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In this dissertation I describe the role of Choline Kinase Alpha (CHKA) in pancreatic ductal 

adenocarcinoma (PDAC) and its proposal as a therapeutic target.  

I show that PDAC cell lines and human PDAC overexpress CHKA. Immunohistochemistry 

(IHC) of human PDAC samples reveals an intense CHKA staining that is absent from 

normal pancreatic tissue and chronic pancreatitis. There is lack of correlation between 

cytoplasmic staining and survival but a positive correlation between nuclear staining and 

survival in well and moderately-differentiated tumors.  

In PDAC cells CHKA is important for cell proliferation; genetic approaches and 

pharmacological inhibition support this hypothesis. PDAC cell lines express high levels of 

CHKA compared with non-malignant pancreatic cell lines (HPDE/HPNE) and similar to 

CHKA overexpressing tumors. Genetic CHKA down-regulation, using a specific shRNA, 

decreases growth rate by more than 50% in all cell lines without morphological changes. I 

assessed the therapeutic potential of CHKA inhibitor, MN58b. This drug induces apoptosis 

on several PDAC cells lines depending on their CHKA levels suggesting that it is a 

predictive marker. MN58b is also effective against Pancreatic Stellate Cells (PSC) one of 

the main cell types of PDAC stroma that contributes to its chemorresistance. 

MN58b also synergizes with different chemotherapeutic agents (Gemcitabine, Oxaliplatin 

and 5-Fluorouracil) commonly used in PDAC treatment. Genetic CHKA down-regulation 

sensitizes PDAC cell lines to these drugs. Moreover gemcitabine-resistant PDAC cells show 

enhanced sensitivity to MN58b. 

Resistance to chemotherapy is a general problem in Oncology. For that reason I went 

beyond the therapeutic potential of MN58b and generated a MN58b resistant cellular 

model. Resistant cells show less choline (CHO) uptake, slower proliferation and reduced 

migration capacities than its counterpart. I describe ABCB-1 and ABCB-4 up-regulation as 

the mechanism of resistance. These two proteins belong to the multidrug resistance 

proteins family (MDR), and extrude drugs from inside of the cell. Consistently with this 

mechanism, blockade of these trans-membrane proteins restores the original MN58b-

sensitivity.  

In summary this data suggest that CHKA support PDAC development and its 

pharmacological inhibition could be a new therapeutic approach. 

Summary





- 11 -

Resumen 

Resumen





- 13 -

En el presente trabajo describo el papel de la Colina Quinasa Alfa (CHKA) en el 

adenocarcinoma de páncreas (PDAC) y su posible papel como diana terapéutica contra el 

mismo. 

Demuestro que, tanto las líneas celulares como las muestras tumorales de PDAC 

sobreexpresan CHKA. El análisis inmunohistoquímico de muestras de tumores humanos 

de PDAC revela un intenso patrón de tinción de CHKA, negativo para muestras de tejido 

pancreático normal y de pancreatitis crónica.  No se aprecia correlación entre tinción 

citoplasmática y supervivencia pero sí, en cambio, entre tinción nuclear y 

supervivencia en tumores bien y moderadamente diferenciados. 

Experimentos genéticos y de inhibición farmacológica muestran que CHKA es importante 

para la proliferación celular de PDAC. Las líneas celulares de PDAC expresan altos niveles de 

CHKA en comparación con líneas celulares de cáncer de páncreas no transformadas 

(HPDE/ HPNE) y niveles similares a los de tumores con sobreexpresión de CHKA. El 

descenso de los niveles de CHKA mediante un shRNA específico, disminuye la tasa de 

proliferación de las líneas celulares más de un 50% sin que se observen cambios en su 

morfología. He testado el potencial terapéutico de un inhibidor de CHKA, el MN58b. 

Dicho fármaco induce apoptosis en varias líneas celulares de PDAC en función de sus 

niveles de CHKA lo que sugiere que CHKA podría ser un factor predictivo de respuesta al 

MN58b. MN58b también posee efecto citotóxico contra las Pancreatic Stellate Cells 

(PSC), uno de los subtipos celulares principales del estroma de PDAC y responsables, en 

gran medida, de su quimioresistencia. 

MN58b tiene un efecto sinérgico con varios quimioterápicos (Gemcitabina, Oxaliplatino y 5-

Fluorouracilo) usados habitualmente para el tratamiento de PDAC. El descenso genético de 

los niveles de CHKA aumenta la eficacia de dichos fármacos en líneas celulares de 

PDAC. Además, las células de PDAC resistentes a la gemcitabina muestran una mayor 

sensibilidad a MN58b que las no resistentes.  

La adquisición de resistencia a la quimioterapia constituye uno de los mayores problemas 

en Oncología. Para profundizar en los mecanismos que la producen, se ha generado una 

línea celular de PDAC resistente a MN58b que mostraba, respecto a las basales,  un 

descenso en la captación de colina, una menor tasa de proliferación y una reducción en sus 

capacidades migratorias. Describo la sobreexpresión de ABCB-1 y ABCB-4 como el 

mecanismo responsable de la adquisición de resistencia. Estas dos proteínas pertenecen a la 

familia de proteína de resistencia de múltiples fármacos que expulsan los fármacos del 

interior de las células.  

Resumen



De acuerdo con lo previo, el bloqueo de dichas proteínas de transmembrana restituyó la 

sensibilidad originaria al MN58b. 

En conclusión, los resultados obtenidos en el presente trabajo sugieren que CHKA puede 

ser relevante en el desarrollo de PDAC así como una novedosa e interesante diana 

terapéutica. 
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1. The pancreas.

The pancreas is a secretory organ located in the retroperitoneum. Its name derives from 

the Greek words “pan”- meaning “all” - and “creas” - meaning “flesh” - reflecting its 

unusual composition without any cartilage, bone or hence. It is localized in the abdomen 

between the spleen, stomach and small intestine and it is anatomically divided into four 

parts: head, neck, body and tail (Fig I1A). 

Functionally, we distinguish two compartments: 

 Endocrine pancreas, responsible for the production and secretion of

metabolic hormones. It contains compact structures called islets of

Langerhans which account for approximately 5% of the pancreas and

include 5 different cell types, each of them producing different hormones:

glucagon (α-cells), insulin (β-cells), somatostatin (δ-cells), ghrelin (ε-cells)

and pancreatic polypeptide (PP-cells) (Fig I1. B and C) (1).

Figure I1. Anatomy and histology of the pancreas. (A) Cross-sectional diagram showing 
the anatomy of the pancreas. Adapted from Pandol, 2010. (B) Hematoxylin-eosin staining 
of a pancreatic section showing endocrine (Islet of Langerhans) and exocrine (Duct and 
Acini) compartments. (C) Schematic representation of islet of Langerhans embedded in 
the exocrine parenchyma. (D) Schematic representation of an acinus connected to a 
ductule. Adapted from Bardeesy and Depinho, 2002. 
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 Exocrine pancreas, composed by three main cell types: acinar (constituting

85% of the organ), centroacinar (CAC) and ductal cells (2). The exocrine

functional unit is composed by acinar cells - forming a structure resembling

a cluster of grapes named acinus- and a duct. Acinar cells produce digestive

enzymes that are secreted into the lumen of the acinus and go through the

ductal system to end in the duodenum, where they perform their hydrolytic

action (Fig I1. D).

2. Molecular features of Pancreatic Ductal Adenocarcinoma
(PDAC).

Tumors of the pancreas are relatively uncommon representing 3% of all solid tumors (3); 

the majority of them arise from the exocrine pancreas. Pancreatic ductal adenocarcinoma 

(PDAC) is the most frequent of them and it accounts for approximately 85% of all 

pancreatic tumors. The rest of this introduction, unless otherwise specified, refers to 

PDAC.  

Less frequent pancreatic neoplasms include: 

 Intraductal papillary mucinous neoplasms (IPMNs) (1-3%). Formed by columnar

mucin-producing cells that grow inside the ductal system, can evolve from

adenoma to invasive carcinoma, and are often associated with PDAC (4). They

belong to the category of pancreatic cystic tumors that are receiving increasing

attention due to their high prevalence in the healthy aging population and their

ability to become malignant (4).

 Acinar cell carcinomas (ACCs). They are solid and unifocal differentiated tumors

that secrete acinar digestive enzymes. They often present with genetic alterations

in Wnt/β- catenin signaling pathway (5).

 Pancreatoblastoma. It is the most frequent pancreatic tumor of childhood and it

also frequently shows Wnt/β- catenin alterations (6).

 Pseudopapillary neoplasms (SPNs). These tumors lack features of differentiated

pancreatic cells and their cell origin is unknown. They tend to metastasize to liver

or peritoneum (7).
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2. 1. Etiology.

Several factors are associated with an increased risk of PDAC development (Table I1). 

A. Lifestyle/environmental exposures:

• Tobacco smoking increases PDAC risk by 2.5 to 3.6 times (8), and it is

estimated that it contributes to 20-30% of cases of  PDAC (9).

• Chemical occupational exposure to several agents such as beta-

naphthylamine and benzidine (10).

• Body mass index and low physical activity. Walking 1.5 hours or more per

week is associated with 50% reduction of the risk of PDAC (11).

• Allergies. Recent studies show that atopic people (asthmatic or with nasal/

skin allergies) have decreased risk of developing PDAC suggesting the

connection between inflammatory processes and pancreas carcinogenesis

(12, 13).

• 25-hydroxyvitamin plasma levels. This correlation is still under debate;

while some authors find correlation between low levels of plasma 25-

hydroxyvitamin and increased risk of developing pancreatic cancer (14),

other results do not support this hypothesis (15).

B. Pancreas disorders:

 Chronic pancreatitis (CP) increases the risk by 7.2-fold (16, 17). This

association is even stronger (up to 70-fold) when we consider only

hereditary chronic pancreatitis (18).

 Diabetes mellitus (DM). The association between PDAC and DM is complex,

as the development of PDAC - by destroying pancreatic parenchyma- can

cause DM. The relative risk of PDAC in persons with new-onset non-

insulin-dependent DM is double the risk of persons without DM. It is

estimated that 1% of patients diagnosed of DM at age 50 years or younger

will develop PDAC (19-22).  Furthermore, DM is a factor of poor prognosis

among patients with PDAC (23). The association between DM treatments

and PDAC is also being studied; insulin and sulfonylurea use is associated

with an increased risk of PDAC (24) while metformin intake is associated

Introduction



with reduced incidence and improved survival in patients with non-

metastatic PDAC (25). 

C. Genetic predisposition. Familial aggregation of pancreatic cancer (two or more

first-degree relatives with PDAC without criteria for inherited cancer syndromes) 

is found in approximately 5% of patients with PDAC (26). Some of the 

patients/families display features compatible with familial cancer syndromes but, 

for most of the remaining cases, the genetic alterations responsible for the 

aggregation remain unkown. The risk of developing PDAC is 2, 6 or 30 times higher 

in patients with 1, 2 or 3 relative affected respectively (27). The genes in which 

germline mutations have been reported to be associated with increased PDAC risk 

are summarized in Table 1 (28-32). 

Variable Times 

Risk factor 

 Smoking
 Diabetes mellitus
 Sporadic chronic pancreatitis
 Obesity
 Non-O blood group
 Atopy
 Low 25-hydroxyvitamin levels
 Exposition to chemical agents

2.5-3.6 
2 

2-6
2

1-2
Unkown 
Unkown 
Unkown 

Genetic syndrome and associated genes 

 Hereditary pancreatitis (PRSS1)
 Familial atypical multiple mole and melanoma

syndrome (p16/INK4A)
 Hereditary breast and ovarian cancer syndrome

(BRCA1, BRCA2, PALB2)
 Peutz-Jeghers syndrome (STK11)
 Lynch syndrome (MLH1, MSH2, MSH6)
 Ataxia-telangiectasia (ATM)
 Li-Fraumeni syndrome (TP53)

50-70

10-20

2-3
30-40

4
Unkown 
Unkown 

Table I1. Risk factors and inherited cancer syndromes associated with increased risk of 
developing pancreatic cancer. 

Genome wide association studies have revealed that low penetrance genetic variations can 

contribute to PDAC (33). Among the most striking variants are those responsible for the 

ABO blood group: subjects of A or B blood groups have an increased risk of developing 

PDAC (34). Nevertheless, this information cannot be used in the clinical setting for risk 

stratification. 
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2.2. Biology. 

2.2.1. PDAC initiation and progression. 

The pancreas of patients with PDAC commonly contains hyperplastic or dysplastic lesions 

that are considered precursors of the malignant tumor. These lesions have been 

designated as "Pancreatic Intraepithelial Neoplasms" (PanINs). Following a stepwise 

model, it is proposed that normal cells (low cuboidal cells in a single layer epithelium) 

evolve to PanIN-1A (hyperplastic epithelium without dysplasia; elongated cells with 

mucin production) that progresses to PanIN-1B (papillary hyperplasia) then to PanIN-2 

(mild hyperplasia with nuclear abnormalities) and finally to PanIN-3 (severe dysplasia 

with nuclear atypia) which are carcinomas in situ and the direct precursor of invasive 

adenocarcinomas (Fig. I2A and 2B).  PanIN-1 lesions are frequent in old people without 

evidence of PDAC whereas PanIN-3 lesions are almost exclusively detected in PDAC 

patients, suggesting than PanIN-2 is the turning point in the progression to carcinoma 

(35). 

This stepwise malignant progression is paralleled by the successive accumulation of 

genetic alterations (Fig. I2A); the initial event is a KRAS activating mutation that is found in 

up to 90% of PanIN-1 lesions. This model posits that subsequently there are mutations in 

tumor-suppressor genes such as CDKN2A (which encodes the inhibitor of cyclin-

dependent kinase 4, INK4A/CDN2A) and TP53 which is found in 50-70% of PanIN-3 with 

severe dysplasia (36). A late event, present in PanIN-3 and invasive lesions, is SMAD4 

inactivation (37). This model is supported by experiments in genetically engineered mice 

in which targeted activation of Kras and inactivation of Tp53 or Cdkn2A/Ink4A lead to the 

development of a pancreatic cancer recapitulating the human disease (38).  

The cell of origin of PDAC is still under debate. Historically, ductal cells were proposed as 

the origin of PDAC based on their morphological resemblance. However, the use of genetic 

mouse models aimed at recapitulating the human disease, has shown that acinar cells can 

give rise to PDAC due to its plasticity (38). These cells can trans-differentiate into other 

cell types, i.e. adipocytes and ductal cells. The trans-differentiation to ductal cells, a 

process known as acinar-ductal metaplasia (ADM), can occur upon severe damage (i.e. 

chronic pancreatitis) (38). Intriguingly, it has proven very difficult to initiate PDAC in 

ductal cells using genetic mouse models. Also it is discussed whether mouse models are a 

reliable model of human disease; the initiation of PDAC in mouse models depend on the 

expression of oncogenes and loss of tumor suppressors in pan-pancreatic progenitor cells 
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during embryonic development, while in the human disease genetic alterations occur in 

adult life (39). 

A 

B 

Figure I2. PDAC progression. (A). Pancreatic Ductal Adenocarcinoma (PDAC) linear 
progression model according to which ductal cells that acquire KRAS activating mutations 
proliferate and form PanIN-1A/B lesions which - due to mutations in tumor suppressors - 
gradually progress into lesions of higher grade (PanIN-2 and PanIN-3) to finally yield 
ductal adenocarcinoma. (B) An alternative model of PDAC progression suggesting that 
different types of PanINs lesions might arise directly from normal pancreatic epithelium 
and that low grade lesions might arise through mechanisms independent from those 
leading to carcinoma formation. Adapted from Real, 2003 (40). 

2.2.2. Genetic alterations in PDAC. 

PDAC is characterized by a successive accumulation of genetic alterations (mutations, 

deletions or amplifications). Nearly 100% of PDAC present activating mutations in KRAS 

codon 12 or 13 and inactivation of P16/CDKN2A (a regulator of the G1-S transition of the 

cell cycle). Less frequent, but highly prevalent (60-80% of tumors), are the inactivation of 

TP53 (which allows cells to evade apoptotic stimuli and contributes to genomic instability) 

and deletion of SMAD4/DPC4 (resulting in an aberrant signaling by TGF-β). 

Other relevant genetic events found in 35% of PDAC is c-MYC overexpression; activation 

of KRAS and loss of SMAD4 contribute to the increased levels of c-Myc (41). PDAC also 
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shows constitutive activation of NF-Kβ that induces chemoresistance through the up-

regulation of BCL-2 and BCL-XL (42). Finally, members of the Sonic Hedgehog pathway 

(SHH) such as SHH, SMO and PTC1 are overexpressed in PDAC and are in part responsible 

for the stromal formation (43). 

Recent whole exome/genome sequencing and CNV analyses support the enormous genetic 

heterogeneity of PDAC. The first genomic analysis of 24 PDAC, using standard PCR and 

Sanger sequencing, pointed to an average of 63 mutations per tumor that could be 

grouped in 12 functional cancer-relevant pathways i.e. apoptosis, G1/S phase transition 

and KRAS signaling among others (44). Subsequent studies, using massive parallel 

sequencing, revealed different sub-clones in the primary tumor arising from a common 

cell and a considerable heterogeneity between primary and metastatic samples (45). 

Further analyses have confirmed chromosomal rearrangements leading to disruption of 

genes (TP53, SMAD4, CDKN2A) known to be important for PDAC development and have 

confirmed significant intratumoral heterogeneity in PDAC (45, 46). The existence of PDAC 

subgroups based on both genome wide transcriptomic analyses (47) and genome 

rearrangements (46) suggests that a PDAC molecular taxonomy is emerging. 

2.2.3. Role of the stroma in PDAC. 

PDAC is characterized by the occurrence of a dense stroma surrounding tumoral cells (Fig. 

I3A and B). This desmoplastic reaction can account for up to 90% of tumor volume and 

constitutes a physical barrier contributing to the reduced flood flow and high interstitial 

pressure that impairs drug delivery and promotes intra-tumoral hypoxia (48). Mouse 

models have shown that the stroma impairs gemcitabine penetration in PDAC, and its 

depletion using a SHH inhibitor increases intratumoral gemcitabine concentration (49). 

The stroma is also a dynamic compartment which is crucial for tumor initiation, 

progression and metastatic capacity (50) through the expression of proteins such as 

cyclooxygenase-2 or PDGF receptor, among others.  The molecular composition of the 

PDAC associated stroma is undergoing extensive characterization. The stroma has two 

main components:  

 A cellular component that includes fibroblasts, Pancreatic Stellate Cells (PSC),

adipocytes, endothelial cells and immune and inflammatory cells. PSC, also called

myofibroblasts, are essential for the formation and turnover of the stroma; upon

activation by growth factors (PDGF, FGF, TGFβ1), they secrete collagen,

metalloproteases and other components of the extracellular matrix (51) reducing

tumor vascularization  (52).
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 An extracellular matrix composed by collagen I and III, laminin, fibronectin, matrix

metalloproteinases (MMP), metallopeptidase inhibitor 1 (TIMP1),

secreted protein acid and rich in cysteine (SPARC), and a wide range of cytokines

including connective tissue growth factor  (CTGF).

Cytokines recruit immunosuppressive regulatory T-cells and infiltrating B-lymphocytes 

(53). Feig et al showed that by targeting CXCL12- a chemokine ligand secreted in the 

stroma- it is possible to restore cytotoxic T-cell recruitment, leading to tumor regression 

(54) which points at the importance of therapeutically targeting the stroma.

Figure I3. Pancreatic ductal adenocarcinoma (PDAC): macroscopic and microscopic 
aspect. (A) Resection specimen of an undifferentiated pancreatic ductal adenocarcinoma 
showing cystic features with hemorrhage. (B) Hematoxylin-eosin staining of human PDAC 
with very abundant fibrotic tissue. Adapted from Hidalgo et al. (55) 

2.2.4. Metabolic alterations in PDAC. 

Metabolic adaptation is crucial for tumor initiation and development. PDAC cells adapt 

their metabolism to stress, including that originated by the desmoplastic reaction that 

surrounds the tumor. This hypoxic environment, with reduced nutrient availability, forces 

the tumor to modify its metabolism in different ways (56): 

 Increasing glycolysis to metabolize glucose through the tricarboxylic acid cycle

(TCA) cycle to provide intermediates for biosysnthetic reactions.

 Increasing glutamine uptake that is diverted to the TCA to generate NADPH and

anti-oxidants.

 Increasing macropinocytosis and autophagy to scavenge lipids and provide

intermediary metabolites.
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 Reducing redox state by the expression of genes coding for proteins with anti-

oxidant function.

3. Metabolism and cancer.

Metabolism is the set of biochemical and physicochemical reactions required to transform 

nutrients into energy and structural components to fulfill the requirements of dividing 

cells. Cellular metabolism deregulation is considered an emerging crucial hallmark of 

cancer (57) (Fig. I4A). Key oncogenic signaling pathways converge to adapt tumor 

metabolism to support growth,  survival, and cell division. Upon oncogenic activation, 

tumor cells reprogram glycolysis and glutaminolysis to facilitate carbon assimilation into 

different macromolecules (58, 59) (Fig. I4B). 

Otto Warburg first described in 1930s the importance of metabolism in malignant 

transformation and described that neoplastic cells, even in the presence of normal oxygen 

concentrations, reprogram their glucose metabolism and undergo aerobic glycolysis 

instead of mitochondrial oxidative phosphorylation (60). Although there is a clear 

energetic loss (36 molecules of ATP less per molecule of glucose are produced through 

anaerobic glycolysis), the main advantage of the Warburg effect is the synthesis of 

structural molecules, such as nucleotides and amino acids, which sustain rapid cell growth 

(61). Cancer cells compensate the deficient ATP production by enhancing glucose uptake 

through the up-regulation of the main glucose transporter (GLUT1) (59). This property of 

neoplastic cells has allowed the development of a radiolabeled analog of glucose (18-F-

Deoxyglucose) as a reporter in positron emission tomography (PET) - a non-invasive 

technique of cancer diagnosis that is routinely used by clinicians. 

c-MYC, a major human oncogene, enhances glycolysis through the transcriptional

activation of lactate deshydrogenase A (LDHA) and it also increases mitochondrial 

biogenesis and glutamine catabolism, contributing to the Warburg effect (62). The reliance 

on glycolysis is accentuated under hypoxic conditions, a common situation in rapidly 

growing tumors; the hypoxia response acts pleiotropically to up-regulate glucose 

transporters and multiple enzymes of the glycolytic pathway (58, 63). For example, KRAS 

activation in hypoxic conditions increases the levels of the transcription factors HIF1a and 

HIF2a that up-regulate glycolysis (64). 
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Figure I4. Metabolic changes in neoplastic transformation. (A) Deregulation of cellular 
energetics is one of the new features of cancer cells described in the last decade. (B) 
Schematic illustrating prominent metabolic pathways in malignant cells. Glycolysis is the 
10-step metabolic pathway that converts glucose into pyruvate. The energy released in
this process is used to form the high-energy compounds such as ATP and NADH. The
pentose phosphate pathway generates NADPH and 5-carbon sugars as alternatives to
glycolysis. Nucleotide synthesis provides molecules that make up the individual structural
units of RNA and DNA. In addition, nucleotides participate in cell signaling (cGMP and
cAMP) and are cofactors of enzymatic reactions, and nucleoside triphosphates are sources
of chemical energy. Fatty acid synthesis from acetyl-CoA and malonyl-CoA precursors
occurs via fatty acid synthases. Adapted from Hanahan et al.

