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Resumen 

La popularización del concepto “Internet de las cosas” ha fomentado el rápido desarrollo de 

aplicaciones centradas en la obtención de información relativa a personas. Por este motivo, y 

gracias a la disponibilidad de la capacidad de cálculo de los Smartphones, a lo largo de los últimos 

años se han comercializado diversos dispositivos económicos y aplicaciones a través de los que 

analizar la salud de los usuarios. En esta tesis se propone el uso de la señal electrocardiográfica 

para la detección precoz de reacciones alérgicas. Con este objetivo, se ha diseñado en primer lugar 

un nuevo algoritmo de detección de latidos cardiacos capaz de trabajar en tiempo real. La 

precisión de dicho algoritmo es similar a los propuestos en la literatura, sin embargo, su 

complejidad computacional y consumo de recursos son muy reducidos, lo que lo hace idóneo para 

ser empleado en plataformas portátiles de recursos limitados.  

En un estudio previo, se analizó el efecto que las reacciones alérgicas provocaban en la 

variabilidad del ritmo cardíaco, demostrando que dicho efecto es detectable incluso antes de la 

aparición de síntomas físicos en la mayoría de los pacientes alérgicos estudiados. Sin embargo, el 

método propuesto en dicho trabajo no puede emplearse para detectar alergias en pruebas reales, 

puesto que la complejidad computacional del modelo diseñado necesita horas de análisis para 

realizar dicha detección. Además, el estudio se centró únicamente en pruebas de provocación de 

alergias alimentarias en niños menores de 12 años.  

En este trabajo se continúa el estudio de la variabilidad del ritmo cardíaco en pacientes 

realizando pruebas de provocación con dos objetivos principales: el diseño de un algoritmo capaz 

de detectar alergias en tiempo real, y la extensión del estudio para incluir adultos y pruebas de 

provocación de alergias a medicamentos. El algoritmo resultante de dicho estudio tiene una 

precisión similar al propuesto en el trabajo previo, así como la reducción de la cantidad de 

alérgeno que los pacientes alérgicos deben consumir y de la duración de las provocaciones. Sin 

embargo, la nueva propuesta puede implementarse en un dispositivo autónomo y portátil y, lo 

que es más importante, es capaz de realizar las detecciones de reacciones alérgicas en tiempo real. 

A pesar de que los resultados obtenidos son prometedores, este estudio debe interpretarse 

como el inicio de una investigación mayor, puesto que es necesario emplear más tiempo y esfuerzo 

en la adquisición de nuevos datos para obtener una muestra representativa de toda la población 

de pacientes alérgicos a alimentos y medicamentos. 
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Abstract 

The popularisation of the concept of “Internet of Things” has promoted the fast increase of 

applications focused on obtaining information regarding people. For this reason, and thanks to 

the availability of the computing capacity of smartphones, over the last years a large number of 

low cost devices and applications have been marketed for analysing the health of users. In this 

thesis it is proposed to use ECG signals for early detection of allergic reactions. With this aim, a 

new QRS complex detection algorithm able to work in real time has been designed. This algorithm 

achieves an accuracy similar to those proposed by other authors, by reducing their computational 

complexity and the needed resources, which make it able to be implemented in portable 

platforms.  

In a previous study the effect that the occurrence of an allergic reaction causes in the heart rate 

variability was analysed, showing that it is noticeable even before the appearance of physical 

symptoms in most of the cases in which patients suffered an allergic reaction. However, the 

method proposed in this previous study is not suitable for detecting allergic reactions during real 

tests, since the computational complexity of the model designed requires hours of analysis to 

perform that detection. Moreover, the previous study only focused on food provocation tests in 

children under 12 years old. 

The study of the heart rate variability of allergic and non-allergic patients during provocation 

tests is continued in this work, with two main objectives: the designing of an algorithm capable of 

detecting allergic reactions in real time, and the extension of the study to include adults and drug 

provocation tests. The resulting algorithm has an accuracy similar to that proposed in the 

previous work and the achieved dose and length reduction of the provocation tests is similar as 

well. However, this algorithm is able to be implemented in a standalone portable device with 

limited resources and, what is more important, to perform the allergy reactions detection in real-

time.  

Although the results are promising, this study should be interpreted as the beginning of further 

research, since it is necessary to spend more time and effort in acquiring new data to get a 

representative sample of the entire population of allergic patients in the case of both food and 

drug allergies. 
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Chapter 1.  

INTRODUCTION 
 

 

The level of miniaturizing of electronic devices achieved during the last 30-40 years has led to 

the development of portable devices that are able to perform relatively complex tasks, powered 

by a battery, operating with increasing autonomy. This fact has had a significant impact on most 

areas of technological development. However, the areas to benefit most are the ones related to 

remote monitoring. As a result, the so-called “motes” have emerged [YaSQ13]. These devices, in 

their most basic version, include a power source, a microcontroller, a transceiver and one or more 

sensors. The reason for their popularity is that they solve big challenges with systems that do not 

affect the environment they are deployed in, such as industrial processes monitoring [JZLQ15], 

environment control [SLYJ14] or smart spaces development [TeEB15].  

One of the areas to benefit most from this evolution is that of medicine, since the appearance 

of these devices has encouraged the emergence of several technological proposals. Although 

motes do not automate the diagnosis, they greatly reduce the time required and facilitate the work 

of the medical staff. The use of devices and applications for remote patient monitoring (or 

Telemedicine) does not affect negatively to any extent the standard procedures followed in 

hospitals. On the contrary, these systems add a large number of advantages for both hospitals and 

patients as they allow the continuous and remote access to different physiological parameters.  
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Besides, in some cases patients will be able to stay in their own homes during monitoring with 

a higher level of mobility. This will significantly increase their quality of life and reduce waiting 

lists, the economic costs of the hospitals and the workload of the medical staff. In general, a 

telemedicine system is provided with some intelligence, that allows, among others, the signal 

filtering, the signal conditioning and the analysis of the measurements made on those parameters. 

It is also possible to add other features such as the ability to locate patients, generate alarms, etc. 

Thus, telemedicine systems provide two main advantages: on the one hand, the quantity and 

quality of the extracted information is larger than the one obtained nowadays, which greatly helps 

doctors; on the other hand, they significantly increase the patient safety, since the control of their 

health can be as comprehensive as necessary. Although the doctors should always make the last 

decision, the inclusion of computational intelligence in the monitoring systems can simplify the 

diagnosis processes in a very significant way.  

The use of motes implies, however, some drawbacks. Due to the fact that they are powered by 

a battery, and the resources are usually limited, it is necessary to reduce as much as possible the 

computational complexity of their firmware. The tasks that they can carry out have a limited 

complexity as well. Besides, the applications in which they are usually employed, have real-time 

requirements which need to be taken into consideration.  

This thesis is focused on remote monitoring of patients, or telemedicine systems[JiCh15]. 

Several works have been published in the area of the analysis, control and/or monitoring of 

people’s health thanks to the consolidation of “Internet of things” [TrDu15]. In this area many 

parameters regarding the state of people’s health have been used for, among other applications: 

increasing the elderly safety by monitoring their motion [SuMu14]; analysing the evolution of a 

particular disease by measuring one physiological parameter [PBDT14]; or analysing the 

behaviour, increasing the comfort of the users of smart spaces or saving the energy consumption 

of the elements controlled by smart spaces by acquiring a large quantity of information [HJHJ15].  

Particularly, in this work the health of patients will be observed through the measurement of 

their electrocardiographic signal (ECG). Due to its importance and the easiness to measure it, the 

ECG is one of the most studied physiological signals. It is possible to observe, not only the 

cardiovascular system state, but also the behaviour of different physiological systems through the 

analysis of the Heart Rate Variability (HRV) signal, which represents the time intervals between 

consecutive heartbeats. In this thesis, the relationship between HRV variations and the existence 

of allergic reactions will be studied.  
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Nowadays, the gold standard for the detection of allergies is the so called provocation tests, in 

which the patients are required to take some doses of the suspected allergen. The danger of this 

process could be reduced by detecting the allergies before the appearance of the physical 

symptoms. A previous investigation carried out by Niall Twomey at University College Cork 

(Ireland) [Twom13] demonstrated that it is possible to relate variances of the HRV with the 

existence of allergic reactions, and, what is more important, that it is possible to detect them 

before the health of the patient is compromised. However, that process was not able to work in 

real-time due to its computational complexity, and so, the early detection could not be achieved 

during the provocation tests.  

This thesis proposes the continuous monitoring of the ECG for the early detection of allergies 

in real-time during the provocation tests. With this aim, information regarding the performance 

of the heart will be extracted from this signal during several provocation tests, and the differences 

between allergic and non-allergic patients will be defined and used for the development of an 

allergy alarm system. This novelty implies the reduction of the risk the patients are exposed to by 

warning the medical staff before the allergy reactions are noticeable.   

 

 Structure of the thesis 

The rest of this thesis is organized as follows: 

 Chapter 2: “Background, Problem Statement and Objectives”. In this chapter, the basics 

of the knowledge areas covered by this thesis are introduced. The main concepts of 

heartbeat detection are explained here: how the ECG signal is generated, the main 

noises that complicate the heartbeat detection, the state of the art on detection 

algorithms, etc. Then, the importance of the HRV signal is shown through the analysis of 

several current works in which this signal is employed in a variety of applications.  

The concepts of allergy and the allergy diagnostics methods used nowadays are outlined 

next. The previous work carried out at University College Cork is summarized in this 

chapter. The specific problems that comprise the motivation of this work, such as the 

need for computationally efficient algorithms, real-time requirements or portable 

devices constraints, are listed and finally the objectives of this thesis are introduced.  
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 Chapter 3: “QRS Complex Detection”. In this chapter, a novel real time heartbeat 

detection algorithm for use in low resource hardware “motes” is proposed. With this 

algorithm, it is possible to obtain a sensitivity and specificity above 99.5% with a 

reduced computational complexity. The algorithm has been tested over standard and 

non-standard databases, sampled at different frequencies for patients with different 

health conditions. All these tests allow the performance of the proposed algorithm to be 

verified under different conditions and a comparison made to the results of other 

methods.   

 

 Chapter 4: “Automated Allergy Detection”. As a first contribution, in this chapter the set 

of HRV features used in the previous work for the detection of allergic reactions is 

analysed in order to classify the 18 features of the set depending on their computational 

complexity and diagnostic ability. The results provided by these tests make it possible 

to distinguish between the features that give information related to allergic reactions 

and those that can be considered useless for this application. This study has been 

performed on a dataset obtained during the initial study that consists of 23 children 

who underwent a food allergy provocation test at Cork University Hospital. Once the 

proper feature has been selected, it should be studied how an allergy reaction affects it. 

This study leads to the second contribution of Chapter 4, which is the proposal of a novel 

real-time early detection of allergies. In Chapter 4 this algorithm is explained, as well as 

the results obtained with the 23 subjects that compose the database.   

 

 Chapter 5: “Artefact detection and Positioning”. The algorithm presented in the previous 

chapter has been tested during food allergy provocation tests (Oral Food Challenges, 

OFC) with patients that were required to remain on a bed during the tests. However, 

depending on the hospital and the medical protocol, the subjects may be able to move 

freely. This condition will affect the performance of the proposed allergy detection 

algorithm and so, its effects need to be defined.  

With this aim, another dataset has been recorded at the Guadalajara University Hospital 

(Spain) where the patients are not confined to a bed during the OFC. This chapter 

investigates the differences arising from these two situations, which are mainly 

provoked by the patients’ movement. The effect of movement on the HRV signal can be 

considered here as an artefact.  
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Two artefact-reduction methods are proposed in this chapter: firstly, the absolute 

movement of the patients is measured by placing a 3-axis accelerometer on the chest. 

The second solution consists of placing an Inertial Measurement Unit (IMU) in the 

patients’ pocket in order to detect the physical activity they are performing. Thus, this 

chapter provides two contributions. First one is the proposal of an early detection 

algorithm based on the HRV and movement of the subjects; second one is an early 

detection algorithm based on the HRV and movement of the patients and the ability to 

track their position during the OFCs.  

