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Abstract

Today, much of the interaction between clients and providers has moved to

the Internet. Some tricksters, con-artists and charlatans have also learned to

benefit from this new situation. New improved cons, tricks and deceptions

can be found on-line. Many of these deceptions are only profitable if they are

done at a large scale. In order to achieve these large numbers of interactions,

these attacks require automation.

CAPTCHAs (Completely Automated Public Turing test to tell Computers

and Humans Apart) or HIPs (Human Interaction Proofs) are a relatively new

security mechanism against automated attacks. They try to detect when the

other end of the interaction is a human or a computer program (a bot). Since

their origins, most of the proposals have been based on the seminal idea of

using problems thought to be hard for AI/ML but easy for humans. As of

today, all the studied CAPTCHA schemes have failed.

CAPTCHA design is still in its initial conception. The stream of successful

attacks on them are a hint that CAPTCHA are now as weak as the first

cyphers. Yet cyphers were improved after successive successful cryptanalysis.

We consider that similarly new security studies in novel, original CAPTCHAs

will advance the corpus of knowledge in the field as well as the awareness

about CAPTCHA security.
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This dissertation focuses on the design of CAPTCHAs. Its first goal is to

understand whether there are currently CAPTCHAs that can be considered

secure. To do so, it analyses new, original CAPTCHA proposals. The second

goal of this dissertation is to find a way in which to assess a basic level

of security for new CAPTCHA designs. To do so, it studies the results

of previous security analysis trying to find common weaknesses. Based on

them, it proposes a guideline or framework that specifies mechanisms to avoid

some of these design pitfalls. This can be the starting point for a high-level

methodology for the design of new CAPTCHAs. Ultimately, the goal of

this research is to build a semi-automatic framework for the analysis of the

security of new CAPTCHAs.



Resumen Ampliado

El uso de Internet es creciente tanto en número de usuarios como de servicios

proporcionados. Existe también un uso social y lúdico. Cada vez, más

aspectos de nuestra vida son totalmente en línea (en Internet) o tienen

una parte en línea. Esto representa un gran potencial no sólo para las

empresas que gestionan estos servicios y datos, sino también para quien

puede encontrar una forma de aprovecharse de ellos. Hasta ahora, una forma

típica consiste en aprovecharse de servicios gratuitos o información disponible

libremente. Un ejemplo sería una votación en línea. Realizar un voto no

tiene mayor trascendencia. Pero controlar el resultado de la votación puede

ser interesante, sobre todo si hay un premio en juego, o la votación tiene

repercusiones en términos de reputación o influencia. Existen muchos otros

ejemplos, incluyendo la infiltración en redes sociales, abuso de cuentas de

web-mail, abuso de servicios en la nube, reservas en línea, etc.

El abuso manual, a pequeña escala, no es viable económicamente. Para

que sea eficaz es necesario poder realizar una gran cantidad de interacciones,

y normalmente esto sólo es rentable si dichas interacciones son automáticas:

no son realizadas por humanos, sino por programas de ordenador (bots).

Los llamados CAPTCHAs (Test de Turin Público y Automático para

Diferenciar Computadores de Humanos, o Completely Automated Public
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Turing test to tell Computers and Humans Apart) o HIPs (Tests de Interacción

con Humanos, o Human Interaction Proofs) son una medida de seguridad

esencial contra ataques automáticos en Internet. Fueron propuestos por

primera vez por Mori Naor en 1996 e implementados por primera vez por

Andrei Broder en el buscador Altavista en 1997.

Inicialmente los CAPTCHAs estuvieron vinculados a lo que se percibían

como las limitaciones del Aprendizaje Automático (ML) de la época. Sin

embargo, esta idea no ha tenido gran éxito: desde sus orígenes hasta ahora,

todos los CAPTCHAs que han sido analizados han sido atacados con éxito, ya

haya sido mediante ataques de canal lateral como mediante ataques directos

basados en algoritmos específicos o en mejoras en ML. Ningún CAPTCHA

ha resistido, en el mismo formato, más de alguna decena de meses.

En nuestra opinión, el diseño de CAPTCHAs está en su fase inicial, de

forma similar a cuando se diseñaron los primeros sistemas de cifrado hace miles

de años. Estos sistemas de cifrado fueron mejorando tras cada criptoanálisis.

Esperamos que de forma similar, el análisis de la seguridad de los CAPTCHAs

actuales ayude a incrementar la seguridad de los venideros.

El principal objetivo de esta tesis se centra en el diseño de CAPTCHAs

seguros. Intenta responder a la pregunta de si actualmente existen formas de

crear CAPTCHAs que sean seguros. Para ello, analizaremos la seguridad de

nuevos CAPTCHAs que sean originales e interesantes desde el punto de vista

de su diseño, seguridad o usabilidad. La razón principal por la que elegiremos

estos CAPTCHAs es porque los ataques a otros CAPTCHAs anteriores no son,

en principio, extrapolables a ellos, ya sea porque los nuevos diseños se crean

de manera sean resistentes a las técnicas usadas en los ataques conocidos,
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o porque son diseños tan originales que caen fuera del ámbito de dichos

ataques. Por ello se requieren nuevos análisis de seguridad. Analizaremos

estos CAPTCHAs buscando vulnerabilidades, es decir, formas en las que

estos CAPTCHAs filtran información que permita un ataque. De esta forma,

esperamos contribuir al conjunto de conocimiento en el campo del diseño de

CAPTCHAs.

El segundo objetivo de esta tesis es encontrar formas de comprobar cierto

nivel de seguridad para diseños de CAPTCHAs que sean totalmente noveles.

Para ello, analizaremos los resultados de nuestros análisis de seguridad y de

otros ataques en la literatura buscando elementos comunes en los fallos de

seguridad. Buscaremos formas de detectar estas vulnerabilidades de forma

automática o semi-automática. De encontrarlas, éstas podrían ser el inicio

de una metodología que permita comprobar si un nuevo CAPTCHA ofrece

al menos un nivel mínimo de seguridad. Consideramos que una metodología

que permita certificar un nivel de seguridad mínimo para los CAPTCHAs

puede contribuir a diseños más robustos que ofrezcan mayor seguridad.
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Chapter 1

Introduction

This chapter presents an overview, the goals and the motivation of the
dissertation. It starts by introducing the problem of automatic abuse from
an IT Security point of view. Next, it presents the problem being tackled
in this dissertation, the design of CAPTCHAs. Afterwards, the motivation
of this work is stated. Then, the main contributions of this dissertation are
explained. Finally, the structure of this essay is described.

1.1 Automatic abuse

The Internet has spread to every realms of life. New generations spend more
time on-line both socializing and working. People are getting used to the
advantages of being constantly connected. Today not just computers are
connected to the Internet: mobile phones, tablets, cars and many home
appliances, as well as the smallest new devices, are also connected (IoT). This
creates a huge playing field for crackers and tricksters to run their attacks.
Using this ample base of both services and people, attackers have found
ways to run exploits that provide an infinitesimal reward, but can generate
substantial revenue by increasing the number of times they are run. The
fundamental way of protection from these attacks has been to try to detect if
at the other end of the communication there is a human person or a computer
program.

There are many proposals for ways of remotely detecting humans.
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Most of them fall into the category of asking the human to perform a task that
is considered hard for computers (or Artificial Intelligence (AI)-hard), but not
too demanding for humans. These tests are known as HIPs or CAPTCHAs.

1.2 CAPTCHA design

Since the first CAPTCHA used in Altavista in 1997, there have been numerous,
very varied CAPTCHA designs proposed, implemented, and cracked. Even
though it might look like an easy problem to the inexperienced, CAPTCHA
design is not a straightforward problem to solve. Summarising, we can identify
the following difficulties related to the design of CAPTCHAs:

• CAPTCHAs are typically used to protect resources that for the customer
are not of a very high value (for instance, adding comments to a story
in the news), or to which there are other alternatives for the customer
(for services like web-mail). This competition means the CAPTCHA
needs not to be felt as a burden by the user. This typically implies that
it has to be easy enough, or playfully enough, otherwise it might affect
the conversion rate of the services being protected.

• For the same reason as above, a CAPTCHA must not require a big
commitment for its completion, even if the experience is very playful
and positive for the user. Completing a CAPTCHA is never the reason,
but a means to an end.

• CAPTCHAs should present alternatives for impaired users that offer
the same level of security. This is not straightforward, as typically a
CAPTCHA will use some human ability that is linked to a sense of
perception (visual, auditory, etc.) thus not being valid for users with
disabilities in that sense.

• The number of attacks per second against a CAPTCHA can be aug-
mented automatically: it is just a matter of resources. Thus, a very
small success rate can imply that for practical purposes, a CAPTCHA is
broken. This is the case as soon as the Return of Investment (ROI) for
the attacker is positive. Thus, in order to protect the most interesting
resources, we need AI-hard challenges with extremely constant hardness
throughout their domain.
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• For some attackers, it might be profitable to hire low-wage human
workers (what is typically called a farm) to solve a particular CAPTCHA
challenge and then proceed to do whatever they wish. This would
constitute a semi-automated attack. These human CAPTCHA solving
services are offered today on the Internet and accessed through an
API. It is good if a CAPTCHA has some way of preventing this from
happening. Some CAPTCHA designers consider this requirement, yet
the rest do not try to counter it (Athanasopoulos and Antonatos, 2006,
Mohamed et al., 2014).

For those CAPTCHAs that are based on the original idea of using an
AI-hard problem, there is the additional question of what really constitutes
an AI-hard problem. An example was ASIRRA (Elson et al., 2007), an
image-classification CAPTCHA based on a task that was thought to be hard
for AI. It was broken months later using slightly different Machine Learning
(ML) techniques (Golle, 2009).

We lack a consistent definition of what is AI-hard, nor a theoretical
proof to show if a problem is AI-hard or not. This implies that we cannot
know if such AI-hard problem would be in fact hard for a computer to solve
in all cases, or there is a straightforward mechanism to evaluate in which
cases it would.

Even if we find a genuinely AI-hard problem, how should we translate
its hardness to the difficulty (for bots) of a CAPTCHA on which it is based
on? By definition, the CAPTCHA will be automatically created and marked.
This implies that its challenges will be a subset of the whole AI-hard problem.
We also lack a method to know if this sub-set will keep the same AI-hardness
as the original problem.

1.3 Motivation

There is an important body of research on the security of typical CAPTCHA
schemes, which has found them to be insecure or too hard even for humans.
Nowadays some new CAPTCHA proposals appear to which these known
security analyses do not apply. We want to learn if these new proposals
offer increased security, as claimed by their authors. To that extent, we have
chosen the newest, original CAPTCHA schemes as case studies and analysed
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their security. We expect that the analysis presented in this thesis contributes
to the general knowledge of the design of CAPTCHAs.

To date, all proposals for CAPTCHAs that have been analysed have
been found not secure, typically within a short span of a few months from
their proposal time or from when they were put into production. This has
happened for every type of proposal: commercial CAPTCHAs, academic
proposals -both from researchers in ML and in Security-, alternative proposals
from programmers or from amateurs. Many CAPTCHA start-ups had to
close shortly after their CAPTCHA was found insecure. Many big companies
have to constantly update their CAPTCHA in a race-like effort to make them
resistant to the latest attacks. More worrying, security researchers that have
successfully broken other CAPTCHAs and learned from those failures, have
proposed their schemes just to see them also broken.

Most of the attacks found against CAPTCHAs can be considered
to be side-channel attacks. These attacks do not try to solve the underlying
problem on which the CAPTCHA designer has created her system, nor they
try to advance the state-of-the-art in ML. Instead, they find weaknesses in the
particular design of the CAPTCHA and ways to use them to gather enough
information as to bypass the challenge a sufficient number of times. The
frequency with which this type of attack is successful conveys the message that
it is quite difficult to translate an AI-hard problem into a secure CAPTCHA.

There have been a few proposals for design guidelines for CAPTCHAs.
They have been typically the result of a security analysis of one or more
CAPTCHAs, and thus with limited scope and usability (Yan and Ahmad,
2007, Hindle et al., 2008, Bursztein et al., 2011, Nguyen, 2014). Nowadays, is
not unusual that a new CAPTCHA design is put into production without
performing a sound security assessment nor conducting external IT Security
tests. These CAPTCHAs are implementations just based on an idea though
to be hard enough by its designers. We want to know whether there are some
basic tests that we can run as to ascertain a basic level of security for a new
CAPTCHA design, and that possibly can be automatic or semi-automatic.
In the long term, our goal is to increase the security of CAPTCHA designs.

1.4 Outline of contributions

The contributions of this thesis can be summarised as follows:
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1. The main contribution of this thesis is to test the security of new,
original CAPTCHAs, to which previous knowledge cannot be applied.
To this extent, we have selected some case studies and analysed their
security. Case studies are typical in IT Security and accepted as a way
to contribute to the main corpus of knowledge in the field. We also
perform our security analyses in novel ways, checking the challenge and
answer domains, and using ML not to attack the base problem but to
check for side-channel leaks of information.

2. The second contribution is a meta-analysis of the results of these
previous security analyses. In this meta-analysis, we look for a common
way to characterise the security problems found. This has the potential
to show common patterns in failures in CAPTCHA design.

3. Building on the previous points, the third contribution is to propose
a framework to test for a basic level of CAPTCHA security. This
framework is based on the previous findings and can be applied to other
CAPTCHA designs with minor modifications. It also goes beyond what
other authors have proposed as CAPTCHA design guidelines. Testing
for a basic level of security is important, as in Security a fundamental
variable is the cost of an attack.

1.5 Structure and contents

This dissertation is divided into seven chapters. Chapter 1 presents the
motivation and goals of this dissertation. Chapter 2 gives an overview of the
state-of-the-art in CAPTCHA design. The following three chapters (3, 4 and
5) present the different case studies performed in new, original CAPTCHA
proposals. Based on these results, Chapter 6 introduces BASECASS, a
framework for BAsic SEcurity CAPTCHA ASSessment. Finally, Chapter 7
concludes the dissertation. Here we describe these contents in greater detail:

• Chapter 1 presents the motivation, contributions, and structure of this
dissertation.

• Chapter 2 describes the different aspects that affect the design of
CAPTCHAs. It also gives an overview of the state-of-the-art in CAPTCHA
design and security analysis. It briefly mentions other alternatives to
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CAPTCHAs, described into further detail in Annex A. Finally, it com-
ments on the current trends in CAPTCHA design, presenting a brief
analysis on them.

• Chapter 3 analyses the security of three puzzle CAPTCHAs. These are
Capy, Garb and KeyCAPTCHA. These CAPTCHAs require the user
to reconstruct the original image. This is a new type of image-based
CAPTCHA.

• Chapter 4 analyses the security of the Civil Rights CAPTCHA, which is
based on both empathy and OCR. The novelty of this scheme is that it
uses empathy to increase the security of an OCR CAPTCHA. Empathy
has not been analysed in ML before, although other writer emotions
have.

• Chapter 5 presents the security analyses of the FunCAPTCHA gender
recognition CAPTCHA. There are several proposals to use faces for
CAPTCHAs, FunCAPTCHA being the first implementation of one.

Each Case Study ends with comments on how to possibly improve the
designs and lessons learned.

• Chapter 6 introduces BASECASS. The ideas behind BASECASS are
based on the results from these case studies and previous work. This
framework is explained in detail, including summaries of its application
in different cases.

• Chapter 7 presents the conclusions and comments on future research
directions.

1.6 Publications

Some of the work presented in this dissertation has been previously published
in the following articles:

1. Carlos Javier Hernandez-Castro, David F. Barrero, María D. R-Moreno.
A Machine Learning Attack Against the Civil Rights CAPTCHA. In Pro-
ceedings of the 8th International Symposium on Intelligent Distributed
Computing (IDC), 2014, Madrid, Spain.
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2. Carlos Javier Hernandez-Castro, María D. R-Moreno, David F. Barrero.
Side-channel attack against the Capy HIP. In Proceedings of the 2014
IEEE Fifth International Conference on Emerging Security Technologies
(EST), 2014, Alcalá de Henares, Spain. Best paper award.

3. Carlos Javier Hernandez-Castro, María D. R-Moreno, David F. Barrero.
Using JPEG to Measure Image Continuity and Break Capy and Other
Puzzle CAPTCHAs. IEEE Internet Computing, Volume 19, Issue 6,
Nov.-Dec. 2015.

4. Carlos Javier Hernandez-Castro, David F. Barrero, María D. R-Moreno.
Machine Learning and Empathy: The Civil Rights CAPTCHA. Concur-
rency and Computation: Practice & Experience, Volume 28, Issue 4,
March 2016.

5. Carlos Javier Hernandez-Castro, María D. R-Moreno, David F. Barrero,
Stuart Gibson. Using Machine Learning to identify common flaws
in CAPTCHA design: FunCAPTCHA case analysis. Computers &
Security, Volume 70, September 2017.
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Chapter 2

Background and related work

This chapter presents CAPTCHAs, including the different factors influencing
their design, and commenting on the security of these designs. It starts by
presenting and discussing the classical formalisation of CAPTCHAs that
imposes some constraints on their design (section 2.1). After, it introduces
the various aspects that influence the design of CAPTCHAs. In particular,
section 2.2.1 defines their threat model, that is, the main threats that a
CAPTCHA-protected service faces. It then discusses their primary use cases
which also affect their design by the type of interaction (time, difficulty) that
is considered appropriate for each use. CAPTCHAs are not the only security
measure of protection for these scenarios. Some of these use cases accept
the use of different alternatives. We will briefly present these alternatives
in section 2.3 and discuss their benefits and drawbacks. Then, section 2.4
presents the different CAPTCHA designs, giving a brief historical introduction
to the evolution of the major design paradigms. To better understand the
forces driving the evolution of CAPTCHA design, section 2.5 comments
some of the most relevant attacks to CAPTCHAs. This chapter finishes by
presenting new proposed alternatives.

2.1 Introduction

IT Security has a history comprising several decades. During it, several
prevention, protection and mitigation measures and mechanisms have been
conceived. CAPTCHAs fall in a category of their own. No other security



10 Background and related work

mechanism has the task of remotely identifying the human species against an
agent trying to mimic it.

Even though we use the name CAPTCHAs for these protection
mechanisms, the name is misleading because CAPTCHAs, as they were
defined by Naor (1996) and Ahn et al. (2003), are just a specific version of this
protection mechanisms: as we will see in section 2.1.1, for a Human Interaction
Proof (HIP) to be a CAPTCHA, it has to meet certain requirements, including
being based on a AI-hard problem, using a public algorithm, etc.

Other mechanisms have been proposed, and more might be created,
that do not follow these requirements, but still try to solve this security
problem. For this reason, the more general but less used term HIP is better
suited to describe these security mechanisms. As the term CAPTCHA is
more widespread, we will use them indistinctly in this dissertation to refer to
HIPs unless otherwise stated.

In the following sections we present the classical formalisation of
CAPTCHAs as well as a discussion on it and a simpler alternative.

2.1.1 Classical CAPTCHA formalisation

Ahn et al. (2003) presented a somewhat restricted formalisation of HIPs that
they defined as CAPTCHAs. This formalisation followed the seminal idea
proposed by Naor (1996) that CAPTCHAs could be based on AI problems.
In their formalisation, Ahn et al. (2003) link -by definition- the test to the AI
problem it relies upon. Their definition can be summarised as follows:

Definition 1. A test V is (α, β)−human executable if at least a proportion
of α humans can pass V with a success rate β or higher.

Definition 2. An AI problem is a triple P = (S,D, f) where S is a set of
problem instances, D is a probability distribution over S and f : S 7→ {0, 1}∗
answers the problem instances. Let δ ∈ (0, 1]. For a fraction γ > 0 of the
humans H, it is required that Prx<−D[H(x) = f(x)] > γ.
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Definition 3. An AI problem P is (φ, τ)−solved if there exists a program
A running in time τ or less on any input from S such that:

Prx<−D,r[Ar(x) = f(x)] ≥ φ (2.1)

It is possible to prove that a particular program is able to solve a
problem P in time τ or less on inputs from S. It is typically much harder
to prove the opposite, that is, that for a problem P and any imput from a
broad set S, such a program does not exist.

Definition 4. An (α, β, µ)−CAPTCHA is a test V that is (α, β)−human
executable and if there exists B that has success probability greater than µ
over V to solve a (φ, τ)−hard AI problem P , then B is a (φ, τ) solution to P .

This definition links a CAPTCHA to the underlying AI-hard problem.
It also links the strength of the CAPTCHA to the hardness of the AI-hard
problem. This is done by definition, but in practical terms, there is no way to
prove it.

Definition 5. An (α, β, µ)−CAPTCHA is secure if there exists no program
B such that:

Prx<−D,r[Br(x) = f(x)] ≥ µ (2.2)

for the underlying AI problem P . Note that in general, it is impos-
sible to prove such a case.

2.1.2 Criticism to the classical CAPTCHA formalisation

CAPTCHAs as defined by Ahn et al. (2003) do pose an unnecessary constraint
on what a HIP needs to be. They force CAPTCHAs to be related to an
AI problem. The rationale for this requirement is that if a CAPTCHAs



12 Background and related work

has to detect something that is particularly human, that a machine cannot
fake, then it can be assumed that it has to be something that even the most
sophisticated programs -which we can think as of AI or ML algorithms- cannot
fake. Some believe that the human characteristic is its ability to perform
the most abstract or elevated types of thinking. To some, these types of
endeavours have been the final aim of AI, so some conclude that such a human
characteristically thing has also to be a challenge for AI.

In the late XX century, there was research in AI focused on this
type of abstract, symbolic reasoning. This lead to the creation of symbolic
languages like LISP or Prolog, the creation of Expert Systems and the
evolution of formal theories of knowledge. Other human abilities that were
considered related to our intelligence, like strategic board games such as Chess
or Go, remained too hard for machines at that time. More so, other human
abilities that were never related to our intelligence, like vision or audition,
were considered easy at that time (Papert, 1966, Hankins, 2004). Ironically,
for many decades these abilities remained among the most difficult to properly
mimic by computers.

In 1997, advances in parallel programming and hardware allowed
machies to beat Garry Kasparov, the Chess world champion. In the early XXI
century, advances in ML and parallel hardware (GPGPUs), and the massive
amounts of data created by the Internet, lead to machines beating Lee Sedol,
the Go world champion, using DL (Deep Learning) and reinforcement learning.
Nowadays DNNs (Deep Neural Networks) are able to modify paintings in the
style of a painter and are starting to produce results at music composition
or text writing in the style of an author. We do not know how long it will
take machines to be as good as humans even at the tasks that today are
considered highly intellectual. Thus, linking HIPs to AI-hard problems might
not be a good idea.

Ahn et al. (2003) also define CAPTCHAs as being as strong as the
hardness of the related AI problem. Note that they do so by definition. They
do not offer a way to test if a CAPTCHA meets this definition, which in
general is impossible. Thus, their formalisation is useless.

Defining a CAPTCHA to be as hard as the AI-problem it is based
on does not offer a significant real-world value, as Ahn et al. (2003) do not
provide a way to easily check that a CAPTCHA proposal actually meets
their definition criteria. As we will see in our section about attacks (section
2.5), most CAPTCHAs have failed to attacks that did not improve the state-
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of-the-art in ML. This is evidence of the extreme difficulty in translating a
possible AI-hardness into the robustness of a particular CAPTCHA design.
A slightly different formalisation, that allows to focus on the properties of
the base problem and the CAPTCHA problem, as well as does not impose
additional constrains, might be helpful to measure this transfer of robustness.

2.1.3 Alternative formalisation

Here, we present an alternative formalisation for HIPs/CAPTCHAs that does
not impose any more constraints that the key ones, yet allows for a common
way to refer to their different aspects. The aim of this formalisation is not to
make claims of the strength of a HIP/CAPTCHA, but to present the essential
elements of their design in a way in which we can later refer to them.

Definition 1. First let’s define a generic problem, that will be the base from
which a CAPTCHA test might be based. A problem P is a set of pairs
P = (pr, sol) ∈ E × S, being E the set of problem elements, and S the set of
possible solutions.

Definition 2. A HIP/CAPTCHA H can be seen as a function f that returns
a test and has up to two input parameters: a random seed, and optionally, a
level of difficulty, f(R, diff)→ t. Only the first parameter is needed, as we
can say that f(R, diff) = fdiff (R).

Definition 3. We will say that H is based on P if and only if ∀(R, c, corrc) ∈
H, (c, corrc) ∈ P . This means that all valid examples of H will create a valid
element c ∈ E and return a valid validation function corrc ∈ V FE, plus the
two will be linked in P . This is to say that every challenge and validation of
solutions in H are correct examples and related solutions in P .

Note that this definition is not just theoretical but can be checked
on a case-by-case basis. For example, in the case of the gender recognition
challenges of FunCAPTCHA, it is equivalent to state that every female picture
is regarded as a female by most humans and vice-versa.

Note that if H is based on P , this only implies that H can be seen
as a subset of P , but does not imply that the strength (or difficulty) of H is
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the same as that of P .

Definition 4. We will define the human difficulty of P as per equation 2.3:

Phs = P (h(c) =x corrc,∀(c, corrc) ∈ P ) (2.3)

Where x is the degree of similarity that we will require to characterize
two answers as identical (or almost, to the point that they are both correct).
Similarly, we will define the computer program difficulty of P as Pcps =
P (cp(c) =x corrc,∀(c, corrc) ∈ P ), where cp is a computer program that
maximizes this function.

Definition 5. We will say that for an H based on a P , H retains the difficulty
of P if and only if Hcps = Pcps. This is a theoretical definition and in general
cannot be proved.

This definition of a HIP allows us to later further detail the important
aspects of a CAPTCHA for our work in section 6.5.

Now that we have introduced what a HIP/CAPTCHA is, we will
focus on the different aspects that influence its design. In particular, we will
look into the different constraints affecting its design, both related to its
security and to other aspects. We will also present an overview of different
CAPTCHA designs, providing a brief historical background of the most
widespread ones.

2.2 Aspects of CAPTCHA design

The design of any CAPTCHA is affected by its context and a set of practical
constrains. This view is quite important to understand the difficulties and
potential pitfalls in CAPTCHA design. First, we present the threat model as a
way to introduce the different threats that both the service being protected and
the CAPTCHA/HIP protecting it. Then, we give the main design constraints
that mainly affect CAPTCHA design. Finally, we give an overview of the
main current uses of CAPCHAs/HIPs.
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2.2.1 Threat model

Here we present the potential threats for a service protected by a CAPTCHA.
Theoretically, a CAPTCHA should be able to protect the service from most,
if not all of them.

Threat 1. Automated abuse. Automated abuse happens when someone
creates an algorithm that correctly solves the HIP/CAPTCHA “bypassing”
or “cracking” it. Depending on the methods used by the attacker, we can
distinguish two ways to “break” it: following the intended path of attack
or side-channel attacks. The intended path is when the attacker creates an
algorithm that solves the problem on which the HIP/CAPTCHA is based.
A side-channel attack is the one that solves the CAPTCHA/HIP challenges,
but not the underlying problem. Notice that in order to break a CAPTCHA,
we do not need a high success rate in order for it to be effective, as the attack
can be repeated and scaled up as long as there is a ROI.

Threat 2. HIP/CAPTCHA compromise. Different services can be pro-
tected by a central HIP server. This creates a single point of failure. If the
HIP server is compromised, an attacker could gain automated access to all the
services protected. This attack is more relevant regarding the major services
providing CAPTCHA challenges.

Threat 3. DoS (Denial of Service) against the HIP/CAPTCHA server.
Similarly to the previous threat, if a HIP service is disrupted either by
internal issues or by a DoS attack, it is possible that authentic users will lose
their ability to access the services protected by it. Because of this reason and
the previous one, services protected by a HIP should have an alternative in
case of HIP failure or compromise.

Threat 4. Compromise of communications. There is a potential risk if
the communications between the client and the HIP/CAPTCHA server are
compromised. This can happen through a MITM (Man-In-The-Middle)
attack. This can allow an attacker to impersonate the HIP server and thus
gain automated access to the service protected. Currently communications
over the Internet can be secured by TLS (Transport Layer Security), but this
protocol can also present vulnerabilities (Sheffer, 2015).
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Threat 5. Semi-automatic abuse. If an attacker wants to bypass a HIP
protection in order to access a service that offers substantial revenue, there is
a low-cost alternative to finding an algorithm that bypasses the CAPTCHA.
The alternative is to hire third-party “CAPTCHA solvers”, also known as
solving farms. These are low-wage workers that solve the HIP challenges
remotely. The service is provided through an API, so the rest of the access can
be automated. Another option for an attacker is to syphon the CAPTCHA
challenges to other human users that will solve them in order to get some
service or revenue. And example of this are some malware and trojan horses
(Cluley, 2007), phishing attacks (Kang and Xiang, 2010) or some Bitcoin
faucets, which are a way to obtain cheap human labour solving CAPTCHAs.

Threat 6. Oracle attacks. HIPs typically do not produce their challenges
completely at random but instead use some internal database that can include
words, images, etc. depending on the CAPTCHA type. Typical CAPTCHAs
allow the attacker to learn instantly if the challenges have been passed or
not. Thus, it is possible to use most of them as oracles to learn if a proposed
solution is or not correct, and thus launch learning attacks against them. Some
work has been done to try to prevent oracle attacks for image-classification
CAPTCHAs (Kwon and Cha, 2016), but this work has significant flaws
(Hernández-Castro et al., 2017).

Threat 7. Service compromise. Ultimately if an attacker is able to gain
access to the servers on which the service is provided or to find an alternative
route to reach the service, then she will be able to bypass the HIP/CAPTCHA
protection.

The design of CAPTCHA/HIPs is not just affected by this threat
model, but also by a series of constraints related to the way they are adminis-
tered, the human interaction and additional optional constraints. We present
them in the following section.

2.2.2 CAPTCHA design constraints

CAPTCHA design constraints are of two different types: those that are
fundamental and affect the design of any HIP, and those that are a much-
wanted characteristic of HIPs but that can be considered optional by some
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clients or in some scenarios.

The following constraints are fundamental to any HIP design:

• CAPTCHAs have to be administered in a non-controlled environ-
ment: a fundamental aspect of HIPs is that they are conducted re-
motely, at a site controlled by the client - not the HIP provider and
through an unreliable network. This, for example, rules out the usage of
biometric tests, as it is well known that biometric tests are only secure
if administered in a controlled environment.

• High usability: in IT Security, it is well-known that typically a security
measure will hinder the usability of the system being protected. This is a
paramount concern in the case of CAPTCHAs: they are sometimes used
to protect a resource that has a minimal value to the client (for instance,
participate in an on-line poll) or to which the client has alternatives
(for instance, web-mail account creation). Thus they have to be not
too intrusive in the process they protect, or else they will affect the
conversion rate. This is a severe restriction that affects both the difficulty
of the HIP and the time to complete it. Designers have created some
solutions to make HIPs more user-friendly, like drag & drop interfaces
or in general the gamification of HIPs. Other CAPTCHA designers
have decided to make them more appealing, for example marketing
their HIPs as producing a benefit to humankind (for instance, helping
OCR-scan old books). The user-friendliness of a CAPTCHA can be
indirectly measured using the conversion rate metric.

• CAPTCHAs need to offer alternatives for impaired people: HIPs
typically rely on one or more human perception abilities, like vision or
auditory. There is a substantial number of people with difficulties in
the use of a particular sense. Thus, ideally a HIP design has to present
alternatives, so it is accessible for most or all of the population. The
problem with this is that whenever an alternative HIP is present, the
access is as strongly protected as the weaker of the HIPs used to protect
it.

The constraints that are important, but can be considered optional
are:

• Privacy.: there are many on-line services in which a certain level of
privacy is necessary. This is more the case when opinions are encouraged.
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An example can be a blog entry or news page that allows a comment
section. If all comments can be traced back to the person that wrote
them, we are restricting the sense of privacy and freedom, indeed curbing
the willing of the public to express some of their opinions.

• Reliance on a public algorithm: the P in the acronym CAPTCHA
means that the algorithm to create and grade the tests has to be public.
In IT Security, there is a famous line of thought that states that security
should never be based on secrecy, and thus the only secret should be
the keys. The opposite, relying on the secrecy of algorithms and data
further from the keys, is known as Security by Obscurity and has a
long tradition of failure (Anderson, 2002, Hoepman and Jacobs, 2007,
Swire, 2004). The history of IT Security related to Cryptography,
Digital Watermarking, Steganography, etc. shows us that this type
of foundation of security is not typically time-proof. This is usually
regarded as a case of Kerckhoffs’ principle, that can be stated as “(the
system) should not require secrecy and it should not be a problem if
it falls into enemy hands” (Kerckhoffs, 1883). Some standardization
organisations as NIST advocate that “system security should not depend
on the secrecy of the implementation or its components” (Scarfone et al.,
2008). The problem with Security through Obscurity is that it would
take an attacker a certain amount of effort to analyse it (or a leak), but
once it’s done it will allow her for ample abuse. This can be the case
even if some of these measures are adaptive (through the use of ML).
This is not the case with systems designed following Security by Design
principles.

• Reliance on a public dataset: the same reason commented above
strongly suggests that if the HIP uses some dataset, this should be
public instead of private. As the dataset has to be exposed at least
partially, even if modified/protected, it is difficult to protect HIPs from
oracle attacks. Also if the dataset has a public source, it can be used
to gain partial access to it or even poison it. Thus, the strength of a
HIP should ideally not rely on its dataset being private. This is more
relevant when the size of the dataset is small.

Next, to fully understand the context of CAPTCHA/HIP design,
we will describe their main applications. This will allow the reader to have
a complete overview of the ecosystem in which they work, and thus better
understand the different designs and design criteria.
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2.2.3 Applications of CAPTCHAs

In this section we introduce the most typical applications of CAPTCHAs
that refer not only to the different kind of services that can be protected
by CAPTCHAs, but also to other uses that CAPTCHAs might have by
themselves. It is difficult to give a full list of applications, so here we focus
on the most well-known cases.

2.2.3.1 DoS mitigation

A DoS (Denial-of-Service) attack intends to render a service unavailable. To
do so, it tries to exhaust the service capabilities. There are various ways to
do so, depending on the service. As an example, if the service is an on-line
shop, one can try to perform costly operations like searches or modifications
of the shopping cart. Typically this is done automatically and using several
attacking machines, in what is called a Distributed Denial-of-Service attack
(DDoS). There are several IT Security mechanisms to prevent them. One
that we can implement at the application layer is a CAPTCHA: if a user is
performing expensive operations, or many activities, and in general consuming
a significant portion of resources, we can present a HIP/CAPTCHA to her to
check that she is, in fact, a human.

2.2.3.2 Web scraping

Web scraping is the different techniques that allow for a third party to
gain/copy information navigating a web-site automatically. An example could
be a third party navigating the web-sites of several air travel companies and
then offering the flights on their own web-site.

There exists a convention to disallow this to happen through the file
robots.txt that, if present, can disallow any bot from navigating some of the
subdirectories of the web-site. It is up to each particular bot to follow or not
this convention.

Another way of protecting parts of a web-site from scraping is to
present HIPs/CAPTCHAs to the users requiring information from those parts.
An example of this is used by Google, that presents a regular OCR/text
CAPTCHA when it receives some petitions from the same IP address, a
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measure that sometimes leads to unexpected results (Cheng, 2016).

Another example of web-scraping is collecting e-mail addresses.
CAPTCHAs/HIPs can be used to protect e-mail addresses from web-scraping
by requiring the person wanting to access the e-mail address to solve a
CAPTCHA before.

2.2.3.3 On-line polls

The first example of bot abuse on an on-line poll is the well-known case of
the poll of slashdot asking which was the best graduate school in Computer
Science, and that resulted in a voting competition of bots from Carnegie
Mellon University (CMU) and Massachusetts Institute of Technology (MIT).

Today, there are on-line pools with very different purposes. The
most typical is to gather the opinion, but there are others, like to select new
products to produce, select best pictures, etc. Some of these polls have prices,
and others publish their result and can influence people. Being able to control
the output of a survey can be very lucrative. The way to protect them with
HIPs/CAPTCHAs is to request the user to solve a challenge before casting a
vote. This alone does not prevent a user from casting multiple votes, but it
can be combined with other measures, and will in the worse case allow for
several votes per minute from the same user, instead of several thousands of
votes per minute from a bot.

2.2.3.4 On-line sales and reselling

The best example of this is the case against Wiseguys Tickets, a ticket-
scalping agency. They automatically purchased thousands of tickets from
Ticketmaster and other vendors to resell them. They used a network of bots
to bypass CAPTCHAs and grab more than 1 million tickets for concerts and
sporting events, making over USD 23 million selling them. They were able
to impersonate thousands of individual ticket buyers. They used credit card
numbers and account holder names from ticket brokers. They also had a bank
of about 1000 phone numbers, which their bot submitted as customer contact
numbers (Zetter, 2010). Spite regulations and different countermeasures,
these bots are still in use today (Hogan, 2016).
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2.2.3.5 Preventing account gathering

Web-mail is the gateway to many other on-line services that require reg-
istration, including social media accounts. It can also be used to launch
phishing campaigns and bypass some phishing filters thanks to the reputation
of the web-mail service. Thus, the ability to create and use a large number of
web-mail accounts is interesting for attackers.

Nowadays some web-mail providers advise their users to provide
a back-up contact method that also helps these providers to rule out the
possibility of an automatic creation of accounts. An example is letting/re-
quiring the user to provide their phone number. This though is typically
not a requisite, as web-mail providers do not want to narrow their possible
market and lose clients to other more open providers. Also, there are on-line
providers of temporary telephone numbers, so it would not be impossible to
fake them.

Similarly to protecting web-mail registration, some sites do not
require for much personal info nor e-mail accounts to register with them.
Typically, after registering, the new user gains access to new information
and services from the site. HIPs/CAPTCHAs can be used to protect the
registration process and thus protect these sites from bots crawling into them,
interacting with regular users, or using additional resource-intensive processes
on the site (searching, basket manipulation, etc.)

Social networks are also an example of a service in which automati-
cally gathering and managing accounts can imply an economic reward. Social
networks are gaining widespread use and people are using them an increasing
amount of time, becoming ubiquitous. They no longer serve just as social
contact pages, but now are used to spread news, opinions, to contact with
brands, to give feedback and reputation, to play on-line games, etc. Many
trends, news and rumours spread virally at least partially through social
networks. Attackers seek the ability to create thousands or millions of social
network profiles and use them in different campaigns to influence or disrupt
on-line discourse with spam hashtags, astroturfing, or fake users for persuad-
ing, smearing, or deceiving (Ferrara et al., 2014, Abokhodair et al., 2016,
Echeverría and Zhou, 2017). Another use of social bots is to help the spread
of dissinformation disguised as real or fake news. In an study, it has been
seen that “bots are particularly active in amplifying fake news in the very
early spreading moments, before a claim goes viral”, “bots target influential
users through replies and mentions” and “bots may disguise their geographic
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locations. People are vulnerable to these kinds of manipulation, retweeting
bots who post false news just as much as other humans” (Shao et al., 2017).

Social network bots are so common that there are tutorials on-line
to create them, libraries in several programming languages, or even complete
turn-key solutions (Bilton, 2014). Facebook reportedly has around 170 million
fake users, or possibly more (Parsons, 2015).

There is much research that tries to flag, detect and nullify bots in
social media. This is difficult as long as there is an economic incentive to
it. A large-scale social bot infiltration on Facebook showed that over 20%
of legitimate users accept friendship requests indiscriminately, and over 60%
accept requests from accounts with at least one contact in common (Boshmaf
et al., 2013). This further simplifies the infiltration in networks using social
bots.

Social media networks have tried different methods to prevent bot
accounts. Facebook studied incorporating a new CAPTCHA based on the
identification of untagged faces of friends in pictures, but it was shown not to
be resilient enough to current ML methods (Polakis et al., 2012).

A HIP/CAPTCHA that is more resistant than the current proposals
can be used to protect social networks from bots. This can be done not
only requiring the user to pass a challenge while registering, but also while
performing certain actions on the site, or if she flagged by other algorithms
as a user with a suspicious behaviour, pertains to a flagged network, etc.

2.2.3.6 Protection against dictionary attacks

When a user logs-in into a web page for which she has registered before,
there are several authentication mechanisms. The most widely used requires
the user to input her user-name (or e-mail address) and password. It is
well-known that a significant fraction of the users choose passwords that
offer little security, even if the systems try to prevent it. An attacker can
automatically try thousands or millions of passwords for certain accounts, in
what is called a dictionary attack, trying passwords that are combinations of
words, numbers, sentences, etc., and typically gaining access to a substantial
number of accounts. If these accounts contain links to real data from the
users, they can be used to gather private information. They can also be used
for altering reputation, phishing, spreading malware, etc.
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2.2.3.7 Prevention of game cheating

Many on-line games allow for the creation of in-game economies. Players
can get rewards either from work or from defeating other players. Players
can exchange these rewards for enhancements that make the game easier and
more enjoyable. Optionally, players can buy those rewards from the game
publisher. This creates a market, either inside the game or outside in forums
visited by the game users. In these markets, these rewards and prices are
bought and sold for real currency.

It is known that some people in low-wage areas resort to playing
games on-line as a mean to have some minimum income. An example of this is
the “gold farming” performed in the on-line game Word-of-Warcraft, in which
“virtual in-game currency and items are obtained by Chinese MMO players and
sold for real-world currency to western gamers” (Hartley, 2009). Reportedly,
this even happened forcefully (Tassi, 2011, Vincent, 2011). HIPs/CAPTCHAs
cannot prevent this, but they can prevent attackers from using bots to perform
these tasks.

Other more recent on-line games have also suffered from abuse
from bots. One well-known case was Pokemon-Go, which had to install
a CAPTCHA/HIP in-game in order to prevent bots from picking-up all
pokemons that appeared on the map (Smith, 2016).

2.2.3.8 Prevention of fake feedback and reputation

Several sites and social networks allow their users to provide feedback for
other users, sellers, services or products. Among the most well-known are
the market site Ebay, the travelling site TripAdvisor, the social networks
Google+ or Facebook, etc. In on-line selling, feedback and reputation are
paramount. Being able to influence the reputation of a seller or service provider
can significantly increase their sales. Similarly, providing bad feedback can
severely affect sales - which can be used in blackmail or to hurt the competition.
To do any of these, the attacker has to create some credible profiles in the
sites and use them to provide bogus feedback (Fenton, 2015).
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2.2.3.9 Prevention of comment spam

A well-known SEO technique consists on altering the content of high-ranking
websites (news-sites, popular blogs, etc.). This is typically done adding
comments to news, blog posts, etc. This type of comment is called comment
spam. Because of the abuse of these, several techniques have been created in
order to try to filter comment spam, including filters for the comment content
and statistical learning to flag possible comment spam. These techniques
have their limits (Ramilli and Prandini, 2009). Others have created their
own techniques, like requiring to answer questions related to the post before
submitting a comment (Lichterman, 2017), with users taking it as a fun quizz
game (Schmidt, 2017), but this technique has limitations when used as a
security meassure (Hernandez-Castro and Ribagorda, 2009a). Some of these
sites have started requiring user registration and/or linking to other web-mail
or social media accounts. This strategy just passes the problem to another
service provider. Another option for this is to require the user to pass a
CAPTCHA/HIP challenge each time a user wants to post a comment.

2.2.3.10 Advertising

Apart than as a security mechanism, CAPTCHAs/HIPs can also be used
as an advertising platform. Some CAPTCHA proposals have endorsed this
idea with different targets. The Civil Rights CAPTCHA presents the users
with news regarding Human Rights around the World as a way to increase
awareness. Other proposals like Captch Me1 , SolveMedia2 or CAdCAPTCHA3

require the user to interact with an advertisement (that can look as a game)
or answer a question relative to it.

This should not be the main intent of a CAPTCHA/HIP, because
focusing on the advertising can affect the security of the proposed CAPTCHA.
It offers a way for web-site owners to monetize their content, as they can
explain that they are using a CAPTCHA/HIP for protection - not just for
advertising.

1Located at http://www.captchme.com/en/, retrieved in March 2017.
2Located at http://solvemedia.com/advertisers/, retrieved in March 2017.
3Located at http://captchaad.com/solutions/, retrieved in March 2017.

http://www.captchme.com/en/
http://solvemedia.com/advertisers/
http://captchaad.com/solutions/
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2.2.3.11 Collaborative work

Some CAPTCHA proposals have used to some extent the idea of using the
challenges to solve a real problem. Thus, leveraging the human CAPTCHA
solvers, the CAPTCHA provider is also able to offer a solution to some related
problem.

The original reCAPTCHA is an example of using this collaborative
idea in a CAPTCHA. It had the double intent of being a security mechanism
and helping digitise parts of books and papers that were hard for machines
(Von Ahn et al., 2008). reCAPTCHA presented two words, being one arti-
ficially distorted (a word that the machine knew) and another one a word
the OCR could not read (so that the machine initially did not know). If the
user replied well to the first one, it was considered human. Her answer to
the second was then recorded. After enough similar answers, the OCR word
would be considered as read. At this point, the OCR word could be used to
tell humans from computers. This model gained widespread usage.

Notice that this model is not especially secure. True, if OCRs fail
on a word, it is a good candidate to discriminate humans and programs. But
OCRs typically offer suggestions of what the word might be, and even if
different OCRs do not agree, one of them might be providing the correct
answer, or an answer that is close enough and that can be corrected with a
dictionary. Thus, even if an ensemble of OCRs cannot determine the word,
that does not mean that a machine cannot guess the word a number of times
good enough for an automated attack. The attacker does not need to be
correct 100% of the time.

reCAPTCHA was successfully attacked and suffered many evolutions.
It evolved by departing more and more from its original model in order to
try to become more robust against previous attacks.

Summary As already explained, CAPTCHAs/HIPs are not the only security
mechanism that can help distinguish bots from humans. In some user cases,
there are other possibilities. It is important to be aware of them to understand
the benefits that CAPTCHAs offer against the rest of alternatives.

In the following section 2.3, we give an overview of these alternatives.
This overview will also allow the reader to understand the broader context in
which CAPTCHAs/HIPs operate.
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2.3 Alternatives to CAPTCHAs

We have presented the most typical use cases for CAPTCHAs/HIPs. While
doing so, we mentioned that there are other security mechanisms to protect
the services in many of these use cases. Here, we give an overview of the
most prominent mechanisms alternatives to CAPTCHAs/HIPs for some of
these cases and discuss their limitations. In Appendix A we provide a more
detailed introduction to them as well as a more comprehensive discussion of
their limitations. A full list of these other security mechanisms is out of the
scope of this dissertation.

The different alternatives to CAPTCHAs can typically be applied
to a subset of the problems that CAPTCHAs try to prevent. They also work
in different parts of the threat model: threat prevention, attack prevention,
attack detection and countermeasures.

One alternative to protect forms or other interaction services (as
on-line polls) is to add form honeypots: form fields that are not visually
present to a human, thus will not be filled by a human. This is not difficult to
spot for a not-too-basic form filler. Also, to protect comments from comment
spam, we can use Statistical Analysis tools in order to classify comment spam,
as well as it is done with e-mail spam. This is prone to evasion attacks in
which the attackers find ways for some text not to be analysed, or add “good”
words in order to influence the analysis. Some central services offer this kind
of analysis. Among the most well-known ones is Akismet, given its user base
in WordPress blogs. There are critics that complain about its rate of false
positives4 and research able to bypass it (Ramilli and Prandini, 2009).

Another option to the use of CAPTCHAs/HIPs for user registration
is to require alternate-channel validation, for instance, requiring a phone
number to which a confirmation code is sent, or an additional e-mail address.
The main drawbacks with this approach are both the lack of anonymity and
the price, as for example, Ringcaptcha, that calls users to check if they are
humans, charges US$49 per month if you are calling US numbers and more
for overseas.

Some service providers might prefer to leave the identification to
4Criticism with complaints like “Akismet has a reputation for flagging good comments

as spam” can be found in blogs and forums. This one, in particular, is from “Why We Don’t
Use Akismet” post at http://www.web-development-blog.com/archives/why-we-dont-use-
akismet/
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a third party that they consider technologically strong enough as to filter
bot users. This can be done using third-party authentication protocols like
OAuth/2 and OpenID Connect. This poses important drawbacks concerning
user privacy, as the identification sites can follow a user’s steps through the
internet. Furthermore, there is a huge number of applications and services
that are clients of OAuth, and this prevents from properly testing them. As
an example, just for Twitter, a new app is registered every 1, 5 seconds. These
also represent a single point of failure, as if the authentication mechanisms
or servers are compromised, an attacker will be able to impersonate another
user or users in several services.

Another option to HIPs/CAPTCHAs is the use of whitelists/black-
lists. Blacklists are lists of well-known attackers. Their identification can
be done through different possible mechanisms, as using their IP address,
characteristics of the request strings, techniques for client & browser finger-
printing, the new HTML5 APIs, etc. Their detection is typically done through
abuse detection. A well-known example of this is used by Cloudfare,that
aims to protect, speed up, and improve availability for websites and mobile
applications. They do this by imposing an intermediate server layer thanks
to changes in the DNS entries. These mechanisms have their own drawbacks.
For example, if a node in a private network that is behind a proxy is abusing
a site, all nodes in that network will lose access it. Services that run these
blacklists and filtering mechanisms also provide a single point of failure.

To be able to create a black list, it is necessary to first distinguish
among different clients and detect who is running an attack. Several techniques
can be used for it, as client & browser fingerprinting, source IP detection,
cookies and many others, even more so with the new HTML5 APIs, but each
one has its limits. Because most of them are created at the client side, with
enough motivation or dedication they can be faked.

A somehow related idea is client detection & filtering: classify
without doubt those clients that are clearly bogus, or attackers. The most
common idea behind this mechanism is that many attackers do not use a reg-
ular browser, but some other SW that does not replicate the full functionality
of a browser. As an example, many attackers do not run the Java Script code
of a web-page, run it partially, or do not have full JS & DOM support. This
is just an arms-race.



28 Background and related work

2.4 CAPTCHA design variants

In this section, we introduce the different CAPTCHA design variants and show
how they have coped with the different design constraints. It also gives a short
historical introduction for the most popular variants, like OCR CAPTCHAs
(subsection 2.4.1). This section finishes presenting CAPTCHAs that are
based on alternative, non AI-based base problems (subsection 2.4.7), and the
so-called “behavioural” CAPTCHAs (subsection 2.4.8), that constitute the
main trend today, thanks to this parading being used by the main CAPTCHA
provider.

Through the beginning and evolution of CAPTCHAs/HIPs, there
have been and currently are many different proposals. Section 2.5 shows
the attacks to many of the design variants presented here. Initially, we can
classify CAPTCHAs as either based on some problem perceived as AI-hard
or based on some alternative problem that is not related to AI.

First we will present the CAPTCHAs based on the idea of an AI-
hard problem, following the initial idea of Naor (1996) and later Ahn et al.
(2003). These are by far the most popular. We can further divide them into
different design categories both based on their transport media (text, text
images, audio, images, video . . . ) and in the particular problem they are
based on (OCR, classification, understanding, . . . ).

2.4.1 Text images / OCR CAPTCHAs

Text-based CAPTCHAs pertain to two main categories: those based on the
problem of text recognition from an image (OCR), and those using text as a
means to ask a question. Next, we will explain both in detail.

2.4.1.1 Text OCR CAPTCHAs

The first category has been the most popular CAPTCHA class from 2000
to around 2014, when image-based CAPTCHAs started being increasingly
popular, yet OCR CAPTCHAs are still popular.

One of the earliest examples of abusing on-line services started in
1997 when some people started using automatically the “add-URL” service
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Figure 2.1: Example of a HIP test from AltaVista (Baird, 2006).

provided by Alta-Vista, the most popular Internet search engine at the time,
for Search Engine Optimization (SEO) purposes. They were automatically
submitting large numbers of URLs in an effort to manipulate the importance
ranking algorithms of AltaVista.

Andrei Broder and his colleagues at DEC Systems Research Center
were collaborating with Alta Vista at that time. Possibly following on the ideas
of Naor (1996), his team developed an algorithm that randomly generated an
image of printed text with some distortions so that OCR programs could not
read it, requesting the human user to input such text (see figure 2.1). The
distortions included random typefaces, rotation and scaling, as well as the
optional addition of background noise. Characters were chosen at random,
not from a dictionary. It is important to note that by that time or shortly
after, there were known algorithms able to recognise patterns even after being
rotated and scaled (Shen et al., 1999, Leung et al., 1998). In January 2002,
Broder stated that the system had been in use for “over a year” and had
reduced the number of “spam add-URL” by “over 95%”, even though there
was no additional information on the remaining 5% (Baird, 2006). Thus this
security measure reached some level of efficacy. A U.S. patent was issued in
April 2001 with these ideas (Lillibridge et al., 2001).

Udi Manber of Yahoo! encountered a similar problem when bots
started joining on-line chat rooms and pointing the users to advertising sites.
He described this “chat room problem” to researchers at CMU.

Professors Blum, Von Ahn and Langford articulated desirable prop-
erties for any such test to remotely tell humans and computers apart (Baird,
2006):

• The challenges should be automatically generated and then graded by
a computer using a public algorithm.

• The challenges should be easy and fast to complete for virtually all
humans, independently of abilities, cultural background, etc.

• The test should be able to reject virtually all machines.
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Figure 2.2: Examples from PessimalPrint (Baird et al., 2003).

• The test will be able to resist automatic attacks for many years, even
as technology advances and even if the test’s algorithms are known.

Thus they coined the term CAPTCHA, for Completely Automated
Public Turing test to tell Computers and Humans Apart. Note that since the
creation of these broad guidelines, some have been dropped by practitioners
and new ones have been proposed. For example, nowadays it is considered
that the limit for a production HIP for the ratio of computer-solved challenges
should not exceed 0, 01% (Chellapilla et al., 2005b) or 0, 6% (Zhu et al.,
2010a). Also, many practitioners are not making public the grading algorithm
internals of their CAPTCHA proposals (Hernandez-Castro et al., 2011, Shet,
2014a, NuCaptcha, 2016, Inc., 2016). Additional requirements have also
appeared, most notably the protection against third-party human solvers.

Henry S. Baird, an expert on computer vision and document image
analysis at Xerox PARC, organised the first International Workshop on HIPs
in January 2002. He was also part of the team that created PessimalPrint, an
OCR/text CAPTCHA that uses ten typical image degradations, including
spatial sampling rate and error, affine spatial deformations, jitter, speckle,
blurring, thresholding, and typeface size (see Figure 2.2). They published their
proposal (Baird et al., 2003) in which was the first peer-reviewed proposal for
a CAPTCHA.

The professors at CMU worked on their own proposal, that they
called Gimpy. It rendered random words as images of printed text, applying to
them some shape deformations and image occlusions. Particularly interesting
was that the word images often overlapped (shown in Figure 2.3). The user
had to write down three of the 10 words shown to pass the test. An in-depth
recount of this early historical phase can be found at Baird (2006) and also
at “Human or Computer? Take This Test”5.

5Located at http://www.nytimes.com/2002/12/10/science/human-or-computer-
take-this-test.html, retrieved on November 2016.

http://www.nytimes.com/2002/12/10/science/human-or-computer-take-this-test.html
http://www.nytimes.com/2002/12/10/science/human-or-computer-take-this-test.html
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Figure 2.3: Examples of Gimpy challenges (Mori and Malik, 2003).

(a) (b)

Figure 2.4: Examples of (a) BaffleText and (b) reCAPTCHA challenges
(Chew and Baird, 2003). It can be seen that the first word from the

reCAPTCHA challenges uses the ideas presented by Chew.

Yahoo! decided to implement a much watered-down version of Gimpy
that used just one word. At the early 2000s the Internet was still spreading
fast as new users and services were being added. Text-based CAPTCHAs
became extremely popular. They were easy to understand and implement
and apparently secure enough, so it caught attention and spread quite rapidly.
With as few as 5 characters (case-insensitive letters and digits) there are
365 ≈ 60 million possible answer combinations.

By this time, the first CAPTCHA breaks were being published.
Regarding the design of OCR CAPTCHAs, the most important consequence
of these attacks is that they identified segmentation as the most challenging
tasks for the attacking algorithms. This realisation affected the following
OCR CAPTCHAs, as they tried to make stronger use of known and new
anti-segmentation techniques.

Through the 2000s, active research was done in OCR/text CAPTCHAs.
They were by far the most deployed CAPTCHA type (Hernandez-Castro
and Ribagorda, 2009a). It would be impossible to discuss all the different
variations and alternatives that appeared. We will mention some of the most
notorious ones to give the reader a general overview of some of the typical
designs and problems with OCR/text CAPTCHAs.
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In 2003, Monica Chew and Henry S. Baird proposed BaffleText,
a novel OCR/text CAPTCHA that used non-English but “pronounceable”
words along with some masking techniques motivated by the Gestalt psychol-
ogy (Chew and Baird, 2003). The ideas presented in this work were later put
to use by reCAPTCHA starting in 2010 and at least until 2014 (Figure 2.4
shows an example).

In 2005, Chellapilla et al. (2005a) were able to attack several
OCR/text proposals already deployed. They concluded that new OCR/-
text CAPTCHAs schemes should be based on hard-segmentation problems
(Chellapilla and Simard, 2005, Chellapilla et al., 2005b).

In 2007, Captchaservice.org appeared. It described itself as “the first
web service designed for the sole purpose of generating CAPTCHA challenges”
(Converse, 2005, Yan and Ahmad, 2007). Their different OCR challenges
were marketed as successfully tested against OCR SW (an example challenge
is shown in Figure 2.5).

Figure 2.5: Example from Captchaservice.org6.

Even though by then most OCR CAPTCHAs had been defeated one
or several times, the main trend for companies was to update them trying to
evade the current attacks. This was typically done by making segmentation
harder.

Figure 2.6: Example of a challenge from the Megaupload CAPTCHA.

In 2010, a popular place for file sharing (Megaupload.com) de-
signed a CAPTCHA that showed strong anti-segmentation techniques. This
CAPTCHA prevented segmentation by overlapping large portions of charac-
ters amongst themselves.

6Example taken from the copy of their webpage on 07/15/2006, located at https:
//web.archive.org/web/20060715020359/http://captchaservice.org/.

https://web.archive.org/web/20060715020359/http://captchaservice.org/
https://web.archive.org/web/20060715020359/http://captchaservice.org/


2.4 CAPTCHA design variants 33

2.4.1.2 3D OCR/text CAPTCHAs

Some of the OCR/text CAPTCHAs proposals were created using very different
ideas that set them apart from the typical OCR/text CAPTCHAs. One of
these proposals is the Teabag 3D CAPTCHA, an example of a 3D text-based
CAPTCHA (see Figure 2.7). It is not the only example, but possibly the
best implementation of the idea, done by a very knowledgeable group of
CAPTCHA security analysts and programmers called OCR Research Team
(Kolupaev and Ogijenko, 2013).

Figure 2.7: Example image of the Teabag 3D CAPTCHA v1.0.1 (Kolu-
paev and Ogijenko, 2013).

There are other proposals, including a 3D moving CAPTCHA (Kund,
2011) as well as a 3D CAPTCHA that uses the human ability of stereoscopic
vision (Susilo et al., 2010), but as they have not been implemented publicly,
so their security remains to be checked.

2.4.1.3 Animation of OCR/text CAPTCHAs

Another variation for OCR/text CAPTCHAs comes from adding a time com-
ponent to them through animation. The idea behind this is to distribute the
information required to solve the CAPTCHA so that no single frame contains
all the information needed, thus in principle rendering useless previous attacks
to typical OCR/text CAPTCHAs. This idea was called the “zero knowledge
per frame” principle (Cui et al., 2010).

There have been several proposals based on this idea. One of the first
proposals presented the text rendered on an animated surface (Fischer and
Herfet, 2006). Naumann et al. (2009) proposed another animated OCR/text
CAPTCHA based on entities that move together over a noisy background,
so they become visible based on their movement. A similar proposal was
presented by Cui et al. (2010).

HelloCAPTCHA (Group, 2016) is another example of this idea, even
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though it does not strictly follow the “zero knowledge per frame” principle
(shown in Figure 2.8). NuCaptcha (NuCaptcha, 2016) is a commercial proposal
that implemented animation in its OCR/text CAPTCHA as well as anti-
segmentation by overlapping.

Figure 2.8: Some examples from HelloCAPTCHA, showing two frames
for each. Some characters change position and orientation, and in some
challenges, not all the characters are visible at the same time. This

measures try to prevent a typical OCR attack over a single frame.

2.4.1.4 Alternative OCR/text CAPTCHAs Ideas

A popular file-exchange service called Rapidshare developed several OCR
CAPTCHAs that were apparently broken. Trying to raise their security, they
developed a CAPTCHA that mixed OCR and image classification. To do
so, they showed distorted images of cats and dogs next to characters. The
user was asked to write down only those characters next to a cat (see Figure
2.9). This CAPTCHAs gained a lot of criticism, as it was considered too
difficult even for humans. After just a few months, CAPTCHA breaking tools
bypassed it (Martin, 2008), so it was finally retired from use.

Figure 2.9: RapidShare OCR/text with cats & dogs CAPTCHA.

The Quantum Random Bit Generator Service7 (QRBGS) is a free
service providing “truly random” bits on demand, hosted by the Ruder
Boskovic Institute of Zagreb. As their creation bandwidth is limited, they
require registration in order to access it. In order to prevent automatic

7Located at random.irb.hr, retrieved March 2017.

random.irb.hr
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registration, they developed a CAPTCHA that required the user to provide
the numerical result of a mathematical expression. The idea is that this
expression is rendered in low dpi, so OCR programs have trouble detecting
its different parts and reading them. Also, correctly relation the different
elements in the expression is not a straightforward problem.