Glutamine is a key amino acid for cancer cells; it provides two N- atoms to synthesize 

hexosamines, nucleotides and other amino acids required to sustain cell growth. 

Glutamine is transformed into the cell in glutamate, with different fates: i) it is 

transformed to glutathione - one of the most abundant antioxidants in mammalian cells, 
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responsible of maintaining redox status; ii) Glutathione can be converted into alpha-

ketoglutarate that enters the TCA cycle to produce other amino acids and fatty acids; iii) 

Finally, glutamine can also contribute to the TCA cycle and produce NADPH (Fig. I4B).  

3.1. Lipid metabolism and cancer. 

Lipids, which include triacylglicerides, phosphoglicerides, sterols and sphingolipids (Fig. 

I5), contribute to energy production (triacylglicerides) and are a source of structural 

components of cells (phosphoglycerides and sphingolipids). Lipids are grouped as follows: 

Non-saponifiable lipids Saponifiable lipids 

Terpenoids: 

- Vitamin A

- Vitamin K

- Vitamin E

Steroids: 

- Vitamin D

- Cholesterol

- Bile salts

- Sexual hormones

Eicosanoids: 

- Linoleic acid

- Arachidonic

acid

Simple: 

- Waxes

-Acylglycerols

Complex: 

- Phospholipids

- Glycolipids

The connection between lipid metabolism and cancer has been known for several decades 

(65) and, nowadays, obesity is described as a major risk factor for many types of cancers

such as those arising in the breast, endometrium and esophagus. 

Tumors activate de novo lipogenesis, to provide intermediates for membranes synthesis 

during unrestrained growth and second messengers for cell signaling (66). 

Figure I5. Lipid classification. According to their biological role we can distinguish 
between energy lipids (triacylglycerols) and storage lipids (phospholipids and 
glycolipids). Adapted from Lehninger et al. 
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3.1.1 Fatty acids. 

3.1.1.1. Fatty acid synthesis and oxidation. 

Fatty acids (FA) can be obtained directly from the diet or synthesized de novo from glucose 

through the tricarboxylic acid cycle (TCA); glucose is converted to citrate, then to acetyl-

CoA, and finally to malonyl-CoA which is the direct precursor of FA (Fig. I6). Sterol 

regulatory element-binding protein (SREBP), which has three isoforms (1a, 1c and 2), is 

the master regulator of most of the enzymes implicated in lipid synthesis (67) and its 

expression is controlled by the intracellular concentrations of sterols and phospholipids 

(68). For example, depletion of phosphatidylcholine (PC) in mammalian cells leads to an 

increased nuclear accumulation of SREBP-1. Also, the PI3K/AKT/PKB pathway has an 

important role in SREBP regulation through mTOR activity (69). 

Figure I6. Fatty acid synthesis and oxidation. Citrate is converted to acetyl-coenzyme-A 
(acetyl-Co-A), then to malonyl-Co-A, and finally to saturated fatty-acids through three 
steps that are catalyzed by ATP citrate lyase  (ACLY), acetyl-CoA carboxylase (ACC) and 
fatty-acid synthase (FASN), respectively. Different saturases (SCD-1) and elongases 
(ELOVL1-7) generate FA of variable length and saturation. Unsaturated fatty acids are 
generated by stearoyl-CoA desaturases (SCD), mainly SCD-1. This enzyme introduces a 
double bond in the D9 position of palmitic and stearic acids to produce mono-unsaturated 
fatty acids that are essential for the synthesis of phosphoglycerides, the major components 
of cell membrane. Fatty acids used for FAO can either be of extracellular origin or be 
obtained through the metabolism of triglycerides from lipid droplets. The fate of FAO 
products is summarized: NADH and FADH2 are oxidized in the ETC for ATP production and 
acetyl-CoA enters the Krebbs cycle to produce citrate, which can be exported to the 
cytoplasm to engage NADPH-producing reactions. Adapted from Pandolfi et al. 
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Fatty acid oxidation (FAO) is the catabolic process by which FA molecules are broken 

down in the mitochondria to generate acetyl-CoA, NADH and FADH2. FA are an important 

source of energy for the cell. Mitochondrial FAO can produce more than twice ATP per 

mole of FA than glucose or amino acid oxidation. 

3.1.1.2 Fatty acids and cancer. 

Under stress conditions (low oxygen or nutrient deprivation), scavenging extracellular 

lipids has emerged as an important mechanism to maintain tumor growth independently 

of de novo synthesis. Scavenging, rather than synthesis, liberates tumor cells from the need 

to supply carbon and NADPH for this demanding pathway. Hypoxia and oncogenic RAS 

signaling stimulate lysophospholipid uptake conferring resistance to SCD1 inhibition. In 

fact, some neoplasias - such as B-cell lymphomas - prefer FAO to glucose or glutamine 

under normal oxygen and nutrient conditions (70). 

Several oncogenes and tumor suppressor genes regulate lipid metabolism. Fatty-acid 

synthase (FASN), one of the master regulators of lipid metabolism and a prognostic 

marker in breast cancer, is up-regulated in several KRAS-dependent tumors (71); in PDAC 

its enhanced expression partially relies on the EGFR/ERK signaling pathway (72). FASN 

inhibition allows caspase-2 dimerization through REDD1 and induces apoptosis in ovarian 

cancer cells, suggesting that FASN may be a therapeutic target (73). ATP-citrate lyase 

(ACLY), whose expression is upregulated by KRAS and c-MYC, participates in malignant 

transformation and is overexpressed in ovarian cancer (74). c-MYC induces the expression 

of acetyl-CoA synthase (ACSS) to produce acetyl-CoA and contributes to FA biosynthesis 

during the cell cycle. However, the effect of c-MYC on lipid metabolism is tissue-specific 

(75). c-MYC overexpressing lymphomas show a different lipid profile compared to non-

transformed B-lymphocytes, with increased phospholipids (76). Moreover, 

pharmacological inhibition of c-MYC leads to lipid accumulation and down-regulation of 

enzymes involved in FA synthesis (77). Tp53 increases lipid synthesis via SREBP1 and 

promotes metastasis in ovarian cancer (78). 

In the case of PDAC,  de novo synthesis of lipids is elevated due to the deregulation of some 

lipid (79) enzymes such as FASN, which indeed has been proposed as prognostic marker 

(80) or citrate synthase and ACC (81-83).
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3.1.2. Phospholipids and other structural lipids. 

Besides their role as an energy source, lipids have a fundamental structural role, for 

example as components of membranes in eukaryotic ells. As we described 

previously, most phospholipids contain a diglyceride, a phosphate group and a simple 

organic molecule (Fig. I7). Among phospholipids we find sphingolipids containing a 18 

carbon amino-alcohol backbone called sphingosine. 

The most important glycerophospholipids are phosphatidylcholine (PC), 

phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS).  

PC, also called lecitin and discovered in the 19th century in the egg yolk, is the most 

abundant phospholipid in biological membranes and, together with other phospholipids 

(PE and neutral lipids), forms the characteristic bilayer structure of cell membranes. 

Besides its structural function, PC has a crucial role in cell signaling.  Products of its 

biosynthesis and hydrolysis, such as diacylglicerol (DAG) or arachidonic acid (AA), 

function as second messengers in several signaling pathways (RAS-RAF-MAPK cascade 

and protein kinase C pathway) (84). Diacylglicerol regulates cell cycle progression from 

G1 to S through up-regulation of cyclin D1 and cyclin D3 expression (85). Together with 

inositol phospholipid metabolism, choline metabolism provides a sustained activation of 

mitogenic signal transduction via a positive feedback loop (86). 

Figure I7. Phosphatidylcholine (PC) structure. Phospholipids form the characteristic 
lipid bilayer of eukaryotic cells and are composed by a positively charge hydrophilic head, 
in contact with the extracellular space, and a hydrophobic negatively charged tail. Their 
basic structure contains a phosphate and glycerol group, two hydrocarbon chains and an 
organic molecule that varies according to the phospholipid. Adapted from Lehninger. 

http://en.wikipedia.org/wiki/Diglyceride
http://en.wikipedia.org/wiki/Phosphate_group
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3.2. Choline metabolism. 

Choline is an important nutrient that belongs to the vitamin B group. It can be obtained 

either directly from the diet or from PE that is converted to PC and then hydrolyzed to 

choline. Physiologically, choline and its metabolites participate in several processes: 

structural integrity of cell membrane, cell signaling, cholinergic neurotransmission, and 

DNA methylation (66) (Fig I8). 

Figure I8. Physiological roles of Choline. Choline is the source of PC, the most abundant 
phospholipid in eukaryotic cell membranes. It is also the direct precursor of acetylcholine, 
the main neurotransmisor, and - finally - the source of methyl groups used in epigenetic 
DNA control. 

3.2.1.Phosphatidylcholine synthesis: The Kennedy pathway. 

The intestine absorbs dietary choline as lysophosphatidylcholine and converts it to PC 

through two pathways: the PE methylation pathway, which is only significant in 

hepatocytes, and the Kennedy pathway. 

Through the Kennedy pathway, described in 1956 by Weis and Kennedy (87), choline is 

transformed first to phosphocholine, then to CDP-Choline and finally to PC (Fig.9).  Choline 

is incorporated into the cell by choline transporters. There are four families of 

transporters: high-affinity choline transporters (CHTs), choline transporter-like proteins 

(CTLs), organic cation transporters (OCTs), and organic cation/carnitine transporters 

(OCTNs). Inside the cell, choline kinase (CHK), phosphocholine cytidyltransferase (CCT), 

and diacylglicerol cholinephosphotransferase 1 (CHPT1) synthesize PC which is then 

incorporated to the membrane. Finally, phosphocholine-specific phospholipase D (PC-PLD 
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1 and 2) and phosphocholine-specific phospholipase C (PC-PLC) hydrolyze PC to produce 

phosphatidic acid (PA) and DAG, respectively, which are intracellular second messengers 

 crucial for cell proliferation, survival signaling, and tumor progression (Fig. I9).

Figure I9. The Kennedy Pathway: synthesis and regulation of PC. CHO is incorporated 
into the cytoplasm and converted to PC through several enzymes that include Choline 
Kinase (CHK), Phosphocholine cytidyltransferase (CCT) and Diacylglicerol 
Cholinephosphotransferase 1 (CHPT1).  PC is hydrolyzed by phospholipases (PLD) and it 
yields intracellular messengers, such as phosphatidic acid (PA) and diacylglicerol (DAG), 
and molecules such as sphyngomielin (SM), ceramide and glycerophosphocholine (GPC). 

3.2.2. Choline Kinase (CHK) 

Wittenberg and Kornberg discovered Choline Kinase in 1953 (88). Hosaka cloned the α- 

isoform (CHKA) in 1992 (89) and, in 1998, Aoyama reported the cloning of a new isoform 

of CHK (CHKB) from a rat kidney cDNA library. This cDNA encoded a protein of 45 KDa 

and 394 residues with a 60% similarity with CHKA (90).  

CHK localizes in the cytoplasm and catalyzes the phosphorylation of free choline to 

phosphocholine (PCHO) using ATP as a phosphate donor. There are three isoforms of CHK 

in mammalian cells, encoded by two genes: CHKA located on 11q13 and CHKB on 22q13. 

CHKA generates, by alternative splicing, two isoforms, CHKA1 (435 aa) and CHKA2 (453 

aa) whose functional difference is currently unkown. CHKB generates one isoform, CHKB 

(90). Both, CHKA and CHKB genes contain 11 exons. Northern and western blotting 

analyses using mouse tissues show that CHKA and CHKB are ubiquitously and 
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concurrently expressed in all tissues, with a predominance of CHKA in liver and testis and 

CHKB in heart and liver. Functionally CHK acts as a homodimer or a heterodimer and the 

proportion of each is tissue-specific. In mouse liver, 40% of CHK corresponds to α or β 

homodimers, while the remaining 60% is composed by α/β heterodimers. CHKA1 and 2 

homodimers display a dual choline and ethanolamine activity, CHKB homodimer has an 

ethanolamine activity, and the CHKA/β heterodimer possesses intermediate substrate 

specificity (91).  

While CHKB knockout mice are viable, CHKA loss is embryonically lethal and mice die 

within the first 3 postnatal days, suggesting that CHKA is essential and that it can 

compensate for CHKB loss (92).   

3.2.2.1. CHKA and the regulation of choline metabolism. 

Different transcription factors control CHKA expression. In the liver, c-Jun drives CHKA 

transcription through its binding to the distal activator protein 1 (AP-1) binding site in the 

promoter of CHKA.  This activity has been linked with proliferation and transformation in 

liver cancer (93). MYC regulates CHKA levels; Myc +/+ rat fibroblasts show elevated CHK 

and PCHO levels compared with Myc -/- cells (75). Hypoxia increases CHKA levels and 

choline metabolism in a model of prostate cancer, presumably through HIF1 (94). A 

putative hypoxia response element has been described in the CHKA promoter. 

Different signaling pathways control CHKA activity (Fig. I10). Serum-stimulated KRAS-

transformed NIH3T3 fibroblasts show activation of CHK and elevated PCHO levels and 

several studies indicate that CHK activation downstream of oncogenic KRAS occurs via 

Ral-GDS and ROCK kinases (95, 96). There is also a positive feedback between the PI3K-

AKT pathway and CHKA activity: inhibition of the PI3K-AKT pathway blocks choline 

uptake in lung adenocarcinoma cell lines (97) and knockdown of CHKA attenuates MAPK 

and PI3K-AKT pathway (86, 98). 
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Figure I10. Kennedy pathway regulation. Some of the most relevant survival and 
proliferative signaling pathways, such as PI3K and MAPK, regulate the Kennedy pathway 
by directly activating (mostly) or inhibiting some of its key enzymes, including CHK. 
Adapted from Yalcin et al. 

3.2.3. Choline metabolism and CHKA in malignant transformation. 

Introduction of magnetic resonance spectroscopy (MRS) in the 80s revealed that 

neoplastic cells show an active choline metabolism characterized by an increase of PCHO 

and total choline (99). Levels of PCHO and tCho are high in brain, breast, and endometrial 

cancer, among others, and these tumors show enhanced CHKA expression (100-107). 

Overexpression of CHKA and abundance of choline metabolites have been proposed as 

prognostic markers in different tumor types (108-113). In prostate cancer, the increase of 

tCHO metabolites measured by MRS permits to distinguish malignant and normal 

prostatic tissue and its expression correlates with Gleason score and aggressiveness (114). 

Choline metabolism has also been proposed to be involved in metastatic dissemination. 

Many tumors (breast, prostate, and ovarian) show a reduction of the ratio of 

glycerophosphocholine (GPC) to choline. Endometrial differential 3 (EID3) is the enzyme 

responsible of the conversion from GPC to choline; its silencing increases the intracellular 

GPC/PC ratio and inhibits cell migration via disruption of the PKCα signaling pathway 

(115). In addition, CHKA inhibition - either using shRNA or small molecules - has strong 
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antiproliferative effects in different tumor types, supporting its role as a therapeutic target 

(116, 117).  

3.2.4. Clinical applications of altered choline metabolism in cancer. 

3.2.4.1. Cancer diagnosis. 

During malignant transformation choline uptake increase can be measured by MRS, due in 

part to the overexpression of choline transporters such as CTL1 and OCT3 (118).  

In 1HMR spectra, the signal of total choline compounds (CHO, PCHO and GPC) in tumors is 

detected as a single peak observed between 3.2 ppm and 3.3 ppm (Fig. I11).  

Recently, 11C- and 18F-labelled choline has been evaluated for the non-invasive diagnosis of 

tumor recurrence using PET. 11C Choline PET-CT has shown a much higher sensitivity for 

the detection of lymph nodes in prostate cancer compared to MRI (81.5% vs. 51.9%) and 

is considered a promising imaging strategy (110). 

Figure I11. Detection of deregulated cancer CHO metabolism via MRS. In 1 H MR 
spectra obtained in vivo, the total choline-containing compounds (tCHO) signal in tumors 
is detected as a single peak observed between 3.2 and 3.3 ppm. This peak consists of CHO, 
PCHO and GPC. Adapted from Glunde et al. 

3.2.4.2. CHKA as a therapeutic target. 

A wide variety of cancers overexpress CHKA rendering it an attractive therapeutic target. 

Genetic down-regulation of CHKA reduced intracellular levels of tCho and PCHO and 

impaired cell proliferation from different tumor types in vitro. For example, CHKA down-

regulation in two metastatic breast cancer cell lines (MCF-7 and MDA-MB-231), reduced 

cell proliferation and induced differentiation (119). The combination of CHKA silencing 

Introduction



and 5-fluorouracil treatment showed synergistic effect on cultured breast cancer cells 

(120) and its combination with cisplatin and doxorubicin synergized in ovarian cancer

(121). 

The first compound with antiproliferative activity due to CHKA inhibition was 

Hemicholinium-3 (HC-3), a low-affinity sodium-independent choline transport and CHK 

inhibitor (122) that drastically reduces the entry of cells in S phase after growth factor 

stimulation. In these experiments, addition of exogenous PCHO to culture medium 

restored G1-S transition (123, 124). However, HC-3 could not be introduced in the clinic 

due to its lack of specificity for CHKA (125) and respiratory paralyzant toxicity (126). JC 

Lacal and colleagues developed further compounds based on the structure of HC-3, with 

up to 1000-fold increased activity compared with HC-3. These compounds showed 

significant anti-proliferative activity and induction of apoptosis. Some of these first HC-3-

derived compounds were JCR89C, JCR1043B, JCR795B, JCR947A, JCR791B, and JCR987B 

with an in vitro IC50 of 4 µM showing a dramatic increase in antiproliferative activity 

compared to HC-3, which, under the same experimental conditions, had an IC50 of 2500 

µM (127). 

More compounds were developed from HC-3, reducing the IC50 to the range of 2 µM: 

MN288b, MN276b, MN352b, MN284b, MN308b, MN356b, MN94b, MN336b, MN58b, 

MN280b, MN82b, MN90b, MN304b, MN168b, MN332b and FK19. All these compounds 

reduced intracellular levels of PCHO by 75% and, more importantly, were well tolerated in 

mice when injected at doses of 5-10 mg/kg for 5 consecutive days. Of all, the compound 

which demonstrated optimal in vitro and in vivo antiproliferative activity with better 

toxicity profile was MN58b (1,4-[4-40-Bis-{[4-(dimethylamine) pyridinium-1-yl] methyl} 

diphenyl] butane dibromide) (117). 

Second generation CHKI were developed from HC-3 showing better in vivo and in vitro 

antiproliferative results than MN58b. The best characterized is RSM932A (also named 

TCD-717), nowadays in Phase I clinical trial for the treatment of solid tumors 

(http://clinicaltrials.gov/ct2/show/NCT01215864). 

Another compound with anti-proliferative effect due to its activity through the Kennedy 

pathway is Hexadecylphosphocholine (HePC, also known as miltefosine), which is a 

synthetic alkylphosphocholine that inhibits phosphocholine cytidyltransferase activity by 

preventing its translocation to the membrane (128). 

http://clinicaltrials.gov/ct2/show/NCT01215864
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CHKI induces cytotoxicity by apoptosis through two mechanisms: 1) endoplasmatic 

reticulum stress that induces the pro-apoptotic transcription factor CHOP (127, 129, 130), 

and 2) an increase of intracellular levels of ceramide, a pro-apoptotic molecule (127, 129, 

130).    

4. Pancreatic Ductal Adenocarcinoma (PDAC).

4.1. Epidemiology. 

PDAC is the 10th most frequent neoplasm in western countries and the fourth cause of 

cancer death among men (after lung, prostate and colorectal cancer) and women (after 

breast, lung and colorectal cancer). During 2014 there were 46,420 new PDAC cases in the 

United States, with 39,590 deaths (131), and 39,084 PDAC cases with 38,885 deaths in the 

UE (132). In Spain, it is estimated that 2,400 men and 2,000 women die of PDAC every 

year (Spanish Society of Clinical Oncology, www.seom.org).  

The median age at diagnosis is between 65 and 70 years and the incidence in males is 30% 

higher than in women (3). PDAC incidence has increased during the 1999-2008 period 

(133) and its mortality rates have remained largely unchanged for the last five decades

(131, 134), despite the recent progress in our understanding of the biology of this cancer. 

Estimations predict that, by 2030, pancreas cancer will be the second cancer-related cause 

of death in USA after lung cancer (135) if no major progress in diagnosis and/or therapy 

occurs. 

4.2. Diagnosis. 

Unfortunately, we are currently unable to detect PDAC tumors in asymptomatic 

premalignant or early malignant stages and approximately 80% of patients with PDAC 

present with locally advanced or metastatic cancer hence, only 20% of patients are 

candidates for surgery with radical intention (136).  