 

 Chapter 6: “Extension of the Study”. This chapter investigates the allergy detection 

performance when the target of the study is changed in different ways. During the data 

collection, the ECG signal of adults undergoing OFC, as well as children and adults 

exposed to drug allergies provocation tests have been acquired. In this Chapter, the 

features of those groups are analysed and the allergy detection algorithm is tested with 

them. However, as will be explained, a big effort needs to be made in this way to 

establish a detection pattern for each one of the groups based on the HRV response to 

allergens in the case of allergic patients. Thus, the results provided by this chapter can 

be taken into account as the starting point to further research in this area.  

 

 Chapter 7: “Conclusions and Future Works”. This chapter presents the most significant 

conclusions of this thesis, and the publications derived from it are listed. Finally, some 

research lines that might be investigated in the future are proposed.  

 

 Thesis Background 

This thesis has been carried out as a joint PhD between the Electronics Department of the 

University of Alcalá (Spain) and the Electric and Electronic Department of University College Cork 

(Ireland). It has been developed under the auspices of the research projects LEMUR (ref. TIN2009-

14114-C04-01) and LORIS (ref. TIN2012-38080-C04-01), both supported by the Spanish Ministry 

of Science and Innovation. It has also been economically supported by the University of Alcalá 

grant program FPI/UAH (ref. FPI/UAH2012) and by the University of Alcalá mobility program. 

Three research stays were carried out thanks to the mobility program, all of them at University 

College Cork, in Ireland. 
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One of the goals of LEMUR and LORIS projects was the development of cooperative systems for 

the positioning of people and mobile robots in diverse environments. The research presented in 

this thesis was carried out as part of the subtask named “integration of the positioning networks 

with another networks (BSN and Smart grid)”, in particular with the interaction of the positioning 

networks with Body Sensor Networks (BSN).  

The thesis describes original work developed at the GEINTRA Research Group of the University 

of Alcalá and at the Biomedical Engineering research group of University College Cork. 

 



 

 

 

 

 

 

 

Chapter 2.  

BACKGROUND, PROBLEM STATEMENT AND 

OBJECTIVES 
 

 

This chapter introduces the basics of the heartbeat detection, Heart Rate Variability signal 

analysis, and allergy. Section 2.1 details how the electrocardiographic signal is generated and the 

main sources of noise that affect it. This analysis will help to understand the challenges faced when 

detecting QRS complexes. An overview of the current state of the art regarding the QRS complex 

detection is explained in order to justify the necessity of designing a new algorithm despite the 

fact that there are many methods proposed during the last 40 years.  

It is important to know that the Autonomous Nervous System (ANS) controls Heart Rate 

Variability (HRV) depending on the necessities of several physiological systems. Thanks to this 

fact it is possible to extract from the HRV, information related to the behaviour of those 

physiological systems. Section 2.2 explains some examples of the use of the HRV signal to provide 

diagnostic information for several conditions which are not directly related to the heart health. 

These examples give a clear idea of the great number of applications in which this signal can 

significantly improve several diagnostic methods that are used nowadays. 
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The allergy definition is given in section 2.3, as well as the existing methods used to detect 

different kinds of allergies. The so-called Oral Food Challenge (OFC) procedure is detailed in this 

section, as to increase the safety of the patients undergoing it, is one of the main objectives of this 

Thesis. Section 2.4 explains the starting point of this work; the Thesis carried out by Niall Twomey 

[Twom13] which is summarized. Once defined the background of this work, the main limitations 

of the explained methods and technologies are listed in section 2.5. The overcoming of these 

limitations shapes the motivation of this study and lead to the objectives and proposals of this 

Thesis, which are listed in section 2.6.  

 

 Basics of QRS complex detection 

Due to its inherent importance, software QRS detection has been a research topic for more than 

four decades. As a result of this interest, many algorithms have been published that reflect the 

evolution of computer technology [KöHO02]. The computational load determined the complexity 

and therefore the performance of the first proposals, whereas recent work is focused on 

performance of the algorithm, as computers are becoming faster, more powerful and more 

reliable. Nevertheless, with the appearance of wearable technology, where low-power battery-

driven devices are required, is changing to the original idea of developing low computational load 

algorithms [GFJC11, LANC14, ZDPL14] as is stated in [Kenn13]. 

Thanks to the evolution of technologies, there are some new alternatives available, allowing 

real-time analysis of the ECG signal to be performed. One of the latest is the use of cloud computing 

as is proposed by Xia et al. in [XiAZ13]. However, this proposal needs a permanent internet 

connection to achieve truly real-time results. Another possibility is the use of a host system to 

analyze the ECG signal measured by a remote device, in order to avoid the restrictions derived 

from its limited computational resources. In this case, a new problem arises related to the 

communication requirements, as the ECG signal has to be sent continuously to the analysis unit. 

To avoid these problems, it is necessary to compress, transmit and reconstruct all the data 

[LeKL11, MKAV11]. Another approach is the design of an ECG monitoring and analysis device for 

a particular application, as the one proposed by Chou et al. in [CTCL11] .  

In the next subsections, the challenges of QRS complex detection will be explained, as well as 

the techniques used more frequently to face those challenges.  
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 The electrocardiographic signal 

The ECG represents the electrical activity of the heart. It has several electrical nodes (Figure 

2.1-1) which are able to generate synchronized electrical impulses to activate its valves 

sequentially, thus allowing the blood to flow correctly through its chambers.  

The ECG signal shows the addition of all the action potentials1 generated by the electrical 

conduction system of the heart. Figure 2.1-2 represents the ECG waveform. Each one of its peaks: 

Q, R and S; waves: P, T and QRS complex; segments: PR and ST; and intervals: PR and QT; has 

correspondence with a state of the heart during each temporal phase of the heartbeat. These 

peaks, intervals, waves and segments have been studied and their features, both in time and 

amplitude domains, have been bounded.  

However, all these values have a strong dependency on the patients’ physiology, the 

measurement equipment, the position of the electrodes, etc. Depending on the application, those 

ECG’s features might have more or less importance (e.g. QT variability related to stress situations 

[KIKP14] or QT-RR interval co-variability differences on diabetic patients [FMSN14]). Usually the 

R peaks or the QRS complexes are used to define the instant in which the heartbeat occurs, as they 

represent the depolarization of both ventricles after they are contracted and the blood is pumped 

out of the heart.  

 

 

Figure 2.1-1. Left: anatomy of the human heart [Ownw00]; Right: electrical system of the heart [Madh06] 

                                                             

1 Action Potential: “The Action Potential is the electrical signal that accompanies the mechanical contraction of a 

single cell when it is stimulated by an electrical current. It is caused by the flow of Sodium (Na+), Potassium (K+), 

Chloride (Cl-), and other ions across the cell membrane. It provides information about the nature of physiological 

activity at the single-cell level” [Rang01] 
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Figure 2.1-2. ECG peaks, waves and interval representation 

 

As is explained above, different nodes are able to generate an electrical impulse. The natural 

pacemaker of the heart is the sinoatrial node, but, due to a bad functioning of the heart, it could be 

generated also at the Atrioventricular (AV) node, or at the Purkinje net. This is the cause or the 

consequence of a heart malfunction. Some examples are: 

 Atrial flutter: An electrical loop is formed between both atria, which produces heart beats 

at a very high rate, but in a regular form. Figure 2.1-3 shows an example of the ECG signal 

during an atrial flutter. In these cases, the atria beat faster than the ventricles, which 

provokes the appearance of additional heartbeats, as shown in the figure.  

 Atrial fibrillation: Random electrical impulses are generated at the atria. These impulses 

could be so fast and irregular that the atria cannot contract completely but they tremble as 

is shown at the Figure 2.1-4. In this situation, the atria cannot impulse enough blood through 

the arteries. 

 Atrioventricular block: Dysfunction occurs between atria and ventricles. It could be first-

grade block (the impulses reduce their speed when go from atria to ventricles), second 

grade (part of the impulses that pass through the AV node are blocked), or third grade (all 

the impulses are blocked at the AV node). Some P waves appear that are not followed by a 

QRS complex, so a low heart rate (or bradycardia) is detected.  

These and other kinds of heart malfunctions can produce an irregular heart rate, or extra 

heartbeats or, even, missing heartbeats. It is important to take them into account when designing 

an algorithm for the detection of the heartbeats position.  
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Figure 2.1-3. Example of the ECG signal during the occurrence of an atrial flutter. Subject iaf5 from the Intracardiac 

Atrial Fibrillation (iafdb) Database in [GAGH00]. The wrong activation of atria electrical nodes, makes them produce 

additional heartbeat.  

 

Figure 2.1-4. Example of the ECG signal during an atrial fibrillation. Subject iaf2 from the Intracardiac Atrial Fibrillation 

(iafdb) Database in [GAGH00]. The atria contract very fast and irregularly, provoking an irregular heartbeat and a 

desynchronization with the ventricles.   

 

 ECG sources of noise, interferences and artefacts 

The main challenge facing the QRS detection process is to perform an accurate heartbeat 

detection even with the presence of several artefacts. In [FJJY90] the features of the most 

important artefacts involved in the QRS complex detection were analysed.  Most of these noises 

are easily removed, since their bands of frequencies are far away from the frequency band of 

interest. However, some of these interferences have features very similar to those of the ECG 

waves (Figure 2.1-5) such as the artefacts provoked by the movement of the patient. The most 

important sources of noise will be explained next. For all the ECG recordings it has been employed 

a 3-lead configuration, with the electrodes arranged in the Einthoven Triangle configuration 

[WiJK47] as shown in Figure 2.1-6. 
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Figure 2.1-5. Power spectra of the main waves of the ECG signal, muscle noise and motion artefacts based on an average 

150 beats. Figure extracted from [Afon93]. 

 

Figure 2.1-6. Einthoven Triangle configuration 

 

 Power-line interference 

This interference will affect the ECG signal when any part of the equipment is connected to the 

mains, but it could appear even if the equipment is isolated due to the capacitive coupling 

[ChPa00]. As can be observed in the Figure 2.1-7 a frequency component of 50 Hz appears. Due to 

its features, it is necessary the use of a notch filter to remove this interference. Figure 2.1-8 shows 

an example of 2nd order notch filter and Figure 2.1-9 the resulting filtered signal. This filter barely 

removes information concerning the QRS complex.  
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Figure 2.1-7. ECG signal with 50 Hz interference 

 

Figure 2.1-8. Features of the notch filter 

 

Figure 2.1-9. ECG filtered with a notch filter 
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 Motion artefact 

This artefact is produced because of a poor contact between any of the electrodes with the skin. 

Movements due to changing the posture usually provoke this bad contact, or the electrodes are 

deformed and they lose contact with the skin. As can be seen in Figure 2.1-10, motion artefacts 

produce high frequency peaks (as the one occurred before second 86) similar to R peaks, which 

could be misclassified as heartbeats by a QRS complex detection algorithm. In this example, the 

50 Hz interference is noticeable as well, due to the fact that the unconnected electrodes act as 

antennas. The power spectrum components of this noise have a frequency very similar to the 

interesting band frequency, which makes the filtering stage more complicated. 

The effects of detaching each one of the electrodes are plotted on Figure 2.1-11. In the first 

case, when the reference electrode is removed (LL electrode), the noise level of the ECG signal is 

increased. In the second case, the LA electrode has been detached, so when the operation CH1-

CH2 is executed, the common mode noise is not removed. Also, because the LA electrode is still 

connected to the measurement device, more interferences have been added. Finally, when the RA 

electrode is detached (which is usually the electrode capturing more signal), the ECG signal 

amplitude is decreased and it becomes less immune to any type of noise. In any of these three 

cases, the noises and interferences added to the ECG signal have frequencies similar to the ECG 

frequency, so they might make the QRS detection more difficult.  

 

 

Figure 2.1-10. Motion artefact effect 
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Finally, Figure 2.1-12 depicts the ECG power spectrum for these three cases. Even though the 

measurement equipment is completely isolated of the power line, a 50 Hz component appears. 

This happens because the electrodes are acting as antennas for this interference. 