Another such OCR/text CAPTCHA was the commercial proposal
Captcha2, in which the user had to click on the correct character, distorted
and rotated, and protected with clutter. Nguyen et al. (Nguyen et al., 2014a)
present another proposal that relates characters to their locations. They have
not implemented it publicly so their security remains unknown.

2.4.2 Language/semantic based CAPTCHAs

There are other proposals that use text to present a message, but their aim is
not for the user to read correctly the text but to understand it, and do some
action related to it. Among these, there are many simple CAPTCHAs that
ask users very simple questions, as to detect which word is different from a
list of words, or solve a very simple arithmetic problem.

In general, the idea of semantic CAPTCHAs is to use the human
abilities of language processing and semantic analysis. An example of this
is TextCAPTCHA, that is able to create thousands of textual questions
from different categories8. Another example is Egglue Semantic CAPTCHA,
that uses a web service to create “over 10,000 knowledge-based, accessible
CAPTCHA challenges” in which the user has to choose the verbs that make
sense to complete two sentences9 (Figure 2.10).

A different idea consists on asking humans to create labelled data
to later use in your CAPTCHA, a bit similar to the idea behind the ESP
game (Von Ahn and Dabbish, 2004), which is described in the next section.
Another similar idea is to use one particular aspect of “humanity”, as could
be humour, or interpreting emotions from paintings, and trying to detect
humans from computers depending on the preferences on it, as depicted by
Chew and Tygar (2005). This is a possibly interesting idea, that also has
potential to be further developed. This proposal has never been implemented,

8Available at http://textcaptcha.com, retrieved on November 2016.
9Located at https://www.drupal.org/project/egglue_captcha, retrieved on

November 2016.

http://textcaptcha.com
https://www.drupal.org/project/egglue_captcha
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Figure 2.10: Example of a challenge from Egglue CAPTCHA. Here, it
asks the user to complete the sentences “Knives can ***** butter” and

“Speakers can ***** sound” using a verb in each one.

though, so we are not sure about its potential capabilities and limits.

2.4.3 Image based CAPTCHAs

The decade of the 2000s marked the start on research on OCR/text CAPTCHAs
and their security. After several successful OCR CAPTCHA proposals had
been fundamentally broken, some people started to believe that OCR/text
CAPTCHAs were fundamentally limited. Thus, some people looked for diffe-
rent alternatives that could lead to stronger CAPTCHAs that still had high
usability.

Many of these researchers focused on the more general problem of
Computer Vision (CV). This was a natural election, given that CV was an
AI field that had several unsolved problems at that time. The human vision
system is good at recognising objects in pictures, and there is a great variety
of possible objects to recognise - orders of magnitude bigger than different
characters. Additionally, these objects can have almost unlimited different
versions.

Next, we will present the different CAPTCHAs based on image
problems considered AI-hard. First we will introduce those based on image
classification, that is, the ones that classify an image into a single class
that describes the main content of the image (main object or scene it is
representing). These are based on the long-studied CV problems of image
classification and object recognition. Then, we will present other CAPTCHAs
that also use some image-related CV problem as their base. Finally, we will
discuss those CAPTCHAs that are based on face identification, recognition,
or extracting information from faces.
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2.4.3.1 Image classification CAPTCHAs

The first CV problem to be used as a base for a HIP was image classification,
that is, presenting images that depict a single object (or a very clearly defined
primary object) and asking the user to select its class.

Chew and Tygar were the first to use labelled images to produce
CAPTCHA challenges. They used the label associated with images according
to Google Image Search, which then, was extracted by the image title and
alternative text, as well as the surrounding text. This technique is not
very well suited for CAPTCHAs, as sometimes the text was not a good
representation of the image contents. For an example of this, using the query
“river” might refer, among others, to a flow of water, or to the Club Atlético
River Plate, an Argentinian soccer club.

With the intention to associate interesting labels to images, Von Ahn
and Dabbish created the “ESP game” to feed the PIX CAPTCHA database
(Von Ahn and Dabbish, 2004). It encouraged the players to assign easy
labels to the different images, as straightforward labels would lead to easier
agreements with unknown partners.

In 2006 appeared the first production CAPTCHA that used a large,
labelled database of images. It was HotCaptcha.com (Marshall and Lin,
2006). It used the human-labelled database of HotOrNot.com and its public
API. It was taken down in less than two years, possibly given problems with
the providers of the images (the HotOrNot.com web-site).

Oli Warner had a similar idea, in this case using photos of kittens
(Warner, 2009). Its biggest problem is that its database of pictures was small
(< 100). Similarly, the HumanAuth CAPTCHA requested to distinguish
between images depicting either a natural object (a tree) or an artificial one
(a watch). It was an Open Source project that was shipped with 69 pictures,
very lightly obfuscated using a watermark.

In 2007, Jeremy Elson et al. from Microsoft presented the ASIRRA
CAPTCHA (Animal Species Image Recognition for Restricting Access) (Elson
et al., 2007). It asked users to distinguish images depicting cats from images
depicting dogs, which according to some CV specialists asked by the authors,
was a very difficult CV problem. Their main contribution is that, as did
HotCaptcha.com, ASIRRA used a huge human-labelled database of pictures,
in this case from the website PetFinder.com, who had an extensive database

HotCaptcha.com
HotOrNot.com
HotOrNot.com
PetFinder.com
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“of more than 3 million photos”, growing in thousands each day. In exchange
for access to it, ASIRRA displays an “adopt me” link next to each picture,
that links to the PetFinder web-page about the pet - note that this was a
potential security risk, even if it was not used by any attack.

ASIRRA authors performed a previous security analysis to try to
assess the level to which current ML was able to break their CAPTCHA,
and concluded that it was not possible. Better, they provided a training set
for anyone willing to try their ML algorithms on it. This deserves a high
praise to the ASIRRA authors, that were considering the security of their
CAPTCHA seriously.

There have been other CAPTCHA proposals based on image classi-
fication, though they have lost interest with the advance of CV techniques,
particularly using DNNs. In section 2.6.1, we discuss the implications of DL
for CAPTCHAs in greater detail. As a summary, today it is quite difficult to
affirm that an image classification/object recognition problem is hard enough
for ML, given that enough computation power and data is available.

2.4.3.2 Alternative image-based ideas for CAPTCHAs

Apart from image classification and object recognition, other CV problems
and alternative ideas were also used as a base problems for CAPTCHA designs.
In some cases, the designers of new CAPTCHAs completely avoided the need
for a big, growing database of human-labelled images. To do so, they altered
dynamically a library of images creating many times more derived ones.

One example of dynamic image creation is the IMAGINATION
CAPTCHA (Datta et al., 2005). Their CAPTCHA proposal has two phases.
The second is a typical image labelling CAPTCHA. The first, most inter-
estingly, asks the user to click on or around the centre of any of the images
that form a mosaic. This mosaic of images is created in a way that makes it
difficult for known CV techniques to segment it (see Figure 2.11).

Another example of an image CAPTCHA no based on image classi-
fication was the proposal by Gossweiler et al. (2009) from Google Research.
Their CAPTCHA presents rotated images to the user. The user has to rotate
them back to their original orientation, or alternatively, to select the image
that is vertical from a set of images (shown in Figure 2.12). They use a
database of images that they filter, trying to remove images that offer clues
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Figure 2.11: Example of a challenge from the first phase of theIMAGI-
NATION CAPTCHA.

so that verticality is easy to detect for a program: images that contain faces,
skies, grass, sand or other objects easy to locate for CV algorithms, or easy to
detect lightning conditions. They also filter out images that might be difficult
for humans. To do both, they use set of pre-trained classifiers. They also filter
out images that appear to be difficult for humans to orientate, depending on
the on-line results obtained.

Other similar proposals have appeared that do not seem to add
significant novelties (Kim et al., 2010, Mehrnejad et al., 2011, Gross, 2015).
Sketcha is a CAPTCHA proposal based on line drawings of 3D Models (Ross
et al., 2010) that have to be rotated to their original position. FunCAPTCHA
has put into production a variant of this idea in which they render several
intertwined 3D models for what they call their “high-security mode” (see
Figure 2.13) (Gosschalk and Ford, 2016).

Cortcha (Zhu et al., 2010a) also pertains to this category, although
it is based on a more advanced idea. It uses a database of images to build
a database of objects, using the JSEG method from Deng and Manjunath
(2001) to segment images into objects. Small objects are merged with their
neighbours. Then, they assign each object a “perceptual significance” value
using an algorithm from Liu et al. (2011). They apply heuristics to classify
objects as useful or not. These heuristics measure how easy it is to recognise
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Figure 2.12: Some CAPTCHA examples from What’s up CAPTCHA
(Gossweiler et al., 2009).

the objects if they appear cropped out of the image, and how “meaningful”
they are. To generate a challenge, an image from the database and an object
from that image are randomly picked-up. The object and a buffer region
around it are cropped from the image, and in-painted using a variant of the
algorithm proposed by Sun et al. (2005). Then, another n similar objects
are selected from the database. The user has to select the correct object and
drag & drop it to its correct location in the image.

Another of such interesting proposals is based on video. It uses
a property of human perception that they called emergence (Mitra et al.,
2009a,b): “Emergence refers to the uniquely human ability to aggregate
information from seemingly meaningless pieces”. In their CAPTCHA, a video
in which an object is moving is processed so the background is converted into
seemingly-random noise, and so is the moving object, although in a way that
the human perception can easily follow it. The authors claim that there is
not enough information on a single frame to detect the moving object. This
might be so, but it remains to be analysed whether information cannot be
easily extracted from successive images. Unfortunately, this proposal did not
reach production phase, so it could not be tested.

2.4.3.3 Face classification and identification CAPTCHAs

Face identification is a very well known CV problem that has been studied for
long. Several CV algorithms can locate faces in pictures and extract informa-
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Figure 2.13: Example of FunCAPTCHA orientation CAPTCHA in “high-
security mode”.

tion from them, including the location of the different facial features. Several
face-related problems have been proposed as a base for several CAPTCHA
designs. An early CAPTCHA that rely in face identification (Goswami et al.,
2014b,a) was broken a year later (Gao et al., 2015).

Facebook, a popular social network in western countries, has heavily
invested in face recognition and moved from a feature-based approach (Face-
book, 2011) to a DL approach (Taigman et al., 2014). This change resulted
in a huge improvement in their error rates (97% on the Labelled Faces in the
Wild (LFW) dataset). They use their new SW to automatically suggest tags
for people appearing in the pictures uploaded to their site.

Facebook is at a prominent position given its picture database. To

Figure 2.14: Example from the Facebook Social Authentication
CAPTCHA.
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use it, Facebook studied the use of their face identification data as the base
for a CAPTCHA. The idea for their social CAPTCHA is to present a picture
of one of your Facebook friends: you will need to identify the person to
authenticate yourself (as shown in Figure 2.14). This protection can be used
when you are trying to retrieve a lost password or when Facebook detects
suspicious login or posting activity from your account. If your answers are
wrong, your account is locked down and you can try again after a period
(apparently 1 hour).

2.4.4 Game-based CAPTCHAs

In the earlier part of the decade of the 2010s, several proposals appeared that
tried to increase the usability of CAPTCHAs by making them appear as small,
simple games (Paxton and Tatoris, 2012, Gosschalk and Ford, 2016). This
technique was termed “gamification”. It consists on making the challenges
appear as a small, simple game. The User Interface (UI) also improved to
include techniques like drag & drop, more user friendly, especially when using
mobile (tactile) devices. The underlying mechanisms for the CAPTCHAs did
not change abruptly, but the interaction with the user was improved.

The idea of benefiting from games is not new to CAPTCHAs. Some
other researchers have used game-like strategies to create data for their
CAPTCHAs (Von Ahn and Dabbish, 2004). But now, the game (or game-like
interaction) takes the central part of the CAPTCHA UI.

One of the first production CAPTCHA to use these techniques is the
one created by Are You a Human. They named it the PlayThru CAPTCHA,
that they also use for advertisement purposes. It is composed of small drag
& drop games (see Figure 2.15).

Another related example, already presented, is the FunCAPTCHA
(Gosschalk and Ford, 2016), that we analyse as a case-study in Chapter 5.
It uses a “click” interface for their rotation CAPTCHA and a drag & drop
interface for their genre recognition CAPTCHA.

Another subcategory are the puzzle CAPTCHAs: they require the
user to drag & drop pieces of an image in order to reconstruct the original.
Some examples are Capy, KeyCAPTCHA and Garb. We analyse them in
Chapter 3.
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Figure 2.15: Examples from the PlayThru CAPTCHA.

2.4.5 CAPTCHAs based on the understanding of video

Some ideas have appeared that are purely based on video. These are different
from the proposal based on emergence that we discussed (Mitra et al., 2009a)
and other proposals based on adding animation to OCR/text CAPTCHAs
(NuCaptcha, 2016). We will call them pure-video CAPTCHAs because they
are based on extracting semantic information from the sequence of actions
that the video portrays. Some of these proposals are the ones from Kluever
(2008), Hernandez-Castro and Ribagorda (2009b) or the similar “motion and
interaction based CAPTCHA” (Qvarfordt et al., 2013). They have not been
implemented, so a proper security analysis is missing.

For any CAPTCHA based on video, there is the concern that the
additional information that the video will provide will somehow make it easier
to find clues in order to break these CAPTCHAs. No proper security analysis
can be done until there is a public implementation.

2.4.6 Audio CAPTCHAs

Most CAPTCHAs proposals have been based at least partially on the visual
capacities of ordinary humans, but there is a number of people who have
vision problems. Some CAPTCHAs that have been put into production have
had to provide an alternative for visually impaired users. This is the way
that most audio CAPTCHAs proposals have appeared, as an alternative to
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visual ones. Audio CAPTCHAs where not typically the first though of their
designers, and thus they were possibly designed with less emphasis on their
security.

One of the most popular audio CAPTCHA was the Google audio
CAPTCHA, presented in 200810. Each challenge consisted on a series of digits
being spoken with background noise. It was clearly not enough secure, as
back in 2008, it could be broken using very basic methods (Santamarta, 2008,
Tam et al., 2008).

This has lead to an increase in their difficulty, adding noise and
choosing audio cues more that are difficult to understand. Current audio-
based CAPTCHAs are extremely difficult for humans (Bigham and Cavender,
2009). Even after improvements, the audio version of reCaptcha by Google
was broken again using simple speech recognition (Sano et al., 2013) and later
using the speech recognition API of Google (Sidorov, 2017). It remains to be
seen if a strong yet usable audio CAPTCHA could be created.

2.4.7 Alternative problems for CAPTCHA designs

We have introduced the broader category of CAPTCHAs: those based on
AI-hard problems (or thought to be). Now we present the much less common
CAPTCHAs based on alternative problems: those problems not tackled by AI
nor considered to be AI-hard. The fact that they are not considered AI-hard
does not imply that these problems could not be solved or bypassed using
ML techniques; it only means that the problems are not traditional problems
previously studied in AI nor ML. We present these proposals in the following
paragraphs.

Capturing your face This idea relies on having a camera (a web-cam on a
PC, or a frontal camera on a phone) to pass a CAPTCHA that requires the
user to produce certain actions (Greenblatt and Lagares-Greenblatt, 2012) or
gestures (De Marsico et al., 2016) (as shown in Figure 2.16). The idea might
seem too intrusive to certain users though, and given that the video is taken
at the clients’ location, it is susceptible to be tampered with or faked.

10According to https://devopedia.org/captcha, visited on Aug. 2017.

https://devopedia.org/captcha
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Figure 2.16: Webcam-CAPTCHA design (Greenblatt and Lagares-
Greenblatt, 2012). The user is requested to perform some gestures

in front of the camera.

Detection of movement Smart-phones, tablets, etc. incorporate a panoply of
sensors that are not found on the typical desktop or laptop computer. Among
those, there is typically a motion detector. There are different proposals to
use it in order to pass a CAPTCHA.

In one of them, the CAPTCHA asks the user to use gestures to
operate specific objects on the screen so as to complete a CAPTCHA challenge
(Jiang and Tian, 2013, Jiang and Dogan, 2015) (shown in Figure 2.18).

In another proposal, the CAPTCHA asks the user to perform ges-
tures “from everyday life” such as hammering using the smart-phone as if it
was a hammer, while the user has to hit a nail five times (Hupperich et al.,
2016).

In a similar way, other researchers propose to use these movement
tests to enhance the protection of typical security measures, like inputting
a PIN number for authentication. This approach is called CAPPCHA, or
Completely Automated Public Physical test to tell Computers and Humans
Apart (Guerara et al., 2017). In a typical CAPPCHA, the user has to tilt the
mobile terminal in different degrees as required (see Figure 2.18).

These CAPTCHAs variants or alternatives might be interesting,
but their security remains unknown until there is a public implementation
that can be studied. The fact that the movement sensor resides in the client
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Figure 2.17: Movement CAPTCHA design (Jiang and Dogan, 2015). The
user is asked to move her mobile device in order to move the corresponding

object to the desired location.

Figure 2.18: Physical CAPTCHA, or CAPPCHA design (Guerara et al.,
2017). The user is asked to rotate her mobile device to a certain degree

prior to access some other security measure.

machine, and this, might be simulated by software, and also that the whole
mobile platform can be simulated by software, shadows some concerns about
these alternatives.

Human mistakes If there was a simple, automated way to detect humans
by the known mistakes that they make, typically related to well-known
perception effects, we could use this idea to create a CAPTCHA that would
create challenges and allow only to pass of the answers include these perception
known biases. This idea is for example used in a patent from the web seller
Amazon (McInerny et al., 2017) (see figure 2.19). There are problems to solve,
though. If there is an automated way to grade these challenges, there is an
automated way to solve them. Additionally, with enough data, it might be
possible to train a ML algorithm, particularly a DNN, to mimick the errors
made by the human perception.
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Figure 2.19: Example challenge from the proposed Amazon CAPTCHA
asking the user to read just once a sentence while counting the appearances

of a particular character (McInerny et al., 2017).

2.4.8 So-called “behavioural” CAPTCHAs

Even though many bot detection mechanisms are marketed as “no-CAPTCHA”
alternatives, they are a mix of CAPTCHAs and algorithms to decide whether
to display them or not as well as with what level of difficulty. These different
proposals typically resort to some conventional CAPTCHA when they deter-
mine that there is not enough information. They constitute one of the main
current trends in the CAPTCHA world. They sometimes call themselves
behavioural analysis, which is a fancy term to refer to more or less typical
mechanisms to automatically create blacklists of potential attackers and/or
white-lists of low-risk users. These mechanisms associate a level of potential
danger to each different11 client.

The current trend is to decide to show or not a CAPTCHA challenge
depending on the associated risk level. Also, the difficulty of the challenge
presented to the user might be affected by this risk level. This can mean that
a user is faced with successive hard CAPTCHA challenges for no obvious
reason apparent to her.

This idea is strongly related to blacklists/white-lists, as seen in
11Note that the word different here means different as regarded per the server. This

does not necessarily mean a real different client, depending on the possible scenarios.
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section 2.3. Depending on its particular implementation, it can be considered
a white-list, allowing some users to bypass the CAPTCHA, or a blacklist,
increasing the difficulty of the access to some users through CAPTCHAs
created using their hardest security settings. It can also be implemented as a
combination of both.

This idea is an example of Security through Obscurity, as the me-
chanisms used to assess the risk of the different clients are not public, and
their strength relies precisely on these mechanisms not being known.

2.4.8.1 reCAPTCHA

This trend has been accepted by the current main actor in the CAPTCHA
scenario, which is Google. Already in 2014, they commented that “we
have significantly reduced our dependence on text distortions as the main
differentiator between human and machine (...) and instead perform advanced
risk analysis”12.

Going in more detail, Google reCAPTCHA Product Manager Vinay
Shet described that “Google has begun actively considering the user’s entire
engagement with the CAPTCHA: before, during and after they interact with
it. That means that today the distorted characters serve less as a test of
humanity and more as a medium of engagement to elicit a broad range of
cues that characterize humans and bots”13. This is not new, as the general
idea of using a client’s interaction with a web-page or web-site to measure
her chances of being human are already present in Baird and Bentley (2005).

Further in this direction, in December 2014 Google introduced
something that they called “No CAPTCHA reCAPTCHA”. This was an initial
public relations success, as the words “No CAPTCHA” were understood as
that Google got rid of the need of using CAPTCHAs altogether thanks to
their technology. When it was better explained, it was understood that it
was just another step in the same direction, in which they would white-list
some users of which Google had enough data as to associate to them a very

12From The Atlantic article “CAPTCHAs Are Becoming Security Theatre”, lo-
cated at http://www.theatlantic.com/technology/archive/2014/04/captchas-are-
becoming-security-theater/360786/, retrieved in 2016.

13From the Google Security Blog post “reCAPTCHA just got easier (but only if you’re
human)”, located at https://security.googleblog.com/2013/10/recaptcha-just-
got-easier-but-only-if.html, retrieved on 2016.

http://www.theatlantic.com/technology/archive/2014/04/captchas-are-becoming-security-theater/360786/
http://www.theatlantic.com/technology/archive/2014/04/captchas-are-becoming-security-theater/360786/
https://security.googleblog.com/2013/10/recaptcha-just-got-easier-but-only-if.html
https://security.googleblog.com/2013/10/recaptcha-just-got-easier-but-only-if.html


2.4 CAPTCHA design variants 49

low level of risk (Shet, 2014a).

2.4.8.2 Other “behavioural” proposals

Google has not been the first to follow this path. Another example is
NuCaptcha. They proposed an improved OCR/text CAPTCHA that incor-
porated moving characters. Their system uses a combination of what they
call a “behaviour analysis system to monitor all interactions on the platform”
and modify the difficulty of the CAPTCHA challenge14.

There are more examples of this trend. One of them is Mollom,
which uses the same ideas, and finally falls back to their own CAPTCHA if a
user’s risk assessment is high or unknown15. Another example is Capy16. They
introduced a puzzle CAPTCHA that was broken (Hernández-Castro et al.,
2014). After they were contacted with the attack info, they introduced “Capy
Risk-Based Authentication”, an “authentication system which takes into
account the profile of each user requesting access to the system to determine
the (login) history”17. An additional example is Are You a Human, that
introduced the PlayThru CAPTCHA, and after it was broken by Mohamed
et al. (2013), started offering their Real Time Human Detection and Verified
Human Whitelist solutions18.

2.4.8.3 Discussion of “Behavioural” Analysis

The use of behavioural analysis is prone to errors that can miss-classify a legit
user for an abuser, leaving her with the need to pass a CAPTCHA challenge
for every petition.

The bottom point is that the so-called behavioural analysis introduces
a benefit and some possible drawbacks:

14From http://www.nucaptcha.com/security-features, retrieved on November
2016.

15From https://www.mollom.com/how-mollom-works, retrieved on November 2016.
16Located at https://www.capy.me/, retrieved in November 2016.
17From https://www.capy.me/products/risk_based_authentication/, retrieved in

November 2016.
18Both approaches are described at https://areyouahuman.com/solutions, retrieved

on November 2016.

http://www.nucaptcha.com/security-features
https://www.mollom.com/how-mollom-works
https://www.capy.me/
https://www.capy.me/products/risk_based_authentication/
https://areyouahuman.com/solutions
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• Typically, legit users that have a long-enough (or apparently-secure-
enough) track will be able to bypass the CAPTCHA while their track
is still apparently-secure-enough, but . . .

• An abuser that hijacks the profiles of these users (for instance, through
a botnet) might use them to further abuse, lowering their security
assessment, and forcing them to solve CAPTCHA challenges for their
real queries that, in turn, will allow further attacks.

• If there is not enough data from a user, if the user is somehow related
to a case of abuse (same sub-network, etc.), or if the user wants to
keep her privacy through the use of semi-anonymous networks as Tor
or web browsers with high privacy settings, then it will have to turn
to its base-case scenario and present CAPTCHA challenges to these
legit users, maybe using a hard version of them. This, that was the
common and accepted behaviour before, is now seen as a discrimination
compared to other users.

The recent controversy between Cloudfare19 and Tor developers and
users has lead is a good example of the latter case. This controversy has led
to a war of declarations between both20 and a privacy threat (Anonymous,
2016).

In 2016, after a number of complaints, and looking to achieve an
increase in usability, Cloudfare started developing a plug-in that sits on the
client’s browser and allows to limit the number of CAPTCHAs presented to
the client under certain circumstances21.

Cloudfare still requires an initial CAPTCHA solution, but in certain
scenarios, future challenges to the user can be avoided, as they are controlled
centrally by the browser plug-in. This idea is not really an alternative to
CAPTCHAs, as the solution itself incorporates a CAPTCHA in order to
work. What it does is centralise the CAPTCHA information in the browser
and share it with different servers through cryptographic protocols.

19Cloudfare provides security services, cache/proxy services and DNS services, placing
their servers between the web-site client and the server (their clients).

20March 2016 Cloudfare blog article “The Trouble with Tor” by Matthew Prince, CEO
& Co-Founder of Cloudflare, located at https://blog.cloudflare.com/the-trouble-
with-tor/.

21More information at Cloudfare development folder at GitHub at https://github.
com/cloudflare/challenge-bypass-specification/blob/master/captcha-bypass-
formal-spec.txt.

https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
https://github.com/cloudflare/challenge-bypass-specification/blob/master/captcha-bypass-formal-spec.txt
https://github.com/cloudflare/challenge-bypass-specification/blob/master/captcha-bypass-formal-spec.txt
https://github.com/cloudflare/challenge-bypass-specification/blob/master/captcha-bypass-formal-spec.txt
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In summary, the so-called “behavioural” mechanisms are heavily
based in Security through Obscurity, that as we have mentioned in section
2.2.2, is not a time-proof way of designing security measures.

As an example of this, some of these CAPTCHA proposals have
been broken, as we will explain in section 2.5.6.

A major influence on the evolution of CAPTCHA design has been
the different successful attacks against them. In the next section, we present
the most relevant attacks against CAPTCHAs.

2.5 Attacks against CAPTCHAs

One key element affecting CAPTCHA design remains to be introduced,
and that is the different attacks that have been successfully able to break
CAPTCHAs/HIPs. These attacks have strongly guided the evolution of
CAPTCHA/HIP design. Not all attacks have been public, and is not unusual
to see that a CAPTCHA design evolves without presenting a reason why. In
general, the evolution of CAPTCHAs design has followed a path to avoid
known weaknesses, so it is reasonable to assume that the main attacks, those
more fundamental to their design, have seen the light.

Much as Cryptography and Cryptanalysis evolve in tandem, so do
CAPTCHA design and CAPTCHA breaking. In IT Security it is fundamental
to assess the security of a proposal. If not, a false sense of security might
arise, and translate into very low levels of real protection.

In this section we present the most significant attacks to the different
types of CAPTCHA designs mentioned in section 2.4.

2.5.1 Attacks to text recognition (OCR) CAPTCHAs

In the early 2000s, two CV researchers used their already developed framework
for object detection to successfully break both the EZ-Gimpy CAPTCHA
in use at Yahoo! and the hard Gimpy CAPTCHA (Mori and Malik, 2003).
Their work is notable because of two aspects. It was the first research paper
that was peer-reviewed and published that focused on finding weaknesses
on a CAPTCHA and breaking it. The second important aspect is that it
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Figure 2.20: Example of Mori & Mali attack to the Gimpy CAPTCHA
using their first algorithm: (a) is the original Gimpy challenge (b) edge
detection output (c) hypothesized bigrams (d) pixels remaining after
guessing the word “round” and removing its pixels (Mori and Malik,

2003).

Figure 2.21: Example of Mori & Mali attack to the Gimpy CAPTCHA
using their second algorithm: (a) is the original Gimpy image (b) Lo-
cations of hypothesized characters (c) direct acyclic graph of possible
strings (d) scores of top matching words and their graphs after pruning

and dictionary check (Mori and Malik, 2003).

showed some weaknesses of the hard Gimpy CAPTCHA, but contrary to the
assumptions of Ahn et al. (2003), these weaknesses and their exploit were not
clearly applicable to any OCR/text CAPTCHA, thus not improving the state-
of-the-art of OCR. Contrary, these weaknesses were related only to the way
in which these particular CAPTCHAs obfuscated the characters. Figure 2.20
shows their first attack, in which they locate possible characters through edge
detection and hypothesize different bigrams based on their likelihood. Figure
2.21 shows their second attack, in which they also find possible locations for
characters based on edge detection and prune the possible strings using a
dictionary.

This started the arms race between CAPTCHA developers and
breakers - note that many times, the same researchers have tried to work
in both bands. An example is professor Mori, who advised on the design
of NuCAPTCHA (NuCaptcha, 2016), an animated OCR/text CAPTCHA,
later broken almost simultaneously by Bursztein (2012) and Xu et al. (2012).
Another such example is the work of Professors Chellapilla and Simard from
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Microsoft, in which they break different OCR/text CAPTCHAs and identify
segmentation as the most challenging tasks for the attacking algorithms.
Then, they designed an OCR/text CAPTCHA that bases its strength in
the segmentation problem and deployed it at Microsoft (MSN Passport)
(Chellapilla and Simard, 2005, Chellapilla et al., 2005b,a).

This arms race is very much similar to the one in which Cryptography
& Cryptanalysis have been involved for hundreds of years. That race has
created stronger cryptographic algorithms, and also allowed us to better
understand the foundations of the security of cryptosystems. With the implicit
intuition that a similar race would help evolve the security of CAPTCHAs,
many researchers and developers engaged in this race in the following years.
Other researchers explicitly mention this hope, as Gao et al. (2016) and Yan
and Ahmad (2008).

In 2005, Chellapilla and Simard were able to attack several OCR/-
text CAPTCHAs in use. Their work led to the proposal that new OCR
CAPTCHAs schemes should be based on hard-segmentation problems (Chel-
lapilla et al., 2005a,b). Several approaches have focussed on making this
division harder, sometimes at the expense of making it also harder for the
human user.

In 2007, Yan and Ahmad (2007) were able to successfully attack
Captchaservice.org using quite unsophisticated but effective algorithms. In
order to do so, they used pixel-counting of contiguous regions for character
detection as well as vertical pixel counting for segmentation, attaining a
36% success rate. Adding a dictionary look-up assisted by a total pixel sum
matching, as well as a dictionary pruning for characters with similar pixel
count, as well as some other simple heuristics, they attained a 94% success
rate, again increased up to 99% with additional heuristics.

Even though by 2007 most OCR CAPTCHAs had been defeated
one or several times, the main trend for companies was to update these
CAPTCHAs to try to evade the current attacks, typically making segmenta-
tion harder.

In 2008, Yan and El Ahmad publish again an attack on the CAPTCHA
deployed by Microsoft in services like Hotmail, MSN and Windows Live. This
CAPTCHA had been designed specifically to be segmentation-resistant (for
an example of this, see Figure 2.22), and was partially based on the works
of well-known experts in CAPTCHA analysis(Chellapilla and Simard, 2005,
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Figure 2.22: Example from the Microsoft CAPTCHA in 2008 (Yan
and Ahmad, 2008). Note the lines drawn at random to try to prevent

segmentation.

Figure 2.23: Example of the segmentation of a challenge from the Mi-
crosoft CAPTCHA (Yan and Ahmad, 2008). In this image we can see

their segmentation phase.

Chellapilla et al., 2005b,a), working with an “interdisciplinary team of diverse
expertise in Microsoft including document processing and understanding, ML,
HCI and security” (Yan and Ahmad, 2008).

In order to segment these characters, Yan and El Ahmad use a similar
idea to that they had already used before (Yan and Ahmad, 2007) based on
counting pixels per columns. This time they also detect continuity of groups
of pixels by flood-filling. This idea helps with those chunks of characters
not correctly segmented by using the vertical pixel histogram that contains
more than one character. Figure 2.23 shows an example of their segmentation
phase: using a vertical pixel histogram, their algorithm is able to identify
the different segments |X|TNM|5Y|RE| and |6|6|MG|28G|U|. Using flood-fill
colouring, it is able to identify TNM and 28G as triple characters, and 5Y,
RE and MG as doubles. Double characters are segmented by averaging their
width. Yan and El Ahmad enhance their algorithm with some heuristics for
the removal of arcs. With these simple algorithms, they are able to break the
Microsoft CAPTCHA on 92% of the occasions (Yan and Ahmad, 2008).

In 2010, El Ahmad and Yan are able to break the CAPTCHA of
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Figure 2.24: Example of restoration of a challenge from the Megaupload
CAPTCHA (El Ahmad et al., 2010).

a popular file sharing (Megaupload.com) that used substantial overlapping
to avoid segmentation. They did so identifying and merging character com-
ponents (El Ahmad et al., 2010). Figure 2.24 shows an example of their
attack, working to reconstruct the characters NAQ6. In this figure, (a) shows
the original Megaupload challenge, where the characters heavily overlap in
order to avoid segmentation attacks; (b) is the result of the extraction of
black components, and (c) of white components (excluding the background).
Subfigure (d) shows the extraction of shared components, and (e) the merging
of them along with the ones from (b) into the original characters.

An important break work was published by Bursztein et al. (2011,
2014). It uses ML to attack both character segmentation and recognition
simultaneously, scoring hundreds of different possible segmentation decisions.
They use well-known ML algorithms like kNN, a voting mechanism based on
ensemble learning and resembling Random Forests, reinforced learning for
validating the segmentation segments, etc. Their approach is able to break
all the most used OCR CAPTCHAs of the time, like the ones used by Baidu,
eBay, reCAPTCHA, Yahoo! or the Wikipedia.

In 2016, Gao et al. (2016) published another generic attack for OCR
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CAPTCHAs. Gao’s attack is based on Log-Gabor filters. A 2D Gabor filter
is a Gaussian kernel function that is being modulated by a sinusoidal plane
function. Over 2D Fourier or DCT transforms, 2D Gabor filters have the
advantage of being able to localise the origin of the frequency. These filters
are thought to be able to model the response of the neocortical neurons, and
thus be similar to how the first steps of the perception works in the human
visual system. Gao et al. (2016) use them to break the characters into their
different components.

Figure 2.25 shows an example, where subfigure (a) shows the char-
acter components of a CAPTCHA challenge from QQ (each component is
painted in different colours), and subfigure (b) shows the same segmentation
of components for a challenge from the CAPTCHA at Microsoft. Gao et al.
(2016) use kNN to choose the most probable word from the graph of character
components. When they try their attack on CAPTCHAs deployed by the
top 20 most popular websites according to Alexa ranking, they found that
their attack successfully breaks all of them, with success rates varying from
5% for Yahoo! up to 77.2% for reCAPTCHA. They reach these rates with no
pre-processing, even for hollow characters.

Figure 2.25: Example of segmentation of character components using
Log-Gabor filters (Gao et al., 2016).

The attacks of Bursztein et al. (2014) and especially Gao et al.
(2016) that affect several OCR/text CAPTCHAs do pose a question mark
on the possibility of continuing to use OCR/text CAPTCHAs as a security
mechanism, at least in the ways they are used now.

Yet as bad as they are, they might not be the most devastating
attacks to OCR/text CAPTCHAs. Starting in 2012, results attained with
NNs (Neural Networks) started to increase in accuracy, thanks the availability
of more examples, new network architectures, units and training algorithms
and new ways to use parallel hardware (GCGPUs, or General Computing
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on Graphical Processing Units). This lead to a significant increase in the
accuracy of NNs. This has a major repercussion on CAPTCHAs. For further
discussion on this, we refer the reader to section 2.6.1.

During the evolution of the research in OCR CAPTCHAs, it was
seen that distortions to characters have their limits, especially when computers
are better at recognising single characters, and segmentation can be solved
using NNs and other methods. Thus, some researchers looked into how to
still use characters, but using a different representation that could be made
harder for machines. This is how the ideas of 3D OCR CAPTCHAs and
animated character CAPTCHAs started.

3D OCR/text CAPTCHAs The Teabag 3D CAPTCHA is a 3D OCR
CAPTCHA designed by a very knowledgeable group of CAPTCHA security
analysts and programmers called the OCR Research Team (Kolupaev and
Ogijenko, 2013). This 3D OCR/text CAPTCHA was broken by Nguyen et al.
(2011, 2014b) in what is the first breakage of a CAPTCHA of this type. Figure
2.26 illustrates how their attack works: first, it performs character extraction
by distinguishing triangles of different sizes and shadows, following it performs
the segmentation of these elements, next it does some post-processing in order
to remove artifacts, and finally it recognizes the characters. Some ideas on
how to attack it previously appeared in Hernandez-Castro and Ribagorda
(2009a). Other 3D OCR/text CAPTCHAs proposals broken by the same
authors include the one they call 3dcaptcha and Super CAPTCHA (Wells,
2011).

Some other proposals, including a 3D moving CAPTCHA (Kund,
2011) as well as a 3D CAPTCHA that uses the human ability of stereoscopic
vision (Susilo et al., 2010) have not been implemented yet, so it is not possible
to properly assess their strength.

Animation of OCR/text CAPTCHAs The “zero knowledge per frame” prin-
ciple (Cui et al., 2010) was used in several production CAPTCHAs. In 2012,
Nguyen et al. successfully attacked several OCR/text animated CAPTCHAs
(Nguyen et al., 2012a). HelloCAPTCHA, another example of this idea, was
also broken by Nguyen et al. (Nguyen et al., 2012b) using different frames
from the animation and detecting the different elements. Figure 2.27 shows
an example of their processing pipeline breaking one challenge from Hel-
loCAPTCHA. NuCaptcha (NuCaptcha, 2016), a similar OCR CAPTCHA
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Figure 2.26: Steps to break the Teabag 3D CAPTCHA in successive
order (Nguyen et al., 2011).

that added animation to its characters, was broken by Bursztein (2012) using
different techniques like Scale-Invariant Feature Transform (SIFT) to find
interesting regions, isolating the most “interesting” object in each frame,
detecting the most interesting 50 frames, and then using their previously
published techniques for segmentation and recognition (Bursztein et al., 2011,
2014).

Alternative OCR/text CAPTCHAs Ideas The Quantum Random Bit Gen-
erator Service CAPTCHA was based on a completely new idea, and gained
widespread publicity, both positive and negative. Hernandez-Castro and Rib-
agorda (2010) found that this CAPTCHA has important design limitations
that render it vulnerable. Possibly the most important one was the skewed
distribution of correct answers and that the answers were all integers. For
example, for the tests based on derivatives, 0 is by far the most common
correct answer. Also, it was possible to use the CAPTCHA as an oracle.

Captcha2 was a strange commercial proposal, as since the work of
Chellapilla et al. (2005a) it is understood that a proposal like this would very
probably be able to be broken using CV/ML methods. Thus Captcha2 made
special emphasis in character obfuscation techniques. Hernandez-Castro,
Hernandez-Castro, Stainton-Ellis and Ribagorda (2010) were able to break it
using straight-forward methods for background removal and pixel counting of



2.5 Attacks against CAPTCHAs 59

Figure 2.27: Steps to break Hello CAPTCHA (Nguyen et al., 2011).
First, the frames are analysed to extract a single image. The rest of the

steps are common with other OCR CAPTCHAs.

the different contiguous regions. This was possible because it had the major
flaw of using bigger font sizes for the correct characters.

2.5.2 Attacks to language/semantic CAPTCHAs

TextCAPTCHA, a textual question generator, presents important design flaws
that allow to easily reverse-engineer it. In particular, it is straightforward to
detect which subtype of challenge it is using, and thus apply an ad-hoc solver
to each case.

The Egglue CAPTCHA uses a proprietary algorithm, accessible
through a web service, that creates two sentences that the user has to fill
in with the correct verb. Its mechanisms remained as a black-box, with no
information on how Egglue created and marked the challenges. After some
research, it was seen that the algorithm it is using for marking a challenge
was not strong. For example, it allowed using general verbs successfully even
for sentences for which they did not make sense. Figure 2.28 shows that
some verbs have a success rate over 90%, which is clearly not related to the
distribution of appearances of verbs in English. This also implies that several
sentences are considered correct with many different verbs. Both CAPTCHAs
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Figure 2.28: Verbs and success rates for the Egglue CAPTCHA
(Hernandez-Castro et al., 2011).

were broken by Hernandez-Castro et al. (2011).

2.5.3 Attacks to image classification CAPTCHAs

The HumanAuth CAPTCHA requests to distinguish between pictures de-
picting either a natural object (a tree) or an artificial one (a watch). It
was an Open Source project that was shipped with 69 pictures, very lightly
obfuscated using a watermark. This obfuscation did not serve much, as each
image had assigned a textual description for the visually impaired (Gigoit,
2006). It was easily broken using some simple metrics from each image mea-
sured using the ENT pseudorandom number sequence test program from the
Fourmilab22 and training an ML classifier on these metrics. This was possible
even when the CAPTCHA was using the watermark and the attack did not
take advantage of the textual description (Hernandez-Castro, Ribagorda and
Saez, 2010, Fritsch et al., 2010).

The ASIRRA CAPTCHA published an initial security assessment,
and even more, their authors provided a training set for anyone willing to
try their ML algorithms on it. Golle (2009) experimented with similar ML
methods to the ones used by the creators of ASIRRA, using different features
to train a SVM classifier. His SVM used a radial basis kernel. The most
successful features where boolean colour presence (if a colour was or not
present in a certain part of the image) and 5 × 5-pixel texture features,
selected at random and filtered to be different enough (an example is shown

22Available at http://www.fourmilab.ch/random/.

http://www.fourmilab.ch/random/
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Figure 2.29: Example of 5x5-pixel textures used as features for the SVM
(Golle, 2009). They were extracted randomly, and then filtered in order

not to use too similar ones.

in Figure 2.29). Golle was able to break ASIRRA with a success rate of 10.3%
(82.7% accuracy for a single image).

Next, we will present attacks related to other CAPTCHAs also
based on images, but not on a typical image-classification problem, yet in
other problems that are related to CV.

Alternative Image-based Ideas The IMAGINATION CAPTCHA (Datta
et al., 2005) has two phases. The first one, most interestingly, asks the user
to click in or around the centre of any of the images that form a mosaic. This
mosaic of images is created in a way that makes it difficult for known CV
techniques to segment it. This phase presents some usable deviations from
random that might render it vulnerable (Hernandez-Castro and Ribagorda,
2009a). This proposal was broken by Zhu et al. (2010a) using a clever
algorithm to find candidates for image boundaries (shown in Figure 2.30).

Another such example was the proposal by Gossweiler et al. (2009)
from Google Research. Their CAPTCHA presents rotated images to the user.
The user has to rotate them back to their original orientation. The brute
force attack success rate will depend on the tolerance of accepted answers.
Taking into account the data given by Gossweiler, their CAPTCHA accepts
an answer within a 16ž margin. In this set-up, they report a brute-force
success rate of .009% for a challenge with three images. The success rate for
a single image seems to be 3√0, 00009 ≈ 4, 48%, too high for a production
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Figure 2.30: Example of edge detection for a first challenge of the IMAG-
INATION CAPTCHA (Zhu et al., 2010a). (a) is the original image (b)
is the map of edge candidates (c) is the complete edge map (d) shows

the horizontal and vertical line segments detected.

CAPTCHA. This proposal was never implemented at large scale by Google,
so a proper analysis is pending.

Face Classification and Identification Several proposals have used the prob-
lem of gender recognition of face pictures (Kim et al., 2014, Sim et al., 2014,
Gosschalk and Ford, 2016, Schryen et al., 2016). The only one that was
put into production is FunCAPTCHA (Gosschalk and Ford, 2016), that we
analyse in Chapter 5. FaceDCAPTCHA (Goswami et al., 2014a) and FR-
CAPTCHA (Goswami et al., 2014b) are two CAPTCHAs based on human
face recognition. FR-CAPTCHA asks the user to find matching pairs of
human faces in an image. FaceDCAPTCHA presents images of both real and
fake faces, distorted and partially occluded, and asks the user to select the
images containing real faces. Both were broken by Gao et al. (2015). They
employed edge detection and SVM classification to differentiate the images of
real and fake human faces using as features color, texture, LBP, SIFT and
Laws’ Masks in order to break FaceDCAPTCHA. To break FR-CAPTCHA,
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they extract four features and compare them amongst the images to find
probable pairs.

Facebook studied the use of their face identification data as the
base for a CAPTCHA. This CAPTCHA proposal was analysed by Kim
et al. (2012) finding possible attacks. It was later broken using well known
classifiers: they try both kNN and SVC with better results, but choose kNN
as results are similar and it is computationally less expensive. They gather
the training data from public data, obtaining a 22% success rate. Figure 2.31
shows their results: overall they solve correctly 28/127, identifying correctly a
minimum of five of the seven friends presented. More so, in 71 additional tests
(71/127 = 56%), their attack identifies correctly two to four friends, so the
attacker can perform brute-force guessing attacks with O(10−1) to O(10−2)
success rates. Optionally, they perform a social engineering attack to reach
“sensitive” data. They do so using fake Facebook profiles to befriend friends
of the target. With the data collected through social engineering, they reach
a 100% success rate (Polakis et al., 2012).

Figure 2.31: Success rate of the attack against the Facebook Social
Authentication CAPTCHA (Polakis et al., 2012). Facebook requires a
minimum of five correctly classified faces from friends in a set of seven

challenges.
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Figure 2.32: Background detection for a drag & drop game CAPTCHA
(Mohamed et al., 2013). Each row shows the detection of non-moving

background for a challenge.

Figure 2.33: Target detection for a drag & drop game CAPTCHA (Mo-
hamed et al., 2013). Here we detect the objects that are movable.

2.5.4 Attacks to game-like CAPTCHAs

One of the first production CAPTCHAs to use gamification techniques is
the one created by Are You a Human, their PlayThru CAPTCHA. It is
composed of small drag & drop games. They use simple heuristics to detect
the background: Figure 2.32 shows the different steps of this detection.
Similarly they detect the foreground objects (the detection steps are shown
in Figure 2.33), as well as learning from the objects by remembering them,
Mohamed et al. (2013) are able to easily break this CAPTCHA.
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Figure 2.34: Wavefront recognition of digits in Google Audio CAPTCHA
(Santamarta, 2008). Given that the digits are spoken with a volume
higher than the background noise, their waveform remains similar each

time.

Figure 2.35: Recognition of digits in Google Audio CAPTCHA (Santa-
marta, 2008). In these case, the digits are 6− 6− 2− 0− 1− 5− 7− 6.

2.5.5 Attacks to audio CAPTCHAs

Santamarta (2008) showed that the Google audio CAPTCHA could be broken
using very basic methods. In particular, it was possible to detect the charac-
teristic wave and FFT of each digit spoken (see Figure 2.34), and because they
were played with higher volume than the background noise, it was possible to
distinguish them (see Figure 2.35).

Another successful attack on it was based on well-known ML algo-
rithms, in particular using AdaBoost, SVM, and kNN for both letter and digit
recognition (Tam et al., 2008). They used a static window size, and train on
well-known features for NLP, in particular, twelve MFCCs and twelfth-order
spectral and cepstral coefficients from PLP and RASTA-PLP. The functions
to do so are included in the Voicebox package. They are able to break Google
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Audio CAPTCHA with a 67% success rate, Digg with a 71% success rate and
reCAPTCHA with a 45% success rate. The approach they use is thus quite
straightforward for speech recognition specialists, and it is a bit surprising
that the CAPTCHAs of these important companies have not been tested for
similar attacks.

With the recent advances in DL, there has been an important
improvement in speech recognition. Thus the gap between humans and
machines has got thinner (Hannun et al., 2014). The idea of using speech
recognition as the base for an audio CAPTCHA might not be useful any-more.
This leaves fewer alternatives for vision-impaired persons.

2.5.6 Attacks to “behavioural” CAPTCHAs

These currently constitute one of the main trends in the CAPTCHA world.
That does not mean that they are more secure than the alternatives. Even
though “No CAPTCHA reCAPTCHA” used extreme obfuscation code for
their Java Script client code and client-server communications, within a week
from its release it was broken23. The information on this research was not
available for some months as per request from Google24.

This reverse-engineering allowed to understand the local metrics
that Google’s reCAPTCHA was using. Among the metrics used were the list
of plug-ins installed in the browser, the user-agent string, screen resolution,
execution time, time-zone, number of user actions inside the CAPTCHA
iframe, the behaviour of some CSS rules and functions that are typically
browser-specific, whether the browser renders canvas elements, etc.25

Other security flaws of “No CAPTCHA reCAPTCHA” were also
soon pointed out (Homakov, 2014). Even though the “No CAPTCHA re-

23The details can be found https://github.com/neuroradiology/InsideReCaptcha.
24The author of the reverse-engineering posted that “I received an email from Google

requesting the following: “The code you reversed is used to protect many sites’ registration
process including Google and many others. We are concerned that having your code and
analysis publicly available will make it easier to build registration automation tools [...]This
is why we kindly ask you to temporarily remove it [...]” I removed the GitHub repository
for now. [...] Google also proposed me to come visit them in their offices to discuss about
my work.” Comment located at https://www.reddit.com/r/netsec/comments/2or9e3/
reverseengineering_the_new_captchaless_recaptcha/cmqna04/).

25Information taken from the GitHub “neuroradiology/InsideReCaptcha” repository at
https://github.com/neuroradiology/InsideReCaptcha

https://github.com/neuroradiology/InsideReCaptcha
https://www.reddit.com/r/netsec/comments/2or9e3/reverseengineering_the_new_captchaless_recaptcha/cmqna04/
https://www.reddit.com/r/netsec/comments/2or9e3/reverseengineering_the_new_captchaless_recaptcha/cmqna04/
https://github.com/neuroradiology/InsideReCaptcha
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CAPTCHA” increases usability in certain scenarios, it does not seem to
increase security in any case, and indeed presents new potential flaws.

Later on, researchers published an easy to implement attack both
on the “behaviour” client-side metrics and on the image CAPTCHA that
Google sometimes presents to the users (Sivakorn et al., 2016a). This attack
is based on design flaws of “No CAPTCHA reCAPTCHA” and in readily
available image classification APIs and libraries that use DL. It breaks “No
CAPTCHA reCAPTCHA” with a 70% success rate, and has a 83% success
rate against the Facebook image CAPTCHA that is “shown to users when
they send messages to other users that contain suspicious URLs” (Sivakorn
et al., 2016b). The authors of the attack report that “Following our disclosure,
reCaptcha altered the safeguards and the risk analysis process to mitigate
our large-scale token harvesting attacks. They also removed the solution
flexibility and sample image from the image CAPTCHA for reducing the
attack’s accuracy”. (Sivakorn et al., 2016b). But it is understood from
this that even though their particular attack might be less successful now,
variations of it can still be able to bypass it.

NuCaptcha uses a combination of what they call a “behaviour
analysis system to monitor all interactions on the platform” to modify the
difficulty of the CAPTCHA challenge26, relying in an improved OCR/text
CAPTCHA that incorporated moving characters. Note that this did not
prevent the attack by Bursztein (2012) that successfully breaks it.

Summary We have presented the most well-known and influencing attacks
to several types of CAPTCHAs. This is by no means a complete list of
attacks, in fact there are many more attacks published on particular schemes
and subtypes, but in this list we include the attacks that influenced most the
evolution of the different subtypes of CAPTCHAs.

As a summary, we present Table 2.1, in which we list each CAPTCHA
and type mentioned, along with the mentioned attacks against them. The
last column represents whether the attack solves the base AI-hard problem,
or at least it is a step in that direction. As can be seen, most attacks cannot
be classified as such, as they are side-channel attacks that decode enough
information as to bypass the CAPTCHA.

26From http://www.nucaptcha.com/security-features, retrieved on November
2016.

http://www.nucaptcha.com/security-features
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Table 2.1: Some of the main attacks on well-known CAPTCHAs.

Category CAPTCHA Attack method Solves /
improves
base
problem

OCR Gimpy Edge detection, likelihood
of bi-grams or words, dictio-
nary attack (Mori and Malik,
2003)

no

OCR MSN/Hotmail,
Register.com,
Yahoo!, Tick-
etmaster,
Google

Segmentation is trivial, NNs
for character recognition
(Chellapilla and Simard,
2005)

no

OCR Captchaservice Pixel counting, flood-filling,
vertical pixel counting, dic-
tionary look-up (Yan and
Ahmad, 2007)

no

OCR MSN Flood-filling, vertical pixel
counting, arc removal al-
gorithm (Yan and Ahmad,
2008)

no

OCR Megaupload Identifying and merging
character components
(El Ahmad et al., 2010)

no

OCR Baidu, eBay,
reCAPTCHA,
Yahoo!,
Wikipedia

ML to do both character seg-
mentation and recognition,
scoring possible segmenta-
tion decisions (Bursztein
et al., 2011, 2014)

possibly

OCR reCAPTCHA,
Yahoo!, Baidu,
Wikipedia,
QQ, Microsoft,
Amazon,
Taobao, Sina,
Ebay

Log-Gabor filters for seg-
mentation, kNN to choose
most probable word (Gao
et al., 2016)

possibly

OCR reCAPTCHA DNN (Goodfellow et al.,
2013)

yes
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OCR/ 3D Teabag,
3dCAPTCHA,
Super-
CAPTCHA

Distinguishing triangles for
segmentation and recogni-
tion (Nguyen et al., 2011,
2014b)

no

OCR/ ani-
mated

several27 Pixel delay map to detect re-
gions not moving, catching
line to detect characters dis-
played at a particular height
(Nguyen et al., 2012a)

no

OCR/ ani-
mated

Hello
CAPTCHA

Using different frames from
the animation and detect-
ing the different elements
(Nguyen et al., 2012b)

no

OCR/ ani-
mated

NuCaptcha Using SIFT to find inter-
esting regions, isolating the
most “interesting” objects
and detecting the most inter-
esting 50 frames(Bursztein,
2012)

no

OCR/
Math

QRBGS Skewed answer distribution
(Hernandez-Castro and Rib-
agorda, 2010)

no

OCR Captcha2 Pixel counting (Hernandez-
Castro, Hernandez-Castro,
Stainton-Ellis and Rib-
agorda, 2010)

no

Text/
Logic

Text
CAPTCHA

Easy to parse (Hernandez-
Castro et al., 2011)

no

Text/
Semantic

Egglue Flawled grading routine
(Hernandez-Castro et al.,
2011)

no

27SiteBlackBox, Animierte CAPTCHA, Sandbox, CharitelBilling, iCaptcha, Atlantis,
AmourAngels, SnapPages, Bayu, BulletDrive, CAPTCHANIM, Dracon CAPTCHA, KillBot
Professional.



70 Background and related work

Image/
Classifica-
tion

HumanAuth Small DDBB, watermark
does not prevent recogni-
tion using random metrics
and ML (Hernandez-Castro,
Ribagorda and Saez, 2010,
Fritsch et al., 2010)

no

Image/
Classifica-
tion

ASIRRA Improved colour and texture
recognition (Golle, 2009)

yes28

Image/
Under-
standing

IMAGINATION Developed and algorithm
to find candidates for im-
age boundaries (Zhu et al.,
2010a)

no

Image/
Under-
standing

What’s Up Can be broken by brute-
force & learning

no

Image/
Face/ Iden-
tification

Facebook Using ML, training data
through social engineering
(Polakis et al., 2012)

no

Game Are You a Hu-
man

Simple heuristics to detect
the background and the fore-
ground objects, brute-force
learning (Mohamed et al.,
2013)

no

Audio Google Audio Detect the characteristic
wave and FFT of each digit
spoken (Santamarta, 2008)

no

Audio Google Audio,
Digg Audio,
reCAPTCHA
Audio

Using a static window size,
and training AdaBoost,
SVM, and kNN on well-
known features for NLP
(twelve MFCCs and twelfth-
order spectral and cepstral
coefficients from PLP and
RASTA-PLP) (Tam et al.,
2008)

possibly

28Golle’s approach is an advance in the state-of-the-art of the ability to automatic
classify images containing cats vs. images containing dogs.
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Image/
Face/ Iden-
tification

FR-
CAPTCHA

Extracts and matches four
features per face (Gao et al.,
2015)

no29

Image/
Face/ Fake
vs. Real

FaceD
CAPTCHA

Edge detection and SVM
classification, using as fea-
tures color, texture, LBP,
SIFT and Laws’ Masks

no

Behavioural No-
CAPTCHA
reCAPTCHA

Reverse-engineering their
obfuscation techniques30

no

Behavioural No-
CAPTCHA
reCAPTCHA

Test of behavioural metrics,
using DL for image classifica-
tion (Sivakorn et al., 2016a)

no

2.6 General attacks against CAPTCHAs

Most of the attacks against CAPTCHAs that we have introduced so far are
tailored to the specific type of challenge presented. This has been typically the
case in attacks against OCR CAPTCHA, text CAPTCHA, the first attacks
against audio CAPTCHA, and also many of the attacks against image-based
CAPTCHA.

Here, we present two additional attacks that have the potential to be
general, that is, can be applied to many types of CAPTCHAs. These attacks
do not necessarily imply that CAPTCHAs based on the AI-hard paradigm
are finished, nor that all CAPTCHAs proposals can be solved using them,
but they are a common threat that many new CAPTCHA proposals need to
tackle.

29Because of the low-number of features extracted, this approach cannot be scaled to
face identification with a large DDBB of faces.

30The details can be found at GitHub “neuroradiology/InsideReCaptcha” repository at
https://github.com/neuroradiology/InsideReCaptcha.

https://github.com/neuroradiology/InsideReCaptcha
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2.6.1 Deep Learning and game, audio and image-based
CAPTCHAs

NNs had been used successfully for character recognition (LeCun et al., 1989).
But the success of NNs for OCR and CV in general was limited, and not as
good as some other CV/ML techniques. In the 2000s, some proposals were
made to increase the recognition abilities using more advanced schemes. Some
of them included full training of complex systems through Graph Transformer
Networks (Lecun et al., 1998), and later, the improvement of these results
using several NNs through Multi-Column DNNs (Ciregan et al., 2012).

But it was in 2012 when Alex Krizhevsky was able achieved a
milestone benchmark using DCNNs (Deep Convolutional Neural Networks).
He used new training procedures, including regularization through “dropout”
and the ReLu activation function, and also used GPUs that allowed him for
inexpensive parallel computation (Krizhevsky et al., 2012).

NNs were not new, but for the first time it was possible to efficiently
train a NN with many layers. DL benefits from three main aspects: a) the large
increase in the sizes of the training sets, both labelled and unlabelled, thanks
to several efforts, crowd sourcing (like Amazon Turk), and the availability
of the Internet; b) the increase in parallel computing power thanks to the
evolution of the Graphic Processing Units (GPUs), initially created for 3D
gaming, also able to perform other highly parallel computations, and c) the
ability to leverage the two using improved architectures and improved training
methods.

Krizhevsky et al. results’ in the ImageNet challenge meant that
since them, most CV research has been done using DNNs, and the results
achieved have been much better than by any previous method. Since then,
the research in DL has experimented an explosion that has rendered great
progress in locating objects, interpreting images, reading text, recognizing
speech, and many other fields and applications.

In 2013, Google researchers used DCNNs to read street numbers
from Google Street View. They also applied the same NN to the hardest
version of their own reCAPTCHA. Their approach was able to break it with
99% success rate (Goodfellow et al., 2013).

Unfortunately, the consequence was that Shet, the product manager
of reCAPTCHA, concluded from this that “This shows that the act of typing
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in the answer to a distorted image should not be the only factor when it
comes to determining a human versus a machine” (Shet, 2014b), redirecting
their product towards the so-called “behavioural” analysis.

Currently, the same types of DCNNs that have been successful
at the ImageNet competition have also been successful at breaking image
classification CAPTCHAs like the one used by Google in their “No CAPTCHA
reCAPTCHA” system as well as the Facebook image classification CAPTCHA
(Sivakorn et al., 2016a).

When analysing a CAPTCHA, seldom we will be able to gather
large amounts of labelled data. For that reason is is more interesting that, in
some other cases, we will be able to use a DNN to learn high-level features in
an unsupervised way (Larsen et al., 2015). Figure 2.36 shows an example of a
DNN that has learned facial features in a completely unsupervised way. In this
case the DNN is composed of a Variational Auto Encoder (VAE) mixed with
a Generative Adversarial Network (GAN). This architecture is able to learn
high-level representations (features) unsupervised. From the third column
onwards, each column represents the generation performed by the network
when that attribute was added to the internal high-level representation of the
VAE, from the original image (first column). Once a NN has such high-level
representation, we can use it either with a DNN or with more typical ML
algorithms. We do that by feeding the activation of these features to a NN
layer or other ML algorithm for further classification. This opens exciting
new possibilities for automatic extraction of CAPTCHA parameter creation
attributes.

Game-like CAPTCHAs provide a different kind of interaction that
tries to mimic simple games. Recently, there has been significant advances
in the ability of DNNs to learn to play games in their own by reinforcement
learning, as learning to beat a series of Atari 2600 games just from pixels
(Mnih et al., 2015). At a higher level, computers have been able to learn
to master the ancient game of Go at top human level (Silver et al., 2016),
something that was considered extremely difficult just a decade ago.

Given these results, and even though it remains to be determined
to which level this is a possible compromise for future game-like CAPTCHAs,
it seems clear that the future of these alternatives cannot have them rely on
their game & control part for their security. The target of the game has to be
itself hard for computers. And even in this case, the recent advances like those
of Silver et al. (2016) present a difficult scenario for game-like CAPTCHA
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Figure 2.36: Example of a DNN that has learned abstract representations
equivalent to facial features, using unsupervised training (Larsen et al.,
2015). Unsupervised learning of features opens the door to learn using

CAPTCHAs as sources of content, when not as oracles.

designers.