Symptoms depend on tumor localization and stage but generally include abdominal pain, 

fatigue, anorexia, nausea, and weight loss. Jaundice may occur in patients with tumors 

located in the head of the pancreas and it reflects the obstruction of the intra-pancreatic 

portion of the bile duct (3). Based on the known risk factors, a suspicion of PDAC should 

arise in patients older than 50 in whom a sudden onset of type 2 DM ensues or in diabetic 

patients who develop unusually severe deterioration of health status.  
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Once a diagnosis of PDAC has been made, the most important clinical issue is to assess its 

resectability. Multi-detector row helicoidal CT scan and magnetic resonance (MRI) with 

intravenous contrast are the optimal techniques for PDAC work-up. They permit to assess 

the involvement of contiguous structures (superior mesenteric artery, celiac axis, superior 

mesenteric vein, and portal vein) and distant metastases to establish resectability with 80-

90% accuracy (137). Endoscopic ultrasound (EUS) helps to assess lymph nodes and blood 

vessels and is useful in patients without a mass identifiable on CT.  It also helps to 

characterize proximal and cystic lesions (138) and it is the preferred technique to obtain a 

biopsy for tissue diagnosis. Although the use of PET-CT scan is not common to diagnose 

PDAC, in combination with standard CT it improves the sensitivity to detect metastatic 

disease (139). Endoscopic retrograde cholangiopancreatography (ERCP) shows the 

pancreatic and bile duct anatomy and can be used to obtain tissue and place a stent in 

patients with jaundice.  

Pathologic diagnosis, using endoscopic Fine Needle Aspiration (FNA) is necessary prior to 

administration of neoadjuvant therapy and for patients with locally advanced 

unresectable PDAC or metastatic disease (3).  

Macroscopically, PDAC is generally a firm, sclerotic mass with poorly defined boundaries 

that sometimes contains cystic features. Microscopically, it contains infiltrating ductal 

glands with - and around - an intense desmoplastic reaction (140). The pathological 

differential diagnosis includes chronic pancreatitis, tumors of the lower biliary tract, and 

ampullary tumors. Due to the lack of established markers to identify PDAC, the 

immunohistochemical analysis of keratins, mucins and CEA can help (141). 

The most clinically useful serum biomarker in PDAC is CA 19.9, which has potential uses in 

diagnosis, staging, determining resectability, as a prognostic marker after resection, and as 

a predictive marker of response to chemotherapy (142). In symptomatic patients it has a 

sensitivity of 80% and a specificity of 90% (143). Furthermore, pre-operative CA 19.9 

levels correlate with AJCC staging and resectability (144, 145). Finally, it is a prognostic 

marker after resection and it predicts response to chemotherapy (142, 146, 147) except 

for patients who are non-secretors (10% of the population) whose tumors do not 

synthesize CA19.9.  
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4.3. Staging. 

According to the American Joint Comittee on Cancer (AJCC), the staging of PDAC and the 

stage-specific survival rates (148) are summarized in Table I2. 

Depending on the probability of achieving a negative margin after resection (R0), we 

classify PDAC into resectable, borderline resectable, and unresectable (either locally 

advanced or metastatic) (Fig. I12). Resectable disease includes stages I and II, we define 

stage III as locally advanced disease, and stage IV corresponds to metastatic disease.  

STAGE T  N M OS (m) 

IA 1 (Tumor limited to the pancreas 

<2cm) 

0 0 24.1 

IB 2 (Tumor limited to the pancreas 

> 2cm)

0 0 20.6 

IIA 3 (Tumor extends beyond the

pancreas without involvement of

the celiac axis or the superior

mesenteric artery)

0 0 15.4 

IIB 1, 2 or 3 1 0 12.7 

III 4 (Tumor invades celiac axis or 

superior mesenteric artery) 

0/1 0 10.6 

IV 1, 2, 3 or 4. 0/1 1 4.5 

Table I2. Clinical staging of PDAC according to AJCC and specific survival rates. 

4.4. Treatment. 

To define the best treatment, a multi-disciplinary team including surgeons, medical 

oncologists, and radiologists should evaluate the patient (149). When possible, patients 

should be referred to high-volume centers. 

Current therapeutic options for PDAC patients include surgery, radiotherapy, and 

chemotherapy. Optimal treatment or combinations depend on tumor stage and patient 

performance status. Symptomatic care should be always considered specially in 

unresectable patients. 
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Figure I12. General criteria for PDAC resectability. The pancreas is a retroperitoneal 
organ in close relation with other organs and vascular structures. Its surgical management 
depends on the involvement of the surrounding structures. Adapted from Hidalgo et al. 

4.4.1. Resectable and borderline disease. 

For patients with resectable and borderline disease, surgery is the main treatment since it 

is the only option for long-term survival. Surgery can be accompanied by chemo and/or 

radiotherapy, either pre- (neoadjuvant) or post-surgery (adjuvant). 

 Surgery: There is not a single definition for resectable disease and

physicians/institutions differ in their consideration of loco-regional involvement.

The likelihood of achieving negative surgical margins (R0) is the standard criterion

accepted for resectability (150, 151).  Tumor is defined as "resectable" when there

is a clear fat plane around the celiac axis, hepatic artery, and superior mesenteric

artery and no radiologic evidence of superior mesenteric vein or portal vein

distortion. To decide whether a patient is candidate for resection, other factors to

be considered are: age, co-morbidities, performance status, and frailty. The type of

resection depends on tumor location. Distal pancreatectomy and splenectomy is

the treatment of choice for tail tumors.  When the tumor locates in the body of the

pancreas or it involves the pancreas diffusely, guidelines recommend total

pancreatectomy. In the case of head tumors, duodenopancreatectomy (Whipple

procedure), either open or laparoscopic, should be performed. The goal of surgery

is to achieve negative margins (R0). Outcome of patients with vein (portal

vein/mesenteric vein) resection and vascular reconstruction are the same as

patients without vein invasion (152).
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Lymph node involvement constitutes a negative prognostic factor; therefore, a 

lymphadenectomy including >12-15 nodes should be performed in all patients 

undergoing surgery. Classical lymph node resection includes nodes at the 

duodenum and pancreas, the right side of the hepatoduodenal ligament, the right 

side of the superior mesenteric artery (SMA), and the anterior and posterior 

pancreatoduodenal lymph nodes (153). In patients with N0, the number of 

examined lymph nodes is a prognostic factor whereas, in N1 patients, the lymph 

node ratio (positive nodes/total nodes) is also a prognostic factor (154). There is 

no clear association between extended lymphadenectomy (including 

retroperitoneal lymph nodes) and overall survival (155). 

Prognostic factors after surgery for PDAC patients include: margins involvement 

(R0/R1) and distance to margin (</>1 mm), tumor size, tumor grade, nodal 

involvement, tumor DNA content and pre and post-operative CA 19.9 levels  (156-

161). 

 Adjuvant therapy (Table I3): The first evidence of benefit from adjuvant therapy

came in 1985; postoperative chemoradiation with 5-FU improved survival at 2

years (42% vs. 15% p< 0.05) (162). Also adjuvant treatment with gemcitabine

improved progression-free survival (PFS) (13.4 vs. 6.9 months), overall survival

(OS) (22.8 vs. 20.2 months), and 5-year survival (21% and 9%). Gemcitabine and

5-FU yield similar OS rates of 23 and 23.6 months, respectively (163). No single

regime has been firmly established as being superior to others. The current 

options include gemcitabine or fluoropyrimidine-based chemoradiation with 

additional gemcitabine, continuous infusion 5-FU or 5-FU/leucovorin or 

chemotherapy alone with gemcitabine and continuous infusion of 5-FU or 5-

FU/leucovorin. If the option of only chemotherapy is chosen, guidelines 

recommend gemcitabine over 5-FU/leucovorin because of its favorable toxic 

profile. Finally, capecitabine - an oral fluropyrimidine - should be considered when 

other options are unsuitable because of patient´s performance status (NCCN 

guidelines, 2016).  

The role of adjuvant radiotherapy is highly controversial. It is commonly used in 

the US but less frequently in Europe. Some meta-analyses found the same disease-

free survival (DSF) for adjuvant chemotherapy and radiation (164). A recent trial 

pointed at the harmful effect of adding radiation to chemotherapy after surgery 

(165). 
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Study Patients Treatment Survival P 

GITSG 43  Observation
 5-FU+ RT

10% at 2 yr 
20% at 2 yr 

0.007 

EORTC 218  Observation
 5-FU+ RT

26% at 2 yr 
34% at 2 yr 

0.1 

ESPAC-1 289  Observation
 Chemoradiotherapy
 5-FU
 Chemoradiotherapy+

5FU

16.9 m 
13.9 m 
21.6 m 
19.9 m 

CONKO-01 368  Observation
 Gemcitabine

10.4% at 5 yr 
20.7% at 5 yr 

0.001 

ESPAC 3 1088  5-FU
 Gemcitabine

23 m 
23.6 m 

0.39 

RTOG 9704 451  5-FU+ RT
 Gemcitabine+ RT

22% at 5 yr 
18% at 5 yr 

0.12 

JASPAC-01 378  S-1(oral
fluoropyrimidne)

 Gemcitabine

70% at 2 yr 

53% at 2 yr 

<0.001 

Table I3.  Main clinical trials of adjuvant chemotherapy in PDAC published. 

 Neoadjuvant therapy: Preoperative chemotherapy or chemoradiotherapy is

currently under investigation to improve overall survival in patients with

borderline tumors (166). The aim of neoadjuvant therapy is to reduce tumor size

and allow an R0 resection. It may also help to “test” the responsiveness of the

tumor and contribute to reduce/eliminate potential micro-metastatic burden.

Histologic confirmation is required before administering neoadjuvant treatment

and FNA through EUS is the preferred method.

Both, chemoradiation or chemotherapy alone are valid options. The regimens used

are the same applied to patients with locally advanced disease: continuous 5-FU

infusion, capecitabine or gemcitabine in combination with radiotherapy, or

induction 5-FU or gemcitabine followed by chemoradiation (167, 168). For

resectable lesions, neoadjuvant treatment may be considered, although it is only

recommended in clinical trials or in patients with initial adverse features (NCCN

guidelines, 2016). Upon restaging after therapy, 25% of patients show disease

progression and - therefore - are excluded from surgery. The median survival for

patients operated after neoadjuvant treatment is 21 months and, at 14 months,

32% of patients were alive (169).
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4.4.2. Recurrent disease. 

Unfortunately, approximately 80% of patients operated with curative will intent relapse. 

The treatment decision depends on performance status: for fit patients (ECOG 0-2), we 

should consider the enrollment in clinical trials as first option after a second biopsy. In 

case of local recurrence, chemoradiation can be considered - if not administered earlier - 

and in case of distant recurrence the time to relapse (interval from treatment ending to 

recurrence diagnose) is important: if it is shorter than 6 months, the previous regimen can 

re-administrated and, if longer, a new chemotherapeutic agent should be chosen. In 

general, gemcitabine-based regimens are preferred after the administration of a 

fluoropyrimidine (CapeOx or 5-FU/leucovorin/oxaliplatin) (170, 171). Unfit patients 

(ECOG 3-4) should be offered best supportive care (BSC).  

4.4.3. Locally advanced and metastatic disease. 

Palliation and improving survival are the main goals. Systemic therapy is the treatment of 

choice in these patients but PS is a critical factor to decide whether to give or not 

chemotherapy and to select the most appropriate regimen. 

For fit patients, possible chemotherapy regimens are: 

• Gemcitabine alone. It is the preferred first-line treatment for metastatic disease

in patients with bad PS (172).

• Gemcitabine combinations:

• Gemcitabine plus nab-paclitaxel. The addition of nab-paclitaxel - an

albumin-bound nanoparticle form of paclitaxel - to gemcitabine as first-line

treatment for metastatic PDAC increases overall survival by 1.8 months

(8.5 vs. 6.7 months, p<0.001) (173).  It also improves significantly response

rate, PFS, and 1- and 2-year survival. The most common adverse effects

attributable to nab-paclitaxel are fatigue, neuropathy, and neutropenia.

• Gemcitabine plus erlotinib. The addition of erlotinib, an EGFR antibody, to

gemcitabine only slightly increases overall survival and 1-year survival

(6.24 months and 23% vs. 5.91 months and 17%, respectively; p< 0.05)

(174). This combination is not used extensively because of its very limited

improvement in therapeutic activity.
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• Gemcitabine plus cisplatin. Although cisplatin treatment does not benefit

the general PDAC population, there is a subgroup of patients - those who

have a tumor with a defect in homologous recombination repair - who may

benefit from addition of platinum drugs to gemcitabine. In this context the

survival appears to be significantly increased (22.9 months vs. 6.3 months,

p<0.001). (Oliver  GR, ASCO abstracts, 2010).

• Gemcitabine plus capecitabine. It has shown improved response rates and

PFS compared to gemcitabine alone and it constitutes a reasonable option

for good performance patients (175).

• Gemcitabine plus docetaxel and capecitabine (GTX). In good performance

patients, this combination offers a response rate of 29% with 31% of

patients showing stable disease; the OS is 11.2 months (176).

• 5-fluorouracil + irinotecan + oxaliplatin (FOLFIRINOX).  This combination is the

most active reported in PDAC, with a major improvement in OS (11.1 months vs.

6.8 months, p<0.001) and PFS (6.4 vs. 3.3 months, p< 0.001) compared to

gemcitabine (177). However, FOLFIRINOX has a remarkably high rate of grade 3

and 4 adverse events (45.7% neutropenia). FOLFIRINOX, together with

gemcitabine-nab-paclitaxel, is the treatment of choice for fit patients (ECOG 0-1).

TRIAL PATIENTS TREATMENT OS (m) P 

Burris et al 126  5-FU
 Gemcitabine

4.4 
5.6 

0.002 

NCIC 569  Gemcitabine
 Gemcitabine+erlotinib

5.9 
6.2 

0.04 

Ueno et al 834  Gemcitabine
 S-1

8.8 
9.7 

<0.001 

Conroy et al 342  Gemcitabine
 FOLFIRINOX

6.8 
11.1 

<0.001 

Von Hoff et al 861  Gemcitabine
 Gemcitabine+nab-paclitaxel

6.7 
8.5 

<0.001 

Table I4. Key clinical trials in metastatic pancreatic cancer. 
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5. Mechanisms of resistance to chemotherapy: the ABC family.

5.1 Resistance and cancer. 

Resistance to chemotherapy is one of the major limitations in cancer therapy and is an 

important cause of tumor progression and poor clinical outcome. There are two types of 

resistance; intrinsic/primary and extrinsic/acquired. Intrinsic resistance occurs because 

of the presence of resistance-mediated factors prior to the treatment, whereas 

extrinsic/acquired resistance arises during treatment because of secondary events. In 

general, the mechanisms involved in primary resistance are less well- established. There 

are at least seven well-defined mechanisms of acquired resistance in cancer: deregulation 

of specific drug target, enhanced drug metabolism, enhanced cellular repair mechanisms, 

reduced drug uptake, enhanced drug efflux, drug compartmentalization, and activation of 

alternative pathways or inactivation of downstream cell death signaling pathways (Fig. 

I13)(178). For targeted therapies, a wider variety of mechanisms of resistance have been 

recently identified including the activation of feedback signaling pathways and selection of 

mutant,  drug-resistant clones. 

Up-regulation of drug efflux ATP-binding cassette (ABC) transporters is one of the most 

common and best- studied mechanisms of drug resistance. ABC transporters efflux drugs 

outside the cell and reduce intracellular concentrations.  

Figure I13. General principles of drug resistance. Phamacokinetic (PK) factors such as 
absorption, distribution, metabolism or elimination determine the amount of drug that 
reaches the cell, while pharmacodynamic (PD) factors are responsible of the effects of the 
drug once in the cell. Adapted from Holohan et al. 
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5. 2. The ABC family: function and structure.

Initially reported in 1973 because of its role in daunomycin-resistance, the ABC 

superfamily includes 49 proteins, subdivided in 7 families (A-G) according to their 

sequence homology and domain organization (179). The ABC proteins bind ATP and use 

its energy to transport a wide variety of molecules across plasma membranes as well as 

intracellular membranes of the peroxisome, mitochondria and endoplasmatic reticulum 

(ER).  Structurally, they are composed by two ATP-binding domains, also known as 

nucleotide binding folds (NBF), and two sets of transmembrane (TM) domains typically 

containing six membrane-spanning -helices (180).  

ABC proteins are constitutively expressed at low levels in almost all tissues but they are 

found at much higher levels on the surface of epithelial cells with excretory roles, such as 

those lining the kidney, colon, small intestine and pancreatic ducts, among others (181). 

Their function and role depend on their localization (Table I5). 

FAMILY MEMBERS LOCALIZATION FUNCTION 

ABCA 12 Brain, lung, rod receptors,  
muscle, heart, liver, testis, 
spleen, thymus, ovary, 
stomach 

* Regulation of cholesterol and
phospholipids homeostasis.
* N-retinylidiene-PE efflux.
* Drug resistance.

ABCB 11 Endoplasmatic reticulum and 
mitochondria of cells. 
Tissues with barrier function. 

* Drug resistance
* Transport of peptides, PC, iron and
bile salts

ABCC 13 Lung, testes, liver, intestine, 
prostate, kidney, pancreas, 
heart, muscle. 

* Drug resistance.
* Organic anion efflux.
* Nucleoside transport

ABCD 4 Peroxisomes. * Peroxisomal import of FA and Acyl-
CoA.

ABCE 1 Ovary, testes, spleen * Protein synthesis and inflammatory
processes.

ABCF 3 Ubiquitous * Unkown

ABCG 5 Liver, intestine, placenta * Cholesterol and sterols efflux.
* Drug resistance

Table I5. The ABC family; proteins, localization and function. 

Among all ABC proteins, three have been related with multidrug resistance (MDR) in 

cancer: MDR protein 1 (MDR1), also known as P-Glycoprotein (Pgp) or ABCB1; MDR- 

associated protein 1 (MRP1) or ABCC1, and breast cancer resistance protein (BCRP) or 

ABCG2. 
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5.2.1. ABCB-1. 

ABCB-1, also known as multidrug resistance protein 1 (MDR1) or permeability 

glycoprotein 1 (Pgp1) was discovered as a protein overexpressed in drug-resistant cell 

lines. ABCB-1 is located on 7q21 and encodes for a transmembrane glycoprotein of 1280 

Aa that is expressed mainly in tissues with barrier functions such as the blood-brain 

barrier, liver, kidney, placenta and colon (180).  

The protein contains two regions, each one with 6 transmembrane domains followed by a 

large cytoplasmic domain with an ATP-binding site (Fig. I14). The transmembrane regions 

bind neutral or positively charged hydrophobic drug substrates that are presented to the 

transporter directly from the lipid bilayer. Substrate binding to the transmembrane 

regions stimulates the ATPase activity - two ATP hydrolysis events occur - causing a 

conformational change that leads to the efflux of the substrate to the extracellular space 

(182).  ABCB-1 has a broad substrate specificity and transports across the membrane 

several types of compounds such as lipids, steroids, xenobiotics, peptides or billirrubin, 

and diverse drugs such as digoxin, chemotherapeutics (etoposide, doxorrubicin, 

vinblastine), colchicine, tacrolimus, glucocorticoids or HIV antiretroviral therapy among 

others (180).   

Figure I14. PGP-1 structure. ABCB1 is a full-length transporter of two identical halves as 
shown; with two nucleotide binding domains (NBD) that contain conserved sequences of 
the ABC. Adapted from Dean et al. 

5.2.1.1. ABCB-1 and cancer. 

ABCB-1 participates both in intrinsic and extrinsic drug resistance. Many tumors with 

intrinsic drug resistance overexpress ABCB-1; cancer stem cells (CSC) -a cell- 

subpopulation in the tumor with self-renewal properties- show high levels of MDR 
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proteins, which are responsible for their chemoresistance, and correlates with poor 

survival (183, 184). ABCB-1 expression can also be induced/selected by chemotherapy 

resulting in the acquired development of the MDR phenotype, which is responsible for 

tumor progression in many cancers, including kidney, colon and liver cancers (185). 

Recent reports indicate that ABCB-1 is also a substrate of targeted therapies such as 

erlotinib, imatinib and sunitinib (186).  

It has been reported that PDAC tumors with poor prognosis (7.5 vs. 14.1 month) 

overexpress ABCB-1 due to its intrinsic chemoresistance (187). Also ABCB-1 

overexpression is, in part, responsible for the acquired resistance to gemcitabine and 

etoposide in some PDAC cell lines (188). 

5.2.1.2. ABCB-1 inhibitors. 

Once the mechanisms involved in MDR were discovered, the identification of drugs that 

could inhibit the transporters became a priority. Many drugs have since been shown to 

inhibit ABCB. There are two generations of ABCB-1 inhibitors. First-generation are non-

specific drugs that were originally developed for other therapeutic indications and include 

calcium channel blockers such as verapamil, the immunosuppressive agent cyclosporin, 

analogues of the antihypertensive drugs reserpine and yohimbine, the neuroleptic 

trifluoperazine, and antiestrogens such as tamoxifen and toremifene. (189). These drugs 

cannot be used in vivo as their lack of specificity alters the pharmacokinetic profiles and 

clearance of co-administered chemotherapeutic agents (189). 

Second-generation inhibitors possess a higher affinity for Pgp-1 and, among them, are 

Zosuquidar (also named LY335979), Tariquidar (also named XR9576) and Laniquidar. 

The first experiments with Zosuquidar, a substituted dibenzosuberane molecule, showed 

that it blocks ABCB-1-mediated drug resistance at concentrations of 50-100 nM and it 

restores sensitivity to vinblastine, doxorubicin, etoposide and taxol in leukemia cell lines 

(190). It also enhanced antitumor efficacy of taxol in a MDR human non-small cell lung 

carcinoma nude mouse xenograft model (191). Moreover, the administration of 

Zosuquidar with chemotherapeutic agents (doxorubicin, paclitaxel or etoposide) did not 

change their pharmacokinetic profile (192). Tariquidar, an anthranilic acid derivative, was 

also able to reverse in vitro the resistance to doxorrubicin, paclitaxel, vincristine and 

etoposide at doses between 25-80 nM in a panel of human MDR cell lines and it was also 

effective in mouse xenografts. Again, it had no major effect on phamacokinetics (193, 194).  
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On the basis of these promising results, clinical trials with specific Pgp1 inhibitors were 

initiated. Phase I clinical trials in patients with advanced malignancy showed that 

Zosuquidar could be given safely in combination with doxorubicin with little effect on 

doxorubicin toxicity and phamacokinetics (195, 196). The same profile was observed 

when Tariquidar was given in combination with vinorelbine in patients with advanced 

malignancies (197), or with docetaxel in lung, ovarian and cervical cancer (198).  

