1st and 2nd kind,
respectively.

As in the case of  parameter, �01 represents the value of � parame-
ter computed by using Tm01 as an estimator of Tc, while �02 is the one
estimated by means of Tm02.

For more details the interested reader is referred to Section 2.2.3.

4.4.2 Database D
With the wave data described in Subsection 4.4.1, we have, for any buoy in both

scenarios, a wave-describing vector with 15 components (Hs, m�1, m0, m1, m2, Tp,
Tm�10, Tm01, Tm02, Qp, ⌫, 01, �01, 02, �02), computed hourly, during year 2011.

These data vectors are just those that form the initial database D, which has
been randomly divided into a training set, Straining (containing 80% of the samples),
and a test set, Stest (with the remaining 20% saved for testing and not used during
the design stage), so that D = Straining

SStest.

In the e↵ort of preventing our algorithm from overfitting Straining (what could
reduce its ability to reconstruct the objective variable), we have used a k-fold cross
validation process, whose details will be better understood in Subsection 4.5.3, just
after our algorithm have been explained.
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4.5 The proposed GA-ELM algorithm for wave
parameter selection

Since our purpose is to reconstruct Hs at a target buoy using input vectors with
15 components (Hs, m�1, m0, m1, m2, Tp, Tm�10, Tm01, Tm02, Qp, ⌫, 01, �01, 02, �02)
for each of the four neighbor buoys in any scenario, the number of input variables
are thus 4 ⇥ 15 = 60. Or, in other words, the input vector X = [x1, · · · , x60]
has 60 components. Note that, aiming at estimating as fast and accurately as
possible, it is important to properly reduce the input vector dimensionality in the
e↵ort of: 1) Reducing the computational complexity of the reconstruction system; 2)
Removing those wave parameters that could provide non-useful information and even
degrade the estimation accuracy. Thus, the problem consists in selecting those wave-
describing parameters, from a more general point of view) that make the system work
as accurately as possible.

With this in mind, the method we propose is based on a GA that computes
the fitness of any candidate solution by using an ELM. The reason why we have
not hybridized the GA with either the SVR or the GPR, as we have done with the
ELM, is because of their higher computational complexity. This is of the greatest
importance because, for any generation, the algorithm has to evaluate the fitness
of the trial candidate solutions (that is, to what extent, the wave-parameter vector
help the classifier work accurately), and the SVRs and GPRs require a training time
that make them unsuitable to form part of the fitness function of the GA.

The basic concepts GAs are based on, have already been introduced in Section
3.3, these being:

1. Encoding the candidate solutions (individuals).

2. Generating an initial population of candidate solutions.

3. Applying genetic operators (selection, recombination or crossover, and muta-
tion).

The following subsections summarize the main details of the encoding, the initial
population, and the genetic operators we have implemented.

4.5.1 Encoding and initial population

Before applying the genetic operators it is crucial to properly codify the candidate
wave-describing vector. The chromosome that encodes any individual (candidate
solution) is a string C = [c1, · · · , ci, · · · , c60] whose elements represent whether the
i wave-describing feature in the candidate vector will be used or not: ci = 1 codifies
that feature xi has been selected, while ci = 0 means that this is not the case.

The size of the initial population is a key point for the GA performance. On
one hand, a large initial population could lead to more diversity (and thus, a higher
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search space, and slower convergence). On the other hand, a very small population
leads to a smaller search space to be explored, at the expense of increasing the risk
of prematurely converging to a local extreme. After a number of experiments, the
optimal size of the initial population has been found to be 100 individuals.

4.5.2 Applying genetic operators

The hybrid GA-ELM we propose evolves the initial population of candidate
solutions through successive generations by means of the application of three genetic
operators (selection, crossover and mutation) in a loop until a stopping criterium
is fulfilled (either a maximum number of generations is reached or if the algorithm
converges to a stable solution after a number of generations).

� The selection operator selects a subpopulation of individuals to become par-
ents to crossover. Among the number of selection operators �roulette wheel
selection, tournament selection, Boltzman selection, rank selection [300]�, the
implemented GA makes use of a tournament selection which involves running
several “tournaments” among a few individuals chosen at random from the
population. For each individual, its fitness value is evaluated as the root-
mean-square error (RMSE) between the reconstructed (estimated) value (Ĥs)
and the real (measured) one (Hs) available in the data base:

RMSE(Ĥs) = (E[(Ĥs �Hs)
2])1/2, (4.11)

E being the mean value operator. The winner of each tournament (the one
with the best fitness) is finally selected for crossover.

� The crossover operator exchanges parts of two selected individuals, leading to
novel chromosomes (which codify novel candidate solutions). Among various
crossover operators (one-point, two-point, multi-point [301]...), the proposed
GA makes use of an one-point crossover operator in which a point on both
parents’ chromosomes is selected so that genes beyond such point are swapped
between the two parent chromosomes. The crossover probability has been set
to pc = 0.6 after a number of experiments.

� The mutation operator randomly changes (mutates) an o↵spring chromosome
with a mutation probability, pm. This has been done by flipping the bits from
0 to 1. The main goal of the mutate operator is to increase diversity within
the population, and prevent the GA from prematurely converging to local
extrema. The mutation probability has been set to pm = 0.01 after a number
of experiments.

The algorithm iterates until a maximum number of generations (50) is reached
or until the lowest RMSE value remains unchanged for a given number of iterations
(20). These values have been found to be large enough to allow the algorithm to
properly converge in our experiments.



Results and discussion 59

4.5.3 k-fold cross validation methodology

As mentioned before, aiming at preventing our GA-ELM from overfitting Straining,
we have made use of a k-fold cross validation process [302, 303] with k = 5. The
goal of this cross validation method is to properly define a data subset to “test”
the ELM estimator in the training phase (that is, a validation subset). Straining is
thus randomly divided into 5 equal-size subsets so that four of them are used to
train the ELM estimator, while the remaining one is saved as the validation set for
testing the performance of the system in terms of its RMSE. The cross-validation
process is then repeated k = 5 times (folds), with each of the k subsets used once
as the validation subset (Svalidation,i, i = 1, · · · , 5). Finally, the five results from the
folds have been averaged to produce a single estimation: that is, for each individual,
its fitness value is computed as the mean value of the 5 estimation errors obtained
during this process.

Once the GA-ELM algorithm has converged, the best individual found has been
used to feed an ELM-based estimator Ĥs, which has been trained by using Straining,
and tested with Stest (Straining [ Stest = D).

4.6 Results and discussion

4.6.1 Result from the feature selection process

As mentioned before, the RMSE of a certain Hs reconstruction algorithm is
characterized by Expression (4.11). First of all, and as a baseline result to compare
with, we have applied the ELM algorithm with all input parameters available (60),
obtaining RMSE values of 0.668m and 0.809m for Scenario 1 (Caribbean Sea) and
Scenario 2 (West Atlantic) buoys, respectively. The proposed GA-ELM and alter-
native methodologies should beat these results for both Scenarios. We also provide
here the results of the ELM considering as input parameters m�1, m0, m1, m2, 02 in
all buoys (20 input parameters). In this case, the RMSE obtained was 0.592 and
0.788, for Scenario 1 and 2, respectively. Figure 4.2 shows RMSE(Ĥs), for both
scenarios, as a function of the number of the best selected parameters, nSP . For the
sake of clarity, we have represented only those reconstruction values corresponding
to 5 6 nSP 6 10, since this interval has been found to be the one in which the best
reconstruction (lower RMSE(Ĥs)) is achieved. This is because, on the one side, a
higher number of parameters degrades the reconstruction accuracy since some of the
parameters behave as noise. On the other side, smaller feature subsets do not have
enough information for properly reconstruction.

A key point to note in Figure 4.2 is that the proposed GA-ELM algorithm works
well in the sense that it selects a very reduced subset of parameters (nSP = 10
parameters) among the available 60 parameters we had at the beginning of the
process. Note that using only 10 selected parameters lead to reduced reconstruction
errors: RMSE(Ĥs)Caribbean . 0.50 m, and RMSE(Ĥs)Atlantic . 0.75 m, obtaining
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an improvement over the case of not considering a feature selection mechanism.
Furthermore, using only five parameters leads approximately to the same RMSE,
that is, there is no operational benefit in using more than 5 parameters. The question
arising here is which such best wave-describing parameters are. Tables 4.1 and 4.2
aim at answering this question.
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Figure 4.2: Root mean square error of Hs reconstruction, RMSE(Ĥs), computed
over Stest, as a function of the number of parameters selected (nSP ) by the GA-
ELM method, in both scenarios.

Table 4.1, related to Hs reconstruction in Scenario 1, consists of four sub-tables,
each corresponding to any of the considered buoys (42056, 42057, 42059, 42060)
whose data are used to reconstruct Hs in buoy 42058. In any sub-table, the columns
represent all the available wave parameters, while the rows represent the number of
parameters nSP that the GA-ELM algorithm has selected.

To clearly explain what this Table 4.1 means, it is convenient to focus first on
the cells marked by stars (?) in the rows labeled “5”. The marker “?” has been used
to univocally identify the parameters that have been selected when the GA-ELM
algorithm searches for the best 5 parameters (nSP = 5). These best 5 parameters
scored by “?” are: 02 (from buoy 42056), Hs, m0, m1 (from buoy 42057), and m2

(buoy 42059). No feature has been selected from buoy 42060 (there is no ? in row
“5” of the sub-table corresponding to buoy 42060). Similarly, and in the e↵ort of
better understanding Table 4.1, we have used di↵erent symbols (�, •, �, ⌦, �) to
mark the parameters that have been selected when the GA-ELM algorithm searches
for the best nSP = 6, 7, 8, 9 and 10 parameters, respectively.



Results and discussion 61

Table 4.1: Parameters selected by the GA-ELM algorithm for each buoy in the
Caribbean Sea case study. There is a sub-table for each buoy involved. While the
columns contain all the available parameters (wave-describing parameters), the rows
represent the number of parameters (nSP ) that the GA-ELM algorithm has selected.
The symbols ?, �, •, �, ⌦, and � mark the parameters that have been selected for
nSP = 5, 6, 7, 8, 9 and 10, respectively.

Wave parameters of buoy 42056 (1185 km away from the target buoy 42058)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ?
6 �
7 •
8 ⌦
9 �
10 �

Wave parameters of buoy 42057 (740 km away from the target buoy 42058)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ? ? ?
6 � � � �
7 • • • • •
8 ⌦ ⌦ ⌦
9 � � � � �
10 � � � � � �

Wave parameters of buoy 42059 (799 km away from the target buoy 42058)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ?
6 �
7 •
8 ⌦ ⌦ ⌦ ⌦
9 � �
10 � �

Wave parameters of buoy 42060 (1260 km away from the target buoy 42058)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5
6
7
8
9 �
10 �

At this point, the results in Table 4.1 will assist us now in understanding better
the results shown in Figure 4.2, in which we had mentioned that only 5 parameters
contain enough information to reconstruct Hs. This has physical meaning in the
sense that the selected wave parameters (Hs, 02, and spectral moments m0, m1, m2

of closest buoys, those marked by stars (?) in rows “5” of Table 4.1 ) have a close
relation to Hs, since it is a function of m0.

Regarding the second case study (West Atlantic), Table 4.2 list the parameters
selected by the GA-ELM in this scenario. We have used in Table 4.2 the same
notation as in the previous case. Regarding this previous analysis on the important
parameters selected by the GA-ELM algorithm, note that ELMs are highly non-
linear predictive tools. This means that a direct physical explanation of the di↵erent
parameters’ e↵ect in the prediction in not possible, or at least, is not straightforward.
In other words the better performance of some algorithms versus other, or the better
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performance of di↵erent sets of parameters is partly due to the data structure of the
problem. Of course, physical properties may emerge in the algorithms’ performance,
but not always. Thus, it is in general not possible a direct interpretation of the
predictive variables chosen and the algorithms’ performance on the basis of physical
parameters interpretation.

Table 4.2: Wave parameters selected by the GA-ELM algorithm for each buoy in the
West Atlantic case study. Again, there is a sub-table for each buoy. Columns contain
all the available parameters (wave-describing parameters), and rows represent the
number of parameters (nSP ) that the GA-ELM algorithm has selected. The symbols
?, �, •, �, ⌦, and � mark the parameters that have been selected for nSP =
5, 6, 7, 8, 9 and 10, respectively.

Wave parameters of buoy 41044 (793 km away from the target buoy 41049)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ?
6 � �
7 •
8 �
9 ⌦ ⌦ ⌦ ⌦
10 � �

Wave parameters of buoy 41046 (677 km away from the target buoy 41049)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ?
6 �
7 •
8 � � �
9 ⌦ ⌦
10 � �

Wave parameters of buoy 41047 (841 km away from the target buoy 41049)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ?
6 �
7 • • •
8 �
9 ⌦
10 � � � �

Wave parameters of buoy 41048 (800 km away from the target buoy 41049)
Hs m�1 m0 m1 m2 Tp Tm�10 Tm01 Tm02 Qp ⌫ 01 �01 02 �02

5 ? ?
6 � �
7 • •
8 � � �
9 ⌦ ⌦
10 � �

There are two final remarks we would like to note here:

1. The first one is related to the fact that, in both scenarios, Hs of one of the
closest buoys to the target is always selected, while those parameters from the
farthest buoy are rarely selected. This is very clear in Table 4.1, where the
parameters of buoy 42057 (740 km away from the target buoy 42058, the closest
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one) have been selected the most. In the second scenario, West Atlantic, this
trend can not be found, due probably to the di↵erent oceanographic conditions
of the area, that is more open than Caribbean sea, and therefore a number
of di↵erent wave fields can be found, such as swell that show a higher spatial
correlation than wind sea.

2. The second comment is that the most popular parameters, besides Hs, are the
spectral moments, which, as mentioned before, have a very close relation to
the significant wave height. Without using these spectral moments, and only
Hs is used, we have observed that the results obtained are worse. A possible
explanation for this is that there are many sea states for the same value of
Hs (i.e. wind sea, swell, bimodal sea states, etc). Since the di↵erent spectral
moments weight di↵erent regions of the frequency domain, it seems that the
system has more information on the sea state.

Once the best wave-describing parameters have been selected, the question aris-
ing is to what extent they still operate accurately when they are used by other
regression methods to reconstruct Hs. This is just the purpose of the next section.

4.6.2 Exploring the quality of the selected parameters in
di↵erent ML regression methods

We have compared the performance of ELM, SVR and GPR for reconstructing
Hs, in both scenarios, using the parameters selected by the proposed GA-ELM. As
in the previous case, we provide here the RMSE for SVR and GPR, i.e, 0.523m
(SVR) and 0.498m (GPR) in Scenario 1, and 0.654 (SVR) and 0.628 (GPR) in Sce-
nario 2. The results of the SVR and GPR considering m�1, m0, m1, m2, 02 as input
parameters in all buoys (20 input parameters) are 0.502m (SVR) and 0.591m (GPR)
for Scenario 1, and 0.634m (SVR) and 0.591m (GPR), for Scenario 2, respectively.

The experimental work we have carried out, in any scenario, is as follows:

1. The GA-ELM algorithm searches for the best nSP parameters, and constructs
the subset FnSP . For instance, F5 represents the 5-feature subset {02 (from
buoy 42056), Hs, m0 (buoy 42057), m1 (42057), m2 (42059)}, which we had
marked by ? in Table 4.1.

2. Training any of the regression methods (ELM, SVR, GPR) with the samples
in Stest driven by the methodology stated in Subsection (4.5.3).

Figures 4.3 and 4.4 show, for the first and second scenario, respectively, the
RMSE(Ĥs)(m) that any of the regression methods make as a function of the subset
parameters used (FnSP ), provided by the GA-ELM when searching for the best nSP

reconstructing parameters.
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Note that the best results are reached by the Gaussian Process Regressors,
which are able to reach reconstruction errors of around 0.3 m (F8) for the
Caribbean Sea (Tables 4), and 0.5 m for the West Atlantic, representing an
improvement of around 0.2 m in both cases.