We can distinguish three issues related to the use of DNNs to learn
to solve CAPTCHAs.

Adversarial Learning Generative Adversarial Networks (GANs) are NNs
trained to generate data mimicking a given distribution, in an adversarial man-
ner (Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville
and Bengio, 2014). They can be trained along with discriminative NNs in
an alternating fashion, as to create examples that provoke mistakes in the
discriminative NNs.

It is also straightforward to alter images (Goodfellow, Shlens and
Szegedy, 2014) and natural language (Jia and Liang, 2017) to make DCNNs
miss-classify them, while they are still classifiable by a human. It has been
shown that “adversarial examples generalise well to different [DNNs] archi-
tectures and initializations” (Goodfellow, Shlens and Szegedy, 2014, Szegedy
et al., 2013), meaning that they are independent of the training data and the
network topology. It is also possible to create adversarial examples that work
under different transformations.

It is possible to train a NN considering one or several types of
adversarial examples, so the NN is resilient to them. Unfortunately, this
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does not protect the network from other kinds of adversarial examples, which
makes NNs inherently vulnerable to this attack.

This has lead to the creation of DeepCAPTCHA by Osadchy et al.
(2016), a new CAPTCHA proposal based in adversarial learning, in which
their authors introduce in their challenges adversarial perturbations that are
resistant to removal attempts. This line of research based on limitations of
DNNs when compared to their human counterparts might be promising for
the development of new CAPTCHAs resistant to DL.

Suitability NNs are more successful than other ML approaches when the
amount of examples (training data) is large, there is a structure on the data,
and is not of categorical nature (not hundreds of possibly related or unrelated
variables). A typical example in which NNs are typically better than other
ML methods is image recognition. A typical example in which other ML
methods might still achieve better results is classification tasks based on
categorical data.

Training set size Another important aspect in order for DL to be successful
is that there is a very large number of training examples available, or a way
to create them realistically through transformations over current data. Not
all data used for training has to be labelled, in fact, DNNs can typically
take advantage of a first phase of unsupervised learning followed by a phase
of gradient descent with supervised learning. In any case, the number of
training examples has to be in proportion to the number of parameters of the
networks, that can run in the hundreds of millions.

This is not always the case: sometimes, it is possible to retrain the
last layers of a pre-trained DNN in order to adapt it to a slightly different use
that its original one. This normally leads to good results, but not as good as
if the network was fully trained with appropriate examples.

These three conditions mean that DL is best suited for recognition
tasks as the ones in which game, audio and image-based CAPTCHAs are
based (including OCR/text). To date, this covers most of the CAPTCHA
proposals so far. But there are other proposals based on different methods
that, at least in principle, might not be as well suited for DL.
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2.6.2 Oracle attacks

CAPTCHAs also add a potential vulnerability in the sense that, even if a
system is able to pass then with a certain low success rate x%, maybe using
some heuristics or just by chance, this would allow to gain additional training
data, as every time a challenge is passed the bot learns the ground-truth value
of the elements involved in that challenge. This can allow for a better trained
system with a bigger success rate x′% > x% (Stark et al., 2015). To prevent
this, some authors propose to take some of the images out of the verification
mechanism, and more so, to use them as traps if they would have rendered not
correct a previous solution - that way, confusing the possible bot about the
correct image classification (Kwon and Cha, 2016). This approach might be
useful to prevent further training on the CAPTCHA data, but unfortunately
has flaws that make it useless (Hernández-Castro et al., 2017).

2.6.3 Relay attacks

After the first years of evolution of CAPTCHAs, a new threat appeared:
third-party CAPTCHA solving services. These were initially service providers
that based their human work-force in low-wage countries (Danchev, 2008).
They provide their services through an API, so the whole abuse process could
be (semi-)automated. Nowadays they rely not only on workers in low-wage
countries, for instance, Amazon Turk also has a lot of spam-related job offers
(HITs). During an analysis in 2010, up to 40% of HITs in Amazon Turk were
spam-related (Ipeirotis et al., 2010). Other ways are through on-line solvers
that offer some revenue, trojan horses that display CAPTCHA challenges
(Cluley, 2007), or phishing attacks (Kang and Xiang, 2010) (for a thread
model on this, see section 2.2.1).

In certain scenarios, this can be the most economic way of attacking
a CAPTCHA. Just a few CAPTCHA proposals try to address this new threat
with very limited success (Baird and Bentley, 2005, Halprin, 2007, Mitra
et al., 2009a, Longe, 2010, Onwudebelu and Ugwuoke, 2012, Mohamed et al.,
2013).
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2.7 New proposed CAPTCHA types

In this section we present some new and original CAPTCHAs proposals.
Some of them pertain to the design variants commented before, but use the
already seen challenges in an original way or try to increase their security
with some additions. These proposals distinguish themselves because of their
novelty. This also means that known attacks against other CAPTCHAs do
not affect these ones, as each one of them presents an original mechanism
that has not been used before.

2.7.1 CAPTCHAs based on empathy

The authors of the Civil Rights CAPTCHA (CRC from now on) use the
human ability to feel empathy to strengthen a typical OCR/text CAPTCHA.
The CRC picks up a Civil Rights news from its database (DB) and then
uses Securimage to create three images containing words depicting possible
emotions related to the text. These images contain words describing feelings
(for instance, "upset", "happy" and "furious"). The user has to write down
the correct one based on the emotions originated from the news headline
presented to her. Thus, the CRC is based on the human ability to show
empathy after being presented with a news excerpt, typically containing some
news about Human Rights and/or Civil Rights around the world.

The Civil Rights CAPTCHA uses a traditional OCR CAPTCHA,
to which there are known attacks, but it is further secured by the detection of
empathy. There is currently no ML algorithm that tries to simulate empathy.
There are ML approaches to understanding the human languages (NLP,
Natural Language Processing), but they focus on detecting the feelings and
opinions of the writer through the use of adjectives and adverbs. They do not
focus on the induced feeling on the reader. This proposal is further analysed
in Chapter 4.

2.7.2 Enhanced image-classification CAPTCHAs

There are several CV algorithms able to locate faces in pictures and extract
information from them. Face identification is a very well known CV problem
that has been studied for long. These reasons allow ML practitioners to be
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aware of the limits of these algorithms when confronted with difficult input.
This includes partially occluded faces, facial expressions, faces looked not in
front but with some angle, strange lightning, etc. There have been proposals
to use these limitations in the creation of a CAPTCHA. By definition, if this
is possible and the CAPTCHA is well defined, this CAPTCHA should be
secure.

Several proposals have used the problem of gender recognition in
pictures of faces (Kim et al., 2014, Sim et al., 2014, Gosschalk and Ford, 2016,
Schryen et al., 2016). The only one that has been put into production is
FunCAPTCHA (Gosschalk and Ford, 2016). Thus, it is interesting to check
whether they attain the said security level. We analyse FunCAPTCHA in
Chapter 5.

2.7.3 Puzzle CAPTCHAs

A recent game-like CAPTCHA proposal are puzzle CAPTCHAs. In them,
an image is divided into parts, of which at least one is missing. The user
has to place the missing parts correctly to solve it. Other variants have the
parts shuffled and the user has to reorder them. In any case, the user has to
reconstruct the original image.

These proposals are fundamentally different, as there is no need to
recognise and interpret the different elements. Also, the puzzle pieces are not
differentiable elements by themselves, that is, a puzzle piece is not recognised
by our visual system as a ball, a lamp or a door; it is nothing more than a
puzzle piece. Thus object detection does not serve a purpose here. These
proposals are also different from image classification CAPTCHAs, as the only
classification relevant here is if the image is correct (as the original) or one of
the many incorrect possibilities, with the puzzle pieces wrongly placed.

There are many attacks on image classification CAPTCHAs and
other image-based CAPTCHAs, but none on puzzle CAPTCHAs. As ex-
plained, these pose a fundamentally different problem, in which we are not
interested in interpreting the images, but on restoring it to its original state.
Some of these puzzle CAPTCHAs are Capy31, KeyCAPTCHA32 and Garb33.

31It can be tested at https://www.capy.me/account/signup/, retrieved on November
2016.

32It can be found at https://www.keycaptcha.com/.
33It can be accessed at https://ky.wordpress.org/plugins/captcha- garb/

https://www.capy.me/account/signup/
https://www.keycaptcha.com/
https://ky.wordpress.org/plugins/captcha-garb/installation/
https://ky.wordpress.org/plugins/captcha-garb/installation/
https://ky.wordpress.org/plugins/captcha-garb/installation/


2.8 Summary 79

We analyse them in Chapter 3.

2.8 Summary

CAPTCHAs remain a generic security mechanism to prevent automated
attacks in most scenarios. Unfortunately, to date no CAPTCHA proposal
has been able to provide their stated security target - protecting from auto-
matic abuse for a long period of time. It is not straightforward to design a
CAPTCHA. In particular, the hard-AI-paradigm introduced by Naor (1996)
and expanded by Ahn et al. (2003) might not be as promising as originally,
because:

• We do not know what is a hard-AI-problem: “(...) in AI [we] would
require a precise definition of a hard AI problem, and it isn’t clear
how to create one. ‘We’ve decided not to follow that route’ Blum says.
Instead, in designing their CAPTCHAs, researchers are using problems
that AI researchers believe to be hard” (Robinson, 2001).

• Even if a problem is hard for AI and remains so for years, we are not sure
about how to transfer such hypothetical hardness to the problem subset
that a CAPTCHA produces. If we fail in doing so, our proposal might
be susceptible to side-channel attacks. Note that most CAPTCHA
attacks to date have been side-channel, while extremely few of them
had advanced the state-of-the-art of AI, as originally intended by Ahn
et al. (2003).

• It remains to be seen how to cope with the recent advances in ML thanks
to DL. Proposals based on limitations of DL, like DeepCAPTCHA
(Osadchy et al., 2016), might be promising.

• CAPTCHAs have very stringent design requirements both regarding
their usability (user-friendliness, easy of use, time spent to solve them)
and their security (automated success below 0.1%, resilient to oracle
attacks, resistant to third-party human solvers, . . . ).

The previous attacks presented in section 2.5 are not directly ap-
plicable to some of the new CAPTCHAs types presented in section 2.7, as

installation/, retrieved on November 2016.
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these are either based on fundamental problems that are new, or at least
use well-known problems in a new way. For these reasons, we find these
proposals to be both original and interesting as to check their security level.
By analysing their security, we will advance the state of the art in CAPTCHA
security, especially in these new domains of CAPTCHA design. We will try
to find whether they fall or not for variations of problems common in other
CAPTCHA designs.

While we present these three new security analysis, we will also
check if there are general patterns or ideas that can be used for testing for a
basic level of security of a new CAPTCHA design. If so, we might be able to
create a procedure that uses these patterns in order to test for a basic level
of security.



Chapter 3

Case Study: Capy and other puzzle
CAPTCHAs

One of the aims of this dissertation is to analyse CAPTCHA proposals that
have not been previously studied. Puzzle-like CAPTCHAs are a relatively
recent novelty. Contrary to other image-based CAPTCHAs, they are not based
on the problems of image classification nor object recognition. There are no
previous security studies about puzzle CAPTCHAs, so they strength remains
unknown. Two commercial solutions exist that use puzzle CAPTCHAs and
have reached some levels of success.

There are several different puzzle CAPTCHAs. Among them, we
have chosen three that are a representative subset of them. Two of them are
commercial proposals that are based on the same idea of restoring an original
image that has one or several pieces lacking. They do it using quite different
implementation details that might affect their security, so both are worth to
be analysed. The third one that we choose to study is based on the idea of
shuffling image parts.

In this chapter we describe these three puzzle CAPTCHAs, analysing
their security and focusing on their possible flaws. We also show an attack
against them. First, we focus on the Capy CAPTCHA. This analysis shows
potential flaws. Then, we present two other puzzle CAPTCHAs and explain
the results of an attack on them. After, we show several potential mitigation
measures. Section 3.9 finishes the chapter presenting a summary of the
findings.



82 Case Study: Capy and other puzzle CAPTCHAs

The methodology used during their security analysis as well as
the results produced are used as input for the design of the BASECASS
methodology, that is explained in chapter 6.

3.1 Capy CAPTCHA description

The Capy CAPTCHA was started in 2010 as an academic research project
at Kyoto University, designed by a PhD in Computer Science, who turned it
into a company in 2012. It has been well praised both through awards and
in the press: awarded "Best Demonstration" at IEEE CCNC International
Conference in Las Vegas 2010, first prize at MIT Entrepreneur and Innovation
Pitch Competition 2012, "Top Startup" winner of the TiE 50 2013, first prize
at the Infinity Ventures Summit Kyoto 2013, first prize at Technology &
Business Plan Contest in Kyoto 2013. Among others, it has been featured in
IEEE Spectrum Magazine 2011.

Capy CAPTCHA has got the public attention, and has been con-
sidered quite good by several panels of experts that analysed it. According
to press1, Capy has secured US$1 million in investments, and is currently
charging around US$0.001 per challenge served2.

Capy CAPTCHA offers several types of CAPTCHA in their web-
page that basically fall into two categories: puzzle CAPTCHAs and text
CAPTCHAs (as shown in Figure 3.1). We will focus on the puzzle CAPTCHA,
which is the truly innovative proposal. Much work has been done previously
on OCR/text CAPTCHAs, and most of these proposals if not all can be
considered either susceptible to attack or too difficult to solve even for humans
(Bursztein et al., 2014, Gao et al., 2016). In the rest of this chapter, when we
refer to the Capy CAPTCHA, we will implicitly mean the puzzle variant.

Capy works by creating a simple puzzle in which there is only one
puzzle piece (see Figure 3.1). The user has to drag and drop the puzzle piece
into the correct location within the challenge image.

The Capy designers claim to have put some effort into its security.
For instance, the puzzle void within the challenge image is not filled with

1From e27 technopreneurship news source, retrieved from http://e27.co/sick-
captchas-capy-makes-game-20140619/ on 20th June 2014.

2As of August 2017.

http://e27.co/sick-captchas-capy-makes-game-20140619/
http://e27.co/sick-captchas-capy-makes-game-20140619/
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(a) Text recognition HIP. (b) Puzzle CAPTCHA.

Figure 3.1: The two different challenge types offered by Capy.

a random color; instead it is filled with a portion from another image and
sometimes from the same image. As we will see later in more detail, Capy
sends to its server not only the final position of the puzzle piece (where we
drop it, within the challenge image), but the log of the whole drag movement
through the screen. This would allow them to further examine the complete
pointer movement log in their servers.

In the production version presented in their web-page, only one
puzzle piece is required per image. In a video presentation of their idea, they
show the possibility of more than a single puzzle piece per image. We will
focus on the production version, while discussing later whether the found
weaknesses extend or not to a possible multi-puzzle-piece version.

3.2 Capy CAPTCHA analysis

Capy presents an image of 400×267 pixels and a puzzle piece of approximately
76× 87 pixels - this size might vary as the puzzle piece shape can change.

An image CAPTCHA like this, in which the solution space is roughly
400− 76× 267− 87 = 58.320 possible answers (possible positions), and with
no further information, will provide a security of 1

58.320 = 0, 0017% against a
random (brute force) attack. This result is pretty good and strong enough for
a CAPTCHA. The CAPTCHA design goal is that automatic scripts should
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not be more successful than 0, 01% (Chellapilla et al., 2005b) or the least
restrictive 0, 6% (Zhu et al., 2010a).

We have used an HTTP protocol analysis tool to understand and
replicate the communications of the JavaScript client scripts with the Capy
CAPTCHA server. In this phase, we learned that the communication protocol
sends all the positions through which the piece travels while being dragged.
They are encoded in base 32, adding the character x for separation. For
example, one possible solution string would be ax8exax84xax7qxkx7gxkx76xkx
..... ixax1ixkx18xkx, where (a, 8e)...(18, k) are the base-32 encoded positions
(encoded as displacements from the initial position of the puzzle piece). This
information would allow Capy to further examine the solution sent to their
servers, detecting whether this pointer (mouse, finger) movement corresponds
to a human, and thus enhance the human/bot discrimination.

3.3 Capy CAPTCHA design flaws

Soon after starting using this CAPTCHA, the first important design flaw was
evident: the puzzle piece only moves in discrete 10-pixels steps. This means
a brute force attack would have a chance of 1

400−76
10 × 267−87

10
≈ 1

32×18 ≈ 0, 173%
success against it. A bit too high to put it into production. This is a weak
design idea that makes the CAPTCHA much more susceptible to attacks. It
is in itself not an irresolutive problem for the idea behind this CAPTCHA, as
can be solved with bigger images, several puzzle pieces, and/or smaller step
increments (5 pixels), among others.

The major problem with this design decision is that it opens the
door to other attacks in which there is a noticeable difference between a
correct solution and a solution 10 pixels away from it (and not just 1 pixel
away).

Capy sends to its server the mouse movement log. Unfortunately,
after using the CAPTCHA, we detected that Capy discards most of the
movement log. We run some experiments in which we discovered that Capy
CAPTCHA does not accept to send only the final puzzle piece position,
returning False (test not passed) if we just sent it. Also, we noticed that
reducing the drag log size (jumping over positions) did not seem to affect its
marking.
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At the end, we learned that sending just two positions, the initial one
(always the same) and the final position (where the puzzle piece goes) got True
(test passed) replies every time the solution position was correct. We were
surprised that Capy was not using this information to further discriminate
humans and bots, maybe using some ML clustering algorithm. We think that
not trying to take advantage of this information is also a minor weakness in
its design.

3.4 Foundations of the side-channel attack

One property of the correct solutions to the challenges of this CAPTCHA
is that the resulting images are more natural, in the sense that both colours
and shapes are more continuous. The puzzle piece target inside the challenge
image has to be visually disruptive for the human eye to be able to easily
locate it. When it is covered with the puzzle piece, the resulting "original"
image is better in terms of continuity - shapes around the figure are more
continuous, as are colours and textures (shape repetitions).

At this point of the security analysis, we had not found design
flaws that seemed strong enough as to lead to a successful attack. Thus, we
proceed to design metrics that could allow us to extract information from the
challenges, and possibly characterize their correct solutions on a number of
cases.

Among the different metrics we decided to try, we though about
how lossy compression algorithms would process the different challenges. As
explained before, the correct solution to the challenges is more natural, that
is, typically uses less colours and textures, and more texture and colour
repetitions, than the image with the puzzle piece target not covered. This
property of the correct solution leads us to think in creating a metric based
on the JPEG compression algorithm. JPEG can compress any image, but
will do its best on photographs of realistic scenes with smooth variations of
tone and color.

The JPEG image compression Wallace (1992) works roughly by
dividing the image in squares (for example, blocks of 16 pixels in each
direction, in the case of 4:2:0 chroma sub-sampling) and computing their
discrete cosine transform (DCT). After the data is divided in blocks of 8× 8
pixels, the DCT converts the spatial image representation into a frequency
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Figure 3.2: Representation of plane-waves corresponding to each Dis-
crete Cosine Transform (DCT) coefficient. Low-order terms represent
the average colour in the block, while the successive higer-order terms
represent the strength of more and more rapid changes across the width

and height of the block.

map: the low-order terms represent the average colour in the block, while the
successive higher-order terms represent the strength of the more and more
rapid changes across the width and heigh of the block (see Figure 3.2). The
amplitudes of the frequency components are quantized, that is, represented
with lower accuracy. High frequencies (sharp changes) are typically discarded,
and further reductions in fidelity are done. The precise quantization table
(integer divisors) are embedded in a table that will have higher values if we
want higher compression rations (lower quality). The resulting bit-stream is
further compressed using a lossless algorithm.

The important aspect for us is that for JPEG, both light pattern
regularity (texture) and colour pattern regularity play a major role in the
size of the resulting compressed image. For this reason, the image size once
compressed will probably be a relevant metric.

We first though about using this JPEG-derived metric along with
other several ones to try to find patterns that would allow us to distinguish
the correct solutions. This was not necessary, as when we were testing the
different metrics, we noticed that this metric alone seemed to have quite a
good performance.
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3.5 Side-channel attack

In order to test the real-life usefulness of this metric, we conceived two
attacks. The first one, named basic attack, tries to find the correct answer
by placing the puzzle piece in all possible locations, and for each resulting
image, computing its JPEG size. The image that has a smaller size will be
considered the correct one, and thus that position of the puzzle piece will be
sent to the Capy server as our answer.

The second one, called modal attack, runs the JPEG compression
algorithm on the resulting answer images with different quality settings (from
10 to 100 - the maximum). We then let each quality setting choose one correct
solution, voting for it. The most voted solution among the different quality
setting is the chosen one, and sent for verification to the server.

The hypothesis here is that whenever the smallest size for the JPEG
does not correspond to the correct solution, for a particular quality factor,
another set of compressions with a different quality factor will not pick the
same wrong solution. That is, the idea behind this attack is to check if, when
the JPEG compression result is wrong, it does fail consistently (picking up
most of the time the same wrong solution) or not. We expected to obtain
better results than the basic attack. We proceed to test this hypothesis
experimentally.

Our initial estimation while designing this attack was that, in a
good case scenario, using just this JPEG-size discrimination, we were going
to be able to break Capy CAPTCHA with an estimated success rate of over
3% to maybe 5%. We thought that several problems, like partial puzzle piece
overlapping (thus reducing the image size with JPEG compression), small
size variation (images in which the image chosen to fill in the puzzle void
piece was already in colour and texture harmony with the background) and
others would prevent this attack from getting a better result. We planned
on this to be a first stage of an attack, later improved with some additional
information extracted from the images.

The attack might be affected by the compression quality chosen for
the JPEG algorithm, so we tried a grid search through all compression levels
in increments of 10.
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3.6 Experimental results

Next, we describe the results of the two proposed attacks explained in the
previous section along with the reasons for the attacks success or fail in solving
some of the challenges during the experiments3.

3.6.1 Basic attack results

The file size of the image compressed using JPEG is dependant on the quality
setting, that in turn affects the lossy compression algorithm. At first we
performed our attack with different compression (quality) settings to discover
for which one it seemed to have a better success rate. Since downloading a
Capy challenge takes on average 4.33 seconds, we performed this test only for
200 challenges in each quality setting. We carried out an exhaustive search,
using all quality settings from 10 to 100 in steps of 10.

After 4:42 hours, we obtained the results shown in Figure 3.3, that
depicts the success rate of the attack (number of correctly solved challenges,
in percentage) depending on the JPEG compression quality rate (setting from
10 to 100, the maximum). The dotted line represents the linear regression
estimate of the function. Even though the relation between a JPEG quality
setting and the success rate is not linear, it is clear that there is a tendency to
improve the success rate of the attack if we use a higher JPEG quality setting.
Also, the maximum compression quality was the one able to differentiate best
the correct solution, with a 61.5% success rate for these 200 experiments.

In average, the JPEG compression algorithm takes longer to compute
the compressed image when the quality setting is higher. We checked that
the computation requirements for a higher quality setting were not much
higher than for a lower quality settings (Figure 3.4), being 3.65 secs./image
the minimum average computation time, obtained for quality setting equal to
20, and 5.78 secs./image when the quality was set to 100 (mean figures), that
is, a mere 58% more. Given the improvement on the success rate, from 43, 5%
using a compression quality of 20 to 61, 5% using a compression quality of
100, it implies a 41% relative improvement, we thought the extra computing
time was well worth it.

3The full results of the experiments are available at https://github.com/carlos-
havier/Capy-analysis.git

https://github.com/carlos-havier/Capy-analysis.git
https://github.com/carlos-havier/Capy-analysis.git
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Figure 3.3: Success rate by JPEG compression quality for 200-series
experiments.

We set our quality to maximum and run this attack for 1000 ex-
periments. Our attack took 2:48 hours, as each image challenge took on
average 4.33 seconds to download, and then an average of 5.79 seconds to be
processed. The idea of this experiment was to get a better estimate of the
real maximum success rate. In this case, our program was able to correctly
solve the Capy CAPTCHA on 65.1% of the occasions. This is a result two
orders of magnitude above what is needed for a CAPTCHA to be considered
broken4 and quite extraordinary, especially for such a direct, low-cost attack.

3.6.2 Modal attack results

We wondered if, when our basic attack failed, a different JPEG quality setting
would also give the same wrong result, or possibly the correct one. Thus, we
focused on the mode of the frequencies with which a position was chosen, for
all JPEG image qualities from 10 to 100. The idea behind this attack is that,
whenever the attack will fail and pick a wrong position, this wrong position
is not the same for different JPEG qualities. If that is indeed the case, then
this attack might be able to show better results than our basic attack.

40.6% is enough to consider a CAPTCHA broken (Zhu et al., 2010a).
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Figure 3.4: Computing time per JPEG compression quality for 200-series
experiments.

As this attack was much more time consuming, 33 seconds per
challenge on average, we decided to limit it to 500 experiments, that were
run in different series due to network problems, actually totalling 504. The
results were disappointing, as we did not improve them from the basic attack,
getting a success rate of 56, 5%. We noticed that, when the attack failed, the
JPEG smaller size results correspond more than once to the same -wrong-
position, thus rendering seemingly useless this approach.

After this unfavourable result, we wondered whether the same voting
scheme, weighted by the JPEG image quality, would give any better results,
given that typically, the higher the quality, the better the success rate. We
decided the vote to count quality

10 . We launched this new experiment for 382
challenges. The results were better, correctly solving the Capy CAPTCHA
59, 9% of the times, but still inferior to the basic attack.

3.6.3 Results analysis

It is quite interesting to observe where our basic attack succeeds and where it
fails, to understand why it works so well as well as its possible limitations. In
Figure 3.5, we can observe a few correctly solved challenges. We have named
the challenge images from top to bottom as rock, wood and water, city at
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night, sandwiches and lion. The first column represents the challenge images,
with the puzzle piece attached to their right. Within the challenge images,
it is possible to see where the puzzle piece should go. The second column
contains the image proposed by our algorithm (in this table, correctly solved).

Each row in Figure 3.5 contains thus a challenge and its proposed
solution. In the first challenge, we can appreciate that the puzzle void in the
image has been filled with a very detailed and colourful image, thus containing
a lot of high-frequency information, difficult to compress. It is clear that
if we put the puzzle piece on top of it, the image as a whole will have less
high-frequency information. In the other cases we can also distinguish that
the filling of the puzzle void has different colors than the rest of the image,
in some cases combined with a noisy texture with lots of high frequency
information.

Figure 3.5: Correctly solved challenges.

Figure 3.6 is more interesting as it shows some cases of failed solutions
to the challenges. The city at night image is very interesting: the puzzle
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void in the background has been filled with an almost plain colour, that
happens to appear frequently in the background picture. The puzzle piece
has two differentiated parts, being the bigger one also a low-detail one. Our
algorithm finds that putting this piece on top of a high-detailed part of the
background produces a smaller (less information) image than if we put it in
its correct place. The reason for this is that the algorithm is basically erasing
high frequency (detailed) information. In the other challenges, we appreciate
similar patterns: covering high detail parts of the background picture renders
smaller images.

Figure 3.6: Wrongly solved challenges.

Analysing these failures, we appreciate trends in them, depending



3.6 Experimental results 93

on properties of the background image used for each challenge, the filling
of the puzzle void within the background, and also the filling of the puzzle
piece. We wondered if the background image affected the success rate of our
attack, so we re-analysed our results. We have analysed the four backgrounds
available when we conducted these experiments. The success rates for the four
backgrounds using different JPEG quality factors are depicted in Figure 3.7,
while their exact values are reported in Table 3.1. The results suggest that
the background indeed affects the success rate. Also, the JPEG compression
settings affect differently each of the different backgrounds.

Table 3.1: Success rate per image type and JPEG quality setting, data
corresponding to Figure 3.7

JPEG quality
image 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0,47 0,39 0,57 0,36 0,63 0,64 0,54 0,73 0,64 0,71

0,19 0,22 0,32 0,25 0,46 0,38 0,42 0,41 0,49 0,55

0,10 0,18 0,16 0,11 0,20 1 0,16 1 1 0,35

0,89 0,87 0,93 0,94 0,96 0,17 0,98 0,23 0,23 0,92
mean 0,41 0,41 0,49 0,41 0,56 0,54 0,52 0,59 0,59 0,63

Note that the results in Table 3.1 and Figure 3.7 are for different
number of experiments. In particular, for all the JPEG image qualities among
10 and 90, we have performed 200 experiments, whereas for a maximum image
quality (100) the total number of experiments performed is 1200, so these
statistics are more reliable. All in all, we obtained a minimum 10% success
rate, and a maximum 100%. If we focus on the more reliable results with a
quality setting of 100, the minimum was 35% and the maximum 92%. It is
interesting to realize that the image background that shows the minimum
success rate, is also the one that has more variability, that is, the one that
mixes parts of very high and very low detail levels.
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Figure 3.7: Success rate per image type and JPEG quality setting, with
200 experiments for each setting, except 1000 experiments for q = 100.

3.7 Other CAPTCHAs affected

There are several puzzle HIPs that use similar ideas to Capy using their
own variants. Among them, two were the most interesting to us. The
first one, KeyCAPTCHA, is based on typical puzzle pieces, yet it uses non-
strictly delimited borders produced by anti-aliasing. The second one is Garb
CAPTCHA, that presents an image divided into four pieces and shuffled. The
user has to reorder them to recreate the original image. Next we describe the
results obtained using our previous attack with each of these CAPTCHAs.

3.7.1 KeyCAPTCHA

KeyCAPTCHA offers several variants or versions that lie within two groups:
the free one, with rectangular pieces that do not have a border, in which
the user has to drag them with 1-pixel precision, and the magnetic ones, in
which, as with Capy CAPTCHA, there is a n-pixel step movement from valid
position to valid position, thus making it easier for humans to solve. Both
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are shown in Figure 3.8, being the first row the free version.

We selected KeyCAPTCHA because it includes challenges with up
to three puzzle pieces; it uses antialiasing on the borders thus making the
match of the pieces not perfect, which will render an increased JPEG size
when compared to the original image; and it uses white background, which
compresses well in JPEG. These factors constitute a potential challenge to
our algorithm.

It severely relies on Security through Obscurity to try to hide its
internals. Mangled JavaScript code, along with random iframe names, etc.,
try to make it harder to analyse. Anyhow, it is easy to learn that it basically
depicts several canvas elements, one of them containing the background image,
and one for each one of the puzzle pieces.

As explained, one interesting aspect of this HIP is that the voids in
the background where the puzzle pieces need to fill in is of plain white colour.
This is a problem for our attack, as this white areas are good for producing
images with a small JPEG size, so our attack will tend to respect them - that
is, not putting any puzzle piece on top of these areas. For this reason, we
explored two alternatives: 1.- using a filter, in which we only consider a valid
position if the puzzle piece covers at least 90% white pixels; 2.- adding some
high frequency noise to the white background pixels.

Note that using a plain white background could be regarded as a
weakness for other types of attacks, for example, those relying on matching
the shape of the puzzle piece to the different voids in the background image -
this decision makes such an attack too easy.

After experimenting with KeyCAPTCHA, we were able to detect
some repetitions in the objects used as background images. In particular,
after the first 25 attempts, we saw only 20 different images. In the next 25, we
saw 20 different ones, and among them, again 8 of the 20 we had already seen
in the first batch. We can use the mark and recapture method (Seber, 1974)
to estimate the image library size, stating that 20 are the ones marked in the
first visit (different images in the first 25 attempts), 8 are the ones captured
on the second visit, and thus the estimated population size is depicted in
Equation 3.1, where N is the estimated population size, which with our data,
is an estimate of 50 different objects. Again, not enough for a production
CAPTCHA, given that once one background is solved, this information can
be used to correctly solve it again.
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Figure 3.8: Different versions of KeyCAPTCHA.

N = 20× 20
8 (3.1)

We just wanted to validate our attack, and not KeyCAPTCHA
design limitations and internals, so we decided to download 50 challenge
images locally and proceed to solve them using our attack. Of these, 18
were served as 3-puzzle-pieces challenges, and the rest were 2-puzzle-pieces
challenges.

We applied our attack with no modification, apart from adding noise
to the white background. Of these 50 challenges, 10 of them were completely
solved, that is, a 20% success rate on passing KeyCAPTCHA overall. Some
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example results are shown in Figure 3.9, being the first three wrongly answered
challenges, the second three partially solved ones (not counting as passing
the challenge), and the third three, completely solved challenges.

Figure 3.9: Wrong, partially and completely solved challenges for Key-
CAPTCHA.



98 Case Study: Capy and other puzzle CAPTCHAs

3.7.2 Garb CAPTCHA

The Garb CAPTCHA is implemented as a WordPress plug-in that creates
a CAPTCHA requesting the user to reorder image parts into their original
order. We selected this puzzle CAPTCHA because it is of a different type
(reordering), and it is unknown to us whether the property of the JPEG size
will behave well or not in this scenario, that is, there will be a reordenation
with smaller a size than the correct answer, or not. Apart from this, Garb
takes 1-pixel lines from the borders from each puzzle piece, thus making the
match not perfect. This lack of continuity makes also the compression slightly
harder for JPEG.

The standard Garb CAPTCHA installation comes with 62 sample
images of 150 × 150 pixels each, which the user can change or add to. To
create a challenge, it divides one random image into 4 equal parts, and shuffles
their order. Then, it presents this to the user, who has to interchange the
puzzle pieces (using drag and drop) to their correct position. The 4 puzzle
pieces are associated with an ad-hoc random id, and once the user solves the
challenge, those ids are concatenated and sent back to the server.

Note that a CAPTCHA with only 4! = 24 possible answers per
image can be considered already too weak (4.16% brute-force attack success),
more so when after one image is solved, we can use that information to solve
it again.

We also detected that the JavaScript client library downloaded the
solved image and then divided and mangled it locally. This in itself is a major
flaw, and then, it does not require for the answer to be sent back to the server.
But still, we were interested in analysing its strength, as if these flaws were
corrected.

Even though the Garb CAPTCHA takes away one pixel line in the
border of each one of the four sub-images that constitute the puzzle, that is
not a major problem for our attack. We do not take into account this 1-pixel
border, as it would be disruptive of the continuity of the image.

For our attack, for each image of the library, we created a random
permutation, and to solve it, we considered all possible 4! permutations, and
we chose the one with the smallest JPEG file size using maximum JPEG
image quality. Note that for our attack, the initial permutation chosen for
the challenge does not really play a role: if the correct image is the one with
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the smallest JPEG file size, it will always be selected.

Figure 3.10: Several computed solutions for the Garb CAPTCHA.

Our attack performs very well against this CAPTCHA. In particular,
it is able to correctly solve 61 of the 62 images in the standard library. We
did 1000 sample tests, and obtained a 98, 1% success rate, in line with the

61
62=98,3% expected. The image that is incorrectly solved is consistently solved
incorrectly, as we would expect (the first image in Figure 3.10). Note that, in
an improved version of our attack (for a larger image library), it would be
easy to try the second, third, etc. best solutions to each failed challenge, once
we learn that the first best solution of our JPEG attack is not correct. This is
possible because there is an order of goodness associated to each permutation,
its JPEG file size. This improved attack would theoretically reach a 100%
success rate.

3.8 Possible improvements

In this section we discuss possible ways to enhance the security of the Capy
and other puzzle CAPTCHAs. First, we comment the possibilities of using a
broader solution space, thus making it more resilient to brute force attack.
Next, we present how to use our attack to filter out challenges that are easily
solved, and discuss its possible drawbacks. We also discuss on the possibility
of in-depth analysing the interactions of the solvers with the CAPTCHA to
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try to gain information on whether they are or not humans. We comment
the benefits (and proper ways) to present a bigger image library, thus trying
to avoid attacks that, once a particular challenge is solved, can solve it again
challenges with the same background. Finally, we analyse whether adding
puzzle pieces (instead of just one) might or not be a proper solution to
strength the CAPTCHAs.

3.8.1 Broader solution space

We can think that one possible solution might be enlarging the solution
space, approximating it to the maximum possible given the dimensions of
the background image (a width × height solution space). This would not
only bring the success rate of a brute force attack down to 1

width×height , but
also, at least theoretically, make more difficult any other attack that takes
advantage of the fact that a n-pixel-away solution is not in the solution space
(for n < 10) (i.e., puzzle pieces that are almost in their correct position,
rendering the smallest JPEG size).

The drawback is that this would make it much harder to be solved
by humans: placing the puzzle image exactly in its position is not an easy
task. We wonder whether there is another way of having that broad solution
space, while at the same time maintaining the user friendliness.

One might think that we can check, once in the Capy server, that
the solution given is close enough to the perfect solution within a distance.
Imagine that we allow the puzzle piece in the client to be dragged and dropped
anywhere but on the server, we calculate the distance to the correct position,
and accept the solution when it is less than 10 pixels away, for example.

The problem with this idea is that once the attacker determines
that a 10-pixel distance to the correct solution is accepted, then again, she
can create a grid in 10-pixel steps and try only those solutions, knowing that
at least one of them will be accepted. Now, the attacker will not necessarily
step over the perfect or best solution, so her decision algorithm will have to
be able to pick up the best solution within a set of bad but close ones. If her
algorithm gives a continuous measure of goodness of a solution, this would
not be a problem. Thus, depending on the attack, this possibility might not
really be an improvement.

We run this test for our attack: what would happen if we consider
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Figure 3.11: JPEG size proportions at different distances from the correct
solution.

also puzzle positions that are almost correct, that is, with distances of 1-pixel
to the correct one, 2-pixels, etc. Would still the correct solution have the
smallest JPEG image size?. We run this experiment for all previously correctly
solved challenges, with maximum quality setting.

Unfortunately for Capy, we obtained that even with the solutions
as near to the correct as 1 pixel distance, they can be detected as wrong
by their larger JPEG size - in all occasions. Figure 3.11 gives a medium
of the relative JPEG file size when the puzzle piece is put 1 or more pixels
away from the correct position. This result is probably due to JPEG having
difficulty to compress the high-frequency 1-pixel (or more) differences, and
then, increasing the resulting file size.

The idea of using a broader solution space might still be of interest.
For example, Capy can decide on its server the allowed distance to a correct
solution based on other parameters, like how many attempts from the same
IP address had been made within some time, success rate and even including
an analysis of the full drag log to estimate the likelihood that it comes from
a human. If the allowed distance is variable, an attacker will be forced to
always use the lowest possible in her attack. Also a bigger image would force
the attacker to try more positions, at least making the attack a bit more
expensive in computational resources.
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3.8.2 Challenge pre-filtering

Our basic attack does not correctly solve all the challenges presented. This
can be used by Capy designers to pre-filter the challenges served by their
server, that is: offer only those challenges that are not solved by this attack.
Note that this will not require a major modification to their CAPTCHA,
and would make it resilient to our attack. This will in principle work for
KeyCAPTCHA, but not for Garb, as we can try the next best solution, after
failing once, if we identify the challenges. The negative point of this solution
is that it will make it resilient to the attack we present here, but probably,
only to these types of attack.

Another type of pre-filtering is possible, this time, based on selecting
the puzzle piece void to be filled using another image that has similar patterns
and colours to the real puzzle piece. In section 3.6.3 we learnt that we can,
for instance, fill the puzzle void in the background challenge with portions
of the same image, so colours and textures are alike. We also learned that
background selection can help this CAPTCHA: images that mix very plain
and very detailed zones are interesting as backgrounds, as our attack will
sometimes try covering the detailed ones with less detailed puzzle pieces, to
minimize image size.

These countermeasures might not only be able to prevent the attack
we present here, but also other attacks based on image continuity. The
problem with them is that the resulting CAPTCHA might not be as user
friendly.

3.8.3 Bigger image library

Having a small image library for the backgrounds of the challenges is a major
problem. Here, the meaning of small is any number that we can download,
store and analyse programmatically with a computer. Instead, what we need
is a really large number of possible backgrounds, at least from the point of
view of a computer algorithm.

Using a much larger image library, and also using some image
distortion algorithms so the images are not pixel-per-pixel similar in a way
that the distortion is impossible for any other algorithm to undo, even if given
several samples of the same image once distorted, may also help.
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This is not straightforward, but it might be possible given the current
technology. Angle transforms plus local and global image warps, light changes,
and colour changes, with added low-frequency noise, might not affect the
human eye ability to recognize the image, but will make it much harder for
an algorithm to rebuild the original background, even given several distorted
samples of it. This could also apply to KeyCAPTCHA and Garb CAPTCHA.

3.8.4 Client interaction analysis

The client-side JavaScript libraries of the Capy CAPTCHA send to the server
not just the final position where the user locates the puzzle piece, but the
whole record of positions that the piece visits in its way from the initial
position to the solution provided by the user, the whole log of the mouse or
finger drag.

It remains to be seen if it would be possible to categorize these drag
logs into human and non human. We can apply Machine Learning clustering
algorithms to try to find clusters of typical drag movements for different sets
of directions.

As the client side JavaScript libraries can be easily modified, timing
data can also be added to the position stream, making for another possibility
to classify typical human behaviour.

In any case, this is an example of Security Through Obscurity, as the
detection algorithm wound be proprietary. It as a way to improve the strength
of the CAPTCHA, but should never be the main security discriminant in use.

3.8.5 Several puzzle pieces

It is possible to argue that the idea mentioned by Capy designers of using
more than one puzzle piece at a time might improve its security. This will be
very possibly the case, but remains to be seen to what extent. For example, if
just placing one puzzle piece (of, say, three pieces) in its correct position gives
the correct properties to the resulting image - which in the case of our attack
can be described as continuity, then the attack can solve first one piece, then
the second, then the third. If the general success rate of the attack is X%,
the three-piece success rate would be X3

106 %. For example, for our basic attack
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with a success rate of 65, 1%, for a three piece puzzle it would solve it 27, 5%
of the time, what is still a very successful attack.

The idea of using several puzzle pieces is already present in Key-
CAPTCHA, that uses 2 to 3 puzzle pieces per challenge. This adds more
workload for the user, but as have been shown, does not protect the CAPTCHA
if its basic idea is flawed.

3.9 Discussion

In November 2015 this work was presented at The Computer Laboratory at
Cambridge University, kindly invited by Prof. Ross Anderson. Prof. Markus
Kuhn made an interesting remark regarding the possibility that this JPEG-
size attack was so successful thanks to the image having been previously
compressed loosely (like in JPEG).We though this was a very interesting point
and run an experiment to test this hypothesis5. This experiment uses as input
the RAISE dataset of RAW images6, which consists of images that have never
been compressed before. In particular, it contains "8156 high-resolution RAW
images, uncompressed and guaranteed to be camera-native, never touched
or processed before" (Dang-Nguyen et al., 2015). Using these images as a
background for a puzzle, and taking a 80× 90 pixel square with a sub-image
from another random image, we performed the previously described JPEG-
size attack using quality = 100. We got a success rate of 26% when the RAW
images were resized and cropped, and of 30% when they were just cropped to
the original Capy image size (405× 270 pixels). That is, the attack would
still be able to break the CAPTCHA in this case. This result evidences the
efficacy of using this metric to measure visual information.

In this chapter, we have presented a low-cost, side-channel attack,
easy to implement and able to break (bypass) Capy CAPTCHA with a 65, 1%
success rate. Then, we have shown how this attack, with minor modifications,
can break other image CAPTCHAs that use the same puzzle ideas - although
in slightly different ways. In the case of the KeyCaptcha our attack is
successful in 20% of the cases and in the case of Garb CAPTCHA 98% of the
times.

5This experiment is available online at https://github.com/carlos-havier/jpeg-
experiment/.

6This dataset is available from http://mmlab.science.unitn.it/RAISE/.

https://github.com/carlos-havier/jpeg-experiment/
https://github.com/carlos-havier/jpeg-experiment/
http://mmlab.science.unitn.it/RAISE/
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We have also discussed some ideas to make puzzle CAPTCHAs
resilient to this attack and others. Although theoretically it should be possible
to increase the strength of these CAPTCHAs by correcting these design flaws,
some of these corrections would possibly compromise its usability, perhaps to
a level that would make it too difficult for humans.

More importantly, the ideas presented in this chapter used for puzzle
CAPTCHAs can easily be applied to other cases. In particular, the analysis
of the challenge domain and answer domain, although straightforward, can
give us significant feedback from an attacker’s point of view. Also the use of
well-known metrics and/or creation of new, derived ones, can be extremely
useful, as shown in this case. Although these metrics were not designed to be
able to break a CAPTCHA, the information they can give us can be useful,
if not determinant, to do so.

In this chapter we have presented a new type of security analysis
for a type of CAPTCHAs that have not been analysed before. This security
analysis is based on an initial estimation of the strength by studying the
challenge size and distribution, and a study of the answers to the challenges
using different metrics. This type of analysis is the base for the other analysis
on the following chapters. It is also related to the initial phases of BASECASS,
the methodology we propose in chapter 6.
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Chapter 4

Case Study: The Civil Rights
CAPTCHA

OCR CAPTCHAs have been thoroughly analysed, yet the Civil Rights
CAPTCHA (CRC from now on) intends to increase their security by adding
a completely new type of test, an empathy test. In NLP, there has been
research done in sentiment analysis, but on the sentiments of the writer, not
the reader. A text can be objectively written and still produce an emotion
on the reader. One of the aims of this dissertation is to study the security of
new, original CAPTCHA proposals. We consider that this new dimension is
extremely interesting, and as it has not been studied before, we selected this
CAPTCHA for its study.

In this chapter we analyse the Security of the CRC, that as we
explained, is an original CAPTCHA that aims to increase the strength of a
typical OCR-CAPTCHA reinforcing it with an original challenge: an empathy
test. This combination purposely leads to a stronger, more secure CAPTCHA
overall, while making users aware of Civil Rights news around the world.

We further present this CAPTCHA in Section 4.1. In section 4.2
we analyse the security of the CRC to find possible weaknesses, that we
discuss in section 4.3. Then we further examine the risk associated to these
shortcomings using ML. Once we find them exploitable, we design an attack
and checks its results . In section 4.8, we conclude with a discussion about
the CRC and also the potential of the method we used to break it.

We demonstrate a novel attack against it that can bypass the CRC
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20% of the time. Interestingly, our attack does not use any OCR technique
nor any of the techniques to attack OCR CAPTCHAs that have been used
before. The attack we present is a side-channel attack. It does not try to
solve the problems used as a foundation for the CAPTCHA, i.e. solve the
empathy problem, nor the general OCR/word recognition problem. We do
not claim to be able to solve all OCR instances nether extract the empathy of
any text. Instead our attack solves both of these problems for this particular
instance, for the subset of challenges that the CRC is based on. We achieve
so by identifying the security issues in the design of this HIP and by applying
well-known ML algorithms to exploit them.

4.1 Civil Rights CAPTCHA description

The CRC has been designed by the Civil Rights Defenders, an international
Human Rights organisation from Sweden founded in Stockholm in 1982, with
the help of the Bärnt & Ärnst digital production company. The CRC has
received quite broad media coverage1 (as they claim on their web-page, see
Figure 4.1). It has been awarded several prices in the field of Civil Rights
and marketing.

Another objective of the CAPTCHA, apart from protecting web-
based services, is to enhance the diffusion of Civil and Human Rights news
along the World. To do this, it is fundamental for the CRC to become widely
implemented, and thus, its news will be presented to a broader audience.

The CRC is based on the human ability to feel empathy after being
presented with a news excerpt, typically containing some news about Human
Rights and/or Civil Rights around the world. This CAPTCHA is also based
on Securimage, a word-distortion OCR/text CAPTCHA. The Civil Rights
CAPTCHA works picking up a Civil Rights news from its database, using
Securimage to create three possible answers and presenting them to the user.
These images contain words describing feelings (i.e. "agitated", "happy" and
"angry"). The user has to write down the most appropriate one based on the
emotions originated from the news headline presented to her. This news bit is
related to Human or Civil Rights, and supposed to create an empathy feeling
on a human reader. If we consider the CRC well designed, and Securimage

1It has been covered and praised by The Hufftington Post, Discovery, Wired, NBC
News, the Daily Mail, and others.
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Figure 4.1: Civil Rights CAPTCHA main web-page.

to provide a security level X, this CAPTCHA design should increase the
security to 3×X2, as for a robot, picking up the correct answer should not
be easier than random guessing. We will see briefly that the security of this
CAPTCHA is unfortunately below X.

4.2 Civil Rights CAPTCHA analysis

CRC is provided as a service directly accessible using an API. This API
allows a programmer to connect to it and download a challenge composed of
a news text along with three images. Each image contains one or two words
distorted using Securimage. One of the images contains the word(s) that are
the correct solution to the challenge. The same API allows sending the text
the user inputs to the CRC server, to check if it is a right answer (human)
or not (program). As using the CRC API directly can be a bit too much
trouble, the CRC also provides a full library written in PHP encapsulating it
that just presents the challenge, and checks the answer.

The three answer images to each question, provided as PNG images,
contain words distorted using Securimage, a very popular Open Source
CAPTCHA library written in PHP. Securimage is one of the few Open Source
OCR CAPTCHA that has been improved and maintained to date. It is rather
flexible, letting the CAPTCHA designer choose, among other parameters:

2That is, divide the force of a brute-force attack, or any other attack against Securimage,
by a factor of 3.
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Figure 4.2: Example of challenges created with Securimage.

CRC-Securimage answers

Figure 4.3: Each row shows different CRC image answers created with
Securimage that contain the same words.

fonts, colours, grade of distortion (affecting its difficulty), the number of lines
crossing the text, characters/words to use, etc. Figure 4.2 shows some of the
possibilities of image generation of Securimage.

The number of different news excerpts used by the CRC is not
public, but seems not high: during our interactions with CRC, we frequently
saw some repetitions. From the FAQ on the CRC web-site: "How large is the
current data set, and do you plan on adding more data to it over time? The
statements will change over time, both to update to current events, as well as
improving the security of the CAPTCHA. Work will also be done to minimise
the possibility of automated sentiment analysis. The limitations of using only
emotions for the correct answers are also under consideration. However, at
the present, the data-set is still large enough to meet the recommendations
of well-proven open-source solutions."3

It is also common to see some answer word repetitions, even though
the images themselves do not repeat, as each one is a unique creation with
Securimage (see Figure 4.3).

In order to analyse the CRC we decided to examine its client-server

3Retrieved from http://captcha.civilrightsdefenders.org/ on the 1st of March
2014.

http://captcha.civilrightsdefenders.org/
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Figure 4.4: Initial HTML body from the CRC API (left), and after being
filled with data (right).

communication from the endpoint, the same viewpoint a real attacker would
have. We used an HTTP traffic analyser. After a few interactions and tests,
we were able to decipher the core of the client-server protocol needed to
further analyse it:

1. The first step is to request the main content for the CAPTCHA. The
answer, if presented as-is to the user, will be an empty HTML structure
where the real content (news-bit, answer images) will be filled in later
using JavaScript (Figure 4.4). Another important function of this HTTP
answer is to set the value of the ci_session cookie. This cookie is a
meta-cookie containing several bits of information, like a session_id,
the IP address of the client, information about its user-agent, etc.

2. Once this is loaded, the client JavaScript code makes another request
with the same URL and ?sessid=1. This sends back an answer containing
the PHPSESSID cookie.

3. In the next request, the parameters callback, newtext and lang are added
to the URL, causing the server to send back the text of the challenge -
the news bit. This text comes back as a JSON-encoded text.

4. The browser downloads the three images containing the answer. To
download each one, the browser requests a unique (and random) 20-
character id. The server keeps track of the ones to send using the
previously provided cookies. All the elements are now visible to the
user (Figure 4.4).

5. After the user has written the answer, this is sent to the server encoded
in the URL of the next request.

After learning the cookie handling and the JavaScript requests of
the CRC, the rest of its mechanisms are quite straightforward, and we were
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able to advance to the analysis of its functionality, gathering some basic data
automatically.

4.3 Civil Rights CAPTCHA design flaws

We mentioned that the three images downloaded contain different possible
words or expressions. We wondered what would happen if we keep asking
the server for more word-image answers. We confirmed that the server keeps
providing us with new word-images, independently of the newset parameter.
We wanted to know whether the server is keeping track or not of the word-
images sent, and if it only checks that the answer is valid (positive, negative)
according to the news bit. To check this hypothesis, we wrote down a few
positive answers and a few negative ones from other questions. Then, we pro-
ceeded to the next question, "In October 2012 the Ukrainian parliament took
the step to approve a law, which criminalises ’propaganda of homosexuality’.
How does that make you feel?". The corresponding word-image answers were
very crappy, elastic and hopeful. Being a negative news bit, we decided to
respond with a negative answer present in other questions but not in this one,
choosing horrified. The server did not accept our answer as correct. We tried
the same attack a few more times, without success.

Our conclusion at this point was that either the answers are divided
into finer categories than good/bad or, more probably, the server keeps track
of the sent word-image answers (probably the last three). To find out the
correct hypothesis, we proceed with the attack, collecting logs of wrong and
correct answers. Then we tried again using these logs to find correct answers
for each question. And again, we got a fail. The only possible conclusion is
that the server keeps track of the word-image answers sent.

We also learned that most (if not all) answers were shared as correct
for more than one question. For example, the answer pleased was accepted
as valid for at least four challenges. We did not observe clustering of correct
answers in several groups. These lead us to believe that the classification
applied to the answers by the CRC is coarse: positive or negative.

Once we finished testing the CRC and got familiar with how it
operates, we analysed the challenges it could present to the users. We wanted
to know their number, distribution, and if any characteristic of them were not
uniform. For this purpose, we wrote a program able to follow the protocol
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Figure 4.5: Number of appearances of each of the 133 answers (from 1
to 26 (1.3%)).

of the CRC and mimic a regular user, downloading and interpreting the
information. After downloading 1000 challenges, we saw that there were only
21 different challenge texts. This is in itself a flaw, as it is too low for a
CAPTCHA.

We also checked how many times the CRC server shows each question
to the user. This distribution follows a seemingly uniform distribution of
appearances, with a χ2

20 with a p-value of 0.336.

Each challenge comes with three different answers. During our
experiments, we have been able to observe 133 different answers, 30 of them
compositions of the words quite, really, truly and very, and some of the
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remaining 103 basic categories. Again, this is a problem. A CAPTCHA with
only 133 possible answers is a CAPTCHA that can be broken 0.75% of the
time just by answering any of them.

The answer type distribution is not uniform. There are 73 (55%)
answers describing a negative emotion, 52 (39%) describing a positive one
plus 8 (6%) not describing a valid emotion (like the answers accessible, oval,
plain, temporary, typical...). The distribution of their appearance, taken from
1989 manually classified images, seems to be uniform within the different
categories, with 59, 2% positive, 36, 8% negative and 4% neutral. It is not
uniform, as the value of its χ2

132 is 482, 12, giving a p-value of 0 (or more
precisely 2.32e− 41).

This can be further exploited in a blind brute-force attack. We
can pick up randomly one answer from the top 5 more probable ones, and
this would pass the CAPTCHA approx. 1, 2% of the times. This kind of
attack is not our purpose here: we want to study if we can exploit its other
vulnerabilities and improve this result.

In summary, the CRC provides us with two problems: reading
distorted words, as in any other OCR/text CAPTCHA, and tagging emotions
to news excerpts. Neither problem is new to ML. The first one has been solved
several times for several particular implementations, some of them without
the need of ML. Interestingly, OCR/text CAPTCHAs like Securimage are still
widely popular. Securimage tries to avoid segmentation, a well-known weak
spot of OCR/text CAPTCHAs, placing several curved lines over the letters,
even though recent attacks might cope well with these anti-segmentation
techniques (Bursztein et al., 2014, Gao et al., 2016).

Regarding the second ML problem of text emotion, several ML
algorithms have been proposed that can deduct emotions from texts. However,
to our knowledge, all of them focus on trying to infer the feelings of the writer
of the text, and none attempts to estimate the emotion that the text would
produce on a human reader. This aspect is somewhat crucial, as these news
excerpts that are written in an objective language use both few adjectives and
neutral nouns, both of which are an essential part of many ML approaches to
deduction of text emotion.

Because of this, we consider a further analysis of the CRC especially
attractive not only from a security standpoint but also from an ML perspective.
In the following section, we will get further insight on both problems and will
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find solutions using ML that can be later used in an attack on the CRC.

4.4 Foundations of the Machine Learning attack

In this section, we will analyse the design flaws of the CRC and how they can
be exploited using ML. The results of this analysis will be the foundations of
our attack to the CRC.

Solving the CRC can be divided into two phases: reading the
Securimage-protected answers and classifying the challenge text according to
the emotion it should create on the reader.

Given the design flaws of the CRC, classifying the news excerpt
texts is not strictly necessary to solve it. We would like to know how to cope
with a better designed CRC with a bigger news database. Also, classifying
the news excerpt texts will improve the attack results.

In the next sections, we explain these two phases in detail and
present an attack based on them in section 5.4.

4.4.1 Reading the answers

The current iteration of Securimage might be a good OCR/text CAPTCHA,
but the way the CRC employs it in makes it weaker. The problem is
Securimage was originally designed to work with a large alphabet, and either
random words, or a huge dictionary. If we restrict it to just 133 words, its
disguising capabilities might not be good enough for a strong classifier. This
is what we decided to test.

The metrics we gathered from the images to feed our classifier were
general ones: black pixel count and pixel count per column. These two values
will be affected by the presence of the two or three random black lines that
Securimage is told to produce by the CRC.

The lines drawn are typically of the same thickness all along their
length. In this case, a derivative of the number of the vertical pixels in each
column will be affected by their presence only at their start and end (ideally,
as an intersection of lines and letters would affect too). Thus, we decided to
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Figure 4.6: Example metrics of some CRC answers: pixel count by column
(green), and groups of three (blue) and five (red) columns; differential for
these values, and the total pixel count, as % of the maximum from all

answers.

add this statistic.

Figure 4.6 shows an example of the value of these metrics for two
CRC answers that pertain to the same category. From top to bottom, the
first graph shows the pixel count by column (green), and groups of 3 (blue)
and 5 (red) columns. The second graph shows the differentials for the first
ones, also per column (green), and groups of 3 (blue) and 5 (red) columns.
Highlighted in this graph, two rectangles in orange that explain how the
differential is less affected by horizontal or diagonal lines, and more affected
by vertical lines (sudden changes), due to characters, as we want. The last
bar graph is the total pixel count, as % of the maximum from all answers.

We decided to sample the image at every column, and also in groups
of 3 and 5 columns. We used a very simple approach - our intent is to do
the least possible analysis and let the ML algorithm do it for us. Note from
Figure 4.6 that the derivative of the pixel count per columns provides a good
representation of the start and end of letters, as well as vertical strokes, even
in the presence of distortion lines.

Choosing typical metrics, we try to replicate the approach we would
expect from a low-cost attack, that is, an attack seeking to obtain the most
results investing the least effort. A low-cost attack is the main risk for a
CAPTCHA that has not gained widespread use yet. No significant image
processing, nor OCR techniques, are used in this attack. All we do is to
compute these simple metrics for each image and let the ML algorithms cope
with the data.

To create a training set, we downloaded 1989 answer word-images,
and manually classified them into the 133 possible categories.
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We fed them to Weka (Hall et al., 2009), using all compatible
classifiers. We were not able to use all the classifiers available in Weka 3.7,
due to several errors from some of them such as MODLEM (Greco et al.,
2001), Logistic, Bayes Average 1 and 2 Dependence Estimators, SMO, and
with other algorithms running for too long without producing the model, such
as DTNB (Hall and Frank, 2008), JRip (Cohen, 1995), MultiLayerPerceptron,
SimpleLogistic, K* (Cleary and Trigg, 1995), LWL (Atkeson et al., 1996),
NBTree (Kohavi, 1996), LADTRee (Holmes et al., 2002) and LMT (Landwehr
et al., 2005). We used both 2-fold and 10-fold CV, depending on the time
to build and run the different models. Typically, we did a 2-fold CV of all
algorithms, and again a 10-fold CV of the most promising ones, if time was
available.

Table 4.1 shows the results of the best-behaved classifiers during
these experiments. Each row represents a different ML classifier of the ones
available in Weka. The first column is its name, the second shows the test
mode (number of CVs), the third column is the accuracy obtained (represented
as % images correctly classified), and the fourth column is the κ statistic (a
measure of accuracy vs. a random classifier).

After all these tests, we realized that best out-of-the-box classification
was obtained using LibLINEAR, that is based on Linear Regression and
Linear Support Vector Machines (Fan et al., 2008), although good results
were also obtained using Random Forests (Breiman, 2001), Additive Logistic
Regression (LogitBoost (Friedman et al., 1998)), Voting Feature Intervals
(VFI (Demiroz and Guvenir, 1997)), Nearest-neighbor using Non-nested
Generalized Exemplars (NNge (Martin, 1995)), Naive Bayes, and with J48
trees (Quinlan, 1993), etc.

As Table 4.1 shows, we were able to correctly read the answer 59, 3%
of the time. This result was obtained without any kind of image processing
or any other traditional OCR technique. This result shows the weakness of
using Securimage with only 133 possible categories as answers.

4.4.2 Classifying the challenge text empathic emotions

As there are only 21 challenges, we can memorise their positive/negative
classification. The reason why we do not do it here and instead try this ML
approach is because we want to know whether, if the number of challenges
is raised properly and actively maintained, it is still possible to successfully
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Table 4.1: Best classifiers for OCR the Sercurimage challenges of the
CRC, ordered by accuracy and κ statistic.

