Zirconium and Hafnium Complexes with (Allylsilyl)(η-amidosilyl)-η⁵-cyclopentadienyl Ligands: Synthesis, Structure and Reactivity

Cristina Ramos, [a] Pascual Royo,*[a] Maurizio Lanfranchi, [b] Maria Angela Pellinghelli, [b] and Antonio Tiripicchio [b]

Keywords: Insertion / Isocyanides / Hafnium / Metallocenes / Zirconium

disubstituted cyclopentadiene C₅H₄(SiMe₂Cl)[Si-Me₂(CH₂CH=CH₂)] was isolated by reaction of the lithium salt $[Li\{C_5H_4SiMe_2(CH_2CH=CH_2)\}]$ with $SiMe_2Cl_2$. It was then treated with NH₂tBu and LiNH(2,6-Me₂C₆H₃) to give the (aminosilyl)cyclopentadienes $C_5H_4[SiMe_2(CH_2CH=CH_2)]$ -[SiMe2(NHR)], which were further deprotonated to their dilithium salts $[Li_2{1-SiMe_2NR-3-SiMe_2(CH_2CH=CH_2)C_5H_3}]$ $(R = tBu, 2,6-Me_2C_6H_3)$. Reactions of the metal halides ZrCl₄(THF)₂ and HfCl₄ with these dilithium salts, followed by alkylation of the resulting dichloro complexes, afforded the $(\eta^1$ -amidosilyl)- η^5 -cyclopentadienyl complexes $[M\{\eta^5$ - $C_5H_3(SiMe_2-\eta^1-NR)[SiMe_2(CH_2CH=CH_2)]X_2$ (R = tBu, 2,6- $Me_2C_6H_{3i}$ X = Cl, Me, CH₂Ph; M = Zr, Hf). Only the bis(imicomplexes $[M{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}]SiMe_2 (CH_2CH=CH_2)$ $\{\eta^2-CR=N(2,6-Me_2C_6H_3)\}_2$ $\{M=Zr, Hf; R=$ Me, CH₂Ph) could be isolated when the dialkylzirconium and -hafnium complexes were treated with CN(2,6-Me₂C₆H₃); these were slowly transformed into the C–C-coupled diazametallacyclopentene compounds [M{ η^5 -C₅H₃ (SiMe₂- η^1 -NtBu)[SiMe₂(CH₂CH=CH₂)]]{ η^1 -N(2,6-Me₂C₆H₃)-CR=CR- η^1 -N(2,6-Me₂C₆H₃)}] (R = Me, CH₂Ph, M = Zr; R = Me, M = Hf) when their toluene solutions were heated to 70 °C–80 °C for long periods (2–4 d). The structural characterisation of all of the new compounds is described and the molecular structure of the dimeric dichlorozir-conocene [ZrCl(μ -Cl){ η^5 -C₅H₃(SiMe₂- η^1 -NtBu)[SiMe₂(CH₂-CH=CH₂)]}]₂, was determined by X-ray diffraction methods.

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)

Introduction

Many reports^[1–9] have described the dynamics of the ion pairs formed by activation of a precursor metallocene with various Lewis acids, which are assumed to be the species responsible for the metallocene-catalysed alkene polymerisation^[5,10-15] and considered to be the cornerstone of its efficiency and stereocontrol. Several strategies have been used to stabilize the intermediate cationic alkyl alkene metallocene^[10,16–21] and (η¹-amidosilyl)-η⁵-cyclopentadienyl[3,22-30] d⁰ group-4 metal complexes. We have reported^[31,32] the formation of alkyl alkene metallocene cations through η^2 -coordination of the alkene moiety of an allylsilyl group tethered to the cyclopentadienyl ring. In order to study the formation and reactivity of the corresponding $(\eta^1$ -amidosilyl)- η^5 -cyclopentadienyl cationic compounds reported elsewhere, we synthesised and characterised disubstituted (allylsilyl)(amidosilyl)cyclopentadienyl group 4 metal complexes of the type represented in Scheme 1. These compounds are described in this paper, along with the insertion reactions of isocyanides into their metal–alkyl bonds and C–C coupling reactions of the resulting iminoacyl derivatives.

Scheme 1.

Results and Discussion

Successful synthesis of the disubstituted cyclopentadiene containing the two required aminosilyl [SiMe₂(NH₁Bu)] and allylsilyl [SiMe₂(CH₂CH=CH₂)] functionalities was achieved by first introducing the allylsilyl group^[33] followed by metallation and reaction of the resulting lithium (allylsilyl)cyclopentadienide salt^[31,32] with SiMe₂Cl₂ to give the disilylated cyclopentadiene C₅H₄(SiMe₂Cl)[SiMe₂(CH₂CH=CH₂)] (1, Scheme 2), which was isolated as a yellow liquid.

 [[]a] Departamento de Química Inorgánica, Universidad de Alcalá, Campus Universitario,
 28871 Alcalá de Henares, Spain Fax: +34-91-885-4683
 E-mail: pascual.royo@uah.es

[[]b] Dipartamento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università di Parma, Parco Area delle Scienze 17/A, 43100 Parma, Italy Fax: +39-0521-905-557 E-mail: maurizio.lanfranchi@unipr.it

Scheme 2.

Further aminolysis of the chorosilyl derivative **1** by reaction with the primary amine NH_2tBu or metathesis with LiNH(2,6-Me₂C₆H₃) afforded the disilylated cyclopentadienes $C_5H_4[SiMe_2(CH_2CH=CH_2)][SiMe_2(NHR)]$ (R=tBu **2**, 2,6-Me₂C₆H₃ **3**), which were isolated as oily yellow and orange liquids, respectively. The chlorosilyl derivative **1** was identified by ¹H NMR spectroscopy as a unique 1,1-isomer. However, formation of the 1,3-isomer is favoured for the aminosilyl compounds **2** and **3** due to the presence of the sterically more demanding amino substituents (see Exp. Sect.).

The mixture of isomers of the disilylcyclopentadienes **2** and **3** was metallated by treatment with 2 equiv. of nBuLi to give the dilithium salts, which were isolated as white solids containing one single component and were identified by ^{1}H NMR spectroscopy as the 1,3-isomer [Li₂{1-SiMe₂NR-3-SiMe₂(CH₂CH=CH₂)C₅H₃}] (R = tBu **4**, 2,6-Me₂C₆H₃ **5**). Their ^{1}H NMR spectra show the three ring-proton signals expected for an asymmetric molecule, whereas the diastereotopic methyl groups of both silyl fragments and the diastereotopic methylene protons of the allylsilyl fragment are observed as two singlets (see Exp. Sect.).

A direct synthesis based on halide metathesis, when the metal tetrahalides were treated with 1 equiv. of the dilithium salts 4 and 5, was used to transfer the (amidosilyl)cyclopentadienyl ligand, as shown in Scheme 3. Reaction of 4 with ZrCl₄(THF)₂ or HfCl₄ in toluene at room temperature yielded the "constrained-geometry" complexes [MCl(μ-Cl)- $\{\eta^5 - C_5 H_3 (SiMe_2 - \eta^1 - NtBu) [SiMe_2 (CH_2 CH = CH_2)]\}\}_2 (M =$ Zr 6, Hf 7), which were isolated in high yield as a yellow crystalline solid (6) and an oily orange solid (7) and characterised by elemental analysis (6), NMR spectroscopy and X-ray diffraction methods (6). Analogous reactions using the dilithium salt of the corresponding (2,6-dimethylphenyl) amido ligand 5 were carried out in the hope of obtaining improved crystallinity of the resulting metal compounds.[34] However, the new dichloro complexes $[MCl(\mu-Cl)]\{\eta^5 C_5H_3[SiMe_2-\eta^1-N(2,6-Me_2C_6H_3)][SiMe_2(CH_2CH=CH_2)]\}]_2$ (M = Zr 8, Hf 9) were always obtained as oily orange and white solid products, respectively, which easily decomposed with elimination of free amine; consequently, they were difficult to purify, giving rather low yields (lower than 30%) after purification. These compounds were not studied fur-

The ¹H and ¹³C NMR spectra of the silylamido derivatives **6–9** show three multiplets (¹H) and five resonances (¹³C) for the Cp ring protons and carbon atoms and four singlets (¹H and ¹³C) for the two diastereotopic silylmethyl groups; two of the multiplets were occasionally observed as overlapped signals in the ¹H NMR spectrum. The ¹H NMR

Me Me
$$Li^{+}$$
Si Me Me
$$SiMe_{2}NR Li^{+}$$
SiMe₂NR Li⁺

$$R = tBu (4)$$

$$R = 2,6-Me_{2}C_{6}H_{3} (5)$$
Me Me
$$R = 2,6-Me_{2}C_{6}H_{3} (5)$$
Me Me

R = t Bu, M = Zr (6), Hf (7) $R = 2,6-Me_2C_6H_3, M = Zr (8), Hf (9)$

Scheme 3.

spectra of all the complexes show the typical pattern of the allyl substituent, which consists of one high-field multiplet for the SiCH₂ protons at $\delta = 1.7-1.8$ ppm, one multiplet at $\delta = 5.6-5.8$ ppm for the internal olefinic proton and one multiplet for the two external olefinic protons at $\delta = 4.8$ – 4.9 ppm. The ring C_{ipso} resonance for compounds **6–9** appears at higher field than those of the other carbon atoms, consistent with the (amidosilyl)cyclopentadienyl ligands adopting a chelate coordination mode with the metal centre.[35] This NMR behaviour may suggest the presence of mononuclear structures of the silvlamido derivatives 6–9 in solution, for which the enantiotopic 1,3-disilylcyclopentadienyl ring faces are responsible for the asymmetry of these molecules. However, it could also be consistent with a centrosymmetric dimeric diastereoisomer with two equivalent Cp-silylamido systems, which is formed by two mononuclear units held together by a pair of bridging chloro ligands. Both mono- and dinuclear structures exhibit two non-equivalent chloro ligands, one of which is localised under the allyldimethylsilyl substituent of the cyclopentadienyl ligand in the mononuclear structure or is the terminal ligand in the dinuclear compound.