Table 4: Reconstruction error, RMSE(

ˆHs) (m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR) as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(

ˆHs)
ELM
Carib RMSE(

ˆHs)
SVM
Caribb RMSE(

ˆHs)
GPR
Caribb

F5 0.5432 m 0.4312 m 0.4199 m

F6 0.4584 m 0.4034 m 0.3501 m

F7 0.4540 m 0.3764 m 0.2961 m

F8 0.4627 m 0.3538 m 0.3011 m

F9 0.4487 m 0.3524 m 0.2865 m

F10 0.4530 m 0.3216 m 0.2513 m

Table 5: Reconstruction error, RMSE(

ˆHs) (m), in the West Atlantic scenario, made by

any of the method explored (ELM, SVM, GPR) as a function of the subset of features

(FnSF ) selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(Ĥs)ELM
Atlan RMSE(Ĥs)ELM

Atlan RMSE(Ĥs)ELM
Atlan

F5 0.7324 m 0.6853 m 0.6293 m
F6 0.7053 m 0.5485 m 0.6212 m
F7 0.7136 m 0.5974 m 0.5871 m
F8 0.7045 m 0.5079 m 0.4812 m
F9 0.7286 m 0.4991 m 0.4949 m
F10 0.6844 m 0.5428 m 0.5219 m

To complete the discussion, Figure 3 and 4 show, in both scenarios re-
spectively, the reconstructed value of the significant wave height versus the
measured values available that the GPR method made when using the five
best features in F5. Note that, for the case of the West Atlantic case study,
the biggest errors occur for high values of the significant wave height (above
5 m). This may be due to the fact that the amount of measures like these is
very reduced, therefore being the system unable to train properly.
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to properly define a data subset to “test” the ELM estimator in the train-
ing phase (that is, a validation subset). The training set Straining is thus
randomly divided into 5 equal-size subsets so that four of them are used to
train the ELM estimator, while the remaining one is saved as the validation
set for testing the performance of the system in terms of its RMSE. The
cross-validation process is then repeated k = 5 times (folds), with each of
the k subsets used once as the validation subset (Svalidation,i, i = 1, · · · , 5).
Finally, the five results from the folds have been averaged to produce a single
estimation: that is, for each individual, its fitness value is computed as the
mean value of the 5 estimation errors obtained during this process.

Once the GA-ELM algorithm has converged, the best individual found
has been used to feed an ELM-based estimator Ĥs, which has been trained
by using the training set Straining, and tested with the test set Stest that we
had saved at the beginning of the process (Straining

S Stest = D).

6. Results and discussion

6.1. Result from the feature selection process
As mentioned before, the root mean square error that our Hs reconstruc-

tion algorithm makes has been characterized by Expression (25). Just in this
respect, Table 1 lists the root mean square error obtained, RMSE(Ĥs), for
both scenarios, as a function of the number of the best selected features, nSF .

Number of selected features, nSF

Table 1: Root mean square error of Hs reconstruction, RMSE(

ˆHs), computed over the

test set, Stest, as a function of the number of features selected (nSF ) by the GGA-ELM

method.

nSF RMSE(

ˆHs)Caribbean RMSE(

ˆHs)Atlantic

5 0.4955 m 0.7332 m

6 0.4723 m 0.7304 m

7 0.4799 m 0.7360 m

8 0.4733 m 0.7383 m

9 0.4885 m 0.7491 m

10 0.4888 m 0.7464 m

In this Table, we have listed only those reconstruction values correspond-
ing to 5 6 nSF 6 10, since this interval has been found to be the one in
which the best reconstruction (lower RMSE(Ĥs)) is achieved.
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Table 4: Reconstruction error, RMSE(

ˆHs) (m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR) as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(

ˆHs)
ELM
Carib RMSE(

ˆHs)
SVM
Caribb RMSE(

ˆHs)
GPR
Caribb

F5 0.5432 m 0.4312 m 0.4199 m

F6 0.4584 m 0.4034 m 0.3501 m

F7 0.4540 m 0.3764 m 0.2961 m

F8 0.4627 m 0.3538 m 0.3011 m

F9 0.4487 m 0.3524 m 0.2865 m

F10 0.4530 m 0.3216 m 0.2513 m

Table 5: Reconstruction error, RMSE(

ˆHs) (m), in the West Atlantic scenario, made by

any of the method explored (ELM, SVM, GPR) as a function of the subset of features

(FnSF ) selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(Ĥs)ELM
Atlan RMSE(Ĥs)ELM
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Atlan

F5 0.7324 m 0.6853 m 0.6293 m
F6 0.7053 m 0.5485 m 0.6212 m
F7 0.7136 m 0.5974 m 0.5871 m
F8 0.7045 m 0.5079 m 0.4812 m
F9 0.7286 m 0.4991 m 0.4949 m
F10 0.6844 m 0.5428 m 0.5219 m
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open than Caribbean sea, and therefore a number of di↵erent wave363

fields can be found, such as swell that show a higher spatial correlation364

than wind sea.365

2. The second comment is that the most popular parameters, besides Hs,366

are the spectral moments, which, as mentioned before, have a very367

close relation to the significant wave height. Without using these spec-368

tral moments, and only Hs is used, we have observed that the results369

obtained are worse. A possible explanation for this is that there are370

many sea states for the same value of Hs (i.e. wind sea, swell, bimodal371

sea states, etc). Since the di↵erent spectral moments weight di↵erent372

regions of the frequency domain, it seems that the system has more373

information on the sea state.374

Once the best wave-describing parameters have been selected, the ques-375

tion arising is to what extent they still operate accurately when they are used376

by other regression methods to reconstruct Hs. This is just the purpose of377

the next section.378

5.2. Exploring the quality of the selected parameters in di↵erent ML regres-379

sion methods380

We have compared the performance of ELM, SVR and GPR for recon-381

structing Hs, in both scenarios, using the parameters selected by the proposed382

GA-ELM. As in the previous case, we provide here the RMSE for SVR and383

GPR, i.e, 0.523m (SVR) and 0.498m (GPR) in Scenario 1, and 0.654 (SVR)384

and 0.628 (GPR) in Scenario 2. The results of the SVR and GPR considering385

m�1, m0, m1, m2, 02 as input parameters in all buoys (20 input parameters)386

are 0.502m (SVR) and 0.591m (GPR) for Scenario 1, and 0.634m (SVR) and387

0.591m (GPR), for Scenario 2, respectively.388

The experimental work we have carried out, in any scenario, is as follows:389

1. The GA-ELM algorithm searches for the best nSP parameters, and390

constructs the subset FnSP . For instance, F5 represents the 5-feature391

subset {02 (from buoy 42056), Hs, m0 (buoy 42057), m1 (42057), m2392

(42059)}, which we had marked by ? in Table 1.393

2. Training any of the regression methods (ELM, SVR, GPR) with the394

samples in Stest driven by the methodology stated in Subsection (4.3).395

Figures 3 and 4 show, for the first and second scenario, respectively, the396

RMSE(Ĥs)(m) that any of the regression methods make as a function of the397
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Figure 4.3: Reconstruction error, RMSE(Ĥs)(m), computed over Stest, in the
Caribbean scenario, made by any of the method explored (ELM, SVR, GPR), as
a function of the subset of parameters (FnSP ) selected by the GA-ELM (nSP =
5, 6, · · · , 8).
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Note that the best results are reached by the Gaussian Process Regressors,
which are able to reach reconstruction errors of around 0.3 m (F8) for the
Caribbean Sea (Tables 4), and 0.5 m for the West Atlantic, representing an
improvement of around 0.2 m in both cases.

Table 4: Reconstruction error, RMSE(

ˆHs) (m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR) as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(

ˆHs)
ELM
Carib RMSE(

ˆHs)
SVM
Caribb RMSE(

ˆHs)
GPR
Caribb

F5 0.5432 m 0.4312 m 0.4199 m

F6 0.4584 m 0.4034 m 0.3501 m

F7 0.4540 m 0.3764 m 0.2961 m

F8 0.4627 m 0.3538 m 0.3011 m

F9 0.4487 m 0.3524 m 0.2865 m

F10 0.4530 m 0.3216 m 0.2513 m

Table 5: Reconstruction error, RMSE(

ˆHs) (m), in the West Atlantic scenario, made by

any of the method explored (ELM, SVM, GPR) as a function of the subset of features

(FnSF ) selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

RMSE(Ĥs)ELM
Atlan RMSE(Ĥs)ELM

Atlan RMSE(Ĥs)ELM
Atlan

F5 0.7324 m 0.6853 m 0.6293 m
F6 0.7053 m 0.5485 m 0.6212 m
F7 0.7136 m 0.5974 m 0.5871 m
F8 0.7045 m 0.5079 m 0.4812 m
F9 0.7286 m 0.4991 m 0.4949 m
F10 0.6844 m 0.5428 m 0.5219 m

To complete the discussion, Figure 3 and 4 show, in both scenarios re-
spectively, the reconstructed value of the significant wave height versus the
measured values available that the GPR method made when using the five
best features in F5. Note that, for the case of the West Atlantic case study,
the biggest errors occur for high values of the significant wave height (above
5 m). This may be due to the fact that the amount of measures like these is
very reduced, therefore being the system unable to train properly.
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to properly define a data subset to “test” the ELM estimator in the train-
ing phase (that is, a validation subset). The training set Straining is thus
randomly divided into 5 equal-size subsets so that four of them are used to
train the ELM estimator, while the remaining one is saved as the validation
set for testing the performance of the system in terms of its RMSE. The
cross-validation process is then repeated k = 5 times (folds), with each of
the k subsets used once as the validation subset (Svalidation,i, i = 1, · · · , 5).
Finally, the five results from the folds have been averaged to produce a single
estimation: that is, for each individual, its fitness value is computed as the
mean value of the 5 estimation errors obtained during this process.

Once the GA-ELM algorithm has converged, the best individual found
has been used to feed an ELM-based estimator Ĥs, which has been trained
by using the training set Straining, and tested with the test set Stest that we
had saved at the beginning of the process (Straining

S Stest = D).

6. Results and discussion

6.1. Result from the feature selection process
As mentioned before, the root mean square error that our Hs reconstruc-

tion algorithm makes has been characterized by Expression (25). Just in this
respect, Table 1 lists the root mean square error obtained, RMSE(Ĥs), for
both scenarios, as a function of the number of the best selected features, nSF .

Number of selected features, nSF

Table 1: Root mean square error of Hs reconstruction, RMSE(

ˆHs), computed over the

test set, Stest, as a function of the number of features selected (nSF ) by the GGA-ELM

method.

nSF RMSE(

ˆHs)Caribbean RMSE(

ˆHs)Atlantic

5 0.4955 m 0.7332 m

6 0.4723 m 0.7304 m

7 0.4799 m 0.7360 m

8 0.4733 m 0.7383 m

9 0.4885 m 0.7491 m

10 0.4888 m 0.7464 m

In this Table, we have listed only those reconstruction values correspond-
ing to 5 6 nSF 6 10, since this interval has been found to be the one in
which the best reconstruction (lower RMSE(Ĥs)) is achieved.
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Table 4: Reconstruction error, RMSE(

ˆHs) (m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR) as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).
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F8 0.4627 m 0.3538 m 0.3011 m

F9 0.4487 m 0.3524 m 0.2865 m

F10 0.4530 m 0.3216 m 0.2513 m

Table 5: Reconstruction error, RMSE(

ˆHs) (m), in the West Atlantic scenario, made by

any of the method explored (ELM, SVM, GPR) as a function of the subset of features

(FnSF ) selected by the GGA-ELM (nSF = 5, 6, · · · , 10).
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[5] López I, Andreu J, Ceballos S, Mart́ınez de Alegŕıa I, Kortabarria I,
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{02 (from buoy 42056), Hs, m0 (buoy 42057), m1 (42057), m2 (42059)},
which we had marked by ? in Table 1.

2. Training any of the regression methods (ELM, SVM, GP) with the
samples in Stest driven by the methodology stated in Subsection (5.4).

F9

Figure 4 shows the RMSE(Ĥs)(m) that any of the regression methods
make as a function of the subset features used (FnSF ), provided by the GGA-
ELM when searching for the best nSF reconstructing features.

Note that the best results are reached by the Gaussian Process Regressors,
which are able to reach reconstruction errors of around 0.3 m (F8) for the
Caribbean Sea (Tables 3), and 0.5 m for the West Atlantic, representing an
improvement of around 0.2 m in both cases.
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Figure 4: Reconstruction error, RMSE(

ˆHs)(m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR), as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

To complete the discussion, Figure 5 and 6 show, in both scenarios re-
spectively, the reconstructed value of the significant wave height versus the
measured values available that the GPR method made when using the five
best features in F5. Note that, for the case of the West Atlantic case study,
the biggest errors occur for high values of the significant wave height (above
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Figure 4 shows the RMSE(Ĥs)(m) that any of the regression methods
make as a function of the subset features used (FnSF ), provided by the GGA-
ELM when searching for the best nSF reconstructing features.

Note that the best results are reached by the Gaussian Process Regressors,
which are able to reach reconstruction errors of around 0.3 m (F8) for the
Caribbean Sea (Tables 3), and 0.5 m for the West Atlantic, representing an
improvement of around 0.2 m in both cases.

!"#$%

!"&#%

!"&'%

!"(%

!"((%

!"($%

!")#%

)% '% *% $%

T
a
b
l
e

4
:

R
e
c
o
n
s
t
r
u
c
t
i
o
n

e
r
r
o
r
,
R

M
S
E

(

ˆ H
s
)

(
m

)
,
i
n

t
h
e

C
a
r
i
b
b
e
a
n

s
c
e
n
a
r
i
o
,
m

a
d
e

b
y

a
n
y

) (m), in the Caribbean scenario, made by any

F5

F5

F6

F
F7

F7

F8

Number of selected features, nSF

both scenarios, as a function of the number of the best selected features,
Subset of selected features, FnSF

of the method explored (ELM, SVM, GPR) as a function of the subset of features (

of the method explored (ELM, SVM, GPR) as a function of the subset of features (

of the method explored (ELM, SVM, GPR) as a function of the subset of features (

Figure 4: Reconstruction error, RMSE(

ˆHs)(m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR), as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

To complete the discussion, Figure 5 and 6 show, in both scenarios re-
spectively, the reconstructed value of the significant wave height versus the
measured values available that the GPR method made when using the five
best features in F5. Note that, for the case of the West Atlantic case study,
the biggest errors occur for high values of the significant wave height (above

20

open than Caribbean sea, and therefore a number of di↵erent wave363

fields can be found, such as swell that show a higher spatial correlation364

than wind sea.365

2. The second comment is that the most popular parameters, besides Hs,366

are the spectral moments, which, as mentioned before, have a very367

close relation to the significant wave height. Without using these spec-368

tral moments, and only Hs is used, we have observed that the results369

obtained are worse. A possible explanation for this is that there are370

many sea states for the same value of Hs (i.e. wind sea, swell, bimodal371

sea states, etc). Since the di↵erent spectral moments weight di↵erent372

regions of the frequency domain, it seems that the system has more373

information on the sea state.374

Once the best wave-describing parameters have been selected, the ques-375

tion arising is to what extent they still operate accurately when they are used376

by other regression methods to reconstruct Hs. This is just the purpose of377

the next section.378

5.2. Exploring the quality of the selected parameters in di↵erent ML regres-379

sion methods380

We have compared the performance of ELM, SVR and GPR for recon-381

structing Hs, in both scenarios, using the parameters selected by the proposed382

GA-ELM. As in the previous case, we provide here the RMSE for SVR and383

GPR, i.e, 0.523m (SVR) and 0.498m (GPR) in Scenario 1, and 0.654 (SVR)384

and 0.628 (GPR) in Scenario 2. The results of the SVR and GPR considering385

m�1, m0, m1, m2, 02 as input parameters in all buoys (20 input parameters)386

are 0.502m (SVR) and 0.591m (GPR) for Scenario 1, and 0.634m (SVR) and387

0.591m (GPR), for Scenario 2, respectively.388

The experimental work we have carried out, in any scenario, is as follows:389

1. The GA-ELM algorithm searches for the best nSP parameters, and390

constructs the subset FnSP . For instance, F5 represents the 5-feature391

subset {02 (from buoy 42056), Hs, m0 (buoy 42057), m1 (42057), m2392

(42059)}, which we had marked by ? in Table 1.393

2. Training any of the regression methods (ELM, SVR, GPR) with the394

samples in Stest driven by the methodology stated in Subsection (4.3).395

Figures 3 and 4 show, for the first and second scenario, respectively, the396

RMSE(Ĥs)(m) that any of the regression methods make as a function of the397

15

Figure 4.4: Reconstruction error, RMSE(Ĥs)(m), computed over Stest, in the West
Atlantic scenario, made by any of the method explored (ELM, SVR, GPR), as
a function of the subset of parameters (FnSP ) selected by the GA-ELM (nSP =
5, 6, · · · , 10).
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Figures 4.3 and 4.4 provide the following information:

1. The results show that all the ML methods explored are able to reconstruct
Hs values in the two di↵erent locations studied (Caribbean Sea and West
Atlantic).

2. The best results (smallest error) are given by the Gaussian Process Regressors:

� RMSE(Ĥs)GPR
Carribean ⇡ 0.30 m in Figure 4.3, when using the 7 parameters

in F7 (see Table 4.1 for the list of the 7 best wave parameters selected),

� RMSE(Ĥs)GPR
Atlantic ⇡ 0.48 m, in Figure 4.4, for F8 (Table 4.2).