However, phase II clinical trials using ABCB-1 inhibitors failed. A Phase II study in breast 

cancer found minimal effects on OS and PFS when zosuquidar was co-administered with 

docetaxel (199). Also, tariquidar has shown limited activity in combination with an 

anthracycline or taxanes in a small cohort of women with stage III–IV breast carcinoma 

(200).  
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The main goal of this work is to describe the role of Choline Kinase Alpha (CHKA) in 

pancreatic adenocarcinoma (PDAC) and its pharmacological inhibition as therapeutic 

strategy. 

The specific goals were the following: 

1. Analyze the expression of CHKA in PDAC cell lines and tumor samples.

2. Describe, in vitro and in vivo, the effects of genetic an pharmacologic inhibition of 

CHKA.

3. Test the efficacy of MN58b, a selective inhibitor of CHKA, in PDAC cells, alone or in 

combination with other drugs used for PDAC treatment.

4. Understand the mechanisms leading to acquired resistance to MN58b and the 

possibilities to reverte it. 

Objectives
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Objetivos 

Objetivos
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El objetivo principal del presente trabajo es describir el papel de la Colina Quinasa Alfa 

(CHKA) en el adenocarcinoma de páncreas (PDAC) así como el potencial terapéutico de su 

inhibición farmacológica. 

Los objetivos específicos que se plantearon fueron los siguientes: 

1. Analizar la expresión de CHKA en líneas celulares y muestras tumorales de PDAC.

2. Describir, in vitro e in vivo, los efectos de la inhibición genética y farmacológica de

CHKA.

3. Comprobar la eficacia del inhibidor de CHKA, MN58b, en células de PDAC sólo y en

combinación con otros fármacos utilizados en PDAC.

4. Comprender y profundizar en los mecanismos de resistencia al MN58b y en las

posibilidades de revertir dicha resistencia.

Objetivos
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1.Cell experiments.

1.1. Cell culture. The following cell lines were used: Suit2 007, Suit2 028, SK-PC-1, T3M4, 

Bx-Pc-3, Patu-T, Panc-1, IMIM-PC-2, RWP-1, PK-9, SK-PC-3, MZ-PC-4, HPDE and HPNE 

(PDAC and ductal cell line respectively); J82, RT112 and HT1376 (bladder cancer); HT-29 

(colon cancer); SK-BR-3, MDA-MB-231 (breast cancer), and 293FT. Cells were cultured in 

DMEM (Sigma-Aldrich) supplemented with 10% heat-inactivated fetal bovine serum, 1% 

pyruvate and 1% penicillin/streptomycin under standard conditions.  All cells were free of 

Mycoplasma.   

1.2. Lentiviral infections. Control non-targeting or CHKA -targeting lentiviral particles 

were produced in 293FT cells using Sigma Mission plasmids following the manufacturer’s 

instructions. The shRNA sequences were:  

Sh-1: 

GTACCGGGTGTTACTTGCAGGTACTTTGCTCGAGCAAAGTACCTGCAAGTAACACTTTTTTG. 

Sh-2: 

GTACCGGGCAGATGAGGTCCTGTAATAACTCGAGTTATTACAGGACCTCATCTGCTTTTTTG. 

Sh-3: CCGGGCGATTAGATACTGAAGAATTCTCGAGAATTCTTCAGTATCTAATCGCTTTTT. 

Sh-4: CCGGCCAAGAAACAACAGCTCCATTCTCGAGAATGGAGCTGTTGTTTCTTGGTTTTT. 

Sh-5: CCGGGCCAAGATTTCATCTATTGAACTCGAGTTCAATAGATGAAATCTTGGCTTTTT. 

pPAX2 and pCMV-VSVG packaging plasmids were used to produce the viral envelope. Cells 

were transfected with JetPrime, following manufacturer instructions. The plasmid ratio 

used was: 5g of lentiviral plasmids 4 g psPAX2 and 1.5 g of pCMV-VSVG. Virus-

containing supernatant was collected 36 h after transfection, 0.45 m filtered and used to 

infect the corresponding cells in the presence of hexadimethrine bromide polybrene (5 

mg/ml) (Sigma). Two rounds of infection were performed within 24 h, 12 h each; infected 

cells were selected for 48h in medium containing puromycin (2 mg/ml) (Sigma). 

1.3. Generation of resistant cell lines: To generate IMIM-PC-2 MN58b-resistant cell line 

(IMIM-PC2-R), cells were seeded at 70% confluence in a 10 cm dish and treated with 

MN58b in standard DMEM supplemented medium (described previously) at an initial dose 

of 0.1 µM. In parallel IMIM-PC-2 cells without MN58b were grown. Medium was removed 

every 48 hours and dose of MN58b increased by approximately 20% weekly at each 

passage of the cells (split 1:3 when confluence was 90%). The final concentration achieved 

was 8 µM. To generate gemcitabine resistant pancreatic cancer cell lines an intermittent 

incremental dose approach was used. The starting concentration was 35 nM gemcitabine 
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(2´-deoxy-2´,2´-difluorocytidine monohydrochloride, Eli Lilly Ltd, Liverpool, UK) in RPMI 

media with 20% FCS. Media was changed with a constant concentration of gemcitabine 

every 24 hours. Drug dose was increased in increments of 1.5 - 2 times the previous dose 

at each passage of the cells (cells were passaged with a split of 1:5 at 80-90% confluence). 

The final concentration achieved was 250 nM gemcitabine. The resistant cells were 

authenticated as being the Suit2 cell line by STR profiling (Promega PowerPlex 16 HS). 

1.4. Proliferation and viability assays. Cells were seeded in triplicate in 6-well plates 

(5x 104 per well), trypsinized at defined times, and counted in a Neubauer chamber. To 

determine viability, cells were seeded in 24-well plates (2x104 per well). After 24 h, 

medium was removed and MN58b was added at seven different concentrations (0.1, 0.2, 

0.5, 1, 2, 5 and 10 µM). Each treatment was done in triplicate. After 72 h cells were fixed 

using formaldehyde at a final concentration of 3% during 1 h at room temperature, the 

medium was removed and wells washed twice with PBS1X. Cells were then incubated for 

an hour with 0.5% crystal violet in 25% methanol; crystal violet was eluted with 10% 

acetic acid, and absorbance was measured at OD590 nm (Eppendorf).  

1.5. Migration assays. 5x 104 resistant/wild-type IMIM-PC-2 and shCHKA/shNt Suit2 028 

cells were seeded in 500 µl serum-free media in a modified Boyden chamber assay. Cells 

were plated in the upper chamber of a noncoated Transwell insert (24-well insert; pore 

size, 8.0 μm; BD Biosciences) and media supplemented with serum was used as the 

chemoattractant in the lower chamber.  At 24 and 48- hour cells in the upper chamber 

were removed with a cotton swab and cells which migrated through the pores were fixed 

and stained with Giemsa.  

1.6. Colony-formation assays. Cells were seeded in 6-well plates (5x104 per well) and 

medium was replaced 24 h later with medium containing MN58b at 5 and 10 µM. After 72 

h, cells were fixed, washed, and incubated with crystal violet as described before. Crystal 

violet was removed and plates dried during 24 hours.  Representative photographs were 

taken. 

2. Drug assays.

2.1. Apoptosis assays. Cells were seeded in 6-well plates (5x105 per well) in the presence 

of increasing concentrations of MN58b (1, 2, 5 and 10 µM). After 24 and 48 h, cells were 

washed with PBS 1X, re-suspended in Annexin V binding buffer, and incubated with 1 
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mg/ml APC-Annexin V (BD Biosciences, Franklin Lakes, NJ, USA) in the dark for 15-20 min 

at four degrees. DAPI was added for 15 min and cell viability was assessed in a FACS Canto 

II flow cytometer (BD Biosciences). Results were quantified using FlowJo software (FlowJo 

version 7.6.1, TreeStar Inc., Ashland, OR, USA). 

2.2. Synergy assays. Cells were seeded in 24-well plates (2x104 per well). After 24 h, 

medium was removed and drugs (MN58b, gemcitabine, oxaliplatin and 5-fluorouracil) 

were added for 72 hours, either alone or in combination, at a range of doses according to 

the previously estimated IC50 for each drug. Viability was determined and the 

Combination Index (CI) values for the different drug combinations calculated using the 

Chou and Talalay method with the Calcusyn software (Biosoft, Ferguson, MO, USA). A CI of 

0.9-1.1 indicates an additive effect, a CI <0.9 indicates synergy, and a CI >1.1 indicates 

antagonism. 

3. Biochemichal assays.

3.1. Calcein-AM assay. Cells were seeded in black 96-well plates (20x104 per well). After 

24 h, Calcein-AM uptake and conversion to fluorescent calcein was determined using the 

Invitrogen Calcein-AM assay kit according to the manufacturer’s instructions (Invitrogen, 

Paisley, UK). Fluorescence was determined at 490/520 nm using a luminometer 

(Pherastar). 

3.2. Choline uptake. A pulse-chase in cell assay was used to determine uptake of choline. 

3H-Choline chloride was added to the culture media for 60 min; the media was then 

removed and cells washed 3 times with PBS 1X. Cells were lysed and cellular uptake of 

choline was determined as the amount of 3H present in the lysates using a scintillation 

counter. 

3.3. Choline Kinase activity. Free 3H-Choline was added to the reaction mix (MgCl2 

10mM, KCl 100 mM, ATP 500 µM, Tris pH 7.5 100 mM) and its phosphorylation to 

phosphocholine accounted to the amount of 3H-Cho converted to 3H-PCHO. The use of 

passive lysis buffer (PLB) ensured enzymatic activity in the lysates before 3H-choline 

chloride was added. The reaction was stopped at 60 min with methanol/chloroform to 

effectively initiate the lipid extraction. Phase extraction, using tetraphenylborate, allowed 

Cho- isolation from the PCHO-containing fraction. The amount of 3H in each was 

determined using a scintillation counter. 
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4. Proteins analysis.

4.1.Immunoblotting. Cells were lysed in NP-40 buffer (25 mM Tris-HCl ph 7.4, 150 mM 

NaCl, 1 mM EDTA, 1% NP-40) supplemented with the complete protease inhibitor cocktail 

(Roche). After sonication, 20 µg of protein was fractionated by 10% SDS-PAGE, transferred 

to a nitrocellulose membrane, and incubated with anti-CHKA mouse monoclonal antibody 

(Sigma-Aldrich, HPA624153), 1:1000 dilution in 5% skim milk TTBS. After washing, 

peroxidase-labeled anti-mouse Ig (DAKO) was added. Mouse anti-vinculin (Sigma) served 

as a loading control. Reactions were developed using enhanced chemiluminiscence 

(Amersham Biosciences). 

5. RNA analysis.

5.1. RT-qPCR. Total cellular RNA was isolated using the GenElute Mammalian Total RNA 

kit following the manufacturer's instructions (Sigma). To eliminate genomic DNA 

contamination, samples were treated with DNaseI (Ambion DNA-free kit, Invitrogen). 

Retro transcription was performed using TaqMan reverse transcription reagents (Applied 

Biosystems). Quantitative PCR was performed using SYBR-green mastermix in a Prism 

7900 HT instrument (Applied Biosystems). The following primers were used: CHKA 

AAAGAGGGATCCGAACAAGC (Forward) and AGTGACCTCTCTGCGAGAATG (reverse); 

ABCB-1 CTGTGAAGAGTAGAACATGAAG (Forward) TTGCACCTCTCTTTTATCTG (reverse); 

ABCB-4: GAGGTCAAAAACAGAGGATTG (Forward) CCTTTTCACTTTCAGTATCCAG 

(reverse). All reactions were performed in triplicate and expression levels were 

normalized to individual HPRT values using the ΔΔCt method.  

5.2.RNA-seq and bioinformatics analysis. RNA from parental and MN58b-resistant cells 

was extracted and purified using Trizol. RNA integrity was assayed on an Agilent 2100 

Bioanalyzer (range 8.4-10). PolyA+ fractions were purified and randomly fragmented, 

converted to double stranded cDNA and processed through subsequent enzymatic 

treatments of end-repair, dA-tailing, and ligation to adapters as in Illumina's "TruSeq 

Stranded mRNA Sample Preparation Part # 15031047 Rev. D". Adapter-ligated library was 

completed by 10 cycles of PCR with Illumina PE primers. The resulting purified cDNA 

library of template molecules was applied to an Illumina flow cell for cluster generation 

(TruSeq cluster generation kit v5) and sequenced on the Genome Analyzer IIx (GAIIx) with 

SBS TruSeq v5 reagents following manufacturer's instructions (SingleRead 1x40 bases). 

Image analysis and per-cycle base calling was performed with Illumina Real Time Analysis 

software (RTA1.13). Conversion to FASTQ was performed with CASAVA-1.8 (Illumina). 
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These files contain only reads that passed "chastity" filtering (flagged with a N, for *NOT 

filtered* in the sequence identifier line). "Chastity" parameter measures signal 

contamination in raw data and allows flagging unreliable reads. Quality check was done 

via fastqc (v0.9.4, Babraham Bioinformatics). The raw reads were aligned to the reference 

genome hg19/GRCh37 with tophat1 (version 2.0.4) using the following parameters: --

bowtie1, --max-multihits 5, --genome-read-mismatches 1, --segment-mismatches 1, --

segment-length 19, --splice-mismatches 0, --library-type fr-firststrand. The gene 

expression levels (Fragments Per Kilobase of exon per Million fragments, FPKMs) were 

quantified with cufflinks2 (version 2.0.2), as annotated in Ensembl version GRCh37.65, 

with the following parameters: -N, --library-type fr-firststrand, -u. 

Sample RIN Barcode Lane Read Clusters 
PF (x106) 

Reads 
mapped 

(x106) 

%Align 
PF 

IMIM-PC-2 R-1 8.5 GCCAAT 5 1 16.1 13.9 86 

IMIM-PC-2 R-2 8.6 CTTGTA 5 1 16.6 14.1 85 

IMIM-PC-2  R-3 8.4 GTGAAA 5 1 16.8 14.8 88 

IMIM-PC-2 WT-1 9.7 GCCAAT 4 1 13.2 11.3 85 

IMIM-PC-2 WT-2 10.0 CTTGTA 4 1 13.4 11.3 84 

IMIM-PC-2 WT-3 9.9 GTGAAA 4 1 25.1 21.8 87 

Table 6. Results of analysis of RNA integrity. 

5.3.Sample correlation, principal component analysis (PCA), and differential gene 

expression. The FPKM correlations and PCA clustering of samples were carried out with 

the R (version 2.14.1) functions cor and prcomp. The 3D plots were carried out with 

scatterplot3d library. The differential gene expression analysis was performed with the 

cuffdiff function included in cufflinks2 (version 2.0.2) with parameters: -N, --library-type 

fr-firststrand, -u. 

6. Immunohistochemistry.

Pancreatic Ductal Adenocarcinoma tissue microarrays (TMA) containing matched 

duplicate non-malignant and malignant cores from 96 patients treated at the Royal 

Liverpool University Hospital, Liverpool, UK were manufactured using Standard Operating 

Procedures conducted to Laboratory GCP. Cores were taken from tumor regions identified 

by an experienced pancreatic pathologist using haematoxylin and eosin (H&E) stained 
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sections. Tissue microarrays were prepared with two cores from each block. For all arrays 

control cores, comprising 3 cores each of colon, kidney, liver, normal pancreas and chronic 

pancreatitis, were arranged in a fence around the test samples. The tissue samples were 

collected under ethical committee approval for characterization of tumor markers for 

chemotherapy from the Liverpool (Adult) Research Ethics Committee (07/H1005/87).  

After de-paraffinization and rehydration, endogenous peroxidase was blocked. Sections 

were incubated in boiling water for 10 min in citrate buffer pH 6. The slides were then 

incubated at 4 °C overnight with anti-CHK antibody (1:100) (Sigma, HPA024153). After 

rinsing in PBS 1x, the slides were incubated with a rabbit secondary antibody (DAKO) for 

1 h at room temperature. Bound antibody was revealed with DAB and sections were 

counterstained with hematoxylin. The following variables were analyzed: intensity (scale 

0-3) and proportion of cells (0-100%) displaying nuclear and cytoplasmic staining, and

stromal staining. H-Score was calculated as the product of intensity and percentage of 

positive cells and classified as high (upper quartile), medium (two-mid quartiles) and low 

(lower quartile). 

7. In vivo experiments.

7.1. In vivo subcutaneous tumorigenic assay. Suit028 CHKA-silenced (sh3 and sh5) and 

their non-target counterparts  (shNt) cells were grown in 6-8 week old female BALB/c 

athymic Nu/Nu mice (Charles River or Harlan). Briefly, subcutaneous injections containing 

2x106 cells (100 ml in PBS) were performed at the height of the shoulder blades. Tumor 

growth was monitored over a three weeks period using an electronic calliper and tumor 

volumes calculated following the formula (LxW2x 0.5). Mice were housed in IVC cages and 

all animal work was performed by licensed investigators in accordance with the United 

Kingdom Home Office Guidance on the Operation of the Animal (Scientific procedures) Act 

1986 and Amended 2012 in line with the EU Directive 2010/63. 

8. Statistical analysis.

8.1. CHKA expression in cancer cell lines. Expression values for gene CHKA were 

obtained from the Cancer Cell Line Encyclopedia (CCLE; 

http://www.broadinstitute.org/ccle/home). The cell lines were sorted by the expression 

of the probes included in the microarray (204266_s_at and 204233_s_at). 

We adapted the method developed by Subramanian (201) and carried out a pre-ranked 

tissue enrichment analysis with the PDAC cell lines included in the CCLE. We used the pre-

http://www.broadinstitute.org/ccle/home
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ranked cell lines by CHKA expression to calculate an enrichment score for the PDAC cell 

lines. The score reflects how often PDAC cell lines appear at the top or bottom of the 

ranked data set as described in Subramanian A et al (201). 

8.2. CHKA expression in PDAC patients.  Expression values for gene CHKA were 

downloaded from the Gene Expression Omnibus serie GSE15471, probes 204266_s_at and 

204233_s_at. Samples were classified in Classical-PDA, Exocrine-like-PDA and QM-PDA as 

defined previously by Badea L et al (202) . One way ANOVA was carried out to test 

differences in CHKA expression between PDAC classes and Tukey test was used to test 

pairwise comparisons. Statistical analysis and boxplots were done with the R (version 

2.14.1) functions aov,  TukeyHSD and boxplot, p-values < 0.05 were considered significant. 

8.3. Survival analysis. The following clinical parameters were evaluated: survival, grade, 

stage, chemotherapy, gender, year of birth and date of surgery. The Kaplan–Meier method 

applying the log-rank test was used to estimate the differences in overall survival (OS). 

Multivariate analyses including age, gender, stage, grade, date of surgery and previous 

chemotherapy were performed. 
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1. PDAC cells overexpress CHKA.

1.1. Identification of CHKA as a gene overexpressed in PDAC. 

To obtain an overall view of the expression of CHKA in PDAC, I applied a similar strategy 

to GSEA (gene set enrichment analysis) with a pre-ranked gene list, but I replaced genes 

by cell lines obtained from the Cancer Cell Line Encyclopedia (CCLE). I designate this 

strategy tissue enrichment analysis (TEA). Cell lines derived from PDAC are significantly 

enriched among those displaying high level of expression of CHKA mRNA (Fig. 1A). This 

enrichment was significant for both CHKA probes for which information was available 

through CCLE.  

In addition, I assessed whether CHKA expression associates with the three PDAC 

categories (quasi-mesenchymal (QM), classical and exocrine-like) recently defined by 

Collisson et al. As shown in Figure 1B, samples in the QM group express lower levels of 

CHKA mRNA than classical or exocrine-like samples, suggesting a relationship between 

CHKA expression and cell differentiation.  

A 

B 
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Figure 1. Bioinformatics analysis of CHKA expression in PDAC cell lines and tissue samples. 
(A) Bar plot of the cells included in the CCLE ranked by CHKA expression, assessed by
204233_s_at (left) and 204266_s_at (right) probes. A magnification of the 40 cell lines with
the highest levels of CHKA is shown in the bottom panels. PDAC cell lines are marked in
red. (B). Tissue Enrichment Analysis (TEA) for the PDAC cell lines included in the CCLE.
PDAC cell lines are highly represented among the highest CHKA-expressing cell lines
(probe 204266_s_at). (C) Box plot showing CHKA expression (probe 204266_s_at) in the
three PDAC subgroups defined by Collisson et al (47) and statistical analysis of the
comparison in the bottom panel.

1.2. CHKA levels in cells derived from PDAC and other tumor types. 

Several reports have addressed the oncogenic properties of CHKA overexpression in many 

cancers (lung, breast, and bladder among others). CHKA inhibition has demonstrated anti-

proliferative effects in different tumor types. 

To assess CHKA overexpression in PDAC, I used a panel of 12 PDAC cell lines derived from 

primary and metastatic tumors. I assessed the levels of CHKA by western blotting followed 

by densitometry analysis. As a control I used HPDE and hTERT-HPNE cultures from 

immortalized, non-transformed, pancreatic cells. PDAC cells showed 3- to 11- fold higher 

levels of CHKA compared with HPDE and HPNE cells (Fig. 2A). This result suggests that 

CHKA expression correlates with malignant transformation in PDAC. 

To determine whether protein levels correlated with gene expression, I measured the 

levels of CHKA mRNA isoform 1 by RT-qPCR in our panel of PDAC cells. (Fig.2B). This 

isoform is the predominant transcript expressed in the pancreas (GTEX, 

www.gtexportal.org/). I failed to observe a good correlation between mRNA and protein 

levels which suggests that post-transcriptional mechanisms participate in the regulation of 

CHKA in PDAC. 

CHKA is important, in vitro and in vivo,  for cell proliferation in bladder, breast and colon 

cancer (106, 107). Therefore, I compared CHKA levels between PDAC cells and cells 

derived from these tumors. I observed that PDAC cells (Suit2 028, Suit2 007 and SK-PC-1) 

expressed similar CHKA levels to other tumor types (Fig. 2C).  This result suggests that 

CHKA might be important to sustain proliferation in PDAC. 
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A 

Figure 2. PDAC cells overexpress CHKA. (A). Western blot with antibodies against CHKA 
shows an increased expression in PDAC cells when compared with HPDE and HPNE, non-
transformed pancreatic cell lines. Quantification of protein content reveals a 3- (PK-9) to 
11-fold (Bx-Pc-3) difference. (B) CHKA mRNA levels in PDAC cells and their lack of
correlation with protein expression in PDAC lines. (C) Comparison of CHKA levels between
PDAC (Suit2 028, SK-PC-1, T3M4), bladder (J82, RT112, HT-1376), colon (HT29) and
breast (MDA-MB-231, SK-BR-3) cell lines, revealing similar expression in these different
tumor types.