 

 

Figure 2.1-11. ECG without LL, LA or RA electrode 

 

 

Figure 2.1-12. ECG spectrum without LL, LA or RA electrodes 
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 Muscle noise 

This noise appears due to the activity of the muscles close to the electrodes. In many cases, 

when there is a muscle contraction, the produced impulse completely hides the ECG signal. As can 

be seen in the Figure 2.1-13, the temporal effect of a muscle activation consists on the increasing 

of the background noise, which hinds the R peaks detection. In the frequency domain, the muscle 

activation produces the increasing of the low frequency band, which can be removed by obtaining 

the derivative signal. The most problematic effect of this noise is the presence of high frequency 

components, as they. 

 

 Wandering baseline 

This effect produces a low-frequency variation of the ECG signal baseline (Figure 2.1-14). There 

are several sources of this artefact, such as subject movement, poor contact or disconnection of 

an electrode, respiration effect, etc. Its frequency is very low, so it can be easily removed without 

losing important information from the ECG signal. 

 

 

Figure 2.1-13. ECG with muscle noise 
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Figure 2.1-14. Wandering baseline effect 

 

 QRS complex detection structure 

Each one of the above interferences and noises has a different effect on the ECG signal, which 

may hinder the detection of QRS complexes, so the process for eliminating each one of them is 

different as well. For instance, the power-line interference (Figure 2.1-7) could be removed by 

applying a notch filter. This filter barely removes important information from the ECG signal as 

long as it is only necessary to detect the position of the R peaks. However, the peaks due to motion 

(Figure 2.1-10) have frequencies and morphologies which could be mistaken for R peaks. This 

makes the process of the R peak detection more complex, thus, for a correct detection, it is 

necessary to take into consideration the possible maximum and minimum time interval between 

R peaks or the study of the detected peaks morphologies. 

The R peaks detection algorithms are generally based on two main blocks (Figure 2.1-15): a 

pre-processing stage, which attempts to reduce or remove most part of the noise; and the 

detection stage, in which the R peaks of the ECG signal are detected. Taking into account this 

structure, most algorithms could be classified depending on the techniques that the authors 

propose for implementing each block. However, since the pre-processing stage techniques are 

more easily defined as they are based on concrete mathematical methods, the R peaks detection 

techniques depend on the features of the signals obtained with the first process. Most of them are 

based on the existence of a threshold.  
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 Pre-processing techniques 

Wavelet Transform (WT) 

With the use of WT, it is possible to obtain information simultaneously in time and frequency 

domains. Through this technique, the ECG signal can be decomposed into a set of basic functions 

called wavelets (time-limited waves) by segmenting the ECG signal and applying the Discrete WT 

(DWT) to each segment. The length of the segments depends on a trade-off between accuracy and 

time-consumption. Then the wavelets that do not provide valid information are removed. Figure 

2.1-16 plots an example of raw ECG signal, sampled at 360 Hz and the result of applying an 8-level 

Discrete Stationary Wavelet Transform (SWT). The bottom figure shows the residual signal, which 

is the removed part of the raw ECG signal.  

In the Figure 2.1-17, the left column depicts the detail coefficients of the approximation; and 

the right column the result of the de-noising process over the coefficients. In this example, the 

coefficients d8, d7, d2 and d1 have been completely removed; a threshold has been applied to the 

coefficient d3, and coefficients d4, d5 and d6 have not been filtered. The resulting de-noised ECG 

signal is the addition of the signals of the left column.  

There are several kinds of WT which are commonly used to pre-process the ECG signal such as 

Dyadic [PZZX09], DWT [ChCC06], DWT with Cubic Spline interpolation [ZhWu08], Quadratic 

Spline (QSWT) [IeVM08], Continuous (CWT)[GhGG08]. As the QRS complex information is within 

the frequency band from 5Hz to 22Hz, the WT is often used together with a filtering stage in order 

to reduce high and/or low frequency noises. Which increases both, the computational complexity 

and the resources this process needs for the filtering of the ECG signal.  

 

 

Figure 2.1-15. Structure of a QRS complex detector algorithm 
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Figure 2.1-16. Wavelet denoising example 

 

Figure 2.1-17. Wavelet coefficients and denoised wavelets 
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Hilbert Transform  

One interesting property of this transform is that it is zero while the signal is constant and 

provides a zero-crossing every time there is an inflexion in the raw signal (Figure 2.1-18). Due to 

the morphological properties of the QRS complexes, a set of rules can be established to identify 

the position of the R waves. However, the features of several artefacts that are commonly present 

in the ECG signal could be mistaken as R peaks. For this reason, the Hilbert Transform is normally 

used together with another pre-processing stage. This other stage can be composed by a cascade 

of differentiations, integrations, etc. [MuMM13]; or they can be applied after [ZhLi09] or before 

[FFRM12] a WT.  

 

Techniques based on differentiation 

Differentiation emphasizes the dramatic changes that occur in a signal, as those provoked by 

the QRS complexes. These techniques are based on the well-known Pan and Tompkins algorithm 

[PaTo85]. Although these are the most efficient techniques from a power consumption and 

computational complexity point of view, usually they are not able to remove all the noises 

affecting the ECG signal. For this reason, they require the use of less noisy acquisition platforms 

and a more complex detection technique for avoiding the false positives. Some examples can be 

found in [ChKS12]. 

 

 

Figure 2.1-18. Example of Hilbert Transform of an ECG signal 
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Empirical Mode Decomposition (EMD) 

As WT, EMD[PBTK10] decomposes the signal into a sum of oscillatory functions (Intrinsic 

Mode Functions, IMFs) whose oscillations have lower frequencies than the preceding one. Each 

IMF met the following conditions: First, the sum of maxima and minima of each IMF is the same 

as the number of zero-crossings; and, secondly, at any point of the IMF, the mean value of the 

envelope defined by the local maxima and the envelope defined by the local minima should be 

zero. Then the IMFs that do not contain information about the ECG signal are removed and the 

ECG is reconstructed with the non-removed IMFs. Figure 2.1-19 shows an example of EMD de-

noising of an ECG signal. Figure 2.1-20 depicts the raw input signal and the result of applying the 

algorithm proposed in [ZoCh09], which is a fusion of EMD decomposition and Hilbert transform 

for filtering the ECG signal. Some authors combine this technique with WT [KhBJ13] as well, in 

order to improve the detection performance.  

 

 R-peaks detection techniques 

With regard to the detection stage, the most used techniques are: analysis of the ECG 

morphology (slope analysis, zero-crossing detections, etc.); search for the maxima; and single, 

dual or even triple dynamic or adaptive thresholds to detect the amplitude of the ECG signal and 

the time between R peaks. Depending on the pre-processing technique employed, the most 

appropriate detection stage will be different. According to the published works, the most common 

combination is the use of the wavelet decomposition with a double dynamic threshold [PuLL12] 

to detect the R peaks.  

There are some online QRS detectors that only use one dynamic threshold [IMLD12, NEBA12], 

obtaining an accurate detection. Their results can be improved if the Pan-Tompkins’ search-back 

technique is included, as in [ZAAB12]. The Search-back technique consists of the storage of all the 

peaks found after the detection of an R peak, even if they do not meet the requirements to be an 

R-peak. If a new R-peak is not found within a determined time interval after the last detection, the 

stored peaks are analysed in order to find which of them can be classified as a heartbeat. This 

technique, as well as the Pan and Tompkins’ algorithm, is detailed in Chapter 3.  
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Figure 2.1-19. EMD de-noising example 

 

Figure 2.1-20. Example of the Empirical Mode Decomposition of an ECG signal into 5 Intrinsic Mode Functions 
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Next will be explained an example of a QRS complex detection algorithm proposed in 

[GSGM14]. The pre-processing stage of this algorithm is based on a drift estimation and a low-

pass FIR filter (Figure 2.1-21). The resulting signal is depicted by Figure 2.1-22; the detection 

stage is based on a dual threshold to detect the positive and negative peaks of each QRS complex 

within the resulting processed ECG signal. The value of both thresholds is updated each second 

based on the amplitude of the positive and negative peaks as shown in Figure 2.1-23. The R peak 

is detected each time both thresholds are crossed by the signal within a predetermined time 

interval.  

Regarding the pre-processing methods, as is mentioned above, usually the transform-based 

ones (Wavelet, Hilbert and EMD) need an additional stage for filtering the raw ECG signal, while 

the differentiation technique does not need any additional filtering. For this reason, usually the 

differentiation techniques are less complex and require less resources. However, these techniques 

need a more complex detection stage, since the artefacts and noises are not completely removed.  

The correct technique to be used depends on several factors such as: the platform employed to 

implement the solution, the quality of the measurement system (and so, the level of noise), the 

movement of the patients, etc. Usually, Wavelet, Hilbert or EMD transforms achieve better results 

regarding the reduction of noises than techniques based on differentiation. However, the need of 

additional stages and high-order filters makes them unsuitable to be implemented in reduced-

resources platforms.   

 

 

Figure 2.1-21. Example of pre-processing stage 
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Figure 2.1-22. Result of the pre-processing stage 

 

Figure 2.1-23.Example of double adaptive threshold and detection of the R peaks 

 

 Heart Rate and Heart Rate Variability 

Heart Rate (HR) is defined as the number of heart beats per minute. This rate is controlled by 

the Autonomic Nervous System (ANS), which is composed of the Parasympathetic (PNS) and the 

Sympathetic Nervous Systems (SNS). The SNS prepares the body for stress situations, while the 

parasympathetic controls it within normal states. Thus, the heart rate varies depending on the 

demands of both systems following a cycle. Each of them have different requirements based on 

the necessities of several physiological systems [BTEG97]: 
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 Thermoregulatory system: changes in the difference between the environment and body 

temperatures produce very low frequency variations in the heart rate. 

 Vasomotor system: heart rate varies with changes in blood pressure. 

 Respiratory system: heart rate increases during the inspiration and decreases during the 

exhalation. 

 Central Nervous System (CNS): depending on the subject’s mood (stress, happiness, sleep 

stage, relaxation), the heart rate is high or low 

Thus, for healthy people under normal circumstances, the more the heart rate varies the 

healthier is the subject.  

Due to the relationship between the heart rate with other physiological systems behaviour, it 

is possible to analyse those systems by observing the HR variations. Usually these changes are 

analysed beat-by-beat, i.e. by computing the HR, which is equivalent to the time interval between 

each pair of adjacent heartbeats (RR intervals, Figure 2.1-2). The obtained signal is the so-called 

Heart Rate Variability (HRV) signal. Figure 2.2-1depicts an example of HRV signal of a healthy 

subject performing different activities, as can be distinguished by observing the mean value of the 

HRV (~80 bpm while sitting and ~110 while walking). During the same activity, the HRV does not 

have a constant value, its variation is approximately of ±10 bpm. This variance reflects the 

continuing adaptation of the body performed by the ANS.  

 

 

Figure 2.2-1. Heart Rate Variability of a healthy subject performing different physical activities. 
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Depending on the application, the HRV signal can be analysed in different ways. Thanks to its 

popularity, several features have been extracted, studied and their values or variations bounded 

for different health conditions. A large number of features can be extracted in time, frequency, 

graphical, etc. domains. In this work, a group of 18 features is analysed. The way these features 

are computed is explained in Appendix A.  

The continuous observation of the heart rate allows the detection of cardiac diseases such as 

arrhythmias [GKLE12, HWCT12]. As proposed in [LWSG12], it is possible to develop an alarm 

system which could reduce considerably the risk the patients are exposed to by linking the HRV 

monitoring device with a positioning system.  

Thanks to the accessibility of this signal and the reduced number of resources needed to obtain 

it, HRV has become a very useful tool to not only analyse the heart’s health [MILP12, PMSB11], 

but also to study other physiological systems [HNVB07] and even to help to diagnose non-cardiac 

diseases in a non-invasive way [BEDD11, MILP12]. The study of HRV can give more information 

during the realisation of physical stress tests [BGIC13, GSCR12], this information could be a great 

tool to predict the recovery of the subjects depending on their characteristics such as their ages, 

gender, weight, etc. The usefulness of the Heart Rate Variability is demonstrated through the 

numerous and varied applications in which it has been used:  assessment of prolonged pain states 

in the neonatal care context [JRLJ11], detection of seizures of new-borns [MaMe09], study and 

classification of individuals’ mental state [KWVK07] or mood [VaLS12], stress detection [BeAF12], 

analysis of the sleeping phase [EyDB12], detection of apnea [HWSS11], etc.  