We complete the discussion by using Figures 4.5 and 4.6. These figures show
the RMSE(Ĥs)(m) computed over Stest by the GPR method versus the measured
available Hs(m) values in the Caribbean Scenario (Figure 4.5, by using the obtained
optimal feature subset F7), and in the West Atlantic Scenario (Figure 4.6, using
F8), respectively.
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1. Reconstructed value (Ĥs(m))
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Figure 3: Reconstructed value (

ˆHs(m)) vs. measured real values of the significant wave

height (Hs(m)) in the Caribbean Sea case study (Scenario 1).
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Figure 4: Reconstructed value (

ˆHs(m)) vs. Measured significant wave height (Hs(m)) in

the West Atlantic case study (Scenario 2).
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• RMSE(Ĥs)GPR
Carribean ⇡ 0.30 m in Figure 4, when using the 7 fea-

tures in F7 (see Table 1 for the list of the 7 best wave parameters
selected),

• RMSE(Ĥs)GPR
Atlantic ⇡ 0.48 m, in Figure 5, for F8 (Table 2).
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Figure 4: Reconstruction error, RMSE(

ˆHs)(m), in the Caribbean scenario, made by any

of the method explored (ELM, SVM, GPR), as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

We complete the discussion by using Figures 6 and 7. These figures
show the RMSE(Ĥs)(m) computed by the GPR method versus the measured
available Hs(m) values in the Caribbean Scenario (Figure 6, by using the
obtained optimal feature subset F7) and the West Atlantic Scenario (Figure
7, with F8), respectively.

Finally, note that Figures 6 and 7 show that the GPR method works well
when using the selected feature subset (F7 and F8, respectively). In the case
of the West Atlantic scenario, the higher error occur for big values of the
significant wave height (greater than 6 m). This may be due to the fact that
the amount of measures like these (Hs > 6 m) is very reduced (since their
probability of occurrence is low), the system thus being unable to train as
properly as in the other scenario.

21

m

Figure 4.5: Reconstructed significant wave height (Ĥs(m)) computed over Stest by
the GPR (using the feature subset F7) vs. measured real values of the significant
wave height (Hs(m)) in the Caribbean Scenario.

Finally, note that Figures 4.5 and 4.6 show that the GPR method works well
when using the selected feature subset (F7 and F8, respectively). In the case of the
West Atlantic scenario, the higher error occur for large values of the significant wave
height (larger than 6m). This may be due to the fact that the amount of samples for
high values of the significant wave height (Hs > 6 m) is very reduced compared to
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the case of Hs 6 6 m. (Since their probability of occurrence is low). The algorithm
thus tends to underestimate the Hs value because it has been trained with more
smaller values than larger values.
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Figure 3: Reconstructed value (

ˆHs(m)) vs. measured real values of the significant wave

height (Hs(m)) in the Caribbean Sea case study (Scenario 1).
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Figure 4: Reconstructed value (

ˆHs(m)) vs. Measured significant wave height (Hs(m)) in

the West Atlantic case study (Scenario 2).
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• RMSE(Ĥs)GPR
Carribean ⇡ 0.30 m in Figure 4, when using the 7 fea-

tures in F7 (see Table 1 for the list of the 7 best wave parameters
selected),

• RMSE(Ĥs)GPR
Atlantic ⇡ 0.48 m, in Figure 5, for F8 (Table 2).
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of the method explored (ELM, SVM, GPR), as a function of the subset of features (FnSF )

selected by the GGA-ELM (nSF = 5, 6, · · · , 10).

We complete the discussion by using Figures 6 and 7. These figures
show the RMSE(Ĥs)(m) computed by the GPR method versus the measured
available Hs(m) values in the Caribbean Scenario (Figure 6, by using the
obtained optimal feature subset F7) and the West Atlantic Scenario (Figure
7, with F8), respectively.

Finally, note that Figures 6 and 7 show that the GPR method works well
when using the selected feature subset (F7 and F8, respectively). In the case
of the West Atlantic scenario, the higher error occur for big values of the
significant wave height (greater than 6 m). This may be due to the fact that
the amount of measures like these (Hs > 6 m) is very reduced (since their
probability of occurrence is low), the system thus being unable to train as
properly as in the other scenario.
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Figure 4.6: Reconstructed significant wave height, Ĥs(m), computed over Stest by
the GPR vs. measured significant wave height, Hs(m), in the West Atlantic case
study (Scenario 2), using the feature subset F8.

4.7 Summary and conclusions

In this chapter we have tackled a problem of significant wave height Hs missing
values reconstruction (at the location of an out-of-operation measuring buoy) by
using wave parameters from nearby buoys. This reconstruction is important from
several view points, because such wave parameters play a key role in coastal en-
gineering (design of vessels, oil platforms, breakwaters, etc.), forecasting for ship
navigation, and in the design and operation of wave energy converters. We have
faced the problem of filling up missing Hs values within the framework of Machine
Learning (ML) in a two-step process, which has led to two contributions. The first
one has consisted in designing a hybrid evolutionary algorithm that selects, among
the available wave parameters (from the nearby buoys), a smaller subset FnSP with
nSP parameters that minimizes the Hs reconstruction error. For doing this, we have
proposed a novel approach in marine applications consisting of a Genetic Algorithm
(GA) that computes the fitness of the candidate individuals (trial solutions) in each
generation by using an Extreme Learning Machine (ELM). In this context, the key
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advantage of the ELM when compared to other ML approaches (Neural Networks,
Support Vector Machines, for instance) is that ELMs learn very fast, this being
essential in population-based evolutionary algorithms such as GAs. This is why we
have hybridized the ELM with the GA in detriment of alternative ML regressors.
The proposed hybrid GA-ELM method generates a subset FnSP of nSP parameters
that minimizes the root mean square error of Hs reconstruction, RMSE(Ĥs)(m).
In the e↵ort of testing its performance in two di↵erent coastal regions, we have
explored two case studies: one in the Caribbean Sea, and the other, in the West
Atlantic coast nearby Florida. The results suggest that:

� The proposed GA-ELM algorithm works very well in the sense that it selects a
very reduced subset of parameters (nSP = 10 parameters) among the available
60 parameters. Using 5 6 nSP 6 10 parameters lead to small reconstruction
errors: RMSE(Ĥs)Caribbean . 0.50 m, and RMSE(Ĥs)Atlantic . 0.75 m.

� From an operative view point there is no practical benefit in using more than 5
parameters, in the sense that more parameters increase the computation time
without significantly improving the reconstruction accuracy.

� This has physical meaning in the sense that most of the selected wave param-
eters in F5 (Hs, and spectral moments m0, m1, m2 of closest buoys) have a
close relation to the way Hs is defined.

The second contribution has consisted in evaluating to what extent the selected
wave parameters in subset FnSP assist other ML regressors �Extreme Learning Ma-
chines, Support Vector Regression (SVR), and Gaussian Process Regression (GPR)�
in reconstructing Hs. The results show that:

� All the ML method explored have Hs reconstruction errors below 1m in the
two di↵erent locations studied (RMSE(Ĥs) < 0.5 m in the Caribbean Sea, and
RMSE(Ĥs) < 0.75 m in the West Atlantic scenario).

� In particular, the GPR method is the one that reaches the smallest error:
RMSE(Ĥs)GPR

Caribbean ⇡ 0.30 m for Fn7 (see Table 4.1 for the list of the 7 best
wave parameters selected), and RMSE(Ĥs)GPR

Atlantic ⇡ 0.48 m for F8 (Table 4.2).

As a general conclusion, the twofold approach presented seems to be a feasible
tool to fill missing wave values from neighbor buoys.





Chapter 5
Integrating Wave Energy in

Power Grids: A Complex
Networks Approach with
Evolutionary Algorithms

Until the present chapter, we have explored throughout this thesis some issues re-
lated to the characterization of wave resources and wave energy converters (WECs)
(Chapter 2), the corresponding use of soft computing (SC) techniques in these goals
(Chapter 3) along with a practical application of a novel SC approach for the accu-
rate reconstruction of significant wave heights (Chapter 4).

There are, however, some important, mutually interrelated aspects that have
not yet been addressed in this thesis: 1) how several WECs should be electrically
interconnected to each other (forming a WEC farm), and 2) how the farm should
be connected to the electric network (or “power grid”) [159–161].

With respect to the first point, the main reason why many WECs have to be
electrically connected with each other is that usually a single standalone WEC can-
not generate su�cient electric power for commercial-scale grid integration. The
problem is di�cult since WECs in a farm also interact with each other [159, 161]:
besides generating electricity, individual WECs also modifies and reflects waves,
which have an impact on how much energy can be captured by neighboring WECs,
and vice-versa [159, 162]. There is another reason to use WEC farms: many linked
WECs help soften the fluctuation of electric power associated to wave variability.
Even so the problem of electric power variability associated to wave variability is
still essential. This is of practical importance since such electric power fluctuation
a↵ects the quality of the power grid [304]. A feasible solution consists in using elec-
trical energy storage systems, embarked on-board or shared among WECs in the
farm, aiming at smoothing the generated electrical power without reducing energy
productivity [161,162]. Although it is not yet clear, the point to be highlighted here
is that a WEC farm can be considered as a set of nodes (either generating WECs or
absorbing storage devices) connected following certain design criteria [159,161,163].
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Regarding the second aspect –the electric connection of WEC farms to on-shore
power grid [159–163]– there are several points that must be taken into account:

� Aiming at harnessing wave energy as much as possible and at seamlessly in-
tegrating it into the power grid, wave farms should become into “smart wave
farms” (SWFs). A SWF should contain not only the necessary number of
WECs (to deliver enough energy) but also energy storage devices, sensors,
communication systems, and computational resources. This SWF can be con-
sidered as a “cyber-physical system” [305, 306]. A CPS is a system that con-
sists of a set of sensing, computing, actuating, and communication resources
(hardware/software) which aim at monitoring (from physical to cyber) and
controlling (from cyber to physical) the real, physical world [307–311].

� The SWF approach allows for predicting waves using in-ocean sensors and
forecasting algorithms. These predictions in turn can be used to: 1) adapt
the WECs’ energy capture, 2) make e�cient energy storage decisions [164],
and 3) control the quality of the power that the SWF injects into the on-
shore power grid. The final goal is to integrate them smoothly to the electric
grid [159,161,163].

The variability and intermittency of wave energy can be encompassed within a
broader conceptual framework, which is common to all massive renewable energies.
Although intermittent, wave energy is more consistent and predictable than wind
or solar generation [164]. In fact, variability and intermittency are the two most
serious problems that the emerging smart grid (SG) technology [158] aims to face.
The SG concept is able to e�ciently integrate into the power grid a rapidly increasing
number of intermittent generators, with the target of a↵ecting as slight as possible
the stability and robustness of the grid [158]. It is specifically within the broader
framework of distribution SGs and, in particular, within that of the integration of
intermittent renewable energies, where this chapter is focused on.

The novelty of our approach is twofold, in the sense of optimizing the robustness
of a distribution SG (connecting nodes that generate, consume or store electricity)
against “abnormal operating conditions” –for instance, the breakdown or the op-
eration stop of a WEC (or a set of them) within a WEC farm caused by a storm,
or the aforementioned intermittent generation– by (1) using an EA that optimizes
the structure of the SG [158] modeled by (2) applying concepts from the Complex
Networks Science.

The model and results of this chapter have been published in [108].
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5.1 Introduction

5.1.1 Motivation

The rising contribution of renewable energy (RE) sources in the current energy
mix is crucial to decrease the economic and geopolitical dependence on fossil fu-
els and to reduce the emission of CO2, one of the causes of climate change [312]
and global warming [313]. E�ciently integrating distributed RE generation sys-
tems [314–316] is a key research topic because the most used renewable energies—
photovoltaic (PV) solar energy [40, 317], wind energy [318, 319] and marine en-
ergy [71,320]—are intermittent and more di�cult to store [321] and integrate with-
out a↵ecting the quality of the electrical network (usually called “power grid”) [322]
or the electricity prices [323]. Technical, specific details about the design of smart
power grid renewable energy systems can be found in the updated book [324]. In par-
ticular, the present proliferation of small-scale urban PV in buildings [325] and urban
wind generators [326] can help home electricity consumers become also producers
(“prosumers”) [7] using the SG [327,328] and micro-grids (µ�Gs) [329] concepts.

On the one hand, µ�Gs exhibit the potential to cost-e�ciently increase the use of
RE along with the power supply reliability, as studied by Wang and Huang [330–332].
Specifically, [330] focuses on an optimization methodology that can e�ciently inte-
grate distributed energy resources by leveraging complementary resources, such as,
solar and wind REs and energy storage. Using real data, [331] proposes a frame-
work for planning micro-grid systems that aims at increasing the use of RE along
with the reliability of power supply. Even more, the method proposed in [332] aims
at enabling the bidirectional exchange of power among interconnected micro-grid,
increasing the global e�ciency. As long as the increasing penetration of distributed
RE resources is one of the driving forces for micro-grids deployments [330–332], other
catalysts for change are some new loads such as electric vehicles (EV) [3], data cen-
ters [333] and home RE-prosumers [334]. In this context, distribution systems (DSs)
involve complex issues such as modeling their sensitivity with respect to distributed
RE sources [335], the e�cient control of distributed generation [315] or scheduling
problems [336].

On the one hand, the SG paradigm is a relatively novel conception of the elec-
tric power network that, based on hi-tech monitoring, control and communication
technologies [6, 337, 338], aims not only to e�ciently integrate RE sources [108],
but also to supply reliable and safe electric power. As mentioned, thanks to the
e�cient integration of distributed REs via the SG [339], electricity consumers can
also become prosumers. The SG approach allows for the bidirectional exchange of
electric energy at the local scale, which is very positive because it stimulates the
local production (small-scale photovoltaic systems and small-wind turbines) and
consumption, helping end-users obtain economic benefits by selling the energy gen-
erated in excess [338]. Integrating small-scale renewable energies is thus one of
the driving forces that is fueling the evolution of conventional grids to smart grids.
The second driving force, inter-related with the RE integration, is the pressure for
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unbundling the energy sector (as occurred in access telecommunication networks).
Ideally, unbundling the electric sector would allow everyone to generate electricity,
becoming a seller on a free energy market [338]. The distribution medium and low
voltage parts of the power grid are the best candidates for unbundling the electric
market. In this respect, smart grids are now becoming the enabling technology for
not only the unbundling of electric sector through the integration of small-scale re-
newable energies, but also for the e�cient integration of electric vehicles [3], which
are increasingly important in the e↵ort of reducing air pollution in big cities [312].

In this complex context, abnormal operating conditions in SGs with RE gen-
eration can be caused by the occurrence of: (1) random failures (such as, the
breakdown or the operation stop of a WEC, imbalances between generation and
consumption, the presence of overloads or failures arising from the inherent SG com-
plexity [340], which can cause cascading failures); and (2) targeted or intentional
attacks [6, 337,341].

The vulnerability to abnormal operating conditions can be studied from di↵er-
ent viewpoints that include methods from both the Electrical Engineering (EE) and
the complex network (CN) fields. In turn, vulnerability in power grids using CN
concepts is a broad research area that involves two di↵erent approaches [341]. The
first one is based solely on “topological” concepts and use metrics such as the mean
path length, the clustering coe�cient or the betweenness centrality, among many
others [341]. Aiming at enhancing the topological approach, the second “hybrid”
methodology consists of introducing concepts arising from EE into the CN frame-
work and takes advantage of novel electric metrics, such as those belonging to the
“extended topological model” [342]. Regarding the first topological approach, there
is a controversy [342,343] about whether or not it is able to give physical insights into
all aspects of real power grids. The CN community argues that its approach does
not aim to focus on the detailed operation, but to find out the unexpected emer-
gence of collective behavior (for instance, the synchronization in smart grids [344]).
Conversely, part of the EE community asserts that this leads to an unreasonable
simplification [341–343]. This controversy, not yet resolved and recently discussed
in [341], is the reason why we devote Section 5.5 to clarifying this and other issues,
after introducing the necessary background.

Regardless of this debate, smart grids have been studied very recently by Pagani
et al. [7,338,343,345,346], on the basis of real data extracted from low and medium
voltage power grids. These works propose successful strategies to evolve the already
deployed conventional grids into smart grids. Instead of grid evolution, the research
line explored in [347–349] has adopted the di↵erent approach of generating synthetic
smart grid structures.

5.1.2 Purpose and contributions

Within the aforementioned context, the two-fold purpose of this chapter consists
of: (1) modeling the topological structure of distribution SGs with RE generation
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using CN concepts; and (2) minimizing the negative e↵ects of abnormal events by
maximizing the grid robustness by using an evolutionary algorithm (EA) tailored
for this goal. The SG is represented by a graph, a set of nodes (generators, storing
devices, and loads) that are connected to each other by means of links (equivalently,
electric cables). With this in mind, the contributions of our chapter are:

1. We model a smart grid with RE generators, storing devices, and loads as an
undirected graph G so that each link allows for the bidirectional exchange of
electric energy.