1.3. CHKA interference reduces cell proliferation and migration. 

Neoplastic cells have an accelerated proliferation rate which requires an increased 

metabolism to supply energy and structural components. Phosphatidylcholine, the most 

abundant phospholipid in eukaryotic membranes, is synthesized through the Kennedy 

pathway in which CHKA participates.  Another main feature of neoplastic cells is the ability 

to migrate and reach distant organs where they form metastases.  
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Suit2 028 Sh-Nt  Suit2 028 Sh-3 Suit2 028 Sh-5 
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Figure 3. CHKA is necessary for cell proliferation. (A) Infection of Suit2 028 PDAC cells 
with lentiviruses coding for short-hairpin RNAs (shRNA) against CHKA decreases RNA and 
protein expression. The most effective shRNAs were 3 and 5. (B) Cell morphology is 
unaffected by CHKA down-regulation. (C) CHKA down-regulation reduces cell migration, 
(D) cell growth and (E) in vivo tumor volume.
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CHO metabolism and CHKA have been linked with migration (203). I wanted to test 

whether CHKA is required to sustain these two properties in PDAC cells. 

To assess whether CHKA is important to sustain proliferation of PDAC cells in vitro, I 

genetically down-regulated CHKA levels in Suit2 028, a pancreatic cancer cell line that 

expresses high levels of CHKA. I used lentiviral constructs with five different short-hairpin 

RNAs (shRNA) (named from Sh-1 to Sh-5) and a non-targeted shRNA as a control. Sh-3 and 

Sh-5 were the most effective, reducing CHKA mRNA and protein levels by up to 80% (Fig. 

3A). Both shRNAs reduced CHKA levels without inducing morphological changes (Fig. 3B).  

Although cells were viable after CHKA down-regulation, I observed a reduced growth and 

migration compared with non-targeted counterparts. Proliferation curves showed that, at 

day 4 after seeding, silenced Suit2 028 population was 45% of control, and at day 6 only 

20% (P= 0.01) (Fig. 3D). Migration assays also revealed an important, although not 

significant, decrease in migration in CHKA silenced Suit2 028 at 24 and 48 hours (Fig 3C). 

To validate these results in vivo, I implanted control and CHKA-interfered Suit2 028 cells – 

using two different shRNAs - orthotopically in nude mice and followed tumor growth for 

three weeks. I observed a reduced tumor volume in silenced tumors compared with the 

controls at days 10 (P=0.004),  15 and 21 (P=0.01) after injection (Fig. 3E). Hence, CHKA 

expression is important to sustain cell growth and migration in vitro and in vivo and 

supports the importance of CHKA as a therapeutic target. 

2. CHKA expression in pancreatic tissues: association with tumor
differentiation and survival.

2.1. CHKA antibody specificity. 

Based on published data, I selected anti-CHKA antibodies from SIGMA to determine its 

expression. To validate the antibody specificity using IHC,  agarose blocks of formalin-

fixed Suit2 028 cells infected with control or CHKA-targeting sh-lentiviruses were made. 

IHC analysis revealed a clear cytoplasmic staining in control cells that was reduced in 

interfered cells (Fig. 4). We successfully assessed CHKA antibody specificity by western-

blott in silenced Suit2 028 (Fig. 3A). Therefore I be concluded that these antibodies 

recognize CHKA specifically.  
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Figure 4. Specificity of anti-CHKA antibodies. IHC of silenced and scramble Suit2 028 
cells with anti-CHKA anti-rabbit antibodies shows adequate specificity.  

2.2. CHKA staining pattern in neoplastic and non-neoplastic pancreatic 
tissue. 

To study CHKA expression in pancreas during malignant transformation I characterized its 

pattern of expression in normal pancreas, chronic pancreatitis tissues and in characteristic 

lesions of the various tumor progression steps, i.e. PanIN and invasive PDAC.  

I observed that CHKA staining increased according to the degree of malignancy. Normal 

pancreas showed a weak cytoplasmic staining in acinar and ductal cells, while islets 

showed a strong cytoplasmic staining with occasional positive nuclei (Fig.5, Panel A). 

Stromal cells with fibroblast morphology showed sporadic cytoplasmic staining. Chronic 

pancreatitis samples also showed weak ductal cell staining (Fig.5, Panel B). PanIN lesions 

showed variable staining from moderate (Fig.5, Panel C) to strong (Fig.5, Panel D) while 

ductal tumor cells showed strongest staining (Fig.5, Panels E and F).  
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Figure 5. CHKA expression in pancreatic tissue samples. (A) Representative image of 
CHKA immunostaining in normal pancreas. (B) Representative images of staining of 
chronic pancreatitis samples. (C) and (D) Representative images of low grade (C) and high 
grade (D) PanIN lesions. (E) and (F) Representative images of CHKA staining in PDAC 
samples: (E) Representative image of nuclear CHKA staining. (F) Representative image of 
cytoplasmic CHKA staining.  

2.3. Analyses of human tissue microarrays: association of CHKA expression 
with grade, differentiation and survival.  

I analyzed CHKA expression using a human tissue microarray (TMA) containing 98 

samples of PDAC, with follow-up information available for 74 patients. I describe patient 

characteristics in Table 1; most of the tumors were stage 3 with nodal invasion. Nearly all 
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tumor samples (91%) showed detectable CHKA categorized as high (32%), medium (47%) 

or low (21%) based on intensity (1 to 3) and percentage of staining (H-Score). 

Nuclear staining was present in 43% of samples corresponding with well and moderately 

differentiated tumors, rather than poorly-differentiated (49% vs. 17%, P=0.024). This 

pattern correlates with improved survival (500 vs. 299 days, P=0.014) (Fig. 6A).  

In the multivariable model, tumor grade was an 

independent variable associated with survival. 

Patients with moderately and well-differentiated 

tumors showed a longer survival compared with 

those with poorly differentiated (432 vs. 284 days, 

p=0.002)(Fig. 6B). If we consider moderately- and 

well-differentiated tumors as a single group, we 

found a positive correlation  between nuclear CHKA 

staining and longer survival (540 vs. 303 days, 

P=0.015) (Fig. 6C). Moreover this correlation 

increased when considering only patients with 

moderately differentiated tumors (575 vs. 299 

days, P=0.002) (Fig. 6D). 

Table 1. PDAC patient´s characteristics. 

In patients with undifferentiated tumors, there was no association between CHKA 

expression and outcome (262 vs. 253 days, no statistical difference) (Fig. 6E). Regarding 

the stroma, the small number of cases showing CHKA expression prevented us from 

establishing an association with survival (Fig. 6F). We can conclude that, in PDAC, CHKA 

nuclear localization correlates with a differentiated state and better prognosis. 

N (%) 

Gender 
   Male 
   Female 

53 (54) 
45 (46) 

 Stage 
    I 
    II 
    III 
    IV 

2 (2) 
3 (3) 
84 (86) 
2 (2) 

Nodal status 
    0 
    1 
    1a 
    1b  

15(15) 
44 (45) 
5 (5) 
27 (28) 

Chemotherapy 
 None       
 Gemcitabine 
5-FU.
Other.

22 (22) 
26 (27) 
17 (17) 
6 (6) 
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Figure 6. Kaplan-Meier analysis of survival according to CHKA expression. Survival 
curves showing outcomes in different CHKA staining patterns: (A) Nuclear CHKA in all 
PDAC samples, in (B) poorly, (C) non-poorly and (C) only in moderately differentiated 
tumors differentiated tumors. (E) Correlation between tumor grade and survival and (E) 
between stromal staining and survival.  
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3. Biological effects of CHKA inhibition, using MN58b, in PDAC
cells.

3.1 MN58b has anti-proliferative activity. 

MN58b is a first generation CHKA inhibitor with anti-tumoral activity in vitro and in vivo. 

CHKA catalyzes the phosphorylation of CHO to PCHO, which is a readout of CHKA activity. I 

treated IMIM-PC-2 cells with 0.5 µM of MN58b and quantified PCHO levels. The decrease 

in PCHO levels upon CHKA inhibition shows that CHKA is a target of MN58b (Fig. 7A).  

To analyze the effect of MN58b on cell proliferation, I used colony-formation assays using 

four PDAC cell lines (SK-PC-1, Suit2 028, IMIM-PC-2 and RWP-1) and two different doses 

of MN58b (1 µM or 5 µM). At 1 µM, MN58b strongly reduced the number of colonies and at 

5 µM colony-formation was practically abolished (Fig. 7B). 

Viability experiments confirmed the cytotoxic effect of MN58b on nine different PDAC cell 

lines, with IC50s ranging from 0.23 to 3.2 µM (Table 2). Interestingly, there was a direct 

correlation between CHKA protein levels and MN58b sensitivity (R 2= 0.88); cells with 

higher CHKA levels were more sensitive to MN58b (Fig. 7C). This suggests that CHKA 

expression may predict the response to MN58b. To further explore this hypothesis, CHKA 

levels were genetically modulated in two PDAC cell lines (Suit2 007 and Suit2 028) using 

two different shRNAs. CHKA down-regulation led to increased resistance to MN58b in 

interfered cells (Table 3). 

A    B    C 

Figure 7. MN58b is cytotoxic for PDAC cells and this effect correlates with CHKA 
levels. (A) CHKA inhibition with MN58b leads to reduced CHKA activity and PCHO 
production in IMIM-PC-2.  (B) Effect of MN58b on colony formation in four PDAC cell lines 
(SK-PC-1, Suit2 028, IMIM-PC-2, RWP-1) expressing different CHKA levels. (C) Correlation 
between CHKA protein levels in PDAC cells and IC50 to MN58b. 
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Table 3.  Sensitivity of Suit2 028 and Suit2 
007 after CHKA silencing. 

Table 2. IC50 of different  PDAC cell lines. 

To compare the sensitivity of PDAC with other tumor types, I used two bladder cancer cell 

lines (RT112 and MGH-U3). The IC50s obtained for both cell lines (0.42 and 1.2 µM, 

respectively) were in the range sensitivity of PDAC cells (Fig. 8A). 

Targeting the stroma might be relevant from the therapeutic point of view. A reduced 

stroma may facilitate the uptake of cytotoxic drugs by the tumor. As I mentioned in the 

introduction, pancreatic stellate cells (PSC) place a major role in determining the nature of 

the tumoral stroma and participate in PDAC chemo-resistance (48, 49). We tested their 

sensitivity to MN58b: PSC cells had an IC50 of 3 µM (Fig. 8B). This result indicates that 

MN58b can also have a cytotoxic effect on PSC at the concentrations at which it is active on 

some PDAC cells (SK-PC-3 or RWP-1).  

A B 

Figure 8. Antiproliferative effect of MN58b in bladder cancer cell lines and  PSC (A) 
MN58b dose-response curve in two bladder cell lines (RT112, MGH-U3) and (B) PSC. 

3.2. MN58B induces apoptosis and impairs proliferation. 

To unravel the mechanism of action of MN58b, I treated three PDAC cell lines with 

increasing doses of MN58b (from 1 to 10µM) and measured Annexin V expression (an 

Cell line IC50 (MN58b) 

SK-PC-1 0.23 
Suit2 028 0.52 
Suit2 007 0.43 
IMIM-PC-2 0.75 
T3M4 0.9 
Panc-1 1 
PSC 3 
RWP-1 3.1 
SK-PC-3 3 
MZ-PC-4 3.3 

MN58b 
IC50(μM) 

CHKA-Nt CHKA Sh-2 

Suit2 028 1.8 7.1 
Suit2 007 0.6 1.7 

Results



early apoptosis marker). At 5 µM and 48 hours the proportion of Annexin V-positive cells 

ranged from 30% (RWP-1) to 90% (SK-PC-1), suggesting that apoptosis is one of the 

mechanisms of toxicity in response to MN58b. In SK-PC-1 and Suit2 007 cells, I observed a 

correlation between CHKA expression levels and Annexin V positivity, supporting the idea 

that CHKA is a predictive marker for MN58b response (Fig. 7A). I confirmed the apoptotic 

response with a different technique, i.e. measuring the cleavage of Caspase-9 by western 

blotting: similar results were obtained (Fig. 9B). I conclude that the cytotoxic effect of 

MN58b in PDAC cells is mainly through apoptosis.  

A 

Figure 9. NM58b induces apoptosis in PDAC cells. (A) Expression of Annexin V in three 
PDAC cell lines upon treatment with increasing concentrations of MN58b. (B) Western 
blotting against Caspase-9 in two PDAC cell lines treated with increasing concentrations of 
MN58b. 

3.3.  MN58b synergizes with several chemotherapeutic agents. 

Gemcitabine, a nucleotide analogue, is the gold standard treatment for advanced PDAC. 

The combination of 5-Fluorouracil and Oxaliplatin has also demonstrated activity against 

PDAC, but with significant toxicity. I analyzed whether MN58b synergizes with these 

drugs. For that purpose I treated three PDAC cell lines (SK-PC-1, Suit2 028, and RWP-1) 

expressing different levels of CHKA with MN58b alone or in combination with either 

Gemcitabine, Oxaliplatin or 5-Fluorouracil.  

B 
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Figure 10. MN58b synergizes with gemcitabine, oxaliplatin and 5-FU in SK-PC-1 and 
RWP-1. (A). Representative graph showing CI of the different combinations in the three 
PDAC cell lines. MN58b synergizes with the three drugs in SK-PC-1 and RWP-1 but no 
effect is seen in Suit2 028. (B). Dose-effect curves of the mentioned combinations.

Results



I measured the synergism calculating the combination index (CI) that determines the 

effect of each drug separately at a range of doses.  In Suit2 028 cells, none of the 

combinations tested showed increased effects when compared with single agent MN58b. 

In the other two cell lines MN58b showed synergism in combination with the three drugs, 

especially in combination with oxaliplatin (SK-PC-1 CI=0.23; RWP-1 CI=0.39) (Fig. 10A 

and B). These findings support the potential of using MN58b in combination with other 

chemotherapeutic drugs. 

3.4. Gemcitabine-resistant PDAC cells are more sensitive to MN58Bb. 

Primary and acquired resistances contribute to the limited efficacy of PDAC treatment. 

Few therapeutics options remain after Gemcitabine failure. I have demonstrated the 

synergistic effect of MN58b with Gemcitabine in vitro. To assess whether MN58b could be 

of value in gemcitabine-resistant tumors, I compared the sensitivity to MN58b in parental 

and Gemcitabine-resistant Suit2 007 cells: the IC50 of both lines were 3.14 µM and 0.77 

µM, respectively (Fig. 11), supporting the notion that MN58b could represent a valuable 

treatment strategy for Gemcitabine-resistant tumors.    

Figure 11. MN58b dose-response curves for parental and gemcitabine-resistant
Suit2 007 cells.  

3.5. Down-regulation of CHKA sensitizes cells to gemcitabine, 
oxaliplatin and 5-fluorouracil. 

I showed how MN58b synergizes with different chemotherapeutic agents in vitro and we 

wondered whether CHKA inhibition per se might sensitize cells to other cytotoxic drugs. 

To test this hypothesis we silenced CHKA in Suit2 007 cells and treated them with 

Gemcitabine, Oxaliplatin and 5-FU. We calculated the IC50 of the drugs in non-targeted 

and CHKA-silenced Suit2 007 cells. The results illustrate that CHKA silencing sensitizes 

Suit2 007 cells to all the drugs tested (Table 4). Therefore, we can conclude that CHKA 

levels predict the response to MN58b and other drugs. 
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N58b IC50 
(μM) 

CHKA ShNt CHKA Sh1 CHKA Sh2 pShNt vs 
Sh1 

pShNt vs 
Sh2 

Gemcitabine 0.78 0.14 0.13 <0.001 <0.001 
Oxaliplatin 19 3.8 5.2 <0.001 <0.001 
5-FU 40.9 15.5 10 <0.001 <0.001 

Table 4. Changes in drug sensitivity to gemcitabine, oxaliplatin and 5-fluorouracil after 
down-regulation of CHKA using lentiviral shRNAs. 

4. Resistance to MN58b is mediated by the up-regulation of the
ABCB transporters 1 and 4.

4.1. Generation and characterization of IMIM-PC-2 cells resistant to MN58b. 

Acquisition of resistance is a common feature among tumors and the reason for treatment 

failure and cancer progression. Resistance is classified as primary or acquired. Because of 

its relevance from the therapeutic point of view, I decided to focus on the possible 

mechanisms of acquired resistance to MN58b.  

To generate a drug-resistant cell line, IMIM-PC-2 cells were treated initially with a low 

dose of MN58b. Cells were passaged every 72 hours and subcultured in medium 

containing 20% increasing doses of MN58b. After 9 months of treatment resistant cells 

(IMIM-PC-2-R) were isolated and exposed to 10 µM of MN58b. An equal number of 

colonies between control and treated cells (Fig. 12A) was observed and the IC50 of IMIM-

PC-2-R cells was 156 µM, 40-fold higher that parental  (Fig. 12B).   

I characterized resistant cells from a pharmacological and biological standpoint. No 

differences in choline kinase enzymatic activity (Fig. 12C) were found, however, IMIM-

PC2-R cells showed a reduced choline uptake compared with parental cells (Fig. 12D).  

Choline metabolism is essential to sustain lipid synthesis and this might impact on cell 

proliferation. IMIM-PC-2-R cells displayed a low proliferation rate compared with 

parental cultures and this effect was already detectable at day 4 after seeding (Fig. 12E). 

Finally, I analyzed migration capacity of parental and resistant cells at different time 

points. At 24 hours the differences were minimal; by contrast, at 48 hours the resistant 

cells showed a clear reduction (90%) in their migration capacity compared with the 

parental cells (Fig. 12F). Acquisition of resistance is thus related with lower choline 

metabolism, reduced uptake and decreased cell proliferation and migration.       

Results
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C D 

E F 

Figure 12. IMIM-PC-2-R cells show a decreased proliferation rate and choline 
uptake. (A) Colony-formation assay with parental and 5 and 10 µM MN58b resistant 
IMIM-PC-2. (B) IC50 for parental and resistant IMIM-PC-2. (C) CHO to PCHO conversion 
rate after resistance acquisition. (D) Comparison of Choline uptake in Suit2 028, parental 
and and IMIM-PC-2-R cells. (E) Proliferation and (F) cell migration changes in IMIM-PC-2-
R.
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4.2. Transcriptomic profiling of IMIM-PC-2 resistant cells. 

I wanted to explore MN58b resistance mechanisms in PDAC cells. Hence, I extracted RNA 

from parental and resistant cells and analyzed their transcriptomic profile using next 

generation sequencing (RNA-seq).  

I performed principal component analysis (PCA) and demonstrated that cells cultured in 

the two conditions (wild-type vs. resistant) grouped independently (Figure 13A). I found a 

total of 3956 genes statistically deregulated in IMIM-PC-2-R compared with their parental 

counterparts: 2353 up-regulated (with log2 fold-changes ranging from 8.5 to 0.7) and 

1603 down-regulated (with log2 fold-changes ranging from and 9.9 to 0.41). Although 

GSEA analysis failed to reveal any significantly deregulated pathway, I found that two of 

the 5 most up-regulated genes in IMIM-PC-2-R - with a log2-fold change of 8.5 and 6.1, 

respectively- were the ATP-binding cassette (ABC) transporters 1 and 4 (ABCB-1 and 

ABCB-4), both members of the multi-drug resistant protein family (MDR) that participates 

in the acquisition of drug resistance in many tumors (Fig 13B). 

These results were validated by RT-qPCR and showed an almost 700-fold up-regulation of 

ABCB-1 and ABCB-4 mRNA in IMIM-PC2-R cells compared with parental cells (Fig. 13C). I 

confirmed this up-regulation at the protein level by western blotting using a specific 

antibody (Fig. 13D), although the differences were not as dramatic. Acute treatment of 

IMIM-PC-2 with MN58b did not produce changes in ABCB-1 or 4 expression (Fig. 13E and 

F). 

These results indicate that the up-regulation of the transporters ABCB-1 and 4 may 

participate in the mechanism of resistance to MN58b. 

Results
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C D 

E F 

Figure 13. Up-regulation of ABCB transporters 1 and 4 is responsible for acquired 
resistance to MN58b in IMIM-PC-2-R cells. (A) 3D scatterplot of transcriptome analyses 
reveals two differentiated clusters corresponding to parental and resistant cells. (B) 
Among the ten most significantly up-regulated genes in IMIM-PC-2-R cells we find ABCB-1 
and ABCB-4, two members of the MDR family. (C) Results from RNA-Seq analyses were 
confirmed by RT-qPCR and (D) western blotting. (E and F). Effect of acute treatment of 
IMIM-PC-2 cells with MN58b on the expression of  ABCB-1 and ABCB-4 mRNA, assessed by 
RT-qPCR with IMIM-PC-2-R for comparison. 
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4.3 Functional activity of the ABCB transporters in IMIM-PC-2 resistant cells 

I assessed the functional activity of ABCB-1 and ABCB-4 transporters using calcein-AM. 

Once incorporated into the cell and metabolized, calcein-AM is converted into the 

fluorescent dye calcein, detectable by fluorescence microscopy. ABCB transporters 

extrude calcein and reduce its intracellular concentrations thus informing about 

transporter activity.  Intracellular calcein measurements after calcein-AM treatment were 

3-fold lower in IMIM-PC-2-R cells compared with parental counterparts, confirming the

functionality of the ABCB transporters in resistant cells (Fig. 14A). 

A 

Figure 14. Blockade of ABCB transporters increases intracellular calcein uptake and 
resensitizes IMIM-PC-2-R cells to MN58b. (A) Calcein uptake is reduced by 
approximately 50% in IMIM-PC-2-R cells as a consequence of ABCB overexpression. 
Treatment of IMIM-PC-2-R cells with verapamil and zosuquidar  (B), both inhibitors of 
MDR proteins, increases calcein uptake, as can also be appreciated by 
inmunofluorescence. 