The dimeric structure of complex 6 in the solid state was determined by X-ray diffraction methods on a single crystal obtained from a hexane solution cooled to -35 °C. The same dimeric structure may be tentatively assigned to all of the other complexes 7–9 in the solid state, as shown in Scheme 3. Typical signals due to coordinated THF were observed in the ¹H and ¹³C NMR spectra of the more electron-deficient complex 8 containing the less basic amido ligand.

A view of the molecular structure of complex 6, together with the atomic labelling scheme, is shown in Figure 1. Selected bond lengths and angles are given in Table 1. The crystal structure consists of discrete chloro-bridged centrosymmetric dimeric molecules of $[ZrCl(\mu-Cl)\{\eta^5 C_5H_3(SiMe_2-\eta^1-NtBu)[SiMe_2CH_2CH=CH_2]\}$]₂. Each zirconium atom is bound to the cyclopentadienyl ring in a slightly asymmetric fashion [Zr-C bond lengths are in the range 2.441(6)-2.557(7) Å, while the Zr-CT distance is 2.187(8) Å, where CT is the centroid of the ring, to the nitrogen atom of the silylamido moiety [Zr-N = 2.042(6) Å, to a terminal chlorine atom [Zr-Cl2 = 2.457(2) Å] and to two bridging chlorine atoms [Zr-Cl1 = 2.645(2) and Zr-C11' = 2.653(2) Å]. The Zr atom is in a four-legged piano-stool arrangement if the centroid of the cyclopentadienyl ring is taken into consideration. The value of the Zr-N bond length is consistent with double-bond character and falls in the range (2.034-2.088 Å) retrieved from the Cambridge Structural Database files for pentacoordinate Zr complexes containing the ZrClCpSiN(amido) moiety.[36-45] The almost equal bridging Zr-Cl distances are significantly longer than the terminal Zr-Cl distance, and this last bond length again falls in the range 2.432–2.529 Å retrieved from the CSD files for similar complexes. To the best of our knowledge, the only chloro-bridged dimeric zirconium complex found in the literature containing a (amidosilyl)cyclopentadienyl moiety is (R,R)-[ZrCl(μ -Cl)] $\{\eta^5:\eta^1-C_5Me_4SiMe_2NCH(Me)(Ph)\}_2$, [39] where the Zr–Cl bridging bond lengths are significantly different. The trans influence of the amido nitrogen and chlorine coordinating atoms seem similar in 6, and the bridging Zr-Cl bond lengths are not significantly different.

Figure 1. ORTEP drawing of the molecular structure of 6 in the solid state; thermal ellipsoids are drawn at the 30% probability level

The C1 atom that bears the amidosilyl arm is pyramidally distorted, as shown by the sum of bond angles (350.8°) as in the other chloro(amidosilyl)cyclopentadienyl complexes, [36–45] and in the doubly silylamido-bridged cyclopentadienyltitanium complex, [46] while the C4 atom that bears the allylsilyl arm is weakly pyramidally distorted (the sum of the bond angles is 359.3°). The Si1 and Si2 atoms are out of the Cp plane by –0.845(2) and 0.250(3) Å, respectively.

In spite of having non-equivalent chloro ligands, none of these zirconium and hafnium complexes showed selective reactions when they were treated with alkylating agents. As shown in Scheme 4, reactions of complexes 6 and 7 with 2 equiv. of MgClR (R = Me, CH₂Ph) in hexane at room temperature gave the dialkyl complexes $[M\{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)[SiMe_2(CH_2CH=CH_2)]\}R_2]$ $[M=Zr, T_3(SiMe_2-\eta^1-NtBu)]R_3(T_3(SiMe_2-T_3)]$

Table 1. Selected bond lengths [Å] and angles [°] for compound 6.

Zr-Cl(1)	2.645(2)	C(4)-C(5)	1.447(10)
Zr-Cl(1)'	2.653(2)	C(1)-C(5)	1.393(10)
Zr-Cl(2)	2.457(2)	C(1)– $Si(1)$	1.872(9)
Zr-N	2.042(6)	Si(1)-N	1.743(5)
Zr-CT	2.187(8)	N-C(8)	1.492(9)
C(1)-C(2)	1.418(10)	C(4)-Si(2)	1.890(9)
C(2)-C(3)	1.416(10)	Si(2)-C(14)	1.894(10)
C(3)-C(4)	1.411(10)		
Cl(1)– Zr – $Cl(1)'$	72.26(7)	N-Zr-Cl(2)	96.6(2)
Cl(2)– Zr – $Cl(1)$	80.76(7)	N-Zr-Cl(1)	138.2(2)
Cl(2)– Zr – $Cl(1)'$	145.37(7)	N-Zr-Cl(1)'	89.6(2)
Cl(1)– Zr – $CT[a]$	120.4(2)	N-Zr-CT	100.3(3)
Cl(2)– Zr – $CT[a]$	107.9(2)	CT-Zr-Cl(1)'	104.4(2)
Si(1)-N-Zr	108.1(3)	C(8)-N-Zr	123.0(4)
C(8)-N-Si(1)	128.9(5)		

[a] CT is the centroid of the C(1)···C(5) cyclopentadienyl ring. Symmetry transformation used to generate equivalent atoms: -x, -y, -z + 2.

R = Me 10, CH₂Ph 11; M = Hf, R = Me 12, CH₂Ph 13), which were isolated as brown and orange oily solids, respectively, and identified by elemental analysis and NMR spectroscopy. In addition to the same features discussed above for the precursor dichloro complexes, the non-equivalency of the two alkyl groups of these asymmetric molecules is easily demonstrated by their ¹H and ¹³C NMR spectra. The spectra of the methyl complexes 10 and 12 show two singlets (¹H) and two resonances (¹³C) for the two non-equivalent, metal-bonded methyl groups, whereas four doublets (¹H) for the two diastereotopic methylene protons and two resonances (¹³C) for the methylene carbon atom are observed for each non-equivalent, metal-bonded benzyl group of the benzyl derivatives 11 and 13.

$$Me Me$$

$$Me_2Si$$

$$Me Me$$

$$M = Zr, R = Me (10), CH_2Ph (11)$$

$$M = Zr (6), Hf (7)$$

$$M = Me (12), CH_2Ph (13)$$

Scheme 4.

Insertion of isocyanide into one of the two non-equivalent metal–alkyl bonds of these dialkyl compounds may afford mixtures of two diastereomers, unless for diastereoselective reactions.^[47] However, when 1 equiv. of CN(2,6-Me₂C₆H₃) was added to the toluene solutions of the dialkyl(amidosilyl)cyclopentadienyl compounds **10–13**, the initially formed 16-electron iminoacyl compounds could not be detected by NMR spectroscopy because they react very easily to give the bis(iminoacyl) complexes by further insertion into the second metal–alkyl bond. This behaviour is in contrast to that observed for metallocene-type complexes for which the monoiminoacyl complexes are 18-electron species, which do not undergo further insertion into the second metal–alkyl bond.

Therefore these insertion reactions were complete when toluene solutions of the dialkyl complexes 10-13 were treated with two equivalents of 2,6-xylyl isocyanide at room temperature to give the corresponding bis(iminoacyl) compounds^[48] $[M{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}[SiMe_2(CH_2CH=$ CH_2]}{ η^2 -CR=N(2,6-Me₂C₆H₃)}₂] (M = Zr, R = Me 14, CH_2Ph 15; M = Hf, R = Me 16, CH_2Ph 17) which were isolated as red and orange oily products and identified by elemental analysis and NMR and infrared spectroscopy.

As shown in Scheme 5 the bis(iminoacyl) complexes 14 16 were slowly converted into the C-C-coupled compounds.^[49] This transformation was complete when their toluene solutions were heated at 70 °C-80 °C for long periods (2 d for 18 and 19 and 4 d for 20) in sealed tubes to give the diazametallacyclopentene complexes $[M\{\eta^5 C_5H_3(SiMe_2-\eta-NtBu)[SiMe_2(CH_2CH=CH_2)]$ - $\{\eta - N(2,6-Me_2C_6H_3)CR = CR - \eta - N(2,6-Me_2C_6H_3)\}$ (R = Me, M = Zr 18, Hf 19; $R = CH_2Ph$, M = Zr 20). Complexes **18–20** were isolated as red (**18**) and brown (**19**, **20**) oily products and identified by NMR and IR spectroscopy. The ¹H and ¹³C NMR spectra of all of these iminoacyl (14–17) and enediamido (18–20) compounds correspond to the asymmetric molecules expected from the enantiotopic character of the disilylcyclopentadienyl ligand (see Exp. Sect.). The presence of four methyl resonances (occasionally overlapped) for the [(2,6-dimethylphenyl)imino]acyl groups indicates that rotation around the N-aryl bond is avoided.

M = Zr, R = Me (14), CH_2Ph (15) M = Hf, R = Me (16), CH_2Ph (17)

M = Zr, R = Me (18), CH_2Ph (19) M = Hf, R = Me (20)

Scheme 5.