Due to the fact that the performance of various and varied physiological systems can be 

observed and analysed through the measurement of the HRV signal it can be used to aid the 

diagnosis of certain diseases, in which case, the alternative observation method might be highly 

invasive. Additionally, it can be measured continuously with economic user-friendly devices that 

do not disturb the normal behaviour of the patients, allowing the access to information about the 

health status of the individuals during daily situations and familiar context, which greatly 

increases the quality and quantity of information available.  

 



Chapter 2. Background 

Introduction to allergies and allergy detection 

 

 

27 

 Introduction to allergies and allergy 

detection 

“Allergy” is the name given to the abnormal reaction of the immune system to foreign 

substances that are, generally, harmless. To develop allergy, it is necessary to have a previous 

contact with the allergen and that development can take place any time the person is exposed to 

it. In these cases, the body generates a response; the most frequent is that related to antibody 

called IgE (immunoglobulin E) which is in the surface of mast cells and basophils. At this moment 

the person is “sensitized” to the allergen; this means that they can develop an allergic reaction in 

a further contact. In a future exposure to that substance, the allergen joins the specific IgE, 

activating these cells. This joining makes the body to release substances (mediators) that trigger 

the allergic reactions.   

“Allergen” is a substance able to induce an immune reaction. Substances that could be allergens 

are pollen, dust mites, mould spores, animal hair, foods (milk, nuts, egg, fruits, etc.) or drugs 

(penicillin, antibiotics, insulin, etc.).  

 The severity of the allergic reactions varies from minor symptoms like pruritus, rash or hives; 

to more serious reactions, such as rhinitis, conjunctivitis, vomiting, abdominal cramp, or 

generalized reactions called anaphylaxis. Anaphylaxis provokes difficulty to breathe, hypotension 

and cardiorespiratory arrest.  

It is believed that the susceptibility for developing allergy is related both to each subject’s 

features such as heredity, age and gender; and to different environmental factors like pollution, 

amount of allergen, dietary changes or exposure to infectious diseases.  

There is no test to know who, from sensitized people, will become allergic, that means will 

develop an allergic reaction. There is not a defined pattern that can help the physicians to predict 

which subject is allergic to which substance or, more importantly, what kind of symptoms they 

will suffer. Usually allergic reactions produced by food or drugs are more dangerous than those 

produced by other kind of allergens.   
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In case of suspicion of an allergic disease, the physicians perform different tests that expose 

the subject to the allergen and record the result. There are different tests that can be used: 

 Immediate hypersensitivity skin tests (prick and Intradermal tests): These tests are carried 

out over the skin, by inserting a small quantity of the possible allergen. If the subject is 

sensitized, a wheal with erythema will appear in 15 or 20 minutes. A positive result means 

sensitization but is not necessary related to allergic symptoms with that allergen. 

 Delayed hypersensitivity allergy tests (epi-cutaneous test): Physicians paste some patches 

impregnated with the possible allergens over the subject’s back for 48 hours. Then, they 

remove them and evaluate the reaction of the skin. These tests measure delayed cell 

mediated allergic reactions.  

 Blood testing: The concentration of specific IgE antibodies in the patient’s blood is measured 

in a laboratory. Through this tests it is possible to identify antibodies to several kinds of 

allergens and, unlike the skin tests, it does not depend on subject’s age, skin state, drugs, etc. 

As was the case of skin tests, sensitization does not mean allergic symptoms. 

 Provocation tests or Oral Challenges for food[Ito13] or drug[ABRB03] allergies detection: 

These are the gold standard tests in allergy. The person is exposed to the allergen using 

increasing doses, until a full dose (a normal food portion or a therapeutical dose) is 

achieved. It is used to confirm a food or a drug tolerance and in certain cases to confirm 

allergy. It is a high risk procedure that must be carried out in a hospital setting. If symptoms 

appeared the test is stopped and symptoms are treated. The challenge test can be perfomed 

oral, subcutaneous, intramuscular or intravenously. 

 

 

Figure 2.3-1. Example of immediate hypersensitivity skin test or prick test (left, extracted from [Beea00]) and delayed 

hypersensitivity test preparation (right, extracted from [Grou15]) 
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This work is focused on the food allergy detection through allergy provocation tests, or Oral 

Food Challenges (OFC). Figure 2.3-2 summarizes the way these tests are conducted nowadays at 

the Department of Paediatrics and Child Health in the Cork University Hospital (CUH). As will be 

explained later on, there could exist some differences in how the OFC are performed. However, 

the philosophy is the same in all of them. The stages of this process are the following ones: 

1. Before the test starts, the base line health status of the subject is checked. This is done by 

measuring several physiological parameters of the subject, such as blood pressure, heart rate 

and blood oxygen saturation. Physicians also look for any health condition that could be 

mistaken later with an allergic reaction.  

2. A dose of the substance is then divided into several portions of different sizes. Usually, each 

portion is one half of the next one, being the maximum one half of the whole dose. The number 

of portions depends on the kind of allergen and the subject’s features and clinical history. 

3. The medical staff gives the smallest portion to the subject. 

4. During a time interval of 10 to 20 minutes (again depending on the subject and allergen’s 

features) the subject remains under observation. The medical staff is trained to detect both 

physiological and behavioural changes that might indicate the imminent appearance of an 

allergic reaction. Typically, the physicians look for skin problems, breathing difficulties, itchy 

tongue, red eyes, etc.; or with regard to behavioural changes, a decrease in physical activity. 

If the subject does not show any symptom, the next dose is given to him/her. 

Successively, the observation periods are interspersed with the subsequent administrations of 

the allergen until the patient reacts, in which case the symptoms are treated and the patient is 

classified as allergic (he/she fails the test); or until all the portions have been administered to the 

patient. In the last case, as a delayed reaction can take place, the patient remains under 

observation at the hospital for the next two hours. If no symptom appears during this period, the 

patient is said to have passed the tests, i.e. classified as non-allergic.  

As can be deduced, these tests present a high risk to the subjects’ health. It is necessary for the 

appearance of a reaction to occur for diagnosing the allergy, if any. Therefore, even with the 

continuous observation of expert nurses, in some cases the subjects required the administration 

of adrenaline due to the severity of their reactions. Besides, the detection of the symptoms 

depends on the visual inspection of the subjects and on what they report that they feel, which 

sometimes can be confusing both, for the patients and for the medical staff.  
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Figure 2.3-2. Flowchart of an Oral Food Challenge (OFC) at CUH 

 

 Previous work 

This Thesis presents research which is the continuation of a research carried out in the 

Department of Electrical and Electronic Engineering at the National University of Ireland, Cork 

(Ireland), “Digital Signal Processing and Artificial Intelligence for the Automated Classification of 

Food Allergy” [Twom13, TTHM14].  The main objective of that Thesis was the automation of the 

allergy detection through the measurement and analysis of the HRV signal. This work will be 

summarized next.  

 

 Dataset 

The Department of Paediatrics and Child Health at the Cork University Hospital performs OFCs 

in order to confirm the existence of food allergies. A collaboration between University College 

Cork and the Cork University Hospital was established with the aim of studying the ECG signal 

during the provocation tests, for which the approval of the Hospital ethics committee was 

obtained. The participation in the data-collecting process was voluntary for the patients, who gave 

their legal consent through their guardian signing the pertinent informed consent. Since the 

patients are underage, if the guardian did not want them to participate in the data collection, the 

OFC proceeded as usual. 23 children (age range 9 months – 10 years) were studied during routine 

OFC. The use of the remote sensing ECG monitoring was in addition to routine care and 

supervision.  
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TABLE 2.4-1. MAIN FEATURES OF THE TEST FROM WHICH THE ECG SIGNALS OF THE DATABASE USED WERE EXTRACTED 

ID Age Gender Allergen OFC length Total doses Result 

1 18 months M Wheat 0h. 14min. 1 

Fail 

2 6 years M Peanut 1h. 40min. 5 
3 9 years M Egg 1h. 34min. 5 
4 12 months M Milk 1h. 44min. 4 
5 8 years M Peanut 2h. 13min. 7 
6 9 years F Peanut 0h. 36min. 1 
7 6 years M Soy 0h. 57min. 3 
8 5 years M Peanut 1h. 45min. 5 
9 8 years F Egg (cake) 0h. 50min. 2 
10 3 years M Milk 1h. 23min. 3 
11 6 years F Peanut 1h. 25min. 5 
12 5 years F Milk 0h. 41min. 2 
13 3 years F Milk 1h. 46min. 5 
14 8 years M Soy 0h. 33min. 1 
15 9 years F Wheat 1h. 37min. 7 

16 12 months M Milk 2h. 10min. 4 

Pass 

17 6 years M Egg 1h. 42min. 5 
18 10 years M Egg (cake) 2h. 09min. 9 
19 4 years F Soy 2h. 11min. 8 
20 6 years M Peanut 1h. 51min. 8 
21 4 years F Wheat 1h. 29min. 6 
22 2 years M Peanut 1h. 03min. 4 
23 18 months F Milk 1h. 33min. 6 

Mean    1h. 25min. 4.5  

 

Termination of OFC was according to the existing unit protocols and clinical staff never had 

access to the ECG data. Fifteen of the 23 subjects of this study reacted to the given substance, while 

the other eight passed the tests. For each one of the tests, the allergen, age and gender of each 

subject, number of administered doses, total duration of the tests and result are summarized in 

Table 2.4-1.  

A wireless Shimmer device[Shim00a]  was used to record the ECG signal. The Shimmer device 

is a wearable platform composed of a MSP430F5437A microprocessor and several internal 

sensors. Some of the peripherals are: a 3-axis low noise accelerometer array, a 3-axis wide range 

accelerometer array, a 3-axis gyroscopes, 3-axis magnetic sensor, a relative pressure sensor and 

a temperature sensor as well as a Bluetooth antenna and a Micro SD Card socket. In addition, there 

are several expansion boards for adding capabilities to the basic platform. For this research, the 

Shimmer’s ECG daughter board [Shim00b] was used to obtain a 3-lead ECG signal.  
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Figure 2.4-1. Modified OFC process 

 

In each test, a shimmer was placed with a strap around the trunk and its electrodes arranged 

in the Einthoven triangle configuration (Figure 2.1-6). A sampling frequency of FS = 256Hz was 

used to measure the ECG signal, as recommended in [RiKW01] for a paediatric population. The 

changes in the normal OFC procedure include the allocation of the Shimmer after the tests started, 

and its removal when the tests had finished. The rest of the process progressed as normal, as 

Figure 2.4-1 depicts. 

 

 Feature set 

Once the ECG signal was obtained, the HRV of each subject was calculated in order to identify 

differences between allergic and non-allergic subjects. As is explained above, there exist a large 

number of HRV features that have been used to classify different health conditions. For this work 

18 of the most popular features from different domains were studied, due to the fact that it was 

unknown which body mechanism was necessary to observe.  

The group of features were computed using different epoch windows as explained in the Figure 

2.4-2, it can be observed how each second, the 18 features are obtained from each epoch 

regardless its duration. Different lengths were considered in that work: 60, 120, 180 and 300 

seconds because the effect of the allergy was not characterized before. Shorter epochs measure 

the immediate effects, whilst longer ones analysed longer term variations of the HRV signal.  