Results



4.4 ABCB inhibition sensitizes R IMIM-PC-2 cells to MN58b. 

To examine how ABCB transporters participate in the resistance to MN58b, I inhibited 

their activity and analyzed whether MN58b-resistant cells become drug sensitive. I used 

two drugs to block ABCB-1 pumping activity; verapamil, a calcium channel blocker, and 

Zosuquidar, an ABCB-1 specific inhibitor. Pre-treatment of IMIM-PC-2-R with both drugs 

increased calcein up-take 2-3 fold (Fig 14 B and C) and sensitized IMIM-PC-2-R to MN58b 

with IC50 values in the range of parental cells (Table 5). We can conclude that ABCB 

inhibitors sensitize IMIM-PC2-R cells to MN58b. 

IC50 MN58b (μM) PARENTAL RESISTANT 

Control 2 22 
0.1 [IC50 Verap] 2 2.7 
0.25 [IC50 Verap] 1.8 2 
Control 2.5 53.8 
0.1 [IC50 Verap] 2.6 4.6 
0.25[IC50 Verap] 3.1 4.7 

Table 5. Sensitivity of parental and IMIM-PC-2-R cells to MN58b after verapamil 

treatment.  
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PDAC remains one of the most lethal neoplasias with a 5 year survival of approximately 

5% and its mortality rate has remained unaltered in the last 50 years (131, 134). 

Therefore, it is essential to find new therapeutic targets and understand the mechanisms 

implied in drug-resistance. The extensive biological and genetic knowledge gathered in the 

last few years through genome sequencing studies has -unfortunately- revealed a paucity 

of direct oncogenic targets. However, the rich biology of PDAC is stimulating extensive 

research on other aspects such as the role of the stroma, the immune 

system/inflammation, and metabolic pathways. Increasing attention has been paid during 

the last decade to metabolic adaptations during malignant transformation (57), mainly 

regarding glucose and glutamine metabolism (204, 205). Among the latter, there is a 

metabolic reprogramming of glutamine mediated by KRAS, the hallmark genetic alteration 

in PDAC (206). Until now, little importance has been given to lipidic metabolism. 

In this work, I have focused on the study of choline metabolism. CHO is, through the 

Kennedy pathway,  the main source of PC,  the most abundant phospholipid in eukaryotic 

membranes. During malignant transformation, there is an increase of total choline-

containing phospholipid metabolites and a switch from GPC to PC, the precursor of PC 

(207). CHKA is one of the key enzymes in the Kennedy pathway and it catalyzes the 

phosphorylation of CHO. CHKA plays an important role in malignant transformation 

through its oncogenic cooperation with RhoA and it is an important source of second 

messengers such as DAG. Pharmacological inhibition of CHKA has shown anti-proliferative 

effect in a variety of transformed cell lines and in vivo models but nothing is known 

regarding its involvement in pancreatic tumors (107, 124, 127, 208).  

1. CHKA is consistently overexpressed in PDAC cell lines and its 
down-regulation decreases oncogenic properties.

In this work, I show that CHKA is a potentially important target in pancreatic cancer, based 

on three types of data: 1) the available information in public databases regarding CHKA 

expression in PDAC; 2) the expression of CHKA in PDAC cell lines and 3) the effects of 

CHKA inhibition and down-regulation in cultured PDAC cells and in vivo models. 

I first mined the public databases for evidence of CHKA involvement in PDAC. We found 

that it is overexpressed in many PDAC cell lines, such as PaTuT and Capan. It is also 

differentially expressed in the three subtypes defined by Collisson et al (47): classical 

(adhesion-associated and epithelial genes with KRAS addiction and GATA6 

overexpression), exocrine-like (expressing digestive enzyme transcripts) and quasi-

mesenchymal (mesenchyme genes). The classical subtype shows the highest expression of 

Discussion



CHKA while the lowest CHKA levels are observed in QM-subtype. This observation is in 

agreement with the well-known connection between RAS proteins and CHKA through Ral-

GDS and PI3K (96). 

To get more insight into the importance of CHKA in PDAC, I compared its expression in 

transformed and non-transformed cultured PDAC cells and also with cultured cells 

derived from other neoplasias. CHKA protein expression was 3 to 12-fold higher 

in transformed PDAC cells than in non-transformed ductal cells (HPDE and HPNE) and 

the levels were similar to those found in bladder, colon and breast cancer cells. 

This strengthens the role of CHKA in PDAC development and indicates that PDAC cells 

have increased CHKA levels compared to non-transformed PDAC cells, within the range of 

those tumors in which CHKA role is relevant in patients, such as bladder, where 

CHKA expression is associated with tumor size, metastatic spread and poor survival 

(106) and breast carcinomas, 40% of which have an increased CHKA activity (209).

The fact that mRNA levels were not consistently increased in transformed versus non-

transformed PDAC cells, and the absence of correlation between protein and genomic 

levels, suggest post-transcriptional mechanisms in the regulation of CHKA in PDAC. 

Alternative splicing is a well-known post-transcriptional modification for CHKA  resulting 

in two isoforms, 1 and 2. In the recent years several studies have reported a low 

correlation between transcript and protein levels suggesting that post-transcriptional 

modifications have a much more important role in biological processes than we generally 

consider, specially with proteins involved in transcriptional processes in which 

quantifying only mRNA expression might not always suffice to reflect the situation at the 

protein level (210). Although classically elevated oncogene levels correlates with tumor 

dedifferentiation and aggressiveness, reports from Collisson et al suggest that increased 

levels of genomic CHKA lack any association with dedifferentiation; CHKA levels are 

higher in differentiated (classical and exocrine) than dedifferentiated (QM) PDAC 

subtypes. Unfortunately they did not compared CHKA levels between PDAC and non-

tumorogenic pancreatic tissue. 

After I studied whether this enhanced expression of CHKA in PDAC cell lines was related 

with malignant transformation or was only the result of a high metabolic rate associated 

with in vitro cell proliferation. For that purpose, I tested the effects of CHKA genetic down-

regulation on two main properties of malignant cells, proliferation and migration.  CHKA 

inhibition reduced PCHO formation, cell proliferation and cell migration as expected. Also, 
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tumors generated in xenografts with CHKA-silenced cells were smaller in volume than 

those of non-silenced cells, suggesting a link between CHKA and tumor aggressiveness.  

The connection between some of the major pro-survival pathways (MAPK and PI3K) and 

the Kennedy pathway has been widely studied as summarized in Fig.D1. CHKA is 

stimulated by RAS and PI3K through RHO GTPases (96, 211-213), and, on the other hand, 

it has become clear that CHKA - through the production of the second-messenger PA - is a 

key activator of MAPK and PI3K/AKT signaling (86, 214). CHKA down-regulation directly 

decreases cell proliferation by attenuating major survival pathways (MAPK/PI3K), and 

indirectly by reducing the activity of the remaining CHKA due to the attenuation of RAS 

and PI3K -direct CHKA activators-. CHKA down-regulation can also affect cell proliferation 

through the decrease of important cell cycle regulators such as Cyclin A1 (121). While I did 

not study these mechanisms in PDAC cells, it is likely that they contribute to the effects we 

have observed. 

Figure D1. CHKA is required for the activation of the PI3K/AKT and MAPK signaling 
pathways. PCHO serves as an essential metabolic reservoir for the production of PC, the 
major phospholipid constituent of membranes and substrate for the production of lipid 
second messengers. In particular, phosphatidic acid, generated from the cleavage of 
phosphatidylcholine by the RAS and PI3K target phospholipase D2, has emerged as a key 
activator of the MAPK and AKT signaling pathways. Adapted from Yalcin et al. 

Migration was also impaired upon CHKA knock-down, supporting the importance of 

choline metabolism in this process. Endometrial differential 3 (EID3), the enzyme that 

hydrolyzes glycerophosphocholine (GPC) to produce gycerol-3-phosphate (G3P) and 
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choline, is required for cell migration, and its down-regulation decreases migration by 

disruption of the PKC alpha signaling pathway (115) and down-regulation of the β1 

integrin subunit required for basal membrane attachment (203). Stewart et al. described 

EDI3 up-regulation in primary ovarian and endometrial cancers and its correlation with 

metastasis and worse prognosis (115). Therefore, it is conceivable that CHKA inhibition 

might reduce tumor dissemination through down-regulation of proteins related with the 

epithelial to mesenchymal transition. Also, Granata et al have reported a decrease in 

migration and invasion after CHKA down-regulation. Their genomic and ingenuity 

pathways analyses revealed 476 genes and 25 pathways differentially expressed in CHKA 

silenced cells (121); among the biological functions associated with the most affected 

networks they found that cell movement, growth and proliferation were decreased 

contrary to cell death, that was increased. Microarray analysis in breast cancer cells after 

CHKA down-regulation also detected changes in 33 proliferation-related genes (120). 

Moreover, CHKA-silenced cells showed reduced oriented actin stress fibres and focal 

adhesion sites that enables them to migrate.  

Genetically CHKA down-regulated PDAC cells are viable, possibly due to incomplete CHKA 

silencing, which is in accordance with previous reports in ovarian cancer cell lines that, 

upon 80% silencing by siRNA transfection, showed a 35% reduction of cell proliferation at 

day 3 (121). These studies failed to observed apoptotic effects, pointing to the differential 

requirements of CHKA levels to sustain proliferation and to induce apoptosis. 

These results suggest that CHKA expression is important for the oncogenic properties of 

PDAC cells, as in other tumors (215), and therefore can be a reasonable therapeutic target 

for PDAC. Our results are in accordance with Penet et al who recently described the 

elevation of PC and tCho in cultured PDAC cells and tumor-derived xenografts (216) due to 

CHKA, CHT1, and CTL1 overexpression. 

2. CHKA expression is enhanced in tumors, where its nuclear
localization is a marker of differentiation and prognosis.

After validating the specificity of our antibody using CHKA down-regulated cultured cells 

with two different shRNAs, we analyzed whether tumors overexpress CHKA and whether 

CHKA expression associates with clinical-pathological features.  Tissue analyses confirmed 

an enhanced expression of CHKA in PDAC samples in comparison with normal pancreas 

and chronic pancreatitis; staining revealed prominent cytoplasmic CHKA expression in 
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>90% of tumor samples which was undetectable in normal pancreas and pancreatitis

samples. This result shows for the first time that PDAC samples overexpress CHKA 

similarly to prostate cancer (110), endometrial cancer (104) and other tumors. 

CHKA is generally considered to be a cytoplasmic protein (215). However, we observed 

that 40% of PDAC samples showed nuclear immunoreactivity with anti-CHKA antibodies. 

Given the specificity analyses performed, we are confident that these results indeed reflect 

that CHKA can be localized in the nucleus as well as in the cytoplasm. Moreover, nuclear 

CHKA expression was correlated with tumor differentiation: 17% of poorly differentiated 

tumors showed nuclear CHKA versus 49% of moderately- and well-differentiated tumors 

(p=0.024). Contractor et al have also described nuclear CHKA in prostate cancer using 

immunohistochemistry, although with a lower frequency than us, only in 1 out of 20 

samples. They also found that CHKA nuclear expression was more commonly associated 

with benign prostate tissue than with pre-malignant PIN lesions (110). 

Our analysis confirms that, in our case series, tumor differentiation constitutes a 

prognostic marker. The fact that CHKA nuclear expression correlated with tumor 

differentiation suggested an association with patient survival. In fact, subjects with PDAC 

whose tumors showed nuclear CHKA expression had a median overall survival of 500 days 

compared to 299 days for those lacking nuclear expression. Interestingly, among patients 

with moderately differentiated tumors, CHKA nuclear expression is a prognostic marker. 

Therefore, CHKA nuclear expression may allow the distinction of subgroups with distinct 

recurrence risks among those with moderately differentiated tumors. These results need 

to be validated in independent series; if so, they might contribute to stratify surgically-

resected patients for adjuvant treatment. CHKA up-regulation has already been described 

as worse outcome prognostic marker in early non-small lung cancer (109). 

The mechanisms and biological significance of nuclear CHKA are still poorly understood. 

CHKA could be phosphorylated and translocated to the nucleus with other proteins, such 

as ERK. It is appealing to hypothesize that CHKA might have different roles depending on 

its subcellular location. In the cytoplasm, CHKA could act as an oncoprotein promoting an 

increased synthesis of PC and second messengers involved in survival pathways. In the 

nucleus, CHKA could modulate the activity of transcription factors involved in 

differentiation as is the case of pyruvate kinase. The M2 isoform of pyruvate kinase is 

present in the cytoplasm as a tetramer that catalyzes the formation of pyruvate from 

phosphoenolpyruvate while in the nucleus it is active as a dimer and it has protumorigenic 
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activity through STAT3 phosphorylation (217). As in the case of pyruvate kinase, the 

differential localization and function of CHKA might be related to its structure and 

participation in multimolecular complexes. CHK occurs as a homodimeric (α/α, β/β) and 

heterodimeric (α/β) form. (90). Only the α- isoform is crucial for PC synthesis and is 

responsible for malignant transformation. It is possible that the α/α dimer is 

predominantly expressed in the cytoplasm of PDAC tumors, therefore contributing to its 

malignant potential, whereas the α/β dimer might be predominantly nuclear, having the 

opposite role. Further experiments using specific CHKA antibodies, subcellular 

fractionation, and proteomics should contribute to solve this question.  

3. The antitumor effects of MN58b on PDAC cells.

For pharmacological inhibition, we chose MN58b - a specific CHKA inhibitor whose 

selectivity has recently been shown in vivo by magnetic resonance spectroscopy (218) and 

which is also specific to CHKA in PDAC cells, as we have shown by the reduction of PCHO 

formation upon MN58b treatment. MN58b anti-neoplastic activity in vivo is due mainly to 

two main mechanisms: the intracellular increase of ceramide, a pro-apoptotic molecule 

(219), and an exacerbated endoplasmatic reticulum stress response through CHOP 

proteins (129) (Fig. D2).

Figure D2. Schematic illustration of the mechanisms causing cell death by MN58b. 
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We showed that induction of apoptosis -measured by increased caspase 9 activation and 

Annexin V staining- in PDAC cells treated with MN58b explains its cytotoxic effect. We 

found a direct association between CHKA levels and drug sensitivity: PDAC cell lines with 

higher CHKA levels were the most sensitive to MN58b, suggesting a role of CHKA as a 

predictive marker of response to MN58b, further supported by the resistance resulting 

from CHKA knockdown in MN58b-sensitive cells. Also  Hernando et al. reported that, mice 

with CHKA-overexpressing bladder tumors responded better to MN58b than non-

expressing ones (106). We propose that this may be due to the phenomenon of oncogene 

addiction which postulates that some tumors rely mainly on the expression of one 

oncogene to sustain its growth and survival and, therefore, its inhibition has dramatic 

consequences for the cell (220). 

This finding is relevant given the heterogeneity of tumor response to targeted therapies. 

Predictive marker identification is one of the main goals in drug development, as they 

provide opportunities for patient stratification in order to achieve higher activity and 

avoid unnecessary toxicities (3). Although several drugs are used for PDAC treatment 

(gemcitabine, 5-FU, oxaliplatin, irinotecan, nab-paclitaxel and erlotinib) no predictive 

markers have been described for any of them and usually CT scans after two or three 

cycles of chemotherapy reveal treatment efficacy. We believe that, if feasible, efforts 

should be made not only in the development of new therapies but also in the description 

of their predictive markers in order to ensure treatment efficacy from the beginning and 

avoid unnecessary toxicities. This is even more important for PDAC patients which have a 

short overall survival and a quick deterioration in performance status and, in many 

occasions, are not able to receive more than one treatment line.    

Interesently, we demonstrate that CHKA levels not only predict response to MN58b but 

also to classical chemotherapeutics agents in PDAC cells; CHKA down-regulation enhanced 

sensitivity to gemcitabine, oxaliplatin and 5-FU, suggesting that high levels of CHKA render 

cells more resistant to conventional treatments.  In fact, breast cancer cells with higher 

CHKA levels are more resistant to 5-FU and CHKA silencing makes them more sensitive 

(116). Finally Granata et al have recently shown that enhanced CHKA levels contribute to a 

drug resistant phenotype in epithelial ovarian cancer cells and transfection with CHKA 

siRNA increased their sensitivity to cisplatin, paclitaxel and doxorubicin (121). 

Drug combination is a common therapeutic strategy in cancer with two main advantages 

over monotherapy: it enhances treatment efficacy - the simultaneous use of drugs with 

Discussion



different mechanisms of action blocks different pathways implied in tumor progression -

and decreases toxicity. Combinations of gemcitabine with different chemotherapeutic 

agents (gemcitabine plus erlotinib, gemcitabine plus nab-paclitaxel and 5-FU plus 

oxaliplatin and irinotecan (FOLFIRINOX) (NCCN guidelines, 2015)), are currently used in 

the clinic in the treatment of metastatic disease and have demonstrated improved efficacy 

in patients with metastatic PDAC. Therefore overall patient survival has increased from 6 

months (gemcitabine monotherapy) to 8.5 months (gemcitabine + nab-paclitaxel) or 11.1 

months (FOLFIRINOX) (177) (173). Here, I show the additive or synergistic effect on cell 

death between MN58b and gemcitabine, oxaliplatin and 5-fluorouracil in RWP-1 and SK-

PC-1 cells. Previous reports support the efficacy of MN58b in combination with other 

drugs: MN58b synergizes with 5-FU in cultured colorectal cells and xenografts through the 

down-regulation of thymidylate synthase and thymidine kinase, two of the enzymes 

involved in the metabolism of 5-FU (221). The evidences for synergy in experiments 

silencing CHKA or combining MN58b with gemcitabine, 5-FU, and oxaliplatin indicate 

that these drug combinations merit further preclinical and clinical attention.  

What is the basis for the synergy between MN58b and other drugs and the influence of 

CHKA levels on drug sensitivity? Why should the pharmacological or genetic inhibition of 

CHKA enhance drug action? Granata et al show that the increased sensitivity after CHKA 

down-regulation is due to a decrease in glutathione and cysteine content and to the 

increase in intracellular levels of reactive oxygen species, which alters antioxidant cellular 

defenses (121, 222) and renders cells sensitive to other injuries. The role of CHKA in the 

synthesis of crucial components of cellular membranes such as PC implies that probably 

CHKA inhibition alters membrane composition and/or properties and thus contributes to 

modulate the permeability of cells to antitumor drugs. Finally, CHKA down-regulation 

decreases PC production which - through its breakdown by phospholipase D2 - is an 

important source of mitogenic signals - such as diacylglycerol, lyso-phosphatidylcholine 

and phosphatidic acid - that activates PI3K/AKT and MAPK pathways (84, 86). The 

attenuation of these pathways, involved in cell survival, probably renders cells less 

capable of recovering after external stress such as drug treatment. Drugs that inhibit the 

PI3K/AKT/mTOR pathway - such as temsirolimus or everolimus - are used in the clinic 

(223) and their combination with CHKA inhibitors could be an interesting therapeutic

strategy. 

Two of the main questions regarding PDAC treatment refer to the role of the stroma and 

the therapeutic options after gemcitabine failure. Stroma surrounding tumoral cells 



(named as "the desmoplastic reaction") is thought to be one of the main reasons 

accounting for PDAC chemoresistance as it hampers drug penetration (55). Pancreatic 

stellate cells (PSC) play a critical role in stroma formation and turnover and, therefore, the 

concept has emerged that new therapeutic strategies should not only target tumor cells 

but also pancreatic stellate cells and more generally the stroma. MN58b has cytotoxic 

effect over stellate cells, which makes it even more promising against PDAC. MN58b, 

through its direct effect on PSC and stroma, could facilitate the penetration of other 

chemotherapeutics in PDAC. 

We have observed that gemcitabine-resistant Suit2 007 PDAC cells are approximately four 

times more sensitive to MN58b than non-resistant Suit2 007 cells. Gemcitabine has two 

main antiproliferative mechanisms: it is a nucleotide analogue which substitutes cytidine 

during DNA replication, leading to apoptosis, and it also targets ribonucleotide reductase 

(RNR), blocking deoxyribonucleotide formation. The vast majority of PDAC show either 

primary or acquired resistance to gemcitabine through a variety of mechanisms, possibly 

also explaining their enhanced sensitivity to MN58b. Gemcitabine-resistant cells show 

increased expression of hypoxia-inducible factor 1α (HIF-1α) (224), which binds directly 

to the endogenous promoter of CHKA and increases CHKA levels (94), thus sensitizing 

them to MN58b. Gemcitabine-resistant cells also reduce reactive oxygen species (ROS) by 

increasing glutathione (GSH) production through an increase in NF-kβ-Nrf2 activity (225). 

This might be mediated by CHKA: in fact, Granata et al showed that CHKA down-regulation 

decreases glutathione and increases intracellular reactive species (222). Finally, 

gemcitabine-resistant cells show an overactivation of the MAPK/ERK signaling pathway 

and MAPK/ERK inhibition using lenalidomide, an immunomodulatory agent, restores 

gemcitabine sensitivity (226). CHKA inhibition also decreases MAPK/ERK activity through 

the decrease of phospholipase D and phosphatidic acid and it renders gemcitabine-

resistant cell more sensitive to MN58b (86). The possible inter-relatedness of these 

mechanisms also merits further attention in future studies. 

Gemcitabine, alone or in combination with nab-paclitaxel, is the common first-line 

treatment for PDAC patients (NCCN  guidelines, 2015). Although there are other drugs 

with cytotoxic activity against PDAC (oxaliplatin, 5-fluorouracil, irinotecan), the toxicity of 

the FOLFIRINOX regime makes it impossible for many patients to receive further 

treatments. This, combined with the fact that targeted therapies usually have lower 

toxicity than classical chemotherapeutics, opens the question of whether CHKA inhibitors 

could be a reasonable therapeutic approach after gemcitabine progression. 
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4. Mechanisms and behavior of PDAC cells with acquired
resistance to MN58b.

To better understand the mechanisms of resistance to MN58b, we generated the resistant 

cell line IMIM-PC-2-R, which has an IC50 30-fold higher than the parental cultures. These 

cells showed a reduction in CHO uptake, decreased proliferation, and reduced migration 

capacities. Resistant cells expressed similar levels of CHKA compared with their wild-type 

counterparts and similar enzymatic activity, measured as the rate of conversion from CHO 

to PC.    