Compounds 14–17 contain the iminoacyl ligand η^2 -coordinated to the metal centre as shown by their spectroscopic data. The signals observed in the ¹H NMR spectra for the alkyl and methylene(benzyl) groups migrated to the inserted aryl isocyanide are shifted downfield (by about 2 ppm) with respect to the values observed for the metal-bonded groups of the precursor dialkyl complexes. In contrast, the ¹³C NMR resonance of the alkyl carbon atom is shifted to higher field (by about 10 ppm for Zr and 20 ppm Hf) on insertion. The most remarkable feature observed in the NMR spectra of these complexes is the chemical shift of the resonance due to the iminoacyl carbon atoms, which is shifted downfield at $\delta = 250-268$ ppm. Another important spectroscopic feature that allows the assignment of the iminoacyl coordination mode in solution is the stretching v(C=N) frequency of the iminoacyl bond observed in the IR spectra at 1540–1555 cm⁻¹, which corresponds to the η^2 coordinated iminoacyl ligands.^[50] The ¹H NMR resonances due to the migrated alkyl groups in the C-C coupled enediamido complexes 18-20 are shifted downfield with respect to those observed for the starting bis(iminoacyl) compounds, whereas the ¹³C NMR signals due to the enediamido sp²-carbon atoms are observed at $\delta = 111-112$ ppm.

Conclusions

Dichloro- and dialkyl(amidosilyl)cyclopentadienyl zirconium and -hafnium complexes of the type $[M\{\eta^5-C_5H_3]Si$ $Me_2(CH_2CH=CH_2)](SiMe_2-\eta-NR)X_2$ with the allyldimethylsilyl-substituted cyclopentadienyl ligand have been isolated in high yields by conventional synthetic methods and characterised by NMR spectroscopy and X-ray diffraction methods.

The two non-equivalent chloro and alkyl ligands of these asymmetric molecules do not show diastereoselective reactions, so that alkylation of the dichloro complexes only gives dialkyl derivatives, and insertion of CN(2,6-Me₂C₆H₃) into the metal-alkyl bonds only afforded bis(iminoacyl) compounds. Formation of monoalkyl and monoiminoacyl complexes could not be detected in any of these reactions. NMR spectroscopic studies revealed that the iminoacyl ligand is η^2 -coordinated in all of these compounds with the nitrogen atom always occupying the internal coordination site. C-C coupling reactions between the two iminoacyl ligands are very slow processes that give quantitative yields of the diazametallacyclopentene complexes after heating the toluene solutions of the bis(iminoacyl) complexes at 70-80 °C for 2-4 d.

Experimental Section

General Considerations: All manipulations were performed under argon using standard Schlenk and high-vacuum line techniques or a glovebox model MO40-2. Solvents were pre-dried and purified by distillation under argon from an appropriate drying agent (sodium for toluene, sodium/potassium alloy for hexane and sodium/ benzophenone for diethyl ether and THF) before use. Deuterated solvents were stored over activated molecular sieves (4 Å) in Teflonvalved flasks and previously degassed by several freeze-pump-thaw cycles. NH2tBu (Aldrich) was dried with sodium and distilled prior to use. SiMe₂(CH₂CH=CH₂)Cl (Aldrich), SiMe₂Cl₂ (Aldrich), nBuLi (Aldrich), HfCl₄ (Merck), MgClMe (Aldrich) and MgCl(CH₂Ph) (Aldrich) were purchased from commercial sources without further C₅H₅[Siand used purification. $Me_2(CH_2CH=CH_2)]$, [51] $[Li\{C_5H_4SiMe_2(CH_2CH=CH_2)\}$, [51] and ZrCl₄(THF)₂^[52] were prepared according to literature procedures. C, H and N microanalyses were performed with a Perkin-Elmer 240B. Unreliable elemental analytical data are not given for some highly soluble and air-sensitive compounds which could not be crystallised and were isolated as spectroscopically pure oily products. NMR spectra, measured at 25 °C, were recorded with a Varian Unity 300 (¹H NMR at 300 MHz and ¹³C NMR at 75 MHz) spectrometer. ^{1}H and ^{13}C chemical shifts are reported in δ units relative to TMS standard.

Synthesis of C₅H₄(SiMe₂Cl)[SiMe₂(CH₂CH=CH₂)] (1): SiMe₂Cl₂ (5.7 mL, 47 mmol) was added to a THF (100 mL) solution of $[\text{Li}\{\eta^5-\text{C}_5\text{H}_4\text{SiMe}_2(\text{CH}_2\text{CH}=\text{CH}_2)\}]$ (8.0 g, 47 mmol), cooled to −78 °C and the mixture was stirred at room temperature for 16 h. The solvent was then removed under vacuum and the residue was extracted into hexane (2×50 mL). After filtration and evaporation of the solvent under reduced pressure, compound 1 was isolated as a yellow liquid (9.81 g, 38.18 mmol, 82% yield). C₁₂H₂₁ClSi₂ (256.92): calcd. C 56.10, H 8.24; found C 55.88, H 8.36. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.05$ (s, 6 H, Si Me_2), 0.23 (s, 6 H, $SiMe_2$), 1.47 (d, J = 8.1 Hz, 2 H, $SiCH_2$), 4.86 (m, 2 H, $CH = CH_2$), 5.65 (m, 1 H, $CH=CH_2$), 6.57 (m, 2 H, C_5H_4), 6.81 (m, 2 H, C_5H_4) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): $\delta = -2.9$ (Si Me_2), 1.5 (Si Me_2), 22.8 (Si CH_2), 58.3 (C_5H_4 , C_{ipso}), 113.9 (CH= CH_2), 133.1 (C_5H_4) , 134.6 (C_5H_4) , 134.9 $(CH=CH_2)$ ppm. ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.04$ (s, 6 H, $SiMe_2$), 0.10 (s, 6 H, $SiMe_2$), 1.47 (d, J = 8.1 Hz, 2 H, $SiCH_2$), 4.86 (m, 2 H, $CH=CH_2$), 5.63 (m, 1 H, $CH=CH_2$), 6.40 (m, 2 H, C_5H_4), 6.64 (m, 2 H, C_5H_4) ppm. $^{13}C\{^{1}H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.9$ (Si Me_2), 1.7 (Si Me_2), 22.6 (Si CH_2), 58.0 (C_5H_4 , C_{ipso}), 113.6 (CH= CH_2), 132.8 (C_5H_4) , 134.3 (C_5H_4) , 134.7 $(CH=CH_2)$ ppm.

Synthesis of $C_5H_4[SiMe_2(CH_2CH=CH_2)][SiMe_2(NHtBu)]$ (2): NH₂tBu (11.5 mL, 109 mmol) was added to a solution of 1 (14 g, 54.5 mmol) in THF at -78 °C. The mixture was slowly warmed to room temperature and stirred for 15 h. After removal of the solvent under vacuum, the residue was extracted into hexane and the ammonium chloride salt was removed by filtration. Product 2 was obtained as a yellow liquid (12.48 g, 42,51 mmol, 78% yield). C₁₆H₃₁NSi₂ (293.60): calcd. C 65.46 H, 10.64, N 4.77; found C 64.44, H 10.68, N 4.48. Major isomer: ¹H NMR (300 MHz, C₆D₆, 25 °C): $\delta = -0.14$ (s, 3 H, Si Me_2), -0.01 (s, 3 H, Si Me_2), 0.26 (s, 3 H, SiMe₂), 0.36 (s, 3 H, SiMe₂), 0.60 (br. s, 1 H, NH), 1.08 (s, 9 H, CMe_3), 1.45 (m, 2 H, $SiCH_2$), 3.23 (br. s, 1 H, C_5H_4), 4.93 (m, 2 H, CH=CH₂), 5.69 (m, 1 H, CH=CH₂), 6.60, 6.81, 6.89 (m, 3 H, C_5H_4) ppm. Minor isomer: ¹H NMR (300 MHz, C_6D_6 , 25 °C): δ = 0.05 (s, 6 H, $SiMe_2$), 0.07 (s, 6 H, $SiMe_2$), 0.66 (br. s, 1 H, NH), 1.15 (s, 9 H, CMe_3), 1.74 (m, J = 8.1 Hz, 2 H, $SiCH_2$), 4.93 (m, 2 H, CH=C H_2), 5.88 (m, 1 H, CH=C H_2), 6.46, 6.72 (m, 3 H, C₅ H_4)

Synthesis of C₅H₄[SiMe₂(CH₂CH=CH₂)][SiMe₂NH(2,6-Me₂₆H₃)] (3): Compound 1 (13 g, 53 mmol) was added at room temperature to a suspension of LiNH(2,6-Me₂C₆H₃) (6.7 g, 53 mmol) in hexane (100 ml) and the mixture was stirred for 16 h. LiCl was filtered off and the solvent was removed from the resulting solution to give an orange oil which was identified as 3 (14.5 g, 42.4 mmol, 80% yield). Major isomer: ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = -0.20$ (s, 3 H, SiMe₂), 0.01 (s, 3 H, SiMe₂), 0.14 (s, 3 H, SiMe₂), 0.34 (s, 3 H, SiMe₂), 1.39 (m, 2 H, SiCH₂), 2.15 (s, 6 H, C₆H₃ Me₂), 2.54 (br. s, 1 H, NH), 3.07 (br. s, 1 H, C_5H_4), 4.92 (m, 2 H, $CH=CH_2$), 5.68 (m, 1 H, CH=CH₂), 6.40–7.00 (m, $C_5H_4 + C_6H_3$) ppm. Minor isomer: ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.05$ (s, 3 H, $SiMe_2$), 0.10 (s, 3 H, $SiMe_2$), 0.23 (s, 3 H, $SiMe_2$), 0.28 (s, 3 H, $SiMe_2$), 1.70(m, 2 H, SiCH₂), 2.22 (s, 6 H, C₆H₃ Me₂), 2.54 (br. s, 1 H, NH), 2.92 (br. s, 1 H, C_5H_4), 4.92 (m, 2 H, $CH=CH_2$), 5.68 (m, 1 H, $CH=CH_2$), 6.40–700 (m, $C_5H_4 + C_6H_3$) ppm.