Appendix A details the computation of each one of the considered features, which are the 

following ones:  
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 Time domain 

a. Mean of the RR intervals within each epoch (MRR) 

b. Standard deviation of the RR intervals (STDNN) 

c. Coefficient of variation: Standard deviation divided by the mean of the HRV (CV) 

d. Root mean square of the differences between adjacent RR intervals (RMSSD) 

e. NN50: Number of consecutive RR intervals differing by more than 50 ms.  

f. pNN50: Percentage of consecutive RR intervals that differ for more than 50ms. 

g. pNN25: Percentage of consecutive RR intervals that differ for more than 25 ms. 

h. Histogram index: Total number of RR intervals divided by the height of the histogram of 

RR intervals of the window measured on a discrete scale with bins of 1/128 seconds 

 

 Sequential domain 

i. Positive trend (STPP): Percentage of consecutive increasing RR intervals 

j. Negative trend (STNN): Percentage of consecutive decreasing RR intervals 

 
 

 Graphical domain: These features are extracted from the Poincaré representation. Poincaré 

represents the relationship between each RR interval with the previous RR interval. The RR 

intervals form an ellipse-shape cluster. Minor axis, SD1, represents the beat-to-beat 

variability; while the mayor axis, or SD2, is related to the long-term variability. From this plot, 

the next features have been analysed: 

k. Cardiac sympathetic index (CSI) is obtained as SD1/SD2 

l. Cardiac vagal index (CVI) as SD1*SD2 

m. SD1 

n. SD2 

 

 Frequency domain 

o. Very low frequency power (VLF): Total power of the HRV spectrum in the very-low 

frequency band (0 to 0.04 Hz) 

p. Low frequency power (LF): Total power of the HRV spectrum in the low frequency band 

(0.04 to 0.15 Hz) 

q. High frequency power (HF): Total power of the HRV spectrum in the high frequency band 

(0.15 to 0.4 Hz) 

r. Ratio Low-High frequency (LFHF): Ratio between LF and HF power 
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Figure 2.4-2. Epoch definition for the computation of each feature 

 

 Automated allergy detection 

The previous work investigated the suitability of the machine-based technics to identify 

automatically signatures of food allergy based on the measurement and analysis of the HRV signal. 

The motivation to carry out that work was the observations of two allergists who conduct oral 

food challenges. These allergists observed that subjects had the tendency of becoming quiet 

before the onset of an allergic reaction, and their heart rate tended to change as well before the 

occurrence of the allergic reactions.  

An energy expenditure estimator was designed based on the measurement of the subject’s 

movement using a 3-axis accelerometer. Subjects performing OFC at the Cork University Hospital 

are required to stay quiet and relaxed during the test, so the activities they could perform were 

limited. For this reason, there was not a significant difference between allergic and non-allergic 

subjects regarding the energy expenditure.  

The final approach was based on the analysis of the previous explained HRV’s features. First, 

Principal Component Analysis [Webb93] is used to de-correlate the feature set. This process 

reduces the dimensionality of the feature vector. The only set of labelled data available was the 

data corresponding to the background interval, i.e., the data corresponding to the time in which 

any of the subjects had not had the allergen yet. For this reason, a novelty classifier based on a 

Gaussian Mixture Model (GMM) was employed.  
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The output of the classifier is the likelihood of each sample of belonging to the background 

class: if the likelihood is high, the data belongs to the known class, which is non-allergic; otherwise, 

the data belong to a different class, which in this case it is allergic. Figure 2.4-3 shows the block 

diagram of the system.  

Figure 2.4-4 depicts an example of the likelihood signal obtained with the novelty classifier for 

an allergic subject (Subject 7) and Figure 2.4-5 for a non-allergic subject (subject 23). The 

background interval is the grey zone, while each blue zone represents a check-up period in which 

a new dose was given to the subjects, except for the last one, which is the end of the tests. If the 

likelihood value is below a threshold (red line) for more than a determined time, it is considered 

the representation of an allergic reaction. The value of the threshold is based on the mean and 

standard deviation of each subject as stated by eq 2.1.  As can be seen in Figure 2.4-4, for the 

subject 7 before the end of the test (around minute 52) there was an event that can be considered 

an allergic reaction.  

For each one of the subjects, it is necessary to set the following parameters: percentage of the 

information retained by the PCA, the number of Gaussians composing the GMM model, the 

multiplicative factor n, and the time the likelihood should be below the threshold, d. For each 

subject these parameters were selected based on the data of the rest of the subjects within the 

database by using an internal Leave One Out (LOO) (to select PCA and GMM parameters) and 

external LOO (to set n and d).  

𝑡ℎ = µ − 𝑛𝜎 
(eq. 2.1) 

Where n is a multiplicative factor that is adapted to each patient’s features. 

 

 

 

Figure 2.4-3. Block diagram of the automated allergy detection based in the analysis of the 18 features of the HRV signal 

proposed in [Twom13] 

 

ECG 
measurement

QRS detection
HRV feature 
extraction

PCA 
transformation

Likelihood computation using 
GMM

Post-processing and decision 
making



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

 

Figure 2.4-4. Example of likelihood signal achieved with the novelty classifier for an allergic subject 

 

Figure 2.4-5. Example of likelihood signal achieved with the novelty classifier for a non-allergic subject 

 

The designed algorithm was able to correctly classify all the non-allergic subjects (100% 

specificity) and detect 14 out of 15 allergic subjects (93.33 % sensitivity). An important fact that 

should be taken into consideration is that, the designed algorithm, resulted in a mean time of 39 

minutes less than the mean length of the Oral Food Challenges. This implies a reduction of 30% of 

the total duration of the tests, which leads to the detection of the allergic reactions before the 

appearance of the physical and noticeable symptoms and so, a great reduction in the danger of a 

severe reaction.  
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For this work, the ECG signals were manually annotated. Several QRS complex detection 

algorithms were studied here. By using the one with the best performance, the sensitivity with the 

fully automated routine was reduced to 80%. The final results were obtained by fusing the partial 

results obtained by computing the features with the four different epochs (60, 120, 180 and 300 

seconds).  

The need of analysing 18 features of the Heart Rate Variability with 4 different epochs implies 

a computational load which makes this system unable to work in real-time during the Oral Food 

Challenges and so, renders it unusable for the medical staff during real OFCs. It is necessary to 

reduce this computational complexity in order to get a real-time allergy detection system able to 

warn to the medical staff of the likely occurrence of an allergic reaction.  

Due to the process followed for designing this algorithm, the small number of patients available 

makes it necessary to select the parameters of the classification model for each subject. This 

selection is based on the data of the rest of patients. For this reason, if a new patient is analysed, 

the results cannot be predicted.   

 

 Problem statement and Thesis objectives 

It has been demonstrated that allergic reactions affect the HRV in a particular manner. Besides, 

these effects take place, in many cases, before the appearance of the physical symptoms. This 

finding can be used to considerably reduce the stress the patients are exposed to and, what is 

more important, the risk of suffering a severe reaction.  

Neither the QRS complex detection, nor the allergy detection process employed in the previous 

research worked in real time. On the contrary, the QRS complex detection algorithm needed the 

whole ECG signal to set the threshold and so, to detect the QRS complexes; the allergy detection 

algorithm, on the other hand, was based on the selection of a unique model for each subject, but 

the parameters of that model depended on the data of the rest of the subjects. This means that for 

the analysis of a new patient it was necessary to get a new model based on the whole database 

whose results are unknown.  

Thus, the main issues to be specifically addressed by this Thesis, while fulfilling all the other 

general requirements, are: 
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 Real-time and motes’ limitations focus. As has been explained, it is aimed to design a 

system able to work in real-time during real tests which should be taken into account 

during all the algorithm design process. Due to the motes’ limitations regarding 

computation capabilities and resource availability, and the need of getting online 

information, every algorithm proposed in this work should be computationally efficient.   

 

 Develop a new QRS complex detection algorithm. Despite the great number of 

proposed algorithms, most of them require many resources and computational 

capabilities. This thesis is focused on the remote monitoring of patients for whom it is 

mandatory to use portable devices. There are two drawbacks of working with portable 

devices: first, the computational capabilities are reduced and, secondly, the energy 

consumption should be as low as possible to extend their autonomy. The QRS complex 

detection will work together with a high level algorithm that must produce a result in real-

time. Then, the QRS complex detection algorithm should analyse the ECG signal and detect 

the R peaks in real-time as well, minimizing the use of resources.  

 

 Design of a real-time allergy detection algorithm. Once it is demonstrated that it is 

possible to detect an allergic reaction through the analysis of the HRV signal, it is necessary 

to design an allergy detection algorithm able to set an alarm if an abnormal situation is 

detected during the tests. This will allow the medical staff to take advantage of the findings 

of the previous work during a real OFC. For this objective, it should be determined which 

particular feature or group of features provides information about the physiological 

changes produced by an allergic reaction and reduce the set of features. If the way this 

feature or group of features changes during an allergic reaction is modelled, it is possible 

to design an allergy detection algorithm able to work in an online mode and so, warn to 

the medical staff of the future appearance of physical reactions.  

 

 Test of the proposed method under different conditions. The dataset available at the 

beginning of this research consisted of 23 children exposed to food allergies (Table 2.4-1). 

Due to the protocol followed at the Cork University Hospital to perform OFC, the patients 

were required to remain on a bed. A new set of data has been obtained from the 

Guadalajara University Hospital, in which the OFC protocol is different, as will be explained 

in Chapter 5. Although the number of doses and their sizes are similar, the observation 

periods are longer and so is the total length of the OFC. More importantly, the patients are 
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allowed to move freely within the allergy room, which influences their heart rate and so, 

hinders allergy detection based on HRV. It should be studied how the movement of the 

patients affects the results of the proposed allergy detection method and. The energy 

expenditure estimator proposed by Twomey in the last work has not been considered 

here, since there are more factors that affect how much the children move, like their age 

or the activity they are performing. Due to the fact that the tests are longer in this new 

process, the activity will change along the whole test regardless the result of the OFCs.  

 

 Extension of the study. There exist great quantities of allergy types with which the body 

must deal with. Nowadays, it is not possible to predict which kind of reaction a patient will 

have depending on his/her features (age, gender, health status, etc.) or on the features of 

the allergen (kind, quantity, etc.) due to the large number of variables to consider. In this 

thesis, a simplification has been made in order to define six groups depending on the age 

of the patients (children, adults) and the type of the allergen (food, NonSteroidal Anti-

Inflammatory Drugs –NSAID-, and non-NSAIDs), as is listed in Figure 2.5-1. The 

conclusions from the analysis made on [Children, food] group will be tested on the other 

groups. In this way, it is possible to get a better definition of the proposed allergy detection 

method in terms of applicability.  

 

 

 

Figure 2.5-1. Groups for the allergy detection study  
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Chapter 3.  

QRS COMPLEX DETECTION 
 

 

The first step in developing a real time automated allergy detection system for implementation 

on a mote and for use in a hospital setting, is to develop a real time low computational complex 

algorithm for QRS complex detection.  This algorithm must maintain the performance of the state 

of the art algorithms.  As was advanced in Chapter 2, even though there are a large number of 

proposed QRS complex detection algorithms, most of them are focused on the complete removal 

of the different noises affecting the ECG signal. 

For this task, complex processes, high order filters, and a great number of resources are 

required. However, for applications based on the information regarding the instant in which a 

heartbeat occurred, the computational effort employed in most of the proposed algorithms is not 

required. Moreover, this thesis is focused on remote monitoring systems in which devices with 

limited resources are used to measure and analyse the ECG signal. Most of the existing algorithms 

are not suitable for use on these devices and/or do not provide the required information in real-

time.   

The information regarding the positions of the R-peaks is not important by itself, but the analysis 

performed over them (analysis of the HRV signal). It is important to keep in mind, mainly when 

working in real-time, that this kind of algorithm will be part of a higher level application, and so, 
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the available resources will be shared. Furthermore, the devices used for telemedicine or remote 

monitoring applications are typically portable devices, so the optimization of the processes 

execution will increase their autonomy. Thus, the challenge here consists of designing a QRS 

complex detection algorithm with the following features: 

 Able to work in real-time. The higher level application will need the information regarding 

the positions of the R-peaks as soon as they are produced.  

 Low resources consumption. This algorithm will be implemented on a portable device 

together with other applications, so it is needed to optimize the number of resources 

(memory cells, multipliers, adders, etc.) required. Furthermore, the reduction of the number 

of operations implies a reduction of the power consumption, and so an increase in the devices 

autonomy.  

 High accuracy. The proposed QRS detection should detect as many R-peaks as possible whilst 

not detecting noise peaks as R-peaks i.e., the number of false negatives (FN) and false 

positives (FP) should be reduced.  