2. Our model can be applied indistinctly to the set of elements that make up the
WEC farm (nodes: WECs and storing elements), or it can be applied to the
set formed by a cluster of farms and the points of interconnection with the
on-shore power grid (nodes: WECs, storing elements, and on-shore loads).

3. We propose an objective function to be optimized that combines cost elements
(related to the number and average length of links and also to the number of
nodes with many links) and several properties that are beneficial for the SG
(such as energy exchanges at local scale and high robustness and resilience).
Our optimization problem includes some restrictions used in [338] and also
others that help our EA find optimal synthetic structures for the SG, starting
from scratch. This is a “greenfield” strategy, used by companies in those zones
where they do not have infrastructure, deploying thus the new grid starting
from scratch. This is another di↵erence when compared to [338], in which
the authors have just adopted a “brownfield” approach aiming at evolving the
conventional low voltage power grid into a smart grid.

4. We use an EA with a problem representation in which the chromosome cG,
which encodes each potential graph G (or individual), is the upper triangular
matrix of its “adjacency matrix”, AG. In this formulation, AG is a square,
symmetric and binary matrix in which any element aij encodes whether node
i is linked to node j (aij = 1) or not (aij = 0) [350]. Since there is no
self-connected node, the adjacency matrix has zeros on its main (principal)
diagonal (aii = 0). These are the reasons why the connection information in
graph G is stored by its upper triangular matrix TG. Thus, chromosome cG =
TG encodes in a compact form the graph G. As will be shown in detail in Section
5.2, this encoding is di↵erent from others found in the literature using EAs on
graphs, such as, for instance, a chromosome formed by a one-dimensional array
with N elements (the number of graph nodes) [351], N -length chromosome of
two-dimensional elements [352] (where a node is specified by its location in
the graph) or a set of vectors in which each allele (or gene value) represents a
community [353]. The mutation and crossover operators are fully adapted to
our encoding. This approach could be generalized by considering the strength
of the connection between node i and j in terms of its link weight wij.
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5.1.3 Practical perspectives

There are several research works that have applied EA and CN concepts to
smart grids problems, which are partially related to our proposal and whose detailed
discussion we postpone to Section 5.2 for clarity. There are also many research
papers that focus on studying the smart grid from the point of view of CNs and
graph theory and others that study graph problems using evolutionary computation
(EC) techniques, in general, and EAs, in particular. However, a combined EA-
CN approach to optimize the topology of smart grids, based on a variety of design
constrains, has not yet been carried out to the best of our knowledge.

Our approach should be considered as a high level analysis, planning and decision-
making tool to gain insights into how to design robust structures for smart grids
and does not attempt and cannot replace the well-founded techniques of EE. Be-
cause of its importance and to make this chapter stand by itself, we devote Section
5.5, as mentioned before, to justify the consistency of our proposal. The synthetic
structure provided by our EA can be taken as a starting point to test whether or
not it fulfills all of the electrical requirements. In this sense, our approach can be
considered as a complementary high-level tool, so that the low level detailed design
is carried out by using EE techniques.

5.1.4 Chapter organization

The rest of this chapter is organized as follows: Section 5.2 reviews those works
that are related to our approach to a greater or lesser extent. Sections 5.3 and 5.4
introduce, respectively, topological and hybrid CN concepts that will assist us in
better explaining our method, while Section 5.5 discusses to what extent these CN
approaches are useful in power grids. Sections 5.6 and 5.7 state, respectively, the
SG topology optimization problem and the particular EA we propose to solve it.
Section 5.8 discusses the experimental work we have carried out. Finally, Section
5.9 summarizes the key findings and conclusions.

For the sake of clarity, Table 5.1 lists the symbols used in this chapter.

5.2 Related Work

For the sake of clarity, we have divided this section into two subsections: Section
5.2.1 and Section 5.2.2.
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Table 5.1: List of symbols used in this chapter.
Symbol Definition or Meaning

AG Adjacency matrix of graph G.
aij Element of the adjacency matrix AG that encodes whether node i is linked to node j (aij = 1) or

not (aij = 0).
b̄1 Mean value of betweenness b1 or multi-scale vulnerability of order 1.
b̄2 Mean value of of the multi-scale vulnerability of order 2.
bp
l Betweenness centrality of link l.

bp(G) Multi-scale vulnerability of order p of a graph G. It is defined by Equation (5.9)
C = C̄ Mean clustering coe�cient of a network. It is defined by Equation (5.4).
C Set of all chromosomes.
CB(v) Betweenness centrality of node v. It quantifies how much a node v is found between the paths linking

other pairs of nodes. It is defined by Equation (5.5).
cG Chromosome that encodes the graph G.
Ci Clustering coe�cient of node i. It is defined as the ratio between the number Mi of links that exist

between these ki vertices and the maximum possible number of links (Ci
.
= 2Mi/ki(ki � 1).

CRG Clustering coe�cient of a random graph
D Node degree matrix: diag(k1, · · · , kN ). It is the diagonal matrix formed from the nodes degrees.
dE(ni, nj) Euclidean distance between any pair of nodes ni and nj in a spatial network.
dij Distance between two nodes i and j. It is the length of the shortest path (geodesic path) between

them, that is, the minimum number of links when going from one node to the other.
�b1 Coe�cient of variation for betweenness. It is defined by Equation (5.10).
fOBJ(G) = f⇣(G) = objective function to be minimized. It is defined by Equation (5.11).
f̄⇣ Mean value of the objective function f⇣ .
G Graph representing a network.
G Set of all possible connected graphs G with N nodes and M = Nl links.
G Set containing all of the candidate graphs.
G⇣ Optimum graph that solves the objective function with combination parameter ⇣.

hki Average node degree: hki = 1
N

PN
i=1 ki.

ki Degree of a node i. It is the number of links connecting i to any other node. It is defined by Equation
(5.2).

kMAX Maximum node degree.
` Average path length of a network. It is the mean value of distances between any pair of nodes in

the network. It is defined by Equation (5.3).
L Set of links (edges) of a graph.
LG Laplacian matrix (or Kirchho↵ matrix) of graph G. It is defined by Equation (5.14).
`RG Average path length of a random graph.
�2(G) Algebraic connectivity of graph G.
M Size of a graph G = (N , L). It is the number of links in the set L. It is defined by Equation (5.1).
N Set of nodes (or vertices) of a graph.
N Order of a graph G = (N , L). It is the number of nodes in set N , that is the cardinality of set N :

N = |N | ⌘ card(N ).
P (k) Probability density function giving the probability that a randomly selected node has k links.
pcross Crossover probability.
pmut Mutation probability.
pselec Selection probability.
Psize Population size.
S̄ Average entropic degree.
Si Entropic degree of node i defined by Equation (5.6).
�b1 Standard deviation of betweenness.
TG Upper triangular matrix of graph G.
Tsize Tournament size.
W Set of weight elements wij .
wij Weight of link lij . It models the strength of the connection between node i and j.
⇣ Parameter that controls the linear combination between components with opposing trends in the

objective function to be minimized given by Equation (5.11).

On the one hand, Section 5.2.1 discusses the research papers that focus on study-
ing the smart grid from the viewpoint of complex networks and graph theory. On
the other hand, Section 5.2.2 reviews those articles that tackle graph problems using
evolutionary computation techniques, and EAs, in particular. To the best of our
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knowledge, there is no work combining both branches of knowledge for the problem
of optimizing the structure of smart grids.

5.2.1 The Smart Grid as a Complex Network: Related Work

The SG paradigm has been modeled very recently as a complex network in a
series of papers by Pagani et al. [7, 9, 338, 343, 354–360]. The approach adopted in
these works is based on the need for improving the low voltage power grid, motivated
in Section 5.1, and aims to analyze and adapt the already deployed distribution
power grids on the basis of complex network approaches [338].

The ultimate goal of such a series of papers [7, 9, 338, 343, 354–360] consists of
putting into practice a decision support system to guide operators, utilities and
policy makers to evolve the current grid to a more e�cient smart grid.

These works cover a significant variety of research topics appearing in smart
grids: the study of the potential of the SG to generate big data [355], the search for
topological vulnerabilities [357], the study of the optimal spatial distribution [356],
the use of agent-based systems for deregulated smart grids [359], the modeling of
dynamic prices [358], the study of the last mile of the SG [354] and other technolog-
ical aspects of SGs as CNs [7,9,338]. With regard to the latter, the authors carried
out a topological analysis of some representative medium and low voltage power
grids [9] and obtained a set of metrics based on topological properties in the e↵ort
of including their influence on the cost of electricity distribution. In the next step in
this line of research, [7] has studied complex models to evaluate to what extent these
allow for local electricity exchange, finding out that: (1) increasing the connectivity
from the current value of the average degree (hki ⇡ 2) to higher values is benefi-
cial; and (2) the small-world complex network with average degree hki ⇡ 4 fulfills a
feasible balance between performance enhancement and cost. The key, more recent
work [338] explores a variety of feasible evolution strategies towards the SG and
applies them to the real Dutch distribution system. An interesting finding in [338]
is that increasing the connectivity leads to a topology that could lead to a more
e�cient and reliable electric grid.

While the aforementioned research line [7,9,338,343,354–360] proposes successful
strategies to evolve the already deployed conventional grids into smart grids, the
research line [347–349] has a di↵erent approach that consists of generating synthetic
structures for smart grids. In these papers, the so-called “RT-nested-small world”
model, based on analyses of real grid topologies and their electrical properties, has
been proposed to create a large number of synthetic power grid test structures, with
scalable size and the similar small-world topology and electrical features found in
some real power grids [348].

As will be shown later on, our method has some aspects in common with both
approaches. On the one hand, we state an optimization problem with some of the
design constraints proposed in [338] (and with additional ones that we propose in this
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chapter). On the other hand, our method generates synthetic structures, similar to
the approach [347–349], but with the di↵erence that we find the optimum synthetic
structure by using an evolutionary algorithm.

5.2.2 Evolutionary Computation in Graph Approaches: Re-
lated Work

The use of evolutionary computation in the broad field of graphs has been carried
out with di↵erent purposes and approaches. Aiming at discussing these within the
goal of this chapter, we use the encoding strategy adopted in each work as the com-
parative criterion. The reason is that the way candidate solutions are represented
in EAs has a crucial influence on the design of evolutionary operators and on the
algorithmic e�ciency.

One of the most fertile areas of research combining graph theory and EC is fo-
cused on clustering in graphs. Cluster analysis is a key technique used for splitting
a set of N objects into a number k of comparatively-homogeneous groups (clusters)
based on their similarities [361]. The number of di↵erent attainable partitions in a
clustering problem is given by the Stirling number of second kind, S(N, k), and is
known to be NP-hard when k > 3 [361,362]. For instance, in a relative small graph
with 50 nodes and five clusters, S(50, 5) ⇡ 7.4 ⇥ 1032, which makes it convenient
to use approximate methods such as those of evolutionary computation. In this
respect, the approach in the recent work [351] consists of converting probabilistic
datasets into probabilistic graphs with the purpose of clustering by using an EA.
The genetic representation of this problem in this research work is a one-dimensional
array having N elements, the number of graph nodes. This representation has been
found to be feasible to extract neighborhood node information and uses such in-
formation to process probabilities on their links [351]. Graph partitioning via a
multi-objective EA has been studied in [352] by encoding the problem with a chro-
mosome that is a set of N (number of nodes) two-dimensional elements, in which
any node is represented by its location in the graph. Instead of using EAs, the
problem of optimal non-hierarchical clustering has been tackled in [361] by using a
novel algorithm that combines di↵erential evolution and k-means algorithms. Cen-
tered on social networks, the problem of community detection using graph-based
information is tackled in [353] by applying graph clustering algorithms based on
its topology information. Since any candidate solution should contain a group of
communities, a chromosome encoding an individual in [353] is a set of vectors of
binary values in which each allele represents a community composed by a set of
binary values, one for each node in the social network. Partially related to the
latter work, the paper [363] explores the feasibility of a spectrum optimization al-
gorithm for community detection based on selecting those links to be removed by
minimizing the algebraic connectivity metric. In the e↵ort of making it applicable
to large-scale networks, a greedy heuristic method has been tested to get the lower
bound of optimal value. The problem of community detection, either disjoint or
overlapping, has been tackled using a multi-objective EA [364] in which an individ-
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ual consists of two components: the first one is a permutation of all nodes, while
the second component is the set of communities. Another recent method that is
gaining impulse is spectral clustering [365], which builds a similarity graph and ap-
plies spectral analysis to retain the data continuity in the cluster. The approach
in [365] has proposed a novel algorithm inspired by the spectral clustering algorithm,
the co-evolutionary multi-objective genetic graph-based clustering algorithm, which
includes a variable number of clusters [365]. The encoding here is a simple label-
based representation [365] inspired by the conventional integer encoding of genetic
algorithms. Each individual is a q-dimensional vector (q being the number of data
examples) with integer values between one and the number of clusters of the sub-
population to which it is assigned. Very recently, reference [366] has explored a
multi-objective EA for detecting overlapping communities. This di↵ers from most
other articles (focus on disjoint communities) in which each gene of the chromosome
is an integer number that encodes the community label of the corresponding clique
node of the maximal-clique graph. Also within the approach of maximum clique-
finding problem, reference [367] explores an EA able to tackle the problems such as
maximum independent set, set packing, set partitioning, set cover, minimum vertex
cover, subgraph and double subgraph isomorphism. In the proposed approach, each
problems is first mapped onto the maximum clique-finding problem, which is later
tackled by an evolutionary strategy that represents each subgraph with a binary
string.

Another important research field that combines CNs and EC consists of analyzing
and/or generating CN structures [368–370]. On the one hand, reference [368] focuses
on optimizing the structure of complex networks based on a memetic algorithm.
Its problem encoding consists of an array containing the node number and the
number of the node with which such a node is connected. On the other hand,
the problem of automatically generating complex network models is tackling using
genetic programming (GP) [369]. In this proposal, the goal is to find out those more
appropriate network measures that capture as much as possible their structure, and
the used tool is a GP that generates automatically CNs on which such measures
can be tested. Similarly, the feasibility of a GP for the automatic inference of graph
models for complex networks has also been explored in [370].

The graph coloring problem has also recently been tackled using an EA [371,372].
It aims at finding the minimum number of colors where each node dominates at least
one non-empty color class and is an NP-complete for general graphs. In [372], the
EA approach makes use of an encoding in which an individual is represented by a
two-dimensional array with k columns, k being the number of colors used to color
the nodes.

An interesting, partially related to our approach is the work carried out in [373],
which focuses on a hybrid evolutionary graph-based multi-objective algorithm for
the layout optimization of truss structures. The encoding of each candidate solution
is composed of three matrices (the adjacency matrix of the simple graph model, the
adjacency matrix corresponding to the weighted graph model and the coordinate
matrix of nodes) along with two Boolean vectors (representing restricted nodes,
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which cannot be left out, and those movable ones, respectively). This approach is
related to a certain degree with [374,375], which use a matrix representation based
on the graph concept in truss topology optimization.

Finally, the main conclusion of the reviews carried out in Sections 5.2.1 and
5.2.2 is that, to the best of our knowledge, there is no work combining complex
network/graph theory and evolutionary algorithms in the e↵ort to optimize the
structure of smart grids starting from scratch, which is useful not only from a mod-
eling and theoretical perspective, but also from the practical viewpoint as a high
level tool for analysis, planning and decision-making.

5.3 Background: Complex Networks Concepts

The purpose of this section is to introduce basic definitions ( Section 5.3.1 )
along with the concept of “small network” that, as will be shown, has important
advantages for the network robustness ( Section 5.3.2 ).

5.3.1 Some Useful Definitions in Complex Network

Any network can be mathematically represented by using a graph, G = (N , L),
where N represents the set of nodes (or vertices) and L denotes the set of links
(edges) [350]. The interested reader is referred to [350]; a very lucid and compre-
hensive description of complex networks, with many examples of their existence in
a great variety of natural and artificial systems, can be found in [350]. The fol-
lowing list contains only those definitions that are important to understand our
work [341,350,376,377]:

� An “undirected” graph is a graph for which the relationship between pairs of
nodes are symmetric, so that each link has no directional character (unlike a
“directed graph”). Unless otherwise stated, the term “graph” is assumed to
refer to an undirected graph.

� A graph is “connected” if there is a path from any two di↵erent nodes of G.
A disconnected graph can be partitioned into at least two subsets of nodes so
that there is no link connecting the two components (“connected subgraphs”)
of the graph.

� A “simple graph” is an unweighted, undirected graph containing neither loops
nor multiple edges.