Synthesis of [Li₂{1-SiMe₂NtBu-3-SiMe₂(CH₂CH=CH₂)C₅H₃}] (4): A 1.6 m solution of *n*BuLi in hexane (17 ml, 28 mmol) was added dropwise to a solution of **3** (4 g, 14 mmol) in diethyl ether at -78 °C. The reaction mixture was warmed to room temperature and stirred for 4 h. The solvent was removed under reduced pressure to yield a solid, which was washed with hexane. The yellow solid was dried under vacuum and was characterised as **3** (3.85 g, 12.6 mmol, 90% yield). C₁₆H₂₉Li₂NSi₂ (305.47): calcd. C 62.91, H 9.57, N 4.59; found C 62.19, H 9.78, N 4.04. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ = 0.30 (s, 6 H, Si Me_2), 0.46 (s, 6 H, Si Me_2), 1.18 (s, 9 H, C Me_3), 1.83 (m, 2 H, SiC H_2), 4.89 (m, 2 H, CH=C H_2), 6.04 (m, 1 H, C H_2 CH₂), 6.65 (m, 1 H, C₅ H_3), 6.80 (m, 1 H, C₅ H_3) ppm.

Synthesis of [Li₂{1-SiMe₂N(2,6-Me₂C₆H₃)-3-SiMe₂(CH₂CH=CH₂)-C₅H₃} (5): A suspension of 3 (14 g, 41 mmol) in diethyl ether was treated at -78 °C with a 1.6 м hexane solution of nBuLi (51 mL, 82 mmol). The mixture was stirred at room temperature for 4 h and the solvent was then removed under vacuum to give a yellow solid which, after being washed with hexane (2 × 50 mL) and dried under vacuum, was identified as the dilithium salt 5 (13 g, 36.9 mmol, 90 % yield). C₂₀H₂₉Li₂NSi₂ (353.51): calcd. C 67.95, H 8.27, N 3.96; found C 67.18, H 8.02, N 3.95. ¹H NMR (300 MHz, C₆D₆, 25 °C): δ = 0.32 (s, 6 H, Si Me_2), 0.57 (s, 6 H, Si Me_2), 1.85 (m, 2 H, SiC He_2), 2.75 (s, 6 H, C₆H₃ Me_2), 4.90 (m, 2 H, CH=C He_2), 6.05 (m, 1 H, C He_2 CH₂), 6.75–7.45 (m, C₅H₃ + C₆H₃) ppm.

 $[\mathrm{Zr}\{\eta^5\text{-}\mathrm{C}_5\mathrm{H}_3(\mathrm{SiMe}_2\text{-}\eta^1\text{-}\mathrm{N}t\mathrm{Bu})]\mathrm{SiMe}_2(\mathrm{CH}_2\mathrm{CH}=$ of CH₂)]}Cl₂] (6): Toluene at -78 °C was added to a mixture of 4 (3 g, 9.8 mmol) and ZrCl₄(THF)₂ (3.7 g, 9.8 mmol) also cooled to -78 °C. The reaction mixture was warmed to room temperature and was stirred for 16 h. The toluene was removed under vacuum and the residue was extracted into hexane. The solvent volume was reduced and the solution was cooled to -40 °C to give yellow crystals which were isolated by filtration (2.67 g, 5.89 mmol, 60% yield). C₁₆H₂₉Cl₂NSi₂Zr (453.71): calcd. C 42.36, H 6.44, N 3.09; found C 42.90, H 6.42, N 3.05. 1H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.33$ (s, 6 H, SiMe₂), 0.55 (s, 6 H, SiMe₂), 1.37 (s, 9 H, CMe_3), 1.77 (m, 2 H, $SiCH_2$), 4.86 (m, 2 H, $CH=CH_2$), 5.74 (m, 1 H, $CH=CH_2$), 6.44 (t, 1 H, C_5H_3), 6.58 (t, 1 H, C_5H_3), 7.02 (t, 1 H, C₅H₃) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): $\delta = -3.6$ $(SiMe_2)$, -3.3 $(SiMe_2)$, 0.5 $(SiMe_2)$, 0.9 $(SiMe_2)$, 23.7 $(SiCH_2)$, 32.5 (CMe_3) , 57.1 (CMe_3) , 111.9 (C_5H_3, C_{ipso}) , 113.7 $(CH=CH_2)$, 126.1 (C_5H_3) , 127.1 (C_5H_3) , 132.9 (C_5H_3, C_{ipso}) , 133.5 $(CH=CH_2)$ ppm.

Synthesis of $[Hf{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}]SiMe_2(CH_2CH=$ CH₂)]}Cl₂] (7): Toluene cooled to -78 °C was added to a mixture of 4 (1.5 g, 4.9 mmol) and HfCl₄ (1.6 g, 4.9 mmol) also at -78 °C. The reaction mixture was stirred while it was warmed to room temperature. After the solution had been stirred overnight, the toluene was removed under reduced pressure and the residue was extracted into hexane. The solution was filtered and the solvent was removed to give 7 as an orange oil (1.59 g, 2.95 mmol, 60% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.32$ (s, 3 H, Si Me_2), 0.33 (s, 3 H, SiMe₂), 0.56 (s, 6 H, SiMe₂), 1.31 (s, 9 H, CMe₃), 1.77 (m, 2 H, SiCH₂), 4.89 (m, 2 H, CH=CH₂), 5.77 (m, 1 H, CH=CH₂), 6.35 (t, 1 H, C_5H_3), 6.49 (t, 1 H, C_5H_3), 6.97 (t, 1 H, C_5H_3) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): $\delta = -3.6$ (Si Me_2), -3.3 (Si Me_2), 0.8 $(SiMe_2)$, 1.2 $(SiMe_2)$, 23.7 $(SiCH_2)$, 33.2 (CMe_3) , 55.6 (CMe_3) , 111.8 (C_5H_3 , C_{ipso}), 113.7 ($CH=CH_2$), 124.5 (C_5H_3), 125.6 (C_5H_3), 126.0 (C_5H_3), 131.6 (C_5H_3 , C_{ipso}), 133.5 ($CH=CH_2$) ppm.

Synthesis of $[Zr{\eta^5-C_5H_3[SiMe_2-\eta^1-N(2,6-Me_2C_6H_3)]}]SiMe_2(CH_2-\eta^2-N(2,6-Me_2C_6H_3)]$ CH=CH₂)]{Cl₂| (8): Toluene (100 mL) was added at -78 °C to a mixture of solid dilithium salt 5 (2 g, 5.66 mmol) and ZrCl₄·2THF (2.13 g; 5.66 mmol) and the mixture was then stirred at room temperature for 16 h. After filtration of the resulting LiCl, the solvent was removed under vacuum and the residue was extracted into hexane $(2 \times 50 \text{ mL})$. The solution was concentrated by evaporation of the solvent under reduced pressure and cooled to -35 °C to give compound 8 as an orange oily solid (0.91 g, 1.70 mmol, 30% yield). ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = -0.04$ (s, 3 H, Si Me_2), 0.12 (s, 3 H, SiMe₂), 0.38 (s, 3 H, SiMe₂), 0.39 (s, 3 H, SiMe₂), 1.52 (m, 2 H, SiC H_2), 1.80 (t, 4 H, C₂ H_4), 2.10 (s, 3 H, C₆ H_3 Me_2), 2.24 (s, 3 H, C_6H_3 Me_2), 3.70 (t, 4 H, OC_2H_4), 4.78 (m, 2 H, $CH=CH_2$), 5.61 (m, 1 H, $CH=CH_2$), 6.50 (t, 1 H, C_5H_3), 6.77 (t, 1 H, C_5H_3), 6.83 (t, 1 H, C_5H_3), 6.70–7.00 (m, 3 H, C_6H_3) ppm. ¹³ $C\{^1H\}$ NMR (75 MHz, CDCl₃, 25 °C): $\delta = -2.7$ (SiMe₂), -2.6 (SiMe₂), -0.4 $(SiMe_2)$, 0.2 $(SiMe_2)$, 20.3 $(C_6H_3 Me_2)$, 20.6 $(C_6H_3 Me_2)$, 24.8

(Si CH_2), 25.3 (C_2H_4), 68.5 (O C_2H_4), 113.2 (CH= CH_2), 116.7 (C_5H_3 , C_{ipso}), 122.4 (C_5H_3), 124.2 (C_5H_3), 127.8 (C_5H_3), 127.8, 129.8, 130.0, 130.7, 132.4 (C_6H_3), 134.2 (C_5H_3 , C_{ipso}), 134.9 (CH= CH_2), 151.2 (C_6H_3 , C_{ipso}) ppm.