Jiapu Pan and Willis J. Tompkins published their algorithm in 1985 as “A real-time QRS 

detection algorithm” [PaTo85]. This algorithm has been the main reference for most of the 

proposed algorithms designed to work in real-time since it was published 30 years ago. For this 

reason, it can be considered as a gold standard in this area. It was able to run on the 8-bit 

microprocessors Z80 (Zilog) and NSC800 (National Semiconductors). Both microprocessors had 

a master clock of up to 4 MHz and a memory capacity of 64 kB. Even with these constraints, it 

managed to obtain an accuracy of 99.3 % on the detection of all the R peaks within one of the 

currently most used databases (MIT database), working in real-time. As a consequence of its 

feature and despite the fact that it was published 30 years ago, this algorithm is still today one of 

the most referenced real-time QRS complex detection algorithms. However, it presents a large 

number of false detections in the case of ECG signals affected by high frequency artefacts, as will 

be shown later.  

This chapter proposes a new real-time low-cost QRS complex detection algorithm to be 

implemented on devices with a reduced number of resources. With the aim of establishing a 

comparative element, the Pan & Tompkins algorithm is also described. Both algorithms are 

analysed under the same conditions in order to obtain their performance and computational 

complexity. 
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 Benchmark databases 

Several standard ECG databases are available to evaluate QRS complex detection algorithms. 

The use of these well annotated and validated databases provides reproducible and comparable 

results in terms of accuracy. These databases contain a large variety of selected ECG signals that 

allow the testing of the algorithms under different conditions, from records with clear R-peaks 

and few artefacts to others with abnormal shapes, noise and lots of artefacts that make it difficult 

to achieve an accurate detection. These databases will be used for evaluating the performance of 

both algorithms with ECG signals presenting different features.  

The most used ECG database is MIT-BIH Arrhythmia Database, MITDB [MoMa01]. This 

database has been extracted from the PhysioNet Website [GAGH00]. It contains 48 ECG 

recordings, each with a duration of 30 minutes, at a sampling rate FS of 360Hz. This set represents 

different types of phenomena that arrhythmia can provoke in ECG signals. The MIT-BIH Normal 

Sinus Rhythm Database (NSRDB) will be used as well. This database is composed of 130-minutes 

long ECG signals from 18 healthy adults (aged from 20 to 50), at a sampling frequency FS of 128Hz. 

Furthermore, the authors have obtained another database (Allergy Database, ADB) from the 

Paediatrics Section of Cork University Hospital (Cork, Ireland). It is composed of 24 ECG signals 

with different lengths (from 13 minutes to more than 130 minutes), sampled at 256Hz.  

 

TABLE 3.1-1. DATABASES USED TO TEST THE ALGORITHM PERFORMANCE 

Database FS (Hz) # of signals Total length Marked feature 

NSRDB 128 18 24h 4min Almost ideal database 

ADB 256 24 10h 13min Very high level of motion artefacts 

MITDB 360 48 15h 3min 

• “Random” beat-to-beat changing times 

• Early beats amplitudes 

• Changing QRS morphology 

ApneaECG 100 69 
191h 

40min 
ECG measured during apnoea episodes 

Fantasia 250 20 22h 13min 
10 young and 10 elderly subjects resting in supine 

position 

Challenge 250 100 16h 40min ECG related to subjects on different health status 
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All the subjects in this database are children (aged 7 months to 10 years old), and most of these 

ECG signals are affected by several motion artefacts. In addition, three more databases have been 

obtained from PhysioNet: ApneaECG, Fantasia and Challenge 2014 databases. All the ECG signals 

employed here are annotated, i.e. the real positions of all the R-peaks are known. Table 3.1-1 

summarizes the main features of the databases used.  

There are several reasons to use so many databases: firstly, if an algorithm is successfully 

checked with as much data as possible, a higher level of robustness can be concluded; secondly, 

the acquisition conditions are different for each database, so it allows the analysis of the 

dependency between these conditions and the algorithm parameters; and finally, most authors 

validate their algorithms with the MIT-BIH Arrhythmia Database, so it is needed to use this 

standard database for comparing the results with previous works.  

 

 Metrics 

According to the Association for the Advancement of Medical Instrumentation (AAMI) 

[Asso98], for evaluating a QRS detection algorithm the next metrics and definitions should be 

used:  

 True Positive (TP): R-peak correctly detected. 

 False Negative (FN): Non-detected R-peak. 

 False Positive (FP): Artefact or noise mistaken for R-peak. 

 Sensitivity (Se): Ability to detect the existent R-peaks; percentage of the existent R-

peaks which are correctly detected (eq. 3.1).  

 Positive predictivity (+P): Ability to discriminate between R-peaks and interferences or 

noises, i.e. percentage of the detected peaks which are R-peaks (eq. 3.2).   

𝑆𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (eq. 3.1) 

+𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(eq. 3.2) 

When comparing the results of two different QRS complex detection algorithm, the minimum 

between Se and +P will be used, as is the most common method.  
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 Pan & Tompkins’ algorithm  

Most of the R-peaks detection algorithms can be divided into two main blocks: pre-processing 

stage and R peaks detection stage. Taking into account the classification made in chapter 2, the 

pre-processing stage of the Pan & Tompkins (P&T) algorithm is based on differentiation, and the 

detection stage uses a triple adaptive threshold: two amplitude thresholds, and one temporal 

threshold. P&T also includes a third block (searchback block in Figure 3.3-1) which is responsible 

for checking the features of the detected R-peaks and correcting any errors. These three blocks 

are detailed in the next subsections.  

 

 Pre-processing stage 

This block prepares the ECG signal before it is analysed by the R-peaks detection block by 

reducing the noises and artefacts that appear on it. Firstly, two filters remove the high and low 

frequency components of the signal. Then, a derivative is applied to remove the wandering 

baseline. Next, the squaring block makes the signal positive. The ideal value of the resulting signal 

is zero between QRS complexes, and has two rises representing each QRS complex, as can be seen 

in Figure 3.3-3. Finally, the integration window makes those two peaks form a trapezoid 

representing the ECG QRS complex. Figure 3.3-2 shows the block diagram of the pre-processing 

stage. Each one of the operations carried out within this phase is implemented through the 

following difference equations:  

 Low-pass filter (LPF) main purpose is the elimination of the power line interference 

following (eq. 3.3). 

 High-pass filter (HPF) is implemented by obtaining an all-pass filter with delay (eq. 3.5) 

and subtracting a first order low-pass filter (eq. 3.4). 

 The derivative (eq. 3.6) extracts information about the slopes.  

 The window integral (eq. 3.7) integrates all the peaks produced during a QRS complex if 

the length, N, is correctly set. The authors set the length of the window to 160 ms. For the 

sample frequency, FS, used by them of 200 Hz, it implies 32 samples.   

A more detailed description of the features of the employed filters can be obtained in the book 

“Biomedical signal processing”, chapter 12 [Afon93]. 
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Figure 3.3-1. Block diagram of the Pan & Tompkins algorithm 

 

 

Figure 3.3-2. Pan & Tompkins QRS detection algorithm block diagram 

 

𝑦(𝑛) = 2𝑦(𝑛 − 1) − 𝑦(𝑛 − 2) + 𝑥(𝑛) − 2𝑥(𝑛 − 6) + 𝑥(𝑛 − 12) (eq. 3.3) 

𝑝𝑙𝑝(𝑛) = 𝑝𝑙𝑝(𝑛 − 1) + 𝑦(𝑛) − 𝑦(𝑛 − 32) (eq. 3.4) 

𝑝(𝑛) = 𝑝𝑙𝑝(𝑛 − 16) −
1

32
[𝑝(𝑛 − 1) + 𝑝𝑙𝑝(𝑛) − 𝑝𝑙𝑝(𝑛 − 32)] (eq. 3.5) 

𝑑(𝑛) =
2𝑝(𝑛) + 𝑝(𝑛 − 1) − 𝑝(𝑛 − 3) − 2𝑝(𝑛 − 4)

8
 (eq. 3.6) 

𝑧(𝑛) =
1

𝑁
[𝑠(𝑛 − (𝑁 − 1)) + 𝑠(𝑛 − (𝑁 − 2)) + ⋯ + 𝑠(𝑛)] (eq. 3.7) 

 

Figure 3.3-3 shows the signals generated within the pre-processing stage. Figure 3.3-4 depicts 

the comparison between the ECG signal, x(n), and the pre-processed signal, z(n). The amplitude of 

the pre-processed signal has been magnified by 10 to easily compare both signals. As can be seen 

in that figure, there exists a latency, which is the addition of all the delays produced in each one of 

the stages of the pre-processing phase. Removing this delay (Figure 3.3-5), it can be seen that the 

position of the R-peak corresponds with the position of the half positive slope of the pre-processed 

signal trapezoid. The total duration of the QRS complex can be obtained by measuring the duration 

of one of the slopes.   
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Figure 3.3-3.Signals generated during the pre-processing stage of the Pan and Tompkins algorithm 

 

 

Figure 3.3-4. Input and output of the pre-processing stage 
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Figure 3.3-5. Comparison between ECG and pre-processed signal without delays 

 

 Thresholding stage 

Pan and Tompkins algorithm has a learning phase for estimating the amplitude of the R-peaks 

(signal level, SPKI) and the noise peaks (noise level, NPKI). To initialize the estimated values, it 

needs approximately 2 seconds at the beginning of the analysis. After the initialization, their 

values are continuously updated during the ECG analysis. Each detected peak is classified as R-

peak, or noise peak. Depending on this decision, the algorithm updates the value of SPKI (eq. 3.8) 

or NPKI (eq. 3.9). To be classified as an R-peak, the amplitude of the detected peak has to be higher 

than a threshold, the value of which is computed in (eq. 3.10). Threshold2 (eq. 3.11.) is used instead 

of Threshold1 if the search back technique is applied (subsection 3.2.3). Figure 3.3-6 shows an 

example of SPKI and NPKI estimation and the corresponding value of both thresholds. 

𝑆𝑃𝐾𝐼 = 0.125 ∗ 𝑃𝑒𝑎𝑘𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 0.875 ∗ 𝑆𝑃𝐾𝐼, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑎𝑘 𝑖𝑠 𝑎𝑛 𝑅 𝑝𝑒𝑎𝑘 (eq. 3.8) 

𝑁𝑃𝐾𝐼 = 0.125 ∗ 𝑃𝑒𝑎𝑘𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 0.875 ∗ 𝑁𝑃𝐾𝐼, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑒𝑎𝑘 𝑖𝑠 𝑎 𝑛𝑜𝑖𝑠𝑒 𝑝𝑒𝑎𝑘 (eq. 3.9) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 = 𝑁𝑃𝐾𝐼 + 0.25(𝑆𝑃𝐾𝐼 + 𝑁𝑃𝐾𝐼) (eq. 3.10) 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 0.5 · 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 (eq. 3.11) 

 

In order to avoid False Positives (i.e. noise peaks classified as R-peaks) two temporal 

restrictions are applied. First, a peak cannot be found within the next 200 ms so, the algorithm 

does not look for a peak until this time has passed. Secondly, if a peak is found during the time 

interval 200-360 ms after the last detection it could be an elevated T-wave, so it is only classified 

as an R-peak if the maximal slope of this waveform is higher than the half of that of the previous 

R-peak. 
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 Search-back stage 

The final block stores the amplitude and position of each R-peak, and each noise peak found 

since the last detected R-peak. It computes the RR average of two sets of RR intervals: 

 RRAvg1 is the average of the last 8 RR intervals 

 RRAvg2 is the average of the last 8 intervals whose values fell in the range RRLL (RR low 

limit, (eq. 3.12)), RRHL (RR high limit, (eq. 3.13)). 

Whenever an R-peak is not found RRML seconds (eq. 3.14) before the last detection, the 

maximum stored noise peak whose amplitude is higher than Threshold2 is classified as R-peak. In 

this situation the signal level is adjusted using (eq. 3.15). The multiplicative factors used in the 

following equations were empirically selected by the authors. 