Weka Scheme Test mode Correct (%) κ statistic
LibLINEAR 10-fold 59,35 0,58

Random Forest 2-fold 51,30 0,50
LogitBoost 2-fold 47,73 0,47

VFI 2-fold 45,82 0,45
NNge 2-fold 42,80 0,42

Naive Bayes 2-fold 40,59 0,39
Multi Class Classifier 2-fold 38,48 0,37

IB1 2-fold 36,51 0,35
J48 graft 10-fold 33,45 0,32

Random Sub Space 2-fold 32,59 0,31
J48 10-fold 32,19 0,31

attack the CRC.

Given the CRC design flaws, it is possible to do better than 50%
(random pos/neg classification). CRC presents only 21 different questions,
7 of them positive (33%), and 14 negative (66%). The problem with this is
that a lazy all-negative classifier would have a 66% success rate. Improving
the success of our attack would be as easy as discarding all read answers that
are positive.

This result can be further improved. Several projects are available
to classify the emotion of a written text (Bird et al., 2009, Nielsen, 2011).
The problem with most of them is that they typically classify the feelings of
its author by checking the adjectives and/or nouns used.

This approach is not suitable for our case because the news are
objectively described, with no or little use of adjectives, but still, can create
an empathic emotion on the reader according to the positive or negative
impact on other people.

We tried some of these approaches, but they did not give good results.
For example, the classification of sentiment provided by SentiWordNet proved
to be not significant for our purpose. To illustrate this, we can mention that
the sentiments for the verbs imprison and incarcerate were both neutral, as
happened with many others.

After examining different possibilities, we decided to use the Python
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Natural Language Tool-K it (NTLK ) library (Bird et al., 2009). This library
provides several algorithms for treating Natural Language problems, some of
them to classify text, including decision trees, maximum entropy, SVMs or
Naïve Bayes, just to mention some.

To be able to train our model, we needed to manually classify a
set of similar news excerpts as either positive or negative. We found two
primary sources of news extracts of similar thematics, the Human Rights
Watch (HRW) association, and the Civil Rights Defenders (CRD). This last
one happens to be the one associated with the CRC. We downloaded 152
news from the Human Rights Watch association (most of them of negative
content), and 643 from the Civil Rights Defenders, of which 21 are related to
the questions on the CRC.

After some initial testing, we saw that the HRW corpus was not
very relevant, being one of its main flaws that only five of the 152 news had
a positive character. We decided then to only use the CRD news corpus, in
two versions: the 622 version (without the 21 news related to the CRC ), and
the complete 643 version.

We followed these steps with different input data from the CRC
news corpus:

• Data cleaning: as an initial step, we took out of the bags of words the
name of any country (and the corresponding adjectives), the name of
the civil & human rights organizations and other related organizations,
and of course, the NLTK stop-words for English, so they were not used
for classification.

• Data transformation: we processed the news corpus with pos-tagging
to translate it into WordNet synsets, wanting to know if adding some
of the knowledge represented in WordNet would help the classification
(WordNet can be considered somehow an Ontology, given the relation-
ships among its synsets). We built different corpuses: one with the
original plain news excerpts, another one with the synsets of those news
words, a third one with synonyms of such synsets, and four others that
included the hierarchies of hypernyms, from the root (0) to the 4th level
(if present).

• Preprocessing: we converted the corpuses to TF-IDF (term frequency -
inverse document frequency) normalised vectors, using a cut-off value of
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Table 4.2: Best Empathy classifiers, by algorithm and data.

Algorithm Best 10-CV f1 Input Best 21-CRC f1 Input
Max. Ent. 0.29 original 0.54 synonyms
N. Bayes 0.46 original 0.78 synonyms

SVM Linear 0.55 original 0.86 synonyms

Table 4.3: Best parameter results in 10-CV, by algorithm and data.

Parameter Best
value Algorithm Input Other values

f1 0.55 SVM4 Linear Original Recall 0.48, accuracy
0.68, precision 0.65

Recall 0.48 SVM Linear Original Recall 0.48, accuracy
0.68, precision 0.65

Precision 0.95 Max. Ent. Hypernyms-3 Recall 0.11, accuracy
0.66, f1 0.20

Accuracy 0.72 SVM Linear Hypernyms-3 Recall 0.44, precision
0.70, f1 0.52

2, that is, not considering words that do not appear at least two times
in the corpus, and n-grams for n=1,2,3.

• Classify TF-IDF vectors: in order to get better results, we tried three
classification algorithms: Max Entropy, Naïve Bayes and Linear SVMs.

• Test: we used 10-CV on the whole annotated news corpus, without the
21 questions that were used in the CRC. For each algorithm and input,
we tested f1, recall, precision and accuracy. Additionally, we also tested
them on the 21 questions of the CRC.

Tables 4.2, 4.3 and 4.4 describe the results obtained when using the
622 CRD corpus. Table 4.2 shows which data set obtains best classification
results for each ML algorithm, both for 10-CV and for the 21 questions of
the CRC. The first column is the ML algorithm. The second is the best f1
value obtained for 10-CV (being the f1 score a combined measurement of
the classifiers precision and recall). The third column is the data transforma-
tion applied to the 622 CRD corpus related to WordNet, being original no
transformation, synonyms their replacement for WorNet synsets of synonyms,
and hypernyms-X their replacement for chains of WordNet hypernyms to
the X-level (being X = 0 using only the root synset). The fourth and fifth
column show the same information but related to testing the algorithms with
the 21 CRC questions only.
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Table 4.4: Best parameter results for the CRC questions, by algorithm
and data.

Parameter Best
value Algorithm Input Other values

f1 0.85 N. Bayes Synonyms Recall 0.71, accuracy
0.85, precision 0.83

Recall 0.85 SVM Linear Synonyms f1 0.85, accuracy
0.85, precision 0.90

Precision 1.00 all Hypernyms-3
Recall 0.28, accuracy
0.76, f1 0.44 (SVM
Linear)

Accuracy 0.90 SVM Linear Synonyms f1 0.85, accuracy
0.85, precision 0.90

Table 4.3 shows the highest values obtained for each parameter tested
(f1, recall, precision and accuracy). For each parameter, the second column
shows the best value obtained, the third column shows the ML algorithm
that achieves it, the fourth column shows the input data used: whether it was
the original CRW corpus, or some transformation of it using WordNet, as in
columns three and five of 4.2), and column 5 shows the rest of measurements
for that particular combination.

Table 4.4 is equivalent to Table 4.3, but testing all classifiers against
the 21 questions of the CRC, instead of doing 10-CV.

Table 4.2 shows that SVM Linear is able to obtain an f1 of 0.55 for
10-CV (10% of the training set reserved for test). When we confront this
model with the 21 questions of the CRC, it is able to obtain a slightly better
result of f1 = 0.60, using the original corpus composed of the raw news bits,
converted into TF-IDF vectors. Transforming the input data using WordNet
knowledge, we got similar results using hypernyms of level 2 and 3. In that
case, SVM Linear is able to obtain f1 = 0.52 for 10-CV.

The best performance against the 21 challenges of the CRC was
achieved by SVM Linear using WordNet synonyms, reaching f1 = 0.86
(precision of 0.90), although only f1 = 0.41 for 10-CV (tables 4.3 and 4.4).

It is interesting to observe that when the training set is of limited
size, using WordNet synonyms does clearly improve the classification result
for unknown tests (Table 4.2), thus improving the generalisation abilities of
the classifier.

Given that the CRC challenges are indeed included in the news
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source, we also tried training using the complete 643 CRW corpus. The results
were all similar or slightly better than in the previous experiment. In this
case, we obtained the best results using WordNet hymernyms at the fourth
level. Specifically, we obtained f1 = 0.57 for 10-CV, and f1 = 1 (correct
classification) of the 21 challenges.

Due to the design of the CRC, there is another very precise way of
classifying each challenge text as positive/negative that would not use ML
algorithms. Each time there is a new challenge we, as an algorithm, do not
know whether the correct answer should be positive, or negative. We can still
read each answer 59% of the time, and if there is a small number of them
(133 in our case), classify them as either positive or negative.

Thus it is possible to keep answering randomly, using one of the
answers we read, and when we succeed, look at the type of answer that was
successful (positive/negative).

In this way we can use the CRC as an oracle that will tell us, after
certain time, the category of each question through this brute-force search.
This will allow us to correctly classify any new challenge text.

Adding these questions does not seem to have a significant benefi-
cial impact on the security of this CAPTCHA. The fact that the empathy
classification of these questions appears to be quite coarse (positive/negative)
means it will not significantly add security to the CAPTCHA.

4.5 Machine Learning attack to the Civil Rights
CAPTCHA

In this section we will introduce the attacks we conceived using the previous
knowledge about how to exploit the CRC design vulnerabilities using ML.
Any attack to the CRC can be broadly divided in reading the Securimage-
protected answers and classifying the challenge news-excerpts. Given the
design flaws of the CRC, classifying the challenge text is not strictly necessary
to pass it, but it can help improve the attack efficiency. We specify how
we use well-known ML algorithms for solving both problems to a level that
breaks the CRC.

We designed two attacks. The first one simply uses the previously
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tested ML algorithms to bypass the CRC. We called this one the basic attack.
The second is a slightly improved version that we will call the improved attack.
It saves the data about the answers already submitted to each challenge and
classified as right or wrong. That information is used to prevent sending
wrong answers again or picking up a right answer if present.

To test our attacks, we have created a program in Python and used
Weka to classify the answer images (reading them) using our pre-trained
classifiers. Our program downloads the challenge text and corresponding
images from the CRC server. Then, it analyses the three images that contain
the possible answers to the question using a previously trained classifier, as
explained in section 4.4.1.

Among the possibilities, we chose the SVM Lineal algorithm, translat-
ing the texts to chains of WordNet hypernyms, which obtained 1.00 precision
during our tests, as shown in Table 4.4.

In brief, our basic attack consists of the following steps (Figure 4.7):

1. Our program connects to the CRC server to download the challenge
text and the three images, taking care of the cookies.

2. Use our previously trained LibLINEAR classifier to read the three
images, obtaining both the word(s) in the image (with a 59% success
rate) and the certainty of the classifier in the classification (between 0
and 1).

3. Look up the words in our manually created list to annotate them as
negative or positive.

4. Translate the challenge text into chains of synsets representing their
hypernyms, from levels 0 to 4, using WordNet.

5. Use our previously trained SVM Linear classifier to classify the text
of the challenge as creating a negative or positive emotion (with 100%
success).

6. Filter the words obtained earlier by the corresponding empathic emotion
of the challenge text.

7. Pick randomly one among the remaining words as the answer to the
CRC challenge. This random selection will be weighted by the certainty
of the classifier over the different words.
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Figure 4.7: Flow chart of the CRC basic attack.

8. Send the chosen answer to the CRC servers.

9. Process the server answer to see if it was correct or not, and log
accordingly.

4.6 Experimental results

In this section, we explain in detail the results of the two attacks introduced
before, and compare them. These two attacks join the results of the previous
sections, showing that the use of ML to exploit the CRC design flaws is
indeed able to break it.

Due to technical problems, including the large amount of time taken
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by the CRC server to provide a full challenge (up to 45 secs. during our tests)
and the low reliability of the same (it was typical that the server stopped
responding for some minutes on occasions), it was easy to incur into time-outs.
It was difficult to finish a large series of experiments. With these restrictions,
our lengthiest experiments consist of series of merely 1000 challenges for the
basic attack, that took almost 15 hours for each of the four experiments.

Tables 4.5 and 4.6 show the logs of our attacks, showing some
examples of the attempts of our algorithm at classifying the question and
reading the answer words. In the different columns of Table 4.5 we show the
text of the question, its classification according to our model, the three answer
images and how they are classified by our image classifier including, for each
answer, the certainty of the classification, and whether this is a negative or
positive answer. The following column contains the selected answer sent to
the CRC server. The last column is the server answer, and whether it is
correct (True) or not (False).

Table 4.6 has a similar structure, depicting the initial log of our
improved attack. One additional line is added per attack, explaining what
the program is doing, thanks to the gathered knowledge: either removing
known wrong answers or, upon finding a correct one within the ones read,
choosing it.

Table 4.7 shows the rate of success of both attacks, using both the
622-news CRW corpus and the complete 643-news CRW corpus for training
the question classifiers, in each row. The first column is the size of the CRW
corpus. The second column shows the bypass rate of the simple attack, that
is, the number of correctly solved CRC challenges vs. the total. The third
column shows the same rate for the improved attack.

The basic attack reaches a 17% success rate using the complete 643-
news CRW corpus, that lowers to 14% for the smaller CRW corpus. These
success rates are regarded as a complete bypass of the CRC. The success rate
of the improved version tends to increase with the gathered knowledge, with a
mean of 20, 7% for the total experiment (16, 5% for the smaller CRW corpus).

This result is clearly better than a brute-force attack, that would
break the CRC on average 1

133 (0, 75%), or 0, 66× 1
72 (0, 92%) if we restrict

ourselves to negative answers. A brute-force attack would not be able to learn
the correct answers to each question, as it is not reading which answers are
present each time.
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Table 4.5: Program answers for the basic attack.

Question Model
pred.

Img. answ. Class. Secur. Type Sent
answ.

Result

Members of
the Russian
g...

neg
pushy 0.89 neg

shook-up True
shook-up 0.66 neg

happy 1.0 pos

Serbian
authorities
bann...

neg
old 1.0 neg

terrible True
angry 1.0 neg

terrible 1.0 neg

In Kosovo
people are
tor...

neg
excited 0.82 pos

upset True
proud 1.0 pos

upset 0.8 neg

In february
2012 the
Uga...

neg
disturbed 0.93 neg

disturbed True
exhilarated 1.0 pos

even 1.0 N/A

Members of
the Russian
g...

neg
bothered 0.89 neg

bothered True
young 1.0 pos

truly
happy

0.667 pos

Members of
the Russian
g...

neg
big 0.93 pos

sympathetic True
even 1.0 N/A

sympathetic 0.8 neg

In february
2012 the
Uga...

neg
sublime 0.82 pos

frightened True
angry 0.67 neg

frightened 0.8 neg

Human
rights
defender
Na...

neg
temporary 0.92 N/A

disgusted True
pushy 0.75 neg

disgusted 1.0 neg

Swedish-
Eritrean
journal...

neg
offended 1.0 neg

horrible True
sublime 1.0 pos

horrible 1.0 neg
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Table 4.6: Program answers for the improved attack.

Question Model
pred.

Img. answ. Class. Secur. Type Sent
answ.

Result

Swedish-
Eritrean
journal...

neg
noisy 0.89 neg

mad Truevery
proud

0.67 neg

mad 1.0 neg
removing not ok answers to 2 answers,after using knowledge, answers are noisy,mad

Swedish-
Eritrean
journal...

neg
lively 1.0 neg

crappy Truecrappy 1.0 pos

vague 1.0 N/A
none of the answers is among the known correct,removing not ok answers to 1 answers,after using knowledge, answers are crappy

In 1948,
the UN
General ...

neg
frustrated 0.93 neg

frustrated Trueeven 1.0 neg

typicall 0.8 N/A
removing not ok answers to 1 answers,after using knowledge, answers are frustrated

Swedish-
Eritrean
journal...

neg
shook-up 0.83 neg

shook-up Trueromantic 1.0 neg

smart 1.0 pos
none of the answers is among the known correct,removing not ok answers to 1 answers,after using knowledge, answers are shook-up

Swedish-
Eritrean
journal...

neg
big 0.83 neg

agonized Trueagonized 0.5 neg

lively 1.0 pos
none of the answers is among the known correct,removing not ok answers to 1 answers,after using knowledge, answers are agonized

When told
that there
are...

neg
miserable 1.0 neg

miserable Trueassured 1.0 neg

happy 1.0 pos
removing not ok answers to 1 answers,after using knowledge, answers are miserable

In 1948,
the UN
General ...

neg
hopeful 0.83 neg

frustrated Truefrustrated 0.83 pos

upset 1.0 neg
trimming by known ok answers to 1 answers,removing not ok answers to 1 answers,after using knowledge, answers are frustrated

Table 4.7: % of successfully solved CRC challenges.

CRW corpus Basic attack Improved attack
622 14, 1% 16, 5%
643 17, 1% 20, 7%
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If somehow an attacker creates a database of correct answers to each
question, and then uses it to answer a random correct answer, its success
rate would never be over

∑i=21
i=1

1
|solutions(i)|
21 , where solutions(i) is the set of all

possible correct solutions to question i.

This would be in a scenario in which the attacker has learned all
possible right answers to each question: even in our 1000-length attacks we
were not able to learn all the correct answers, with some questions having 5,
7 or 9 known correct answers, but others still none.

If the CRC had a well maintained database of challenges, such an
attack would take extremely long to learn all the right answers to all the
questions. Our attack will still be able to attain a minimum 17, 1% success
rate. Once automatically learned some correct and wrong answers, a 20, 7%
success rate or greater would be possible.

4.7 Possible improvements

Securimage provides many more possibilities than the ones employed by
the CRC authors. One possible improvement is to use Securimage to its
maximum, allowing the use of more typefaces, sizes, more random number of
lines, more degradation, etc.

It is important to avoid using such a limited set of possible answers.
These should be increased at least a hundred times, but it would be much
better if it is increased at least one thousand times. With this type of
CAPTCHA, it is quite problematic, but it is a necessary measure not to
render the protection provided by Secureimage completely worthless. How
can we describe 130, 000 different possible empathy feelings? Even more, in a
way so they are presented in a random, uniform manner, to the user. It is
not a simple question for this CAPTCHA, but one that needs a solution, not
to render the protection provided by Secureimage completely worthless.

This CAPTCHA is designed to be based on one or several news
sources. Limiting this source of information to one, like in this case, is clearly
problematic.The authors should use different news sources, different news
writing styles, and also enlarge the subject of those news to cover some topics
not directly related to Civil and Human Rights (but somehow related), thus
making machine classification harder. It is important that the authors create



4.8 Discussion 129

big enough corpus, properly maintained, and that they try on it several
Natural Language classification algorithms to check that they do not offer
much better results than random.

Similarly, it would be important to have many more categories of
news, not just postivie and negative, and corresponding answers.

All these improvements might be able to protect the CRC from
low-cost attacks, but due to the advances in DL, an OCR CAPTCHA cannot
be considered secure and the authors should look for alternatives.

4.8 Discussion

In this chapter we have analysed the CRC CAPTCHA from a security
standpoint. Using simple metrics and ML algorithms, we have been able to
break it with a 21% success rate consistently.

We have shown how Securimage is rendered weaker by using it out
of the scope it was designed for. We have also shown that the idea of a
CAPTCHA based on empathy about text excerpts is not necessarily good,
especially if this empathy test can only be administered as a choice between
two main categories.

Finally, we have shown that the combination of two CAPTCHAs is
not always more secure than one of them alone, as the way the CRC uses
Securimage lowers its security, and in turn allows us to break the CRC.

More importantly, we see that also in this case with the CRC, it
is useful to do a challenge domain analysis and an answer domain analysis.
We also see that simple, general metrics, along as some other metrics slightly
modified for the case, can give enough information about the challenges as to
allow various ML algorithms to break the CAPTCHA a significant number of
times.

The attack we present is quite general and does not use any OCR
technique nor any of the conventional methods to attack OCR CAPTCHAs.
Instead, we use very simple, general metrics, and allow ML to do the heavy-
lifting of finding sufficient enough information to create a side-channel attack.

The analysis of challenge and answer domain that we also have
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presented in section 4.2 together with the combination of simple, general
metrics and ML is promising in its ability to test for compliance with a basic
security level in many other types of CAPTCHAs. In fact, these two analyses
constitute two fundamental steps of BASECASS, the methodology that we
propose in chapter 6.



Chapter 5

Case Study: FunCAPTCHA

This dissertation aims to study the security of new CAPTCHA proposals
that present original aspects and have not been studied before. That is why
we chose FunCAPTCHA, the first production CAPTCHA that is based on
gender recognition of faces.

There are different ML algorithms that we can apply for gender
recognition (also known as gender detection or gender classification), as
Fisherfaces1 or Delaunay triangulation (Delaunay, 1934) to extract some
features (distances between spots) and classify them using Functional Trees
(Khryashchev et al., 2012, Gupta, 2015). Recently the accuracy of the different
ML image recognition/classification tasks has drastically improved thanks
to the advances in Deep Learning (DL), in particular in CNN. They achieve
80% accuracy on a complex dataset of full-body images including both frontal
and rear views (Ng et al., 2013). Other authors achieve a 86% accuracy using
the much more challenging Adience benchmark2, resulting in state-of-the-art
accuracy (Levi and Hassner, 2015). Related techniques, as ensembles of
DNNs that perform 3D alignment, frontalization and classification, have been
used for other face-based problems as face identity verification, attaining an
accuracy of 97%, almost at the human level, with medium datasets of 4000
identities in 4 million images (Taigman et al., 2014).

1There is a Fisherfaces example implemented in OpenCV, available at http://
docs.opencv.org/2.4/modules/contrib/doc/facerec/tutorial/facerec_gender_
classification.html.

2The Adience benchmark consists in in-the-wild pictures that include 2284 subjects in
26580 photos taken from Flickr albums released under the Creative Commons licence. It is
available at http://www.openu.ac.il/home/hassner/Adience/data.html.

http://docs.opencv.org/2.4/modules/contrib/doc/facerec/tutorial/facerec_gender_classification.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/tutorial/facerec_gender_classification.html
http://docs.opencv.org/2.4/modules/contrib/doc/facerec/tutorial/facerec_gender_classification.html
http://www.openu.ac.il/home/hassner/Adience/data.html
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It is known that facial expressions, poor lighning, complements as
glasses, partial oclussions and others can significantly difficult ML approaches
to face detection, identification and classification. It is unclear to us whether
the designers of FunCAPTCHA were able to find a subset of the gender
recognition problem that is particularly hard for the current ML methods.
Thus, in this chapter we perform a security analysis on it.

In this chapter we first describe FunCAPTCHA is described in
section 5.1. We further study its design in section 5.2. Then, we focus on its
security and in its potential weaknesses in section 5.3. To understand the
exploitability of these weaknesses, we study how ML can leverage them. To
do so, in section 4.4 we define some general metrics and study their behaviour
using ML. In section 5.4 we present a novel attack against FunCAPTCHA
that we demonstrate in section 5.5. In section 5.6, we discuss whether some
potential improvements can help FunCAPTCHA cope with our attack and
others. Section 5.7 comments on both the strength of FunCAPTCHA and
the characteristics and potential of our attack.

5.1 FunCAPTCHA description

FunCAPTCHA is not the first CAPTCHA design to be based on image
orientation and gender recognition (Gossweiler et al., 2009, Kim et al., 2014).
However, it is the first readily available wide-scale implementation of a gender
recognition CAPTCHA. FunCAPTCHA claims better strength and usability
than a typical word-recognition CAPTCHA. More so, FunCAPTCHA decides
to implement their genre recognition challenges using 3D synthetic images.
This method has the potential benefit of control over all variables affecting
the challenge creation, thus potentially rendering a secure CAPTCHA.

As ML facial recognition copes better with frontal pictures, this can
be the reasoning that explains the design of FunCAPTCHA, that rotates
the 3D heads and then renders them in 2D. Given this challenge generation
algorithm, it is unknown how well current state-of-the-art gender recognition
algorithms would behave in this scenario. We assume that the company
behind FunCAPTCHA did some testing with current state-of-the-art ML
algorithms.

FunCAPTCHA generates two different types of challenges, each one
appearing roughly 50% of the time. The first type requires the user to rotate
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an image in 40◦ increments until she puts it in its correct vertical orientation.
This implementation is weak, as a brute-force attack would pass it 1

9 = 11%
of the time for one test, 0, 13% for challenges of three tests and 0, 0016% for
5-test challenges. This idea is also not new (Gossweiler et al., 2009) and has
known drawbacks (Zhu et al., 2010a) that make it of little interest.

The second type of challenges is a gender recognition challenge that
presents a 9× 9 tile box with 8 faces, one of them representing a female. It
requires the user to select a picture of a female face among 8 images and drag
& drop it to the centre of the tile box. Because of its novelty, this is the test
that interests us and that we will study in this chapter.

Each one of this two types of CAPTCHA varies regarding how many
tests are required to be solved sequentially to pass the CAPTCHA. In our
tests, the whole CAPTCHA challenges have been comprised of either one,
three or five individual tests.

FunCAPTCHA has implemented different versions of the gender
recognition test over the time, as seen in Figure 5.1. We are aware of at
least four different versions: using real human models, rendering different 3D
facial models in 2D in colour, using only one model per gender in colour, and
rendering in greyscale. It is unknown to us why FunCAPTCHA designers did
these changes. In communications with FunCAPTCHA authors, they claim
that they update their CAPTCHAs to stay ahead of the advances in ML.

Apart from its security, another main advantage according to Fun-
CAPTCHA marketing is that it offers a significantly higher conversion rate
than other CAPTCHAs, as "FunCaptcha has a 96% completion rate" and "is
completed 28% more than twisty-lettered CAPTCHAs".
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Figure 5.1: Different FunCAPTCHA gender recognition iterations.

5.2 FunCAPTCHA analysis

We analysed FunCAPTCHA from the viewpoint of an attacker that wants
to bypass it as a means to gain automatic access to some rewarding on-line
service. Thus, we did not register with the API of FunCAPTCHA, nor
installed a client in our machines. We analysed its protocol directly from the
browser, using HTTP analysis tools.

5.2.1 FunCAPTCHA initial analysis

It is correct to argue that a CAPTCHA with a 12, 5% brute-force success
ratio (1

8) is already flawed. The chances of passing the three and five-test
challenge by brute-force would be 1, 5% and 0, 003% respectively. Only the
later is good enough for a production CAPTCHA. FunCAPTCHA seems
to rely on some tracking, possibly based on IP tracking, to decide when to
harden the test after the user sends one or several wrong answers.

During our analysis, we found that FunCAPTCHA uses several
obfuscation techniques. Among them:

• JavaScript code obfuscation at two levels.

• Cyphered communications, using the AES Cypher in Counter-mode for
the transmission of some values. This is in addition to all transmissions
using HTTPS.
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• The order in which FunCAPTCHA presents the face images on the
client’s browser is also obfuscated.

• 2-level cross-domain IFrame nesting to prevent easy JavaScript debug-
ging.

Each of these measures was rendered at least partially useless. This
was possible after the following findings:

• It was possible to partially revert JavaScript code obfuscation, as a diffe-
rent JavaScript code was found thanks to caches using a less obfuscated
version.

• FunCAPTCHA uses the AES library from Chris Veness3. Thanks to
this finding, it was possible to decipher its communications easily. In
particular, it was possible to see that the value of the parameter guess
was being used to send back the answers to FunCAPTCHA after each
drag & drop. Its value was ciphered using AES in Counter mode,
initialized with a value partially time dependent and partially pseudo-
random. This value was added to the message to allow for its decoding
at the FunCAPTCHA server. The key used for ciphering was the
session_token, passed from the FunCAPTCHA server to the client
during the initial set-up of the test.

• The other three obfuscation measures were all bypassed by using a
regular browser to analyse and later bypass the CAPTCHA. More
details about this in section 5.4.

The reasoning for these obfuscation measures is not clear to us. Some
instances, as encoding the answers using AES and a key already delivered
from the server do not seem to serve any real purpose. Others are more a
nuisance to some analysis that a real impediment to any attacker. The use
of these obfuscation levels is a clear case of trying to implement Security
Through Obscurity.

When we contacted FunCAPTCHA authors, they replied that in
fact this is the case, but that "obfuscation is [an] asymmetrical effort" and

3This library can be found at http://www.movable-type.co.uk/scripts/aes.html.
Even though this AES library is protected by a MIT license and requests a link to
the original page and the original copyright notice, we were not able to find those in
FunCAPTCHA’s site.

http://www.movable-type.co.uk/scripts/aes.html
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that it is "surprisingly effective" at delaying attackers. We think that the
attack we present in section 5.4 proves this not to be the case.

5.2.2 FunCAPTCHA image repository

After automatically downloading 500 images, we calculated their MD5 and
SHA1 Cryptographic Hash functions, used here as mere fingerprints of the
file contents. We found no coincidences. This result was somehow surprising,
as many of the faces look quite similar to the eye.

This finding leads us to affirm that FunCAPTCHA does render the
3D model each time, using a slightly different angle, illumination and distance
parameters, so that not two images are identical at the bit level. This initially
looks like a sound implementation decision for FunCAPTCHA.

5.2.3 FunCAPTCHA protocol analysis

Even though FunCAPTCHA uses several obfuscation mechanisms, it was
possible to relate its client-server communications to the different events
happening in the browser. We were able to easily decipher the communications
cyphered with AES and analyse the FunCAPTCHA communications protocol.
In brief, it follows the following main steps:

1. A web-page that contains the FunCAPTCHA UI is loaded4. Fun-
CAPTCHA creates dynamically the part of the page that contains the
CAPTCHA, which includes an IFrame that loads another IFrame that
contains the UI. FunCAPTCHA uses several dynamic parameters to
create it, including token, r, guitextcolor, metabgclr, metaiconclr, meta,
surl or source-url.

2. The browser loads then the IFrame using these previously created
parameters, sending them to https://funcaptcha.co/fc/gc/.

3. In the loading process of the IFrame contents, one particular URL
contains the additional references to the rest of the contents of the

4As https://www.funcaptcha.com/contact-us/ or https://www.funcaptcha.com/
demo/, both retrieved in September 2015.

https://funcaptcha.co/fc/gc/
https://www.funcaptcha.com/contact-us/
https://www.funcaptcha.com/demo/
https://www.funcaptcha.com/demo/
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challenge. This is a POST petition at https://funcaptcha.co/fc/
gfct/ (probably gfct for get FunCAPTCHA test).

The server answers with a full description of the challenge, including:

• The new variables challengeID and challengeURL.
There are two possible values for challengeURL: 001 indicates we
are having an image orientation test, and 002 indicates a gender
recognition test.

• The URLs of the images to download, included inside the _cha-
llenge_imgs variable.
These are always multiples of 8, as each test shows 8 images to the
user. A full challenge can typically have one, three or five tests, so
8, 24 or 40 total images.

• The extra images for the "pick your favourite activity" screen, that
has no security relevance.

• Other elements including images with logos, additional texts mes-
sages that might be shown to the user in different scenarios, etc.

4. There are certain events that the client JavaScript notifies to the server.
Among them we find: when the browser starts to display the challenge;
when the user clicks on the verify button; if the user requests a different
challenge, and others. The JavaScript at the browser posts these events
to https://funcaptcha.co/fc/a/, and the typical server answer is:

{"logged":true}

5. If we are dealing with the gender recognition test, every time that an
image is drag & dropped to the centre, the client JavaScript sends the
information to the server using a POST to https://funcaptcha.co/
fc/ca/ (challenge answer).

The server replies with different strings depending on the case: if the
user just sent an answer to a test that is part of a challenge; if the
answer is wrong, or if it is correct:

{"response":"answered","solved":true,"incorrect_guess":"",
"score":3}

https://funcaptcha.co/fc/gfct/
https://funcaptcha.co/fc/gfct/
https://funcaptcha.co/fc/a/
https://funcaptcha.co/fc/ca/
https://funcaptcha.co/fc/ca/
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If the answer is wrong, the server returns the parameter incorrect_guess
with the ordinal of the answer that was wrong. Providing this unnecesary
feedback is not a sound idea, as it allows an attacker to know which
tests within a full challenge have been correct, and thus, to correctly
label a subset of the images of the challenge and gain knowledge for
other attacks, for example creating a labelled training set.

We were able to programmatically intercept the communications
between the client (the web browser) and the server using a proxy. This
monitorization allowed us to determine what type of challenge we were facing
-rotation or gender recognition- and also how many tests it was composed
of. When we were dealing with a gender recognition challenge, we were also
able to download the challenge images. Finally, it allowed us to easily know
whether the answers sent to FunCAPTCHA were correct or not according to
their servers.

5.3 FunCAPTCHA design flaws

At this point of our research, we could list some decisions of the FunCAPTCHA
design that might be key to its security:

• It uses only one male and one female 3D model.

• The model does not show facial expressions, nor it includes other
distortions, as the addition of glasses, different haircuts, etc.

• Even though the served 2D images do not repeat at the bit level, some
of them look similar or very similar to images shown before.

• The background is always plain white.

Other characteristic is that the images do not have the same distance
from the model. For example, some of the images include the shoulders, others
show the neck partially, while others show mostly only the face. Visually,
there is no obvious way to classify male from female pictures. The number
of white pixels seems to be more affected by the distance than any other
factor. Similarly, the amount of use of the different grey shades does not seem
different depending on gender.
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5.3.1 ML analysis of the flaws and strength

We employed a simple classifier with the aim of distinguishing male faces
from female faces. We wanted to check whether the similarities of the
FunCAPTCHA images would allow a classifier to efficiently detect male vs.
female images if fed with very simple image statistics.

To test this hypothesis, we downloaded and manually classified 4320
images from FunCAPTCHA. Note that this was not strictly necessary. Due
to the vulnerabilities in the design of FunCAPTCHA, it would have been
possible to solve the 1-test challenges with a 1

8 = 12% success rate and use
these solved challenges as a training set. Of those 4320 images, only 535
were images of females (not exactly 1 in 8 due to some time-outs during the
downloads).

We extracted some very basic statistical information from these
images: the percentage of white pixels; the histograms of the use of different
grey intensities, in groups of 5, 10, 15 and 25 intervals; and the size of the
image compressed with JPEG using different quality factors (from quality=0
to 100).

As an initial classifier for this test, we decided to use the k-Nearest
Neighbours algorithm. kNN has little parametrization: the number of neigh-
bours considered, how the weights are calculated and the algorithm to use
for the search. kNN is a good representation of the idea of using similarities
between examples to classify.

Another benefit of kNN is that it can also produce the previous
known examples that are found to be similar to the one being classified. That
way we can check if the metrics and distances are relevant for the classification
we are trying to achieve.

We trained kNN using all the manually classified images. To test
it, we downloaded additional 148 challenges, each one composed of five tests
(with the exception of a few download errors). We proceeded with a semi-
exhaustive search trying different values for k and the rest of the parameters.
We ordered the results by their Cohen’s κ statistic values, that measures a
classifier against the expected accuracy. This metric is more relevant than
the accuracy for such imbalanced data.
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5.3.2 Results of the ML analysis

The best result was typically obtained selecting only the closest neighbour,
reaching an accuracy of 97% and a κ statistic of 0.84 when tested on new
images.

We run again our experiment selecting now the closest image to
each unknown image. The result of this analysis can be partially seen in
table 5.1. In this table the first six rows show a training image and the value
of its different metrics, and the next six rows are a test image classified as
pertaining to that class along with the same statistics.

The metrics in table 5.1, in order of appearance from higher to
lower, are: the number of white pixels (% from maximum), the histogram of
appearance of the different gray-scales, grouped in 5 bins, 15 and 25 bins, and
the sizes of the image compressed with JPEG and different quality settings.
Table 5.1 shows two wrongly and two correctly classified images by gender,
and the closest one to each query.

Even though these simple statistics allow the correct classification
in a 97% percent of the cases, there are several occasions in which they
completely miss. Selecting more neighbours and averaging the resulting class,
or weighting it by distance, is not the solution to these errors, as Table 5.2
shows.

A question that naturally arises is how many labelled faces does kNN
need to perform at a good level. Or, put it another way, how many faces are
enough to "have seen them all" (or most). For this reason, we experimented
with kNN and different sizes of the training set.

To test this, we performed 25 experiments for different sizes of the
training set (measured in % from the total training set size), each one using
5-CV, and calculated the mean and error margin of both the accuracy and
the κ.

The result is shown in Figure 5.2, where the shadowed area is the
margin of error at 95% interval of confidence. As can be seen, with just 0.05%
or 250 images of faces for training we still can obtain a > 85% classification
success ratio for a single image. This seems like a good result till we check the
κ value for this classifier, which is 0.3, and we see in the confusion matrix that
it has classified more females as males than as females. This is why accuracy
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Table 5.1: Some FunCAPTCHA wrongly and correctly classified faces,
and their statistics.

Wrongly classified Correctly classified

Class (training)

White pix. (%)

Color histogram (5 bars)

Color histogram (15 bars)

Color histogram (25 bars)

JPEG sizes

Problem (test)

White pix. (%)

Colour histogram (5 bars)

Colour histogram (15 bars)

Colour histogram (25 bars)

JPEG sizes

Diff. img. (×5)
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Table 5.2: Classification success rates for different kNN parameters. The
first column shows the search algorithm used. The second column shows
if the classification is averaged or weighted by the distance. The third
column shows the number of closest neighbors used to calculate the answer.
The next four columns show the different elements of the decision matrix.

The last column shows the corresponding κ.

Search Weight of Number of Correct Correct Males Females κ
algorithm neighbours neighbours males females as females as males statistic

auto distance 1 5142 640 8 130 .89
brute distance 1 5145 631 9 135 .88

ball_tree uniform 1 5121 651 13 135 .88
brute distance 2 5127 634 14 145 .87

kd_tree uniform 1 5106 651 13 150 .87
...

brute uniform 3 5108 578 6 228 .81
kd_tree uniform 3 5117 571 5 227 .81
ball_tree uniform 3 5127 554 6 233 .8
kd_tree distance 5 5092 550 2 276 .77
brute distance 5 5116 527 1 276 .77

...
kd_tree uniform 50 5180 16 0 724 .04
kd_tree distance 50 5197 8 0 715 .02
ball_tree uniform 50 5189 8 0 723 .02

auto uniform 50 5187 8 0 725 .02
brute uniform 50 5182 8 0 730 .02
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Figure 5.2: Success rate of the kNN classifier when using smaller training
sets than the full one.

is a weak performance evaluator when used with such an unbalanced set, and
we have to restrict ourselves to using the κ statistic. With that restriction in
mind, we can still obtain decent values of the κ statistic of 0.8 for 50% of the
original training set (1954 images).

As a summary of our findings, we can say that even though there
is no evident way to classify the gender of the images based on the metrics
we have selected, a very simple ML algorithm is able to do so with great
accuracy with as few as 8754 images in the training set, even when it is quite
unbalanced. This means that even though the strength of FunCAPTCHA
seems ok to the untrained eye, it is actually not able to provide a strong-
enough ML problem. We wonder now whether other more sophisticated ML
algorithms will present a better outcome, and might be used in a real attack
scenario.

5.3.3 Machine Learning attack parameters

We know that FunCAPTCHA is not strong enough against simple metrics and
a simple ML algorithm as kNN. This means that FunCAPTCHA challenges
do not show the maximum strength that the gender recognition problem can
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have. Far from that, they present some simple similarities that are simple
to identify even using a simple ML algorithm that does no heavy image
processing nor image recognition.

The results obtained so far allow for some accuracy in the classifica-
tion, but this can be countered by using more faces and/or a greater number
of challenges, among others. We want to know if other ML algorithms can
cope possibly even better with the gender classification problem proposed by
FunCAPTCHA.

To try other algorithms, we checked the use of different ML frame-
works that allow the use of several ML classifiers and have some integration
with Python. In particular, we looked at Orange and Weka (Hall et al., 2009).
We decided to use Weka because of the many more classifiers that Weka has
out-of-the-box (79 vs. 11 in Orange).

As we also did in section 4.4.1, we compared all compatible Weka
classifiers using 5-CV. The selection of the best-performing algorithms was
done using the Cohen’s-κ metric. This metric behaves better than other
metrics for very imbalanced training sets such as the one we have here, with
one image of a female per seven images of males.

The results of these tests are available in Table 5.3. This table shows
the best and worst 12 performers of the whole set. It turned out that the
multilayer perceptron, IB1/k, KStar, and tree-based algorithms are the ones
that perform best.

It is interesting to see that while some ML algorithms can cope
out-of-the-box with unbalanced data, there are a few that completely fail
with such an unbalanced training set and decide to classify all pictures as
males.

The best value obtained for the κ statistic is 0.96 (99.19 accuracy),
a much higher value than the maximum obtained before with the kNN (.89).
This good result allows us to envisage a potentially successful attack to the
gender recognition challenge of FunCAPTCHA.
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Table 5.3: Best and worst classifiers for off-line gender recognition with
FunCAPTCHA.

Algorithm Correct (%) κ statistic
MultilayerPerceptron 99.19 0.96

KStar 98.94 0.95
IB1 98.91 0.95
IBk 98.91 0.95
LMT 97.73 0.89

Logistic 97.59 0.89
MultiClassClassifier 97.59 0.89

SimpleLogistic 97.43 0.88
FT 97.36 0.88

SPegasos 97.43 0.88
Decorate 96.85 0.84
SMO 96.83 0.84

...
VotedPerceptron 88.63 0.13
RBFNetwork 88.17 0.13

LWL 87.75 0.03
ClassificationViaClustering 55.56 0.01

DMNBtext 87.71 0.01
BayesianLogisticRegression . 0

Grading 87.64 0
MultiBoostAB 87.64 0
MultiScheme 87.64 0

ConjunctiveRule 87.64 0
ZeroR 87.64 0

DecisionStump 87.64 0
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5.4 Machine Learning attack to the
FunCAPTCHA

Once we determined the effectiveness of the ML classifiers for bypassing the
different challenges presented by FunCAPTCHA, we needed to assess the
strength of its design.

For that purpose, we created an attack that comprises the following
steps:

1. Start a local proxy for the HTTP and HTTPS protocols. We use the
proxpy Open-Source proxy .

2. Open a web-browser (Mozilla FireFox) and direct it to the web-page at
https://www.funcaptcha.com/contact-us/. We control this browser
instance thanks to the Selenium library (Huggins and Hammant, 2014).
This web-page contains the FunCAPTCHA CAPTCHA at its bottom.
We decided not to use the web-page at https://www.funcaptcha.com/
demo/ because we noticed frequent changes in it during our analysis,
including a period of over a month during which the demonstration
challenge was not available.

3. After we initiate the request, we wait for the proxy to capture the value
of the challenge_url variable that indicates if we are facing an image
orientation challenge or a gender recognition one.

(a) If FunCAPTCHA is serving an image orientation challenge (cha-
llenge_url = 001), we restart the process, unless we have done it
two times already, in which case we wait a random time in between
25 and 115 seconds5.

(b) If we are served a gender recognition challenge (challenge_url
= 002), we read from the answer how many images it is composed
of by looking at the contents of the array variable image_urls_str.

4. We wait till the browser downloads all the images.
5This waiting time interval was chosen because it was seen that too small waiting times

lead to increased chance of being served 001 challenges. After e-mail exchange with the
FunCAPTCHA designer, he confirmed that they use some sort of IP-based reputation
system. Even though the details were not disclosed, we have observed that requesting
another challenge too soon leads to increasing chances of it being of the same type as the
last one.

https://www.funcaptcha.com/contact-us/
https://www.funcaptcha.com/demo/
https://www.funcaptcha.com/demo/
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5. We run one of the classifiers over each one of the sets of 8 images (one,
three or five sets or tests). We use the Weka ML framework and the
previously trained models. We check that for each set, one and only
one image is classified as a woman.

(a) If the classifier fails to do so, that is, does not classify one and
exactly one as a woman in each group of 8 images, then the
challenge is declared failed. We consider this both a classification
failure and an attack failure. A log is saved, and the process starts
again. Note that we can improve this step using the reported
accuracies from the classifiers, but decided not to for clarity.

(b) If the classifier classifies one and only one image of each set as a
woman, we proceed to send the answers to the server.

6. To send the answers to each test of the challenge:

(a) We look for the solution face on the screen using the SWIFT
algorithm implemented in the OpenCV library.

(b) We drag & drop the face to the centre of the challenge using the
pyautogui library.

(c) We wait for the answer from the FunCAPTCHA server. It could
be:

• "not solved": we proceed to send the next answer.
• "solved:false": we log the challenge as failed, both for the

attack and the classifier.
• "solved:true": we log the challenge as correct.

Figure 5.3 shows a summarised flow chart of this attack. All steps
of the attack have a set time-out that, when reached, would declare that
challenge as failed and restart the process.
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Figure 5.3: Flow chart of the attack to FunCAPTCHA.
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5.5 Experimental results

We ran our attack using the classifiers that performed best on our off-line
classification test, and also with the original kNN implementation. We noticed
that in the cases when the attack kept solving correctly the gender recognition
challenges composed of only one test, FunCAPTCHA almost never served
us the more difficult 3-test or 5-test challenges. For this reason, for each ML
algorithm picked, we ran each experiment in two versions:

• The regular one (that we will call basic), trying to solve all gender
recognition tests presented to us by FunCAPTCHA.

• The hardened one, in which we randomly answered all 1-test challenges
(failing most of them), to receive more 3 and 5-test challenges.

Given the set-up restrictions on speed as not to overload the servers,
our experiment consisted of various series of around 255 full challenges for
each one of our experiment configurations. The total of 255 challenges was
very seldom reached, as we frequently run into timeouts, errors downloading
information, or problems with the iteration on-screen.

Table 5.4 presents the success rate of the attacks to FunCAPTCHA
by different classification algorithms. In this table, the first column contains
the Weka classifier name. The second column shows the classifier accuracy
during the attack, counted per groups of 8 images (thus the accuracy per
image is higher). The third column shows the success rate of the attack itself.
The classifier accuracy during the attack is measured per complete challenge.
This means it is not differentiating between 1, 3 or 5-test challenges.

FunCAPTCHA is typically going to serve to us more 3 or 5-test
challenges the more 1-test challenges we fail. Because of this behaviour, a
slightly worse classification rate in the 1-test challenges triggers a feedback
mechanism that can have a major effect on the statistics.

The first half of Table 5.4 shows the success rate of our attack in
the current FunCAPTCHA implementation, that is, as it was in the moment
of the attack. The second half of Table 5.4 answers the question "what would
be the success rate of our attack if FunCAPTCHA used only the harder
3-test or 5-test challenges?" It presents the success rate of the attacks to
FunCAPTCHA when using different classification algorithms. We can see that
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Table 5.4: Success rates by classifier, for the basic and hardened attack.

Basic attack

Classifier % Classifier % Attack number of n-test challenges
1 3 5

IB1 94, 02± 0, 02 90, 42± 0, 03 448 58 0
KStar 93, 15± 0, 03 89, 19± 0, 04 252 1 0
IBk 92, 61± 0, 03 88, 15± 0, 04 264 98 0

MultilayerPerceptron 94, 68± 0, 03 85, 27± 0, 04 266 6 1
Logistic 77, 3± 0, 05 76, 05± 0, 05 248 51 9

FT 80, 59± 0, 05 72, 9± 0, 05 251 2 0
kNN 55, 65± 0, 06 54, 07± 0, 06 70 69 107

Hardened attack

Classifier % Classifier % Attack number of n-test challenges
1 3 5

MultilayerPerceptron 88.35± 0.03 82.69± 0.04 110 46
IBk 83.07± 0.04 72.97± 0.05 98 48

KStar 75.83± 0.05 62.43± 0.05 116 47
IB1 53.63± 0.04 29.35± 0.04 72 255
FT 38.70± 0.05 28.98± 0.05 125 48
kNN 36.80± 0.05 23.71± 0.04 72 119

Logistic 24.18± 0.03 18.20± 0.03 236 132
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the MultilayerPerceptron and the IBk are among the top overall performers.
We can also see that the difference in success rate between classifier and
attack is higher than in the basic attack, as each challenge now involves more
communications with the server and thus is more prone to errors.

Figure 5.4 shows a combined result of both attacks, summing the
results obtained during both the basic and hardened settings in order to
obtain more 3 and 5-test challenges. The bars indicate the success on a
scale from 0% to 100% for each subtype. Each bar is divided in two: the
classifier success identifying the correct one and only one woman in each of
the n groups of 8 images for the entire challenge, and the attack success for
the whole n-test challenge. Along with each bar, we show the confidence
interval, estimated for a binomial distribution using the Wald method. The
multi-layer perceptron can solve 94.53% of the 1-test challenges, 91.23% of
the 3-test challenges and 82.05% of the full 5-test challenges (68.09% attack
success). Even if FunCAPTCHA decided now to use only their most secure
5-test challenges, this attack would break their CAPTCHA 68.09% of the
time.
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Figure 5.4: Success rate by classifier and challenge type, for both the
basic and hardened attack. Each column corresponds to one classifier.
There are three bars per classifier, one per type of challenge (1, 3 and
5-tests). These bars are subdivided each in classification accuracy (for 8-
images tests) and attack success rate (lower, as it includes any additional
problem during the attack). They show the corresponding confidence
interval at 95%. The table below shows the same information numerically.
The numbers are the classification success for the whole (1/3/5) 8-images
tests, and the numbers between parenthesis are the attack success rate

for the same challenges.
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5.6 Possible improvements

In this section, we will discuss some possible improvements to FunCAPTCHA,
both in general and in particular against this attack.

• Answer space: FunCAPTCHA should never serve 1-test or even 3-test
challenges, only challenges composed of 5-tests. This is the only viable
option to make it resilient to brute force attack, stopping the attacker
from obtaining automatically labelled images. Unfortunately, even in
this case, our attack can break the 1-test challenge 91% of the time.
Thus, to reach a success rate lower than 0, 6% (Zhu et al., 2010a), we
would need to repeat this test log0,91(0, 006) ≈ 52 times.
Naïvely, we can think that another option for theFunCAPTCHA authors
would be to show more possible answers in each test. As our best
classifier is able to correctly differentiate the gender 99, 19% of the
time, that is, correctly solve a 8-image test 99, 198 = 93, 7% of the time
(actually it is 94, 5%, but here we are extrapolating using our off-line
results), we would need to have log0,9919(0, 004) ≈ 629 faces from which
to pick one female. That seems a little bit too much from a usability
point of view.

• ML Analysis: There are some ways to try to prevent the ML attacks
that we have presented here. An obvious one would be to use a much
larger number of models, along with other influencing factors as clothing,
eyewear, facial expressions, etc. These additions have the potential to
allow for a bigger chance of collision of the statistics. The models them-
selves can be studied using the commented metrics and ML algorithms
to discard those that are too easily classified automatically.
Model rendering parameters could also have a wider range. It might
be possible that there exists a sweet spot in the rendering parameters
(angle, light, etc.) in which ML classification does not perform well
while human classification still performs well due to a number of reasons
(clues about hair, etc.).
It is also possible to include measures to distort or homogenise the
result of basic statistics from the images (i.e. histogram of grey scales).
The aim would be to render the most common and/or trivial statistics
completely useless for ML classification.

• Resilience: Nothing prevents the authors of FunCAPTCHA from having
new models in their reserve to make A/B tests, either in general or



154 Case Study: FunCAPTCHA

against a particular client. This would allow not only to automatically
detect attacks, but to repel them in real time.
If a large-enough number of models is present, this could mean that
in reality, the CAPTCHA would be able to detect and adapt to many
unknown attack scenarios.

Even using all the previously mentioned means, it is unclear to us at
this point whether these measures would render this particular CAPTCHA
secure. After a new redesign, a full new security analysis should be done.
Even if the redesign can cope with this attack and variants of it, it is certainly
unclear whether this subset of the gender recognition problem would be secure
against the recent advances in image recognition, more precisely using Deep
Convolutional Neural Networks.

5.7 Discussion

In this chapter we have analysed the security of FunCAPTCHA. It is the first
CAPTCHA to our knowledge that implements the idea of gender recognition
as the basic way to tell computers and humans apart and reaches a production
phase.

Even though ML is currently good at extracting different information
from faces (identities, gender, expressions, etc.) there are known cases in
which this is extremely tough, and the success rates are low. FunCAPTCHA
uses synthetic images, allowing them to control all the characteristics of
their challenges. They claim to have a large number of clients. We analyze
its implementation as of from July to October 2015. The authors of the
CAPTCHA claim it to be broadly used, never broken, and with a high security
level and conversion rate.

We analyze its security using both in traditional and novel ways and
find what might be possible weaknesses in its design. Using well-known ML
algorithms and extremely simple image metrics, we see that is possible to solve
the subset of the gender recognition problem proposed by FunCAPTCHA.
We confirm this through an attack that is able to bypass FunCAPTCHA 90%
of the time. Even if the authors of FunCAPTCHA would use only their most
difficult set-up, requiring 5-test challenges correct, our attack would be able
to bypass it at least 68% of the time.
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This is an unexpected result given the apparent complexity of the
problem and the simple attack methods used. This attack uses no technique
that can be considered image analysis, yet efficiently bypasses FunCAPTCHA.
We conclude that it is not necessary to attack it by following the intended
path of attack.We present some possible ways to partially solve these design
flaws.

Checking a CAPTCHA challenge domain and answer domain can
give significant information to an attacker. Also, using well-known metrics, we
saw that some ML algorithms can solve the CAPTCHA a significant number
of times, thus rendering it useless.

This result together with the ones from the previous chapters elicits
a pattern of attack that can be useful to someone that wants to test if a
new CAPTCHA proposal fulfils a basic security level. The most important
aspects of the attack path are similar, and only some parts can be slightly
tailored to each particular case. We consider that these analysis guidelines
could constitute a methodology for security test. Given these results, in the
following chapter we propose a methodology to assess a basic level of security
for CAPTCHAs based on these ideas.
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Chapter 6

BASECASS: A framework for
BAsic SEcurity CAPTCHA
ASSessment

In the previous chapters we have studied the security of state-of-the-art
CAPTCHAs. All of them have been found vulnerable to attacks. The attacks
found have certain common attributes that also appear in other attacks in
the literature (Yan and Ahmad, 2007, 2008, SEO, 2008a,b, Santamarta, 2008,
El Ahmad et al., 2010, Zhu et al., 2010b, Hernandez-Castro, Ribagorda and
Saez, 2010, Hernandez-Castro, Hernandez-Castro, Stainton-Ellis and Rib-
agorda, 2010, Hernandez-Castro et al., 2011, Mohamed et al., 2013). This
suggest the possibility of creating a procedure to check the security of new
CAPTCHA proposals that would be based on the common attributes previ-
ously mentioned. This security assessment can check that a new CAPTCHA
meets a minimum level of security by checking whether its challenges leak
enough information for a simple side-channel attack.

Based on these observations, in this chapter we introduce BASE-
CASS, our proposed framework for testing that a new CAPTCHA proposal
(design and implementation) meets a basic security level. This framework is
the result of our security case studies and the research literature comprising
other security case studies related to other CAPTCHAs. From now on, we
will refer to our proposed framework as BASECASS, a framework for BAsic
SEcurity CAPTCHA ASSessment.

First, we clearly state the objective of our framework (section 6.1).
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Before going into detail, we give to the reader an introduction to BASECASS
(section 6.2) that although optional, is recommended to read before the
detailed description, presented in section 6.3. BASECASS is divided in
three main steps, presented in sections 6.5, 6.6 and 6.7. The information
gained from the application of BASECASS can be summarised in a table,
that we introduce in section 6.8. Even though we present examples of the
different parts of BASECASS while we introduce it, they are partial, covering
only specific sections of BASECASS, like the domain analysis, the selection
and creation of metrics, or the application of S/ML algorithms. Section
6.9 presents full examples of application of BASECASS to our previous
case-studies, in order to validate whether BASECASS is able to find the
previously found weaknesses. In this section we also apply BASECASS to
two other CAPTCHAs that appear in the attack literature. Finally, section
6.10 summarises our findings and presents the main conclusions from this
chapter.

6.1 Framework objective

The target of BASECASS is to partially assess the security of any new
CAPTCHA proposal to check that it meets a minimum security level. Note
that to completely assess the security lies beyond the target of this dissertation,
and it is in general something difficult to prove empirically, if not impossible,
and only possible to do in a formal way. This is something no one has done
yet for any CAPTCHA, possibly because of the reasons explained in section
2.1. In IT Security, a security assessment typically will cover some limited
aspects of a threat model, as well as a vulnerability analysis will not cover all
possible attack scenarios, but instead search for the presence of well-known
vulnerabilities and their variants.

Our framework is designed to check that a new CAPTCHA proposal
does not have typical side channel attacks. This means that it does not leak
enough information in a way that would let an attacker solve the CAPTCHA
frequently enough, without the need to solve the base problem which the
CAPTCHA is based on. This is a necessary condition for the proper transfer of
the problem difficulty (and thus, security strength) from the base problem to
the CAPTCHA design and implementation. This is not a sufficient condition
though.
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The objective of BASECASS is to leverage currently widespread tech-
nologies applicable to CAPTCHAs, in a semi-automated way, in order
to assess that they do not suffer from well-known design flaws. This
way, BASECASS provides certain minimum-level criteria for CAPTCHA
security assessment.

In some cases, even if the application of BASECASS does not render
vulnerabilities, it can hint to additional insight on the strength of a new
CAPTCHA design. This can be so in the case that some of the tests are
passed, but show potential weaknesses. This will be a symptom of possible
future problems with such design if the attack techniques are further refined.

As an example, during an analysis, we might learn that a CAPTCHA
gives away information to correctly classify its instances 45% of the cases,
but as it requires e.g. 12 correct classifications. This would only lead to
0.0068% success ratio for an attack. It is not troublesome per se, but if a
further refinement of our technique, or further weaknesses in the design that
leverage this one, allow us to slightly increase our correct classification rate,
the CAPTCHA would be broken. Even if our framework does not break a
particular CAPTCHA, it can lead to meaningful insight in its strength. Some
additional insight can be gained, including how the different security measures
that are present in a CAPTCHA collaborate in its strength. For example, if
we analyse the variables that affect the formation of a challenge, we can see
how they affect the information available for a possible side-channel attack.
We can learn which variables and values offer better security, and avoid weak
values for them.

6.2 Introduction to BASECASS

The idea of BASECASS is to apply a series of partially-customized steps to
analyse a particular design trying to find some possible vulnerabilities. In
that sense, it is related to a vulnerability assessment or a penetration test. A
vulnerability assessment will typically look only for well-known vulnerabilities
in a semi-automated or automated way. In a penetration test, the testers will
additionally look for variations in these vulnerability types. The pen-testers
will try to find variations of them, using their previous knowledge of the
system, the security measures in place, and the typical vulnerability scenarios.



160 BASECASS

Our framework proposes an analysis that lies closer to a penetration
test. In it, the tester will have to apply her knowledge of previous CAPTCHA
side-channel attack techniques, but also propose the use of possibly known
useful metrics, and possibly come up with new ones which are variants more
suitably tailored to the particular CAPTCHA being analysed.

The main difference between our framework and a typical penetration
test lies in the particular steps we propose in it. In our case, these steps are
tailored specifically for analysing CAPTCHA designs, and are generic, and
thus applicable to most designs.

Our framework can be divided in three main steps or iterations: a
black-box basic security analysis of the CAPTCHA, an additional analysis
based on Statistical Analysis and/or ML, and a parameter-related Statistical
Analysis and/or ML analysis. Depending on the CAPTCHA type, the third
iteration might not be possible, as it will require further insight or access
into the CAPTCHA design. If it is possible, it will typically provide more
accurate information about the minimum security level of the CAPTCHA.

We will use the same analysis tools in the last two steps. Thus, we
call each step an iteration, as the main difference between both is how much
internal information on the CAPTCHA design is available and thus able to
be analysed.

Next, we will give a brief overview of the different BASECASS steps:
the challenge and answer domain analysis, the statistical/ML analysis, and
the parameter-based analysis. After the reader has an idea of what each step
does, we present them in detail.

Step 1. Black-box basic security analysis

BASECASS starts by doing a Black-Box basic, initial security analysis of the
CAPTCHA. This is an external analysis, based only on public information.
During it, we will not pay attention to possible clues about the challenge
design. In a general way, our Black-Box analysis can be divided into the
following steps:

Phase I Automatic interaction: the objective of this phase is to develop a way
to interact semi-automatically with the CAPTCHA. We want to do so
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in order to download challenges from the CAPTCHA, send the possible
answers to the CAPTCHA server and receive its answer, so we can
grade the answers.

Phase II Analysis of the challenge space: in this phase, we try to know what
types and subtypes of challenges the CAPTCHA presents. For example,
a CAPTCHA can present two different types of challenges: OCR and
image-based challenges. The subtypes that it presents can be heavily
distorted words or sentences (for OCR), and image classification and
reconstruction (for the image-based challenges). We are interested into
establishing what possible different challenge types are easily distin-
guishable by a bot. We will relate these subtypes to the base problem
that the CAPTCHA is theoretically based on. Is the base domain easy
to explore for a bot? If it is possible within a reasonable cost, we will
also want to check statistically their distribution to search for deviations
from uniform. When possible, we also compare its size to the size of
the base problem of the CAPTCHA.

Phase III Analysis of the answer space: this phase focuses on checking the size
and distribution of the possible answers to the challenges. Note that
not always it will be possible to explore this space automatically. We
might need to solve a number of challenges to study the distribution.
This might be within reasonable costs or not depending on each case.
Following with the previous example, we would like to know if all words
or sentences are possible solutions for the OCR CAPTCHA, and what
classes are used in the image-based CAPTCHA. We want to check
their distribution, both globally and per challenge type. Are there any
deviations from the uniform? If so, are they severe enough as to allow
a successful attack?

Figure 6.1 represents the part of the phase I that interacts with the
CAPTCHA in order to collect the necessary data for the analysis that takes
place in phases II and III. The first part detects and downloads the different
types of challenges, and estimates their number by calculating the percentage
of them that have already been seen using statistical methods like Mark &
Recapture (Seber, 1974). The second part uses human input to reply to a
number of challenges enough to later check their distribution. This is done
for each challenge subtype that we want to study.
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This black-box basic security analysis (Step 1) would render at least
answers to the following questions:

1. What types and subtypes of challenges does the CAPTCHA present?
What parameters affect when they are served to the user?