Synthesis of $[Hf{\eta^5-C_5H_3}[SiMe_2-\eta^1-N(2,6-Me_2C_6H_3)][SiMe_2(CH_2-\eta^2-N(2,6-Me_2C_6H_3)]]$ CH=CH₂)]}Cl₂] (9): Toluene (100 mL) was added at room temperature to a mixture of 5 (2 g, 5.66 mmol) and HfCl₄ (1.81 g, 5.66 mmol). The mixture was stirred for 16 h and the solvent was then removed under reduced pressure to give a residue which was extracted into hexane $(2 \times 50 \text{ mL})$ to separate the LiCl formed. The resulting solution was concentrated and cooled to -35 °C overnight to give a colourless solid identified as 9 (1.0 g, 1.7 mmol, 30% yield). C₂₀H₂₉Cl₂HfNSi₂ (589.02): calcd. C 40.78, H 4.96, N 2.38; found C 40.77, H 5.09, N 2.23. ¹H NMR (300 MHz, CDCl₃, 25 °C): $\delta = 0.36$ (s, 3 H, Si Me_2), 0.39 (s, 3 H, Si Me_2), 0.51 (s, 3 H, $SiMe_2$), 0.55 (s, 3 H, $SiMe_2$), 1.80 (m, 2 H, $SiCH_2$), 2.11 (s, 3 H, C_6H_3 Me_2), 2.14 (s, 3 H, C_6H_3 Me_2), 4.88 (m, 2 H, $CH=CH_2$), 5.77 (m, 1 H, CH=CH₂), 6.64 (t, 1 H, C_5H_3), 6.80 (t, 1 H, C_5H_3), 7.07 (t, 1 H, C_5H_3), 6.82–7.02 (m, 3 H, C_6H_3) ppm. ¹³C{¹H} NMR (75 MHz, CDCl₃, 25 °C): $\delta = -3.0$ (Si Me_2), -2.7 (Si Me_2), 0.1 (SiMe₂), 0.3 (SiMe₂), 19.6 (C₆H₃ Me₂), 19.7 (C₆H₃ Me₂), 24.2 $(SiCH_2)$, 114.3 (CH=CH₂), 117.9 (C_5H_3 , C_{ipso}), 123.9 (C_5H_3), 125.6 (C_5H_3) , 125.8 (C_5H_3) , 126.6–128.6 (C_6H_3) , 133.7 $(CH=CH_2)$, 142.5 (C_6H_3, C_{ipso}) ppm.

Synthesis of $[Zr{\eta^5-C_5H_3[SiMe_2-\eta^1-NtBu][SiMe_2(CH_2CH=CH_2)]}$ -Me₂ (10): A solution of MgClMe in THF (3.3 mL, 10 mmol) was added to a solution of 6 (2.3 g, 5.1 mmol) in hexane cooled to -78 °C. The reaction mixture was slowly warmed to room temperature and then stirred for 16 h. The solution was filtered and the solvent was removed under reduced pressure to give 10 as a brown oil (1.3 g, 3.1 mmol, 60% yield). C₁₈H₃₅NSi₂Zr (412.87): calcd. C 52.37, H 8.54, N 3.39; found C 52.74, H 9.13, N 3.04. ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.15$ (s, 3 H, $ZrMe_2$), 0.17 (s, 3 H, $ZrMe_2$), 0.26 (s, 3 H, $SiMe_2$), 0.27 (s, 3 H, $SiMe_2$), 0.35 (s, 6 H, SiMe₂), 1.36 (s, 9 H, CMe₃), 1.70 (m, 2 H, SiCH₂), 4.92 (m, 2 H, $CH=CH_2$), 5.80 (m, 1 H, $CH=CH_2$), 6.27 (t, 1 H, C_5H_3), 6.36 (t, 1 H, C_5H_3), 6.72 (t, 1 H, C_5H_3) ppm. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.9$ (Si Me_2), -2.7 (Si Me_2), 1.5 (Si Me_2), 2.0 $(SiMe_2)$, 24.9 $(SiCH_2)$, 34.2 (CMe_3) , 35.1 $(ZrMe_2)$, 35.7 $(ZrMe_2)$, 55.5 (CMe₃, C_{ipso}), 107.1 (C_5H_3 , C_{ipso}), 113.9 (CH= CH_2), 122.8 (C_5H_3) , 124.8 (C_5H_3) , 125.2 (C_5H_3) , 126.8 (C_5H_3, C_{ipso}) , 134.6 ($CH=CH_2$) ppm.

Synthesis of $[Zr{\eta^5-C_5H_3[SiMe_2-\eta^1-NtBu][SiMe_2(CH_2CH=CH_2)]}$ -(CH₂Ph)₂] (11): A 2 M THF solution of MgClBz (5 mL, 10 mmol) was added at -78 °C to a hexane solution of the dichloro complex 6 (2.3 g, 5.1 mmol). The mixture was stirred for 16 h while it was warmed to room temp. After filtration to separate MgCl₂, the solvent was removed under vacuum to give 11 as a brown oil (1.73 g, 3.06 mmol, 60% yield). ¹H NMR (300 MHz, C_6D_6 , 25 °C): δ = 0.22 (s, 3 H, $SiMe_2$), 0.24 (s, 3 H, $SiMe_2$), 0.34 (s, 3 H, $SiMe_2$), 0.36(s, 3 H, SiMe₂), 1.11 (s, 9 H, CMe₃), 1.60 (m, 2 H, SiCH₂), 1.50 (d, J = 11.0 Hz, 1 H, CH_2Ph), 1.71 (d, J = 10.3 Hz, 1 H, CH_2Ph), 2.10 (d, J = 11.2 Hz, 1 H, CH_2Ph), 2.15 (d, J = 10.1 Hz, 1 H, CH_2Ph), 4.92 (m, 2 H, $CH=CH_2$), 5.72 (m, 1 H, $CH=CH_2$), 6.18 $(t, 1 H, C_5H_3), 6.25 (t, 1 H, C_5H_3), 6.52 (t, 1 H, C_5H_3), 6.86-7.18$ (m, 10 H, C_6H_5) ppm. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 25 °C): δ = -2.7 (Si Me_2), -2.4 (Si Me_2), 1.5 (Si Me_2), 2.1 (Si Me_2), 25.3(SiCH₂), 33.7 (CMe₃), 54.4 (ZrCH₂), 54.7 (CMe₃, C_{ipso}), 57.6 (ZrCH₂), 109.7 (C₅H₃, C_{ipso}), 114.0 (CH=CH₂), 122.4, 124.1, 125.4 (C_5H_3) , 126.8, 127.7, 128. 3, 129.6, 129.7 (C_6H_5) , 134.4 $(CH=CH_2)$, 145.5, 145.9 (C_6H_5 , C_{ipso}) ppm.

Synthesis of $[Hf{\eta^5-C_5H_3|SiMe_2-\eta^1-NtBu||SiMe_2(CH_2CH=CH_2)]}$ -Me₂ (12): A 3 M THF solution of MgClMe (2.9 mL, 8.8 mmol) was added at -78 °C to a solution of the dichloro complex 7 (2.4 g, 4.4 mmol) in hexane. The reaction mixture was stirred for 16 h while it was warmed slowly to room temp. The solution was filtered and the solvent removed under reduced pressure to give complex **12** as an orange oil (1.32 g, 2.64 mmol, 60% yield). $C_{18}H_{35}HfNSi_2$ (500.14): calcd. C 43.23, H 7.05, N 2.80; found C 43.09, H 7.51, N 2.67. ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.00$ (s, 3 H, HfMe₂), 0.03 (s, 3 H, HfMe₂), 0.24 (s, 3 H, SiMe₂), 0.26 (s, 3 H, SiMe₂), 0.38 (s, 6 H, SiMe₂), 1.32 (s, 9 H, CMe₃), 1.68 (m, 2 H, SiCH₂), 4.91 (m, 2 H, CH=CH₂), 5.78 (m, 1 H, CH=CH₂), 6.20 (t, 1 H, C_5H_3), 6.27 (t, 1 H, C_5H_3), 6.67 (t, 1 H, C_5H_3) ppm. ¹³ $C\{^1H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.6$ (Si Me_2), -2.4 (Si Me_2), 2.0 (SiMe₂), 2.4 (SiMe₂), 25.2 (SiCH₂), 35.1 (CMe₃), 47.1 (HfMe₂), 48.0 (Hf Me_2), 55.0 (CMe₃, C_{ipso}), 107.9 (C₅H₃, C_{ipso}), 114.3 $(CH=CH_2)$, 122.9 (C_5H_3) , 125.2 (C_5H_3) , 125.7 (C_5H_3) , 126.9 (C_5H_3, C_{ipso}) , 134.9 (CH=CH₂) ppm.

Synthesis of $[Hf{\eta^5-C_5H_3[SiMe_2-\eta^1-NtBu][SiMe_2(CH_2CH=CH_2)]}$ -(CH₂Ph)₂ (13): The same procedure described to prepare 11 was applied using a 2 m THF solution of MgClBz (4.4 mL, 8.8 mmol) and 7 (2.4 g, 4.4 mmol) to give 13 as an orange oil (1.72 g, 2.64 mmol, 60% yield). C₃₀H₄₃HfNSi₂ (652.34): calcd. C 55.24, H 6.64, N 2.15; found C 55.23, H 5.99, N 2.28. ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.22$ (s, 3 H, Si Me_2), 0.24 (s, 3 H, Si Me_2), 0.38 (s, 3 H, SiMe₂), 0.41 (s, 3 H, SiMe₂), 1.19 (s, 9 H, CMe₃), 1.40 (d, $J = 12.5 \text{ Hz}, 1 \text{ H}, CH_2Ph), 1.47 (d, <math>J = 11.5 \text{ Hz}, 1 \text{ H}, CH_2Ph), 1.63$ (m, 2 H, SiC H_2), 1.84 (d, J = 12.5 Hz, 1 H, C H_2 Ph), 1.96 (d, J = 12.5 Hz, 1 H, C H_2 Ph) 11.7 Hz, 1 H, CH_2Ph), 4.83 (m, 2 H, $CH=CH_2$), 5.69 (m, 1 H, $CH=CH_2$), 5.91 (t, 1 H, C_5H_3), 6.19 (t, 1 H, C_5H_3), 6.28 (t, 1 H, C_5H_3), 6.77–7.20 (m, 10 H, C_6H_5) ppm. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.8$ (SiMe₂), -2.6 (SiMe₂), 1.4 (SiMe₂), 2.0 (SiMe₂), 25.0 (SiCH₂), 34.5 (CMe₃), 56.4 (CMe₃, C_{ipso}), 71.2 $(HfCH_2)$, 73.5 $(HfCH_2)$, 109.2 (C_5H_3, C_{ipso}) , 114.0 $(CH=CH_2)$, 122.0, 122.5, 125.3 (C₅H₃), 126.5, 126.7, 128. 2, 128.7, 128.8 (C_6H_5) , 134.4 (CH=CH₂), 147.0, 147.3 (C_6H_5 , C_{ipso}) ppm.