� The “order” of a graph G = (N , L) is the number of nodes in set N , that is
the cardinality of set N , which we represent as |N |. We label the order of a
graph as N , N = |N | ⌘ card(N ).
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� The “size” of a graph G = (N , L) is the number of links in the set L, |L|, and
can be defined (

.
=) as:

M
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=
X

i

X

j

aij = Nl, (5.1)

where aij = 1 if node i is linked to node j and aij = 0 otherwise. As mentioned
before, aij are the matrix elements of the adjacency matrix.

� The “degree” of a node i is the number of links connecting i to any other node
and is simply:

ki
.
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NX

j

aij (5.2)

� The node degree is characterized by a probability density function P (k) giving
the probability that a randomly-selected node has k links.

� A “geodesic path” is the shortest path through the network from one nodes to
another; or in other words, a geodesic path is the path that has the minimal
number of links between two nodes. Note that there may be and often is more
than one geodesic path between two nodes [350].

� The “distance” between two nodes i and j, dij, is the length of the shortest
path (geodesic path) between them, that is the minimum number of links when
going from one node to the other.

� The “average path length” of a network is the mean value of distances between
any pair of nodes in the network [350]:
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dij, (5.3)

where dij is the distance between node i and node j.

� The “clustering coe�cient” is a local property capturing the density of tri-
angles in a network. That is, two nodes that are connected to a third node
are also directly connected to each other. Thus, a node i in a network has ki

links that connects it to ki other nodes. The clustering coe�cient of node i is
defined as the ratio between the number Mi of links that exist between these
ki vertices and the maximum possible number of links (Ci

.
= 2Mi/ki(ki � 1).

The clustering coe�cient of the whole network is [341]:

C .
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1

N

X

i

Ci, (5.4)

that is, for a given node, we compute the number of neighboring nodes that
are connected to each other and average this number over all of the nodes in
the network.
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� The “betweenness centrality” quantifies how much a node v is found between
the paths linking other pairs of nodes, that is,

CB(v) ⌘ Bv
.
=

X

s 6=v 6=t2V

�st(v)

�st

, (5.5)

where �st is the total number of shortest paths from node s to node t and
�st(v) is the number of those paths that pass through v. A high CB value
for node v means that this node, for certain paths, is critical to support node
connections. The attack or failure of v would lead to a number of node pairs
either being disconnected or connected via longer paths.

5.3.2 Small-World Property and its Importance in Robust-
ness

There is a property of some complex networks that has been found to be espe-
cially beneficial for smart grids [7, 338]: “small world”. Some properties of small-
world networks that are interesting for the purpose of this chapter are:

� A small-world network is a complex network in which the mean distance or
average path length ` is small when compared to the total number of nodes N
in the network: ` = O(log N) as N ! 1. That is, there is a relatively short
path between any pair of nodes [378, 379]. The term “small-world networks”
is often used to refer Watts–Strogatz (WS) networks, first studied in [379].
It can be generated by the “rewiring” method shown in Figure 5.1a: Link
l13, which was connecting Node 1 to Node 3, is disconnected (from Node 3)
and rewired to connect Node 1 to Node 9. In the resulting network, going
from Node 1 to Node 9 only requires one jump via the rewired link (and thus,
dnew

1,9 = 1). However, in the original regular network, going from Node 1 to
Node 9 through the geodesic or shortest path (1! 3! 5 ! 7! 9) involves
four links (d1,9 = 4). This leads to networks with small average shortest path
lengths between nodes `, and high clustering coe�cient C. Figure 5.1b shows
the aspect and P (k) of a WS we have generated with N = 100 nodes and
“rewiring probability” p = 0.2. It has a short mean distance, ` ' 6.04, and
high clustering, C ⇡ 0.274. Most of the small-world networks have exponential
degree distributions [380].

� Figure 5.1b (N = 100 and p = 0.2) also illustrates that the architecture of
real small-world networks is extremely heterogeneous: the vast majority of
the elements are poorly connected, but simultaneously, few have a large num-
ber of connections [381]. The robustness of small-world network has been
explored in [382, 383] leading to the conclusion that, in a non-sparse WS net-
work (M ⇠ 2N), simultaneously increasing both rewiring probability and
average degree (hki = 1

N

PN
i=1 ki) improves significantly the robustness of the

small-world network.
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� An interesting variation of the WS model is the one proposed by Newman and
Watts [384] (NW small-world model) in which one does not break any connec-
tion between any two nearest neighbors, but instead, adds with probability p
a connection between a pair of nodes. It has been found that for su�ciently
small p and su�ciently large N , the NW model is basically equivalent to the
WS model [385]. At present, these two models are together commonly termed
small-world models.
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Figure 5.1: (a) First step in the creation of a small-world Watts–Strogatz (WS)
network; (b) example of a WS network and its node degree distribution; (c) scale-
free network. See the main text for further details.

Figure 5.1b also helps us introduce the concept of network robustness (or its
inverse concept, vulnerability). It is related to the degree to which a network is able
to withstand an unexpected event without degradation in its performance. It quan-
tifies how much damage occurs as a consequence of such unexpected perturbation.
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Intuitively, the random failure of the marked link in Figure 5.1b does not a↵ect
the network functionality, while the targeted attack on the marked node in Figure
5.1c will make the network disintegrate in many unconnected parts before recovery.
Figure 5.1b,c represent, respectively, a very robust network and another very fragile
one. In particular, note in Figure 5.1c that, as most nodes have only a few connec-
tions and only a few nodes (“hubs”) have a high number of links, then the network
is said to have no “scale” [386]. This is why they are called “scale-free” networks.
A scale-free network can be generated by progressively adding nodes to an existing
network by introducing links to nodes with “preferential attachment” [387, 388] so
that the probability of linking to a given node i is proportional to the number of
existing links ki of the node. This is the so-called Barabási and Albert (BA) model.

As mentioned in Section 5.1, there are however some authors arguing that this
topological approach should be enriched by adding electrical concepts. The following
section introduces only those concepts that will assist us in explaining our proposal.
For a more complete and in-depth discussion, which is beyond the scope of this
chapter, the interested reader is referred to [341,342].

5.4 Background: Hybrid Approaches Combining
Complex Networks and Electric Engineering
Concepts

As shown in detail in the review paper [341], there are some selected works [342,
345] that emphasize that the topological approach may lead to inaccurate results
because it does not capture some of the properties of power grids described by
Kircho↵’s laws. Regarding this, there are some basic concepts that compel engineers
to include electrical power engineering concepts [341]. The first one, in contrast
to general purpose CNs, is that a power grid is a flow-based network in which
electric power flowing between two nodes can involve many links. From the EE
viewpoint, the topological distance metric in CN theory should be substituted by
an “electrical distance”, involving line impedances [342]. The second cause is that,
in conventional CN analysis, all elements are usually identical. This is not often
the case in power transmission grids because of the existence of di↵erent types of
nodes such as generation and load buses. Additionally, in power grids, transmission
lines have flow limits. Based on these concepts, reference [342] argues that, when
applying to power grids, the graph must be weighted (impedance, maximum power)
and directed (since electric power flows from generators to loads). However, since
smart grids are bidirectional; the corresponding graphs are undirected.

Thus, aiming at overcoming the mentioned limits of pure topological approaches,
hybrid approaches combine CN and EE concepts [341]. An interesting research line
belonging to hybrid approaches is the extended topological approach [342,389–392].
It includes in the CN methodology novel metrics such as the “entropy degree”. The
entropic degree of a node i, denoted as Si, aims at including three elements in the
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topological definition of node degree when computed over a weighted network [389]:
(1) the strength of the connection between node i and j in terms of link weight
wij; (2) the number of links connected with such node; and (3) the distribution of
weights among the links. The entropic degree of node i is defined as [389]:
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pij log pij

!
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j

wij, (5.6)

where pij
.
= wijP

j wij
is the normalized weight of the link between nodes i and j.

The question arising here is whether or not applying CN approaches on the power
grid is useful.

5.5 Discussion: Is the CN Approach Useful in
Power Grids?

There are some selected papers [9,341,393–397] that point out that CN science is
a unifying, powerful technique that enables one to analyze, within the same concep-
tual framework, a great variety of very di↵erent systems whose constituent elements
are organized in a networked way. The CN community, including part of the elec-
trical engineering community [398], argue that the CN approach does not aim to
reflect the detailed operation of a given grid, but to discover the possible emergence
of a systemic or collective behavior, beyond that of its single components. This is
supported by a number of high-impact works [393,399–404]. An interesting example
of its feasibility is the appearance of synchronization in smart grids [344]. However,
the opposing community asserts that the pure topological CN approach loses the de-
tails of the physics behind Kirchho↵’s laws and fails at predicting important aspects
of power grids. In this respect, as mentioned, hybrid approaches include concepts
from EE [389–391, 403, 405–409]. Nonetheless, the CN approach with purely topo-
logical analysis (or even with extended ones to take into account minimal electrical
information [342]) has been found to be useful to detect critical elements and to
assess topological robustness [343,404,410]. Specifically, Luo and Rosas-Casals have
recently reported studies [404, 410] that aim at correlating electric-based vulnera-
bility metrics (based on the extended topological approach) with real malfunction
data corresponding to some European power transmission grids (Germany, Italy,
France and Spain). The results, validated and proven by empirical reliability data,
are statistically significant (Kolmogorov–Smirnov test) and suggest the existence of
a relationship between structure (described by extended topological metrics) and
dynamical empirical data.

Although much research must be carried out, the evidence in [404, 410] opens
a research line to find a more meaningful link between CN-based metrics and the
real empirical data of power grids. The CN approach could be useful to make
vulnerability assessment and to design specific actions to reduce topological fragility
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[342]. The analyses of [341,343,404,410] suggest that there is a connection between
the topological structure and operation performance in a power grid because the
structural change could disturb its operational condition and, as a consequence,
degrade its operation performance. As a result, there is an increasing interest in
analyzing structural vulnerability of power grids by means of the CN methodology.
A deeper discussion on these issued can be found in [341] or in [343], where a lucid
introduction to complexity science in the context of power grids is provided.

Regardless of which of the two confronting options is more accurate (or useful,
depending on their purpose), there are some important practical issues related to
whether or not there is a predominant power grid structure (and, in particular,
whether there is an optimal topology for smart grids; Section 5.5.1 ) and whether
or not it is better to model them with weighted graphs ( Section 5.5.2 ).

5.5.1 Power Grids: Is There a Dominant Topology?

There are several graph structures aiming at abstracting the real power grid
topology. For instance, the research in [379] points out that the U.S. western power
grid seems to have a small-world network. However, the works by Cotilla-Sanchez
et al. [411] and Hines et al. [407] show that (a) the explored power grid does not
exhibit a small-world nature and that (b) a spatial approach to connectivity and
distance fails in setting up a graph model representing the electrical properties of
the grid. Furthermore, the research [387] suggested that the degree distribution
of the power grid seemed to be scale-free following a power law distribution func-
tion, although not all of the subsequent works have agreed on this [341]. In this
respect, some other works have also found that there are exponential cumulative
degree functions, for instance in the Californian power grid [380] and in the whole
U.S. power grid [412]. This notwithstanding, on the other hand, reference [413] has
shown that the topologies of the North American eastern and western electric grids
can be analyzed based on the Barabasi–Albert network model, with good agree-
ment with the values of power system reliability indices previously obtained from
standard power engineering methods. This suggests that scale-free network mod-
els are applicable to estimate aggregate electric grid reliability [342]. In addition
to [379], there are also several works that report on power grids with small world
nature: the Shanghai Power Grid (explored with a hybrid CN Direct Current (DC)
and Alternating Current (AC) power flow models) [414], the Italian 380-kV, the
French 400-kV and the Spanish 400-kV grids [415] or the Nordic power grid [416].
Rosas-Casals et al. [417], using data from thirty-three di↵erent European power
grids, found that, although the di↵erent explored grids seem to have an exponential
degree of distributions and most of them lack the small-world property, these grids
showed however a behavior similar to scale-free networks when nodes are removed,
concluding that this behavior is not unique to scale-free networks. This could sug-
gest similar topological constraints, mostly associated with geographical restrictions
and technological considerations [342]. Thus, the existence of several topologies in
high-voltage transmission power grids suggest that there is no predominant struc-



86 Discussion: Is the CN Approach Useful in Power Grids?

ture, except for the fact that many grids have a heterogeneous nature [342] and that
they are vulnerable to fails/attacks on the most connected nodes and robust against
random failure.

However, in the particular case of smart grids, the small-world model seems to
be beneficial. As pointed out in [7], the exchange of electric energy at the local scale
could be very positive because it stimulates the local production and consumption
of renewable-based electric energy (small-scale photovoltaic systems and small-wind
turbines), helping the end-user obtain economic benefit by selling the energy pro-
duced in excess. Using real data from Dutch grids, and within the CN framework,
the key contribution of [7] is to propose the use of CN theory (combined with global
statistical measures) as a design tool to synthesize the best smart grid structures, in
terms of performance and reliability (for a local energy exchange) and cabling cost.
The authors in [7, 9, 338, 343, 354–360] made the conclusion that the small-world
model seems to have many feasible features, not only structural, but also economic,
related to electricity distribution.

Finally, and although not conclusive, power grids with a small network structure
seem to be the most robust (except random networks) or, at least, seem to be those
with the highest potential to improve robustness in a feasible way. In particular,
the research work [382] has compared the robustness of random networks (ER),
small-world (WS) and scale free (BA). Random networks are the most robust and
scale-free the most vulnerable. Among the structures found in power grids (scale-
free, small-world, as mentioned before), non-sparse small-world networks (M ⇠ 2N)
are the most robust. According to [383], non-sparse small-world networks have also
the beneficial property of increasing easily their robustness by a feasible method
that consists of simultaneously increasing both the rewiring probability and the
average degree (hki = 1

N

PN
i=1 ki), which improves significantly the robustness of

the small-world network.

5.5.2 Unweighted and Weighted Graphs: Which Is the Best?

An interesting point of discussion is whether the graph representing the particular
grid under consideration uses either weighted or unweighted links. The review [341]
points out that many works [9, 393,396,397,412,413,415–419] have in common that
each power grid has been represented using the simplest graph model: undirected
and unweighted. This is because these approaches do not include any characteriza-
tion of the link weights. Unweighted graphs are by far the most used representation
in the group of references that tackle robustness in power grids from the pure topo-
logical CN viewpoint. On the contrary, most of the hybrid approaches, which include
power flow models and/or electric-based metrics, made use of weighted graphs [341].
A deeper insight into the role of weighted links is given in [342], where it is noted
that in power grids, transmission lines have power flow limits, which must be repre-
sented by weights wij standing for the flow limit on line lij ⌘ l(i, j) linking nodes i
and j. The authors in [342] argue that when applying CN analysis to power grids,
the electrical power grid must be represented as a weighted and directed network
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graph G = (N , L, W), where W is the set of weight elements wij.

5.6 Proposal: Metrics, Objective Function and
Problem Statement

5.6.1 Metrics to Construct the Objective Function

We have mentioned that in a smart grid made up of prosumer nodes, there should
be a bidirectional interchange of energy at the local scale. Aiming at achieving this
goal, the following features are beneficial:

1. It is necessary for the SG to have a structure with reduces losses in the elec-
tric cables used to transport electric power from one node to another. This
electrical restriction can be modeled using the condition:

` 6 log N, (5.7)

which, as pointed out in [338], is related to giving a reduced path when mov-
ing from one node to another in a general purpose complex network. In the
particular case of a smart grid, this may lead to a topology with limited losses
in the circuits used to transfer electricity from one node to another. That is, it
is a requirement related to the e�ciency of the network. Along with the high
clustering coe�cient, this is also one of the properties of small-world networks,
in which the mean distance or average path length ` is small when compared
to the total number of nodes N in the network: ` = O(log N) as N !1. A
small value of ` is also important from the economic viewpoint since it may
lead to smaller cost.

2. The entropic degree of a node i, Si, defined by Equation (5.6), has the advan-
tage of providing a quantitative measurements of the importance of buses [389]
in power grids by including the involved link weights and their number and
distributions.

3. Since the node degree ki of a node i is the number of links connecting i to any
other node, its maximum value gets an upper limit related to the maximum
power that a node can support:

max(ki)  kMAX. (5.8)

The value of kMAX is related to the maximum power that a node is able to
support and is directly related to its economic cost. In [338], average degree
values hki ranging from⇡ 3 to⇡ 4 lead to a good balance between performance
and cost.
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4. The clustering coe�cient defined by Equation (5.4) of a smart grid CSG should
be higher than that of the corresponding random network (RN) with the same
order (number of nodes) and size (number of links). This aims at assuring a
local clustering among nodes because it is more likely that electricity exchanges
occur in the neighborhood in a scenario with many small-scale distributed RE
generators [338].