𝑅𝑅𝐿𝐿 = 0.92 ∗ 𝑅𝑅𝐴𝑣𝑔2 (eq. 3.12) 

𝑅𝑅𝐻𝐿 = 1.16 ∗ 𝑅𝑅𝐴𝑣𝑔2 (eq. 3.13) 

𝑅𝑅𝑀𝐿 = 1.66 ∗ 𝑅𝑅𝐴𝑣𝑔2 (eq. 3.14) 

𝑆𝑃𝐾𝐼 = 0.25 ∗ 𝑃𝑒𝑎𝑘𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 + 0.75 ∗ 𝑆𝑃𝐾𝐼 
(eq. 3.15) 

Where 𝑅𝑅𝐴𝑣𝑔2 represents the mean of the last 8 RR-intervals whose durations were in the 

range RRLL-RRHL.  

 

 

Figure 3.3-6. Example of Pan and Tompkins algorithm's Signal and noise level estimation and set of Thresholds 
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Figure 3.3-7. Search-back technique example 

 

Figure 3.3-7 shows an example of the use of the search-back technique. In this case there are 

two R peaks whose amplitudes are below Threshold1 (TH1). The time interval RRML has passed 

since the last detected R-peak and the amplitude of the first peak is higher than Threshold2 (TH2), 

so it is classified as R-peak. The amplitude of the second peak is below Threshold2 so it is not 

classified as R-peak, even if the conditions for applying the search-back technique are met. In this 

situation, the value of SPKI is decreased faster than when a high-amplitude R-peak is found, and 

so is the case of the Threshold1 as can be observed in the Figure 3.3-7. 

 

 Proposed QRS detection algorithm 

The aim is to reduce the computational complexity of the P&T algorithm, while maintaining its 

performance. The complexity of the P&T algorithm can be reduced in two ways: first, the pre-

processing stage could be simplified by reducing the filtering stage, as well as removing the 

integration window; secondly, a single threshold could be used for detecting the position of the R 

peaks. Instead of using the Search back technique, the threshold adaptation algorithm will be 

designed with the goal of reducing the number of false negatives. The block diagram of the 

proposed algorithm is shown in Figure 3.4-1. It is composed of two main stages. The ECG signal is 

derived and integrated at the pre-processing stage, which is based on the Pan and Tompkins’ pre-

processing; then, the processed ECG samples are analysed by the R-peaks detection stage, which 

is based on a dynamic threshold whose level is controlled by a Finite State Machine (FSM).  
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Even though it is based on the P&T stages, the resources and number of operations required 

for the proposed algorithm are less, as will be demonstrated in this chapter. In addition, the 

designed algorithm can be adapted to the sampling frequency of the input ECG signal without 

recalculating all the parameters, which makes it able to work in different applications.  

 

 Pre-processing stage 

Figure 3.4-2 shows the block diagram of the pre-processing stage. In order to reduce low-

frequency noises, the first step of the pre-processing stage is the derivation of the input ECG 

signal 𝑥[𝑛] according to (eq. 3.16). This process mainly reduces the wandering baseline effect 

produced by respiration. Then, an integration operation is carried out to remove the high-

frequency artefacts from the signal 𝑦0[𝑛], following (eq. 3.17). As is shown later, the value of N is 

very small, so this stage is acting as a low pass filter (Moving Average) whose integration window 

length, N, depends on the sampling frequency FS. Finally, in order to emphasize the R-peaks, every 

sample 𝑦1[𝑛] is squared (eq. 3.18). For a better understanding of the proposed algorithm, the 

result for every stage is represented by using the ECG record for subject 108m of the MIT-BIH 

Arrhythmia Database (see Figure 3.4-3). 

𝑦0[𝑛] = 𝑥[𝑛] − 𝑥[𝑛 − 𝑁𝑑] (eq. 3.16)  

𝑦1[𝑛] =
1

𝑁 − 1
∑ 𝑦0[𝑛 − 𝑘]

𝑁−1

𝑘=0

 (eq. 3.17) 

𝑦(𝑛) = 𝑦1[𝑛]2 (eq. 3.18) 

 

 

Figure 3.4-1. Block diagram of the proposed QRS complex detection algorithm 

 

Figure 3.4-2.Block diagram of the pre-processing stage 

Preprocessing stage Threshold stage

1 − 𝑧−𝑁𝑑 [  ]2
x[n]

Derivative Moving average

y0[n] y1[n] y[n]
Squaring
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Figure 3.4-3. Pre-processing result 

 

 R peaks detection stage 

For this stage, it is very common to use an adaptive threshold, as used by most of the recently 

published real-time QRS detection algorithms. This adaptation capability of the threshold is 

essential when the pre-processing stage cannot remove all the artefacts and mainly in those 

signals with large T-waves, since they could be misclassified as R-peaks. In this proposal, the 

threshold value is controlled by a FSM, according to the following 3 states: 

 State 1: Looking for a maximum peak. During a time interval equal to the minimum 

feasible RR interval RRmin plus the standard duration of a QRS complex QRSint (typically 

60ms), the algorithm searches for the maximum peak of the signal. It is considered here, a 

maximum heartrate of 300 bpm, so the minimum RR interval is set as RRmin=200ms. The 

maximum found during this state will be classified as R-peak. The machine changes to the 

following state when the interval RRmin+QRSint ends. At the end of this state the threshold 

amplitude is the mean RpeakAmp of the amplitudes of all the R-peaks found. 

 State 2: Waiting state. The duration of this state depends on the position RpeakPos where 

the R-peak was found in State 1. The FSM is waiting for a time equal to RRmin less the time 

between the position of the last R-peak and the end of State 1. Through it, the false 

detections can be avoided during the interval RRmin after the last peak was detected, as this 

is the period when a long T-wave could be misclassified as R-peak. 
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 State 3: Threshold decreasing. When State 2 finishes, the initial value of the threshold 

th[n] is computed as the mean value of all the previous detected R-peaks. In this state, the 

threshold value th[n] is reduced with every new sample from the input ECG signal x[n], 

according to (eq. 3.19). The value of the parameter PTh varies depending on the sampling 

period TS as is explained below. This state ends when the level of the ECG signal x[n] is 

higher than the threshold value th[n].   

𝑡ℎ[𝑛] = 𝑡ℎ[𝑛 − 1] · 𝑒−𝑃𝑡ℎ∗𝑇𝑆 
(eq. 3.19)  

Figure 3.4-4 summarizes how the finite state machine FSM works, and Figure 3.4-5 shows the 

correspondence between the states of the FSM and the phase of the ECG signal.  

 

 

Figure 3.4-4. State machine diagram 

 

Figure 3.4-5. Correspondence between the FSM states and the ECG phase 

State 1

State 2State 3

RRmin + QRSint

d

RRmin - d
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d
RRmin - d
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 Parameter selection 

The proposed QRS complex detection algorithm is based on three parameters:  

 Nd: represents the order of the sample that has to be subtracted from the current one 

 N indicates the number of samples that are included in the integration window  

 PTh defines the speed with which the threshold value th[n] is decreased.  

As these parameters depend on the sample frequency of the ECG signal, to fix their values, a 

sensitivity, Se (eq. 3.1), and positive predictivity, +P (eq. 3.2), tests have been carried using two 

databases: NSRDB and ADB. Signals from the first database are almost ideal, since they belong to 

healthy subjects and the noise is almost null. Second database has been used due to its sample 

frequency (256 Hz) is proportional to the one used for the NSRDB (128 Hz).  

The most suitable configuration for parameters N, Nd and PTh has been searched using 10 

integer values for N (1 to 10), 10 integer values for Nd (1 to 10), and 21 values for PTh (4.5 to 6.5 in 

steps of 0.1). Then, the performance was compared by using the minimum value between Se and 

+P (min (Se, +P)) for each combination of these three parameters in the best achieved case. The 

combination with the best result for the NSRDB was N=3, Nd=2, and PTh=5.4 (FS=128Hz); whereas 

in the case of ADB, it was N=6; Nd=5 and PTh=6.1 (FS=256 Hz). These results are summarized in 

Table 3.4-1. Assuming that the parameters N, Nd and PTh have a linear dependency with FS, these 

parameters can be defined mathematically by (eq. 3.20), (eq. 3.21) and (eq. 3.22), respectively, by 

applying a linear interpolation with the sampling frequency FS. According to these equations, the 

parameters for MITDB (FS=360Hz) are obtained: N=8, Nd=7 and PTh=6.6. Figure 3.4-6 shows the 

estimated optimal values for the parameters N, Nd, and PTh, in relation with the sampling frequency 

FS, for values different than 128Hz and 256Hz considered in NSRDB and ADB, respectively. 

Furthermore, it can be also concluded from the results how the definition of N implies a fixed time 

of 3/128 seconds (23.4ms), which is approximately the mean time of the R-peak slope (Figure 

3.4-7), computed for the MITDB, NSRDB and ADB (24.07ms).  

 

𝑁 = 𝑟𝑜𝑢𝑛𝑑 (
3 · 𝐹𝑆

128
) (eq. 3.20)  

𝑁𝑑 = 𝑟𝑜𝑢𝑛𝑑 (
3 · 𝐹𝑆

128
) − 1 = 𝑁 − 1 (eq. 3.21) 

𝑃𝑇ℎ =
0.7 · 𝐹𝑆

128
+ 4.7 (eq. 3.22) 
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TABLE 3.4-1. ADB AND NSRDB OBTAINED RESULTS 

Database N Nd PTh TP FN FP Se (%) +P (%) 

NSRDB 3 2 5.4 192329 61 12 99.968 99.994 

ADB 6 5 6.1 195887 1024 1421 99.380 99.280 

 

 

Figure 3.4-6. Proposed algorithm's parameters v. sampling frequency 

 

 

Figure 3.4-7. Definition of R-peak slope interval 
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 QRS complex detection evaluation 

As was previously stated, the proposed algorithm requires a reduced amount of hardware 

resources for its implementation, keeping at the same time a similar accuracy level as the most 

accurate algorithms currently published. Nevertheless, it is not possible to carry out a detailed 

comparison about the implementation or the processing time for the different approaches, since 

most of the previous algorithms are implemented in software.  

In [KöHO02] some algorithms are compared with respect to the computational load, being 

classified into three categories: low, medium and high computational load. So, for the sake of a 

hardware and complexity evaluation of the proposed algorithm, both algorithms have been 

simulated on MATLAB® and tested with the available data. Floating-point and fixed point 

representations were used. Both simulations were performed analysing the ECG samples one-by-

one, following the same steps as if it was working in real-time, i.e. by using the same sequential 

processes and operations as if it was running on a portable device.  