Synthesis of $[Zr{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)[SiMe_2(CH_2CH=CH_2)]}$ - $\{\eta^2\text{-CMe=N}(2,6\text{-Me}_2\text{C}_6\text{H}_3)\}_2$ (14): A solution of 10 (1.0 g, 2.42 mmol) in toluene (50 mL) was treated with a toluene (20 mL) solution of $CN(2,6-Me_2C_6H_3)$ (0.63 g, 4.84 mmol) at room temperature. The mixture was stirred for 3 h and the solvent was then removed under vacuum. The residue was extracted into pentane (40 mL) and the solution was filtered and concentrated under reduced pressure to give a red oily product identified as compound **14** (1.31 g, 1.94 mmol, 80% yield). ¹H NMR (300 MHz, C₆D₆, 25 °C): $\delta = 0.11$ (s, 3 H, Si Me_2), 0.25 (s, 3 H, Si Me_2), 0.70 (s, 6 H, SiMe₂), 1.11 (s, 9 H, CMe₃), 1.62 (m, 2 H, SiCH₂), 1.89 (s, 3 H, $NMe_2C_6H_3$), 1.93 (s, 6 H, $NMe_2C_6H_3$), 1.96 (s, 3 H, $NMe_2C_6H_3$), 2.05 (s, 3 H, CMe_2), 2.12 (s, 3 H, CMe_2), 4.90 (m, 2 H, $CH=CH_2$), 5.76 (m, 1 H, $CH=CH_2$), 6.33 (t, 1 H, C_5H_3), 6.53 (t, 1 H, C_5H_3), 6.61 (t, 1 H, C_5H_3), 6.90–7.00 (m, 6 H, C_6H_3) ppm. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.7$ (SiMe₂), -2.5 (SiMe₂), 3.9 $(SiMe_2)$, 4.6 $(SiMe_2)$, 18.4, 18.7, 18.9, 19.6 $(NMe_2C_6H_3)$, 24.2 (SiCH₂), 25.5, 25.6 (CMe₂), 35.3 (CMe₃), 55.8 (CMe₃, C_{ipso}), 113.4 $(CH=CH_2)$, 114.5 (C_5H_3, C_{ipso}) , 119.2, 121.4, 121.7 (C_5H_3) , 125.3– 129.9 (C₆H₃), 135.1 (CH=CH₂), 146.9, 147.4 (NC), 253.0, 257.1 (CMe_2) ppm.

Synthesis of $[Zr{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)|SiMe_2(CH_2CH=CH_2)]}-{\eta^2-C(CH_2Ph)=N(2,6-Me_2C_6H_3)}_2]$ (15): A toluene (10 mL) solution of $CN(2,6-Me_2C_6H_3)$ (0.37 g, 2.83 mmol) was added to a solution of 11 (0.80 g, 1.42 mmol) in toluene (40 mL) and the mixture was stirred at room temperature overnight. The solvent was re-

moved under vacuum and the resulting residue was extracted into pentane (40 mL). The solution was filtered and the solvent was removed under vacuum to give an orange oil identified as compound 15 (0.76 g, 0.92 mmol, 65% yield). ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.07$ (s, 3 H, Si Me_2), 0.08 (s, 3 H, Si Me_2), 0.64 (s, 3 H, SiMe₂), 0.74 (s, 3 H, SiMe₂), 1.12 (s, 9 H, CMe₃), 1.45 (m, 2 H, SiCH₂), 1.65 (s, 3 H, NMeC₆H₃), 1.87 (s, 3 H, NMeC₆H₃), 1.97 (s, 3 H, NMeC₆H₃), 2.12 (s, 3 H, NMeC₆H₃), 3.47 (d, J =14.3 Hz, 1 H, CH_2Ph), 3.60 (d, J = 17.3 Hz, 1 H, CH_2Ph), 3.64 (d, $J = 14.6 \text{ Hz}, 1 \text{ H}, CH_2Ph), 3.80 (d, J = 17.3 \text{ Hz}, 1 \text{ H}, CH_2Ph), 4.85$ (m, 2 H, CH=C H_2), 5.63 (m, 1 H, CH=C H_2), 6.10 (t, 1 H, C₅ H_3), 6.21 (t, 1 H, C_5H_3), 6.84 (t, 1 H, C_5H_3), 6.50–7.40 (m, C_6H_3 , C_6H_5) ppm. ¹³C{¹H} NMR (75 MHz, C₆D₆, 25 °C): $\delta = -2.1$ (Si Me_2), -1.9 (Si Me_2), 4.2 (Si Me_2), 4.6 (Si Me_2), 18.8, 19.0, 20.1, 20.3 (NMeC₆H₃), 26.2 (SiCH₂), 36.1 (CMe₃), 45.7, 46.1 (CH₂Ph), 56.4 (CMe_3, C_{ipso}) , 113.6 $(CH=CH_2)$, 115.4 (C_5H_3, C_{ipso}) , 117.1, 121.2, 123.0 (C_5H_3), 125.5–130.7 (C_6H_5 , C_6H_3), 135.4 ($CH=CH_2$), 137.7, 137.8, 147.5, 148.3 (C_6H_5 , C_6H_3 , C_{ipso}), 253.0, 257.1 [$C(CH_2Ph)_2$]

Synthesis $[Hf{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}]SiMe_2(CH_2CH=$ CH_2]]{ η^2 -CMe=N(2,6-Me₂C₆H₃)}₂] (16): A toluene solution (60 mL) of CN(2,6-Me₂C₆H₃) (0.47 g, 3.60 mmol) and 12 (0.90 g, 1.80 mmol) was stirred at room temperature overnight. The solvent was removed under vacuum and the residue was extracted into pentane (40 mL). After filtration and elimination of the solvent under vacuum, compound 16 was obtained as a red oily product (1.37 g, 1.1 mmol, 80% yield). C₃₆H₅₃HfN₃Si₂ (762.50): calcd. C 56.71, H 7.01, N 5.51; found C 56.42, H 7.02, N 5.52. ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.09$ (s, 3 H, SiMe₂), 0.25 (s, 3 H, SiMe₂), 0.67 (s, 3 H, SiMe₂), 0.70 (s, 3 H, SiMe₂), 1.08 (s, 9 H, CMe₃), 1.59 (m, 2 H, SiCH₂), 1.95 (s, 3 H, NMeC₆H₃), 1.96 (s, 6 H, NMe₂C₆H₃), 1.98 (s, 3 H, NMeC₆H₃), 2.10 (s, 3 H, CMe), 2.19 (s, 3 H, CMe), 4.86 (m, 2 H, CH=CH₂), 5.72 (m, 1 H, CH=CH₂), 6.27 (t, 1 H, C_5H_3), 6.46 (t, 2 H, C_5H_3), 6.95–7.00 (m, 6 H, C_6H_3) ppm. ¹³ $C\{^1H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.8$ (Si Me_2), -2.5 (Si Me_2), 4.1 $(SiMe_2)$, 4.6 $(SiMe_2)$, 18.5, 18.6, 18.8, 19.8 $(NMeC_6H_3)$, 24.6 (SiCH₂), 25.7, 25.9 (CMe₂), 35.5 (CMe₃), 55.5 (CMe₃, C_{ipso}), 113.4 $(CH=CH_2)$, 114.1 (C_5H_3, C_{ipso}) , 118.3, 120.3, 120.7 (C_5H_3) , 125.3– 129.5 (C₆H₃), 135.1 (CH=CH₂), 146.3, 146.8 (NC), 262.3, 268.6 (CMe_2) ppm.

Synthesis $[Hf{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}]SiMe_2(CH_2CH=$ CH_2] $\{\eta^2-C(CH_2Ph)=N(2,6-Me_2C_6H_3)\}_2$] (17): A toluene (50 mL) solution containing 13 (0.80 g, 1.23 mmol) and CN(2,6-Me₂C₆H₃) (0.32 g, 2.46 mmol) was stirred at room temperature for 2 d. The solvent was removed under reduced pressure and the residue was extracted into pentane (40 mL). After filtration, the solvent was removed under vacuum to give an orange oil identified as compound 17 (0.79 g, 0.86 mmol, 70% yield). $C_{48}H_{61}HfN_3Si_2$ (914.69): calcd. C 63.03, H 6.72, N 4.59; found C 63.00, H 6.55, N 4.50. 1H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = 0.06$ (s, 3 H, $SiMe_2$), 0.09 (s, 3 H, $SiMe_2$), 0.64 (s, 3 H, $SiMe_2$), 0.71 (s, 3 H, $SiMe_2$), 1.11 (s, 9 H, CMe₃), 1.44 (m, 2 H, SiCH₂), 1.72 (s, 3 H, NMeC₆H₃), 1.89 (s, 3 H, NMeC₆H₃), 2.00 (s, 3 H, NMeC₆H₃), 2.11 (s, 3 H, NMeC₆H₃), 3.54 (d, J = 14.5 Hz, 1 H, CH_2Ph), 3.69 (d, J = 16.8 Hz, 1 H, CH_2Ph), 3.72 (d, J = 14.5 Hz, 1 H, CH_2Ph), 3.86 (d, J = 17.0 Hz, 1 H, CH_2Ph), 4.83 (m, 2 H, $CH=CH_2$), 5.62 (m, 1 H, $CH=CH_2$), 6.09 (t, 1 H, C_5H_3), 6.21 (t, 1 H, C_5H_3), 6.72 (t, 1 H, C_5H_3), 6.55– 7.35 (m, C_6H_3 , C_6H_5) ppm. $^{13}C\{^1H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -2.5$ (SiMe₂), -2.3 (SiMe₂), 3.9 (SiMe₂), 4.5 (SiMe₂), 18.6, 19.7, 20.0 (NMeC₆H₃), 25.9 (SiCH₂), 36.0 (CMe₃), 45.8, 46.2 (CH_2Ph) , 55.7 (CMe_3, C_{ipso}) , 113.3 $(CH=CH_2)$, 115.8 (C_5H_3, C_{ipso}) , 120.2, 125.4, 126.7 (C_5H_3), 128.5–130.4 (C_6H_5 , C_6H_3), 135.1

(CH=CH₂), 137.4, 137.5, 147.0, 147.5 (C_6H_5 , C_6H_3 , C_{ipso}), 261.2, 265.4 [$C(CH_2Ph)_2$] ppm.