5. We measure the network vulnerability by using the concept of multiscale vul-
nerability of order p of a graph G [420,421],

bp(G)
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, (5.9)

where bp
l is the betweenness centrality of link l. The multi-scale vulnerability

bp of a graph G measures the distribution of shortest paths when links are
failing (or attacked) [421] and is very useful when comparing the vulnerability
of networks because it helps distinguish between non-identical although very
similar network topologies [420]. As shown in [421], if we want to distinguish
between two networks with graphs G and G⇤, one first computes b1. If b1(G) =
b1(G⇤), then one takes p > 1 and computes bp until bp(G) 6= bp(G⇤). Using
this approach, we have considered b2(G). A network represented by a graph
G is less vulnerable (more robust) than another G⇤ if b2(G) < b2(G⇤). Please
see [420, 421] for further details.

6. A coe�cient of variation for betweenness [338],

�b1 =
�b1

b̄1

, (5.10)

where �b1 is the standard deviation of betweenness (b1) and b̄1 is the mean
value of betweenness. Distributions with �b1 < 1 are known as low-variance
ones. This requirement leads to network resilience by providing distributions
of shortest paths that are more uniform among all nodes. See [338] for further
details.

5.6.2 Proposed Objective Function

We propose an objective function (to be minimized), which is a combination of
di↵erent functions related to topological and hybrid CN metrics mentioned before
in Lists 1–6 in Section 5.6.1. The objective function is:

fOBJ(G) = f⇣(G) = ⇣ · (Nl + ` +
1

C̄ ) + (1� ⇣) · (b2 +
�b2

b̄2

), (5.11)

where Nl is the number of links, ` is the average path length, C̄ is the mean clus-
tering coe�cient and b2 is the multi-scale vulnerability of order 2. The rest of the
components have already been defined before. Note that fOBJ is only one of the
possible functions among several ones that aim at:
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� Reducing Nl in the e↵ort of decreasing the economic cost and the electric
losses in the links used to transport electricity from one node to another.
Reducing Nl makes the network less robust. This is because the minimum
value of b2, b2,min = 1 [420], is reached for the “fully-connected network” or
“completely-connected graph” in which any node is connected with all of the
others. As the number of links decreases, the network becomes increasingly
fragile and b2 > 1. Reducing Nl to a great extent leads to an inexpensive, but
very fragile structure (b2 � 1 [420,421]). Thus, the decrease of the number of
links and the increase of the robustness have opposite tendencies. This is why
we propose a balance between Nl and b2 via the weight parameter ⇣, which
controls the linear combination between constituents with opposing trends.

� Reducing b2 (approaching one from above) to increase robustness and also
�b2

b̄2
to improve resilience.

� Reducing ` along with maximizing C̄ leads to a small-world structure.

� Increasing C̄ aiming to stimulate the local electricity exchanges in scenarios
with many small-scale distributed RE generators.

5.6.3 Problem Statement

Let N be the “order” or the number of nodes (generators, loads) of the graph
representing a smart grid. The number of links (M = Nl = network size) to connect
the N nodes and the specific way in which these nodes connect to each other are two
of the aspects to be determined. Let G be the set of all possible connected graphs
G with N nodes and M = Nl links. A graph is connected if there is at least a path
between every pair of nodes.

The problem consists of finding the topological structure (the network, or equiv-
alently, the optimum graph bG) that minimizes the objective function fOBJ stated by
Equation (5.11),

bG = arg min
G2G

fOBJ(G), (5.12)

subject to a the condition that the graph G must be connected,

�2(G) > 0. (5.13)

Parameter �2 is called “algebraic connectivity” (or the Fiedler eigenvalue) [420]
and, in graph theory, is one of the available parameters that can be used to mathe-
matically measure to what extent a graph is connected. The algebraic connectivity
�2 is a positive real number whose magnitude quantifies the level of connectivity
in the graph. Larger values of algebraic connectivity represent higher robustness
against e↵orts to break the graph into isolated parts. In the opposite limit, �2 = 0
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means that the network has been broken into several disconnected parts. The alge-
braic connectivity �2 is computed as the second smallest eigenvalue of the “Laplacian
matrix” of a graph G, LG. The Laplacian matrix, sometimes also called the admit-
tance matrix or Kirchho↵ matrix, is an N ⇥N symmetric matrix defined by: [420]

LG = DG �AG, (5.14)

where DG = diag(k1, · · · , kN) is the node degree matrix, which is the diagonal matrix
formed from the nodes degrees, and AG is the adjacency matrix of graph G.

5.7 Proposed Evolutionary Algorithm

5.7.1 Basic Concepts

An EA is an optimization, population-based algorithm, inspired by the principles
of natural selection and genetics, which is able to tackle complex problems [150,216]
such as the one formulated. Among these advantages, EAs do not require derivative
information and are able to optimize functions with a large number of continuous
or discrete variables, finding the global solution for multi-local extrema problems
[217]. As discussed in Section 5.2.2, although GA and EA are sometimes used
interchangeably in the reviewed works, in this chapter, we prefer to use the term
EA since, as will be explained in Section 5.7; we have encoded each feasible solution
as a binary triangular matrix, instead of a bit-string. For further details about this,
the interested reader is referred to [218].

The underlying concepts of EAs and the way they are computationally imple-
mented are inspired by the way Nature finds out solutions to extremely complex
problems, such as the “survival of the fittest” individual in a evolving ecosys-
tem [216, 217]. Aiming at better explaining our approach, it is convenient to in-
troduce here two biological phenomena from which EAs are inspired: (1) the exter-
nal characteristics (“phenotype”) of living beings are encoded (represented) using
genetic material (“genotype”); and (2) evolution is the result of the interaction be-
tween the random creation of new genetic information and the selection of those
living beings that are best adapted to the environment [217].

The relationship between genotype and phenotype

As mention, in natural evolution, genotype is the genetic information that en-
codes and causes the phenotype (all external characteristics) of a living being (or
“individual”). Specifically, each characteristic is encoded by a “gene”, a “chromo-
some” being the set of these genes [217]. Each gene is located at a particular position
on the chromosome and can exhibit di↵erent values (“allele”).
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Biological Evolution

The random creation of novel genetic information in Nature may lead to a better
(or sometimes, worse) ability to survive. The better a living being is adapted to
its environment, the higher its probability of survival is. This is called “survival of
the fittest”. In turn, the longer the individual’s life is, the higher its probability of
having descendants. In the procreation process, the parent chromosomes are crossed
or combined (“recombination”) to generate a new chromosome (which encodes the
o↵spring). With very small probability, “mutations” (or random variations in genes)
can occasionally occur, caused by external factors (for instance, radiation) or sim-
ply by unavoidable errors when copying genetic information. This leads to o↵spring
with new external properties, which are di↵erent from those of their predecessors.
If such arising external characteristic makes the o↵spring better adapted to the en-
vironment, its probability of survival and having descendants increases. In turn,
part of the o↵spring can inherit the mutated genes (and thus the corresponding
external characteristic), which can be passed from generation to generation. These
natural processes make the population evolve, resulting in the emergence of individ-
uals better adapted to the environment and in the extinction of those less fitted. For
deeper details about the main similarities and di↵erences between natural evolution
and evolutionary algorithms, the interested reader is referred to [216].

5.7.2 Evolutionary Algorithm Used

The analogy of our problem with the biological metaphor described is that we
are looking for the “best graph” bG that minimizes the objective function fOBJ in
Equation (5.12). In this search, a very large number of possible graphs G has to
be evaluated aiming at computing the corresponding value fOBJ(G). Each possible
graph is a candidate, trial solution or “individual”. The complete set of individuals
is called the “population”. The extent to which a candidate solution is able to solve
our problem is the “fitness of the individual”. The smaller the fOBJ value of an
individual, the better the fitness of the individual.

Just like in natural evolution, each individual or candidate solution is encoded
using a chromosome, a kind of representation that eases the problem solution because
it transforms the real search space into another in which working is much easier.
The population is evolved via the application of genetic operators that mimic the
natural processes of reproduction, mutation and selection.

Encoding Method

In our problem, the chromosome cG, which encodes each potential graph G (or
individual), is the upper triangular matrix of its adjacency matrix AG. In this
formulation, AG is a square, symmetric and binary matrix whose elements encode
whether a node is linked (aij = 1) to another adjacent one in the graph or not
(aij = 0). Since there is no node self-connected, the adjacency matrix has zeros
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on its main (principal) diagonal ((aii = 0)). These are the reasons why all of the
information of link connections of graph G is stored by the upper triangular matrix
TG. Thus, chromosome cG = TG encodes in a compact form the information of the
adjacency matrix AG of graph G (or individual).

For illustrative purposes, Figure 5.2a shows a simple random graph with 10 nodes
and 20 links, while Figure 5.2b,c represents its corresponding adjacency matrix
(AG) and its upper triangular matrix (TG or chromosome cG = TG encoding the
information of individual G), respectively.

In the discussions that follow, the terms “individual” and “chromosome” are
used interchangeably because each chromosome uniquely represents each solution in
the actual search space. This strategy can be considered as transforming the actual
search space into another in which the computational working is much easier. From
a mathematical point of view, if G is the set containing all of the candidate graphs
and C is the set of chromosomes that encodes each of them (cG), this representation
is equivalent to defining a bijection,

⌅ : G ! C (5.15)

so that any candidate graph is represented by a unique chromosome ⌅(AG) = cG =
TG.
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Figure 5.2: Simple example illustrating the encoding process. (a) Small random
graph G (or individual) with 10 nodes and 20 links; (b) adjacency matrix AG of
graph G; (c) upper triangular matrix TG or chromosome cG = TG encoding the
information of individual G.
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Initial Population

The size of the initial population (number of chromosomes), Psize, is a crucial
parameter for EA performance [218]. On the one hand, a large population could
cause more diversity of candidate solutions (and thus, a higher search space), leading
to a slower convergence. On the other hand, too small a population leads to reduced
diversity: only a limited part of the search space will be explored. This increases
the risk of prematurely converging to a local extreme. In our specific problem,
after a number of experiments, the initial population has been chosen as Psize = 50
individuals, as a tradeo↵ between computational complexity and performance.

As important as the population size is the way in which such an initial population
is generated. Usually, the initial population is initialized at random. This strategy
is appropriate for those problems in which there is no information about how the
solution will be. However, there are problems in which a non-random, domain-
specific initial population is more suitable [422]. This is the case of our problem
since we have information about a suitable (although non-optimum) solution: small-
world networks have been found to exhibit beneficial properties in some smart power
grids. See [338] for a more detailed explanation. In our preliminary work, we have
found that the EA works better if the initial population is generated as follows:

� Fifty percent of Psize are Watts–Strogatz random graphs (with small-world
properties, including short average path lengths and high clustering) with
rewiring probability ranging from 10�2 to one.

� Fifty percent of Psize are Erdős–Rényi (ER) random graphs with N nodes and
N ⇥ 5 links.

Figure 5.3 shows some examples of four graphs belonging to the initial popula-
tion.

An important point is to ensure that any graph G in the initial population is
connected by checking that it fulfills the condition �2(G) > 0 [420].

This approach to generate an SG domain-specific aims to reduce the number
of searches within the solution space and to assist operators in finding the global
minimum quickly.

Implementation of Evolutionary Operators

Selection Operator

Selection operators can be basically classified into two classes [218]: fitness pro-
portionate selection (such as roulette-wheel selection and stochastic universal se-
lection) and ordinal selection (tournament selection and truncation selection) [218].
After a number of experiments, we have selected as the selection operator the tour-
nament selection. This strategy is one of the most widely-used selection operators
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in EAs since it performs well in a broad variety of problems, is susceptible to paral-
lelization and can be implemented e�ciently [218, 423]. A very clear description of
its key concepts and further details can be found in [423].

Gi

Gm

Gy

Gn

(a)

(b)

(b)

Figure 5.3: Examples of four graphs belonging to the initial population. (a) Watts–
Strogatz random graphs; (b) Erdős–Rényi (ER) random graphs.

Tournament selection basically aims at selecting individuals based on the direct
comparison among their fitness. In our problem, a candidate solution, a graph
G, encoded by chromosome cG is more fit than another, cH, if the corresponding
objective function fOBJ is better (lower):

fOBJ(cG) < fOBJ(cH). (5.16)

The simplest tournament selection operator consists of picking out at random
two individuals (contenders) from the population and carrying out a combat (tour-
nament) to elucidate which one will be selected. In particular, each combat involves
the generation of a random real number ntour 2 [0, 1] ⇢ R to be compared to a prear-
ranged selection probability, pselec. If ntour  pselec, then the stronger (fitter or best)
candidate is selected, otherwise the weaker candidate is selected. The probability
parameter pselec gives a suitable strategy for adjusting the selection pressure. To
favor best (fittest) candidates, pselec is usually set to be pselec > 0.5 [423].
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This simplest implementation of tournament with only two competitors (tourna-
ment size = 2) can be generalized to involve more than two individuals. As shown
in [423], the selection pressure can be adjusted by changing the tournament size.
If the tournament size increases, weak individuals have a smaller probably of being
selected. That is, the more competitors, the higher the resulting selection pressure.

Regarding this, the tournament selection operator we have implemented has a
tournament size of Tsize = Psize = 50 contenders (that is, all individuals are fighting
each other) and a selection probability, pselec = 0.8. As mentioned, pselec > 0.5 favor
best (fittest) candidates [423]. The individual that accumulates the most wins is
selected as the one that pass to the next generation in the selection process.

Crossover Operator

The crossover operator works as follows:

1. Select at random (pcross) two individuals from the population (father and
mother).

2. Select at random the same row in the parents.

3. Exchange the selected rows between the father and the mother, which leads
to two child chromosomes.

Mutation Operator

Mutation operators are designed to generate diversity in each generation and aim
at exploring the whole search space by introducing local changes with very small
probability. Specifically, the implemented mutation operator selects at random an
individual with a given probability pmut. The mutation operator then picks out at a
random row (of the upper triangular matrix representing such an individual). Note
that row “i” encodes how node i is connected to others: element aij = 1 means that
there is a link between nodes i and j. The next step that the operator makes is to
select at random two elements of the row and to perform a permutation. This is
equivalent to rewiring the links of node i to other nodes and ensuring that: (1) node
i is not disconnected from the rest of the network and (2) that the degree of node i
remains unchanged, despite having made the mentioned rewiring.

5.8 Experimental Work

5.8.1 Methodology

The EA is stochastic as it begins with a population randomly generated (see
Section 5.7), and then evolutionary probabilistic operators are applied to the pop-
ulation in each generation. The result gets better (fOBJ is reduced) quickly with
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the first iterations (generations) until it ends up stagnating, converging to a near-
optimal result. As the EA is stochastic, obtaining statistical values is compulsory.
This is the reason why the EA has been repeated 20 times, which have been found
long enough.

The values for the EA parameters that we have considered in the experimental
work described below are: Tsize = Psize = 50 graphs (50% being WS small-world
graphs, with rewiring probability ranging from 10�2 to 1, and 50% being ER random
graph with N nodes and N ⇥ 5 links), pselec = 0.8, pmut = 0.09 and pcross = 0.2.

For illustrative purposes, Figure 5.4 shows the mean value (a) and variance (b)
of fOBJ = f0.7 as a function of the number of generations.
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Figure 5.4: Mean value (a) and variance (b) obtained by the proposed EA when
minimizing the objective function stated by Equation (5.11) for ⇣ = 0.7 and con-
strained to Equation (5.13), as a function of the number of generations.
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5.8.2 Results: Optimizing the Structure

Figure 5.5 shows some selected results obtained by the proposed EA when min-
imizing the objective function stated by Equation (5.11) constrained to Equation
(5.13). For each value of ⇣, the parameter that controls the linear combination of op-
posing constituents in Equation (5.11), the problem consists of finding the optimum
network (or, equivalently, the optimum graph) that minimizes f⇣(G). The results
represented correspond to the mean value (over 20 realizations of the EA). Figure
5.5 consists of several subfigures. On the left part of Figure 5.5, we have represented,
as a function of ⇣, the following values: (a) the mean value of the objective function,
f̄⇣ ; (b) the multi-scale vulnerability of order two, b2; (c) the average path length, `;
(d) the clustering coe�cient, C; and (e) the average node degree, hki.