2. How many different challenges per subtype are there? If infinite,
what is their domain?

3. Do all seem equally difficult both for a human and a machine?

4. How many possible answers are there for each challenge subtype?

5. For both the challenge space and answer space, are they uniformly
distributed? If not, what are the deviations?

6. Is it possible to automatically detect challenge subtypes? If so, and
if one of them is easier, is it possible to break the CAPTCHA at
this point?

7. How is the communication with the server, regarding the grading
of answers?

During this analysis other questions might rise giving further insight
into the CAPTCHA: even if the domain and answer sizes are big enough, and
their distribution is uniform, it is possible that we might find hints at some
weak correlations between characteristics of the challenges and their correct
answers. The next step deals with these kind of weaknesses.

Step 2. Black-box S/ML analysis

The previous step was our "first encounter" with the CAPTCHA. If it resists
this basic analysis, we can move forward to the following step, that comprises a
semi-automatic analysis of the side-channel statistics referred to the challenges.

In order to proceed, we will typically need to focus on one or a few
of the subtypes of challenges served by the CAPTCHA, if there are many.
This is so because possibly not all statistics will have sense for the different
sub-challenge types. We will nevertheless focus on a subtype or subtypes that
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comprise a significant amount of the challenges served, as it would be useless
to break them otherwise.

The analysis presented in this step would render at least answers to the
following questions:

• Is there or are there a metric or metrics that are somehow correlated
with the answer of the challenge?

• Is this possible correlation linear (if the SA is successful) or not
(only ML is successful)?

• Is it possible to explain this correlation in a human-understandable
way? (Will depend on which ones are the most successful ML
techniques)

• Is it possible to predict the accuracy of our correlation? Ie., it
corresponds to some challenge subtype that can be classified by our
metrics.

• Is this correlation possibly strong enough to base an attack on it?

• Which metrics contribute more to the correlation?

This step has four clearly defined phases. In the first one, we
will prepare the challenges for processing. In the second phase, we select
and/or create metrics (statistics) that are potentially useful to characterize
the challenges. In the third phase we will use these metrics, together with
the previously saved challenges and answers, to analyse the CAPTCHA
statistically. This phase is optional. The fourth phase uses again the same
metrics to analyse the CAPTCHA using different ML algorithms. A more
detailed description of these phases follows.

Phase I. De-noising In some cases, a CAPTCHA designer might try to
protect the information on the challenges by adding to them different types of
noise or distortions. Sometimes, these can affect many of the metrics we can
use on them. In these cases, we can think about de-noising techniques that
might eliminate or minimize the influence of that noise in the metrics. Note
that this phase is interrelated with the next phase, so they are complementary
and not necessarily sequential.
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Phase II. Pre-processing and transformations In some cases, we can think
of a different domain in which the challenge might be easier to analyse.
A typical case could be transforming an audio CAPTCHA from the time
domain (wave) to the frequency domain using a FFT, or similarly transforming
an image to a 2D frequency domain. Even though BASECASS does not
emphasize to create anything like features to later analyse the challenges and
answers, these kinds of transformations can be useful in some cases. This is
something that should be done within the constrains of a low-cost attack.

Phase III. Definition of metrics For the selection and/or creation of statis-
tics for the selected(s) challenge subtype(s), we will proceed as follows:

1. Selection of basic statistics: this step is done after we have examined a
fairly broad subset of the CAPTCHA domain. Then, we will be able
to select statistics that can be applied to the challenges. These will be
general, broad sense statistics, that can be applied to the challenges in
order to extract some information from then. The statistics will depend
on media type, as they will be different for CAPTCHAs based on text,
images, audio, or games. As an example of such general statistics, we
can mention the randomness metrics returned by the ENT test applied
to a binary file. These general metrics that can be applied to a very
broad type of challenges, for instance, image challenges, to which we can
also apply histogram of colour usage, pixel count, etc. These general
metrics will depend on the media type of the CAPTCHA challenges,
and on little else.

2. Selection of tailored statistics: in this step we select additional statistics
that are more related to the CAPTCHA contents. For example, if it is
a CAPTCHA based on images, then a statistic showing the quantity
of image information can be useful. These statistics should be well-
known for the CAPTCHA type or low-cost to obtain, having been
previously defined. We are not interested in performing a full-blown
CAPTCHA analysis here that will extract extremely significant, high-
level information.

3. In-challenge relational statistics: this is an optional step. In-challenge
relational statistics are those that relate different metrics obtained for
different answers. If, for example, a challenge has 105 possible answers,
instead of (or additionally to) giving the value of one of the metrics
for those 105 possible answers, we can give the (for example) relative
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order of those values, so that way the statistical or ML algorithm will
know if this solution has the lower (or top) value among the possible
solutions for that challenge. These statistics are useful to relate the
possible solutions of a single challenge among themselves. This might
be useful or not depending on the CAPTCHA type. For example, a
value of a metric of 155 might be good for an answer to a challenge but
bad for another challenge. But knowing that value is the lowest among
all possible answers (or highest, depending on what we are looking for)
might provide much more information. As explained, a typical way
of doing this would be by ordering some of the previously extracted
statistics within the possible answers to a challenge, and then registering
this relative order, either absolutely or by percentiles.

Selecting and/or creating the metrics is a phase that requires some
experience, as it is not fully automatic. Yet, in this phase we will use some
general guidelines, which broadly speaking can be:

• Previous literature about well-known side-channel attacks. The detailed
description of BASECASS provides a review of metrics used in the
literature.

• Randomness metrics that can be applied to the challenge type. Among
these, and of special interest, are cryptographic tests of randomness.

• Low-cost metrics: metrics that are already implemented and easy to use.
These are typically extracted from libraries that can manipulate the
media formats that contain the challenges (text, images, audio, video,
. . . ).

This is an important phase, as the efficiency of the following S/ML
analysis depends on it, so it is worth investing some time on it. If we cannot
come up with any possible metric, we can just use the well-known ones for a
basic security check. If possible, trying new metrics (always based on readily
available software or procedures) can lead to interesting results.

When we have both the metrics and some correctly and wrongly
solved challenges, we can proceed to the Statistical and ML analysis phases,
which constitute the first iteration of BASECASS.
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Phase IV. Statistical analysis (Optional) and ML analysis We will try to
find correlations among challenge data extracted using our metrics and the
solutions. To do so, we will apply statistical analysis techniques. If we skip
this analysis or if we do not obtain positive results, ML techniques might be
suitable. From an attacker point of view, we can skip the statistical analysis
and proceed directly to a ML analysis, that renders more powerful tools than
the statistical analysis, as some ML algorithms are able to automatically cope
with non-linear classification and/or heavily unbalanced data sets. Yet from
the point of view of a CAPTCHA designer, this step could be interesting,
allowing us to learn significant statistical correlations that can clearly explain
possible weaknesses.

From an attacker point of view, a ML analysis has the potential
to provide for the most interesting results. For the ML analysis, we use the
previously solved challenges, and the metrics data extracted from them to try
to find a relation among the challenges and their correct answers. We do so
using ML algorithms to look into the data trying to find significant patterns.
We will try different families of ML algorithms with default parameters to
search for the one that finds stronger relationships among challenges and
their answers. In a second step, we can grid-walk its parameters to fine-tune
the ML algorithm to obtain the best possible result. During this step, we will
use either different test and training sets, or Cross Validation.

It is possible that, after this analysis, we will focus more on a subset
of the metrics, and maybe come up with additional metrics that will require
a re-run of this iteration. This is ok, as this iteration is fully automatic.

Step 3. Parameter-related S/ML analysis

This step explores possible weaknesses and correlations between the challenges
and their correct answers, but does so taking into account the values of the
different parameters that are used when creating a challenge. Note that these
values are not always accessible nor easy to deduct from a produced challenge.
Thus, this step is not always possible.

Next, we will comment when this step is applicable, as well as its
utility: what additional information we want to extract.

This step will typically only be possible if either the CAPTCHA
designer is collaborating with the analysis, if the CAPTCHA is open-source,
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or when the value of the main parameters affecting the generation of the
CAPTCHA challenges are evident given a particular challenge. If these
circumstances are not met, then it is in general impossible, or costly, to learn
the value of the challenge creation parameters from a particular challenge -
this analysis itself can be more costly than the attack we are looking for.

For example, let’s imagine a CAPTCHA shows synthetic images of
people from different professions that the user has to categorize by social
status or perceived income. When the CAPTCHA wants to create an image to
be used in a challenge, it has to decide (typically randomly) the value of some
parameters: the profession (among a certain number and type of professions),
a particular 3D model (among a number of models of different types), what
colors to use, the field of view of the image, what additional elements to use
(number of clothing, tools, etc.), lightning conditions, etc. The value of all
these parameters affects the challenge created. Their particular value might
affect also the difficulty of the challenges created, and that is precisely what
we are trying to discover.

The type of questions that this part of our analysis wants to answer
are such as if given different values of parameters of the CAPTCHA generation
algorithm, some of them especially weak and thus should be avoided, or if
there are factors or measures that contribute more to the strength of the
CAPTCHA, or what parameters are more sensible towards the CAPTCHA
security. In a way, what we want to know is whether the CAPTCHA design
seems to be correctly using the base problem to its full strength, or at least,
be certain that it is avoiding specially weak cases.

Typical questions asked during this phase could be: is it possible
for an attacker to identify identical elements (backgrounds, sprites, etc.)?
Is it possible to automatically deduct some of the values of the parameters
affecting the generation of a given challenge? How do the different design
elements affect the strength of the CAPTCHA?

The tools for this second iteration are the same used in the earlier
analysis. Now, we will use them with restricted parameter values and study
how they perform in these cases.

If we do not have access to the CAPTCHA source code or the
collaboration of its designer, in some cases we still can separate the correctly
and wrongly solved challenges in sets depending on the different parameter
values with which they were generated. If we have access to the challenge



6.2 Introduction to BASECASS 169

creation mechanism, we can generate challenges automatically using different
parameter values.

During the exam of these questions, we forget about the user friendly
aspect of the CAPTCHA. What we want to know is only how they affect its
security. To measure how these different design decisions affect the CAPTCHA
security, we will use the same analysis tools as we used in the previous step. If
during that analysis we find that certain tools are more promising than others,
we will focus our efforts in those, but we will use in any case all of them, as
a different parameter set for the CAPTCHA can render it susceptible for a
different type of attack.

This analysis would render at least answers to the following questions:

• If we found a correlation in the previous step or in this one:

– Does this correlation affect to all challenges uniformly, or does
it depend on some parameter values?

– How does each parameter and parameter value affect this
correlation?

– Is it possible to invalidate this correlation, using some parame-
ter values?

– Is there one or different correlations, depending on the param-
eter values?

• If we haven’t found any strong correlation:

– Is there any sub-domain of parameters that shows a hint at a
correlation, and should be further explored with more examples
or values?

– What parameter values seem to give the most uniform distri-
butions in the metrics used?

We have introduced the main steps of BASECASS. Now, we will
describe it in detail so that security practitioners can use it for the security
analysis of new CAPTCHA proposals.
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6.3 Detailed Description of BASECASS

BASECASS is designed to try to find unexpected weaknesses that can be
exploited to build side-channel attacks. These weaknesses will possibly allow
paths of attack that are typically not the expected one, that is, the theoretical
path of attack that the CAPTCHA designer considers the only possible way
to solve the CAPTCHA.

BASECASS tries to find weaknesses using readily available tools and
public knowledge in what constitutes a low-cost attack. The cost of an attack
is an important variable in IT Security. Most IT Systems are considered
secure to a certain level of means and involvement from an attacker. Thus,
the cost of an attack is crucial factor.

Notice that in general, we will not be trying to evaluate the strength
of the problem on which the CAPTCHA is theoretically based. Instead, we
will try to find ways to solve it that are simpler than solving that problem. In
certain scenarios, this can involve proving that the actual problem presented
by the CAPTCHA is too weak compared with the theoretical base problem.

In the next sections, we introduce in a more precise way our proposed
framework for a basic security assessment of a new CAPTCHA/HIP design.

Figure 6.2 shows a simple depiction of the iterations of BASECASS,
and also the relation between the definition of the metrics and later use of
them in the posterior analysis. This figure serves as a guide and reference to
understand the different iterations of BASECASS (black-box analysis, and if
possible and necessary, parameter-based analysis). It also shows the steps of
BASECASS: the challenge and answer space analysis, the black-box statistical
and ML analysis and the parameter-based analysis. Note that as soon as we
find weaknesses and test that they are strong enough to enable an attack, we
can finish our analysis. This can happen in any of the steps of BASECASS.

Security analysis or penetration tests are not new in IT Security. Our
contribution here is threefold:

• Summarize the objectives that can be followed in order to assess
a minimum security level for a new CAPTCHA proposal. These
objectives can be regarded as a generic, high-level method, that
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can have different implementations depending on the particular
CAPTCHA.

• Present some methods that can be used in the case of some CAPTCHA
tests, both medium-level methods and low-level precise techniques
that can be used to implement them.

• Present examples of their application and the expected results that
can be obtained from them.

Next, we will revisit the CAPTCHA definition. This will provide
us with terminology and examples useful for later describing the first step
of BASECASS. Then, we will present in detail the three steps that compose
BASECASS. After we formalize the different parts of our framework and
present them in detail, we will show examples of its application to some
CAPTCHA designs.
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6.4 Revisiting the CAPTCHA definition

In order to present BASECASS in relation to a typical CAPTCHA, we will
re-visit the model of a CAPTCHA/HIP introduced in 2.1.3 and analyse it
with further detail, focusing on those parts most relevant to our framework.

As we saw in section 2.1.3, a HIP/CAPTCHA H can be defined
as a function f that returns a test and has up to two input parameters: a
random seed, and optionally, a level of difficulty, f(R, diff)→ t. Typically,
this difficulty level diff = (f1, f2 . . .) can be divided into a number of factors
that affect how the challenges are created.

As an example, in a puzzle or image reconstruction CAPTCHA, such
factors can be: the number of puzzle pieces, their size, which other image
they were taken from or how they are filled , etc.

As another example, the well-known OCR/text CAPTCHA Se-
curimage (see figure 6.3) allows the following parameters that influence its
appearance and difficulty:

• Font color Fc

• Background color Bc, and background image Bi (static, or random from
a directory)

• Perturbation level (P ∈ [0..1]), sets how distorted the characters will
be. 0 means there is no distortion, and characters would be rendered as
the regular font

• Number of lines drawn in the image NL (typically on top of the char-
acters)

• Font used to create the characters Ft

• Selecting the character set (for example, to avoid 1, ’l’, ’I’, and other
characters difficult to distinguish among themselves, or not) Ch =
(′a′ . . .′ z′ . . .)

• Image size (in pixels) W ×H

• Number of characters to show Nc
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Figure 6.3: Example of a challenge produced with Securimage.

If we want to characterize at a higher level the CAPTCHA challenge
characteristics, we need to specify the attributes that affect the challenge
generation, so for example, for Securimage we can write:

f(R, diff) = f(R, (Fc, Bc, P,NL, Ft, Ch,W,H,Nc))− > t

This terminology will be useful in the second phase of the step one
of BASECASS, that we will describe in the following section.

6.5 Step 1.- Black-Box basic security analysis

This is the first phase of BASECASS. This phase encompasses our first contact
with the CAPTCHA, and our first analysis from a completely external point
of view, that is, without any prior information about the CAPTCHA, its
generation process, its protocol, its validation mechanism, . . . . In this phase
we will try to answer very generic questions, yet relevant in order to allow
us to understand better the possible strength of the CAPTCHA against
automated attacks.

We can divide this step of BASECASS in several phases. The first
one is the automatic interaction phase, in which we will be able to build a
way to interact automatically or semi-automatically with the CAPTCHA and
record its challenges and responses. The second is the analysis of the challenge
space, in which we will try to answer to questions about the challenge space
size and distribution. Similarly, the third is the analysis of the answer domain
size and distribution, in which we will try to answer questions about the
possible answers to the challenges, both correct and wrong.
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6.5.1 Phase I: Automatic interaction

In order to further analyse a CAPTCHA from an outside attacker’s perspective,
it will be convenient to have some basic means of automatic interaction with it.
In particular, we will typically need to detect when the CAPTCHA challenge
is presented, determine the different elements of the challenge, download these
elements so as to be able to further work with them, submit the possible
solution and receive feedback from the server to know whether our solution
was correct or not.

There might be different obstacles that make it harder to construct
a program that interacts with the CAPTCHA being studied. Among them,
the most typical one is obfuscation. As most CAPTCHAs can be presented
as elements within web-pages, it would typically be possible to analyse their
elements and interactions with the use of third-party protocol analysers. Some
CAPTCHA designers opt for the use of obfuscation techniques in an attempt
to prevent further analysis and automatic interaction. This effort is futile for
a number of reasons:

• Obfuscation is an example of what in IT Security is known as Security
by Obscurity, a paradigm with a long tradition of not withstanding the
trial of time.

• The effort to obfuscate source code in particular has a long tradition
in software, with the initial aim of copy protection of software. To
date, it has never been able to fulfil its requirements, given that enough
interest is there to break them. This is so even if gigantic companies
(as Microsoft) have put all the possible means to improve them in
order to increase their revenue preventing software copying. Software
and hardware protection has not had also much success to date. A
good example of this are game consoles, in which even controlling the
hardware and software and adding internal cryptographic mechanisms
has not prevented reverse engineering.

• Lastly but more importantly, it is possible to create software stacks that
completely simulate a regular browser and its environment (plug-ins,
operating system, etc.) thanks to some browsers being open source,
and also to the integration of automation tools that work with the
most common browsers and allow interacting automatically with them
(Huggins and Hammant, 2014).
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H

P

Figure 6.4: Example mapping between subsets of H and P .

• Even if for some reason, browser mechanization was not possible, there
is always the alternative to create a completely virtual environment run-
ning into a virtual machine and automatically interact with it through
the use of input and output drivers. Thus, browser automation, as well
as mobile automation, is always a possibility.

6.5.2 Phase II: Analysis of the challenge space

The challenge space is the set of (possibly infinite) challenges that will be pre-
sented to the the user by the CAPTCHA, that is, all possible c ∈ (c, corrc) ∈
H. Some CAPTCHAs include different subtypes of challenges that can be
presented to the users either randomly, or depending on user context: her
past performance solving the challenges, IP domain she apparently connects
from, etc. Here, we study the chances of appearance of each subtype, and
decide to further analyse one or more of those subtypes.

Once we have focused on a type of challenge from a CAPTCHA, we
will want to further characterize this set that is going to be analysed, our
new Ha, that for simplification we will refer to as H. There are possible ways
to further characterize it:

• If a challenge is composed of different elements c = f(e1, e2, . . .), we will
want to know the rate of appearance of them in the different challenges,
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if they repeat from some sets E1, E2, . . . or are somehow related, etc.
Also we will like to know if some of them appear to simplify the analysis
by computer programs, thus possibly rendering weaker challenges. That
is, does it include sub-domains that are easier, and that can be detected?
This is an analysis that not always can be performed, as the different
elements might be hard to discern using a program thus requiring
manual tagging, which might be too expensive for a low-cost attack.

• Check the statistical distribution of the appearance of elements of the
different types E1, E2, . . . to search for deviations from uniform. This
can be done, for example, using a Pearsons’ χ2 test.

• Assess the domain size of H. If it is infinite, we can relate it to the
base problem P , to have a broad estimation of how the difficulty of H
and P relate. Figure 6.4 shows an example of mapping of H and P ,
where H requires the user to select the gender in synthetic images of
faces, and P is the natural gender recognition problem in pictures of
human faces. If H is finite, we would like to estimate its size. For that
purpose, we can use the mark and recapture method for estimation of
populations in their natural environment (Seber, 1974). In general we
will want to know how big is H compared to P as a proxy measure for
the difficulty of solving H compared to solving P . Thus, this is not the
only important criteria, as even if the size of H is comparatively big
regarding P , it might not be varied enough, that is, it might still be a
subset of P with relatively low variance compared with P . If there is a
way to measure or compare this aspect of H compared to P , this will
also serve as a proxy measure of the difficulty of H compared to P .

To answer these questions, we can use our previously created auto-
matic CAPTCHA interaction software to download a set of challenges and
their solutions validated by the CAPTCHA server and analyse them off-line
to decompose them into their corresponding c = f(e1, e2, . . .). This analysis
might be manual, but we will typically not need many examples to get the
required results.

This analysis might seem unnecessary, as one might think that most
CAPTCHA designers will create an infinite set of challenges H that would
also be varied enough to cover a broad subset of P . In reality, it is often very
difficult to do so, and H typically represents a very small subset of P . In this
step we want to characterize it, and thus have a basic idea of the variability
of the challenges.
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We will present now two examples of H and P and their relation in
real-world CAPTCHAs.

Example 1. FunCAPTCHA One might consider the relation between the
problem of gender recognition in general, that is, in any possible situation in
which a human being is able to tell the gender with a certain accuracy, and
the problem presented by FunCAPTCHA.

Table 6.1: Comparison of H and P for FunCAPTCHA.

H

P

Table 6.1 presents a very brief comparison of H and P for Fun-
CAPTCHA. It can be seen that a number of properties that can vary in P
are kept static in H. In particular, the color of the image, the model used,
the facial expression, or the elements that can be worn (for example: glasses,
scarfs, etc.), the facial paintings, the ethnicity, the age, etc. are elements that
have two single values in H, while most of these dimensions have a number
in the hundreds, thousands or millions (number of models) in P . Thus, for
FunCAPTCHA, H is an extremely small subset compared to P .

Example 2. CRC - OCR. The CRC uses Securimage. This means that
the words are distorted in the pretension of rendering them unreadable to a
machine.

Table 6.2 represents three possible depictions of elements of P in
the first row. The second row shows possible elements of HSecurimage for
Securimage with various values for the challenge-creation parameters (font
and background color, perturbation level, number of lines drawn, font used,
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Table 6.2: Comparison of H and P for the CRC-OCR.

P

H

number of shown characters, etc.), and elements of HCRC−OCR for the CRC-
OCR. As can be seen in this table, |P | > |HSecurimage| > |HCRC−OCR|. The
unexpected part here is the |HSecurimage| > |HCRC−OCR| inequality, and in
particular, the big difference between them. The range of parameters in the
OCR-CRC is extremely small compared to what Securimage admits (and
also other OCR/text CAPTCHAs). Worse, the CRC-OCR only codifies 133
different texts. Thus, the comparison between P and HCRC−OCR is extremely
dis-favourable in terms of size and variance for HCRC−OCR.

6.5.3 Phase III : Analysis of the answer space

The answer space and its statistical distribution can be even more fundamental
than the challenge space. A small domain answer and/or a very non-uniform
distribution can render it vulnerable to a brute-force attack, or can amplify
the chances of other types of attacks.

Note that a proper analysis of the answer space is not always pos-
sible in terms of cost. The answer space could be too big to explore, even
stochastically. Even if we explore it manually, for example solving a number of
challenges with the aid of third-party services as Amazon Turk, the collected
answers might be a set that is not statistically significant. In fact, if a proper
analysis of the answer space can be done at a low cost, this is in fact a sign
of possible weakness of the CAPTCHA.

In some cases though we can do a broad estimation of the answer
space by analysing the types of challenges presented. We can use the previously
downloaded challenges and their answers, either obtained manually or by other
means, and study the total answer distribution. If the CAPTCHA is composed
of clearly distinguishable elements, we can study the answer distribution for
each particular element value or range of values. We will then compare this
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answer set to the theoretically possible answer space, and its distribution
with the uniform. It is possible to statistically test their distribution by a
simple Pearson’s χ2 test, comparing it to an uniform distribution.

If we find that the answers aggregate in a few points or a small
range, and/or there is a relation among their distribution and the challenge
elements, we can analyse whether this weakness can be used in a brute-force
attack, and if it might be, we can test it by using our automatic means of
communicating with the CAPTCHA server developed in the step before, so
we can check for the real success of such an attack.

Next, we will present two examples of problematic answer distribu-
tions in real-world CAPTCHAs.

Example 1. QRBGS CAPTCHA The Quantum Random Bit Generator
Service (QRBGS) CAPTCHA requires the user to input the result to a
mathematical formula that has been rendered in a low-resolution setting,
as to make it harder for OCR tools to analyze it. It includes four sub-
challenge types, that are the different types of formulas to solve: derivatives,
polynomials with exponentials, polynomials expressed as multiplications of
factors (for both polynomials, the least real zero is asked), and arithmetical
challenges. Table 6.3 shows examples of these different challenge subtypes.

Table 6.3: QRBGS challenge subtypes. The mathematical expressions are
shown in low resolution, as they are rendered by the QRBGS CAPTCHA.

Problem type Expression Solution
Solve: −1

Find the least real
zero of the polynomial: −2

Find the least real
zero of the polynomial: −1

Calculate: 0

The security of this CAPTCHA has already been analyzed (Hernandez-
Castro and Ribagorda, 2010). One of the main findings was that the distri-
bution of correct answers to each type of sub-challenge is spread over just a
few integer values, and is strongly not uniform in all cases, as can be seen in
figure 6.5.
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Figure 6.5: Distribution of correct answers of the QRBGS CAPTCHA
by challenge subtype (Hernandez-Castro and Ribagorda, 2010).

This distribution is so skewed that in this particular case it leads to
a straightforward attack with a 44% success ratio.

Example 2. CRC The Civil Rights CAPTCHA (CRC) analysed in chapter
4 includes two sub-challenges that need to be solved in order to answer a
challenge. The first one consists in reading words (or two-word expressions)
representing an emotion. These words are protected by rendering them using
Securimage. The second one consists in categorizing a news bit as either
positive or negative. The distribution of appearances of each possible answer
is very non uniform, as shown in Figure 4.5, with a χ2

132 of 482, 12, and
thus a p-value of 0. We can conceive a brute-force attack in which we pick
up randomly one answer from the top 5 more probable ones (just to avoid
repetition, in case of filtering). This would pass the CAPTCHA approx. 1, 2%
of the times.

The second sub-challenge presents already a very small answer space:
positive vs. negative. Worse, the distribution of them is also non uniform
because even though the appearances of each news bit is uniform, the challenge
distribution that it is inheriting from, which is the total set of news-bits, is
strictly non uniform: only 33% of the news are positive.

6.5.4 Summary

We have presented the initial phase of BASECASS, that gives us an initial
contact with the CAPTCHA, as well as an estimation of its difficulty, especially
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compared to the general problem it might be based upon.

6.6 Step 2.- Black-box S/ML analysis

Once we get to this step, we know that the CAPTCHA challenges and answers
have a broad enough domain and range and decent statistical distributions,
that is, the CAPTCHA design is not fundamentally limited.

What we want to know now is whether it is possible to extract
some basic information from the challenges that would allow us to have a
good guess of the correct answer, thus enabling a side-channel attack. By
basic, we mean information that is easily accessible, either directly or through
readily available tools. This information is going to be extracted by applying
some metrics to the challenges. We do no expect all of these metrics to be
relevant, but we want to see if they can extract enough information so that,
combined, they allow to improve our chances of solving the challenges. Given
the volume of data, the guessing about which one is more relevant will be left
to statistical and ML tools.

We do basically two things: first, select which metrics can be applied
and might be relevant for the challenge types, possibly creating new ones based
on software that is readily-available or partially tailored to our case. Then
we will use them to create a file describing each of the downloaded challenges
and answers, and their gradation by the CAPTCHA server (correct or wrong)
possibly along with additional wrong answers. Secondly, we optionally use
statistical tools and ML algorithms to analyse this file in order to search for
correlations and less straightforward relationships among the challenges and
their correct answers. The number of gradated challenges that we will use
will vary depending on the CAPTCHA domain size, and the ML methods
used. In general, we can examine the success of the ML at different number
of challenges to estimate whether including more would improve or not the
results.

Sometimes, before applying these metrics to the possibly solved
challenges, we would benefit from some very basic pre-processing of the
challenges. This is especially so in the case of OCR/text CAPTCHAs, in
which a number of noise is added to the images in order to try to make them
harder to process.
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6.6.1 Phase I: De-noising

There are many cases in which a CAPTCHA designer tries to protect the
challenges produced by adding to them different types of noise. This is
typically more so in OCR CAPTCHAs, in which otherwise the solution to
the challenges would be straightforward.

Some of these transformations have been designed to conceal infor-
mation in a way that spreads uniformity on some possible metrics on the
challenges. Thus, sometimes it would be useful to undo, even if partially,
some of these transformations, in order to be able to get clearer data.

We will call de-noising to the pre-processing of challenges in a way
that we partially undo alterations and other clutter that messes up with our
metrics. This is an optional step, and is not necessary in many cases. It
depends a lot on the type of CAPTCHA, and whether it has measures or
not to try to conceal information and whether it is easy or not to undo some
of these alterations. Note that this step has to have a low cost: there is not
point in creating a costly de-noising step that is even more costly than the
attack itself. De-noising only makes sense if it is straightforward to perform
or very easily programmed.

Some of the possible transformations or pre-analysis targets can be:

• Distinguish among background and foreground elements.

• Undo global transformations as rotations, projections, addition of lines
or curves, etc.

• Undo local transformations as warps, occlusions, etc.

• Other cleaning particular to the CAPTCHA proposal, that undo an
alteration specific of that CAPTCHA design.

We will present now an example of how de-noising can be done in a
real-world CAPTCHA.

Example. Captcha2 Captcha2 was a commercial CAPTCHA proposal
(FusionQuest, 2009) in which the user had to click within a certain canvas on
the position where a particular character was rendered. Captcha2 used several
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Figure 6.6: Example of a Captcha2 challenge.

measures to make this harder for a bot, in particular, rotation of characters,
changes in sizes, local warps, and adding a background that was designed
to not be easily removed, as their designer understood that the background
would add noise in case of edge detection. Figure 6.6 shows an example of a
challenge from Captcha2, in which it can be seen one of the many background
styles used.

Captcha2 was analysed and broken (Hernandez-Castro, Hernandez-
Castro, Stainton-Ellis and Ribagorda, 2010). In this analysis, it was found
that a simple algorithm could detect the colours used to render the border,
no matter the different geometrical ways of rendering it. The algorithm used
removed the background by colour and space similarity, checking the colours
adjacent to each pixel and considering background colours those within a
certain distance.

In this way, Hernandez-Castro, Hernandez-Castro, Stainton-Ellis
and Ribagorda were able to remove the background, and latter apply simple
metrics to select the correct answer, breaking Captcha2 100% of the time.
This is possible because even when their attack has a 87% accuracy per
challenge, Captcha2 considers a bot only after 10 successive failures, which
their attack never does.

6.6.2 Phase II: Pre-processing & transformations

In some cases it is useful to pre-process the challenges as a way to extract
additional information in the form of metrics. This pre-processing can be
minor, in order to increase the usefulness of a metric. For example, we can
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apply a filter for edge detection to an image and later a metric to count how
many pixels are detected as edges. Another type of filter are pre-programmed
convolutions. Sometimes, this pre-processing can be more fundamental. One
example would be transforms that translate the challenge into another, more
relevant domain: a text into a vector of words or into its representation into
the first layer of a Restricted Boltzmann Machine (RBM), an image into a
spatial frequency domain, or an audio from the time domain into a frequency
domain.

Next, we will present an example of pre-processing (example 1)
used in a real-world CAPTCHA, as well as a very successful example of
transformation (example 2) used against several OCR CAPTCHAs.

Example 1. KeyCAPTCHA Capy CAPTCHA and KeyCAPTCHA where
studied in chapter 3. When we were analysing both, one of the metrics we
created ad-hoc for the case was the file size after lossy compression. This
metric seemed meaningful for Capy CAPTCHA, because the original image
typically has more color and texture redundancies than an altered one. Yet
KeyCAPTCHA presented a problem, as their challenge images present objects
in white background. White is very easy to compress, so our metric will
favour those cases in which most white background is respected - that is, the
puzzle piece is not put on top of a puzzle void (white), but instead on top of
some part of the object.

In order to solve this, we decided to add random noise to the
background white pixels of KeyCAPTCHA. Random noise is hard to compress,
so the metric would now favour the opposite: putting the puzzle pieces on
top of the noise portions (the background).

Example 2. OCR/text CAPTCHAs An example of a more involved trans-
formation was proposed by Gao et al. (2016), in which OCR/text CAPTCHA
challenges are first transformed into their 2D Log-Gabor components. Figure
6.7 shows an example of such transformation for four different angles (from 0
to 3×π

4 ), along with the final reconstruction. The first row shows the orginal
CAPTCHA challenges. The following rows shows the components detected
for each angle, starting with angle = 0 (vertical components). The final
row shows the reconstruction of the image using the components previously
detected. Note that the attack of Gao et al. (2016) uses a representation of
those components as the input for their ML classifier.
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Figure 6.7: Example transformation of different challenge images into
their respective Log-Gabor components (Gao et al., 2016).

In their attack, they later group these components using different
graph heuristics as well as k-Nearest Neightbours. With this approach, Gao
et al. (2016) are able to break most well-known text CAPTCHAs with success
rates varying from 5% to 77.2%.

6.6.3 Phase III: Metrics

In this section we explain a key part of BASECASS: the procedure to come
up with a pool of metrics that can be applied to extract side-channel infor-
mation. This information, extracted from the CAPTCHA challenges, will
be useful later when trying to find correlations among these values and the
solutions of the challenges, possibly with an accuracy good enough to break
the CAPTCHA.

In the next sub-sections, we will present the different ways in which
to select these metrics from previously used metrics. We will also comment
on aggregating the values of these metrics if they are too many, and ordering
them per challenge, in certain cases in which this can be advantageous. We
will also comment about the use of original or adapted tailored metrics, that
can be beneficial in some cases. Finally, we will comment on the usefulness
of doing small tests on the behaviour of these metrics, either to discard them,
adapt them, or maybe to use them directly, without the need to feed them
into ML classifiers.
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6.6.3.1 Selection of metrics

When we reach this phase of our framework we know what type of media
holds the challenge we want to analyse: an image, a game (in JavaScript,
Flash, etc.), sound, video, text, etc., so we are ready to select those metrics
that are applicable to the particular type we are dealing with.

At this stage, we have already seen and analysed the domain of the
CAPTCHA challenges. That will allow us to decide which metrics could
possibly be more related to them, in order to extract more relevant information.
Some possibilities for the different media types are:

• Video: there are basically two approaches for CAPTCHA videos. One
is to analyse them as a sequence of images. The other is to perform an
integral analysis. The bit-stream containing the video can be converted
to a loss-less compression format, in order to use these analysis tools.

• OCR: in the case of text-based CAPTCHAs, the amount of information
to analyse would be significant less. Here, we can model the texts using
simple NLP processing techniques, like converting them to bags-of-words,
or to their representation in semantic networks as WordNet.

• Audio: in the case of audio, we can either process the stream format
itself, or convert it back to a non-compressed format. We can also apply
some very basic and well-known audio processing techniques, like the
Fourier Transform, to convert it from the time domain to the frequency
domain.

• If the CAPTCHA challenges are presented to us in an unknown binary
format, we still can extract some metrics from them that might be
meaningful in some situations. For example, we can process the byte-
streams with different compression algorithms, measuring size and
dictionary size, or with randomness tests.

Generic metrics Here we will offer a list of possible metrics depending on
the CAPTCHA media type. These can serve as a base-case if the practitioner
using this framework is not familiar with CAPTCHA security analysis or is
not able to come up with possibly better, more meaningful metrics. Much
in the same way as some ML algorithms require the practitioner to pick up
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relevant features, our framework proposes metrics but also encourages the
practitioner to try to come with additional, more tailored ones.

The practitioner should keep in mind that even though these metrics
can be in some cases relevant enough as to base an attack on them, it should
not be expected that they alone will be that useful. Instead, what we will
typically be looking for is that they add information to other more relevant
metrics, so that all-together they are able to leak enough information about
the CAPTCHA challenges.

Contrary to ML, in CAPTCHA security analysis we do not require
a high level of accuracy. Unfortunately for our security scenario, a small
accuracy, enough to bypass the CAPTCHA in a low number of occasions, as
low as 0, 01% (Chellapilla et al., 2005b) or 0, 6% (Zhu et al., 2010a) will be
enough.

In general, there are some possible metrics that can be used depend-
ing on which is the content media type of the challenges and/or challenge
solutions. Note that, even if the challenge solution can be represented as a
short response (some mouse coordinates, for example), it sometimes can be
represented in a more meaningful way as a transformation of the challenge
itself. This transformation result is what we will use in order to apply our
metrics. Depending on the media type, some possibilities are:

Metrics for text

Even though all computer data is binary, whenever it consists of a text
codification, we will consider it separately, as both the amount of information
and their type are strongly different from other types of data codified. This is
so because text uses a set of characters and the options are restricted by the
language, forcing a very non uniform statistical distribution. In the following
paragraph we will present some useful representations to extract frequency
metrics, some of which can be applied to text analysis algorithms, such as
Latent Dirichlet Allocation (LDA) (Blei et al., 2003):

• Index of Coincidence (IC): this metric comes from the Cryptographic
world. It measures the inter-correlation of characters inside a text or
a collection of documents. It is thus related to the redundancy (and
thus, information quantity) of a text. Equation 6.1 shows the IC for a
text using c different characters, where each one appears ni times (and
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N = ∑c
i=1 ni). It is very useful to capture meta-information from a text,

as for example, in which language it is written, as every language has a
different IC. Table 6.4 shows the IC for large corpuses of text in each
language. The higher IC means that the language is more redundant,
thus less efficient.

IC =
∑c
i=1 ni(ni − 1)
N(N − 1)/c (6.1)

Table 6.4: Index of Coincidence for some languages 1.

Language Index of Coincidence
English 1,73
Russian 1,76
Italian 1,94

Portuguese 1,94
Spanish 1,94
French 2,02
German 2,05

• N-grams: they are the statistics of appearance of each series of N
consecutive characters. This is a typical way to characterize a text,
having been used for text search and retrieval, detection of plagiarism,
classification by text subject, etc.

• Bag-of-words: similar to n-grams, but using words, we used them to
count the number of appearances of each word in each sentence or
paragraph or word set that we want to model. In order to limit the size
of the vectors, we have to limit the size of the vocabulary that we will
focus on. We can do so by removing very common words with little
meaning (articles, prepositions, etc.) and focusing then on the N most
frequent words. This is a better representation than n-grams, yet it
does not capture information as relations among words and distance in
text.

• TF-IDF: Term Frequency - Inverse Document Frequency is a metric
that portrays how relevant is a word in a particular document, given a
collection of documents. It counts the number of appearances of the
term w in document d, f(w, d). It also counts the number of documents

1Data from the Wikipedia, at https://en.wikipedia.org/wiki/Index_of_
coincidence.

https://en.wikipedia.org/wiki/Index_of_coincidence
https://en.wikipedia.org/wiki/Index_of_coincidence
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in which w appears, for every document from the collection of documents
D, as in Equation 6.2. Then, tfidf(w, d,D) = f(w, d)× idf(t,D). This
is the metric in its simplest form, but there are variations in order to
account for different scenarios.

idf(w,D) = log
|D|

|d ∈ D : w ∈ d|+ 12 (6.2)

The TF-IDF value for a term w is proportional to the number of times
the term appears in the document, and inversely proportional to how
many times it appears in the document collection, which is useful as
some terms are more common than others. This metric, with variations,
has been used in search engines, to filter stop-words (words too common),
classification of text, and also summarizing text.

Metrics for binary challenges (static)

If the challenge type is not based on text, we will consider it binary, as it will
normally be contained in some binary stream. If this binary stream is itself
represented in the client as an image, video, sound, etc., but not run (as a
code), we will consider it static. In this case, we can use some general metrics
that might be useful in order to measure the information content they might
have. Note that some of these metrics will be more relevant if the bit-stream
has been unenclosed and uncompressed, as compression algorithms might
affect them.

• Entropy: this metric tells us the amount of information contained in the
bit-stream. The Entropy is always related to some model. Entropy can
typically be measured for the byte-stream, that is, looking at the bit-
stream in groups of 8 bits and comparing it to an uniform distribution,
as in Equation 6.3.

H(B) =
28∑
i=1

pi × log 1
pi

(6.3)

Where pi is the number of times that the 8-bit value i appears in the
byte-stream, divided by the total length of the byte-stream.
One possible and practical way to measure it is using the corresponding
result of the ENT test of randomness.
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• Loss-less compression algorithms: loss-less compression algorithms are
generic byte-stream compression algorithms that do not loose any in-
formation present in the byte-stream while reducing its size. There
are many such algorithms, with varying characteristics as their speed,
ability to work on-line (one pass vs. several passes), etc. Some of the
most well-known algorithms are the Lempel-Ziv-Welch (LZW (Welch,
1984), used in utilities such as compress (Unix) or the GIF graphic
format) and the Zip (that allows different algorithms, being deflate by
Phil Katz (Katz, 1996) the most commonly used) algorithms.

Metrics for binary challenges (dynamic)

The challenge type can be contained in a byte-stream which is intended to
be run at the client. Typical examples of this are games run in the client’s
browser, normally using technologies such as Flash (now deprecated) or more
typically JavaScript. In these cases, the elements of the interaction are
sometimes passed as individual resources (e.g. images for sprites) that can be
examined using the techniques mentioned previously. In other cases, both the
code and the content are obfuscated in order to try to prevent any analysis. In
these cases, we can use browser automation libraries to locate these elements
and isolate them in a way in which we can analyse them using the previous
methods. In the strange case that this isolation is not straightforward, we can
always use these automation libraries to render what is shown to the client
as images in order to extract some side-channel information, again using the
previously mentioned techniques.

Depending on the subtype of the different binary items, we might be
able to use different well-known metrics to further analyse the challenge and
our possible answers. In particular, if the type of the sub-items are images
or audio, we will use the different metrics applicable to them, as discussed
below.

Metrics for images

The applicable metrics will vary depending on the image content. Because
of that, wWe will need to differentiate between the two most common types:
when the image contains a text (OCR/text CAPTCHA) or when it contains
a general image. In this second case, we will also differentiate if the image is
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natural or synthetic. Depending on the case, some of these metrics will be
more or less useful:

• Histogram of colours: this represents the frequency with which each
colour appears in the image. We can aggregate the different colours by
distance in order to make this histogram more significant. We can do
this either prior to the analysis, defining bins of colours, or at the time
of the analysis, using some clustering algorithms as K-Means, SOM
maps or T-SNE.

• Pixel count, possibly after applying a threshold, per rows or columns.
This can be useful for segmentation or character count.

• Loss-less compression file size: we can use already developed loss-less
compression algorithms to measure the information and detail content
of the byte-stream, and its predictability. One of such compression
algorithms, for images, is the one used by the PNG format.

• Lossy compression file size: binary data-streams that are used to repre-
sent different media types (images, audio, video) can be further com-
pressed using specific compression algorithms. Many of these algorithms
compress them allowing for a certain decrease in quality. This quality
level can be sometimes specified by the user. This in turn translates
into some loss of data that is typically hard to perceive for a human.
These compression algorithms can be extremely useful, as they measure
the amount of information in a way which tends to be closer to what
the regular human would perceive. We have pioneered the use of these
algorithms to analyse the security of CAPTCHAs (Hernández-Castro
et al., 2015).

• Continuity of areas by flood-fill: this allows us to separate different
areas, which we later can measure by dimensions, pixel count, relation
to other areas, etc.

Next, we propose two examples of selecting and using metrics in
production, real-world CAPTCHAs, containing both images, but representing
different objects: faces and characters.

Example 1. FunCAPTCHA An example of these metrics in use is the
analysis of FunCAPTCHA images to classify them by gender (Chapter 5).
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FunCAPTCHA can be considered a basic game CAPTCHA, as the UI is
based on images, and the solution is specified by drag & drop movements
from the user. In the particular case of FunCAPTCHA there is no need of
any processing in order to detect the elements of each challenge. There is
no background, and each challenge is composed of 8 images, one of which
represents a female figure, where the others represent a male figure. The drag
& drop target area is always the same, the center of the 9× 9 grid (shown in
Table 5.1, in chapter 5).

The metrics we decided to try for FunCAPTCHA were both basic
and generic. In particular, we used:

• Total number of white pixels.

• As the images are in gray-scale, we also used histogram of gray-scales
divided in 5-value bins, 15-value and 25-value bins, where each bin is a
particular metric.

• Sizes of the image compressed using JPEG with different quality settings,
from low quality to high quality.

As we saw in Chapter 5, even these simple metrics, combined with
some ML algorithms, were able to bypass the gender recognition challenge
of FunCAPTCHA with 83% success, using a quite small training set of 4320
images.

Example 2. Captcha2 Captcha2 is a commercial CAPTCHA proposal
(FusionQuest, 2009) that requires the user to click within a certain canvas
over a particular character, that is shown over a background, rotated, rendered
in a random font, and mixed with other characters. While analysing Captcha2,
Hernandez-Castro, Hernandez-Castro, Stainton-Ellis and Ribagorda (2010)
discover that after removing the challenge background, they can perform a
simple flood-fill to discover continuity.

As can be seen in Figure 6.8, after removing the background (step
b) and applying a threshold to convert the image to black & white (step c),
they find the contiguous regions and perform a pixel count of each contiguous
group of pixels (step d). Then they choose the region with more pixels
(step e). This simple pixel count provides enough information to attack the
CAPTCHA and successfully select the correct answer 87% of the times.
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Figure 6.8: Steps to automatically solve a challenge from Captcha2
(Hernandez-Castro, Hernandez-Castro, Stainton-Ellis and Ribagorda,

2010).

Metrics for audio CAPTCHAs

If the challenge type is based on audio, we can either study each challenge in
the time or in the frequency domain. If the audio contains speech, we can
also use readily available software as the Voicebox package, used by Tam
et al. (2008) to extrac MFCCs and spectral and cepstral coefficients from
PLP and RASTA-PLP. If there is noise or some masking using frequencies,
we can also use frequency filtering. Going into more detail, some of the tools
and data we can use are:

• Fourier Transform: this transform and its variants (discrete or DFT,
and fast or FFT) are able to translate a signal that varies in time
(like an audio signal) into a sum of frequencies. We can then use
these frequencies and their amplitudes to characterize the signal at a
particular time. This has been used to break a simple audio CAPTCHA
used in Google Mail (Santamarta, 2008).

• Frequency filtering: sometimes the CAPTCHA designers can add noise
to the challenges trying to make them harder to process. This noise can
be stochastic or not (like echoes). In any case, we can apply frequency
filters, or time filters, to remove part of that noise and focus on the
information of interest.

• Lossy compression size: we can apply a lossy compression algorithm
(MPEG-1/2 Audio Layer III (MP3), Ogg Vorbis) and checking after-
wards the result in terms of size and lost quality as a way to measure
the amount of information.

• Metadata: play-back length and other information alike can also be of
use, per-se or combined with the previous metrics.
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Metrics for video CAPTCHAs

Video can be understood as a succession of images with sound (optionally).
Intuitively, in comparison with an image, a video provides much more infor-
mation, and thus is in principle more susceptible to a side-channel attack.
Thus, the challenge requested from a video has to require a much more
abstract ("high") processing than that required for an image. Given the high
bandwidth and storage that video requires, video is typically delivered in a
compressed format. The video can be compressed using a fixed bit-rate, or an
adaptive bit-rate, the second being useful to analyse its information content.
We can also extract the key frames and analyse them as isolated images using
the techniques mentioned previously, and we can do similarly for the audio.
Other well-known video indexing techniques can also be used to extract video
content information (Hu et al., 2011, Asghar et al., 2014). Thus, some of the
metrics we can use with video are:

• Metadata: bit-rate, number and separation of key frames, length of
the video. Some of these measures are specially relevant if the video
(or/and audio) has been compressed using variable bit-rate and that
the compressor places key frames on demand. Note that this can also
be achieved by re-compressing the video with desired parameters.

• Object analysis through image metrics: we can use readily available
algorithms to detect objects in video (Viola and Jones, 2001, Kim and
Hwang, 2002). Then, we can process the images of these objects with
the metrics we already commented for images.

• Movement analysis using whole-picture metrics in which the movement
zones are changed into a particular color, or analysis of such zones using
image metrics

• Image analysis techniques applied to key frames: in video, key frames
are those that contain a pure image, and from which posterior and
prior images in the video sequence are derived (using delta frames that
encode the variation). Depending on the encoder, key frames can be
inserted into the byte-stream either by time or by scene change. In
any case, they typically provide a higher quality picture of the original
scene in a particular moment. They are good candidates for applying
to them regular image analysis techniques as the ones seen before.

• Audio analysis techniques applied to the soundtrack: this consists on
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extracting the soundtrack and applying to it the audio-related metrics
we have seen before.

Metrics for game CAPTCHAs

As with videos, games present more information to the attacker than just a
simple image. Current game-like CAPTCHA proposals do not have a high
level of security and have been broken using quite simple methods (Mohamed
et al., 2013). These methods also allow us to decompose a challenge into its
constituent parts: background, draggable items and targets. These parts,
images themselves, can be analysed using the metrics previously presented
for images. In brief, once we have divided the challenge into its parts, we can
perform an analysis of background and different items through image metrics,
in order to characterize the correct solutions.

Summary

Table 6.5 lists some of the metrics discussed here, relating them to the different
media types in which the CAPTCHA challenges might be. This table can
be used as a cheat-sheet when trying to find metrics to use for a particular
CAPTCHA type. These are just general ideas and guidelines, it is left to each
practitioner to increase her own table of possible metrics, and find additional
possibilities for each type.

6.6.3.2 Aggregation of the values of metrics

Sometimes, the values of a particular statistic can be many, providing infor-
mation that is too detailed. That is the case for example in a color histogram.
Even in a large image, it can happen that most pixels have unique color
values. We would need huge amounts of data in order to start seeing a regular
pattern, if there is any, that affects the colour distribution. Yet we can reduce
this need using aggregation of values, that is, classifying them in bins and
counting how many appearances of them we have.

Thus, in some cases in which counting exact values would render
too detailed information, we can instead count not just a value, but in which
bin of histogram it falls. Two problems arise with this approach:
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1. How many bins should we use?, and

2. How do we aggregate the values?

This questions are similar to figuring out the most representative
subset of features to represent a problem, from a given set.

If we use too few bins, we will aggregate too much data and loose
the detail of the information, which will be counter-productive towards
classification. If we use too many bins, we will not get any benefit from
this aggregation, and the level of detail can lead to over-fitting of the ML
algorithm.

In general, we can have an idea of how many bins we could need by
looking at different histograms of different particular challenges and testing
how many bins would be necessary to allow to differentiate among those
histograms. This will also depend on the size of the training set used, and
also on the particular ML algorithm. Thus, in order to avoid over-fitting, we
will always use Cross-Validation. Once we have an estimation of a range for
the number of bins Nb, we can use different bin-size values around Nb (Nb

2 ,
Nb, 2×Nb) and let the ML decide.

The second question can be more intriguing: how can we aggregate
the different values? For example, if we are counting colours in (R,G,B)
format, how will we decide that (R1, G1, B1) and (R2, G2, B2) pertain to the
same bin? We can do so by using the Euclidian distance, or dividing the
R3 in grids. Yet sometimes most of the information is contained within a
few regions, which can lead to an excessive number of bins in order to get
the necessary detail. Another option then is to pre-process this information
and create aggregations through ML algorithms like k-Means or PCA. Then,
the main results of that aggregation (centroids and sizes of each cluster, or
components) would be the metrics for the next phase.

Next, we present an example of the aggregation of values in a metric
used with a production CAPTCHA.

Example: FunCAPTCHA We have already presented an example of the
use of histograms in the analysis of FunCAPTCHA images to classify them
by gender (Chapter 5). FunCAPTCHA presents images in gray-scale, so we
take the histogram of the different levels of grey.
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We decided to divide the histograms in 5 bins, 15 and 25 bins of
values. The reason for these divisions is that 15 seems to be a number that
divides the histogram in the most representative values, allowing for learning
while still being representative and (hopefully) not encouraging over-fitting.

Table 6.6 shows some of the values of the histograms for different
images. Note that this table shows the histogram metrics for both the training
set (first 4 rows) and the test set (last 4 rows). We can see that there are
indeed similarities in their histogram values and how they aggregate in bins.
These similarities allow, in some cases, to find the category using k-NN. In
the particular case shown in Table 6.6, this approach does not work for the
first two test images, in the first two columns, as the images with a closer
histogram of gray-scale usage are not from the same genre. It does work for
the remaining two test images, in the last two columns, correctly classified as
females by finding a closest neightbour that is also an already known image
of a female face.
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Table 6.5: Base-case metrics depending on challenge media and type.

Media Type Metrics

Text

Any Index of Coincidence (IC)
N-grams
BoW
IF-IDF
Hidden representaion of a RBM

Binary Any
Entropy
Loss-less file size
Lossy file size

Image

Classification

Entropy
Loss-less file size
Lossy file size
Histogram of colours
Histogram of colours: goodness of an
adaptation to an index of k values
Pixel count per: colour index, geometri-
cal region or contiguous region

OCR
Continuity of areas (flood-fill)
Pixel-count of groups
Pixel-count per columns

Audio Any

FT and derived metrics
Entropy
Loss-less file size
Lossy compression size
Metadata

Speech MFCCs, coefficients from PLP and
RASTA-PLP

Video Any

All image metrics, applied to key frames
All image metrics applied to detected
objects
All image metrics applied to detected
movements
All audio metrics applied to the sound-
track
Metadata: bit-rate, number of key
frames, etc.

Game Any
All image metrics, applied to the diffe-
rent elements: backgrounds, draggable
objects and targets
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Table 6.6: Some FunCAPTCHA faces and their histogram values. The
first four rows show faces from the training set and their histogram of
usage of greys in bins of 5, 15 and 25 values. The last four rows show
the same for some test samples, each one having as closest neighbour the

previous training samples.

class (training)

color histogram (5 bars)

color histogram (15 bars)

color histogram (25 bars)

problem (test)

color histogram (5 bars)

color histogram (15 bars)

color histogram (25 bars)
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6.6.3.3 Metrics of order

Sometimes, the CAPTCHA challenge offers a very high number of possible
answers (hundreds, thousands, or more), and the solver is requested to pick
up only one which is the correct one. This has the problem that, just by
probability, if we are using a classifier to find the correct answer, we will need
to have an extremely precise classifier in order to be useful.

Imagine that we have a ML classifier that is able to correctly classify
a possible solution to a CAPTCHA challenge on 99% of occasions, which is
a figure that would be considered very good in typical circumstances. This
means that our classifier will fail to correctly classify an answer 1 in 100 times.
Let’s imagine that this CAPTCHA offers challenges with 10, 000 possible
solutions (for example, a 100 × 100 grid), of which only 1 is correct and
9, 999 are wrong. Our ML classifier would incorrectly classify 9, 99 ≈ 10
solutions that are wrong as right. Now if we assume that it would also classify
the correct solution as correct, we would need to blindly pick one from 11
solutions. By chance, we would be able to pass it 1/11 of the times. A
slightly worse classifier with 95% accuracy would give us a 1/51 chance. If
the CAPTCHA requires the user to pass two challenges our chances would
go down dramatically.

Thus, we need to find a way in which we can still use ML classifiers
even when the number of possible solutions is huge. We need a way to boost
their classification accuracy in these situations. A possible way to do so, that
we propose here, is to create in-challenge answer ordering metrics, that is,
metrics that relate the different possible solutions among each other. That
way, the classifier is allowed to compare solutions to the same challenge. One
possible way to do so is adding metrics of order.

For example, imagine that we have created a metric M1 that we
want to use with a CAPTCHA H. Now, H gives us a challenge c. This
challenge has N possible solutions, s1, s2 . . . sN . We apply our metric M1 and
obtain M1(s1),M1(s2), . . .M1(sN). This is the usual scenario. Now, we also
calculate the order in which they’d be ordered by this metric result, that is,
we order this list so thatM1(si1) ≤M1(si2) ≤ . . .M1(siN ), so O(M1(sin)) = n,
that is, O(M1(s15)) = 5 if and only if the value of M1(s15) is the fifth in this
order. In a similar fashion, we create other derived functions that give us in
which percentile each measure is, etc.

Note that a metric of order is equivalent to normalizing the results
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of such metric within the values obtained for a single challenge. For ex-
ample, the corresponding normalized results for M1(s1),M1(s2), . . .M1(sN),
all metrics for a single challenge c with N possible solutions, in which α =
min(M1(s1),M1(s2), . . .M1(sN)) and β = max(M1(s1),M1(s2), . . .M1(sN)),
would be (M1(s1)−α)/(β−α), (M1(s2)−α)/(β−α), . . . (M1(sN )−α)/(β−α).

This derived metric can have the ability to boost the classification
accuracy because it can be extremely useful to the classifier in order to
compare among solutions and pick the correct solution when there are several
good candidates.

Next, we present an example of the use of answer ordering metrics
in two real-world production CAPTCHAs.

Example: Capy and KeyCAPTCHA These two CAPTCHAs are examples
of Puzzle CAPTCHAs, image-based CAPTCHAs in which the user has to
drag & drop one or more puzzle pieces in their correct position, to revert the
image to its original form. We analysed these CAPTCHAs in Chapter 3.

While we discussed these CAPTCHAs, we came to two conclusions:

1. The answer space is broad, in the thousands of options, as the image size
is 400×267 pixels and the puzzle size is ≈ 76×87 in Capy, and 449×177
pixels for KeyCAPTCHA. Capy uses a 10× 10 grid and KeyCAPTCHA
a 5×5 grid for pointer movement. This means that the answer spaces are
≈ 400−76

10 × 267−87
10 = 2916 for Capy, and ≈ (≈ 449

5 ×
177
5 × .7)n ≈ 2225n

for KeyCAPTCHA, when using n puzzle pieces.

2. As only one solution is correct3, any classifier able to select the correct
solution and only it would require a very high accuracy. This is because if
only one answer from the answer space is correct, then for a CAPTCHA
with an answer space size of |as| and a classification accuracy of each
answer of cl, the success rate with which we will pass the CAPTCHA
challenge acc is given by

acc = cl × 1
1 + ((|as| − 1)× (1− cl)) (6.4)

3This is approximate, as both Capy and KeyCAPTCHA increase the user-friendliness
by restricting the user to select from a grid of possible coordinates. This though has been
accounted for in the previous calculation of the answer space.
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In particular, if we want to pass the CAPTCHAs with a 10% success
rate, then for Capy we would need a classifier that has an accuracy of
0.9969125, and of 0.99999999918 for KeyCAPTCHA using n = 3 puzzle
pieces.

We then created a promising metric, the file-size of the solution
candidate image once compressed with a lossy algorithm (JPEG). This metric
cannot be used directly per-se, or be fed directly to a ML algorithm expecting
good results. The reason why is that maybe 124Kb is a small size for an
image, where it is a big size for another one with less detail. This metric has
sense only when compared for the same background image and puzzle piece.

That is why we decided to create another dependent metric, that
was the position if ordered among all the possible answers, in ascending
file-size order. Thus, one would always be the possible solution that, when
compressed with JPEG, results into a smaller file-size, for that particular
challenge . 2916 would always represent the bigger one.

When we used this metric with Capy, we saw that it was able to
correctly solve 65% of the challenges just by always choosing the image with
this metric equal to 1 (smallest file size after being compressed using JPEG).

This same metric of order was used for KeyCAPTCHA with slight
variations. KeyCAPTCHA randomly presents puzzles with up to 3 puzzle
pieces. Even in this case, this metric was able to correctly select the solution
images (up to three) and break KeyCAPTCHA on 20% of occasions.

During a presentation of this work at the Cambridge Computer
Laboratory, Prof. Markus Kuhn made a remark regarding the possibility that
our attack was so successful thanks to the images having been previously
compressed loosely (as if using JPEG), although the image itself is served by
Capy using a lossless compression format. We performed an experiment to
test this hypothesis, briedfly described in section 3.9.

6.6.3.4 New tailored metrics (optional)

In some cases, especially if the CAPTCHA being analysed is of a new type or
presents some new characteristic, it would be convenient to spend some time
devising tailored metrics that can be based on readily available algorithms.
To do so, the practitioner can try to find one or more qualities that somehow
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characterize the correct solution, even if they are not always necessary nor
sufficient to correctly identify a solution.

In this step, it is better to err on selecting too many possible metrics
than the opposite. Tt would be the S/ML tools later the ones that would
pick up the useful metrics for the classification. It is correct to argue that
some ML algorithms present problems when variables are correlated, or when
using too many dimensions with sparse data. But this is a problem that many
modern ML algorithms can handle well. In any case, if the practitioner does
not get promising results, she can optionally apply a dimensionality reduction
algorithm as PCA.

The creation of tailored metrics is in any case an optional step.
Nevertheless, in some circumstances we recommend to devote time to this
idea, as the results of those metrics can sometimes be surprisingly good.

There are some questions that can guide the practitioner into finding
possibly useful metrics for a new type of CAPTCHA:

• What is the high-level difference/s that characterizes the solution to
the challenge? What qualities does it have?

• Is there readily available software that is somehow related to any of
those qualities? If so, in which way is it related?

• What protection mechanisms are in place?

• Is there a simple mathematical formula that is more or less affected by
those qualities or protection mechanisms?

If the practitioner finds a possible metric that might be related to
some quality of the correct solutions, or might be less affected by a protection
mechanism of the CAPTCHA, it would be advisable to include it in the
metric pool to test whether her idea is correct.

Next, we will present two examples in which a new metric is devised
for three CAPTCHAs with good results.

Example 1. Civil Rights CAPTCHA The CRC (discussed in chapter 4)
protects the text images that contain the possible empathic reactions. To
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do so, it uses Securimage to convert the words describing these emotional
reactions into images (Figure 4.2).