Synthesis of $[Zr\{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)[SiMe_2(CH_2CH=CH_2)]\}$ $\{\eta - N(2,6-Me_2C_6H_3)CMe = CMe - \eta - N(2,6-Me_2C_6H_3)\}\}$ (18): A toluene (50 mL) solution of 14 (0.63 g, 0.93 mmol) was heated at 70 °C for 2 d in a Teflon-valved Schlenk vessel. The solvent was then removed under vacuum and the residue was extracted into pentane (40 mL). After removal of the solvent under vacuum, compound 18 was isolated as a red oil (0.63 g, 0.93 mmol, 100% yield). ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = -0.25$ (s, 3 H, $SiMe_2$), -0.12 (s, 3 H, SiMe₂), 0.64 (s, 3 H, SiMe₂), 0.66 (s, 3 H, SiMe₂), 1.10 (s, 9 H, CMe_3), 1.23 (m, 2 H, $SiCH_2$), 1.59 (s, 3 H, $NMeC_6H_3$), 1.62 (s, 3 H, NMeC₆H₃), 2.04 (s, 3 H, NMeC₆H₃), 2.09 (s, 3 H, NMeC₆H₃), 2.45 (s, 3 H, CMe_2), 2.52 (s, 3 H, CMe_2), 4.74 (m, 2 H, $CH=CH_2$), 5.50 (m, 1 H, CH=CH₂), 6.16 (t, 1 H, C_5H_3), 6.35 (t, 1 H, C_5H_3), 6.53 (t, 1 H, C_5H_3), 6.90–7.10 (m, 6 H, C_6H_3) ppm. ¹³ $C\{^1H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -4.4$ (Si Me_2), -3.5 (Si Me_2), 3.4 (SiMe₂), 3.6 (SiMe₂), 16.9, 17.9, 19.8, 19.9 (NMeC₆H₃), 21.2, 21.7 (CMe₂), 24.5 (SiCH₂), 35.7 (CMe₃), 55.5 (CMe₃, C_{ipso}), 110.8, 111.2 (NC=CN), 113.3 (CH=CH₂), 114.5 (C_5H_3 , C_{ipso}), 122.7, 123.4, $124.5 (C_5H_3), 125.3-129.5 (C_6H_3), 132.3, 133.2, 133.3, 133.8 (C_6H_3),$ C_{ipso}), 134.8 (CH=CH₂), 149.9, 150.1 (NC) ppm.

 $[Hf{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)}]SiMe_2(CH_2CH=$ Synthesis of CH₂)] $\{\eta - N(2,6-Me_2C_6H_3)CMe = CMe - \eta - N(2,6-Me_2C_6H_3)\}\}$ (19): A toluene (50 mL) solution of 15 (0.60 g, 0.79 mmol) was heated at 80 °C for 2 d in a Teflon-valved Schlenk vessel and the solvent was then removed under vacuum. The residue was extracted into pentane (40 mL) and the solvent was removed under vacuum to give compound 19 as a brown oil. (0.60 g, 0.79 mmol, 100% yield). C₃₆H₅₃HfN₃Si₂ (762.50): calcd. C 56.71, H 7.01, N 5.51; found C 56.42, H 7.02, N 5.52. ¹H NMR (300 MHz, C_6D_6 , 25 °C): δ = -0.22 (s, 3 H, Si Me_2), -0.12 (s, 3 H, Si Me_2), 0.65 (s, 3 H, Si Me_2), 0.68 (s, 3 H, SiMe₂), 1.08 (s, 9 H, CMe₃), 1.29 (m, 2 H, SiCH₂), 1.60 (s, 3 H, NMeC₆H₃), 1.61 (s, 3 H, NMeC₆H₃), 1.99 (s, 3 H, NMeC₆H₃), 2.06 (s, 3 H, NMeC₆H₃), 2.41 (s, 3 H, CMe₂), 2.49 (s, 3 H, CMe_2), 4.79 (m, 2 H, $CH=CH_2$), 5.53 (m, 1 H, $CH=CH_2$), 6.14 (t, 1 H, C_5H_3), 6.46 (t, 1 H, C_5H_3), 6.65 (t, 1 H, C_5H_3), 6.91– 7.08 (m, 6 H, C_6H_3) ppm. ¹³C{¹H} NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -4.0 \text{ (Si}Me_2), -3.3 \text{ (Si}Me_2), 3.9 \text{ (Si}Me_2), 4.0 \text{ (Si}Me_2), 17.0, 18.5,$ 20.0, 20.2 (N $Me_2C_6H_3$), 21.4, 22.6 (C Me_2), 24.7 (Si CH_2), 35.6 (CMe_3) , 55.7 (CMe_3, C_{ipso}) , 112.0, 112.1 (NC=CN), 113.3 $(CH=CH_2)$, 114.9 (C_5H_3, C_{ipso}) , 123.3, 123.4, 124.6 (C_5H_3) , 125.4– 129.5 (C_6H_3) , 132.0, 132.5, 132.8, 133.2 (C_6H_3, C_{ipso}) , 134.8 (CH=CH₂), 149.8, 149.9 (NC) ppm.

Synthesis of $[Zr\{\eta^5-C_5H_3(SiMe_2-\eta^1-NtBu)[SiMe_2(CH_2CH=CH_2)]\}$ $\{\eta\text{-N}(2,6\text{-Me}_2C_6H_3)C(CH_2Ph)\text{=}C(CH_2Ph)\text{-}\eta\text{-}N(2,6\text{-Me}_2C_6H_3)\}]$ (20): A toluene (50 mL) solution of 16 (0.80 g, 0.97 mmol) was heated at 80 °C for 4 d and the solvent was then removed under vacuum. The residue was extracted into pentane (40 mL) and the solvent was removed under vacuum to give a brown oil identified as compound **20** (0.80 g, 0.97 mmol, 100% yield). ¹H NMR (300 MHz, C_6D_6 , 25 °C): $\delta = -0.29$ (s, 3 H, $SiMe_2$), -0.15 (s, 3 H, $SiMe_2$), 0.63 (s, 3 H, $SiMe_2$), 0.65 (s, 3 H, $SiMe_2$), 1.01 (s, 9 H, CMe₃), 1.18 (m, 2 H, SiCH₂), 1.77 (s, 3 H, NMeC₆H₃), 1.98 (s, 3 H, NMeC₆H₃), 2.47 (s, 3 H, NMeC₆H₃), 2.50 (s, 3 H, NMeC₆H₃), 3.21 (d, J = 15.2 Hz, 1 H, CH_2Ph), 3.61 (d, J = 14.3 Hz, 1 H, CH_2Ph), 3.87 (d, J = 14.5 Hz, 1 H, CH_2Ph), 4.35 (d, J = 15.4 Hz, 1 H, CH₂Ph), 4.76 (m, 2 H, CH=CH₂), 5.50 (m, 1 H, CH=CH₂), 6.11 (t, 1 H, C_5H_3), 6.20 (t, 1 H, C_5H_3), 6.59 (t, 1 H, C_5H_3), 6.65– 7.15 (m, C_6H_5 , C_6H_3) ppm. ¹³ $C\{^1H\}$ NMR (75 MHz, C_6D_6 , 25 °C): $\delta = -4.7$ (Si Me_2), -3.7 (Si Me_2), 3.1 (Si Me_2), 3.9 (Si Me_2), 20.2, 20.3, 21.5, 22.0 (NMeC₆H₃), 24.5 (SiCH₂), 35.6 (CMe₃), 38.3,

39.2 (CH_2 Ph), 55.5 (CMe_3 , C_{ipso}), 112.8 (NC=CN), 113.2 ($CH=CH_2$), 117.3, 119.4 (C_5H_3 , C_{ipso}), 123.3, 123.8, 124.8 (C_5H_3), 125.8–129.4 (C_6H_3 , C_6H_5), 134.7 ($CH=CH_2$), 138.6, 139.1, 149.4, 149.8 (C_6H_3 , C_6H_5 , C_{ipso}) ppm.

X-ray Structure Determination of [ZrCl(μ-Cl){η⁵-C₅H₃(SiMe₂-η¹-NtBu) [SiMe₂(CH₂CH=CH₂)]}]₂ (6): Crystals of compound 6 were obtained by crystallisation from hexane, and a suitably sized crystal in a Lindemann tube was mounted on a Philips PW 1100 diffractometer with graphite-monochromated Mo- K_{α} radiation (λ = 0.71073 Å). Crystallographic and experimental details are summarised in Table 2. No decay was observed during the data collection. A semi-empirical method of absorption correction was applied (maximum and minimum values for the transmission coefficient were 1.000 and 0.665).^[53] The structure was solved by direct methods (SIR97)^[54] and refined by least squares against F_0^2 (SHELXL-97).^[55] All the non-hydrogen atoms were refined anisotropically and the hydrogen atoms were introduced from geometrical calculations and refined using a riding model. The programs PARST^[56] ad ORTEP^[57] were also used. CCDC-273336 (6) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 2. Crystal data and structure refinement for 6.