On the right part of Figure 5.5, we have represented some interesting graphs.
All of these figures are necessary to properly understand the result. Regarding this,
note that:

1. The optimum value of f̄⇣ in Figure 5.5a is achieved for ⇣ = 0.7. This cor-
responds to the optimum graph G0.7 shown in Figure 5.5h. This graph has
b2 = 63 (Figure 5.5), which is an intermediate robustness between the one
of G0.0 (Figure 5.5f) and that corresponding to G1.0 (Figure 5.5j). G0.7 arises
from the tradeo↵ between having a reasonable robustness and e�cient power
exchange at the local scale (high C and low `) with a limited number of links
(74 ⌧ 300, the number of links of G0.0). G0.0 represents a network with high
number of links, very interconnected, and thus, potentially very expensive,
and with very high robustness (smallest fragility, b2 ⇡ 1). On the contrary,
G1.0, which has b2 ⇡ 200, is thus very fragile: note in Figure 5.5j that the
occurrence of abnormal conditions on the marked link will completely discon-
nect the power grid. In this limiting case (⇣ = 1), the optimum network G1.0

has only 51 links (very low economical cost), but at the expense of being very
vulnerable to targeted attacks on hubs.

2. A key point to note in Figure 5.5a is that, in the interval 0.6  ⇣  0.8, the
objective function has a slight variation 80  f̄⇣  81, in which the corre-
sponding optimum graphs G0.6, G0.7 and G0.8 exhibit some beneficial properties
for the SG:

2.1. Intermediate robustness, ranging from 50 to 80 in Figure 5.5b.

2.2. A small average path length, ` < `RG (Figure 5.5c). This is related to
the e�cient power flow between nodes [338].

2.3. Clustering coe�cient considerably higher than that of the random graph
(with the same number of nodes and links), C > CRG (see Figure 5.5d).
This is related to the local exchange of power between neighbor nodes
[338]. These two latter conditions are topological features that help the
power grid be a smart grid. Furthermore, the two latter features show
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that the graphs in 0.6  ⇣  0.8 have the small-world nature. In par-
ticular, these graphs with M ⇠ 1.66N approach non-sparse small-world
networks (with M ⇠ 2N), which, according to [383], are the most robust.
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Figure 5.5: Result reached by the proposed EA when minimizing the objective
function stated by Equation (5.11) as a function of ⇣: (a) Mean value of the objective
function, f̄⇣ ; (b) Multi-scale vulnerability of order two, b2; (c) Average path length,
`; (d) Clustering coe�cient, C; (e) Average node degree, hki. On the right side, (f),
(g), (h) and (i) show, respectively, optimum structures for several values of ⇣: G0.0,
G0.6, G0.7 and G1.0. (j) Summary of illustrative results for G0.6 and G0.7.
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2.4. Additionally, in 0.6  ⇣  0.8, C ⇡ 5⇥ CRG, in good agreement with the
properties described in [338].

2.5. The average node degree hki has values ⇡ 3, which has been proven to
be beneficial in [338].

2.6. kMAX ranges between ⇡ 5 and ⇡ 7, which limits the existence of nodes
with many links, and therefore, with high capacity (⇡ more expensive).

5.8.3 The Benefits of Adding Links

In this case, we assume that the SG is a network whose nodes are embedded in
space (“spatial network” (SN)). This is a realistic condition that appears in some
real power grids: the Florida high-voltage power grid, which has been found to be
a spatial network with strong geographical constrains that embeds it in space [424],
or the Italian power grid [418]). Furthermore, the recent work [425] assumes that
a power grid is well described by a two-dimensional, spatially-embedded, connected
network. To make the study as general as possible, we assume that the SG is a
spatial network whose 50 nodes are located at positions that have been generated at
random inside the unit square, with the restriction that the normalized Euclidean
distance between any pair of nodes fulfills dE(ni, nj)  dMAX = 0.5.

The purpose of our example is to study the beneficial properties of adding links.
In this respect, Figure 5.6 shows the network obtained by minimizing the number
of links constrained to a limit, small algebraic connectivity �OBJ

2 = 0.01, which
prevents the network from being disconnected. An initially completely-connected
network is the most robust network having the maximum number of links. However,
in a real-world infrastructure (such as the power grid), this is unrealistic because of
not only economic considerations, but also from a technical viewpoint (substations
having many connections). Figure 5.6 shows the beneficial properties of adding links.
By adding only one link between Node 2 and Node 45, the algebraic connectivity
increases up to �2 = 0.1005, almost by a factor of ⇥100, while ` increases up to
` = 3.9 ⇢ 3.91 = log(50), reaching the corresponding small-world feature.

This results is in good agreement with others found in the literature. The smart
addition of links in power grids may lead to the small-world property, making net-
works more robust [400,403]. Specifically, the survey in [341] shows that the addition
of links improves robustness in real grids in Spain, France and Italy [418]. Under the
assumption of a small-world WS network model, it is observed that line congestion
decreases as the density of shortcuts rises. By rewiring shortcut lines under a certain
probability, the mean load in lines results in being lower and so does the number of
congested lines. A similar result has been found in [400], which in turn reinforces the
suitability of small-word network models when it comes to robustness [380,426–429].

The advantages arising from small-world diameters has been recently emphasized
in [403], in which the system has been modeled as a network of networks, leading to
two important conclusions that could help increase robustness (reduce vulnerability).
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Figure 5.6: (a) Spatial network with minimum algebraic connectivity; (b) addition
on a link between Node “2” and Node “45”.

The first one, as mentioned, is that networks with a small diameter are very
robust. This has very important practical implications from an engineering view-
point. In wireless networks, this helps reduce power consumption. In electric grids,
this means that generators should be placed near consumers, which can be attained
by means of distributed renewable energy generation. This strategy could reduce
the investment of deploying or upgrading power transmission grids. The second key
conclusion is that adding links is, in general, beneficial until a critical number of lines
is reached, beyond which adding more links could increase cascading failures [393].
Note that not all models are consistent regarding the beneficial aspects of adding
lines, although it is true that the vast majority of them agree on the conclusion that
this strategy is advantageous [341].

Small-sized, small-world topologies for SGs, like those previously obtained, ex-
hibit an additional bonus of helping the intentional islanding. This is a strategy that
aims to stop the initial failure occurring in a small part of a power grid [430–432]
and to prevent it from propagating through the rest of the system, causing thus a
larger blackout. In [417,433], the authors suggest that a feasible method to prevent
the propagation of disturbances would be to design the network so as to allow for
intentionally separable, stable, small islands or “micro-grids”. In the case of emer-
gency, a micro-grid is simply a subset of the grid that can be islanded and which is
able to supply electric energy to all or most of its users when an emergency is trig-
gered [341,434]. In this regard, the SG concept can be a good strategy to put this into
practice. In a broader approach, a “hybrid” grid is understood as the coexistence
of largely interconnected grids with central control and smaller, decentralized areas
that could be operated as micro-grids, in the case of emergency. In this context,
small, distributed, smart grids as complex networks are on the rise [7,339,355,357],
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towards an electric grid characterized by a very considerable influence of prosumers,
which will have a considerable influence on the electricity distribution infrastructure
in the near future.

5.8.4 Comparison with an Evolution Strategy

The use of an evolutionary algorithm to jointly minimize the link density and the
average distance in complex networks was studied in the pioneering, seminal work
[435], generating di↵erent topologies of general application. This algorithm consists
basically of an evolution strategy (ES). The simplest ES works on a population of
size two: the current single parent and the result of its mutation. This is the so-
called (1+1)-ES [436]. The (1+1)-ES starts with a single individual (Psize,initial = 1),
a graph generated at random. This single progenitor is then evolved by applying a
mutation algorithm, which flips an element aij and generates a new individual. The
only constraint is that the resulting mutated network is connected. The objective
function is then evaluated with the novel individual. If this value is lower than that of
the single progenitor, the new individual is accepted, and the ancestor is removed.
Otherwise, the mutant individual is eliminated. This minimization algorithm is
iterated until convergence is reached. Figure 5.7 will assist us with comparing this
(1 + 1)-ES to the proposed EA.

Figure 5.7 shows the mean value of Nl as a function of the number of generations,
computed, respectively, by using the proposed EA (a) and the (1 + 1)-ES (b). In
this case study, we have considered the number of links (or network size) Nl as
the objective function to be minimized because: (1) it is a function in which the
exact solution is known; and (2) it is a simple function that requires a much lower
computational burden than the one studied above. These two properties make this
simple case study allow for obtaining a feasible comparison between the e�ciency
of the proposed EA and that of the (1 + 1)-ES. We use as the comparative criterion
the number of generations necessary for each algorithm to converge to the exact,
known solution Nl,min = M � 1. The results have been represented in Figure 5.7 for
a network with order M = 50 nodes.

Figure 5.7 reveals that the (1 + 1)-ES needs a much longer convergence time
than that of the proposed EA. Using the number of generations as the comparative
criterion, the proposed EA converges to the exact solution (a graph with 49 links)
after 900 generations, while the (1 + 1)-ES requires about 8100 generations to con-
verge to a connected graph with the minimum number of links (49 links). That is,
the proposed EA is more e�cient in the sense that it needs a number of generations
⇡ 9-times lower than that of the simplest (1 + 1)-ES. This is because the latter
performs a completely random search (pmut,(1+1)�ES = 1) and starts with an initial
population with a single progenitor, as long as the EA starts with a larger popu-
lation (50 individuals) with greater variability and takes advantage of applying a
crossover operator (with probability pselec = 0.8) in addition to a mutation operator
with small probability (pmut = 0.09), preventing thus a completely random search.
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]. The (1 + 1)-ES starts with a single individual (

generated at random. This single progenitor is then evolved by applying a mutation algorithm, which

Proposed EA

Figure 5.7: Mean value of the number of links (Nl) as a function of the number
of generation using, respectively, the proposed EA (a) and the (1 + 1)-evolution
strategy (ES) (b). The number of nodes is M = 50.

5.9 Summary and conclusions

This chapter has been motivated by two important, mutually interrelated points:
1) how several WECs should have to be electrically interconnected to each other
(forming a WEC farm), and 2) how the WEC farm should be connected to the power
grid. The main reason why WECs are electrically connected with each other is that
a single standalone WEC cannot generate su�cient electric power for commercial-
scale grid integration. Although linked WECs help soften the fluctuation of electric
power associated to wave variability, such fluctuation is still important and can a↵ect
the quality of the power grid. A feasible solution consists in using electric energy
storage systems aiming at smoothing the produced electric power without reducing
energy e�ciency [161, 162]. Thus, conceptually, a WEC farm can be considered
as a set of nodes (either generating or absorbing electricity) connected according to
certain design criteria [159,161,163]. In turn, the electric connection of a WEC farm
to on-shore power grid [159–163] aims at seamlessly integrating it into the power
grid. To do this, wave farms should become into “smart wave farms” (SWFs). The
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SWF approach allows for predicting waves using in-ocean sensors and forecasting
algorithms. These predictions in turn can be used to: 1) adapt the WECs’ energy
capture, 2) make e�cient energy storage decisions [164], and 3) control the quality
of the power that the SWF injects into the on-shore power grid. The variability
and intermittency of wave energy is common to other mass renewable energies, such
as wind and solar energies, and can be tackled within the unifying framework of
smart grids (SGs). The emerging SG concept is able to e�ciently integrate into the
power grid a rapidly increasing number of intermittent generators, with the target
of a↵ecting as slight as possible the stability and robustness of the grid [158].

Thus in this chapter we have considered the SWF and its connection to the on-
shore power grid as a SG whose structure needs to be optimized against random
failures or abnormal operating conditions –for instance, intermittent generation or
the breakdown or the operation stop of a WEC (or a set of them) within a WEC
farm caused by a storm–. The novelty of this chapter is twofold, in the sense of
optimizing the robustness of such SG (connecting nodes that generate, consume or
store electricity) against abnormal operating conditions by (1) using an EA that op-
timizes the structure of the SG modeled by (2) applying concepts from the Complex
Networks Science. The approach is general in the sense that allows for optimizing
the structure of any SG with renewable energy (RE) generation against abnormal
conditions (imbalances between generation and consumption, overloads or failures
arising from the inherent SG complexity) by combining the complex network (CN)
and evolutionary algorithm (EA) concepts. The model and results of this chapter
have been published in [108].

Our approach takes advantage of some important properties of the SG paradigm
being based on: a smart grid allows for the bidirectional exchange of electric energy
at the local scale and aims at supplying reliable and safe electric power by e�ciently
integrating distributed RE generators using smart sensing and communication tech-
nologies. In this context, we have modeled the SG as a undirected graph so that
each link (electric cable) allows for the bidirectional exchange of electric energy be-
tween nodes (WECs and storing devices, for instance). Because of its flexibility,
the model is also applicable to the e�cient integration of distributed REs (small-
scale photovoltaic systems and small-wind turbines) in the low voltage grid, so that
electricity consumers can also become producers (“prosumers”), helping end-users
obtain economic benefits by selling the energy generated in excess.

Aiming at optimizing the structure of such SG against abnormal conditions,
we have proposed a novel objective function (to be minimized) that combines cost
elements, related to the number of electric cables, and several metrics that quantify
properties that are beneficial for the SG (energy exchange at the local scale and high
robustness and resilience, as shown in [338]). The optimized SG structure is obtained
by applying an EA in which the chromosome that encodes each potential graph (or
individual) is the upper triangular matrix of its adjacency matrix. This allows
for fully tailoring the crossover and mutation operators to such encoding. Since
small-networks have been found to be beneficial for SGs [338], we have proposed a
domain-specific initial population that includes both random networks and small-
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world networks. This assists the proposed EA to converge quickly.

The experimental work points out that the proposed method works well and
generates an optimum, synthetic, non-sparse-like small-world structure that leads
to beneficial properties such as improving both the energy exchange at the local
scale and the robustness and resilience. Specifically, the optimum topology fulfills
a balance between moderate cost and robustness against abnormal conditions. We
have also explored the benefits of adding links to improve the robustness of smart
grids, in good agreement with [380,426–429]

We would like finally to emphasize that the proposed approach should be con-
sidered as a high level analysis and planning tool in the e↵ort of estimating to what
extent the smart grid topology can su↵er from vulnerabilities. It cannot and does
not intend to replace the conventional methods used by power engineers. In fact,
the low level, detailed design must be carried out using electrical engineering tech-
niques. In this respect, a deep discussion about the controversy still unresolved
between the complex network and electrical engineering communities can be found
in [341,343,404,410], reference [343] being a clear introduction to complexity science
in the context of power grids.



Chapter 6
Conclusions and Future Work

6.1 Summary and conclusions

In this thesis we have explored the use of Soft Computing (SC) approaches in
wave energy problems. The reason we have focused on wave energy to the detri-
ment of other marine energies is that, among all the available marine technologies,
wave energy is the most used because, in addition to being e�cient from a technical
viewpoint, it does not cause significant environmental problems. Its e�cient con-
version is based on a variety of wave energy converters (WECs), which transform
the kinetic energy of wind-generated waves (or simply, wind energy) into electric
energy by means of either the vertical oscillation of waves or the linear motion of
waves. Wave energy exhibits some significant advantages when compared to the
other marine energies (tidal and ocean thermal energies):

� Wave energy is the densest renewable energy (about 1000 times more concen-
trated than wind energy) and is less changing on an hourly basis than wind
energy.

� There are many ideal regions (in the sense of having substantial wave power
density near populated regions demanding electric and clean energy) in the
North and West coast of Europe (Nordic countries, UK, Ireland, Portugal),
North coast of US and Canada, Southern cost of Australia, Northern coast sof
New Zealand, Japan, and India.

� WECs usually cause much lower environmental impacts on ecosystems than
tidal devices.

Despite exhibiting these advantages, which have been discussed in detail in Chap-
ter 2, wave energy su↵ers from some serious practical problems: 1) waves are more
di�cult to characterize than tides because of the stochastic nature of waves (al-
though they are less variable on an hourly basis than wind), and 2) wave energy is
intermittent. Furthermore, wave energy flux can exhibit nonlinear variability, with
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irregular extreme events. As a consequence of this complexity, both the design, de-
ployment, and control of WECs become key points that require a resource character-
ization as accurate as possible. Such characterization can be carried out essentially
through two families of techniques: physical models and data-driven models:

1. Physical models are based on the wave energy balance equation, a di↵erential
equation which is solve numerically. There are several numerical wave mod-
els depending on the numerical methods and the physical parameterizations
adopted. Numerical wave models are very powerful but require a huge amount
of meteorological and oceanographic data and computational e↵ort. Numer-
ical models are more useful for forecasting over a large spatial and temporal
domain (within a window of a few days).

2. Data-driven models made use of data measured from wave stochastic processes
by means of buoys, radars, or satellites, which generate time data series. Data-
driven models use such data to forecast, for instance, wave parameters. There
are basically two data-based approaches in this family of models:

2.1. Statistical regressive methods like autoregressive (AR) model, auto re-
gressive moving average (ARMA), auto regressive integrated moving av-
erage (ARIMA), and so on.