When we were considering the metrics to use with these challenges,
we noticed the lines that Securimage adds to the challenge images. They tend
to be lines of almost constant width, and that follow a more or less straight
direction. We realized that the words were always presented centred in the
image. Thus, we tried to use regular black pixel-counting metrics by columns.

We avoided these two lines, as they would affect our pixel-counting
metrics. We investigated whether the derivative of pixel count per column
would be a better metric than just the pixel count per column. Thus, we
were able to create a new metric, a derivative of a previous, well-known one,
that was able to circumvent the effects of one of the noisy transforms applied
to the challenges.

Example 2. Capy, KeyCAPTCHA and Garb These are puzzle CAPTCHAs,
discussed in chapter 3.

When we were analysing possible metrics to use, we though about
a property that the correct solution has, and that wrong solutions have in
lesser extent. This property can be called regularity. The correct solution
is an original image. Thus, it has colours and textures that are somehow
uniform: appear in adjacent pixels, and possibly other regions of the image.
Wrong solutions instead show at least a portion of the puzzle void, that in
Capy is filled with parts typically from another image. That means that the
wrong solution will have less regularity, more colors and more textures than
the correct one.

Typically, lossy compression algorithms take advantage of that re-
dundancy. In particular, JPEG is able to transform it into space-frequency
coordinates that latter become quantized and compressed. Thus, JPEG is
able to compress more these images that are more regular.

In the previous sections we have introduced the metric of file size
after lossy compression of the image as a go-to alternative in many cases
for very simple yet useful image analysis. This metric was first used for the
security analysis of CAPTCHAs in our previous work ((Hernández-Castro
et al., 2015)).

We created a derived metric, that was the order in which the image
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would be classified if ordered among all the possible answers, in ascending
file-size order. Thus, 1 would always be the possible solution that, when
compressed with JPEG, results into a smaller file-size, for that particular
challenge (that particular background and puzzle piece). When we used this
metric with Capy, we saw that it was able to correctly solve 65% of the
challenges. This same metric of order was used for KeyCAPTCHA with
slightly variations, and it was able to correctly select the solution images (up
to 3) and break KeyCAPTCHA on 20% of occasions. It was also able to
break the Garb CAPTCHA on 98% of the occasions.

6.6.3.5 Test of metrics (optional)

This step is optional, as it is not needed and a practitioner can proceed
directly to the next ones to begin using the metrics just selected and defined.
But it can be convenient, in certain scenarios, to try our metrics with some
challenges manually. Some reasons to do so are:

• Check whether the metric is applicable to all the challenges. For example,
a metric that analyses the histogram of colours might be less relevant,
or even not work well, if some of the challenges are in grey-scale.

• Check weather the metric runs on all challenges. There can be the case,
for example, that a metric that is derived from a library might not
be able to analyse all challenges, if some of them are not compatible
because of format, size, etc.

• Check if two metric results are highly correlated. This means that
they are both providing basically the same information, and we might
well choose just one of them. Highly correlated metrics can also pose
a problem to some ML algorithms that assume independent input
variables, and make them slower to converge to a solution. We discuss
this further in section 6.6.4.

• Check whether the metric gives an apparent too good result. If this is
the case, check this result by implementing an attack. In some cases, it
might not be necessary to go further with an S/ML analysis if a metric
is good enough to create a successful attack. In following this path, we
are mimicking the decisions of a real attacker, that will look no further
if she finds a successful path of attack. We will also focus on the most
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vulnerable point of the CAPTCHA design, possibly giving valuable
feedback to the CAPTCHA designer.

Note that the apparent lack of correlations among challenges and
metric values is not and cannot be a decisive point in order to remove a metric
from our set. The reason for this is that, even though a metric by itself might
not seem to be adding information to the characterization of the challenge, it
can still be useful when combined with the rest of metrics.

6.6.4 Phase IV: Statistical and ML analysis

Once we have a promising set of metrics, we will need a minimum set of
correctly (and wrongly) solved challenges. Figure 6.1 shows a generic flow
chart that can be followed to download and grade a number of challenges.
This will provide us with labelled examples, that will now be useful. Note
that the challenge answers should never be graded by ourselves just following
the CAPTCHA description. Instead, it has to be checked always with the
CAPTCHA server, as some CAPTCHAs accept close or plausible solutions
as correct ones, and this greatly influences the CAPTCHA difficulty and
security.

The number of solved examples we need depends mainly on the
techniques we will use. The number will vary between a few tens for some
statistical and ML algorithms to a few hundreds for others. In our particular
case of application of BASECASS, this number has varied between 50 and a
few hundreds. This labour-intensive part of the framework can be done by a
third party, like Amazon Turk or even CAPTCHA solving services.

Note that DL techniques usually require much larger numbers of
examples, but we will typically not use them when looking for low-cost attacks.
In any case, it is not too difficult to gather large numbers of challenges and
labelled answers, even though typically the answers will form an unbalanced
set.

Once we have created a set of metrics, we will apply them to each
challenge solution labelling it as correct or not, using the information from
the previously downloaded challenges. This creates a categorized, training set
that we can use for both statistical analysis and the training of ML algorithms.

The reader might wonder why to do an statistical analysis if we will
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later apply ML algorithms to try to extract data relations. From an attacker
point of view, there is no interest in this, as we can say that ML algorithms
are more powerful and will find relations in data in some cases when statistical
tools alone cannot, when the opposite does not hold. Yet, from the point of
view of a CAPTCHA designer, it might be interesting to also do an statistical
analysis, as if it is successful, it will render results typically easier to interpret
than the ones found by ML. Thus, the statistical analysis is an optional part
of BASECASS, and of interest only in certain scenarios.

This training data can be of very different nature. In some cases,
it might be extremely unbalanced, with only one correct solution for each
hundreds or thousands of possible solutions.

We will apply different ML algorithms to it to test which one is able
to handle it better. For this reason, we will typically choose ML frameworks
that incorporate a series of different ML algorithms, as Orange (Demšar et al.,
2013) or Weka (Hall et al., 2009). Both are open-source ML frameworks
that incorporate several different algorithm families and implementations of
different varieties.

We also will need to decide how to measure the effectiveness of each
different ML algorithm. One typical proposal is to measure the accuracy, but
this is typically not very significant when confronted with heavily unbalanced
training sets. In this case, some other statistics as the f1 or the κ statistic
will be much more relevant.

The next example shows how different ML algorithms cope with
different data scenarios, in particular, with more or less skewed data distribu-
tions.

Example: FunCAPTCHA vs CRC-OCR: how different algorithms cope
with different kinds of data We have used somehow related metrics both in
our analysis of FunCAPTCHA (chapter 5) and CRC-OCR (chapter 4). With
FunCAPTCHA, we used a histogram of gray-scales, as well as total pixel
count. With the CRC, we used pixel count per column/s (both the raw data
and its derivative) as well as total pixel count.

Even though the metrics we used are related, the training sets are
very different in each case. The one for FunCAPTCHA is very skewed (one
woman per seven men) compared to the CRC which, although not being
uniform, is much better distributed among its 133 categories.
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Table 6.7: Best classifiers for off-line gender recognition with Fun-
CAPTCHA and OCR-recognition with CRC.

FunCAPTCHA CRC-OCR
Algorithm Correct

(%)
κ statis-
tic

Algorithm Correct
(%)

κ statis-
tic

Multilayer
Perceptron

99, 19 0, 96 LibLINEAR 59, 35 0, 58

KStar 98, 94 0, 95 Random Forest 51, 30 0, 50
IB1 98, 91 0, 95 LogitBoost 47, 73 0, 47
IBk 98, 91 0, 95 VFI 45, 82 0, 45
LMT 97, 73 0, 89 NNge 42, 80 0, 42
Logistic 97, 59 0, 89 Naive Bayes 40, 59 0, 39
FT 97, 36 0, 88 Multi Class

Classifier
38, 48 0, 37

SPegasos 97, 43 0, 88 IB1 36, 51 0, 35
Decorate 96, 85 0, 84 J48 graft 33, 45 0, 32
SMO 96, 83 0, 84 Random Sub

Space
32, 59 0, 31

We used Weka in both cases, and try all the compatible classifiers.
Table 6.7 lists the best results for each case. We can see that the different ML
algorithms cope very differently with this kind of training data populations,
and very few of them are able to cope with both. One such example is IB1, a
nearest-neighbour classifier that uses normalized Euclidean distance, which is
apparently a good strategy for relating colour histograms or pixel counting
histograms.

It is interesting that there is no NN algorithm that gets a good
result with CRC-OCR, but the best result with FunCAPTCHA is achieved
by the multilayer perceptron. We can see that in both cases, different tree-
classification algorithms can achieve good results (LMT, FT, Random Forest,
J48). Also some SVM-derived algorithms do well with FunCAPTCHA, and
none do well with the CRC-OCR. Vice-versa happens for Bayes classification
algorithms.

In the next two subsections we are going to coment in further detail
the kind of statistical and ML analysis that we can perform, as well as
comment on some tools that can be used for the ML analysis. We will also
comment on the use of DL in BASECASS.
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6.6.4.1 Statistical analysis

The statistical analysis phase is completely optional. Statistical methods
might give some insight into correlations of different metrics, measure the
information of each, and thus provide possible valuable insight into some
weaknesses. Yet, statistical methods are mostly limited to linear relations,
and are less powerful than some ML algorithms.

During our statistical analysis, we can perform the following multi-
variate analysis:

• Correlation of the different metrics among themselves.

• Correlation of the different metrics with the classification.

• PCA (Pearson, 1901) or Factor Analysis (Cattell, 1952), to discover
where most variance resides, or to reduce dimensionality.

• Discriminant Analysis (Cohen et al., 2013), that can be used to check if
some variables are useful as predictors, can also be used as a classifier,
and can be slightly more powerful than logistic regression in some cases.

Some of these techniques assume independence, that is, assume that
examples are are randomly sampled. This is a limitation with unbalanced
training sets.

6.6.4.2 ML analysis

The greatest advantage of ML algorithms over typical statistical analysis
is that there are many ML algorithms that can cope well with non-linearly
separable data, that is, classes that cannot be differentiated based on a linear
division of its values. Some of them also cope well with unbalanced training
sets. Finally, we can select among the different ML algorithms using different
statistics to measure their success: accuracy, κ, f1, etc., depending on the
problem.

As we are trying to mimic the path of attack that would follow a
low cost attacker, we will seek to try as many ML methods as possible with
the least possible effort, to search for the ML algorithm that performs best
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with the data. This can be done with the use of ML frameworks that provide
the following benefits:

• Offer a single data format that can be used with all the ML algorithms.

• Provide a set of default parameters for each ML algorithm.

• Provide a series of ML algorithms implementations that can be tested
automatically.

• (Some of them) provide a grid-search method to search for the best
parameters for each ML algorithm.

ML frameworks There are currently several ML frameworks that offer
different ML algorithms, yet two of them are more notorious for their con-
tinued development, support of several algorithms, and additional options
like automatic grid search of parameters: Orange and Weka. Recently Weka
included Autoweka (Thornton et al., 2013), a wrapper that allows to solve
simultaneously the problem of selecting a learning algorithm and setting its
hyper-parameters for best performance.

There are other popular ML options that can be used in different
scenarios. For example, there are ML libraries that provide implementation
of several ML algorithms. One of the most notorious, because of its support
and the many ML algorithms that implements, is Scikit-Learn (Pedregosa
et al., 2011), a ML library that uses the Python programming language.

Deep Learning A plethora of new Open SW and libraries have appeared
that simplify the creation and training of Convolutional NNs, which are
especially usefull for image recognition, and also of DNNs in general, useful
for many different tasks. Among these SW and libraries, we can cite Caffe
(Jia et al., 2014), Theano (Bergstra et al., 2010), TensorFlow (Abadi et al.,
2016), and Keras (Chollet, 2015). Supervised DL typically requires a very
large sizes of the training set. BASECASS proposes a way to check the basic
security of a CAPTCHA, trying to prevent it from leaking basic side-channel
information that, once gathered with a few metrics, could be used to bypass
the CAPTCHA. This can constitute a low-cost, side-channel attack. We will
typically not have access to large labelled datasets that we can use with DL
tools.
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There are exceptions. In some cases when we might be able to
automatically classify with a certain accuracy, it might be possible to use a
DNN to improve on it. More interestingly, in some other cases, we will be able
to use a DNN to learn high-level features in an unsupervised way (Larsen et al.,
2015). The activation of these features can later be fed to a NN layer or other
ML algorithm for further classification. This opens exciting new possibilities
for automatic extraction of CAPTCHA parameter creation attributes, and
side-channel attacks. This offers some very interesting possibilities that we
have not analysed yet, but leave as future work.

Even though it lies out of the scope of BASECASS, image-based
CAPTCHA developers can use these tools to check that their CAPTCHAs
are strong enough against the current state-of-the-art in ML.

6.7 Step 3.- Parameter-based S/ML Analysis

CAPTCHA challenges are not generated just purely randomly, that is, they
are not just random noise. Instead, some random values within a certain
range (and with a certain distribution) are taken as parameters to generate a
particular challenge. This parameters can be of various types and each one
influences one particular aspect of the CAPTCHA challenge being generated.

These parameters remain nevertheless private during the CAPTCHA
challenge creation process. We can only see their results in the particular
challenge created. Nevertheless, it is possible to infer some information about
these parameters and their values when:

• The original CAPTCHA creator is collaborating towards its security
analysis, or

• The CAPTCHA design is public and/or its implementation has been
published as Open Source, or

• At least some of the main parameters affecting the creation of a partic-
ular CAPTCHA challenge are obvious and can be inferred easily from
the particular challenge.

If our previous analysis has not found important weaknesses, but
has hinted at some possible cases in which the CAPTCHA can be solved, we
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can examine them in closer detail. This might be the case when the rate of
success of the best ML algorithm is overall low, but is higher and consistent
in a particular subset of challenges. If this is the case, we might find that
some parameter sets of values render particularly weak challenges, but these
are not enough to render the CAPTCHA broken due to their low frequency
of appearance.

Examples of question that this analysis can answer could be:

• For a CAPTCHA that uses images as backgrounds: does using only one
background affect? Which background renders the easiest challenges
for a bot? What happens if no background is used?

• For a CAPTCHA that uses colors: does the number of colors used affect
the difficulty for a bot? Are certain colours easier than others for a bot?
What happens if we use only one color? And if we use the maximum
number of colors?

• For a CAPTCHA that uses sprites: if the sprite is related to other
challenge elements (same color as text, same filling as background, etc.)
does this affect its difficulty for a bot?

• For a CAPTCHA that uses puzzle pieces: how does the shape affect its
security? And their size? Can they overlap? If not, how far away from
each other can they be? how does the filling of the puzzle piece affect
the CAPTCHA?

We can use these parameters and their values to divide the training
sets created, possibly gathering a larger number of examples, and retrain
and test again the ML algorithms tested (and optionally do some statistical
analysis, like checking for correlations). In this sense, we might be able to
find particular sets of parameter values that are less secure.

This can be turned into a successful CAPTCHA attack if it is
possible for a computer program to detect these weak parameter sets and ask
the CAPTCHA for different challenges until these parameter values appear.
This can be very useful information for the creator of the CAPTCHA, to
avoid weaker parameter sets.

This step is then a second, more detailed, iteration of the previous
statistical analysis and ML analysis steps.
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6.8 BASECASS summary table

The procedures used in each application of BASECASS can be summarized
in a table, along with the results found. If, during the distinct phases of the
analysis, BASECASS finds vulnerabilities that might be sufficient enough
for a side-channel attack, and if such attack is feasible and within the ethics
of each particular case, then we can also include the results of such attack.
Depending on them, it might not be necessary to continue with the application
of BASECASS, if the CAPTCHA is considered broken beyond a reasonable
effort of correction.

The findings that result out of the different BASECASS steps can
be summarized in a template table. This table is divided in different types
of analysis, and at the end of each one we present the main findings. Each
section of the table represents one analysis type of BASECASS. Some sections
of the table are optional and dependent on the result of the previous sections.
A template of such table can be seen in Table 6.8.

The different analysis done in BASECASS, which results are pre-
sented in Table 6.8, are linked to the different steps of BASECASS in the
following ways:

1. The first step of BASECASS is a black-box basic security analysis
(Section 6.5). After this step, the practitioner should be able to complete
the parts of the BASECASS table corresponding to: “challenge space”,
“Answer domain” and “Domain and range conclusions”.

2. The second step of BASECASS is also a black-box analysis, but using
metrics on the challenges and answers, and statistical analysis and/or
ML to find correlations among them. Thus, after completing this step,
the practitioner should be able to complete the parts of the BASECASS
table corresponding to: “Metrics”, “Test of metrics”, “Data preparation”,
“Statistical Analysis” and “ML analysis”. If an attack is possible, its
results should be shown in the “S/ML attack & results” sub-table.

3. The third part of BASECASS is similar to the second one, but taking
into account the values of the parameters used to create the different
challenges. If is necessary and possible to perform this analysis, its
results should be shown in the “ML vs. parameter analysis” sub-table.

If in any of these steps we have performed an attack to check a
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vulnerability, its description and results should be shown in the “Attack
& results” sub-table. Finally, the “Conclusion” sub-table summarizes the
findings.

Table 6.8: BASECASS summary table.

BASECASS <CAPTCHA >Analysis

Name: <Captcha name and challenge subtype, if many >
Descrip-
tion:

<more detailed description >

Challenge space

Base
problem:

Type: <Basic category of the problem presented>
Size: <Estimation of base problem size>

CA
PT

CH
A

pr
ob

le
m
: Domain: <Detailed description of the specific problem

presented by the CAPTCHA>
Size: <Estimation of size, compared to the base

problem, and/or based on possible parame-
ters that influence on the creation of each
challenge>

Distribu-
tion:

<Distribution in which each challenge param-
eter value appears, whether it is uniform or
not, and additional data. A Pearson’s χ2 test
might be applied if enough data is available>

Answer space

Maximum
Range:

<Theoretical size of the set of possible values to answers>

Range: <Real size of set of possible answers>
Ratio: <Ratio > <Ratio (if finite)>
Distribu-
tion:

<Distribution in which each answer value appears. A
Pearson’s χ2 test might be applied if enough data is
available>
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Challenge space & answer space conclusions

Is attack
possible:

Yes/No <Whether an attack might be possible or not
based on the previous findings>

Descrip-
tion:

<How the attack works>

Success: <Real success rate with which the attack bypasses the
CAPTCHA>

Metrics

Denoising: <Whether any denoising technique is used. If so, comment
which>

Pre-
processing:

<Whether any pre-processing technique is used. If so, de-
scribe it>

G
en
er
ic <General purpose metric used # 1 >

<General purpose metric used # 2 >
. . .

O
rd
er <Order metric used # 1 >

<Order metric used # 2 >
. . .

Sp
ec
ifi
c/

Ta
ilo

re
d <Special metric used # 1 >

<Special metric used # 2 >
. . .
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Test of metrics

metric1 : <Check metric applies to challenges and direct information
gain >
metric2 : <Check metric applies to challenges and direct information
gain >
. . .
metrici vs. metricj : Check if both present highly correlated results >
. . .
. . .
Is attack
possible:

<Whether an attack might be possible using one of the
tested metrics >, . . . , . . .

Descrip-
tion:

<Which metric the attack uses and how >

Success: <Real success rate with which the attack bypasses the
CAPTCHA>, . . . , . . .

Data preparation

Tr
ai
ni
ng

se
t

Size: <Number of training examples>
Balance: <How many of them are of each class>
Notes: <Optional notes about data cleaning, trans-

formations, data distribution, etc. >

Statistical analysis

Correla-
tions

<Most correlated variables with answers and R-factors>

Regressions <Variables that are used in best linear regression, and error>

ML analysis

Selection: <Selection criteria for fitness of ML algorithm>
Best algo-
rithms:

<List of N best performing ML algorithms>

Accuracy: <Accuracy of the N best algorithms>
κ-statistic : <κ-statistic of the N best algorithms>
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S/ML attack & Results

If previous phase leads to an attack

Possible?: <Whether an attack based on the previous findings seems
possible or not>

Descrip-
tion:

<How the attack works>

Success
rate:

<If so, with which success rate it bypasses the CAPTCHA>

Observa-
tions:

<Any additional observations>

ML vs. parameter analysis
Optional: if and only if phases before not lead to a successful attack

and there is enough data on challenge production parameters

For each combination of parameter, value(s), and interesting ML result:

<
Pa

ra
m
et
er

na
m
e
>

Value/s: <Description of set of values for the parameter
that lead to an interesting result >
Best algorithm: <Best performing ML algorithm>
Accuracy: <Accuracy of the best ML algorithm>
κ-statistic : <κ-statistic of the best algorithm>
. . .

Attack & Results

If previous phase leads to an attack

Possible?: <Whether an attack seems possible based on previous find-
ings>

Descrip-
tion:

<How the attack works>

Success
rate:

<Real success rate of attack>

Observa-
tions:

<Possible observations>
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Conclusion

Weak-
nesses:

<Possible list of weaknesses found, in decreasing order of
importance >

Broken?: <If the CAPTCHA can be considered bypassed, and if so,
the success ratio of the attack >

Work-
arounds:

<If any plausible work-arounds would prevent this and
similar attacks >

Appendix B presents an empty table that can be used as a template
when applying BASECASS to a new CAPTCHA. A template can also be
found online at https://github.com/carlos-havier/BASECASS-template.

6.9 Examples of application of BASECASS

In this section we will discuss the ways to validate BASECASS, as well as
provide examples of its application to different CAPTCHAs. Some of the
examples will be complete, that is, based on the sequential application of
most of the steps of BASECASS to a CAPTCHA until this is found either
resistant or broken. Others will be examples of partial applications, that is,
applying parts of BASECASS to a particular CAPTCHAs - this will be the
case of the reviews of attacks from the literature.

In particular, we will present the application of BASECASS to the
three previous case-studies analysed. This application will be sequential,
and all the relevant steps would be applied sequentially in each case, till
results are found or we determine the CAPTCHA to have a basic level of
security. Next, we will review two cases from the literature. We will perform a
limited application of BASECASS to them using almost exclusively the public
information provided in each analysis. Finally, we will present its application
to a new CAPTCHA proposal that appeared in 2017, after BASECASS was
already designed.

To validate BASECASS, we should apply it to a number of different
new CAPTCHA proposals and check whether it produces or not interesting
results with some of them. Then, we should wait a certain amount of time
to check whether other CAPTCHA researchers find similar flaws to the ones

https://github.com/carlos-havier/BASECASS-template
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found by BASECASS that allow for successful attacks. This scenario is not
practical for a number of reasons:

• CAPTCHAs typically evolve with time, thus a version analysed by
different researchers might not be sufficiently related to our version.

• Some CAPTCHAs disappear, making it impossible for other researchers
to evaluate their security.

• There are many CAPTCHA proposals, from amateurs, the academic
world, and commercial. Analysing the security of a significant number
of them is very costly. Many of them remain without a security analysis.

Some of these problems would be solved if the industry would agree
on implementing their proposals on some form of CAPTCHA general test-bed,
for all versions implemented, that researchers could use to gain further insight
in their security. Nevertheless, no one has proposed to create such test-bed yet,
and some CAPTCHA companies are moving towards Security by Obscurity,
making such proposals less and less possible.

In order to gain some insight into the applicability and interest of
BASECASS, we will revise the Case Studies from which it was created in
order to verify its correctness, that is, that as presented here, it would be
able to find many of the flaws we identified in these security studies.

To gain broader knowledge for it, we will also check whether it would
have produced results in other cases present in the literature.

In the next sections, we will review our case studies using the
BASECASS framework. We are interested in seeing what results are obtained
in each particular case if BASECASS had it been applied to them. We will
compare these results to our previous findings.

6.9.1 BASECASS analysis of puzzle CAPTCHAs

Puzzle CAPTCHAs are image-based CAPTCHAs in which the user has to
revert the image to its original format. The human user is able to do so
because she understands the image, and thus can detect what is misplaced,
lacking, or wrong with it. In this section we will focus on the three puzzle
CAPTCHAs previously studied in Chapter 3.
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The selection of these particular puzzle CAPTCHAs was due to
a number of reasons. In particular, Gurb is open-source and can easily be
tested. Capy has been presented as a carefully designed CAPTCHA by a
PhD in Engineering and as incorporating measures against typical image
analysis mechanisms. It has also been extensively praised in various summits
and competitions, wining widespread recognition. KeyCAPTCHA has been
able to get a small market share of the CAPTCHA market, and also presents
the interesting idea of non-aliased borders.

One interesting aspect of puzzle CAPTCHAs is that the number of
potential solutions to analyse can be much higher than in other CAPTCHAs.
This presents a higher challenge to a classifier, requiring much greater accuracy
in order to yield a significant attack success ratio.

In the following paragraphs we will go into further detail into these
CAPTCHAs, and will present the result of the BASECASS analysis for each
one of them.

Application of BASECASS to Capy Here we will briefly comment some of
the aspects of applying BASECASS to the Capy CAPTCHA, and present
the result summary table of the application of BASECASS.

BASECASS first step is a black-box basic security analysis of
the CAPTCHA. Among others, we have to uncover the interaction of the
CAPTCHA with its server, or create an alternative way to interact auto-
matically with it. Thus, first we analyse the interaction of Capy with its
server, which is performed in a straightforward way. At a point of it, a whole
PNG image is transmitted that contains a sub-image of 400× 267 pixels (the
challenge image) and, in its right part, a puzzle piece of approximately 76×87
pixels, that is present to the user below the challenge image. This size might
vary as the puzzle piece shape can change. The user answer is sent as a string
containing the succession of drag & drop coordinates that the user’s pointer
crosses in order to put this puzzle piece in place, coded using base 32.

In order to gather enough data, we first created a program to
automatically download the images containing both the puzzle background
and the puzzle piece from Capy. We detected that the answer is sent as a
string containing the successive positions travelled by the pointer (mouse or
finger, in a mobile device) while performing the drag & drop, encoded in base
32.
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Following with the application of BASECASS to analyse the cha-
llenge domain, we determined that Capy was using four background images,
and that the puzzle piece can have different shapes and be from any of these
images. Also, the puzzle piece void inside the background image is filled with a
portion from any of the four backgrounds available. four background images is
not a high enough number for a CAPTCHA, as it would be possible to detect
the background image and, with that information, learn the correct placement
of the puzzle piece. As we wanted to know whether the base problem Capy is
based on could be good enough for a CAPTCHA, we assumed from now own
that Capy authors could easily augment the number of background images to
thousands or millions, and proceeded assuming this.

BASECASS encourages us to compare the base problem space with
the challenge problem space to have a basic understanding of their relative
difficulty. To measure the size of P , we assumed that we limit the image size to
that used by Capy. In that case, there are (400×267)83 maximum images4. For
each one, we can select up to (76×87)83−1 fillings for its puzzle piece (the size
varies, but it is around 76× 87 pixels). Each one, we can position in 400

10 ×
267
10

different positions5. This is so because Capy restricts the movements to a
10× 10 grid, to make it easier for the human users to find the correct position.
This makes a total of (400×267)83×(76× 87)83 − 1×40× 26 ≈ 10219 images.

To measure the size of H, we can perform a similar calculation, but
now with the real number of images, four. The number of possible puzzle
fillings is then ≈ 4 × (400 − 76) × (267 − 87) − 1 = 233279. The number
of positions to place the puzzle piece is 40 × 26. Thus, the total Size: 970
millions6.

BASECASS encourages us to consider calculating the distribution
of challenges. In this case, the only parameters we can consider are the
background, the puzzle piece shape, its position, and the filling used for the
puzzle piece void on the background image. Although the parameters can be
reconstructed once all the backgrounds are known, the cost of this analysis is
out of scope for a low cost attack, so it is not produced in this case.

BASECASS also compares the possible answer space with the real
answer space used in the CAPTCHA. The answer space is easier to calculate.

4Theoretical maximum different images of 400× 267 pixels in 8-bit RGB space.
5Note that this is a maximum estimation. It is clear that images differing in one value

for a pixel will be indistinguishable to the human eye.
6For comparison, this size is ≈ 10210 smaller than the theoretical maximum.
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If we restrict ourselves to an image of the size of Capy, the maximum possible
should be (400− 76)× (267− 87) = 58320. As Capy restricts movements to a
10×10 grid, this is instead 100 times smaller, that is, (400−76)×(267−87) ≈
583. That means that a random brute-force attack has a success rate of 0.17%,
slightly high, but possible for a CAPTCHA according to some authors.

BASECASS recommends to determine if the distribution of answers
is uniform or is instead skewed. As the answer space is not small, for this
test to be significant we should collect a very large number of examples and
their solutions, at least in the order of 25, 000. This test is again too costly,
and in this particular case was not performed.

We have concluded with the first step of the BASECASS analysis.
Now, we have some basic data about Capy, and we can proceed with the second
step of BASECASS and define the requirements and metrics for the S/ML
analysis. In this case, there is no need for denoising or any transformation,
and we are going to process the images as they are. We need to define which
metrics could be of interest. Among them, we listed:

• General purpose metrics:

– Histogram of colours used: as Capy fills the space where the puzzle
piece should go with a sub-image, sometimes taken from another
image, we consider that that would sometimes add colors to the
image and modify the colour histogram. As the colour histogram
in RGB is a 3D space, dividing it in bins would render a very big
space to analyse. Instead, what we will do is clusterize it using a
ML algorithm (K-means), and check how good the clusterization
is (mean and variance of the distance to centroids) using different
numbers of clusters (k = 3, 5, 7, 11).

– Number of pixels detected as borders: we will use different border-
detection algorithms and count afterwards what percentage of the
pixels are detected as borders. The idea is that for a correctly-
reconstructed image, there will be less borders than for the image
with a puzzle piece.

– Results of the ENT test: a number of general metrics, including the
entropy, serial correlation, lossless compression rate, Monte-Carlo
estimation of π, etc.

• Ad-hoc metrics:
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– Size after compression: The idea of using compression results to
extract information from a CAPTCHA is not entirely novel, and
has contributed to break a CAPTCHA before ((Hernandez-Castro,
Ribagorda and Saez, 2010)). In this case it has a special rele-
vance, as an original image will typically be more regular than
the same image with a puzzle piece filled with some other image.
This regularity can affect how some compression algorithms work,
in particular those that transform the image into the frequency
domain, for example using the DCT, like the JPEG lossy compres-
sion algorithm, thus affecting the size of the resulting compressed
image.

• Comparative metrics:

– Order in size after compression: if the size after compression is
a measure of goodness of the solution, a ML algorithm would be
interested in knowing which is the smallest/largest one (or n) of
the set of possible solutions to a challenge.

– Order in number of pixels detected as borders: in a similar fashion,
this will possibly serve a ML algorithm to improve the accuracy
while classifying among a set of possible solutions.

BASECASS includes a step to test the performance of the different
metrics, that was performed in this analysis. In this particular case we found
an unexpected result while testing the performance of the different metrics. In
particular, we were surprised by the good results of the metric that compared
the resulting file size after JPEG lossy compression. In our off-line tests, this
metric alone seemed well able to break the Capy CAPTCHA. According to
BASECASS, we performed an attack based on this result. Note that this
metric of order based on the JPEG file size behaved so well, was so accurate
that we did not need to use a ML classifier in order to completely break
the Capy CAPTCHA. Table 6.9 summarizes the results obtained with the
application of BASECASS to Capy.

Table 6.9: Summary table of the application of BASECASS to Capy.

BASECASS Analysis of the Capy CAPTCHA

Name: Capy CAPTCHA.
Descrip-
tion:

Image re-composition.
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Challenge space

Base
problem:

Type: Image re-composition.
Size: 10219

CA
PT

CH
A

pr
ob

le
m
: Domain: Position a puzzle piece of approx. 76 × 87

pixels in a 400×267 image, restricted to 10×10
pixel grid

Size: 970 millions
Distribu-
tion:

Distribution of parameters unknown and not
studied.

Answer space

Maximum
Range:

58320

Range: 583
Ratio: 1

100
Distribu-
tion:

Distribution of answer distribution not performed.

Challenge space & answer space conclusions

Is attack
possible:

No Attack is not possible with our knowledge of
the challenge and answer space.

Descrip-
tion:
Success:
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Metrics

Denoising: No de-noising technique used.
Pre-
processing:

No pre-processing technique used

G
en
er
ic Histogram of colours used

Number of pixels detected as borders
Results of the ENT test: entropy; χ2 test; arithmetic mean;
interpretation as a sequence of 24-bit X and Y coordinates
for estimating π using a Monte-Carlo algorithm; serial cor-
relation coefficient

O
rd
er Order in size after compression (JPEG).

Order in number of pixels detected as borders.

Sp
ec
ifi
c/

Ta
ilo

re
d Size after compression using the JPEG lossy compression

algorithm.

Test of metrics

JPEG size order : metric is able to guess correct answer on a large
number of cases.
Is attack
possible:

Yes

Descrip-
tion:

JPEG size order for a single image.

Success: While testing this metric off-line, it seems to perform well
enough for a successful attack, possibly with over 20% suc-
cess ratio.
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Attack & Results

If previous phase leads to an attack

Possible?: Yes
Descrip-
tion:

Given an image, we position its puzzle piece in the 40× 26
possible positions. The resulting image is compressed using
JPEG. We choose as correct the position that renders the
image that, once compressed, requires a smaller file size.

Success
rate:

65% on an attack for 1000 challenges.

Observa-
tions:

Conclusion

Weak-
nesses:

• Small set of possible background images (4).

• Artificially reduced set of possible answers (102 smaller
than the possible 400× 267).

Broken?: Yes, with a 65% success rate.
Work-
arounds:

• Increased number of background images through larger
database and image alterations.

• Broader solution space (larger size of images, more
possible puzzle positions, increased number of puzzle
pieces).

• Challenge pre-filtering to limit the usefulness of our
metric.

Application of BASECASS to the Garb CAPTCHA Garb is somehow
similar to Capy in that both transform an image and ask the user to reverse
the transformation in order to pass the challenge. In the case of Garb, the
transform is a reordering of its parts. For the black-box analysis of the first
step of BASECASS, we can notice that Garb divides the images in four parts
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and shuffles them, asking the user to shuffle them again in order to solve the
challenges.

The first step of BASECASS also recommends to create a way to
interact automatically with the CAPTCHA. In this case, it is straightforward
to interact with Garb, as it is Open Source. BASECASS also recommends
to estimate the sizes of P and H. The challenge space of Garb is is quite
small, as it consists on the permutations of four elements, 4! = 24. This
is not a good idea for a production CAPTCHA, as can be solved by brute
force with enough success rate ( 1

4! = 4, 16%). We check on the code that
the distribution is indeed uniform. BASECASS also recommends to check
the size and distribution of the answer space, yet in this case, each answer
is characterized by a permutation that undoes the permutation applied by
Gurb, thus the answer space is symmetrical to the challenge space, and of
the same size.

The second step of BASECASS allows us to define a way to perform
a S/ML analysis. In this phase, we think it is interesting to see if using
our previously defined metrics, that somehow try to measure how natural
an image is, we would obtain a similar success also for this slightly different
puzzle CAPTCHA.

There are a few metrics though that are not of application for Garb,
as they are not or little altered by the transformations that Garb uses. In
particular, the histogram of colours used is not altered by the reordering of
the parts, and some of the results of the ENT test will not change while
others will vary very slightly with the re-orderings. The only metrics that
will vary depending on the image reordering will be the number of pixels
detected as borders and the size after compression by JPEG, as well as their
respective metrics of comparison. As can be seen, the JPEG file size order
metric is able to determine the correct answer in 98% of the cases.

Table 6.10 summarizes the application of BASECASS using these
metrics to Garb.

Table 6.10: BASECASS analysis for Garb CAPTCHA.

BASECASS analysis for Garb CAPTCHA.

Name: Garb CAPTCHA.
Descrip-
tion:

Image reordenation of 4 portions of an image.
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Challenge space

Base
problem:

Type: Image re-composition through reordering.
Size: If we limit the image size to that used by Garb,

there are (150 × 150)83 maximum images7.
Garb divides the image in only 4 parts, but
this is clearly insufficient. Going for a bigger
image (225×225) and dividing it 9 equal parts,
we can order them in 9! − 1 incorrect ways.
This makes a total of (225× 225)83 × 9!− 1 ≈
18.000 million images.

CA
PT

CH
A

pr
ob

le
m
: Domain: Fixed number of possile divisions of images,

and their permutations.
Size: Number of images: 62. Number of possible

puzzle positions: 4!− 1. Total Size: 1426.
Distribu-
tion:

Even though an analysis has not been made,
as the source code is available, the initial cha-
llenge positions are known to be pseudoran-
dom.

Answer space

Maximum
Range:

4!

Range: 4!
Ratio: 1 : 1 1 : 1
Distribu-
tion:

We have not conducted an analysis over the distribution
of positions for answers, yet as the source code is available,
they seem to be pseudo-random.

Challenge space & answer space conclusions

Is attack
possible:

Yes

Descrip-
tion:

A brute force attack on the permutation used to shuffle
will have a 1

4! = 4, 16% success rate.
Success: We do not proceed to such an attack, as we want to learn

if the idea in which Garb is based is strong enough if it
had enough backgrounds and possible permutations of
them.
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Metrics

Denoising: No de-noising technique is used.
Pre-
processing:

No pre-processing technique is used.

G
en
er
ic Number of pixels detected as borders.

O
rd
er Order in number of pixels detected as borders.

Order in size after compression (JPEG).

Sp
ec
ifi
c/

Ta
ilo

re
d Size after compression using the JPEG lossy compression

algorithm.

Test of metrics

Ordering by JPEG size : While testing this metric off-line
it seems to perform extemely well.
Is attack
possible:

Yes

Descrip-
tion:

Ordering by JPEG size: given an image, we re-shuffle the
following the 4! possible permutations. The resulting im-
ages are compressed using JPEG. We choose as correct the
permutation that renders the image that, once compressed,
requires a smaller file size.

Success: 98% on an attack for 1000 challenges
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Conclusion

Weak-
nesses:

• Small set of possible solutions (4! permutations).

• Small set of possible background images (it is possible
to learn them by trial-and-error).

Broken?: Yes. 98% using a new metric.
Work-
arounds:

• Increased solution space through bigger images & more
puzzle portions, allowing for more permutations.

• Recommended bigger than 9 (so a brute-force attack
would have 0.00027% success).

• As these would not prevent the JPEG-based attack,
we will need challenge pre-filtering to avoid usefulness
of our metric.

As can be seen, BASECASS is able to detect the weaknesses of Garb
and point out the flaws we found during our previous security analysis.

Application of BASECASS to KeyCAPTCHA KeyCAPTCHA is concep-
tually very similar to the Capy CAPTCHA. When we analyse it following the
recommendations of the first step of BASECASS, we notice that the main
differences are related to design details and implementation. In particular, it
uses a white background that will affect the lossless compression size, and
the puzzle pieces have anti-aliased borders, that avoid a perfect match. The
number of puzzle pieces used per challenge is variable, among one and three.

In order to apply BASECASS to KeyCAPTCHA, the methodology
suggests to create a way to interact semi-automatically with the CAPTCHA.
In this case, the typical analysis resulted difficult due to several obfuscation
techniques used by KeyCAPTCHA, included the fact that the images are not
transferred as-is, but mangled.
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The analysis of KeyCAPTCHA is not a complete BASECASS anal-
ysis, as we are starting from what we know from similar CAPTCHAs like
Capy and Garb. Thus, as we wanted to try first how our metrics could work,
and for this we would not need a large labelled dataset in which to train ML
algorithms, a very small dataset can suffice. Thus, we decided to download
50 challenges from KeyCAPTCHA.

In a similar way to what we did with Capy, to determine the size of P
in this case, we limit the image size to that used by KeyCAPTCHA, there are
(449× 177)83 maximum images8. Yet as KeyCAPTCHA depicts single objects
that only take a fraction of the image space, a big proportion of pixels are
background (≈ 70%). So the maximum is around (449× 177× .7)83 ≈ 10128

images.

To determine the size of H, we consider the different number of
images seen, that using mark & recapture, we estimate in 50. The number of
places to extract the puzzle pieces from is ≈ (449

5 ×
177
5 × .7). The number of

possible puzzle pieces is 3, 2, 1, so the total size: ≈ 50 × (449
5 ×

177
5 × .7) ×

(
(

2225
3

)
+
(

2225
2

)
+
(

2225
1

)
) = 50× 2225× 1835858625 ≈ 2 ∗ 10149.

Similarly to Capy, it is very costly to determine the distribution of
challenges over H. The challenge is made using the following parameters:
background image (≈ 50), position for puzzle piece(s) (2225), puzzle piece type
and number (from three to one). Not all the parameters can be reconstructed
automatically, unless an exhaustive search is done and all the backgrounds
are known. In this case, the cost of such analysis is out of scope of a low cost
attack.

The maximum answer space would be 449 × 177 = 79473 if the
user was able to move the puzzle piece to any location. The answer space
in KeyCAPTCHA is limited to a 5× 5 pixel grid on top of the background
image, thus 449×177

5×5≈3178 . We have not conducted an analysis over the distribution
of positions for answers, as we have a limited set of correct answers. In this
case, the cost of such analysis is out of scope of a low cost attack.

At this point, BASECASS recommends to prepare the S/ML analysis.
We already had an idea of using a particular successful metric, the order based
on JPEG file size. In this case though, we would need some pre-processing:
the white background problem in particular is clearly going to alter the

8Theoretical maximum different images of 449× 117 pixels in 8-bit RGB space.
9This size is ≈ 10114 smaller than the theoretical maximum.
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usefulness of our size compression metric. As BASECASS suggests to try the
metrics in each case, we did some experiments and saw that the results were
indeed poorer than with the other CAPTCHAs. In this case, BASECASS
suggests trying to de-noise or transform the challenge in order to be able
to still use the metrics. We decided to slightly alter this metric trying two
possible modifications:

• Change the white pixels in the image for random noise. If the puzzle
pieces are put in a place that covers more random noise (former back-
ground), this will diminish the image file size after compression. This is
so as random noise is hard to compress, even if compressing in a lossy
way.

• Consider only solutions as acceptable if the puzzle pieces were placed
on top of mostly (> 90%) white pixels.

After some small tries, the first solution was chosen, so the challenge
image was pre-processed by altering its white pixels with random noise. This
alteration was not done prior to process the image using the other metrics.

BASECASS suggests to try the metrics and so was done with this
CAPTCHA, now with a similar result to the previous cases. The order
based on JPEG file size was able to correctly solve 20% of the 50 challenges
downloaded, including challenges with one, two and three puzzle pieces.

Table 6.11 summarizes the application of BASECASS to Key-
CAPTCHA and the results found. As can be seen, many of the findings and
conclusions are similar to the ones found with Capy CAPTCHA, as both
puzzle CAPTCHAs are similar in many aspects.

Table 6.11: BASECASS analysis of KeyCAPTCHA.

BASECASS analysis for KeyCAPTCHA

Name: KeyCAPTCHA
Descrip-
tion:

Image depicting an object with one or more puzzle pieces
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Challenge space

Base
problem:

Type: Image re-composition through substitution.
Size: ≈ 10128

CA
PT

CH
A

pr
ob

le
m
: Domain: Image re-composition through substitution.

Size: ≈ 2 ∗ 1014

Distribu-
tion:

Unknown.

Answer space

Maximum
Range:

79473

Range: ≈ 3178
Ratio: 1

25
Distribu-
tion:

Unknown

Challenge space & answer space conclusions

Is attack
possible:

No A brute-force attack on the position of the
solution would not be possible, because even
though it would have a 1

2225 = 0, 045% success
rate attack for the 1 puzzle piece challenge, it
would have approx. 0, 00002% for 2 challenges
with 2 puzzle pieces and proportionally less
for challenges with 3 puzzle pieces.

Descrip-
tion:

A brute-force attack would be possible given the small
set of images used for the challenges (50). It would be
possible to pre-learn their solutions by trial and error
(waiting for challenges with 1 puzzle pieces) and then
answer all challenges correctly.

Success: We do not proceed to such an attack, as we want to learn
if the idea in which puzzle CAPTCHAs are based is strong
enough.
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Metrics

Denoising: No denoising technique is used.
Pre-
processing:

Random noise is added to the white (background) pixels
prior to applying the JPEG size metrics.

G
en
er
ic Number of pixels detected as borders.

Results of the ENT test: entropy; χ2 test; arithmetic mean;
interpretation as a sequence of 24-bit X and Y coordinates
for estimating π using a Monte-Carlo algorithm; serial cor-
relation coefficient.

O
rd
er Order of the size of the possible solutions after compression

(JPEG).
Order in number of pixels detected as borders.

Sp
ec
ifi
c/

Ta
ilo

re
d Size after compression using the JPEG lossy compression

algorithm.

Test of metrics

JPEG file size order : In off-line tests
the metric seems to perform well enough for an attack
Is attack
possible:

Yes

Descrip-
tion:

Given an image, we add random RGB noise to its back-
ground white pixels. Then, we position its puzzle piece(s)
in the 449

5 ×
177
5 possible positions. The resulting images are

compressed using JPEG. We choose as correct the position
that renders the image that, once compressed, requires a
smaller file size.

Success: 20% on an attack for 50 challenges, with varying number of
puzzle pieces each.
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Conclusion

Weak-
nesses:

• Small set of possible background images (≈ 50).

• Unnecessarily reduced set of possible answers (52

smaller than the possible).

Broken?: Yes. 20% success rate using a new metric.
Work-
arounds:

• Increased number of background images through larger
database and image alterations.

• Broader solution space (larger size of images, more
possible puzzle positions, increased number of puzzle
pieces).

• Challenge pre-filtering to prevent the use of our metric.

As can be seen, BASECASS is able to detect the usefulness of our
new metric and check the success rate of an attack using a metric of order
derived from it. It is also able to find the weaknesses found in our security
analysis.

6.9.2 BASECASS analysis of the Civil Rights CAPTCHA

The first step of BASECASS requires us to analyse it and create a way to
interact automatically with it. In the case of the CRC, this will be useful
in order to download enough data for this analysis. In order to do so, its
communications protocol was analysed, and we developed a program that
allowed to download the text of the challenge and the three PNG images
containing the possible answers. This tool also allowed us to post an answer
to the CRC server and get back its result (either the challenge was passed
or not). This first step also recommends that, when possible, we analyse
its challenge space. Even though in their web-page they mention that their
database of news is going to be updated regularly, after downloading 1000
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challenges, we only found 21 news items. This number is insufficient because
as the set of 21 news is not further protected as they are just regular texts,
each one can be easily identified by a bot, so it is easy to download them all
and assign a subset of correct emotional answers to each one of them. This
also allows us to do a brute-force attack in which a program will learn the
possible correct answers just by trial and error. BASECASS also recommends
that we analyse the of these 21 news: both how many times they are actually
presented to the user, and in answer space (positive and negative news). We
find them to be it strongly biased towards negative news. Their appearances
distribution remains similarly biased.

At this point we find that this part of the challenge is solvable by a
brute-force attack, if the answers to each news excerpt are coarsely divided
into positive and negative. As we do not know whether this is the case,
we proceed to do some analysis of how the CAPTCHA server validates the
answers. Apparently, the answer has to actually come from the set of three
answers presented to the user.

In any case, this part of the challenge can be considered broken,
that is, it does not add security to the CAPTCHA, because if the emotional
answers could be read and classified into positive or negative, it would be
straightforward to solve the challenges.

The first step of BASECASS also recommends to analyse the answer
space, both theoretical and the real one used in the CAPTCHA. Note that,
if we restrict the answers to one word, the potential answer space of P is
not very large: according to some word lists10, there are around 167 1-word
emotions, so adding a few of the the modifiers "very", "a bit", "totally" as the
CRC does, we can get to 668 words and two words combinations.

After some initial interactions, we start seeing repetitions on the
set of possible answers. This is expected, given that the amount of possible
emotions that can be described with one or two words is limited. We download
a set of 1989 challenges and manually classify the possible answers, which
are 133. Most of them appear with more than one repetition, so we consider
this to be the total set of possible answers (or a good approximation to it)
for our further analysis. The distribution of their appearance is not uniform,
with a Pearson’s χ2

132 value of 482, 12 (this distribution is shown in Figure
4.5). This allows for a potential brute-force attack in which we will repeat
the most frequent five answer (to avoid possible detection by repetition), that

10For example, at http://wire.wisc.edu/quizzesnmore/Emotionwords.aspx

http://wire.wisc.edu/quizzesnmore/Emotionwords.aspx
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can pass the CAPTCHA with a 1.2% success rate.

We can now proceed to the second step of BASECASS, the S/ML
analysis of the CRC. The answers of the CRC are protected using Securimage,
a general open-source OCR/text CAPTCHA widely used, that offers many
configuration parameters. In this case, Securimage is used with a static
configuration, that includes two or three lines over the text.

In order to proceed with the S/ML analysis, we want to define what
metrics to use. Initially, we choose quite simple metrics: the total pixel count,
as some characters use more pixels than others, can give us an idea of the size
(in pixels) of the characters used; we measure in relatively to the maximum.
To be more precise, we also use the pixel count per column, and per groups
of three and five columns.

When we decided to use these metrics, we realized that the lines
introduced by Securimage might influence their result. A way in which we
can minimize their impact is if we consider instead the differential in pixels,
because a line that has approximately the same width and an horizontal
component (that is, is not purely vertical) will use approximately the same
number of pixels per column during its length. Of course, this still will alter
the results of our metrics when the lines start and end, and also when they
occlude parts of a character. But still, this might be a good way to, in general,
decrease the influence of the lines over our metrics. Thus, we decide to add
these differential metrics.

In order to read the text of each of the three images in each challenge,
we define these metrics to extract from every image, and proceed to train a set
of classifiers on them. We obtained the best classification results with Linear
Regression and Linear Support Vector Machines (LibLINEAR) (Fan et al.,
2008), attaining 59.3% accuracy. This means that in a challenge composed
of 3 possible answers, we have 28.8% of correctly reading the three possible
answers and 35% of reading two of them.

Note that sometimes we will need to correctly read less than the
three answers in order to choose the correct answer. If one of the one or
two answers read are from the correct category given the news excerpt, then
we can try that answer as the correct one, with an improved percentage of
success.

The metrics to use for the classification of the news bits are taken
from basic NLP techniques. In particular, after some data cleaning removing
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country names, stop-words, etc., we transform the words to their WordNet
synset representations and to TF-IDF normalised vectors with a cut-off of two.
In order to train our classifiers, we use 622 manually downloaded and classified
news bits from the Civil Rights Defenders. We test different classifiers and
different syset representations. Finally, we choose SVM Lineal, translating
the texts to chains of WordNet hypernyms, which obtained 1.00 precision
during our tests.

Following BASECASS, and given our promising off-line classification
results, we put together a program that automatically downloads and answers
CRC challenges, testing if its answer is classified as correct or not by the
CRC CAPTCHA server.

After 1000 challenges, we obtained a success rate of 16.5% challenges
correctly solved. Using an slightly improved version that memorizes previous
results, we soon obtain a success rate of 20.7%. This result is good enough to
consider the CRC CAPTCHA bypassed.

In the two following tables (Tables 6.12 and 6.13) we summarize the
results of the application of BASECASS to the two challenge subtypes of the
CRC, that is, the OCR part of the challenge, and the empathy part of the
challenge.

Table 6.12 summarizes the application of BASECASS for the Civil
Rights CAPTCHA to its OCR/text sub-challenge. We can see that, in this
case, BASECASS would have found the same flaws that we were able to find
in our security analysis, in particular the weak answer distribution, and the
possibility of approximating it well enough using simple metrics and ML.

Table 6.12: CRC-OCR BASECASS Analysis.

BASECASS analysis for the CRC - OCR.

Name: CRC - OCR
Descrip-
tion:

Three 1/2-words expressions of emotions protected with
Securimage.



240 BASECASS

Challenge space

Base
problem:

Type: Optical Character Recognition (OCR) in En-
glish.

Size: 1022000211

CA
PT

CH
A

pr
ob

le
m
: Domain: OCR for words and 2-word expressions in

English typically representing an emotion or
subjective stand.

Size: Number of word and word combinations: 133.
Number of possible images: 2width×height. Pa-
rameters: black & white images, two overlap-
ping lines.

Distribu-
tion:

Parameters do not seem to vary through
all the challenges: two semi-horizontal lines,
black & white images, same font used, one or
two words from the previously mentioned set.

Answer space

Maximum
Range:

668

Range: 133 counting single words and combinations of two words.
Ratio: 5 : 1
Distribu-
tion:

Their appearances are not uniform, with a χ2
132 of 482, 12,

giving a p-value of 0 (or more precisely 2.32e− 41).

Challenge space & answer space conclusions

Is attack
possible:

Yes A brute-force attack would be possible, given
the small answer domain and not uniform
distribution of answer appearances.

Descrip-
tion:

We could just reply picking randomly one from the top n
appearing answers.

Success: With n = 5 (to avoid possible detection of a single answer),
we would pass the CAPTCHA aprox. 1, 2% of the times.
We seek to improve this result through ML.
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Metrics

Denoising: No denoising technique is used.
Pre-
processing:

No pre-processing technique is used.

G
en
er
ic Black pixel count by columns, grouped by 1, 3 and 5

columns.
Total black pixel count.

O
rd
er

Sp
ec
ifi
c/

Ta
ilo

re
d

Differential of black pixel count by columns, grouped by 1,
3 and 5 columns. The differential helps to counteract the
effect of the semi-horizontal black lines added to the images.

Data preparation

Tr
ai
ni
ng

se
t

Size: 1989 training examples, used for training and
testing using 10-fold CV.

Balance: There are 133 classes.
Notes: The distribution of their appearance seems

to be uniform within the different categories,
with 59% positive, 36% negative and 4% neu-
tral. Appearances for each of the 133 classes
vary extremely, with from 1 to 27 appearances
per class, and a χ2

132 of 482, 12.

ML analysis

Selection: Classification accuracy and κ statistic.
Best algo-
rithms:

LibLINEAR, Random Forest.

Accuracy: 59%, 51% accuracy.
κ-statistic : 0.58, 0.5
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S/ML attack & Results

If previous phase leads to an attack

Possible?: Given an off line classification accuracy of 59%, an attack
seems plausible.

Descrip-
tion:

Classification of the answer images in one of the 133 possible
words, using LibLINEAR with the previously described
metrics.

Success
rate:

Combined for both OCR and Empathy: 20%.

Observa-
tions:

Conclusion

Weak-
nesses:

• Small set of possible answer values (133).

• Appearance of answer values is not uniform (χ2
132 =

482, 12, p-value = 0).

• Set parameters for challenge generation with Securim-
age. Securimage not intended for protecting such a
small word set.

Broken?: Yes. 20% with simple metrics.
Work-
arounds:

• Increase drastically set of possible answers allowing
combinations and expressions not describing emotions.

• More uniform appearance of answers. Much more
varied parameters for challenge generation with Se-
curimage: fonts, number of lines, colors, distortion
level, etc.

Table 6.13 summarizes the application of BASECASS for the Civil
Rights CAPTCHA regarding the empathy sub-challenge. Again BASECASS
would have found the same flaws that we were able to find in our security
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analysis, mainly the fact that the empathy challenge has not an answer
domain big enough, plus it is possible to approximate a correct answer using
some variations from well-known NLP techniques.

Table 6.13: CRC-Empathy BASECASS Analysis.

BASECASS analysis for the CRC - Empathy

Name: CRC - Empathy
Descrip-
tion:

A short news excerpt typically related to Human Rights.

Challenge space

Base
problem:

Type: Empathy
Size: A human emotional reaction or subjective

stand on a subject. Depending on the clas-
sification, there might be 8 basic emotions
(not including weaker and stronger variants,
and also complex emotions based on these)
(Plutchik, 1991), or up to 42 different emo-
tions12

CA
PT

CH
A

pr
ob

le
m
: Domain: Unknown, but seems to categorize the news

excerpts in two categories, positive vs. nega-
tive.

Size: The news excerpts are from a set of 21 ele-
ments.

Distribu-
tion:

Parameters do not vary through all the chal-
lenges: the news excerpts are a fixed.

Answer space

Maximum
Range:

Apparently, there seems to be a coarse discrimination
only among positive and negative reactions.

Range: 2
Ratio: 42

2=21:1
Distribu-
tion:

They are imbalanced, as 66% of the news excerpts are
negative.



244 BASECASS

Challenge space & answer space conclusions

Is attack
possible:

Yes A brute-force attack would be possible, given
the small answer domain and not uniform
distribution of answer appearances.

Descrip-
tion:

We could just reply picking randomly any of the possible
negative answers, even better, any negative answer that
appears.

Success: If we would be able to read the 133 possible answers, and
always pick the negative one, we would pass this part of
the challenge 71% of the time.

Metrics

Denoising: No denoising technique is needed (content is text).
Pre-
processing:

Some pre-processing can be done using the text categories
on WordNet.

G
en
er
ic Appearance, using TF-IDF.

O
rd
er

Sp
ec
ifi
c/

Ta
ilo

re
d Three possible transforms using WordNet: no transform,

synonyms, hypernyms.

Data preparation

Tr
ai
ni
ng

se
t

Size: 643 training news excerpts from the Civil
Rights Association, used for training and test-
ing using 10-fold CV.

Balance: 167 positive, 290 negative, 165 neutral.
Notes: English stop-words removed. TF-IDF with a

cut-off value of two.
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ML analysis

Selection: f1
13 and classification accuracy.

Best algo-
rithms:

SVM Linear14 using synonyms.

Accuracy: 90%
κ-statistic : 0, 85

S/ML attack & Results

If previous phase leads to an attack

Possible?: Off line classification accuracy is 90%, so an attack seems
plausible.

Descrip-
tion:

Classification of the news excerpts in either positive or
negative, using previously trained classifier.

Success
rate:

Combined for both OCR and Empathy: 20%

Observa-
tions:

Conclusion

Weak-
nesses:

• Small set of challenges (21).

• Small set of possible answer values (positive or nega-
tive).

• Appearance of answer values is not uniform (χ2
20 with

a p-value = 0.336).

Broken?: Yes. With a 20% success rate using simple metrics.
Work-
arounds:

• Finer emotion classification.

• More uniform distribution of emotions.
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6.9.3 BASECASS analysis of FunCAPTCHA

The first step of BASECASS is a black-box analysis of the FunCAPTCHA.
The FunCAPTCHA gender recognition CAPTCHA renders 3D head models
into 2D in gray-scale. It uses the same model for the male and the female.
It uses different rotations and fields of view, so size comparisons are not
straightforward. The lightning seems to change slightly in each rendering too.

BASECASS also requires us to create a way to automatically interact
with the CAPTCHA analysed. FunCAPTCHA uses JavaScript code obfus-
cation and private-key cyphered communications (AES) on top of HTTPS
to try to protect/hide its client-server communications. In order to bypass
these, we decided to use browser automation.

BASECASS recommends us to compare the theoretical size of the
base problem being used, and the actual size of the challenges being proposed
by the CAPTCHA, as a way to compare its strength to that of the base AI
problem. The size of P is infinite: there are potentially infinite images of
faces of men and women. In order to compare the size of H, we downloaded
500 images. We noticed that the appearances of the heads seem to repeat,
but when we compare them they are all different at the pixel level. The
parameters that seem to affect the final images rendered per challenge are:

• Model selected: either male or female, as there is a single one from each.

• Rotation in the vertical axis: the rotation is never as strong as to hide
the nose or render a side-portrait, so the angle is always in the 0 to π
range.

• Distance of the camera or field of view: the distance seems to be from
the head is partially cropped (but the main elements as eyes, nose,
mouth always appear) to further away so that the neck and shoulders
can appear too.

• Lightning: the illumination seems to change among scenes, but it is
harder to precise how it does so just by looking at a collection of
challenge images.

As can be seen from the previous remarks, the challenge space H in
FunCAPTCHA is quite restricted when compared to P . It is not trivial to
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reconstruct the values used to create each challenge image. Thus, we cannot
easily gather an amount of information that would allow us to perform a
quantitative, statistical analysis on the distribution of these parameters.

From a qualitative point of view though, we can mention some facts
that might affect the difficulty of the gender recognition problem created by
FunCAPTCHA, and thus its security:

• Only one model is used for each genre. Naïvely, this seems to be an
over-simplification of the genre recognition problem.

• The rotation of the model is only done in the Y axis. This also reduces
variability of the renders produced.

• The size of the head of the male model seems to be bigger than the
female, when compared with other attributes (eyes, hair). This though
is not straightforward to use, as the distance of the camera from the
head itself varies enough as to account for size variations.

• The rendering is performed in gray-scale. We do not know whether this
is a good option or not. Maybe it is, if the colours/quantities of hair
and skin type change drastically from male to female models.

• There is no distortion added to the images, not local nor global. The
background is plain white. Given that the human vision system is very
good at recognising human faces, to the point that it can recognise a face
in under 100ms. (Crouzet et al., 2010) (up to 50% faster than animals),
and that we tend to recognise faces in almost-random noise, we think
that the 2D renders could have been slightly protected with noise and
distortions without affecting much the usability of the CAPTCHA.

The answer space is simple to analyse. There is only one answer,
in the 3 × 3 matrix presented to the user, that portrays the face of the
female. The drop target position is at the center. When we were studying
FunCAPTCHA, we did not appreciate any deviation from randomness on the
positions chosen to place the female. Also, the eight images are transferred
to the client as independent images with associated numbers n . . .n+ 8. We
found no correlation between these numbers and the images containing the
females.