CHO uptake takes place through four major families of transmembrane proteins: high-

affinity choline transporters (CHTs), intermediate-affinity choline transporter-like 

proteins (CTLs), organic cation transporters (OCTs) (with low affinity for choline) and 

organic cation/carnitine transporters (OCTNs). Choline uptake and CHKA expression are 

rate-limiting steps in choline phospholipid metabolism and crucial for malignant 

proliferation, as shown by decreased cell proliferation after down-regulation of CTL1 in 

lung cancer (227). 

We set to identify the mechanisms of resistance of IMIM-PC-2 cells through a genome wide 

transcriptomics analysis. We found a down-regulation of 28 genes belonging to the solute-

carrier gene (SLC) superfamily. The SLC superfamily includes 55 gene families with 362 

genes that encode for a huge variety of proteins involved in transport, including passive 

transporters, symporters and antiporters, with affinity for a wide range of substrates such 

as inorganic cations/anions, amino acids and metal ions (228).  Several SLC transporters 

are responsible for choline transport: SLC5A7 is a bona fide CHT, SLC44 is a CTL, and 

SLC22 belongs to the OCT subgroup. SLC44A2 and SLC22A17/18 transcripts were down-

regulated in IMIM-PC-2-R cells. By contrast, the expression of transcripts coding for CHKA 

and other enzymes of the Kennedy pathway were not affected. These results suggest that 

cells adapt to CHKA chronic inhibition by reducing choline uptake through choline 

transporter down-regulation. 

IMIM-PC-2-R cells functionally resemble CHKA-silenced Suit2 028 cells: they display 

reduced cell proliferation, migration and tumor formation. This phenotype is achieved 

through different mechanisms (reduced choline uptake in IMIM-PC-2-R versus reduced 

CHKA expression in Suit2 028 cells), leading to decreased PCHO and PC formation which, 

as discussed before, are essential to generate intermediates that activate survival and 



proliferation pathways (86). We also found genes related with tumor invasion and 

metastasis among those most down-regulated in IMIM-PC-2-R cells. In fact, the most 

down-regulated gene is CEACAM6 whose expression promotes EMT and is associated with 

worse prognosis in PDAC (229). 

We next investigated the mechanisms of MN58b resistance in IMIM-PC-2. Ramirez de 

Molina et al described the up-regulation of acid ceramidase (ASAH1) as a mechanism of 

resistance to MN58b in non-small cell lung cancer (NSCLC). ASAH1 inhibition restored the 

sensitivity to the drug (219). Contrarily, we found that ASAH1 was down-regulated in 

resistant cells indicating that this is not the mechanism of resistance in our model. We 

found among the 10 most up-regulated genes in IMIM-PC-2-R the multi-drug resistance 

(MDR) proteins ATP-binding cassette sub-family B member 1 (ABCB-1), also known as 

permeability glycoprotein 1 (Pgp-1), and member 4 (ABCB-4). Overexpression of these 

important candidates was demonstrated at the protein level. MDR transmembrane 

proteins are endowed with the ability to extrude drugs and we demonstrated their 

functionality in IMIM-PC-2-R cells using calcein uptake experiments. Therefore, we 

postulated that ABCB-1 inhibition should restore sensitivity to MN58b. We assayed this 

hypothesis using competitive inhibitors, either lacking specificity for several 

transmembrane proteins (Verapamil) or those specific for ABCB-1/Pgp-1 (Zosuquidar). 

I showed that inhibiting pump activity using these two drugs resulted in re-

sensitization of IMIMPC- 2-R cells to MN58b, which provides formal proof of the 

causal relationship between MDR overexpression and drug resistance. Using ABCB1 

and 4 specific siRNA has also shown to restore cell sensitivity in paclitaxel resistant cells 

(230).

MDR up-regulation is a well-known mechanism of acquired resistance to a variety of 

chemotherapeutic agents (vinblastine, etoposide and doxorubicin) (231). However it is 

also involved in intrinsic drug resistance: in ovarian cancer, a subgroup of cells with adult 

stem cell characteristics, called side population, showed up-regulation of Pgp-1, and 

resistance to paclitaxel leading to tumor progression. Its inhibition re-sensitizes cells to 

paclitaxel (232). Enhanced MDR expression is also a characteristic of cancer stem cells 

(CSC) and a major mechanism of chemoresistance. 

Blocking Pgp-1 showed promising results in vitro; in leukemia cells, zosuquidar restores 

sensitivity to anthracyclins (190). Although two reports showed the antitumoral efficacy 

of Zosuquidar in phase I and II trials (196, 233), no clinical improvement was 

demonstrated in phase III clinical trials: among patients with newly diagnosed acute 
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leukemia, the addition of zosuquidar to cytarabine and daunorubicin showed no 

improvement in overall survival, probably due to compensation by other efflux proteins 

(BCRP, MRP1) that are not inhibited by zosuquidar (234). The simultaneous up-regulation 

of multiple drug efflux pumps is not unique to IMIM-PC-2-R cells and can be a significant 

problem despite the fact that, in vitro, the blockade of Pgp-1 seems to be sufficient to 

restore MN58b sensitivity. The use of less specific MDR inhibitors might be advantageous 

to overcome resistance. Verapamil, a well-known calcium antagonist used for the 

treatment of arterial hypertension and some cardiac disorders, has been known to be a 

Pgp-1 modulator for more than thirty years (235) but, despite its promising in vitro 

activity, few in vivo studies have been carried out probably because of its non-specific 

mechanism of action.  In recent years, some studies have shown that when administered 

by arterial infusion combined with chemotherapy it improves outcomes in advanced 

gastric, hepatocarcinoma, colorrectal and lung cancer patients (236-239). Recently, some 

authors have explored the possibility of delivering doxorubicin and verapamil into the 

tumor using hydrogel nanoparticles. They observed an increase of intracellular 

concentration and cytotoxic activity of doxorubicin (240). Therefore, it seems that after 

the initial failure of molecules directed against Pgp-1 it is time to reconsider the efficacy of 

less specific Pgp-1 blockers. 

. 
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1. PDAC cells and human pancreatic tumors overexpress choline kinase

alpha to sustain cell proliferation.

2. In pancreatic tumors, choline kinase alpha localizes both in the cytoplasm and

in the nucleus. Nuclear expression associates with the outcome of patients with well

and moderately-differentiated tumors.

3. In pancreatic cancer cells, in vitro choline kinase inhibition using MN58b causes

cell death by apoptosis. MN58b has synergistic or additive effects with

gemcitabine, oxaliplatin and 5-Fluorouracil.

4. Choline kinase alpha levels constitute a predictive marker of the in vitro response

to MN58b and its down-regulation sensitizes pancreatic cancer cells to

gemcitabine, oxaliplatin and 5-FU.

5. Gemcitabine-resistant Suit2 007 pancreatic cancer cells show increased sensitivity

to MN58b in comparison with non-resistant Suit2 007 cells.

6. Acquired resistance to MN58b associates with decrease choline uptake, which

attenuates the malignant phenotype of cells.

7. Acquired resistance to MN58b is due to the up-regulation of Pgp-1 and ABCB-4 and

can be reverted with the Pgp-1 inhibitors Verapamil and Zosuquidar.

Conclusions
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1. Colina quinasa alfa está sobreexpresada en líneas celulares de PDAC y en tumores 

de páncreas y es necesaria para la proliferación celular.

Conclusiones

2. En los tumores de páncreas, colina quinasa alfa se halla en el citoplasma y en el 

núcleo. Su expresión nuclear constituye un factor pronóstico en los 

tumores bien y moderadamente diferenciados

3. En células de cáncer de páncreas, la inhibición in vitro de colina quinasa alfa 

mediante MN58b produce la muerte celular por apoptosis. MN58b posee un efecto 

sinérgico o aditivo con gemcitabina, oxaliplatino y 5-FU.

4. Los niveles de colina quinasa alfa constituyen, in vitro, un factor predictivo de 

respuesta al MN58b y el descenso de sus niveles sensibiliza a las células de cáncer de 

páncreas a gemcitabina, oxaliplatino y 5-FU.

5. Las células de cáncer de páncreas resistentes a gemcitabina Suit2 007 muestran una 

mayor sensibilidad al MN58b que las no resistentes.

6. La adquisición de resistencia a MN58b se asocia con un descenso en la captación de 

colina que atenúa el fenotipo maligno de las células.

7. La sobreexpresión de Pgp-1 y ABCB-4 es responsable de la adquisición de 

resistencia al MN58b que puede ser revertida mediante los inhibidores de Pgp-1 

Verapamilo y Zosuquidar 
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Choline Kinase Alpha (CHKa) as a Therapeutic
Target in Pancreatic Ductal Adenocarcinoma:
Expression, Predictive Value, and Sensitivity to
Inhibitors
Jos�e M. Mazarico1,Victor J. S�anchez-Ar�evalo Lobo1, Rosy Favicchio2,William Greenhalf3,
Eithne Costello3, Enrique Carrillo-de Santa Pau1, Miriam Marqu�es1, Juan C. Lacal4,
Eric Aboagye2, and Francisco X. Real1,5

Abstract

Choline kinase a (CHKa) plays a crucial role in the regulation
of membrane phospholipid synthesis and has oncogenic prop-
erties in vitro. We have analyzed the expression of CHKa in cell
lines derived from pancreatic ductal adenocarcinoma (PDAC)
and have found increased CHKa expression, associated with
differentiation. CHKa protein expression was directly correlated
with sensitivity to MN58b, a CHKa inhibitor that reduced cell
growth through the induction of apoptosis. Accordingly, CHKa
knockdown led to reduced drug sensitivity. In addition, we found
that gemcitabine-resistant PDAC cells displayed enhanced sensi-
tivity to CHKa inhibition and, in vitro, MN58b had additive or
synergistic effects with gemcitabine, 5-fluorouracil, and oxalipla-
tin, three active drugs in the treatment of PDAC. Using tissue
microarrays, CHKa was found to be overexpressed in 90% of

pancreatic tumors. While cytoplasmic CHKa did not relate to
survival, nuclear CHKa distribution was observed in 43% of
samples and was associated with longer survival, especially
among patients with well/moderately differentiated tumors. To
identify the mechanisms involved in resistance to CHKa inhibi-
tors, we cultured IMIM-PC-2 cells with increasingly higher con-
centrations ofMN58b and isolated a sublinewith a 30-fold higher
IC50. RNA-Seq analysis identified upregulation of ABCB1 and
ABCB4 multidrug resistance transporters, and functional studies
confirmed that their upregulation is the main mechanism
involved in resistance. Overall, our findings support the notion
that CHKa inhibition merits further attention as a therapeutic
option in patients with PDAC and that expression levels may
predict response. Mol Cancer Ther; 15(2); 1–11. �2016 AACR.

Introduction
Pancreatic adenocarcinoma (PDAC) is the fourth cause of

cancer-related death in the Western world, with a 5-year survival
of <5%. During the last two decades, PDAC-related deaths have
only decreased marginally (1). There are multiple reasons for this
poor outcome. Amajority of cases with PDAC are diagnosed at an
advanced stage, with either local (26%) or distant metastases
(53%), and only 20% of patients are candidates for surgery with

curative intent (2). There is also a lack of effective therapies for
advanced disease. Gemcitabine has been the gold-standard treat-
ment formetastatic disease. The combinationof 5-fluorouracil (5-
FU), oxaliplatin, and irinotecan (FOLFIRINOX) and the combi-
nation of gemcitabine with nab-paclitaxel and gemcitabine with
erlotinibhave shown increased antitumor activity (3–6), but there
is a need to identify new therapeutic targets and drugs.

In the last years, there has been a renewed interest in exploiting
themetabolic reprogramming that cells undergo uponmalignant
transformation (7). One promising metabolite deregulated in
cancer is choline, an essential nutrient of the B vitamin family that
is necessary for the synthesis of phosphatidylcholine. Phospha-
tidylcholine is themost abundant phospholipid of the eukaryotic
cell membrane. Tumors show an active choline metabolism
manifested by an increase of phosphocholine and total choline
metabolites required to sustain cell growth and transformation
(8). Phosphatidylcholine is also the precursor of important sec-
ond messengers and mitogenic signals, such as diacylglycerol or
arachidonic acid, through its hydrolysis by phospholipases. The
first enzyme of the Kennedy pathway, choline kinase, phosphor-
ylates free choline and generates phosphocholine. Two enzymes
have been identified in mammals: choline kinase a (CHKa), of
which two isoforms are generated by alternative splicing, and
choline kinase b (CHKb; ref. 9). CHKbhas not been reported to be
oncogenic (10), but CHKa has been proposed to participate in
initiation and progression of several tumors (11–14). These
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findings render CHKa an attractive therapeutic target. Several
choline kinase inhibitors (CHKI) have been developed from
hemicholinium-3. MN58b, a first-generation CHKI-competitive
inhibitor, has antiproliferative and antitumoral activity in vitro
and in vivo (11, 15–18). Second-generation CHKIs are in phase I
clinical trials (19).

We aimed to assess the importance of CHKa in PDAC and to
test the efficacy of its pharmacologic inhibition as a single agent or
in combination with the drugs most commonly used in this
tumor. CHKa levels are predictive of drug sensitivity and CHKa
downregulation sensitizes cells to other anticancer drugs.Wehave
identified a novel mechanism of acquired resistance to CHKIs,
resulting from the upregulation of multidrug resistant (MDR)
proteins.

Material and Methods
Cell culture

The following PDAC cell lines were used: SK-PC-1, SK-PC-3,
and IMIM-PC-2 (20); Suit2 007, Suit2028, T3M4, andPATU8988
T (M. Buchholz, University of Marburg, Germany); Panc-1,
RWP-1, BxPC-3 (ATCC); PK-9 (C. Iacobuzzio-Donahue, Memo-
rial Sloan Kettering Cancer Center, New York, NY); MZ-PC-4
(University of Z€urich, Switzerland). Oncogene-immortalized
HPDE (M. Tsao, University Health Network, Toronto, Canada)
and hTERT-immortalized human ductal pancreatic cells (HPNE,
T. Gress) were used as controls (21). Nonpancreatic cells used
were J82, RT112, and HT1376 (bladder; F. Radvanyi, I. Curie,
Paris, France); HT-29 (colon; A. Zweibaum, INSERM, Villejuif,
France); human embryonic kidney (HEK)–293T (ATCC); SK-
BR-3, MDA-MB-231 (breast; ATCC). The identity of the lines was
confirmed using short tandem repeat (STR) fingerprinting. Cells
were cultured in DMEM supplemented with 10% FBS, 1% Na
pyruvate, and 1% penicillin/streptomycin. All cells were free of
mycoplasma contamination. Control nontargeting or CHKa-tar-
geting lentiviral particles were produced in HEK-293T cells using
Sigma Mission plasmids following the manufacturer's instruc-
tions. The interfering sequences were:

Sh-1: GTACCGGGTGTTACTTGCAGGTACTTTGCTCGAGCAAA-
GTACCTGCAAGTAACACTTTTTTG;
Sh-2: GTACCGGGCAGATGAGGTCCTGTAATAACTCGAGTTATT-
ACAGGACCTCATCTGCTTTTTTG;
Sh-3: CCGGGCGATTAGATACTGAAGAATTCTCGAGAATTCTTC-
AGTATCTAATCGCTTTTT;
Sh-4: CCGGCCAAGAAACAACAGCTCCATTCTCGAGAATGGAG-
CTGTTGTTTCTTGGTTTTT;
Sh-5: CCGGGCCAAGATTTCATCTATTGAACTCGAGTTCAATAG-
ATGAAATCTTGGCTTTTT.

To produce viral particles, psPAX2 and VSVG packaging plas-
mids were used. Virus-containing supernatant was collected 24
hours after transfection, filtered, and used to infect the corre-
sponding cells in the presence of hexadimethrine bromide poly-
brene (5 mg/mL; Sigma). Two rounds of infection were performed
within 24 hours; cells were selected for 48 hours in medium
containing puromycin (2 mg/mL; Sigma).

Generation of MN58b-resistant cell lines
To generate MN58b-resistant IMIM-PC-2 cells, MN58b was

added starting at 0.1 mmol/L. Control IMIM-PC-2 cells were
cultured without drug. MN58b concentration was increased by

50%weekly at each passage of the cells (split 1:3when confluent);
final concentration was 8 mmol/L.

To generate gemcitabine-resistant PDAC cell lines, an incre-
mental dose approach was used. The starting concentration was
35 nmol/L 20-deoxy-20,20-difluorocytidine monohydrochloride
(Eli Lilly Ltd). Gemcitabine concentration was maintained con-
stant andwas increased 1.5- to 2-fold at each cell passage. Thefinal
concentration was 250 nmol/L. Resistant cells were authenticated
by STR profiling.

Growth and viability assays
Cells (5 � 104 per well) were seeded in triplicate in 6-well

plates, trypsinized, and counted. To determine viability, cells
(2 � 104 per well) were seeded in 24-well plates. After 24 hours,
medium was removed and MN58b was added; after 72 hours,
cells were fixed with 3% formaldehyde, washed twice with PBS,
and incubated with 0.5% crystal violet in 25% methanol; crystal
violet was eluted with 10% acetic acid and the OD590 nm was
determined. To assess colony formation, cells (5 � 104 per well)
were seeded in 6-well plates and medium was replaced 24 hours
later with medium containing MN58b. After 72 hours, cells were
processed as described earlier.

Apoptosis assays
Cells (5 � 104 per well) were seeded in 6-well plates in the

presence of increasing concentrations of MN58b. After 24 and
48 hours, cells were washed with PBS, resuspended in Annexin
V binding buffer, and incubated with APC-Annexin V (BD
Biosciences) in the dark for 15 to 20 minutes. DAPI was added
for 15 minutes, and viability was assessed in a FACS Canto II
flow cytometer (BD Biosciences). Results were quantified using
FlowJo software (FlowJo version 7.6.1, TreeStar Inc.).

Drug synergy assays
Cells (2 � 104 per well) were seeded in 24-well plates. After

24 hours, medium was removed and drugs (MN58b, gemcita-
bine, oxaliplatin, and 5-FU) were added for 72 hours, alone or
in combination, at a range of doses according to the previously
estimated IC50 for each drug. Viability was determined and the
combination index (CI) values were calculated using the Chou
and Talalay method (22) with the Calcusyn software (Biosoft).
A CI of 0.9–1.1 indicates an additive effect, a CI <0.9 indicates
synergy, and a CI >1.1 indicates antagonism.

Calcein-AM assay
Cells (2 � 104 per well) were seeded in black 96-well plates.

After 24 hours, calcein-AM uptake and conversion to fluorescent
calcein were determined using the Invitrogen calcein-AM assay kit
according to the manufacturer's instructions (Invitrogen). Fluo-
rescence was determined at 490/520 nm using a luminometer
reader (PHERAstar).

Choline uptake
A pulse-chase in cell assay was used to determine choline

uptake. 3H-choline chloride was added to the culture media for
60 minutes; the media was then removed and the wells washed
3�with PBS. Cells were lysed and choline uptake was assessed as
the amount of 3H present in the lysates, as determined using a
scintillation counter.
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Choline kinase activity
Free 3H-choline was added to the reaction mix (MgCl2

10 mmol/L, KCl 100 mmol/L, ATP 500 mmol/L, and Tris pH
7.5 100 mmol/L), and its phosphorylation was determined from
the amount of 3H-choline converted to 3H-phosphocholine using
a modified Bligh and Dyer assay (23). The use of passive lysis
buffer ensured enzymatic activity in the lysates before 3H-choline
chloride was added. The reaction was stopped at 60 minutes by
the addition of methanol/chloroform to effectively initiate the
lipid extraction step. Phase extraction using tetraphenylborate
then separated choline from phosphocholine, and the amount of
3H in each fraction was determined using a scintillation counter.

Immunoblotting
Cells were lysed in NP-40 buffer (25 mmol/L Tris-HCl pH 7.4,

150mmol/L NaCl, 1mmol/L EDTA, and 1%NP-40) supplemen-
ted with protease inhibitor cocktail. Proteins (20 mg) were frac-
tionated, transferred to nitrocellulose, and incubated with mouse
monoclonal antibody AD8 recognizing CHKa (1:1,000 dilution;
ref. 24) or anti-rabbit anti-CHKa polyclonal antiserum (Sigma,
HPA024153; 1/100). After washing, peroxidase-labeled anti-
mouse Ig (Amersham Pharmacia Biotechnology) was added.
Mouse anti-vinculin (Sigma) served as control. Reactions were
developed using enhanced chemiluminescence (AmershamPhar-
macia Biotechnology).

RT-qPCR
Total RNA was isolated using the GenElute Mammalian Total

RNA kit (Sigma). Samples were treated with DNase I (Ambion)
and converted to cDNA using TaqMan reverse transcription
reagents (Applied Biosystems). Quantitative PCR was performed
using SYBR-green mastermix in a Prism 7900 HT instrument
(Applied Biosystems). The following primers were used for the
detection of CHKa mRNA isoform 1: AAAGAGGGATCCGAA-
CAAGC (forward) and AGTGACCTCTCTGCGAGAATG (reverse);
ABCB1: CTGTGAAGAGTAGAACATGAAG (forward) and TTGCA-
CCTCTCTTTTATCTG (reverse); and ABCB4: GAGGTCAAAAACA-
GAGGATTG (forward) and CCTTTTCACTTTCAGTATCCAG
(reverse). Reactionswere performed in triplicate; expression levels
were normalized to individual hypoxanthine phosphoribosyl-
transferase mRNA values using the DDCt method (25).

In vivo subcutaneous tumorigenic assay
Suit2 028 CHKa-silenced (Sh-3 and Sh-5) and their nontarget

counterparts (shNt) cells were grown in 6- to 8-week-old female
BALB/c Nu/Numice (Charles River or Harlan Laboratories). Cells
(2 � 106, 100 mL in PBS) were injected subcutaneously, growth
was monitored using an electronic caliper, and volumes calcu-
lated using the formula (L�W2� 0.5). Mice were housed in IVC
cages; animal work was performed by licensed investigators in
accordance with the United Kingdom Home Office Guidance on
the Operation of the Animal (scientific procedures) Act 1986 and
Amended 2012 in line with the EU Directive 2010/63.