2.2. SC methods (neural, fuzzy, and evolutionary methods).

The reason why we have focus in this thesis on SC approaches in wave energy is
that SC techniques have proven to reach similar and even superior results than other
data-driven models such as statistical methods (AR, ARMA, ARIMA,...) in short
term estimations (up to 24 h). SC methods have some advantages over numerical
models: simpler modeling, smaller computational cost, and lack of errors arising out
of wind-to-wave conversion.

Aiming at exploring the use of novel SC approaches in wave energy problems, we
have introduced in Chapter 2 two groups of concepts that the rest of the chapters
(and the research work described in them) make use of. The first set of concepts
is related to a basic characterization of wave stochastic processes, while the second
one focuses on introducing the fundamentals of the most used WECs that transform
wave energy into electricity.

� Regarding wave resource characterization, the wave energy flux (or power den-
sity per meter of wave crest), P , depends of two important parameters: the
significant wave height, Hs, and the wave energy period, Te. These can be cal-
culated from statistics obtained from series of wave measurements, carried out,
basically, by buoys. Oceanographic buoys are one of the most used measuring
instruments to characterize wind-generated wave properties. In particular, a
scalar buoy located at a point r = (x, y) on the sea surface is able to mea-
sure, at each instant of time t, the vertical water surface elevation, ⌘(r, t),
leading thus to time series. Using Fourier analysis, the spectral wave density
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S(f) can be computed, and, in turn, based on S(f), a number of integrated
wave parameters, such as the spectral moments, the significant wave height
Hs, or mean wave period, to name just a few, can also be estimated. There
are many SC techniques that can be used to estimate Hs and Te. After certain
mathematical operations, this expression ends up being P / H2

s · Te. This
helps engineers estimate the amount of wave energy available when planning
the deployment of a WEC or farm of WECs at a given location since a first
indicator is the amount of available wave energy flux, P / H2

s · Te. Thus,
the significant wave height Hs and the wave energy period Te are, among all
others, the most important wave parameters in the design of both WECs and
WEC farms.

� The second group of concepts we have described in Chapter 2, and which are
strongly related to the former, focuses on the essential concepts WECs are
based on. In this respect, we have shown that there are many di↵erent WECs,
in greater or lesser degree of development. Despite this, only a small fraction
of them have been deployed and tested in oceans. Since there is a great variety
of WECs, their classification has been tackled from di↵erent viewpoints and
complexity levels, and we have shown that there is no unanimity of what is the
most appropriate one. The simplest classifying viewpoint is related to water
depth and location, leading to shoreline, near-shore, and o↵shore WECs. O↵-
shore WECs are in deep waters and are able to generate much more electric
energy because of the greater energy of deep waters. The negative counterpart
is that they have to be designed to survive the most extreme waves, being thus
considerably more di�cult to manufacture and maintain. In turn, regardless
their location, WECs can also classified on the basis of their relative position
with respect to the predominant wave direction: parallel or “attenuator”, per-
pendicular or “terminator”, and “point absorber”, which absorbs energy from
all directions. The analysis of the di↵erent wave parameter and WECs that
we have carried out points out that the design, survivability, e�ciency and
control of WECs depend strongly on the characterization of sea states. These
can be carried out by using SC techniques.

Just in this respect, Chapter 3 has centered on presenting and analyzing the
state of the art of SC techniques (Neural, Fuzzy, and Evolutionary Computation)
in the field of wave energy. The benefits of applying SC techniques to wave energy
problems lies in their potential to work with a huge amount of imprecise or missing
data. This is just the case of the design, deployment, and even control of (some)
WECs. Regarding this, and as mentioned before, a first indicator prior to the
deployment of WECs at a given location is the amount of wave energy flux available.
This magnitude can be estimated by using the significant wave hight Hs and the
wave energy period Te, which, in turn, can be computed from spectral magnitudes
of buoy data. These and other wave parameters have been found to be estimated
in our review by means of a variety of SC techniques:

� Most of the applications of Neural Computation techniques, considered in a
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broad sense, have been found to focus on the prediction of a number of wave
energy parameters by means of Multilayer Perceptrons (MLPs) and, at a lesser
extent, by Support Vector Machines (SVMs). Neural Computation techniques
have been applied to: a) Predict a variety of wave parameters, in particular,
Hs and Te; b) Estimate missing data in wave time series; c) Estimate the wave
spectrum; d) Forecast wave energy flux; and e) Control WECs, in particular
Archimedes Wave Swing WECs.

� The second class of SC techniques, Fuzzy Computation, has been found to be
applied: 1) To predict wave parameters, although at a lesser extent than the
Neural Computation approach; 2) To control WECs, by using a combination
of Fuzzy Computation and GAs, in particular a floating point (buoy-based)
absorber WEC.

� Evolutionary Computation algorithms have been applied to: 1) Fill up missing
values in wave time series; 2) Predict Hs; and 3) Optimize the shape of wave
energy collectors.

The aforementioned SC techniques have proven to reach similar and even su-
perior results than other data-driven models like statistical methods (AR, ARMA,
ARIMA,...) in short term estimations (up to 24 h).

Based on the results of the literature review and on the previously stated back-
ground, the second part of this thesis has focused on two novel research proposals
that use SC in wave energy problems and that have been published in [107] and [108],
respectively.

The first of these case studies has been explored in Chapter 4, in which we have
tackled a problem of significant wave height Hs reconstruction (at the location of
an out-of-operation measuring buoy) by using wave parameters from nearby buoys.
This reconstruction is important because such wave parameter plays a key role in
the design and operation of WECs, in coastal engineering (design of vessels, oil plat-
forms, breakwaters, etc.), and in forecasting for ship navigation and WECs’ control.
We have faced the problem of filling up missing Hs values within the framework of
Machine Learning (ML) in a two-step process, which has led to two contributions.
The first one has consisted in designing a hybrid evolutionary algorithm that selects,
among the available wave parameters (from the nearby buoys), a smaller subset FnSP

with nSP parameters that minimizes the Hs reconstruction error. For doing this, we
have proposed a novel approach in marine energy applications consisting of a Ge-
netic Algorithm (GA) that computes the fitness of the candidate individuals (trial
solutions) in each generation by using an Extreme Learning Machine (ELM). In this
context, the key advantage of the ELM when compared to other ML approaches
(Neural Networks, or Support Vector Machines, for instance) is that ELMs learn
very fast, this being essential in population-based evolutionary algorithms such as
GAs. This is why we have hybridized the ELM with the GA in the detriment of
other alternative ML regressors. The proposed hybrid GA-ELM method generates
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a subset FnSP of nSP parameters that minimizes the root mean square error of Hs

reconstruction, RMSE(Ĥs)(m). In the e↵ort of testing its performance in two dif-
ferent coastal regions, we have explored two case studies: one in the Caribbean Sea,
and the other, in the West Atlantic coast nearby Florida. The results, published
in [107], suggest that:

� The proposed GA-ELM algorithm works very well in the sense that it selects a
very reduced subset of parameters (nSP = 10 parameters) among the available
60 parameters. Using 5 6 nSP 6 10 parameters lead to small reconstruction
errors: RMSE(Ĥs)Caribbean . 0.50 m, and RMSE(Ĥs)Atlantic . 0.75 m.

� From an operative view point there is no practical benefit in using more than 5
parameters, in the sense that more parameters increase the computation time
without significantly improving the reconstruction accuracy.

The second contribution of Chapter 4 has consisted in evaluating to what extent
the selected wave parameters in subset FnSP assist other ML regressors �Extreme
Learning Machines, Support Vector Regression (SVR), and Gaussian Process Re-
gression (GPR)� in reconstructing Hs. The results show that:

� All the ML method explored have Hs reconstruction errors below 1m in the
two di↵erent locations studied: RMSE(Ĥs) < 0.5 m in the Caribbean Sea, and
RMSE(Ĥs) < 0.75 m in the West Atlantic scenario.

� In particular, the GPR method is the one that reaches the smallest error:
RMSE(Ĥs)GPR

Caribbean ⇡ 0.30 m for Fn7 , and RMSE(Ĥs)GPR
Atlantic ⇡ 0.48 m for F8.

As a general conclusion, the twofold approach presented seems to be a feasible
tool to fill missing wave values from neighbor buoys.

Chapter 5 has finally focused on the second novel research line we have published
in [108]. This has been motivated because of two mutually interrelated issues: 1)
how several WECs are electrically interconnected to each other (forming a WEC
farm); and 2) how the farm is connected to the electric network or power grid. The
variability and intermittency of wave energy can a↵ect the stability of the power
grid and can be encompassed within a broader conceptual framework, which is com-
mon to all massive renewable energies (REs). In this respect, the Smart Grid (SG)
paradigm aims at integrating a growing number of distributed renewable energy-
based generators, without significantly a↵ecting the stability of the power grid. The
novelty of our approach is twofold, in the sense of optimizing the robustness of a dis-
tribution SG (connecting nodes that generate, consume or store electricity) against
“abnormal operating conditions” –for instance, the breakdown or the operation stop
of a WEC (or a set of them) caused by a storm– by (1) using an Evolutionary Algo-
rithm, (EA) that optimizes the structure of the SG modeled by (2) applying concepts
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from Complex Networks (CN) Science. The model and results of this chapter have
been published in [108].

Our approach in Chapter 5 takes advantage of some important properties of the
SG paradigm: a smart grid allows for the bidirectional exchange of electric energy
at the local scale and aims at supplying reliable and safe electric power by e�-
ciently integrating distributed RE generators using smart sensing and communica-
tion technologies. Thanks to the e�cient integration of distributed REs (small-scale
photovoltaic systems and small-wind turbines) in the low voltage grid, electricity
consumers can also become producers (“prosumers”), helping end-users obtain eco-
nomic benefits by selling the energy generated in excess. In this context, we have
modeled the SG as a undirected graph so that each link (electric cable) allows for
the bidirectional exchange of electric energy between nodes (prosumers).

Aiming at optimizing the structure of such SG against abnormal conditions,
we have proposed a novel objective function (to be minimized) that combines cost
elements, related to the number of electric cables, and several metrics that quantify
properties that are beneficial for the SG (energy exchange at the local scale and high
robustness and resilience). The optimized SG structure is obtained by applying an
EA in which the chromosome that encodes each potential graph (or individual) is
the upper triangular matrix of its adjacency matrix. This allows for fully tailoring
the crossover and mutation operators to such encoding. Since small-networks have
been found to be beneficial for SGs, we have proposed a domain-specific initial
population that includes both random networks and small-world networks. This
assists the proposed EA to converge quickly.

The experimental work points out that the proposed method works well and
generates an optimum, synthetic, non-sparse-like small-world structure that leads
to beneficial properties such as improving both the energy exchange at the local
scale and the robustness and resilience. Specifically, the optimum topology fulfills a
balance between moderate cost and robustness against abnormal conditions.

We would like finally to emphasize two aspects:

1. The proposed approach should be considered as a high level analysis and plan-
ning tool in the e↵ort of estimating to what extent the smart grid topology
can su↵er from vulnerabilities. It cannot and does not intend to replace the
conventional methods used by power engineers. In fact, the low level, de-
tailed design must be carried out using electrical engineering techniques. In
this respect, a deep discussion about the controversy still unresolved between
the complex network and electrical engineering communities can be found
in [341, 343, 404, 410], reference [343] being a clear introduction to complexity
science in the context of power grids.

2. The model is su�ciently general to be applied to any set of generators and
loads (consuming energy) as well as to the Smart Wave Farm (SWM) system
formed by WECs, energy storing devices, and the connection(s) to power grid.
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6.2 Future work

Regarding the first research line, explored in Chapter 4, as a future line of work,
the proposed GA-ELM method could be also applied to reconstruct other missing
wave parameters besides significant wave height, such as wave period and direction.
Note that the research work explored in Chapter 4 is centered on using only scalar
information because often this is the only information available in many location
throughout the world. Using directional information would probably help to improve
the results.

Finally, with respect to the approach described in Chapter 5, a future research
line could consists in optimizing the interconnection between the WECs that form
a farm. This, to the best of our knowledge, has not been studied yet from the
combined CN-EA that we have proposed in this thesis. A possible approach to the
problem could be to optimize a fitness function consisting of a balance between the
costs associated to the connections between the linked WECs and the robustness of
the resulting complex network.
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[261] Mehmet Özger and Zekai Şen. Prediction of wave parameters by using fuzzy
logic approach. Ocean Engineering, 34(3):460–469, 2007.
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[278] Mercè Casas-Prat, Xiaolan L Wang, and Joan P Sierra. A physical-based
statistical method for modeling ocean wave heights. Ocean Modelling, 73:59–
75, 2014.

[279] F Comola, T Lykke Andersen, L Martinelli, Hans F Burcharth, and P Ruol.
Damage pattern and damage progression on breakwater roundheads under
multidirectional waves. Coastal Engineering, 83:24–35, 2014.

[280] Seung-Woo Kim and Kyung-Duck Suh. Determining the stability of verti-
cal breakwaters against sliding based on individual sliding distances during a
storm. Coastal Engineering, 94:90–101, 2014.



References 137

[281] Jørgen Quvang Harck Nørgaard, Thomas Lykke Andersen, and Hans F Bur-
charth. Distribution of individual wave overtopping volumes in shallow water
wave conditions. Coastal Engineering, 83:15–23, 2014.

[282] Subba Rao and S Mandal. Hindcasting of storm waves using neural networks.
Ocean Engineering, 32(5):667–684, 2005.

[283] Carl Edward Rasmussen. Evaluation of Gaussian processes and other methods
for non-linear regression. PhD thesis, University of Toronto, 1999.

[284] Hendrik L Tolman and Robert W Grumbine. Holistic genetic optimization
of a Generalized Multiple Discrete Interaction Approximation for wind waves.
Ocean Modelling, 70:25–37, 2013.

[285] Simon Haykin. Neural networks: A comprehensive foundation. Prentice Hall,
1999.

[286] I Malekmohamadi, R Ghiassi, and MJ Yazdanpanah. Wave hindcasting by
coupling numerical model and artificial neural networks. Ocean Engineering,
35(3):417–425, 2008.

[287] Ahmadreza Zamani, Dimitri Solomatine, Ahmadreza Azimian, and Arnold
Heemink. Learning from data for wind–wave forecasting. Ocean Engineering,
35(10):953–962, 2008.

[288] SN Londhe. Soft computing approach for real-time estimation of missing wave
heights. Ocean Engineering, 35(11):1080–1089, 2008.

[289] SP Nitsure, SN Londhe, and KC Khare. Wave forecasts using wind information
and genetic programming. Ocean Engineering, 54:61–69, 2012.

[290] J-SR Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE
transactions on systems, man, and cybernetics, 23(3):665–685, 1993.

[291] Paula Camus, Fernando J Mendez, and Raul Medina. A hybrid e�cient
method to downscale wave climate to coastal areas. Coastal Engineering,
58(9):851–862, 2011.

[292] Juan Carlos Fernández, Sancho Salcedo-Sanz, Pedro Antonio Gutiérrez, En-
rique Alexandre, and César Hervás-Mart́ınez. Significant wave height and
energy flux range forecast with machine learning classifiers. Engineering Ap-
plications of Artificial Intelligence, 43:44–53, 2015.

[293] David E Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, 1989.
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and Fast Evolutionary Algorithm for Strict Strong Graph Coloring Problem.
Procedia Computer Science, 73:138–145, 2015.

[373] A Kaveh and K Laknejadi. A hybrid evolutionary graph-based multi-objective
algorithm for layout optimization of truss structures. Acta Mechanica,
224(2):343–364, 2013.

[374] Ruiyi Su, Liangjin Gui, and Zijie Fan. Topology and sizing optimization of
truss structures using adaptive genetic algorithm with node matrix encoding.
In Natural Computation, 2009. ICNC’09. Fifth International Conference on,
volume 4, pages 485–491. IEEE, 2009.

[375] Mathias Giger and Paolo Ermanni. Evolutionary truss topology optimiza-
tion using a graph-based parameterization concept. Structural and Multidis-
ciplinary Optimization, 32(4):313–326, 2006.

[376] Mark Newman, Albert-Laszlo Barabasi, and Duncan J Watts. The structure
and dynamics of networks. Princeton University Press, 2006.

[377] David Newman. Complex dynamics of the power transmission grid (and other
critical infrastructures). Bulletin of the American Physical Society, 60, 2015.



References 145

[378] Guido Caldarelli and Alessandro Vespignani. (edited by) Large scale structure
and dynamics of complex networks: from information technology to finance
and natural science, volume 2. World Scientific, 2007.

[379] Duncan J Watts and Steven H Strogatz. Collective dynamics of “small-world”
networks. Nature, 393(6684):440–442, 1998.

[380] Luıs A Nunes Amaral, Antonio Scala, Marc Barthelemy, and H Eugene Stan-
ley. Classes of small-world networks. Proceedings of the national academy of
sciences, 97(21):11149–11152, 2000.
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