Once finished with the first step of BASECASS, we can proceed to
the second, the S/ML analysis. In order do so, we have to determine which
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metrics to use, and whether any de-noising, pre-processing or transformation
would be beneficial. As the images were not altered in any way, it seemed
that these would not be necessary, and we can process the images as they are.
It does not seem useful to characterize the challenges at the pixel level. Not
only we would have too many parameters to handle, they will probably be
essentially meaningless.

Prior to the statistical and ML analysis, we needed to define which
metrics could be of interest. We used some well-known metrics that gather
some basic information from each image:

• General purpose metrics:

– Histogram of colours (shades of grey) used, grouped in bins of
different sizes: 5-values, 15-values and 25-values bins.

– Number of non-white pixels (in % from the maximum).
– Size after compression: gives an estimate of the amount of infor-

mation contained.

• Ad-hoc metrics: we did not use ad-hoc metrics. We did not find any
ad-hoc metric that we though could be useful and relevant to this
particular CAPTCHA.

• Comparative metrics: we did not use any comparative metric. The
answer space is smaller than in other cases, as we have one correct
answer in each eight cases per sub-challenge.

We decided to run the tests with these simple metrics and see
whether they would allow for proper classification.

Even though FunCAPTCHA presents images that look similar to
the eye, a pixel-level comparison always finds plenty of differences among
them. Thus, a nearest neighbour comparison at pixel level does not seem
appropriate. Yet the idea of nearest neighbour classification based in our
metrics is appealing in FunCAPTCHA because:

• nNN classification is quite intuitive in this case. It can tell us which
particular exemplar (class) is closest, up to n of them, and thus we can
decide to influence our class choice by n results, weighted by distance
of not. It also tells us whether our defined metrics are or not directly
useful to compare the images.
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• nNN does not require to choose many learning parameters.

The second phase of BASECASS recommends not to restrict our-
selves to a single ML method, so we created a compatible ARFF data file
and run all compatible algorithms available in Weka.

As there is a 8 to 1 imbalance in the training and test set, we
choose to classify our classifiers according to their κ statistic value instead
of the accuracy, less relevant in this scenario. We tested with different ML
algorithms to determine those that were more successful. In particular, the
MultilayerPerceptron, KStar, IB1/k, LMT, Logistic/SimpleLogistic and FT
had all an accuracy over 97% and a κ statistic equal to or over 0.88. This
implies than an attack using them might be feasible.

As per BASECASS, we proceed to the attack using the five best
performing ML algorithms. We found that even such a basic attack is able to
bypass FunCAPTCHA with a 90% success rate. Table 6.21 summarizes the
application of BASECASS to FunCAPTCHA and the results found.

Table 6.14: FunCAPTCHA BASECASS Analysis.

BASECASS analysis for FunCAPTCHA

Name: FunCAPTCHA human gender recognition
Descrip-
tion:

Select an image depicting a female out of 8 images

Challenge space

Base
problem:

Type: Image classification by gender.
Size: Unknown.

CA
PT

CH
A

pr
ob

le
m
: Domain: Gender classification of given 2D renders from

two 3D models.
Size: Unknown, all 2D renders are different at pixel

level.
Distribu-
tion:

Cannot examine distribution given that the
parameter creation values remain unknown.
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Answer space

Maximum
Range:

8n, where n = {1, 3, 5}

Range: 8n, where n = {1, 3, 5}
Ratio: 1 : 1
Distribu-
tion:

Their appearances seems uniform, no particular position
or image number seems correlated with the female gender.

Challenge space & answer space conclusions

Is attack
possible:

No

Descrip-
tion:
Success:

Metrics

Denoising: No denoising technique is used.
Pre-
processing:

No pre-processing technique is used.

G
en
er
ic Histogram of gray shades, grouped in bins containing 5, 15

and 25 values.
Total non-background pixel count.

O
rd
er

Sp
ec
ifi
c/

Ta
ilo

re
d Size after lossy compression (JPEG) using different quality

settings.

Data preparation

Tr
ai
ni
ng

se
t

Size: 4320 training images, of which 535 represent
females, manually classified.

Balance: Approx. 1 in 8 are images depicting a female,
as expected.

Notes: Test set made of 148× 8 training images, of
which exactly 1 in 8 represent females.
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ML analysis

Selection: κ statistic.
Best algo-
rithms:

Multilayer Perceptron, KStar.

Accuracy: 99%, 98% accuracy.
κ-statistic : 0, 96, 0, 95

S/ML attack & Results

If previous phase leads to an attack

Possible?: Given an off line classification accuracy of 99%, which means
0, 998 = 92% per subchallenge, an attack seems plausible.

Descrip-
tion:

Classification of the challenge images as {male, female},
using Multilayer Perceptron trained with the previously
described training set.

Success
rate:

90% overall in all types of challenges served by Fun-
CAPTCHA.

Observa-
tions:
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Conclusion

Weak-
nesses:

• Small set of possible challenge images, once basic
metrics are extracted from the images: even though
the set of parameters applied for challenge creation
remains unknown, it is true that using just two 3D
models seems too restrictive.

• Lack of further protection mechanisms (distortions,
noise, backgrounds, additional rotations, etc.)

Broken?: Yes. 90% accuracy with simple metrics.
Work-
arounds:

• Increase drastically set of possible parameter values:
number of 3D models, rotations, lightning, maybe
more models in the same render, etc.

• Added distortions, noise, background, etc.

• Remains unknown if with current ML state-of-the-art
technology this would suffice.

The main problem seems to be in fact that the problem space of
FunCAPTCHA is too small, much more than the base problem of gender
recognition. BASECASS is able to find this using very simple metrics and
well-known ML algorithms.

It is remarkable that using only general metrics, we are able to attain
such good results both for off-line classification and during the corresponding
attack.
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6.9.4 BASECASS partial analysis of the QRBGS ‘Math’
CAPTCHA

In this section, we will present the application of BASECASS to another
CAPTCHA proposal that has already been analysed from a security stand-
point. A full application of BASECASS would be time-consuming and require
a basic security analysis, which is out of place now that this CAPTCHA
has been found flawed. Instead, we will apply partially our BASECASS
framework, using only on the publicly available data of its published security
analysis (Hernandez-Castro and Ribagorda, 2010). Using this data, we will
check if BASECASS is able to find whichever weaknesses have been reported.

The first step of BASECASS requires us to create a mechanism to
interact automatically with the CAPTCHA. As this is a partial application,
and we will use the data already public, we do not need to create such tool.

The first step of BASECASS also recommends to relate the sizes of
the theoretical base problem and the actual problem being generated by the
CAPTCHA. Given the published data and accessing the QRBGS CAPTCHA
on-line, we can estimate the sizes of both P and H. The QRBGS CAPTCHA
offers four different challenge sub-types: an arithmetic expression, finding
the smallest real root of polynomials (written in two different formats), and
calculating a derivative on a certain point.

After interacting a number of times with the CAPTCHA, the num-
bers of elements in each subtype that we have seen are shown in Table
6.15:

Table 6.15: QRBGS challenge subtypes and space.

subtype expression example

arithmetic gn(g1(ar1, ar2)..., an)
smallest real

zero of polynomial
∏i=0
n pi × xi

smallest real zero
of polynomial

∑i=0
n (x− ri)

derivative
∂
∂x
a1 × f(a2 × x+ a3)+

a4 × f ′(a5 × x+ a6)|x=a7

In Table 6.15, gi are binary functions, in particular addition or



254 BASECASS

multiplication, and ari are either single-digit integers or the result of an
expression from gi′ . In this subtype, it seems that n < 9. This leads to a size
of 198 × 27 = 2 × 1012. For the polynomials, pi and ri are also single digit
integers, and n < 9. So the polynomials expressed as powers of x have a size
of 198 = 16, 983, 563, 041. The size of the set of polynomials expressed as
factors is the same. For the derivatives, f and f ′ are the functions sin or cos,
and ai are either single-digit integers or rational multiplicatives of π from the
set π

2i where i = 0..2. This leads to a size of (19 + 3)7 ∗ 22 = 9, 977, 431, 552
elements. The total is then |H| ≈ 2.2× 1012.

Given these restrictions, it is easy to see that P , which is solving
arithmetic expressions, finding roots of polynomials and calculating derivatives,
is infinite, whereas H is finite. This should not be a problem given that |H|
is big enough: the restrictions imposed on the coefficients being integer or
multiples of π might is not too big of a constraint. But when Hernandez-
Castro and Ribagorda (2010) download more than 10, 000 challenges, they
see a majority of repeated ones. The number of different challenges served is
slightly less than 750. This is clearly a mistake, as now a learning attack is
much easier to perform.

BASECASS also recommends us to check the distribution of the
challenge space. We do not have data regarding the challenge distribution.
Gathering this data would require reading the formulas to analyse the appear-
ance of the different factors, which is clearly beyond the scope of the analysis
(and would break the CAPTCHA by itself).

BASECASS recommends that we check the answer space and distri-
bution. After checking different challenges, it seems that all the solutions are
integers. This is clearly a mistake, as it reduces the solution space greatly
from its potential, R. Checking some challenges, it seems that all solutions
are also small integers: we do not see any value even close to 100 or −100.
Then, Hernandez-Castro and Ribagorda proceed to check the distribution
of answers. They find that the distribution of correct answers to each type
of sub-challenge and spreads over just a few integer values, which further
limits the CAPTCHA and makes it potentially weak against a learning attack.
More so, the distribution is also extremely skewed, which means that we can
randomly answer the most probable answers and still be able to bypass the
CAPTCHA a significant number of times. The answer distribution is shown
in figure 6.5.

As recommended by BASECASS, it was launched an attack to
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learn how relevant and exploitable are these flaws. They learn that their
straightforward attack reaches an overall 44% success ratio over all subtypes.

Table 6.16 summarizes the partial application of BASECASS to the
QRBGS CAPTCHA and the results found.

Table 6.16: BASECASS Analysis for the QRBGS CAPTCHA.

BASECASS analysis for the QRBGS CAPTCHA

Name: QRBGS Mathematical CAPTCHA
Descrip-
tion:

Read, understand and solve a mathematical expression.

Challenge space

Base
problem:

Type: Mathematical expression.
Size: Infinite.

CA
PT

CH
A

pr
ob

le
m
: Domain: Restricted mathematical expression.

Size: Up to ≈ 2.2×1012, but actually less than 750.
Distribu-
tion:

Unknown.

Answer space

Maximum
Range:

|I|

Range: ≈ 200
Ratio: Infinite.
Distribu-
tion:

Their appearances are very non uniform. The exact dis-
tribution is not studied.

Challenge space & answer space conclusions

Is attack
possible:

Yes An attack is possible given the very non uni-
form distribution of correct answers, the reuse
of challenges and the fact that the CAPTCHA
can be used as an Oracle.

Descrip-
tion:

Answering 0 to every challenge. Learning attack for
the wrong ones: those not solved get future answers as
1,−1, 2,−2... until answer is found.

Success: 44% overall for all subtypes of challenges.
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Conclusion

Weak-
nesses:

• Small set of possible challenges (750).

• Challenges are always presented the same (no distor-
tions, noise, backgrounds, rotations, etc.), so a learning
attack is feasible.

• Small set of possible answers (< 200).

• Answer distribution is severely non uniform.

Broken?: Yes. 44% success rate.
Work-
arounds:

• Make distribution of answers more uniform and in R.

• Create the challenges dynamically so their number is
closer to the maximum (2× 1012).

• Protect challenges so a learning attack is more difficult.

It is worth noting that BASECASS is able to find the weaknesses of
the QRBGS CAPTCHA in its first step, while checking the challenge and
answer domains. That is one of the reasons why this step is important, and
should be applied prior to other more involved steps, as the ones involving
S/ML learning.

6.9.5 BASECASS partial analysis of the HumanAuth
CAPTCHA

In this section we will present the application of BASECASS to another
CAPTCHA proposal that, as happened with the Math QRBGS CAPTCHA,
has already been analysed from a security standpoint. Our application of
BASECASS framework to it will similarly be partial, based on the publicly
available data of its security analysis by Hernández-Castro et al. (2010). At



6.9 Examples of application of BASECASS 257

the end of our partial application, we will check if BASECASS is able to find
whichever weaknesses have been reported.

The HumanAuth CAPTCHA is an Open Source CAPTCHA that
asks users to distinguish between images with natural and non-natural con-
tents. The HumanAuth application comes with a image repository consisting
of 45 nature images and 68 non-nature ones in JPEG format.

The first step of BASECASS strongly recommends to create a way
to interact automatically with the CAPTCHA being studied. In this case,
we do not need to develop a way to interact with the HumanAuth, as all its
details are available in its source code package.

We can analyse the HumanAuth CAPTCHA as either a text-based
CAPTCHA or an image CAPTCHA. Hernández-Castro et al. decided to do
the second, so we will follow this route.

BASECASS recommends to estimate the size of the base problem
and the size of the real problem being posed by the CAPTCHA and then
compare them, in a way to estimate its strength compared to the base problem.
The size of the images is 100× 75 pixels, using 3 RGB channels with 8-bits
per channel. The set of all possible images of this size, P , has thus a size of
|P | = 100× 75× 28×3 = 125, 829, 120, 000 possible images, even though this
includes all images that differentiate from another in just a pixel and a bit -
that is, many will look the same to the human eye. H is much smaller though,
as it includes 45 nature images and 68 non-nature images, that are protected
with the addition of a watermark. The watermark does not change, it just
changes the position in which it within the image. The original watermark
has a size of 16× 16 pixels. Thus, there are (100− 16)× (75− 16) = 4, 956
positions for it. Thus |H| = (68 + 45) × 4, 956 = 56, 0028 total possible
images different at pixel level, although their differences are typically less
than 100× (100−16)×(75−16)

100×75 = 81% different from many others, and as little as
16 pixels different (or less) than the closest one.

The first step of BASECASS also recommends to estimate the answer
space of the CAPTCHA and its distribution, in a way to estimate its strength
against brute-force attacks. The answer space of the HumanAuth CAPTCHA
is reduced: we need to pick a number of elements from a set of 9. Thus,
theoretically the number of answers could be ∑9

i=1

(
9
i

)
= 29 = 512. Yet

HumanAuth presents always just 3 images to select, thus the answer space
is the smaller

(
9
3

)
= 9!/3! × 7! = 8 ∗ 9/3 ∗ 2 = 12 only different answers.
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According to the source code, their distributions should be uniform.

Given the small answer space, and the fact that many challenges
can be identified as having a similar image, as they are quite similar at pixel
level, it might be possible to perform a learning attack against HumanAuth.
This is not the attack that Hernández-Castro et al. perform, as they want
to know whether the idea behind HumanAuth is sound, even if their image
database was bigger.

After completing the first step of BASECASS, we can proceed to the
second step, BASECASS S/ML analysis. To do si, it is necessary to choose
some metrics that we will use to extract information from the challenges.
Hernández-Castro et al. decided to use the ENT test for this. This test
provides several numerical values for each image: the numerical value of
the entropy, as measured by ENT in bits per byte; the χ2 value for the
corresponding degrees of freedom (width x height in pixels); the mean value
of each byte; the value of π obtained using a Monte-Carlo algorithm that is
supplied with the image data instead of a random stream; and the correlation
of one byte against the next one.

Hernández-Castro et al. apparently used the whole set of Huma-
nAuth as training images, checking them using CV. They obtained a 78%
accuracy using Random Forests. This indicates that an attack might be
possible.

In this situation, BASECASS encourages us to test our findings
performing an attack. In order to test an attack, they create a set of 20, 000
images using the provided watermark. They do so using the public source
code available. The accuracy of the same classifier drops to 72%, but attain
91% using J48. Although they do not implement an attack, it is expected
that with such accuracy, an attack would be successful on 0.918 = 47% of
occasions.

Table 6.17 summarizes the partial application of BASECASS to the
HumanAuth CAPTCHA and the results found.

Table 6.17: BASECASS Analysis for the HumanAuth CAPTCHA.
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BASECASS analysis for the HumanAuth CAPTCHA

Name: HumanAuth image classification: artificial/natural.
Descrip-
tion:

Select 3 images depicting a natural item from 9 images.

Challenge space

Base
problem:

Type: Image classification.
Size: Infinite.

CA
PT

CH
A

pr
ob

le
m
: Domain: Image classification.

Size: 560, 028 possible images, derived from only
113.

Distribu-
tion:

Uniform.

Answer space

Maximum
Range:

29 = 512

Range: 12
Ratio: ≈ 42 : 1
Distribu-
tion:

Uniform.

Challenge space & answer space conclusions

Is attack
possible:

Yes A learning attack might be possible. Not
tested.

Descrip-
tion:
Success:
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Metrics

Denoising: No denoising technique is used.
Pre-
processing:

No pre-processing technique is used.

G
en
er
ic

ENT test suite:

• Mean value

• Entropy per byte

• Monte-Carlo value of π

• χ2

• Serial correlation

O
rd
er

Sp
ec
ifi
c/

Ta
ilo

re
d

Data preparation

Tr
ai
ni
ng

se
t

Size: 20, 000 training images.
Balance: Approx. 50% corresponding to each of the

two classes.
Notes: Test done using 10-fold CV.

ML analysis

Selection: Accuracy.
Best algo-
rithms:

J48

Accuracy: 91%
κ-statistic : Not reported
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S/ML attack & Results

If previous phase leads to an attack

Possible?: Yes, an attack seems possible given the off-line classification
results.

Descrip-
tion:

Classification of the challenge images using pre-trained J48
tree.

Success
rate:

47% success rate is expected.

Observa-
tions:

Not performed in Hernández-Castro et al. (2010).

Conclusion

Weak-
nesses:

• Very small set of possible answers

• Not enough large set of images

• It is possible to correlate challenges, even while using
watermarks

Broken?: Yes. 47% success rate using general metrics.
Work-
arounds:

• Increase drastically the set of images

• Add distortions and other measures to increase the
difficulty of relating challenges and thus performing a
learning attack

• Increase the answer space by allowing different number
of images to select

6.9.6 BASECASS analysis of CaptchaStar

CaptchaStar is a recent CAPTCHA developed by researchers of the University
of Padua (Conti et al., 2016). It is based on a novel idea and does not have
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similarity with any other precedent CAPTCHAs. It is based on the problem
of re-composition of an image or detection of an image. This re-composition is
not done directly over the image moving parts of it as in puzzle CAPTCHAs.
Instead, it is done indirectly through the exploration of a search space by
moving a mouse or a pointer. For simplicity, this search space equals the
image dimensions, although this is not necessary.

Figure 6.9: Example of a challenge produced by CaptchaStar.

CaptchaStar presents to the user a black & white image whose
4× 4-pixels have been reorganized, and move depending on the coordinates of
the pointer - the mouse or a virtual cursor on a touch screen. An example can
be seen in figure 6.9, where the image to the right shows the user how to solve
the challenge, and the image to the left shows the current challenge. When
the user moves the pointer, the pixels move. If the user moves the cursor in
one coordinate, the pixels follow a different straight line, which varies per
pixel and per coordinates. One mouse coordinate allows the user to see and
understand the image. In this coordinate, the pixels appear as ordered as
possible and represent some well-known item or icon, although with some
noise. This coordinate is the solution to the challenge. Figure 6.10 shows an
example of how the image transforms when the user moves the pointer over
it.

BASECASS recommends to create a way to automatically interact
with the CAPTCHA analysed. In this case, this was simply done through a
program in Python that was able to download a challenge, send its answer
to the CaptchaStar server and get the response of the CaptchaStar server,



6.9 Examples of application of BASECASS 263

000 060 120 180 240 300

000

060

120

180

240

300

Figure 6.10: Renders of the same CaptchaStar challenge for different
(x, y) cursor positions. The solutions can be seen when the cursor is over

(x = 120, y = 180) position.
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all while recording a log of it. The correct answer was initially provided by
humans through a replica of the interface of CaptchaStar. Later, it was found
that CaptchaStar allows for requesting the validity of different answers for
the same challenge, which allowed to use CaptchaStar as an oracle to find
the corresponding solution.

BASECASS recommends us to compare the theoretical size of the
base problem being used, and the actual size of the challenges being proposed
by the CAPTCHA, as a way to compare its strength to that of the base AI
problem, image recognition. In this case, the size of P can be very roughly
estimated through how many different black & white images of 300×300 pixels
can there be, if the pixel size for the image is indeed 4 pixels, and if we restrict
ourselves to no more than 80% of the pixels in white. This would lead to
2

0.8×300×300
4×4 = 3.5× 1013. This is just an estimation, as many of these possible

images would not represent a recognizable object or situation and could not
be used as solutions. In order to compare the size of H, we downloaded 2000
images, and check that they were using 1631 different base images. Note
that we have counted the number of images, but not the transformations
performed on them, as they are unknown. When CaptchaStar presented the
same image to the user, the transformation on its pixels was different, so there
is theoretically no way for an attacker to reuse a previously-solved challenge to
pass a new one. Even though the challenge space H in CaptchaStar is smaller
when compared to P , thanks to the number of possible transformations, it is
big enough to prevent brute-force attacks based on repeated challenges.

During our interactions with CaptchaStar, we were able to test that
solutions that were not optimal were still accepted by CaptchaStar if they
were up to 12 pixels from the optimal solution (see figure ??. This increases
the user-friendliness, but reduces the search space. We determined that any
solution in a 12 × 12 pixel square around the optimal solution would be
accepted by CaptchaStar, reducing the answer space needed to explore to

300×300
12×12=6250 . This means that a brute-force attack would have a success rate of
0.016%.

The demo implementation of CaptchaStar allows to test several
solutions for a single challenge. This facilitated to estimate the distribution of
correct answers and compare it to an uniform distribution. After solving 5451
challenges, we produced a heat map (here plotted using Gaussian smoothing)
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Figure 6.11: Solutions accepted by CaptchaStar for a challenge and their
offset in pixels from the best solution. The solutions shown are the best
one at each 3× 3-grid center, and solutions up to 12 pixels around it.
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(a) Frequencies of appearance of
CaptchaStar centers of correct so-
lutions.

(b) Pseudo-random distribution of
points for an uniform distribution.

Figure 6.12: Distribution of correct answers for CaptchaStar and for an
uniform distribution, plotted using Gaussian smoothing. The correct
answer distribution is close to an uniform, with exceptions around the

borders.

of the centres of correct answers that can be seen in figure 6.12. As can be
seen, CaptchaStar does seldom produce challenges which answers lie close
to the borders. Interestingly, the distribution of peaks is more accentuated
in the case of a pseudo-random uniform distribution than in CaptchaStar.
The Pearson’s χ2 is 92474.15, indicating a p − value < 0.00001, which is a
significant result that confirms that the answer distribution is not uniform
(for a distribution with 89999 degrees of freedom at a significance level of
0, 05).

Even when CaptchaStar allows for a margin of error of 12 pixels
while answering, and even though the number of images used is limited, the
transformations done on them and the semi-random choosing of the center of
correct answers make it resilient enough to a brute-force attack. The fact that
several answers can be tested using the CaptchaStar demo implementation
allows for an Oracle attack, but this can be easily solved by the designers of
CaptchaStar.

Once we completed the first step of BASECASS, we proceed to
the second, the S/ML analysis. In order do so, we have to determine which
metrics to use, and whether any de-noising, pre-processing or transformation
would be beneficial. The images were not altered in a way that keeps any
visible hint oof the original image nor that was easy to undo. It is precisely
this alteration the one that embeds the problem on which the CAPTCHA is
based, image recognition through a search space (or image re-composition).
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Thus we decided to process the images as they are.

To define which metrics could be of interest, we picked-up some
well-known metrics that gather some basic information from each image:

• General purpose metrics:

– Results of the ENT test of randomness, as a measure of information
and randomness on an image. The test is run in an un-compressed
version of the answer images (uncompressed BMP format).

– Size after compression: gives an estimate of the amount of infor-
mation contained. We used the JPEG compression algorithm as
implemented by the PILLOW Python library, with qualities of 1
and 95 (lowest and highest recommended).

• Ad-hoc metrics: we did not use any ad-hoc metric, as we did not find
any ad-hoc metric that we though could be relevant to CaptchaStar.

• Comparative metrics: the answer space is quite large, so we decided
to follow BASECASS recommendation and create comparative metrics
within the same challenge for all numerical results of the ENT test and
for the size results. We did so normalizing all numeric answer ranges
within the same challenge.

We decided to run the tests with these simple metrics and see
whether they would allow for proper classification.

We had to determine the training and tests sets to use for ML. We
used the 5451 challenges downloaded and answered in the previous step. In
order to create a training/test set, we applied these metrics to the images
resulting on placing the cursor on different positions. In particular, we created
two sets:

1. The first one contained the images resulting when we divided the
answer space in three parts, that is, when the possible coordinates are
(0, 0), (150, 0), (300, 0), (150, 0), (150, 150) . . . (300, 300). We included
another 3× 3 coordinates derived from positions at (−10, 0,+10) offset
of the coordinates from the center of the correct answers. This produced
a maximum total of 18 images per challenge. In order to create the
training/test files, we applied the mentioned metrics to these images.
We will call this the simple dataset.
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2. The second one contains similarly images resulting from dividing the
answer space in five parts. Similarly, it contains another 5× 5 coordi-
nates derived from dividing the [−10 . . . 10] offset range in five parts.
Additionally, we added coordinates at [−1, 1] from the center of correct
coordinates. Note that, even though these coordinates are marked as
correct by CaptchaStar, we marked them as wrong in order to see if some
ML algorithms are able to differentiate which amongst almost-perfect
and perfect solutions. In total, this produced a maximum of 59 images
per challenge, to which we applied the mentioned metrics in order to
produce the corresponding file. We will call this the detailed dataset.

We decided to use 3-fold CV for testing. We used the ML framework
Weka, as it includes several classifiers that can be run using default parameters
out-of-the-box. To determine which classifier performed best, we decided to
use the κ metric, as it is more significant that the accuracy or others when
dealing with unbalanced training and tests sets like the ones we have, with
only 1/18 and 1/59 correct answers respectively.

We tested both datasets with different ML algorithms to determine
those that were more successful. Tables 6.18 and 6.19 show the top classifiers
by their κ metric for both the simple and detailed dataset correspondingly.
Of a total of 163 classifiers in Weka, only a 37 and 34 correspondingly were
able to load the data and present a solution within the time-out (5 minutes).

Many ML algorithms are able to classify the simple dataset with a
high κ value. In particular, themeta.RandomCommittee (an ensemble of ran-
dom classifiers), the functions.Logistic (multinomial logistic regression model
with a ridge estimator) and two tree-based classifiers (trees.RandomTree
and trees.J48) obtained the best results. They all obtain a κ of 0, 99 and a
perfect accuracy. This implies than an attack using any of them might be
feasible.

For the second training/test set, the detailed dataset, we got worse
results, as is expected. At the top of the scale there is again a meta classifier
(an ensemble). The first pure classifier that reaches a decent solution is J48,
with a κ of 0.36. Even though it is not too high, it should be enough as to
perform an attack.

As per BASECASS, we proceed to the attack using the best per-
forming ML algorithms from each training/test set. We select the pre-trained
models for the J48 trees for both the simple and detailed datasets, as well as the
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meta.RandomCommittee, the functions.Logistic and trees.RandomTree.

We design an attack that downloads a challenge and creates all
possible images related to answers in a grid of 5× 5 pixels. After applying
the metrics to them, it runs one of these pre-trained Weka model to choose
the most promising answer. It then sends this answer to the CaptchaStar
server to test whether it is the correct one.

The creation of possible answers to a challenge and the extraction
of metrics from them is very time consuming, as there are theoretically a
total of 9× 104 possible answers. As we have determined that CaptchaStar
allows for imprecissions of up to 12 pixels, we divide the answer space in
10× 10-pixel grids and analyse only the 900 possible challenge answers. This
is not adequate for the models that we have trained to be more accurate
when discriminating answers closer to the solution center (detailed datasets).
Because of this, for this reason we try to use a search grid of just 2× 2-pixels
with these models, while substantitally reducing the number of experiments
due to the very long experiment time. The results of these attacks can be
seen in table 6.20.

We found that even using metrics that have not been tailored to
CaptchaStar, we can find attacks that bypass it with a 85% success rate.
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Table 6.18: Results of different ML algorithms on the simple CaptchaStar
dataset, ordered by κ statistic.

classifier κ accuracy
meta.MultiClassClassifier 0.99 1.00

functions.Logistic 0.99 1.00
trees.RandomTree 0.99 1.00

trees.J48 0.99 1.00
meta.Bagging 0.99 1.00

meta.WeightedInstancesHandlerWrapper 0.98 1.00
meta.RandomSubSpace 0.98 1.00
functions.SimpleLogistic 0.98 1.00

functions.SGD 0.98 1.00
functions.SMO 0.98 1.00

meta.FilteredClassifier 0.98 1.00
meta.AttributeSelectedClassifier 0.98 1.00

rules.DecisionTable 0.97 1.00
bayes.NaiveBayesUpdateable 0.96 1.00

bayes.NaiveBayes 0.96 1.00
meta.AdaBoostM1 0.95 0.99
trees.HoeffdingTree 0.93 0.99
bayes.BayesNet 0.90 0.99

trees.DecisionStump 0.90 0.99
rules.OneR 0.90 0.99

bayes.NaiveBayesMultinomialUpdateable 0.03 0.51
bayes.NaiveBayesMultinomial 0.03 0.51
misc.InputMappedClassifier 0.00 0.94

meta.MultiScheme 0.00 0.94
rules.ZeroR 0.00 0.94

bayes.NaiveBayesMultinomialText 0.00 0.94
functions.SGDText 0.00 0.94
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Table 6.19: Results of different ML algorithms on the detailed Captcha-
Star dataset, ordered by κ statistic.

classifier κ accuracy
meta.RandomCommittee 0.76 0.99

trees.J48 0.36 0.98
meta.AttributeSelectedClassifier 0.28 0.98

meta.FilteredClassifier 0.26 0.98
bayes.BayesNet 0.20 0.89

bayes.NaiveBayesUpdateable 0.18 0.88
bayes.NaiveBayes 0.18 0.88

meta.MultiClassClassifier 0.08 0.98
functions.Logistic 0.08 0.98
trees.HoeffdingTree 0.08 0.97

rules.OneR 0.05 0.98
meta.LogitBoost 0.05 0.98
meta.AdaBoostM1 0.03 0.98

bayes.NaiveBayesMultinomialUpdateable 0.01 0.50
bayes.NaiveBayesMultinomial 0.01 0.49

functions.SimpleLogistic 0.00 0.98
functions.SGD 0.00 0.98
meta.Vote 0.00 0.98

misc.InputMappedClassifier 0.00 0.98
rules.ZeroR 0.00 0.98

meta.MultiScheme 0.00 0.98
bayes.NaiveBayesMultinomialText 0.00 0.98

functions.SGDText 0.00 0.98
trees.DecisionStump 0.00 0.98
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Table 6.20: Attack success rates and mean running times per challenge
when using different ML algorithms for classification and different search
grids. The ML algorithms were trained using both the simple and the

detailed CaptchaStar datasets.

dataset model name grid
steps

examples correct % mean
secs.

simple meta-Bagging.model 10 200 151 75.5 51.30
simple functions-Logistic.model 10 200 170 85.0 49.97
simple trees-J48.model 10 200 124 62.0 50.01
simple meta-MultiClassClassifier.model 10 200 170 85.0 48.39
detailed meta-RandomCommittee.model 10 200 36 18.0 48.18
detailed meta-RandomCommittee.model 2 10 4 40.0 1774
detailed trees-J48.model 2 10 5 50.0 1859
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Table 6.21 summarizes the application of BASECASS to FunCAPTCHA
and the results found.

Table 6.21: CaptchaStar BASECASS Analysis.

BASECASS analysis for CaptchaStar

Name: CaptchaStar re-composition of image by exploration
Descrip-
tion:

Select a cursor coordinate where the image shows a recog-
nisable item

Challenge space

Base
problem:

Type: Image re-composition by exploration.
Size: 3.5× 1013, not including transformations.

CA
PT

CH
A

pr
ob

le
m
: Domain: Image re-composition by exploration.

Size: Unknown: based on a limited set of images,
but unknown number of transforms.

Distribu-
tion:

Answer space

Maximum
Range:

90000

Range: 6250
Ratio: 1 : 14
Distribu-
tion:

Their appearances seems not uniform.

Challenge space & answer space conclusions

Is attack
possible:

No

Descrip-
tion:

Challenge space is big enough. Answer space, while not
uniform, does not show exploitable flaws.

Success: -
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Metrics

Denoising: No denoising technique is used.
Pre-
processing:

No pre-processing technique is used.

G
en
er
ic ENT test of randomness.

Size after lossy compression (JPEG) using different quality
settings.

O
rd
er All metrics are normalized within the same challenge.

Sp
ec
ifi
c/

Ta
ilo

re
d

Data preparation

Tr
ai
ni
ng

se
t

Size: 5451 training images, classified using Captcha-
Star as an oracle.

Balance: Approx. 1 in 18 are right solutions (simple
dataset), 1 in 59 in the second training set
(detailed dataset).

Notes:

ML analysis

Selection: κ statistic.
Best algo-
rithms:

J48, Logistic.

Accuracy: 1, 00.
κ-statistic : 0, 98.
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S/ML attack & Results

If previous phase leads to an attack

Possible?: Given an off line classification accuracy of 100%, with a κ
of 0, 99, an attack seems plausible.

Descrip-
tion:

Classification of the answer challenge images as right or
wrong, using different classifiers trained with the previously
described training sets.

Success
rate:

85% while restricting the analysis to increments of 10× 10-
pixels.

Observa-
tions:

The models trained in the detailed dataset do not increase
the success rate.

Conclusion

Weak-
nesses:

• It is possible to use the demo site as an oracle.

• The challenge gives away too much statistical infor-
mation, making it possible to learn to determine the
correct answer.

• The base problem might not be strong enough.

Broken?: Yes. 85% accuracy with simple metrics.
Work-
arounds:

• Allow just one answer per challenge.

• Allow the challenge answer space to have several areas
in which a similarly-appearing sets of points gather
trying to fool the metrics used and other possible
metrics.

• Increase answer space, shrink correct answer area,
timeout answers.

• Remains unknown if with current ML state-of-the-art
DNNs this would suffice. It might be possible to train
a Reinforcement Learning (RL) agent or a DCNN
classifier to solve the problem.
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CaptchaStar presents a novel idea for a Captcha, and apart from an
easy-to-correct implementation mistake, it is quite well designed and has no
other major design flaws. Unfortunately, BASECASS reveals that its base
problem is not strong enough. It suffers from presenting too much information
to the user, being the correct answer easy to characterize even through the
simplest, non-tailored metrics.

It is important to note that using only general metrics, we are able
to attain a very good success rate both for off-line classification (100%) and
during the test attack (85%).

6.10 Summary of BASECASS

In this chapter, we have presented BASECASS, a methodology that guides
a practitioner in testing a basic security level for many new CAPTCHA
proposals. We have presented an overview of it, and next we have explained
it in detail, including examples of some of its sub-steps. It is out of the scope
of this work to test if our proposed methodology is in fact useful and efficient
at finding possible weaknesses. But, when applied to the three case-studies
presented on this dissertation, it has been able to find the weaknesses reported
in them. More so, it has done the same for two more cases in the literature.
Additionally, it has been successful in finding weaknesses and exploiting them
in an attack against a novel and recent CAPTCHA design that was published
after the framework was already created.

BASECASS is susceptible to be implemented as a tool in which plug-
ins can solve the parts of it that need to be tailored to each CAPTCHA: the
interaction with the CAPTCHA, the manual classification of a few examples,
and most importantly, the selection of metrics. Even though the full analysis
of BASECASS cannot be done automatically (for example, defining P and
its size), most of it can.

It remains to be seen whether this methodology, or part of it, is put
to use to test new CAPTCHA designs. Even if not, we hope to provide here
valuable insight and ideas on some possible, original ways in which to test a
new CAPTCHA design for a basic level of security.
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Conclusions and future work

This chapter summarizes the conclusions of this dissertation. It also presents
some ways in which the work introduced here may be extended.

7.1 Conclusions

The recent advances in ML imply that some of the typical problems considered
AI-hard can no longer be used as a base for CAPTCHA design as-is. Even
though these recent advances benefit from large labelled data-sets, there is
an increasing research into unsupervised training. If this is successful, there
exists the possibility of integrating this new ML methods into BASECASS.

Most if not all CAPTCHAs in use today are susceptible to relay
attacks. There are a few proposals that try to tackle this threat, but none have
gained widespread use, and their resistance to relay attacks remains unknown.
Also learning attacks, using CAPTCHAs as oracles, can be troublesome, and
the solutions proposed so far do not work.

The main actors of the current CAPTCHA scenario offer solutions
that are known to have vulnerabilities. They also increasingly follow the Secu-
rity by Obscurity paradigm, that has a history of bad results in Cryptography
and IT Security.

Given this situation, it is possible to think that the current security
level of CAPTCHAs is not enough for protecting the services from automated
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abuse. A possible reason of why such non-performing CAPTCHAs are in use
is because in some scenarios, it might be better to have them and thus slightly
increase the barriers to attacking, than to have no protection whatsoever.

In this dissertation we provide three case-studies of the security of
commercial CAPTCHAs, in which we analyse five different CAPTCHAs that
had never been analysed before. Interestingly, all of them present original
challenges that have also never been tackled before: the use of empathy,
gender recognition of synthetic faces, and restoring original images with
puzzle pieces. We find weaknesses in them and confirm their exploit-ability
through attacks.

The weaknesses found share some characteristics, suggesting the
possibility of finding them following a semi-automatic procedure. This is the
basis of the framework that we propose. BASECASS is a framework that
suggests a series of checks on any new CAPTCHA proposal. These checks
have to do with the challenge and answer space, and with unexpected leaks
of information, that can be detected using ML.

We apply BASECASS to the three case-studies presented before
and check that it actually finds the weaknessess reported. We also present to
partial applications of BASECASS to two additional CAPTCHAs, and check
that it also finds their vulnerabilities.

The problem of transmitting the hardness of the base problem to the
CAPTCHA that uses it remains to be solved. Our methodology, BASECASS,
provides a basic framework for at least comparing the sizes of H and P as
a very rough estimation of the relative hardness of a base problem and a
CAPTCHA that derives from it.

The problem of measuring the hardness of new CAPTCHA remains
unsolved. We provided nevertheless a new framework, BASECASS, that is
able to detect common weaknesses in a number of cases. More so, it is able
to do so in a methodological way. The heavyweight lifting of the analysis
is left to ML algorithms. We find BASECASS surprisingly successful, even
using generic metrics. This result is quite unexpected given that many ML
algorithms are designed with the expectation to receive relevant information
to the task, that is, relevant features. This result is even more relevant in
IT Security, as the cost of an attack is a very important measure, and this
can also present a generic low-cost attack.That is the aim of this work, to
increase the security of new CAPTCHA designs.
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7.2 Future work

BASECASS proposes a step in which it is possible to link the S/ML analysis to
the different values of the parameters used during the creation of a challenge.
This has the potential to find weak values of parameters and avoid them
in the production environment. In our case-studies, we have not been able
to perform this analysis, as in most cases, the values of such parameters
remained inaccessible to us: the CAPTCHAs were proprietary and it was
difficult to extract such values from the challenges. In the case of the Garb
CAPTCHA, it had only two parameters (image and permutation). Thus, this
part of BASECASS remains untested, and we leave this verification as future
work.

BASECASS is a framework than can be implemented as a software
tool. The parts of it that depend on the specific CAPTCHA can be imple-
mented as plug-ins. The part of it that needs a few labelled examples can be
implemented through third-party CAPTCHA solving services. If implemented
as Open Source, we hope that the research community would find it useful
and that new CAPTCHA designers would use it to assess a basic security
level for their designs.

New ML methods related to DL are gaining increasing efficiency at
their tasks. Plenty of research is being done in unsupervised learning using
these methods. It is foreseeable that in a near future, DL-related methods will
be able to construct a high-level representation of almost any type of element
(audio, video, images, text, etc.). Once we have such high-level representation,
we can use it either with a DNN or with more typical ML algorithms. The
activation of these features can later be fed to a NN layer or other ML
algorithm for further classification. This opens exciting new possibilities
for automatic extraction of CAPTCHA parameter creation attributes, and
side-channel attacks. Their integration with BASECASS offers some very
interesting possibilities that we have not analysed yet, but leave as future
work.
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Appendix A

Alternatives to CAPTCHAs

The different alternatives to CAPTCHAs can typically be applied to a subset
of the problems that CAPTCHAs try to prevent. They also work at different
parts of the threat model: threat prevention, attack prevention, attack
detection and countermeasures.

Next, we will describe these protection measures and discuss their
benefits and drawbacks.

A.1 Threat prevention

Threat prevention tries to minimize the threat. These mechanisms do not
affect the vulnerability, the asset nor its value. They instead minimize the
overall risk by reducing the threat, trying to avoid it taking place. This is
typically done by discouraging the attacker, for example, increasing fines
and other legal consequences, or decreasing the benefit extracted from the
attack, which in turn minimizes the risk of the attack taking place. In our
particular case the threat is that an asset, typically an on-line service that
has been designed for people, is abused in an automatic or semi-automatic
way, typically hundreds or thousands of times. The semi-automated attack is
the one in which a third-party bypasses the protection mechanism in order
for the attack to proceed.
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A.1.1 Cost increase

The idea behind this proposal is to lower the economic incentives of spam, or
in general, of repetitive automatic abuse of a service, by assigning to each
automatic petition a small cost that would not alter the economics for regular
users, but would for abusers. The cost can be monetary, but it is typically
proposed to be a proof-of-work that requires some computing effort.

It is estimated that spammers worldwide and their associated move
a market of 200US$ million per year (Rao and Reiley, 2012). The idea of
associating a monetary cost to every email sent was introduced by Dwork and
Naor (1992), Back (2002). Spammers and phishing attacks typically rely on
great numbers of emails sent to which a very small percentage of answers are
received. Imposing a cost to every email sent would de-incentive these attacks,
unless the expected revenue ROI (Return Of Investment) was positive, that is,
would result in more revenue than the costs of such emails. Microsoft started
the Penny Black Project to try to create such a proposal (Birrell et al., 2004).

As mentioned, some proposals suggest a PoW (Proof of Work) that
is CPU-intensive and would require some processing time (Dwork and Naor,
1992). As CPU speed keeps improving, while memory available improves
slower, there are also proposals for PoW that require a minimum amount of
memory (Dwork et al., 2003, 2005). Some of these proposals also set puzzle
difficulties based on a client’s reputation, issuing “harder” puzzles to potential
spammers (Le et al., 2012).

There are some critics of the PoW idea (Laurie and Clayton, 2004),
as they claim that the difficulty level required for them would also affect
regular users.

A.1.2 Spam bombarding

There is a history of retaliation actions against spammers. In 2005, Lycos
created the campaing “Make Love, Not Spam” in which users downloaded
a screensaver that connected back to spam web pages, slowing them down.
Lycos was accused of performing a DDoS attack and its traffic was blocked
by some ISPs. Some spammers retaliated forwarding back the requests to
Lycos, launching a DDoS on it.
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Simmilarly, Blue Security Inc. “organized their clients to bombard
the spammers simultaneously with over half a million requests to stop spam-
ming”. It then received a counter-attack from an spammer that completely
block the company’s servers, not allowing it to do bussiness. The company
had to shut down its web-site temporalily (Security, 2005).

There are solutions available that allow bombarding spam e-mail
accounts, like SpamItBack . Another possible option is to bombard spam
accounts or web-sites with millions of fake orders. The idea is to drive their
profit margins down to a point where spamming is no longer economical (Rao
and Reiley, 2012).

These ideas have not been successfull so far, either because of
retaliation or adaptation of the attackers.

A.1.3 Money blockade

According to research, spam and other attacks use a number of botnets,
web-sites, etc., yet 95% of it uses just a few banks (Levchenko et al., 2011) in
St Kitts & Nevis, Azerbaijan and a Norwegian bank in Latvia. “The Latvian
bank’s Norwegian owners say that the spam customers were inherited when
they bought the bank, and claim that they have terminated their relationship
with the spam affiliate programs” (Bright, 2011).

As the main bottleneck in spam seems to be the payment processors,
some recommend that other banks refuse to settle credit card transactions
with them, an approach already used in the US to block on-line gambling
sites. It might not be easy though, with other payment systems available
on-line, and it might involve retaliation.

A.2 Attack prevention

Attack prevention prevents a threat from materializing. As an example, updat-
ing some vulnerable software will prevent the threat of it being attacked using
one of the vulnerabilities patched. Another attack prevention mechanism,
this time for SW developers, is to use code analysis tools and/or protection
libraries to make their SW less vulnerable to known attacks.
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A.2.1 Alternate-channel validation

These mechanism consists in checking that the client is associated to some
token that has a bigger chance of being in possession of a real human. A
typical example is a mobile phone. Some companies offer telephone validation,
either by SMS or by an automated phone call. An example is Ringcaptcha.
The main drawbacks with this approach are both the lack of anomity and
the price, as for example, Ringcaptcha charges US$49 per month if you are
calling US numbers, although these prices increase for overseas.

A.2.2 Third-party identification

This mechanism consists in relaying the identification to a trusted third-party,
the Identity Providers (IdPs). This is typically done using a SSO-like protocol
(Single Sign-On), such as OAuth 2 and OpenID. These solutions are being
sponsored by important IT companies such as Google, Microsoft, Twitter and
Facebook.

OAuth/2 and OpenID Connect OAuth 2 supports OpenID Connect (OIDC),
an authentication layer on top of OAuth (not to be confused with OpenID).
OpenID Connect allows clients of different types (browser-based JavaScript
apps, mobile apps, etc.) to launch sign-in flows and receive verifiable as-
sertions about the identity of signed-in users, as well as additional identity
information.

Although these solutions have not been developed with the intention
to replace CAPTCHAs, we can naïvely think that their widespread use could
decrease the need for CAPTCHA challenges being presented to the users. As
can be seen, typically web-sites that rely on OpenID Connect/OAuth/2 allow
bypassing the CAPTCHA mechanism (Figure A.1), understanding that if the
user already has an account with an OAuth/2 provider that is reliable to them
(one that implements better bot detection mechanisms), the CAPTCHA is no
longer going to provide an increased level of security. In this fashion, we can
think of third-party identity providers as a way to avoid using CAPTCHAs
(as in Figure A.1).

1Image modified from the web article “Secure your REST API with OAuth2 Im-
plicit Grant”, at https://www.ibuildings.nl/blog/2013/03/secure-your-rest-api-
oauth2-implicit-grant

https://www.ibuildings.nl/blog/2013/03/secure-your-rest-api-oauth2-implicit-grant
https://www.ibuildings.nl/blog/2013/03/secure-your-rest-api-oauth2-implicit-grant
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OAuth/2 is an authorization protocol that allows third-parties to
request access to some parts of the user’s information in the provider account
(i.e. Twitter posts, Google Mail contacts, etc.) and also perform some actions
using such accounts (i.e. posting messages, sending e-mails, etc.). Much in
the way Android applications requests permissions, OAuth third-parties can
do the same regarding the access to the ID provider data and actions. For
the user, the option is typically to grant all the permits, or not to use the
third-party application or web-site.

Figure A.2 shows a typical OAuth authorization sequence. In this
figure, Twitter is both the resource server (owns/provides the account) and
the authentication server (is used to authenticate the user), but this is not
necessarily the case. The user wants to use her browser (user agent) to access
a web-page or start an on-line application (the client). This client allows for
authentication through Twitter, so it asks the browser to get an authentication
token from Twitter. Then the browser starts exchanging OAuth messages
with Twitter in order to authenticate the user. This all happens behind the
scenes, the user experience can be quite simple, as in Figure A.1, even though
the first time the user has to authorize the access (Figure A.3).

Unfortunately, when a web-site or application uses OpenID Connect
to verify an identity, it can also request additional information from the
OAuth/2 provider (Figure A.3).

Security of OAuth2 There are currently more than 30 OAuth/2 providers,
including well-known ones as Google, Amazon, Facebook, Microsoft, Twitter,
Yahoo!, Yandex, etc. 2.

The important number of applications and services that are clients
of OAuth prevents from properly testing them. As an example, just for
Twitter, its ecosystem of applications and clients had one million registered
applications as of 2011, built by more than 750.000 developers around the
World, with a new app registered every 1, 5 seconds3. It is the users who have
to decide if they trust a particular third-party, that is only known to them
through the Internet, to access all or most of their private data 4. This is
potentially a very important privacy risk.

2For a more detailed list of notable OAuth/2 providers, the Wikipedia maintains a
page at https://en.wikipedia.org/wiki/List_of_OAuth_providers

3Figures from Twitter comment on their blog on 07/2011, at https://blog.twitter.
com/2011/one-million-registered-twitter-apps

4For a discussion of possible privacy and security issues, a starting point can be “The

https://en.wikipedia.org/wiki/List_of_OAuth_providers
https://blog.twitter.com/2011/one-million-registered-twitter-apps
https://blog.twitter.com/2011/one-million-registered-twitter-apps
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OAuth 2 does not support signature, encryption or client verification.
It relies in TLS (SSL v3.0) for conficentiality and integrity. OAuth 2.0 is
more of a framework than a defined protocol, thus interoperability is not
guaranteed. It has been seen that its implementations has potential for
many security flaws (Homakov, 2013a, Wang, 2014), so the IETF (Internet
Engineering Task Force) has published a paper informing of its “Threat
Model and Security Considerations” (Lodderstedt et al., 2013). Some experts
consider it inherently insecure (Homakov, 2013b).

OpenID OpenID is similar to a SSO (Single-Sign-On) solution in that it
allows using an existing account to sign on different web-sites and services.
OpenID is also supported by well-known players as Google, AOL, WordPress
or Yahoo!.

Figure A.4 shows a simple log-in example using OpenID, in which a
user is requesting to log-in into a service (Service-now), which redirects her
to log-in with her OpenID provider (if she is already not logged in). The
OpenID provider sends back to the service provider the parameters containing
the user’s credentials (typically her e-mail address, but can be others too).

Thus, there can be additional information linked to and OpenID
account that can be shared with these third-parties: OpenID has an extension
called Attribute Exchange that allows the transfer of user attributes from
the OpenID identity provider to the relying party. These attributes can
include the name, the gender, and many others required by the relying party.
Additionally, the Identity Provider gets all the information from your OpenID
logins, making it very easy to track an users’ activity on the Internet. These
two facts also mean that OpenID represents a potential risk for the privacy
of the users, as well as a single point of failure, as if the OpenID ID is
compromised, an attacker will be able to impersonate another user in all the
services secured by this OpenID provider.

Perpetual, Invisible Window Into Your Gmail Inbox”, at http://waxy.org/2012/02/the_
perpetual_invisible_window_into_your_gmail_inbox/

5Figure taken from http://wiki.servicenow.com/index.php?title=OpenID#gsc.
tab=0

http://waxy.org/2012/02/the_perpetual_invisible_window_into_your_gmail_inbox/
http://waxy.org/2012/02/the_perpetual_invisible_window_into_your_gmail_inbox/
http://wiki.servicenow.com/index.php?title=OpenID#gsc.tab=0
http://wiki.servicenow.com/index.php?title=OpenID#gsc.tab=0
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Figure A.1: Logging-in with the possibility of using third-parties such as
Facebook or Twitter, or alternatively registering using a CAPTCHA.
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Figure A.2: Sequence of a third-party requesting access to a Twitter
account 1. The user, using her browser (user agent), wants to access one
of many different clients (web-sites, applications, etc.) that accepts to
log-in using her Twitter credentials. The client asks the browser to get a
Twitter access token. The browser then requests such token from Twitter

using the OAuth protocol.
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Figure A.3: Initial authorization to a third-party, showing the permissions
that the application requests.

Figure A.4: OpenID login example 5. The user wants to access the
Service, who in turn redirects her to the OpenID Provider for log-in.
When the log-in is done, the OpenID provider redirects the user to the
original Service being accessed, passing to it a signed authentication.
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A.3 Attack detection

Attack detection does not prevent a threat or an attack, but allows us to
detect that we are undergoing an attack. It is very important, as it will
allow us to start other mechanisms to constrain the effects of the attack and
possibly counteract it. The detection of an attack is closely related to the
particular characteristics of the element to protect and the type of attack.

A.3.1 Form honey-pots

In IT Security, a honey-pot is a trap that is designed to be set off by an
attacker only, and thus allow us to detect that an attack is taking place.
Depending on the type and information that it can gather on the attacker, it
might sometimes allow to identify the attacker.

Honey-pots have a long tradition in IT Security. There are network
honey-ports, system honey-pots, and also data honey-pots, among others.

The honey-pot idea has also a variant to protect web forms, that
is, any web page to which we can submit data. The idea behind it is that
many automatic posting tools will try to fill-in all the fields of a web form.
Thus, we can add to the web-form a field that is actually hidden from the
user (using overlays or other mechanisms typically based on the style). If this
field is not filled, we have a potential human client, whereas if it is filled we
know that the filling agent is not an human.

Variants of this idea render the fields of the forms with random
names, and only add the correct ones for the user to view using Java Script.

This is an example of an arms-race, as the defence focuses on
a weaknesses common to some low-end attackers, and these will have to
circumvent it.

Technologically it is not a sound alternative, as it is currently possible
to create a simple web page reader/interpreter, for example using Computer
Vision libraries as OpenCV, OCR Open Source SW as Tesseract and mecha-
nization libraries such as Selenium. This way it would be possible to fill in
the form correctly, even for a computer program.
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A.3.2 Statistical and ML analysis of content

Here we will distinguish among comment and email spam, although both are
closely related.

Statistical Analysis for Comment Spam The abuse of the ability to com-
ment (review, etc.) on a web-site automatically is called Comment Spam.
This involves the creation of automated comments that promote some element
(as a web-site, for SEO), opinion or product. Among the possible detection
mechanisms, the one mostly used is based on statistical analysis.

Spam detection is a case of Text Classification, a well-known AI
problem. Statistical analysis relies on the analysis of the full content of the
messages (email headers and content, or comment contents) and requires a
training phase in which the users need to manually label each offending item
as spam. With comment spam, the users will be the different blog owners.
Typical anti comment-spam statistical tools create a database shared among
their different clients.

This labelling allows the statistics to be recalculated, typically using
Baye’s Theorem (Equation A.1) or derivations.

Pr(S|W ) = Pr(W |S) ∗ Pr(S)
Pr(W |S) ∗ Pr(S) + Pr(W |H) ∗ Pr(H) (A.1)

where:

• Pr(S|W ) is the probability that having the word (or feature) W in the
message, this is spam. This is the probability that we want to calculate.

• Pr(S) is the general probability of a message being spam. Some authors
think this probability is 0, 8 or higher.

• Pr(W |S) is the probability of this word (or feature) appearing in spam
messages.

• Pr(H) is the probability of any message not being spam, so Pr(H) =
1− Pr(S). H comes from the word “ham”, as any message not being
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spam is considered ham. The word SPAM appears to originally come
from the canned meat sold by the company Hormel, meaning “spiced
ham” (chopped pork shoulder meat with ham, salt, water, sugar, and
sodium nitrite). Its association with repetitive, bothering messages
seems to come from the Monthy Python’s “SPAM song”. Thus, real
“ham” is the opposite to “spam”.

• Pr(W |H) is the probability of this word (or feature) appearing in ham
messages.

The statistics are calculated over the presence of features that typi-
cally are characters, pairs of characters (digrams), bags of characters, bags
or words, pairs of words, groups of three or more words, etc. Naïve Bayes
spam filtering is a very old spam classification technique (Pantel and Lin,
1998, Sahami et al., 1998), but with a big enough training set it can give a
low false positive rate while still detecting most spam.

Words with very ambiguous meanings or little semantic content are
typically dismissed. This is typically the case also for words that do no appear
frequently enough. Other additional heuristics can be used to improve the
results.

Statistical Analysis for Email Spam The abuse of email comes typically in
the form of spam, that can also include phishing attacks. Several possible
detection mechanisms exist. Among them, the most typically used are based
on statistical analysis, shared with comment spam protection. The idea is to
identify automatically or semi-automatically the offenders. Even though the
basic mechanism is similar, the training and other specifics are different.

E-mails present a different scenario than blog posts and responses.
For example, e-mails can contain HTML code that embeds or links to other
resources. This allows for other means of attack.

When we want to apply Statistical Analysis to prevent email spam,
we can consider that some of the classification of the examples (spam vs.
not spam) can be shared amongst email users, but no all. Some part of this
classification is done by each email user, and the statistics can be tailored
to each user. Thus, the word “viagra” would have a distinctive chance of
representing spam for a gymnast and for a pharmacy worker. The system
will learn this automatically after the labelling of each one of them.
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One of such attack techniques includes using images instead of words.
Some e-mail providers apply OCR to them. Ironically, spammers started
applying obfuscation techniques to spam images in a way similar to how
some OCR-based CAPTCHAs work. With this, they prevented not only the
success of OCR tools, but also try to avoid signature detection. In any case,
image-based spam declined in the 2008 for a slow rebirth in 2011.

Evasion attacks Statistical Analysis has a potential drawback: it is possible
to modify spam messages in an adversarial way -evasion attack- that will
bypass statistical filtering, as well as some ML classification mechanisms.
A typical evasion attack consists of adding good words to the message to
increase their likeliness of being classified as ham. There are several versions
of the the good-word attack (Wittel and Wu, 2004, Lowd and Meek, 2005,
Bishop et al., 2010, Chan et al., 2011, Biggio et al., 2011, 2012, Zhou et al.,
2012, Chan et al., 2015) that are able to bypass Statistical Analysis, even for
short messages (Chan et al., 2015).

Database poisoning In the case of Comment Spam detection, each particu-
lar classification service typically has a shared database among its users, to
increase its training base, as well as to make it easier to manage its learning.
There are several potential problems with this approach, among them imper-
sonating service users and poisoning the database. This attack consists on
filling the database with incorrectly classified examples in order to affect its
future classifications. This attack is also possible against ML classifiers.

Efficiency of Statistical Analysis It is difficult to find official statistics of
the error rate of these comment spam detection services. Regarding the most
well-known of them, there seems to be controversy about their error rate, and
especially about their false positive rate. The only study that has analysed
the two most used services in some detail (Ramilli and Prandini, 2009) has
found that an extremely simple attack in which different sentences for different
message parts are combined randomly is able to successfully bypass them.
The authors devise a new filtering mechanism based on similarities among
different comments, but its robustness remains to be checked.

There is also a lack of knowledge of how much of the current comment
spam is done automatically and how much (if any) is done manually by third-
party players. As CAPTCHAs are solved remotelly in low-wage countries,
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there is also active seeking by spammers of human labour in order to run
spam-related tasks (Ipeirotis et al., 2010). It is unknown though how much
of current spam comes from this source.

Akismet Akismet is the most well-known service for comment spam detec-
tion. Akismet is a home-grown comment filtering from Automatic, the makers
of WordPress. They have been in the business since 2005. It is now used by
default in more than 50K new blogs that appear in WordPress every day.

It has been impossible for us to gather statistics of Akismet error
rates, apart from stating that its accuracy is 99, 9%, it is used in 12 million
sites, and blocks 60 million spam comments per day 6, even though some
sources report slightly smaller accuracy of 99, 46% 7.

Although Akismet is broadly used, given its user base in WordPress
blogs, there are critics that complain about its rate of false positives 8 and
research like the one previously mentioned able to bypass it (Ramilli and
Prandini, 2009).

Other detection proposals Typically, blog spam contains more or less “hid-
den” links to URLs to which the spammer wants to redirect the reader, yet
not all URL references might be malicious. Some comment spam detection
techniques rely on classifying these URLs, for example interpreting the link
structure from the posted URL using SVMs, graph metrics and meta-data to
detect spam detection (Shin et al., 2015).

Other studies that employ different ML techniques fed with both
attributes extracted from the text messages and posting information have
shown promising results (Alberto et al., 2015).

Other anti-spam proposals use alternative mechanisms in order to

6These statistics were published in an article by TechCrunch in 2011, at https://
techcrunch.com/2012/05/29/automattics-spam-fighter-akismet-just-filtered-
its-50-billionth-piece-of-spam/

7WordPress-Force opinion post from 2013, at http://wpforce.com/huge-increase-
spam-last-2-months/

8Criticism with complaints like “Akismet has a reputation for flagging good comments
as spam” can be found in blogs and forums. This one in particular is from “Why We Don’t
Use Akismet” post at http://www.web-development-blog.com/archives/why-we-dont-use-
akismet/

https://techcrunch.com/2012/05/29/automattics-spam-fighter-akismet-just-filtered-its-50-billionth-piece-of-spam/
https://techcrunch.com/2012/05/29/automattics-spam-fighter-akismet-just-filtered-its-50-billionth-piece-of-spam/
https://techcrunch.com/2012/05/29/automattics-spam-fighter-akismet-just-filtered-its-50-billionth-piece-of-spam/
http://wpforce.com/huge-increase-spam-last-2-months/
http://wpforce.com/huge-increase-spam-last-2-months/
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improve their detection ratios, i.e. CleanTalk uses fingerprinting techniques
like: detection of JavaScript capabilities, IP source address, e-mail address,
the content submit time, etc. In the case of CleanTalk, they do not analyse
the comment content, so they can also reject any information posted to any
web form and not just blog comments. These techniques are similar to the
ones discussed in Section A.4.1. It remains to be seen the efficacy of simple
measures like these against slightly more advanced attacks or targeted attacks.