IHC
Tissue microarrays (TMA) containing duplicate nonmalignant

and malignant cores from 96 patients with PDAC treated at the
Royal LiverpoolUniversityHospital (Liverpool,Merseyside,Unit-
ed Kingdom) were manufactured following good laboratory
practice standards. Cores were taken from tumor regions identi-

fied by an experienced pathologist. Samples were collected under
ethical committee approval for characterization of tumormarkers
for chemotherapy from the Liverpool (Adult) Research Ethics
Committee (07/H1005/87).

Sections were incubated in boiling water for 10 minutes in
citrate buffer pH 6. Slides were incubated at 4�C overnight with
rabbit anti-CHKa polyclonal antiserum HPA024153 (1/100).
After rinsing in PBS, horseradish peroxidase–conjugated anti-
rabbit Ig antibody (DAKO)was added for 1hour. Bound antibody
was revealed with diaminobenzidine, and sections were counter-
stained. H-score was calculated as the product of intensity (scale
0–3) and percentage of positive cells; samples were classified as
high (upper quartile),medium(twomid-quartiles), or low (lower
quartile) CHKa staining.

Antibody specificity was demonstrated using Suit2 028 cells
infected with control or CHKa-specific shRNA lentivirus (Sup-
plementary Fig. S1).

CHKa expression and patient characteristics/variables
The clinical variables considered were age, gender, stage, grade,

date of surgery, chemotherapy, and survival. The Kaplan–Meier
method applying the log-rank test was used to estimate the
differences in overall survival. Multivariate analyses including the
above variables were performed.

RNA-Seq and bioinformatics analysis
RNA from parental and MN58b-resistant cells was purified

using TRIzol. Integrity was assayed on an Agilent 2100 Bioana-
lyzer (Supplementary Table S1). PolyAþ fractions were purified
and randomly fragmented, converted to double-stranded cDNA,
and processed by end-repair, dA-tailing, and adapter ligation
(Illumina "TruSeq Stranded mRNA Sample Preparation Part #
15031047 Rev. D"). Adapter-ligated library was completed by 10
PCR cycles with Illumina PE primers. The purified cDNA template
library was applied to an Illumina flow cell for cluster generation
(TruSeq cluster generation kit v5) and sequenced on Genome
Analyzer IIx (GAIIx) with SBS TruSeq v5 reagents following the
manufacturer's instructions (SingleRead 1 � 40 bases). Image
analysis and per-cycle base calling was performed with Illumina
Real TimeAnalysis software (RTA1.13). Conversion to FASTQwas
performed with CASAVA-1.8 (Illumina). These files contain only
reads that passed "chastity" filtering (flagged with a N, for �NOT
filtered� in the sequence identifier line). "Chastity" parameter
measures signal contamination in raw data and allows flagging
unreliable reads. Quality check was done via fastqc (v0.9.4,
Babraham Bioinformatics). Raw reads were aligned to the refer-
ence genome hg19/GRCh37 with tophat1 (version 2.0.4) using
the following parameters: –bowtie1, –max-multihits 5, –genome-
read-mismatches 1, –segment-mismatches 1, –segment-length
19, –splice-mismatches 0, and –library-type fr-firststrand. Gene
expression levels (fragments per kilobase of exon per million
fragments, FPKM)were quantified with cufflinks2 (version 2.0.2),
as annotated in Ensembl version GRCh37.65, with the following
parameters: -N, –library-type fr-firststrand, -u.

Sample correlation, principal component analysis, and
differential gene expression

FPKM correlations and PCA clustering of samples were carried
out with the R (version 2.14.1) functions cor() and prcomp.
Differential gene expression analysis was performed with the
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cuffdiff function included in cufflinks2 (version 2.0.2) with para-
meters: -N, –library-type fr-firststrand, -u.

CHKa expression in cancer cell lines
CHKa expression values were obtained from the Cancer Cell

Line Encyclopedia (CCLE; ref. 26). The method of Subramanian
and colleagues (27) was adapted to carry out a tissue enrichment
analysis (TEA) with the CCLE PDAC lines. Cell lines were pre-
ranked by CHKa expression for each of the probes included in the
microarray (204266_s_at and 204233_s_at) to calculate an
enrichment score for the PDAC subgroup. The score reflects how
often PDAC lines appear at the top or bottom of the ranked
dataset (27).

CHKa expression in pancreatic tumor tissues
Expression values for CHKa were downloaded from the

Gene Expression Omnibus series GSE15471 (probes
204266_s_at and 204233_s_at; ref. 28). Samples were classified
as classical-, exocrine-like– and quasi-mesenchymal–PDA
(QM-PDA) as defined by Collisson (29). One-way ANOVA
was used to assay differences in CHKa expression between
PDAC categories and Tukey test was used to test pairwise
comparisons. The R (version 2.14.1) functions aov, TukeyHSD,
and boxplot were used for statistical analyses and graphs; P
values < 0.05 were considered significant.

Results
PDAC cells overexpress CHKa

To obtain an overall view of the expression of CHKa in
PDAC, we applied a similar analysis as in GSEA–gene set
enrichment against a preranked gene list, but we replaced genes
by cell lines (TEA). The public data from the CCLE were used.
Cell lines derived from PDAC are significantly enriched among
those displaying high level of expression of CHKa (Fig. 1 and
Supplementary Fig. S2). This enrichment was significant for
both CHKa probes for which information is available through
CCLE (Fig. 1 and Supplementary Fig. S2). In addition, we
assessed whether CHKa expression is associated with the three
PDAC categories recently defined by Collisson and colleagues
(29). As shown in Fig. 1B, samples in the QM group express
lower levels of CHKa mRNA than classical or exocrine-like
samples, suggesting a relationship between CHKa expression
and cell differentiation.

We then used western blotting to compare CHKa expression in
12 PDAC cell lines and two immortalized pancreatic ductal cell
lines (HPDEandhTERT-HPNE). PDAC lines showed3- to 11-fold
higher levels of CHKa compared with HPDE or HPNE cells (Fig.
2A and Supplementary Fig. S3). CHKa levels in PDAC cells were
comparable with those found in bladder, colon, and breast cancer
cell lines (Fig. 2B). We did not find a good correlation between
isoform 1mRNA levels, assayed using RT-qPCR, and protein. This
isoform is the predominant transcript expressed in the pancreas
(30), suggesting that posttranscriptional mechanisms participate
in the regulation of CHKa in PDAC.

To study the requirement of CHKa for proliferation, we used
RNA interference with different sh-lentiviruses in high-expressing
Suit2 028 cells. A partial CHKa knockdownwas achievedwith Sh-
3 and Sh-5 (Fig. 2C). We did not observe morphologic changes or
cell death (data not shown), possibly because of the incomplete
silencing. However, a significant reduction in the growth rate of

silenced cells was observed in vitro (Fig. 2D). Suit2 028 cells,
CHKa-silenced with two different lentiviral shRNAs and nontar-
geted controls, were subcutaneously injected in nude mice. A
significantly reduced growthof xenograftswasobservedwithboth
shRNAs at days 10 and 15 after injection (Fig. 2D). We conclude

Figure 1.
Bioinformatics analysis of CHKa expression in PDAC cell lines and tissue
samples. A, TEA of the expression data of PDAC lines in the CCLE. PDAC lines
are highly represented among the highest CHKa-expressing cells (probe
204233_s_at). B, box plot showing CHKa expression (probe 204266_s_at) in
the PDAC subgroups defined by Collisson and colleagues and statistical
analysis of the comparison (bottom).
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that, as in other tumor types, CHKa is overexpressed inPDACcells
and is important to sustain cell growth.

CHKa expression in pancreatic tissues: association with tumor
differentiation and survival

In nonneoplastic pancreas, weak cytoplasmic staining of acinar
and ductal cells was observed. Islet cells showed stronger cyto-
plasmic stainingand,occasionally, positivenuclei (Fig. 3A, top left).
A low proportion of stromal cells with a fibroblast morphology
showed cytoplasmic staining as well. We analyzed CHKa expres-
sion using a humanPDACTMA containing predominantly stage III
tumors with nodal invasion (Supplementary Table S2). Chronic
pancreatitis samples showed weak ductal cell staining (Fig. 3A, top
middle), whereas ductal tumor cells showed stronger staining (Fig.
3A bottom, middle and right). PanIN lesions showed variable
staining from moderate to strong (Fig. 3A). The majority (91%)
of tumor samples showed detectable CHKa expression that was
categorized as high (32%), medium (47%), or low (21%) accord-
ing to intensity and percentage of staining. Nuclear staining was
present in43%of samples andwasassociatedwithwell/moderately
differentiated tumors (49% vs. 17%, P ¼ 0.024; Fig. 3A).

Follow-up informationwas available for 74 patients. There was
no statistical association betweenH-score and survival, but nucle-

ar staining was associated with improved survival (500 vs. 299
days, P¼ 0.014; Fig. 3B, left) in all samples, and especially among
moderately differentiated tumors (575 vs. 299 days, P ¼
0.002; Fig. 3B, right). In the multivariable model, grade, but not
CHKa nuclear staining, was an independent variable associated
with improved survival.

The antiproliferative activity of the CHKaI MN58b is associated
with CHKa expression levels

MN58b selectively inhibits CHKa; accordingly, we observed a
decrease in the synthesis of phosphocholine from choline in
IMIM-PC-2 cells (Fig. 4A). We analyzed the effects of MN58b on
the growth of four PDAC cell lines (SK-PC-1, Suit2 008, IMIM-PC-
2, and RWP-1). MN58b had amarked effect on colony formation
at 1 mmol/L, and growth was completely abolished at 5 mmol/L in
all the cell lines tested (Fig. 4B). In a panel of 12 PDAC cell lines,
the IC50 of MN58b ranged from 0.23 to 3.2 mmol/L. We found a
direct relationship between CHKa protein expression and
MN58b sensitivity (R2 ¼ 0.88; Fig. 4B and Supplementary Table
S3). CHKa knockdown in Suit2 028 and Suit2 007 cells was
associated with an increase in the IC50 (Supplementary Table S4).

To determine the mechanism of action of MN58b, we treated
PDAC cells with increasing concentrations of MN58b (1–10

Figure 2.
CHKa is overexpressed in cultured
PDACcells, and it is important to sustain
cell proliferation. A, CHKa expression
by western blotting in PDAC cell lines
and nontransformed HPDE pancreatic
cells; quantification was performed by
densitometry. B, CHKa expression in a
panel of nonpancreatic cells. C, CHKa
expression in Suit2 028 cells infected
with 5 different shRNA lentiviruses
(Sh-1 to Sh-5) or a scrambled (Nt)
sequence. D, growth of control and
CHKa-silenced Suit2 028 cells in vitro
(left) and in vivo as subcutaneous
xenografts (right).
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mmol/L) for 24 or 48 hours and analyzed apoptosis through
Annexin V. There was a direct correlation between CHKa expres-
sion and the percentage of Annexin V–positive cells at 48 hours
(Fig. 4C). The induction of apoptosis was confirmed through
the analysis of cleaved caspase-9 by western blotting; a dose–
response relationship was observed (data not shown). Therefore,
MN58b induces apoptosis and this response correlates with
CHKa expression. These results suggest that CHKa could be a
predictive marker of response to MN58b.

Combination effects of MN58b and chemotherapeutic agents
Both primary and acquired resistances contribute to the limited

efficacy of gemcitabine in the treatment of PDAC. We used
parental and gemcitabine-resistant Suit2 007 cells to assess the
relationship between resistance and MN58b sensitivity. The IC50

of MN58b for parental and resistant cells was 3.14 mmol/L and
0.77 mmol/L, respectively, supporting the notion that MN58b
could be a therapeutic alternative in gemcitabine-resistant tumors.

To test the synergism of MN58b with other chemotherapeutic
agents active in PDAC therapy (5), we treated PDAC cells (SK-PC-
1, Suit2 028, and RWP-1) expressing variable levels of CHKawith
gemcitabine, oxaliplatin, or 5-FU plus MN58b at concentrations
lower than the IC50. The synergism was measured as CI. In Suit2
028 cells, none of the combinations tested showed increased
effects. In the other two cell lines, MN58b showed an additive
effect in combination with gemcitabine and 5-FU, and synergism
in combination with oxaliplatin (SK-PC-1, CI ¼ 0.23; RWP-1,
CI ¼ 0.39; Fig. 4D and Supplementary Fig. S4). These findings
support the use of MN58b in combination with other chemo-
therapeutic drugs.

Figure 3.
CHKa expression in pancreatic tissue samples. A, representative images of CHKa immunostaining in normal pancreas (top left), chronic pancreatitis (top
middle), PanIN (low grade, top right; high grade, bottom left), and PDAC (bottom, middle and right). Bottom, middle and right, nuclear and cytoplasmic
CHKa, respectively. B, Kaplan–Meier survival curves of a cohort of 74 patients (left) with PDAC showing that nuclear CHKa staining correlates with better
outcome. The same analysis, restricted to patients with moderately differentiated tumors, is shown at right.
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Resistance to MN58b is mediated by the upregulation of the
ABCB transporters 1 and 4

To assess the mechanisms involved in the acquisition of
resistance to CHKI, we generated an MN58b-resistant line from
parental IMIM-PC-2 cells by continuous culture with increasing
drug concentrations. After 9 months of treatment, IMIM-PC-2-
R cells were established; their IC50 was 156 mmol/L, approx-
imately 30-fold higher than that of parental cells. Colony-
forming capacity of IMIM-PC-2-R cells was not affected by
treatment with 10 mmol/L MN58b (Fig. 5A). IMIM-PC-2-R
displayed a lower baseline proliferation rate than parental cells
(Fig. 5A) as well as reduced choline uptake (approximately
50%; Fig. 5B). However, CHKa enzymatic activity was similar
in resistant and parental cells (Fig. 5C).

To investigate themechanismsof resistance,weperformedRNA-
Seq of both lines. Scatterplot3d library was used to visualize the
first 3 components accounting for 99.8% of the variance between
the samples (Supplementary Fig. S5A). GSEA pathway analysis of
differentially expressed genes did not reveal any significantly
deregulated pathway. However, 2 of the 5 top upregulated genes
in IMIM-PC-2-R cells were members of theMDR protein family of
ATP-binding cassette (ABC) transporters 1 and 4 (ABCB1 and
ABCB4; Supplementary Fig. S5B). Results from the transcriptome
analysis were validated by RT-qPCR, showing a 700-fold upregula-
tion of ABCB1 and ABCB4 in the resistant cells compared with the
parental ones (Fig. 5D). The overexpression of the transporterswas
confirmed at the protein level, although the fold change was more
modest (Fig. 5D). ABCB1 and ABCB4 mRNA expression was not

Figure 4.
CHKa levels are associated with the
apoptotic response to MN58b. A,
treatment of IMIM-PC-2 PDAC cells with
MN58b reduces phosphocholine (PCho)
synthesis. B, colony formation using
four PDAC cell lines treated with
increasingMN58b concentrations (top).
Inverse correlation between levels of
CHKa and MN58b IC50 (bottom).
C, apoptosis, measured by Annexin V
staining and flow cytometry, in three
PDAC cell lines treated with MN58b for
24 or 48 hours. D, synergistic effects of
MN58b combined with gemcitabine
(Gem), oxaliplatin (Oxa), and 5-FU on
PDAC cell lines. Cho, choline.
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affected by acute treatment withMN58b (Supplementary Fig. S6),
supporting the notion that selection pressure from chronic expo-
sure to the drug is required for their upregulation.

The functional activity of the transporters was assessed using
calcein-AM, an ABCB1 substrate that is converted to the fluores-
cent dye calcein in cells. IMM-PC-2-R cells showed 3-fold less
intracellular calcein than their parental counterparts (Fig. 6A).
To demonstrate that MDR proteins are responsible of the resis-
tance, we inhibited their activity using verapamil, an L-type
calcium channel blocker of the phenylalkylamine class, and
zosuquidar, an ABCB-specific inhibitor. Pretreatment with both
drugs increased calcein uptake in IMIM-PC-2-R cells 2- to 3-fold
(Fig. 6B and C) and also reduced its IC50 to values in the range of
parental IMIM-PC-2 (Supplementary Table S5).

Discussion
PDAC is one of the most chemoresistant tumors, and new

targets and drugs are urgently needed. Metabolic reprogramming

has emerged as a new hallmark of cancer providing opportunities
for therapy (7). Beyond the extensively studied metabolic path-
ways involving glucose and glutamine, recent attention has
focused on choline metabolism. Choline is not only important
for cell proliferation, as it is the main source of phosphatidyl-
choline, but it also plays an important role in transformation
through its cooperation with RhoA (31). Here, we have addressed
the importance of CHKa in PDAC using both chemical and
genetic inhibition, and we have tested the potential of MN58b,
a CHKa inhibitor, against PDAC cells in vitro. We have also
identified and characterized ABCB transporter upregulation as a
new mechanism of acquired resistance to MN58b.

A recent study has shown high levels of choline and PC in
PDAC cell lines and tumors, supporting the importance of CHKa
as a potential metabolic target (32). Using bioinformatic analyses
and a panel of cell lines, we show that CHKa is overexpressed in
PDAC versus nontransformed HPDE pancreatic ductal epithelial
cells, as has been reported in lung, breast, colorectal, and bladder
cancer cells (11, 14), and that PDAC lines rank among those

Figure 5.
Generation and characterization of
MN58b-resistant IMIM-PC-2 cells:
overexpression of ABCB transporters.
A, generation of MN58b-resistant
IMIM-PC-2 cells (left). Growth curves of
parental versus IMIM-PC-2-R cells
(right). B, choline (Cho) uptake in
parental and IMIM-PC-2-R cells. C, in
vitro choline kinase activity in parental
versus IMIM-PC-2-R cells. D, validation of
ABCB1 and ABCB4 overexpression in
parental IMIM-PC-2-R cells by qRT-PCR
(left) and western blotting (ABCB1;
right). PCho, phosphocholine.
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expressing highest CHKamRNA. The relationship betweenCHKa
expression levels and tumor aggressiveness has not been exten-
sively analyzed, but recent data in lung and bladder cancer
support an association both using tumor samples and xenografts
in mice (14, 33). Unlike in these reports, we did not find a good
correlation between mRNA and protein levels in PDAC cells. To
determine whether overexpression of CHKa results from a high
metabolic rate or is required for cell growth, we inhibited the
enzymeusingMN58b, a specificCHKa inhibitorwhose selectivity
has recently been shown in vivo by magnetic resonance spectros-
copy (34), and by genetic knockdown. CHKa inhibition by both
strategies led to decreased cell proliferation, possibly due to
reduced PI3K/AKT and MAPK signaling (35).

Immunohistochemical analysis of human PDAC samples
revealed prominent cytoplasmic staining in >90% of samples.

A similar high frequency of CHKa expression has been reported in
prostate cancer (36) and in other tumor types, but this is the first
report on PDAC. We found prominent nuclear CHKa staining in
>40% PDAC samples, as was also recently reported in 1 of 20
prostate cancer samples of high Gleason score as well as in one
prostatic intraepithelial neoplasia lesion (36). It has been hypoth-
esized that CHKa could be phosphorylated and translocated to
the nucleus with other proteins, such as ERK.Nuclear stainingwas
associated with overall improved survival, although not indepen-
dently of grade. The specificity of the antibody used was validated
using knockdown experiments in cultured cells. These results
require confirmation in independent series. The potential rele-
vance of the nuclear localization of CHKa is supported by the
association with patient survival, particularly among well/mod-
erately differentiated tumors, unlike the cytoplasmic expression.

Figure 6.
Pharmacologic modulation of ABCB transporter activity restores sensitivity of IMIM-PC-2-R cells to MN58b. A, calcein uptake in parental and IMIM-PC-2-R cells.
B, changes in calcein uptake in parental and IMIM-PC-2-R cells treated with variable concentrations of verapamil or zosuquidar. C, representative images
of calcein uptake in parental and IMIM-PC-2-R cells treated with verapamil or zosuquidar.
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More work is required to elucidate the function of CHKa in
relationship to its localization. Whereas in the cytoplasm it can
act as an oncoprotein promoting an increased synthesis of phos-
phatidylcholine and second messengers for survival pathways in
more aggressive tumors, its nuclear distribution is associated with
more differentiated tumors with less aggressive clinical behavior.
Interestingly, we also found that high levels of CHKa mRNA are
found in PDAC classified as "classical" or "exocrine" than in those
that are "quasi-mesenchymal".

Pharmacologic inhibition of CHKa resulted in apoptosis, with
a clear association between CHKa levels and drug sensitivity. The
IC50 values obtained for PDAC cells are similar to those reported
in other tumors, including bladder cancer (14). Our findings
point to the potential value of CHKa levels as a predictive factor
of response to inhibitors and are substantiated by the resistance
resulting upon CHKa knockdown in sensitive cells. The relevance
of factors predictive of drug response is becoming apparent as
precision approaches are being applied in the clinics. Obviously,
these in vitro results need to be validated in vivo.

Gemcitabine has been the mainstay of therapy in metastatic
PDAC and remains an important drug, but tumors rapidly
become resistant. MN58b is effective in gemcitabine-resistant
cells, suggesting that CHKa inhibition may be effective as sec-
ond-line treatment in patients progressing after treatment with
this drug. Combination chemotherapy, such as FOLFIRINOX (5),
has shown antitumor activity in PDAC. The evidence for additive/
synergistic effects in experiments combining MN58b with gemci-
tabine, 5-FU, and oxaliplatin indicates that these combinations
merit preclinical and clinical attention. The role of CHKa in the
synthesis of crucial components of cellular membranes suggests
that altered membrane composition or properties contribute to
modulate the permeability of cells to antitumor drugs.

Because acquisition of drug resistance is the most common
reason for therapeutic failure in oncology, it is important to
establish mechanisms of resistance early on during drug devel-
opment. We have generated a PDAC line with an IC50 30-fold
higher than the parental one and we have identified a novel
mechanism of MN58b resistance through MDR gene overexpres-
sion. Inhibiting pump activity using verapamil, resulting in resen-
sitization of IMIM-PC-2-R cells to MN58b, provides formal proof
of the causal relationship between overexpression and resistance.

In conclusion, CHKa expression is deregulated in PDAC cells.
Our results support the notion that CHKa represents a feasible
therapeutic option in this tumor, alone or in combination with
other chemotherapeutic agents, and anticipates newmechanisms

of resistance. CHKa expression levels may be a predictive marker
of response, associated with specific PDAC molecular subtypes.
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