•		
Empirical formula	$C_{32}H_{58}Cl_4N_2Si_4Zr_2$	
Formula mass	907.40	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system, space group	monoclinic, P2 ₁ /a	
Unit cell dimensions	a = 14.412(9) Å	
	$b = 12.300(6) \text{ Å}, \beta = 92.29(2)^{\circ}$	
	c = 12.784(6) Å	
Volume	$2264(2) \text{ Å}^3$	
Z, calculated density	$2, 1.331 \mathrm{Mg}\mathrm{m}^{-3}$	
Absorption coefficient	0.825 mm^{-1}	
F(000)	936	
Crystal size	$0.45 \times 0.25 \times 0.20 \text{ mm}$	
Theta range for data collec-	3.19-24.00°	
tion		
Limiting indices	$-16 \le h \le 16, 0 \le k \le 14, 0 \le l$	
	≤ 14	
Reflections collected/unique	3729/3563 [R(int) = 0.0971]	
Completeness to $\theta = 24.00$	99.8%	
Absorption correction	empirical	
Max./min. transmission	1.000/0.665	
Refinement method	full-matrix least squares on F^2	
Data/restraints/parameters	3563/0/199	
Goodness-of-fit on F^2	0.857	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0514, wR_2 = 0.1102$	
R indices (all data)	$R_1 = 0.1346, wR_2 = 0.1372$	
Largest diff. peak and hole	0.444 and -0.503 eÅ ⁻³	

Acknowledgments

Financial support of our work by MEC (project MAT2004-02614) and DGU-CM (project GR/MAT/0622/2004) is gratefully acknowledged.

- [1] X. M. Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1991, 113, 3623–3625.
- [2] M. Bochmann, S. J. Lancaster, M. B. Hursthouse, K. M. A. Malik, Organometallics 1994, 13, 2235–2243.
- [3] X. M. Yang, C. L. Stern, T. J. Marks, J. Am. Chem. Soc. 1994, 116, 10015–10031.

- [4] S. Beck, M. H. Prosenc, H. H. Brintzinger, R. Goretzki, N. Herfert, G. Fink, J. Mol. Catal. A: Chem. 1996, 111, 67–79.
- [5] E. Y. X. Chen, T. J. Marks, Chem. Rev. 2000, 100, 1391-1434.
- [6] S. Beck, S. Lieber, F. Schaper, A. Geyer, H. H. Brintzinger, J. Am. Chem. Soc. 2001, 123, 1483–1489.
- [7] S. Döring, V. V. Kotov, G. Erker, G. Kehr, K. Bergander, O. Kataeva, R. Fröhlich, Eur. J. Inorg. Chem. 2003, 1599–1607.
- [8] T. Beringhelli, G. D'Alfonso, D. Maggioni, P. Mercandelli, A. Sironi, Chem. Eur. J. 2005, 11, 650–661.
- [9] D. Maggioni, T. Beringhelli, G. D'Alfonso, L. Resconi, J. Organomet. Chem. 2005, 690, 640–646.
- [10] C. P. Casey, D. W. Carpenetti, H. Sakurai, J. Am. Chem. Soc. 1999, 121, 9483–9484.
- [11] R. F. Jordan, Adv. Organomet. Chem. 1991, 32, 325–387.
- [12] T. J. Marks, Acc. Chem. Res. 1992, 25, 57-65.
- [13] H. H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. M. Waymouth, *Angew. Chem. Int. Ed. Engl.* 1995, 34, 1143–1170.
- [14] M. Bochmann, J. Chem. Soc., Dalton Trans. 1996, 255–270.
- [15] L. Resconi, L. Cavallo, A. Fait, F. Piemontesi, Chem. Rev. 2000, 100, 1253–1345.
- [16] Z. Wu, R. F. Jordan, J. L. Petersen, J. Am. Chem. Soc. 1995, 117, 5867–5868.
- [17] C. P. Casey, D. W. Carpenetti, Organometallics 2000, 19, 3970–3977.
- [18] C. P. Casey, S. L. Hallenbeck, D. W. Pollock, C. R. Landis, J. Am. Chem. Soc. 1995, 117, 9770–9771.
- [19] J. F. Carpentier, V. P. Maryin, J. Luci, R. F. Jordan, J. Am. Chem. Soc. 2001, 123, 898–909.
- [20] J. F. Carpentier, Z. Wu, C. W. Lee, S. Stromberg, J. N. Christopher, R. F. Jordan, J. Am. Chem. Soc. 2000, 122, 7750–7767.
- [21] E. J. Stoebenau III, R. F. Jordan, J. Am. Chem. Soc. 2003, 125, 3222–3223.
- [22] Z. T. Xu, K. Vanka, T. Ziegler, Organometallics 2004, 23, 104– 116.
- [23] K. Kunz, G. Erker, G. Kehr, R. Fröhlich, H. Jacobsen, H. Berke, O. Blacque, J. Am. Chem. Soc. 2002, 124, 3316–3326.
- [24] G. Lanza, I. L. Fragala, T. J. Marks, J. Am. Chem. Soc. 2000, 122, 12764–12777.
- [25] K. Vanka, M. S. W. Chan, C. C. Pye, T. Ziegler, Organometallics 2000, 19, 1841–1849.
- [26] A. T. Rappe, W. M. Skiff, C. J. Casewit, Chem. Rev. 2000, 100, 1435–1456.
- [27] M. S. W. Chan, K. Vanka, C. C. Pye, T. Ziegler, Organometallics 1999, 18, 4624–4636.
- [28] L. T. Li, T. J. Marks, Organometallics 1998, 17, 3996-4003.
- [29] L. Jia, X. M. Yang, C. L. Stern, T. J. Marks, *Organometallics* 1997, 16, 842–857.
- [30] P. A. Deck, T. J. Marks, J. Am. Chem. Soc. 1995, 117, 6128–6129.
- [31] J. Cano, P. Gómez-Sal, G. Heinz, G. Martínez, P. Royo, *Inorg. Chim. Acta* 2003, 345, 15–26.
- [32] M. V. Galakhov, G. Heinz, P. Royo, Chem. Commun. 1998, 17– 18.
- [33] T. Cuenca, P. Royo, Coord. Chem. Rev. 1999, 195, 447-498.
- [34] M. J. Humphries, M. L. H. Green, R. E. Douthwaite, L. H. Rees, J. Chem. Soc., Dalton Trans. 2000, 4555–4562.
- [35] S. Ciruelos, T. Cuenca, R. Gomez, P. Gómez-Sal, A. Manzanero, P. Royo, Organometallics 1996, 15, 5577–5585.
- [36] S. Ciruelos, A. Sebastian, T. Cuenca, P. Gómez-Sal, A. Manzanero, P. Royo, J. Organomet. Chem. 2000, 604, 103–115.
- [37] H. G. Alt, K. Föttinger, W. Milius, J. Organomet. Chem. 1998, 564, 115–123.
- [38] H. G. Alt, K. Föttinger, W. Milius, J. Organomet. Chem. 1999, 572, 21–30.
- [39] W. P. Leung, F. Q. Song, Z. Y. Zhou, F. Xue, T. C. W. Mak, J. Organomet. Chem. 1999, 575, 232–241.
- [40] A. Razavi, U. Thewalt, J. Organomet. Chem. 2001, 621, 267– 276.
- [41] Y. Mu, W. E. Piers, D. C. MacQuarrie, M. J. Zaworotko, Can. J. Chem. 1996, 74, 1696–1703.

- [42] J. Okuda, T. Eberle, T. P. Spaniol, V. Piquet-Faure, J. Organomet. Chem. 1999, 591, 127–137.
- [43] P. Doufou, K. A. Abboud, J. M. Boncella, J. Organomet. Chem. 2000, 603, 213–219.
- [44] K. E. Duplooy, U. Moll, S. Wocadlo, W. Massa, J. Okuda, Organometallics 1995, 14, 3129–3131.
- [45] D. W. Carpenetti, L. Kloppenburg, J. T. Kupec, J. L. Petersen, Organometallics 1996, 15, 1572–1581.
- [46] J. Cano, P. Royo, M. Lanfranchi, M. A. Pellinghelli, A. Tiripicchio, Angew. Chem. Int. Ed. 2001, 40, 2495.
- [47] A. Sebastian, P. Royo, P. Gómez-Sal, C. Ramírez de Arellano, Eur. J. Inorg. Chem. 2004, 3814–3821.
- [48] L. Kloppenburg, J. L. Petersen, *Organometallics* 1997, 16, 3548–3556.
- [49] L. D. Durfee, I. P. Rothwell, Chem. Rev. 1988, 88, 1059–1079.
- [50] L. R. Chamberlain, L. D. Durfee, P. E. Fanwick, L. Kobriger, S. L. Latesky, A. K. McMullen, I. P. Rothwell, K. Folting, J. C. Huffman, W. E. Streib, R. Wang, J. Am. Chem. Soc. 1987, 109, 390–402.

- [51] P. Nicolas, P. Royo, M. V. Galakhov, O. Blacque, H. Jacobsen, H. Berke, *Dalton Trans.* 2004, 2943–2951.
- [52] L. E. Manzer, *Inorg. Synth.* **1982**, 21, 135–140.
- [53] A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystallogr., Sect. A 1968, 24, 351.
- [54] A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 1999, 32, 115–119.
- [55] G. M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, Universität Göttingen, Göttingen, Germany, 1997.
- [56] M. Nardelli, Comput. Chem. 1983, 7, 95-98.
- [57] L. Zsolnai, H. Pritzkow, *ZORTEP ORTEP* original program modified for PC, Universität Heidelberg, Heidelberg, 1994.

Received: April 28, 2005 Published Online: August 31, 2005