A.4 Attack mitigation

Attack Containment, Mitigation and Countermeasure allow us to constrain,
mitigate or even nullify the effects of an attack. These measures do not
prevent the attack, but its effects in the protected systems can be stopped so
no further damage is caused, or minimized so that the system can recover to
a state previous to the attack.

A.4.1 Blacklists

Blacklists are lists of attackers. Their identification can be done through
different possible mechanisms, as using their IP address, characteristics of the
request strings, techniques for client & browser fingerprinting, new HTML5
APIs, etc.

Their detection is typically done through abuse detection, that
normally is triggered when a server or servers detect a high number of unusual
petitions from the same client.

A well-known example of this is used by Cloudfare, a U.S. company.
Its aim is to protect, speeds up, and improve availability for a website or
mobile application. They do this by imposing an intermediate server layer
thanks to a change in DNS.

These mechanisms have their own drawbacks. For example, if a
node in a private network that is behind a proxy is abusing a site, all nodes
in that network will lose access to it. Even the traffic from a large proxied
network might be taken for an attack, as happened recently for Hong-Kong
Google users (Cheng, 2016).
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Services that run these blacklists and filtering mechanisms also
provide what is known as a single point of failure. I.E., the hacker group
UGNazi attacked Cloudflare partially via flaws in Google’s authentication
systems in June 2012, gaining administrative access to Cloudflare and using
it to deface 4chan. An October 2015 report found that Cloudflare provisioned
40% of SSL certificates used by phishing sites with deceptive domain names
resembling those of banks and payment processors.

Fingerprinting In order to be able to create a black list, it is necessary to
first distinguish among different clients and detect who is running an attack.
Several techniques can be used for it, as client & browser fingerprinting, source
IP detection, cookies and many others, even more so with the new HTML5
APIs, but each one has its limits. Because most of them are created at the
client side, with enough motivation or dedication they can be faked.

In some cases, the attack might have a single clear origin: this means
that we can trace the attack back to a certain entity. This entity can be
a particular browser (possibly through the use of cookies, local JavaScript
code, local storage (in HTML5), or browser and OS fingerprinting). It can
also be an IP address that is generating much more traffic than typical. Or
can be a bot that we can differentiate from normal traffic using some specific
characteristic unique to it. The important part is that somehow we can
differentiate the source/s of the attack. This will not always be possible.
For example, it might happen that the IP address of the attacker is part of
a network that does NAT to allocate internal addresses to several private
entities. If we ban this IP, we will be banning the whole network.

If we can somehow figure out the origin of the attack, we can:

• Origin banning: ban that origin for a certain amount of time, so
as to throttle down the attack. This will pose an inconvenience to
legitimate users, but less that banning its source permanently. Note
that a banning mechanism can sometimes be used as a DoS mechanism
against a legitimate user, so we have to be careful on its implementation.
Also, this mechanism might be easy to evade by an skilled attacker.

• Increase security levels: impose harder measures to protect the asset
being accessed: if the asset has already some protection mechanism
that allow for a parametrization of the security level, we can raise this
parameter for all the traffic coming from the offender.
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We might be able to detect that an attack is going on, but not able
to detect its real origin. This can happen if we cannot find a differentiating
characteristic of the attack that can always distinguish it, or if it comes from
multiple and apparently unrelated sources. In this case we face a more difficult
defence, as any extra security measure will affect all the users. Among the
different possibilities, one is to require registration. This consists on forcing
the users to give and validate an e-mail account. This adds a difficulty level
based on how hard it is to obtain any valid e-mail account and programatically
use it. It does not typically add much security, yet imposes an additional
hurdle for valid users.

Blacklists have other inherent limitations. Their power is in the
aggregation of information, but that also creates single points of failure. Plus,
they allow running DoS attacks against clients or networks, preventing them
access to a resource.

A.4.2 Client detection & filtering

We have introduced this idea when we discussed blacklists and fingerprinting
in the sections before. Seen as a single mechanism of detection, it is related
to the ability to classify without doubt those clients that are clearly bogus,
or attackers.

The most common idea behind this mechanism is that many attackers
do not use a regular browser, but some other SW that does not replicate the
full functionality of a browser. As an example, many attackers do not run
the Java Script code of a web-page, run it partially, or do not have full JS &
DOM support.

This is just an arms-race. It can also be totally circumvented using
a real browser, either doing that directly (for example, developing a browser
plug-in) or through mechanization libraries such as Selenium.
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Appendix B

BASECASS template

In this appendix we present an empty BASECASS table for reference. This
table can be used as a template by any cybersecurity practitioner when
applying BASECASS to a new CAPTCHA.

Table B.1: BASECASS template.

Name:
Descrip-
tion:

Challenge space

Base
problem:

Type:
Size:

CA
PT

CH
A

pr
ob

le
m
: Domain:

Size:
Distribu-
tion:



300 BASECASS template

Answer space

Maximum
Range:
Range:
Ratio:
Distribu-
tion:

Challenge space & answer space conclusions

Is attack
possible:
Descrip-
tion:
Success:

Metrics

Denoising:
Pre-
processing:

G
en
er
ic

O
rd
er

Sp
ec
ifi
c/

Ta
ilo

re
d
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Test of metrics

Is attack
possible:
Descrip-
tion:
Success:

Data preparation

Tr
ai
ni
ng

se
t

Size:

Balance:

Notes:

Statistical analysis

Correla-
tions
Regressions

ML analysis

Selection:
Best algo-
rithms:
Accuracy:
κ-statistic :

S/ML attack & Results

If previous phase leads to an attack

Possible?:
Descrip-
tion:
Success
rate:
Observa-
tions:
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ML vs. parameter analysis
Optional: if and only if phases before not lead to a successful attack

and there is enough data on challenge production parameters

For each combination of parameter, value(s), and interesting ML result:

Attack & Results

If previous phase leads to an attack

Possible?:
Descrip-
tion:
Success
rate:
Observa-
tions:

Conclusion

Weak-
nesses:
Broken?:
Work-
arounds:

A template can also be found online at https://github.com/
carlos-havier/BASECASS-template.

https://github.com/carlos-havier/BASECASS-template
https://github.com/carlos-havier/BASECASS-template


Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I. J.,
Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D. G., Olah,
C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P. A., Vanhoucke, V., Vasudevan, V., Viégas, F. B., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. (2016), ‘Tensorflow:
Large-scale Machine Learning on heterogeneous distributed systems’, arXiv
preprint abs/1603.04467.

Abokhodair, N., Yoo, D. and McDonald, D. W. (2016), ‘Dissecting a So-
cial Botnet: Growth, Content and Influence in Twitter’, ArXiv e-prints
abs/1604.03627.

Ahn, L. V., Blum, M., Hopper, N. J. and Langford, J. (2003), CAPTCHA: us-
ing hard AI problems for security, in ‘Proceedings of the 22Nd International
Conference on Theory and Applications of Cryptographic Techniques’,
EUROCRYPT’03, Springer-Verlag, Berlin, Heidelberg, pp. 294–311.

Alberto, T. C., Lochter, J. V. and Almeida, T. A. (2015), ‘Post or block? ad-
vances in automatically filtering undesired comments’, Journal of Intelligent
& Robotic Systems vol. 80(1), 245–259.

Anderson, R. (2002), Security in open versus closed systems - The dance
of Boltzmann, Coase and Moore, Technical report, Cambridge University,
Cambridge, England.

Anonymous (2016), ‘Cloudflare recaptcha de-anonymizes tor users’,
https://cryptome.org/2016/07/cloudflare-de-anons-tor.htm.

Asghar, M. N., Hussain, F. and Manton, R. (2014), ‘Video indexing: a survey’,
International Journal of Computer and Information Technology vol. 03(01).



304 BIBLIOGRAPHY

Athanasopoulos, E. and Antonatos, S. (2006), ‘Enhanced CAPTCHAs :
using animation to tell humans and computers apart’, Ifip International
Federation For Information Processing vol. 4237, 97–108.

Atkeson, C., Moore, A. and Schaal, S. (1996), ‘Locally weighted learning’,
Artificial Intelligence Review vol. 11(1), 11–73.

Back, A. (2002), Hashcash - A denial of service counter-measure, Technical
report.

Baird, H. S. (2006), Complex Image Recognition and Web Security, Springer
London, London, pp. 287–298.

Baird, H. S. and Bentley, J. L. (2005), Implicit CAPTCHAs, Vol. 5676,
Philadelphia, PA, USA, pp. 191–196.

Baird, H. S., Coates, A. L. and Fateman, R. J. (2003), ‘PessimalPrint: a
reverse Turing test’, International Journal on Document Analysis and
Recognition vol. 5(2-3), 158–163.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G., Turian, J., Warde-Farley, D. and Bengio, Y. (2010), Theano: A CPU
and GPU math compiler in Python, in ‘Proceedings of the 9th Python in
Science Conference’, Austin, Texas, USA, pp. 1–7.

Biggio, B., Corona, I., Fumera, G., Giacinto, G. and Roli, F. (2011), Bagging
classifiers for fighting poisoning attacks in adversarial classification tasks, in
‘International Workshop on Multiple Classifier Systems’, Springer, Naples,
Italy, pp. 350–359.

Biggio, B., Nelson, B. and Laskov, P. (2012), ‘Poisoning attacks against
support vector machines’, arXiv preprint abs/1206.6389.

Bigham, J. P. and Cavender, A. C. (2009), Evaluating existing audio
CAPTCHAs and an interface pptimized for non-visual users, in ‘Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems’,
CHI ’09, ACM, New York, NY, USA, pp. 1829–1838.

Bilton, N. (2014), ‘Social Media Bots Offer Phony Friends and Real Profit’.
Accessed on 2017-08-16.
URL: https://www.nytimes.com/2014/11/20/fashion/social-media-bots-
offer-phony-friends-and-real-profit.html

Bird, S., Klein, E. and Loper, E. (2009), Natural Language Processing with
Python: Analyzing Text with the Natural Language Toolkit, O’Reilly, Beijing.



BIBLIOGRAPHY 305

Birrell, A., Burrows, M., Dwork, C., Manasse, M. and Wobber, T. (2004),
The Penny Black Project, Technical report, Microsoft Research.

Bishop, M., Cummins, J., Peisert, S., Singh, A., Bhumiratana, B., Agarwal,
D., Frincke, D. and Hogarth, M. (2010), Relationships and data sanitization:
a study in scarlet, in ‘Proceedings of the 2010 workshop on new security
paradigms’, ACM, Concord, MA, USA, pp. 151–164.

Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003), ‘Latent dirichlet allocation’,
Journal of machine Learning research vol. 3(Jan), 993–1022.

Boshmaf, Y., Muslukhov, I., Beznosov, K. and Ripeanu, M. (2013), ‘Design
and analysis of a social botnet’, Computer Networks: The International
Journal of Computer and Telecommunications Networking vol. 57(2), 556–
578.

Breiman, L. (2001), ‘Random forests’, Machine Learning vol. 45(1), 5–32.

Bright, P. (2011), ‘A way to take out spammers? 3 banks process 95% of
spam transactions’. Accessed on 2017-08-16.
URL: http://arstechnica.com/tech-policy/2011/05/a-way-to-take-out-
spammers-3-banks-process-95-of-spam-transactions/

Bursztein, E. (2012), How we broke the NuCaptcha video scheme and what
we propose to fix it, Technical report, Google Anti-abuse Research Team.

Bursztein, E., Aigrain, J., Moscicki, A. and Mitchell, J. C. (2014), The end is
nigh: generic solving of text-based CAPTCHAs, in ‘8th USENIX Workshop
on Offensive Technologies (WOOT 14)’, San Diego, CA, USA.

Bursztein, E., Martin, M. and Mitchell, J. (2011), Text-based CAPTCHA
Strengths and Weaknesses, in ‘Proceedings of the 18th ACM Conference
on Computer and Communications Security’, CCS ’11, ACM, New York,
NY, USA, pp. 125–138.

Cattell, R. B. (1952), Factor analysis: an introduction and manual for the
psychologist and social scientist, Harper, New York, USA.

Chan, P. P., Yang, C., Yeung, D. S. and Ng, W. W. (2015), ‘Spam filtering for
short messages in adversarial environment’, Neurocomputing vol. 155, 167–
176.

Chan, P. P., Zhang, F., Ng, W. W., Yeung, D. S. and Jiang, J. (2011), A
novel defend against good word attacks, in ‘2011 International Conference



306 BIBLIOGRAPHY

on Machine Learning and Cybernetics (ICMLC)’, Vol. vol. 3, IEEE, Guilin,
China, pp. 1088–1092.

Chellapilla, K., Larson, K., Simard, P. and Czerwinski, M. (2005a), Comput-
ers beat humans at single character recognition in reading based human
interaction proofs (hips), in ‘Proceedings of the 2nd Conference on Email
and Anti-Spam’, Palo Alto, CA, USA.

Chellapilla, K., Larson, K., Simard, P. Y. and Czerwinski, M. (2005b), Building
segmentation based human-friendly human interaction proofs (hips), in
‘Second International Workshop on Human Interactive Proofs (HIP 2005)’,
Springer, Bethlehem, PA, USA, pp. 1–26.

Chellapilla, K. and Simard, P. Y. (2005), Using Machine Learning to Break Vi-
sual Human Interaction Proofs (HIPs), in ‘Advances in Neural Information
Processing Systems’, Vancouver, Canada, pp. 265–272.

Cheng, K. (2016), ‘CAPTCHA search issue affecting Hongkongers has been
resolved, says Google’. Accessed on 2017-08-16.
URL: https://www.hongkongfp.com/2016/11/11/google-tackles-captcha-
search-issue-affecting-hongkongers/

Chew, M. and Baird, H. S. (2003), Baffletext: a human interactive proof, in
‘10th IS&T/SPIE Document Recognition & Retrieval Conference’, SPIE,
San Jose, CA, USA, pp. 305–316.

Chew, M. and Tygar, J. D. (2004), Image recognition captchas, in ‘7th
International Conference on Information Security’, ISC, Springer, Palo
Alto, CA, USA, pp. 268–279.

Chew, M. and Tygar, J. D. (2005), Collaborative filtering captchas, in ‘Second
International Workshop on Human Interactive Proofs’, Springer, Bethlehem,
PA, USA, pp. 66–81.

Chollet, F. (2015), ‘Keras: Deep learning library for theano and tensorflow’.
Accessed on 2017-08-16.
URL: https://keras.io/

Ciregan, D., Meier, U. and Schmidhuber, J. (2012), Multi-column deep neural
networks for image classification, in ‘2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR)’, IEEE, Providence, RI, USA,
pp. 3642–3649.



BIBLIOGRAPHY 307

Cleary, J. G. and Trigg, L. E. (1995), K*: An instance-based learner using an
entropic distance measure, in ‘12th International Conference on Machine
Learning’, Morgan Kaufmann, Tahoe City, California, USA, pp. 108–114.

Cluley, G. (2007), ‘Remember melissa the malware stripper? she’s back’,
Naked Security by Sohphos 2007(11).

Cohen, J., Cohen, P., West, S. G. and Aiken, L. S. (2013), Applied multiple
regression/correlation analysis for the behavioral sciences, Routledge.

Cohen, W. W. (1995), Fast effective rule induction, in ‘Twelfth Interna-
tional Conference on Machine Learning’, Morgan Kaufmann, Tahoe City,
California, USA, pp. 115–123.

Conti, M., Guarisco, C. and Spolaor, R. (2016), CAPTCHaStar! A Novel
CAPTCHA Based on Interactive Shape Discovery, Springer International
Publishing, Guildford, UK, pp. 611–628.

Converse, T. (2005), Captcha generation as a web service, in ‘Proceedings of
the Second International Conference on Human Interactive Proofs’, HIP’05,
Springer-Verlag, Bethlehem, PA, USA, pp. 82–96.

Crouzet, S. M., Kirchner, H. and Thorpe, S. J. (2010), ‘Fast saccades toward
faces: Face detection in just 100 ms’, Journal of Vision vol. 10(4), 16.

Cui, J.-S., Mei, J.-T., Zhang, W.-Z., Wang, X. and Zhang, D. (2010), A
captcha implementation based on moving objects recognition problem, in
‘2010 International Conference on E-Business and E-Government (ICEE)’,
IEEE, Guangzhou, China, pp. 1277–1280.

Danchev, D. (2008), ‘Inside india’s captcha solving economy’, http://www.
zdnet.com/article/inside-indias-captcha-solving-economy/.

Dang-Nguyen, D.-T., Pasquini, C., Conotter, V. and Boato, G. (2015), Raise:
A raw images dataset for digital image forensics, in ‘Proceedings of the
6th ACM Multimedia Systems Conference’, MMSys ’15, ACM, Portland,
Oregon, pp. 219–224.

Datta, R., Li, J. and Wang, J. Z. (2005), Imagination: a robust image-based
captcha generation system, in ‘MULTIMEDIA ’05: Proceedings of the 13th
annual ACM international conference on Multimedia’, ACM, New York,
NY, USA, pp. 331–334.

http://www.zdnet.com/article/inside-indias-captcha-solving-economy/
http://www.zdnet.com/article/inside-indias-captcha-solving-economy/


308 BIBLIOGRAPHY

De Marsico, M., Marchionni, L., Novelli, A. and Oertel, M. (2016), ‘FATCHA:
biometrics lends tools for CAPTCHAs’, Multimedia Tools and Applications
vol. 76(4), 5117–5140.

Delaunay, B. (1934), ‘Sur la sphere vide’, Izv. Akad. Nauk SSSR, Otdelenie
Matematicheskii i Estestvennyka Nauk vol. 7(793-800), 1–2.

Demiroz, G. and Guvenir, A. (1997), Classification by voting feature intervals,
in ‘9th European Conference on Machine Learning’, Springer, Prague, Czech
Republic, pp. 85–92.

Demšar, J., Curk, T., Erjavec, A., Črt Gorup, Hočevar, T., Milutinovič, M.,
Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek,
L., Žagar, L., Žbontar, J., Žitnik, M. and Zupan, B. (2013), ‘Orange:
Data mining toolbox in python’, Journal of Machine Learning Research
14, 2349–2353.

Deng, Y. and Manjunath, B. (2001), ‘Unsupervised segmentation of color-
texture regions in images and video’, IEEE transactions on pattern analysis
and machine intelligence vol. 23(8), 800–810.

Dwork, C., Goldberg, A. and Naor, M. (2003), On memory-bound functions
for fighting spam, in ‘23rd Annual International Cryptology Conference’,
Springer, Santa Barbara, California, USA, pp. 426–444.

Dwork, C. and Naor, M. (1992), Pricing via processing or combatting junk
mail, in ‘12th Annual International Cryptology Conference’, Springer, Santa
Barbara, California, USA, pp. 139–147.

Dwork, C., Naor, M. and Wee, H. (2005), Pebbling and proofs of work, in ‘25th
Annual International Cryptology Conference’, Springer, Santa Barbara,
California, USA, pp. 37–54.

Echeverría, J. and Zhou, S. (2017), ‘The ‘Star Wars’ botnet with over 350k
Twitter bots’, ArXiv e-prints abs/1701.02405.

El Ahmad, A. S., Yan, J. and Marshall, L. (2010), The robustness of a
new captcha, in ‘Proceedings of the Third European Workshop on System
Security’, EUROSEC ’10, ACM, Paris, France, pp. 36–41.

Elson, J., Douceur, J. R., Howell, J. and Saul, J. (2007), Asirra: a captcha
that exploits interest-aligned manual image categorization, in ‘CCS ’07:
Proceedings of the 14th ACM conference on Computer and Communications
Security’, New York, NY, USA, pp. 366–374.



BIBLIOGRAPHY 309

Facebook (2011), ‘How does facebook suggest tags?’, https://www.facebook.
com/help/122175507864081?helpref=uf_permalink.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R. and Lin, C.-J. (2008),
‘Liblinear: A library for large linear classification’, Journal of Machine
Learning Research vol. 9, 1871–1874.

Fenton, S. (2015), ‘TripAdvisor denies rating system is flawed, after fake
restaurant tops rankings in Italy’, The Independent Jun.

Ferrara, E., Varol, O., Davis, C., Menczer, F. and Flammini, A. (2014), ‘The
Rise of Social Bots’, ArXiv e-prints abs/1407.5225.

Fischer, I. and Herfet, T. (2006), Visual CAPTCHAs for document authenti-
cation, in ‘2006 IEEE Workshop on Multimedia Signal Processing’, IEEE,
Victoria, BC, Canada, pp. 471–474.

Friedman, J., Hastie, T. and Tibshirani, R. (1998), Additive logistic regres-
sion: a statistical view of boosting, Technical report, Stanford University,
Stanford University.

Fritsch, C., Netter, M., Reisser, A. and Pernul, G. (2010), Attacking image
recognition captchas, in ‘International Conference on Trust, Privacy and
Security in Digital Business’, Springer, Bilbao,Spain, pp. 13–25.

FusionQuest (2009), ‘FusionQuest, Inc. Captcha2’, http://www.captcha2.
com.

Gao, H., Lei, L., Zhou, X., Li, J. and Liu, X. (2015), The Robustness of Face-
Based CAPTCHAs, in ‘2015 IEEE International Conference on Computer
and Information Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing’, Liverpool, UK, pp. 2248–2255.

Gao, H., Yan, J., Cao, F., Zhang, Z., Lei, L., Tang, M., Zhang, P., Zhou, X.,
Wang, X. and Li, J. (2016), ‘ A Simple Generic Attack on Text Captchas
’, Network and Distributed System Security Symposium (NDSS) 1(Febru-
ary), 21–24.

Gigoit (2006), ‘Humanauth’, https : / / sourceforge . net / projects /
humanauth/.

Golle, P. (2009), Machine learning attacks against the asirra captcha, in
‘Proceedings of the 5th Symposium on Usable Privacy and Security, SOUPS

https://www.facebook.com/help/122175507864081?helpref=uf_permalink
https://www.facebook.com/help/122175507864081?helpref=uf_permalink
http://www.captcha2.com
http://www.captcha2.com
https://sourceforge.net/projects/humanauth/
https://sourceforge.net/projects/humanauth/


310 BIBLIOGRAPHY

2009’, ACM International Conference Proceeding Series, ACM, Mountain
View, California, USA.

Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S. and Shet, V. D. (2013),
‘Multi-digit number recognition from street view imagery using deep convo-
lutional neural networks’, arXiv preprint abs/1312.6082.

Goodfellow, I. J., Shlens, J. and Szegedy, C. (2014), ‘Explaining and harnessing
adversarial examples’, arXiv preprint abs/1412.6572.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A. and Bengio, Y. (2014), Generative Adversarial
Nets, in Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence and K. Q.
Weinberger, eds, ‘Neural Information Processing Systems 2014’, Curran
Associates, Inc., Montreal, Canada, pp. 2672–2680.

Gosschalk, K. and Ford, M. (2016), ‘FunCAPTCHA’, https://www.
funcaptcha.com/how-to-solve-funcaptcha/.

Gossweiler, R., Kamvar, M. and Baluja, S. (2009), What’s up captcha?: A
captcha based on image orientation, in ‘Proceedings of the 18th Interna-
tional Conference on World Wide Web’, WWW ’09, ACM, Madrid, Spain,
pp. 841–850.

Goswami, G., Powell, B. M., Vatsa, M., Singh, R. and Noore, A. (2014a),
‘FaceDCAPTCHA: Face detection based color image CAPTCHA’, Future
Generation Computer Systems vol. 31, 59–68.

Goswami, G., Powell, B. M., Vatsa, M., Singh, R. and Noore, A. (2014b),
‘FR-CAPTCHA: CAPTCHA Based on Recognizing Human Faces’, PloS
one vol. 9(4), e91708.

Greco, S., Matarazzo, B. and Slowinski, R. (2001), ‘Rough sets theory for
multicriteria decision analysis’, European journal of operational research
vol. 129(1), 1–47.

Greenblatt, M. and Lagares-Greenblatt, H. (2012), ‘Webcam captcha’.

Gross, J. (2015), ‘Motion, orientation, and touch-based CAPTCHAs’.

Group, C. (2016), ‘HelloCAPTCHA vs Spambots’, http : / / www .
hellocaptcha.com.

https://www.funcaptcha.com/how-to-solve-funcaptcha/
https://www.funcaptcha.com/how-to-solve-funcaptcha/
http://www.hellocaptcha.com
http://www.hellocaptcha.com


BIBLIOGRAPHY 311

Guerara, M., Merlob, A. and Migliardi, M. (2017), ‘Completely Automated
Public Physical test to tell Computers and Humans Apart: A usability
study on mobile devices’, Future Generation Computer Systems 03/2017.

Gupta, S. (2015), ‘Article: Gender detection using machine learning tech-
niques and delaunay triangulation’, International Journal of Computer
Applications vol. 124(6), 27–32.

Hall, M. and Frank, E. (2008), Combining naive bayes and decision tables, in
‘Proceedings of the 21st Florida Artificial Intelligence Society Conference
(FLAIRS)’, AAAI press, Marco Island, Florida, US, pp. 318–319.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten,
I. H. (2009), ‘The weka data mining software: an update’, ACM SIGKDD
Explorations Newsletter vol. 11.

Halprin, R. (2007), Dependent captchas: Preventing the relay attack, Techni-
cal report, Computing and Information Systems.

Hankins, P. (2004), ‘Minski’, http://www.consciousentities.com/minsky.
htm.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E.,
Prenger, R., Satheesh, S., Sengupta, S., Coates, A. and Ng, A. Y. (2014),
‘Deep speech: Scaling up end-to-end speech recognition’, arXiv preprint
abs/1412.5567.

Hartley, A. (2009), ‘WoW “gold farming” banned in China’, Techradar Jun.

Hernandez-Castro, C. J., Hernandez-Castro, J. C., Stainton-Ellis, J. D. and
Ribagorda, A. (2010), Shortcomings in captcha design and implementa-
tion: Captcha2, a commercial proposal, in ‘Eight International Network
Conference (INC 2010)’, Heidelberg, Germany.

Hernández-Castro, C. J., R-moreno, M. D. and Barrero, D. F. (2014), Side-
channel attack against the Capy HIP, in ‘Fifth International Conference
on Emerging Security Technologies (EST 2014)’, IEEE, Alcala de Henares,
Spain, pp. 99–104.

Hernández-Castro, C. J., R-Moreno, M. D. and Barrero, D. F. (2015), ‘Using
JPEG to Measure Image Continuity and Break Capy and Other Puzzle
CAPTCHAs’, IEEE Internet Computing vol. 19(6), 46–53.

http://www.consciousentities.com/minsky.htm
http://www.consciousentities.com/minsky.htm


312 BIBLIOGRAPHY

Hernández-Castro, C. J., R-Moreno, M. D., Barrero, D. F. and Li, S. (2017),
‘An oracle-based attack on CAPTCHAs protected against oracle attacks’,
ArXiv e-prints abs/1702.03815.

Hernandez-Castro, C. J. and Ribagorda, A. (2009a), Remotely telling humans
and computers apart: an unsolved problem, in ‘iNetSec 2009 - Open Re-
search Problems in Network Security - IFIP WG 11.4’, Zurich, Switzerland.

Hernandez-Castro, C. J. and Ribagorda, A. (2009b), Video captchas, in ‘IDET
Security Conference - Security and Protection of Information (SPIE)’, Brno,
Czech Republic.

Hernandez-Castro, C. J. and Ribagorda, A. (2010), ‘Pitfalls in captcha design
and implementation: the math captcha, a case study’, Computers & Security
vol. 29(1), 141–157.
URL: http://dx.doi.org/10.1016/j.cose.2009.06.006

Hernandez-Castro, C. J., Ribagorda, A. and Hernandez-Castro, J. C. (2011),
On the strength of egglue and other logic CAPTCHAs, in ‘International
Conference on Security and Cryptography (Secrypt 2011)’, Seville, Spain,
pp. 157–167.

Hernandez-Castro, C. J., Ribagorda, A. and Saez, Y. (2010), Side-channel
attack on the humanauth captcha, in ‘International Conference on Security
and Cryptography (Secrypt 2010)’, Athens, Greece.

Hindle, A., Godfrey, M. W. and Holt, R. C. (2008), Reverse engineering
captchas, in ‘2008 15th Working Conference on Reverse Engineering’,
Antwerp, Belgium.

Hoepman, J.-H. and Jacobs, B. (2007), ‘Increased security through open
source’, Communications of the ACM vol. 50(1), 79–83.

Hogan, P. (2016), ‘How ticket-scalping bots steal all those “hamilton” seats
you desperately wanted’.
URL: http://splinternews.com/how-ticket-scalping-bots-steal-all-those-
hamilton-seats-1793861218

Holmes, G., Pfahringer, B., Kirkby, R., Frank, E. and Hall, M. (2002),
Multiclass alternating decision trees, in ‘European Conference on Machine
Learning (Joint European Conference on Machine Learning and Knowledge
Discovery in Databases)’, Springer, Helsinki, Finland, pp. 161–172.



BIBLIOGRAPHY 313

Homakov, E. (2013a), ‘How we hacked Facebook with OAuth2 and Chrome
bugs’, http://homakov.blogspot.com.es/2013/02/hacking-facebook-
with-oauth2-and-chrome.html. Accessed on 2017-08-16.
URL: http://homakov.blogspot.com.es/2013/02/hacking-facebook-with-
oauth2-and-chrome.html

Homakov, E. (2013b), ‘OAuth1, OAuth2, OAuth...?’, http://homakov.
blogspot.com.es/2013/03/oauth1-oauth2-oauth.html. Accessed on
2017-08-16.
URL: http://homakov.blogspot.com.es/2013/03/oauth1-oauth2-oauth.html

Homakov, E. (2014), ‘The No CAPTCHA problem’. Accessed on 2017-08-16.
URL: http://homakov.blogspot.com.es/2014/12/the-no-captcha-
problem.html

Hu, W., Xie, N., Li, L., Zeng, X. and Maybank, S. (2011), ‘A survey on
visual content-based video indexing and retrieval’, IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews) vol.
41(6), 797–819.

Huggins, J. and Hammant, P. (2014), ‘Selenium, browser automation frame-
work’. Accessed on 2017-08-16.
URL: http://code.google.com/p/selenium

Hupperich, T., Krombholz, K. and Holz, T. (2016), Sensor Captchas: On the
Usability of Instrumenting Hardware Sensors to Prove Liveliness, Springer
International Publishing, Cham, pp. 40–59.

Inc., A. (2016), ‘Mollom CAPTCHA’.
URL: https://www.mollom.com/how-mollom-works

Ipeirotis, P., Tamir, D. and Kanth, P. (2010), ‘Mechanical Turk: Now with
40.92% spam’. Accessed on 2017-08-16.
URL: http://www.behind-the-enemy-lines.com/2010/12/mechanical-turk-
now-with-4092-spam.html

Jia, R. and Liang, P. (2017), ‘Adversarial Examples for Evaluating Reading
Comprehension Systems’, ArXiv e-prints abs/1707.07328.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S. and Darrell, T. (2014), Caffe: Convolutional architecture
for fast feature embedding, in ‘Proceedings of the 22nd ACM international
conference on Multimedia’, ACM, Orlando, Florida, USA, pp. 675–678.

http://homakov.blogspot.com.es/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://homakov.blogspot.com.es/2013/02/hacking-facebook-with-oauth2-and-chrome.html
http://homakov.blogspot.com.es/2013/03/oauth1-oauth2-oauth.html
http://homakov.blogspot.com.es/2013/03/oauth1-oauth2-oauth.html


314 BIBLIOGRAPHY

Jiang, N. and Dogan, H. (2015), A gesture-based captcha design supporting
mobile devices, in ‘Proceedings of the 2015 British HCI Conference’, British
HCI ’15, ACM, Lincoln, Lincolnshire, United Kingdom, pp. 202–207.

Jiang, N. and Tian, F. (2013), A novel gesture-based captcha design for smart
devices, in ‘Proceedings of the 27th International BCS Human Computer
Interaction Conference’, BCS-HCI ’13, British Computer Society, London,
UK, pp. 49:1–49:5.

Kang, L. and Xiang, J. (2010), Captcha phishing: A practical attack on
human interaction proofing, in ‘Information Security and Cryptology: 5th
International Conference, Inscrypt 2009. Revised Selected Papers’, Springer
Berlin Heidelberg, Beijing, China, pp. 411–425.

Katz, P. (1996), ‘DEFLATE Compressed Data Format Specification version
1.3’, RFC 1951 (Informational).

Kerckhoffs, A. (1883), ‘La cryptographie militaire’, Journal des Sciences
Militaires vol. IX(Janvier), 5–38.

Khryashchev, V., Priorov, A., Shmaglit, L. and Golubev, M. (2012), Gender
recognition via face area analysis, in ‘World congress on engineering and
computer science’, San Francisco, USA, pp. 645–649.

Kim, C. and Hwang, J.-N. (2002), ‘Fast and automatic video object segmen-
tation and tracking for content-based applications’, IEEE transactions on
circuits and systems for video technology vol. 12(2), 122–129.

Kim, H., Tang, J. and Anderson, R. (2012), Social authentication: harder
than it looks, in ‘International Conference on Financial Cryptography and
Data Security’, Springer, Bonaire, Netherlands, pp. 1–15.

Kim, J., Kim, S., Yang, J., Ryu, J.-H. and Wohn, K. (2014), ‘Facecaptcha: A
captcha that identifies the gender of face images unrecognized by existing
gender classifiers’, Multimedia Tools and Applications vol. 72(2), 1215–1237.

Kim, J.-W., Chung, W.-K. and Cho, H.-G. (2010), ‘A new image-based
captcha using the orientation of the polygonally cropped sub-images’, The
Visual Computer vol. 26(6), 1135–1143.

Kluever, K. A. (2008), Evaluating the Usability and Security of a Video
CAPTCHA, Master’s thesis, Rochester Institute of Technology.



BIBLIOGRAPHY 315

Kohavi, R. (1996), Scaling up the accuracy of naive-bayes classifiers: A
decision-tree hybrid, in ‘Second International Conference on Knoledge
Discovery and Data Mining’, Association for the Advancement of Artificial
Intelligence, Portland, Oregon, USA, pp. 202–207.

Kolupaev, A. and Ogijenko, J. (2013), ‘Teabag 3D CAPTCHA v1.0.1’. Ac-
cessed on 2011-02-25.
URL: http://ocr-research.org.ua/

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012), Imagenet classification
with deep convolutional neural networks, in F. Pereira, C. J. C. Burges,
L. Bottou and K. Q. Weinberger, eds, ‘Advances in Neural Information
Processing Systems 25 (NIPS 2012)’, Curran Associates, Inc., Lake Tahoe,
USA, pp. 1097–1105.

Kund, I. (2011), Non-Standard CAPTCHAS for the Web: A Motion Based
Character Recognition HIP, Master’s thesis, University of Manchester.

Kwon, S. and Cha, S. (2016), ‘A Paradigm Shift for the CAPTCHA Race:
Adding Uncertainty to the Process’, IEEE Software 33(6), 80–85.

Landwehr, N., Hall, M. and Frank, E. (2005), ‘Logistic model trees’, Machine
Learning vol. 95(1-2), 161–205.

Larsen, A. B. L., Sønderby, S. K. and Winther, O. (2015), ‘Autoencod-
ing beyond pixels using a learned similarity metric’, arXiv preprint
abs/1512.09300.

Laurie, B. and Clayton, R. (2004), Proof-of-Work proves not to work, in ‘IN
WEAS 04’.

Le, T., Dua, A. and Feng, W.-c. (2012), kapow plugins: Protecting web
applications using reputation-based proof-of-work, in ‘Proceedings of the
2Nd Joint WICOW/AIRWeb Workshop on Web Quality’, WebQuality ’12,
ACM, Lyon, France, pp. 60–63.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W. and Jackel, L. D. (1989), ‘Backpropagation applied to handwritten zip
code recognition’, Neural computation vol. 1(4), 541–551.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), ‘Gradient-based
learning applied to document recognition’, Proceedings of the IEEE vol.
86(11), 2278–2324.



316 BIBLIOGRAPHY

Leung, T. K., Burl, M. C. and Perona, P. (1998), Probabilistic affine invari-
ants for recognition, in ‘Proceedings of the 1998 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition’, IEEE, Santa
Barbara, California, USA, pp. 678–684.

Levchenko, K., Pitsillidis, A., Chachra, N., Enright, B., Félegyházi, M., Grier,
C., Halvorson, T., Kanich, C., Kreibich, C., Liu, H. and McCoy, D. (2011),
Click trajectories: End-to-end analysis of the spam value chain, in ‘2011
IEEE Symposium on Security and Privacy’, IEEE, Oakland, California,
USA, pp. 431–446.

Levi, G. and Hassner, T. (2015), Age and gender classification using convolu-
tional neural networks, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, IEEE, Boston, MA, USA.

Lichterman, J. (2017), ‘Norwegian news site readers pass a quiz before com-
menting’. Accessed on 2017-08-14.
URL: http://www.niemanlab.org/2017/03/this-site-is-taking-the-edge-off-
rant-mode-by-making-readers-pass-a-quiz-before-commenting/

Lillibridge, M., Abadi, M., Bharat, K. and Broder, A. (2001), ‘Method for
selectively restricting access to computer systems’.

Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X. and Shum, H.-Y.
(2011), ‘Learning to detect a salient object’, IEEE Transactions on Pattern
analysis and machine intelligence vol. 33(2), 353–367.

Lodderstedt, T., McGloin, M. and Hunt, P. (2013), ‘OAuth 2.0 Threat Model
and Security Considerations’, RFC 6819 (Informational).

Longe, O. B. (2010), ‘Mitigating CAPTCHA relay attacks using multiple
challenge-response mechanism’, Computing and Information Systems vol.
14(3), 36–42.

Lowd, D. and Meek, C. (2005), Good Word Attacks on Statistical Spam
Filters, in ‘Proceedings of the Second Conference on Email and Anti-Spam
(CEAS)’, Stanford University, California, USA, pp. 161–172.

Marshall, J. and Lin, G. (2006), ‘HotCaptcha’. Accessed on 2006-09-01.
URL: http://hotcaptcha.com/

Martin, B. (1995), Instance-based learning: Nearest neighbor with generaliza-
tion, Master’s thesis, University of Waikato, Hamilton, New Zealand.



BIBLIOGRAPHY 317

Martin, C. (2008), ‘Rapidshare CAPTCHA with Cats Cracked by Crypt-
Load’.
URL: http://www.aboutonlinetips.com/rapidshare-captcha-with-cats-
cracked-by-cryptload/

McInerny, M., Brighton, M., Demirjian, S. and Hotchkies, B. (2017), ‘Turing
test via reaction to test modifications’.

Mehrnejad, M., Bafghi, A. G., Harati, A. and Toreini, E. (2011), Multiple
SEIMCHA: Multiple semantic image CAPTCHA, in ‘2011 International
Conference for Internet Technology and Secured Transactions’, IEEE, Abu
Dhabi, United Arab Emirates, pp. 196–201.

Mitra, N. J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H. and Cohen-Or, D.
(2009a), ‘Emerging images’, ACM Trans. Graph. vol. 28(5), 163:1–163:8.

Mitra, N. J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H. and Cohen-Or,
D. (2009b), ‘Emerging images’, pp. 163:1–163:8.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen,
S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra,
D., Legg, S. and Hassabis, D. (2015), ‘Human-level control through deep
reinforcement learning’, Nature 518(7540), 529–533.

Mohamed, M., Gao, S., Saxena, N. and Zhang, C. (2014), Dynamic cognitive
game CAPTCHA usability and detection of streaming-based farming, in
‘Usable Security (USEC 2014)’, Internet Society, San Diego, CA, USA.

Mohamed, M., Sachdeva, N., Georgescu, M., Gao, S., Saxena, N., Zhang, C.,
Kumaraguru, P., van Oorschot, P. C. and bang Chen, W. (2013), ‘Three-
way dissection of a game-captcha: Automated attacks, relay attacks, and
usability’, arXiv preprint abs/1310.1540.

Mori, G. and Malik, J. (2003), Recognizing objects in adversarial clutter:
breaking a visual captcha, in ‘Proceedings of the 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition’, Vol.
vol.1, IEEE, Madison, Wisconsin, USA, pp. I–134–I–141.

Naor, M. (1996), ‘Verification of a human in the loop or Identification via
the Turing Test’, http://www.wisdom.weizmann.ac.il/~naor/PAPERS/
human.ps.

http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps
http://www.wisdom.weizmann.ac.il/~naor/PAPERS/human.ps


318 BIBLIOGRAPHY

Naumann, A. B., Franke, T. and Bauckhage, C. (2009), Investigating
CAPTCHAs Based on Visual Phenomena, in ‘IFIP Conference on Human-
Computer Interaction’, Springer, Uppsala, Sweden, pp. 745–748.

Ng, C.-B., Tay, Y.-H. and Goi, B.-M. (2013), A Convolutional Neural Network
for Pedestrian Gender Recognition, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 558–564.

Nguyen, D. V. (2014), Contributions to Text-based CAPTCHA Security,
PhD thesis, University of Wollongong.

Nguyen, V. D., Chow, Y.-W. and Susilo, W. (2011), Breaking a 3d-based
captcha scheme, in ‘Proceedings of the 14th International Conference on
Information Security and Cryptology’, ICISC’11, Springer-Verlag, Seoul,
Korea, pp. 391–405.
URL: http://dx.doi.org/10.1007/978-3-642-31912-9_26

Nguyen, V. D., Chow, Y.-W. and Susilo, W. (2012a), Attacking Animated
CAPTCHAs via Character Extraction, Springer Berlin Heidelberg, Darm-
stadt, Germany, pp. 98–113.
URL: http://dx.doi.org/10.1007/978-3-642-35404-5_9

Nguyen, V. D., Chow, Y.-W. and Susilo, W. (2012b), Breaking an animated
CAPTCHA scheme, in ‘International Conference on Applied Cryptography
and Network Security’, Springer, Singapore, Singapore, pp. 12–29.

Nguyen, V. D., Chow, Y.-W. and Susilo, W. (2014a), A CAPTCHA scheme
based on the identification of character locations, in ‘International Confer-
ence on Information Security Practice and Experience’, Springer, Fuzhou,
China, pp. 60–74.

Nguyen, V. D., Chow, Y.-W. and Susilo, W. (2014b), ‘On the security of
text-based 3D CAPTCHAs’, Computers & Security vol. 45, 84–99.

Nielsen, F. Å. (2011), ‘A new anew: Evaluation of a word list for sentiment
analysis in microblogs’, CoRR abs/1103.2903.

NuCaptcha (2016), ‘NuCaptcha Security Feautures’. Accessed on 2014-11-20.
URL: http://www.nucaptcha.com/security-features

Onwudebelu, U. and Ugwuoke, U. (2012), ‘Employing response time con-
straints to mitigate CAPTCHA relay attacks’, African Journal of Comput-
ing & ICT vol. 5(2), 11–16.



BIBLIOGRAPHY 319

Osadchy, M., Hernandez-Castro, J., Hernandez, J., Gibson, S., Dunkelman, O.
and Pérez-Cabo, D. (2016), ‘No Bot Expects the DeepCAPTCHA! Intro-
ducing Immutable Adversarial Examples, With Applications to CAPTCHA
Generation’, IEEE Transactions on Information Forensics and Security
vol. 12(11), 2640 – 2653.

Pantel, P. and Lin, D. (1998), Spamcop: A spam classification & organization
program, in ‘Proceedings of AAAI-98 Workshop on Learning for Text
Categorization’, AAAI Press, Madison, Wisconsin, USA, pp. 95–98.

Papert, S. A. (1966), ‘The Summer Vision Project’. Accessed on 2014-14-02.
URL: https://dspace.mit.edu/handle/1721.1/6125

Parsons, J. (2015), ‘Facebook’s War Continues Against Fake Profiles and
Bots’. Accessed on 2014-14-02.
URL: http://www.huffingtonpost.com/james-parsons/facebooks-war-
continues-against-fake-profiles-and-bots_b_6914282.html

Paxton, T. and Tatoris, R. (2012), ‘How PlayThru makes CAPTCHA obsolete’.
Accessed on 2012-09-26.
URL: http://areyouahuman.com/benefits/

Pearson, K. (1901), ‘On lines and planes of closest fit to systems of points in
space’, The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science vol. 2(11), 559–572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E.
(2011), ‘Scikit-learn: Machine Learning in Python’, Journal of Machine
Learning Research 12, 2825–2830.

Plutchik, R. (1991), The emotions, University Press of America.

Polakis, I., Lancini, M., Kontaxis, G., Maggi, F., Ioannidis, S., Keromytis,
A. D. and Zanero, S. (2012), All your face are belong to us: breaking
Facebook’s social authentication, in ‘Proceedings of the 28th Annual Com-
puter Security Applications Conference’, ACM, Orlando, Florida, USA,
pp. 399–408.

Quinlan, J. R. (1993), C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA.



320 BIBLIOGRAPHY

Qvarfordt, P., Rieffel, E. G. and Hilbert, D. M. (2013), ‘Motion and interaction
based captcha’.

Ramilli, M. and Prandini, M. (2009), ‘Comment spam injection made easy’,
6th IEEE Consumer Communications and Networking Conference, CCNC
2009 pp. 1–5.

Rao, J. M. and Reiley, D. H. (2012), ‘The economics of spam’, Journal of
Economic Perspectives 26(3), 87–110.

Robinson, S. (2001), ‘Can Hard AI Problems Foil Internet Interlopers?’.
Accessed on 2014-14-02.

Ross, S. A., Halderman, J. A. and Finkelstein, A. (2010), Sketcha: a
CAPTCHA based on Line Drawings of 3D Models, in ‘Proceedings of
the 19th international conference on World wide web’, ACM, Raleigh, NC,
USA, pp. 821–830.

Sahami, M., Dumais, S., Heckerman, D. and Horvitz, E. (1998), A Bayesian
approach to filtering junk e-mail, in ‘Learning for Text Categorization:
Papers from the 1998 workshop (ICML/AAAI-98)’, Vol. 62, Madison,
Wisconsin, USA, pp. 98–105.

Sano, S., Otsuka, T. and Okuno, H. G. (2013), Solving Google’s Continuous
Audio CAPTCHA with HMM-Based Automatic Speech Recognition, Springer
Berlin Heidelberg, Okinawa, Japan, pp. 36–52.

Santamarta, R. (2008), ‘Breaking gmail’s audio captcha’,
http://blog.wintercore.com/?p=11. Accessed on 2010-13-02.
URL: http://blog.wintercore.com/?p=11

Scarfone, K., Jansen, W. and Tracy, M. (2008), ‘Guide to General Server
Security’. Accessed on 2017-14-08.

Schmidt, C. (2017), ‘Remember that norwegian site that made readers take a
quiz before commenting? here’s an update on it’. Accessed on 2017-08-14.
URL: http://www.niemanlab.org/2017/08/remember-that-norwegian-site-
that-makes-readers-take-a-quiz-before-commenting-heres-an-update-on-it/

Schryen, G., Wagner, G. and Schlegel, A. (2016), ‘Development of two novel
face-recognition captchas’, Comput. Secur. vol. 60(C), 95–116.

Seber, G. A. F. (1974), The estimation of animal abundance, Vol. vol. 16,
Griffin London.



BIBLIOGRAPHY 321

Security, G. P. . O. (2005), ‘Spam Spammers... Here’s How To Succeed
Without Retaliation’.

SEO, D. (2008a), ‘Letter derrotation’, http://www.darkseoprogramming.
com/2008/04/05/letter-derotation/.
URL: http://www.darkseoprogramming.com/2008/04/05/letter-derotation/

SEO, D. (2008b), ‘Phpbb3 captcha is super easy’, http : / / www .
darkseoprogramming.com/2008/05/12/phpbb3- captcha- is- super-
easy/.
URL: http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-
is-super-easy/

Shao, C., Ciampaglia, G. L., Varol, O., Flammini, A. and Menczer, F. (2017),
‘The spread of fake news by social bots’, ArXiv e-prints abs/1707.07592.

Sheffer, Y. (2015), ‘Summarizing Known Attacks on Transport Layer Security
(TLS) and Datagram TLS (DTLS)’, RFC 7457 (Informational).

Shen, D., Wong, W.-h. and Ip, H. H. (1999), ‘Affine-invariant image retrieval
by correspondence matching of shapes’, Image and Vision Computing vol.
17(7), 489–499.

Shet, V. (2014a), ‘Are you a robot? Introducing No CAPTCHA re-
CAPTCHA’, https://security.googleblog.com/2014/12/are-you-
robot-introducing-no-captcha.html. Accessed on 2017-08-14.
URL: https://security.googleblog.com/2014/12/are-you-robot-introducing-
no-captcha.html

Shet, V. (2014b), ‘Street View and reCAPTCHA technology just got
smarter’, https://security.googleblog.com/2014/04/street-view-
and-recaptcha-technology.html. Accessed on 2017-08-14.
URL: https://security.googleblog.com/2014/04/street-view-and-recaptcha-
technology.html

Shin, Y., Myers, S., Gupta, M. and Radivojac, P. (2015), ‘A link graph-based
approach to identify forum spam’, Security and Communication Networks
vol. 8(2), 176–188.

Sidorov, Z. (2017), ‘Rebreakcaptcha: Breaking google’s recaptcha v2 using
google’, https://east-ee.com/2017/02/28/rebreakcaptcha-breaking-googles-
recaptcha-v2-using-google/. Accessed on 2017-08-14.
URL: https://east-ee.com/2017/02/28/rebreakcaptcha-breaking-googles-
recaptcha-v2-using-google/

http://www.darkseoprogramming.com/2008/04/05/letter-derotation/
http://www.darkseoprogramming.com/2008/04/05/letter-derotation/
http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
http://www.darkseoprogramming.com/2008/05/12/phpbb3-captcha-is-super-easy/
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
https://security.googleblog.com/2014/04/street-view-and-recaptcha-technology.html
https://security.googleblog.com/2014/04/street-view-and-recaptcha-technology.html


322 BIBLIOGRAPHY

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driess-
che, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,
Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T. and Hassabis, D.
(2016), ‘Mastering the game of Go with deep neural networks and tree
search’, Nature vol. 529(7587), 484–489.

Sim, T., Nejati, H. and Chua, J. (2014), Face recognition captcha made
difficult, in ‘Proceedings of the 23rd International Conference on World
Wide Web’, WWW ’14 Companion, ACM, Seoul, Korea, pp. 379–380.
URL: http://doi.acm.org/10.1145/2567948.2577321

Sivakorn, S., Polakis, I. and Keromytis, A. D. (2016a), I am robot:(deep)
learning to break semantic image CAPTCHAs, in ‘2016 IEEE European
Symposium on Security and Privacy (EuroS&P)’, IEEE, Saarbrücken,
Germany, pp. 388–403.

Sivakorn, S., Polakis, J. and Keromytis, A. D. (2016b), I’m not a human:
Breaking the Google reCAPTCHA, in ‘Black Hat 2016’, number i, Black
Hat, Nevada, United States, pp. 1–12.

Smith, C. (2016), ‘Brand new Pokemon Go feature may block you from
cheating’. Accessed on 2017-08-14.
URL: http://bgr.com/2016/08/25/pokemon-go-cheats-hacks-ban/

Stark, F., Hazırbas, C., Triebel, R. and Cremers, D. (2015), CAPTCHA
Recognition with Active Deep Learning, in ‘Workshop New Challenges in
Neural Computation 2015’, GI Fachgruppe Neuronale Netze and German
Neural Networks Society, Aachen, Germany, p. 94.

Sun, J., Yuan, L., Jia, J. and Shum, H.-Y. (2005), Image completion with
structure propagation, Vol. vol. 24, ACM, Los Angeles, California, pp. 861–
868.

Susilo, W., Chow, Y.-W. and Zhou, H.-Y. (2010), Ste3d-cap: Stereoscopic
3d CAPTCHA, in ‘International Conference on Cryptology and Network
Security’, Springer, Springer, Kuala Lumpur, Malaysia, pp. 221–240.

Swire, P. (2004), ‘A model for when disclosure helps security: What is different
about computer and network security?’, Journal on Telecommunications
and High Technology Law vol. 2.



BIBLIOGRAPHY 323

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow,
I. and Fergus, R. (2013), ‘Intriguing properties of neural networks’, arXiv
preprint abs/1312.6199.

Taigman, Y., Yang, M., Ranzato, M. and Wolf, L. (2014), Deepface: Closing
the gap to human-level performance in face verification, in ‘The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)’, IEEE,
Columbus, OH, USA, pp. 161–172.

Tam, J., Simsa, J., Hyde, S. and von Ahn, L. (2008), Breaking audio captchas,
Curran Associates, Inc., Vancouver, British Columbia, Canada, pp. 1625–
1632.

Tassi, P. (2011), ‘Chinese Prisoners Forced to Farm World of Warcraft Gold’.
Accessed on 2017-08-14.
URL: https://www.forbes.com/sites/insertcoin/2011/06/02/chinese-
prisoners-forced-to-farm-world-of-warcraft-gold/

Thornton, C., Hutter, F., Hoos, H. H. and Leyton-Brown, K. (2013), Auto-
WEKA: Combined selection and hyperparameter optimization of classifica-
tion algorithms, in ‘Proceedings of the 19th ACM SIGKDD international
conference on Knowledge discovery and data mining’, ACM, Chicago, IL,
USA, pp. 847–855.

Vincent, D. (2011), ‘China used prisoners in lucrative internet gaming work’.
Accessed on 2017-08-15.
URL: https://www.theguardian.com/world/2011/may/25/china-prisoners-
internet-gaming-scam

Viola, P. and Jones, M. (2001), Rapid object detection using a boosted cascade
of simple features, in ‘Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2001’,
Vol. 1, IEEE, Kauai, Hawaii, USA, pp. I–I.

Von Ahn, L. and Dabbish, L. (2004), Labeling images with a computer game,
in ‘Proceedings of the SIGCHI conference on Human factors in computing
systems’, ACM, pp. 319–326.

Von Ahn, L., Maurer, B., McMillen, C., Abraham, D. and Blum, M. (2008),
‘reCAPTCHA: Human-based character recognition via web security mea-
sures’, Science 321(5895), 1465–1468.

Wallace, G. K. (1992), ‘The jpeg still picture compression standard’, IEEE
transactions on consumer electronics vol. 38(1), xviii–xxxiv.



324 BIBLIOGRAPHY

Wang, J. (2014), ‘Secret signaling system’. Accessed on 2017-08-16.
URL: http://tetraph.com/covert_redirect/oauth2_openid_covert_redirect.html

Warner, O. (2009), ‘Kittenauth’. Accessed on 2017-08-16.
URL: http://www.thepcspy.com/kittenauth

Welch, T. A. (1984), ‘A technique for high-performance data compression.’,
IEEE Computer vol. 17(6), 8–19.
URL: http://dblp.uni-trier.de/db/journals/computer/computer17.html#Welch84

Wells, M. (2011), ‘Super captcha goes 3d’. Accessed on 2017-08-16.
URL: https://goldsborowebdevelopment.com/article/2011/10/super-
captcha-goes-3d/

Wittel, G. L. and Wu, S. F. (2004), On Attacking Statistical Spam Filters,
in ‘Proceedings of the First Conference on EMail and Anti-Spam, CEAS’,
Mountanin View, Calif.:CEAS, Mountain View, CA, USA.

Xu, Y., Reynaga, G., Chiasson, S., Frahm, J.-M., Monrose, F. and
Van Oorschot, P. (2012), Security and usability challenges of moving-
object CAPTCHAs: decoding codewords in motion, in ‘Presented as part
of the 21st USENIX Security Symposium (USENIX Security 12)’, USENIX,
Bellevue, WA, USA, pp. 49–64.

Yan, J. and Ahmad, a. E. (2007), Breaking Visual CAPTCHAs with Naive
Pattern Recognition Algorithms, in ‘Twenty-Third Annual Computer Secu-
rity Applications Conference (ACSAC 2007)’, IEEE, Miami Beach, Florida,
USA, pp. 279–291.

Yan, J. and Ahmad, A. S. E. (2008), A low-cost attack on a microsoft
captcha, in ‘Proceedings of the 15th ACM conference on Computer and
communications security’, ACM, Alexandria, VA, USA, pp. 543–554.

Zetter, K. (2010), ‘Wiseguys plead guilty in ticketmaster captcha case’,
Wired.com November(1).

Zhou, X.-c., Shen, H.-b., Huang, Z.-y. and Li, G.-j. (2012), ‘Large margin
classification for combating disguise attacks on spam filters’, Journal of
Zhejiang University SCIENCE C vol. 13(3), 187–195.

Zhu, B. B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M. and Cai, K.
(2010a), Attacks and design of image recognition captchas, in ‘Proceedings
of the 17th ACM conference on Computer and communications security’,
CCS ’10, ACM, Chicago, Illinois, USA, pp. 187–200.



BIBLIOGRAPHY 325

Zhu, B. B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M. and Cai, K.
(2010b), Attacks and design of image recognition captchas, in ‘Proceedings
of the 17th ACM conference on computer and communications security’,
ACM, Chicago, IL, USA, pp. 187–200.


	List of Figures
	List of Tables
	Introduction
	Automatic abuse
	CAPTCHA design
	Motivation
	Outline of contributions
	Structure and contents
	Publications

	Background and related work
	Introduction
	Classical CAPTCHA formalisation
	Criticism to the classical CAPTCHA formalisation
	Alternative formalisation

	Aspects of CAPTCHA design
	Threat model
	CAPTCHA design constraints
	Applications of CAPTCHAs

	Alternatives to CAPTCHAs
	CAPTCHA design variants
	Text images / OCR CAPTCHAs
	Language/semantic based CAPTCHAs
	Image based CAPTCHAs
	Game-based CAPTCHAs
	CAPTCHAs based on the understanding of video
	Audio CAPTCHAs
	Alternative problems for CAPTCHA designs
	So-called ``behavioural'' CAPTCHA

	Attacks against CAPTCHAs
	Attacks to text recognition (OCR) CAPTCHAs
	Attacks to language/semantic CAPTCHAs
	Attacks to image classification CAPTCHAs
	Attacks to game-like CAPTCHAs
	Attacks to audio CAPTCHAs
	Attacks to ``behavioural'' CAPTCHAs

	General attacks against CAPTCHAs
	DL and game, audio and image-based CAPTCHAs
	Oracle attacks
	Relay attacks

	New proposed CAPTCHA types
	CAPTCHAs based on empathy
	Enhanced image-classification CAPTCHAs
	Puzzle CAPTCHAs

	Summary

	Case Study: Capy and other puzzle CAPTCHAs
	Capy CAPTCHA description
	Capy CAPTCHA analysis
	Capy CAPTCHA design flaws
	Foundations of the side-channel attack
	Side-channel attack
	Experimental results
	Basic attack results
	Modal attack results
	Results analysis

	Other CAPTCHAs affected
	KeyCAPTCHA
	Garb CAPTCHA

	Possible improvements
	Broader solution space
	Challenge pre-filtering
	Bigger image library
	Client interaction analysis
	Several puzzle pieces

	Discussion

	Case Study: The Civil Rights CAPTCHA
	Civil Rights CAPTCHA description
	Civil Rights CAPTCHA analysis
	Civil Rights CAPTCHA design flaws
	Foundations of the Machine Learning attack
	Reading the answers
	Classifying the challenge text empathic emotions

	Machine Learning attack to the Civil Rights CAPTCHA
	Experimental results
	Possible improvements
	Discussion

	Case Study: FunCAPTCHA
	FunCAPTCHA description
	FunCAPTCHA analysis
	FunCAPTCHA initial analysis
	FunCAPTCHA image repository
	FunCAPTCHA protocol analysis

	FunCAPTCHA design flaws
	ML analysis of the flaws and strength
	Results of the ML analysis
	Machine Learning attack parameters

	Machine Learning attack to the FunCAPTCHA
	Experimental results
	Possible improvements
	Discussion

	BASECASS: BAsic SEcurity CAPTCHA ASSessment
	Framework objective
	Introduction to BASECASS
	Detailed Description of BASECASS
	Revisiting the CAPTCHA definition
	Step 1.- Black-Box basic security analysis
	Phase I: Automatic interaction
	Phase II: Analysis of the challenge space
	Phase III : Analysis of the answer space
	Summary

	Step 2.- Black-box S/ML analysis
	Phase I: De-noising
	Phase II: Pre-processing & transformations
	Phase III: Metrics
	Phase IV: Statistical and ML analysis

	Step 3.- Parameter-based S/ML Analysis
	BASECASS summary table
	Examples of application of BASECASS
	BASECASS analysis of puzzle CAPTCHAs
	BASECASS analysis of the Civil Rights CAPTCHA
	BASECASS analysis of FunCAPTCHA
	BASECASS partial analysis of Math CAPTCHA
	BASECASS partial analysis of HumanAuth CAPTCHA
	BASECASS analysis of CaptchaStar

	Summary of BASECASS

	Conclusions and future work
	Conclusions
	Future work

	Alternatives to CAPTCHAs
	Threat prevention
	Cost increase
	Spam bombarding
	Money blockade

	Attack prevention
	Alternate-channel validation
	Third-party identification

	Attack detection
	Form honey-pots
	Statistical and ML analysis of content

	Attack mitigation
	Blacklists
	Client detection & filtering 


	BASECASS template
	Bibliography

	D/Dª: CARLOS JAVIER HERNANDEZ  CASTRO
	soporte electrónico: Off
	impreso en papel para el depósito de la: On
	número de páginas: 337
	día2: 7
	mes2: NOVIEMBRE
	año2: 17
	funcionario: Aurora Juárez Abril