 

 Accuracy evaluation using floating-point representation 

The use of any QRS complex detector algorithm in medical devices requires a rigorous 

evaluation of its performance. Table 3.5-1 shows the results obtained by the proposed algorithm 

with all the records of the MITDB database, where the average values are Se=99.73% and 

+P=99.77%; results obtained by the P&T algorithm implementation for the same database are 

shown in Table 3.5-2. Here the average results are Se= 99.53%, and +P=99.29%. With the 

proposed algorithm, the min (Se, +P) is higher than 99.8% in 35 out of 48 cases. This number is 

decreased to 29 with P&T algorithm. The worst performance of both algorithms are the ones got 

with subject 108m. However, the min (Se, +P) got with the proposed algorithm in this case is 

96.015%, while with P&T, this value is 87.08%. Subjects 100m and 108m represent how the two 

algorithms work with a normal ECG signal, and with a ECG presenting special features, 

respectively. Both examples are analysed below. As can be noticed by the reader, there is a slightly 

difference between the results obtained here using the P&T algorithm and the ones reported by 

the authors on their publication (Se=99.75%; +P=99.54%). Although the P&T’s detection stage has 

been implemented following the steps indicated in the original work, some of the details are not 

given (e.g. the initial value of the threshold, criteria to find a peak, etc.) and some assumptions 

have been made resulting in such a difference. 
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TABLE 3.5-1. RESULTS OF THE PROPOSED QRS DETECTION ALGORITHM WITH THE MITDB 

ID # Annotation TP FN FP Se (%) +P (%) min (Se, +P) 
100m 2272 2272 0 0 100,00 100,00 100,00 
101m 1866 1865 1 3 99,946 99,839 99,839 
102m 2187 2187 0 0 100,00 100,00 100,00 
103m 2084 2084 0 0 100,00 100,00 100,00 
104m 2228 2228 0 27 100,00 98,803 98,803 
105m 2573 2561 12 36 99,534 98,614 98,614 
106m 2027 2025 2 0 99,901 100,00 99,901 
107m 2138 2135 3 0 99,860 100,00 99,860 
108m 1763 1735 28 72 98,412 96,015 96,015 
109m 2531 2531 0 0 100,00 100,00 100,00 
111m 2125 2124 1 0 99,953 100,00 99,953 
112m 2539 2539 0 0 100,00 100,00 100,00 
113m 1795 1795 0 0 100,00 100,00 100,00 
114m 1880 1880 0 4 100,00 99,788 99,788 
115m 1953 1953 0 0 100,00 100,00 100,00 
116m 2391 2386 5 4 99,791 99,833 99,791 
117m 1534 1534 0 0 100,00 100,00 100,00 
118m 2278 2278 0 0 100,00 100,00 100,00 
119m 1987 1987 0 0 100,00 100,00 100,00 
121m 1864 1863 1 1 99,946 99,946 99,946 
122m 2476 2476 0 0 100,00 100,00 100,00 
123m 1519 1516 3 0 99,803 100,00 99,803 
124m 1620 1619 1 0 99,938 100,00 99,938 
200m 2598 2597 1 1 99,962 99,962 99,962 
201m 1962 1945 17 0 99,134 100,00 99,134 
202m 2136 2130 6 0 99,719 100,00 99,719 
203m 2980 2883 97 21 96,745 99,277 96,745 
205m 2656 2652 4 0 99,849 100,00 99,849 
207m 1842 1840 2 10 99,891 99,459 99,459 
208m 2954 2939 15 1 99,492 99,966 99,492 
209m 3005 3005 0 0 100,00 100,00 100,00 
210m 2650 2587 63 3 97,623 99,884 97,623 
212m 2747 2747 0 0 100,00 100,00 100,00 
213m 3250 3247 3 0 99,908 100,00 99,908 
214m 2262 2259 3 1 99,867 99,956 99,867 
215m 3363 3358 5 0 99,851 100,00 99,851 
217m 2208 2202 6 1 99,728 99,955 99,728 
219m 2154 2154 0 0 100,00 100,00 100,00 
220m 2048 2048 0 0 100,00 100,00 100,00 
221m 2427 2424 3 0 99,876 100,00 99,876 
222m 2483 2482 1 0 99,960 100,00 99,960 
223m 2605 2604 1 0 99,962 100,00 99,962 
228m 2053 2050 3 62 99,854 97,064 97,064 
230m 2256 2256 0 0 100,00 100,00 100,00 
231m 1571 1571 0 0 100,00 100,00 100,00 
232m 1780 1780 0 0 100,00 100,00 100,00 
233m 3078 3072 6 0 99,805 100,00 99,805 
234m 2753 2752 1 0 99,964 100,00 99,964 
Total 109451 109157 294 247 99,731 99,774 99,731 
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TABLE 3.5-2. RESULTS OF THE PAN & TOMPKINS ALGORITHM WITH THE MITDB 

ID #Annotations TP FN FP Se (%) +P (%) min (Se, +P) 

100m 2268 2268 0 0 100,00 100,00 100,00 
101m 1862 1860 2 5 99,893 99,732 99,732 
102m 2183 2183 0 2 100,00 99,908 99,908 
103m 2080 2079 1 0 99,952 100,00 99,952 
104m 2225 2220 5 5 99,775 99,775 99,775 
105m 2568 2549 19 59 99,260 97,738 97,738 
106m 2024 2022 2 0 99,901 100,00 99,901 
107m 2133 2125 8 1 99,625 99,953 99,625 
108m 1760 1712 48 254 97,273 87,080 87,080 
109m 2527 2526 1 0 99,960 100,00 99,960 
111m 2121 2120 1 2 99,953 99,906 99,906 
112m 2535 2535 0 0 100,00 100,00 100,00 
113m 1791 1791 0 1 100,00 99,944 99,944 
114m 1877 1860 17 95 99,094 95,141 95,141 
115m 1950 1950 0 0 100,00 100,00 100,00 
116m 2387 2382 5 5 99,791 99,791 99,791 
117m 1532 1527 5 21 99,674 98,643 98,643 
118m 2274 2274 0 0 100,00 100,00 100,00 
119m 1983 1983 0 0 100,00 100,00 100,00 
121m 1860 1859 1 0 99,946 100,00 99,946 
122m 2471 2470 1 1 99,960 99,960 99,960 
123m 1515 1515 0 0 100,00 100,00 100,00 
124m 1617 1616 1 2 99,938 99,876 99,876 
200m 2594 2593 1 1 99,961 99,961 99,961 
201m 1957 1946 11 167 99,438 92,097 92,097 
202m 2133 2125 8 3 99,625 99,859 99,625 
203m 2975 2838 137 20 95,395 99,300 95,395 
205m 2651 2641 10 0 99,623 100,00 99,623 
207m 1838 1837 1 6 99,946 99,674 99,674 
208m 2950 2931 19 5 99,356 99,830 99,356 
209m 3000 2993 7 3 99,767 99,900 99,767 
210m 2644 2602 42 2 98,411 99,923 98,411 
212m 2742 2742 0 0 100,00 100,00 100,00 
213m 3244 3243 1 0 99,969 100,00 99,969 
214m 2258 2254 4 1 99,823 99,956 99,823 
215m 3357 3353 4 0 99,881 100,00 99,881 
217m 2204 2199 5 1 99,773 99,955 99,773 
219m 2150 2150 0 2 100,00 99,907 99,907 
220m 2044 2044 0 0 100,00 100,00 100,00 
221m 2422 2418 4 0 99,835 100,00 99,835 
222m 2479 2351 128 103 94,837 95,803 94,837 
223m 2601 2600 1 0 99,962 100,00 99,962 
228m 2049 2038 11 8 99,463 99,609 99,463 
230m 2252 2252 0 0 100,00 100,00 100,00 
231m 1567 1567 0 2 100,00 99,873 99,873 
232m 1777 1776 1 3 99,944 99,831 99,831 
233m 3073 3071 2 0 99,935 100,00 99,935 
234m 2748 2748 0 0 100,00 100,00 100,00 
Total 109252 108738 514 780 99,530 99,288 99,288 
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Table 3.5-3 shows a comparison among the results obtained by some works previously 

described that use the full MITDB to test their algorithms. The works in Table 3.5-4 use some 

signals of this database. These tables are sorted by the minimum value between Se and +P, which 

is the most common way to compare QRS complex detection algorithms. As can be observed, the 

accuracy of the proposed algorithm is in the range of the other previous works, it should be noted 

that The first algorithm of the database, is a “pseudo-real-time” improvement of the other 

proposal published in the same work (which is in the 11th row of the table) consisting of a 

technique similar to the searchback proposed by P&T.  

 

TABLE 3.5-3. COMPARISON OF ACCURACY RESULTS FOR SOME PROPOSALS WITH THE FULL MITDB DATABASES 

Authors 
Proposed algorithm Results 

Database 
Pre-processing stage Detection stage Se +P Min  

Christov alg II 
[Chri04], (2004) 

Moving averaging 
filter 

3 Dynamic thresholds 99,78 99,78 99,78 Full MITDB 

Proposed Differentiation Dynamic threshold 99,73 99,77 99,73 
Full 
MITDB 

Ghaffari et al. 
[GhGG08], (2008) 

Wavelet Dynamic threshold 99,91 99,72 99,72 Full MITDB 

Zidelmal et al. 
[ZAAB12], (2012) 

Wavelet Dynamic threshold 99,64 99,82 99,64 Full MITDB 

Adnane et al. 
[AdJC09], (2009) 

Differentiation 3 dynamic thresholds 99,77 99,64 99,64 Full MITDB 

Phyu et al. 
[PZZX09], (2009) 

Wavelet Dynamic threshold 99,63 99,89 99,63 Full MITDB 

Nielsen et al. 
[NEBA12], (2012) 

Wavelet Dynamic threshold 99,63 99,63 99,63 Full MITDB 

Zheng et al. 
[ZhWu08], (2008) 

Wavelet Dynamic threshold 99,68 99,59 99,59 Full MITDB 

Christov alg I 
[Chri04], (2004) 

Moving averaging 
filter 

3 dynamic thresholds + 
Searchback technique 

99,56 99,76 99,56 Full MITDB 

Pan & Tomp. 
[PaTo85], (1985) 

Differentiation 2 dynamic thresholds 99,56 99,76 99,56 
Full 
MITDB 

Ieong et al. 
[IMLD12], (2012) 

Wavelet Dynamic threshold 99,31 99,70 99,31 Full MITDB 

Moraes et al. 
[MFVC02], (2002) 

Differentiation 2 dynamic thresholds 99,22 99,73 99,22 Full MITDB 

Laila et al. 
[AhMA12], (2012) 

Wavelet + Hilbert Dynamic threshold 96,30 97,83 96,3 Full MITDB 

 

TABLE 3.5-4. COMPARISON OF ACCURACY RESULTS FOR SOME PROPOSALS WITH SEVERAL SIGNALS OF THE MITDB DATABASES 

Authors 
Proposed algorithm Results 

Database 
Pre-processing stage Detection stage Se +P Min  

Pal et al. [PaMi12], 
(2012) 

EMD Morphological analysis 99,88 99,96 99,88 
21 signals 
of MITDB 

Das et al. 
[KhBJ13], (2013) 

EMD + Wavelet Dynamic threshold 99,81 99,96 99,81 
17 signals 
of MITDB 

Chen et al. 
[ChCC06], (2006) 

Wavelet Dynamic threshold 99,55 99,49 99,49 
45 signals 
of MITDB  
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Finally, both P&T and the proposed algorithm have been tested over the rest of the databases, 

in order to compare both performances, Table 3.5-5 depicts the results. With the NSRDB, both 

algorithms get Se and +P close to 100%. With the allergy database, which is composed of 24 ECG 

signals with a high level of noise, both algorithms get the worst performance: 

min(Se,+P)=98.327% with P&T and 99.28% with the proposed algorithm. With the other three 

databases, the results are slightly better with the proposed algorithm than with the P&T. Apart 

from its results, it should be taken into consideration that the main advantage of the proposed 

algorithm is the reduced number of resources used to analyse the ECG signals.  

As is mentioned above, the worst performance of both algorithms is obtained with the Allergy 

Database, since the ECG signals are corrupted with lots of movement artefacts. Figure 3.5-1 shows 

an example of the effect that these artefacts can cause to the ECG signal. It can be observed that it 

is difficult to find the position of the R peaks even visually. Even with this drawback, the mean 

sensitivity is 99.48% and the positive predictivity is 99.28%. With P&T sensitivity is 98.33%, and 

98.54%.  

 

TABLE 3.5-5. COMPARISON BETWEEN P&T AND PROPOSED ALGORITHM PERFORMANCES OVER ALL THE DATABASES 

Database Algorithm #Ann TP FN FP Se (%) +P (%) min (Se,+P) 

NSRDB 
P&T 192314 192271 43 25 99,978 99,987 99,978 

Proposed 192390 192329 61 12 99,968 99,994 99,968 

ADB 
P&T 196806 193514 3292 2870 98,327 98,539 98,327 

Proposed 196911 195887 1024 1421 99,480 99,280 99,280 

Fantasia 
P&T 79380 79375 5 317 99,994 99,602 99,602 

Proposed 79445 79436 9 48 99,989 99,940 99,940 

ApneaDB 
P&T 761351 760846 505 4724 99,934 99,383 99,383 

Proposed 761593 760813 780 1838 99,898 99,759 99,759 

Challenge 
P&T 72026 71992 34 161 99,953 99,777 99,777 

Proposed 72277 72230 47 111 99,935 99,847 99,847 
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Figure 3.5-1. Example of ECG signal, x [n], with motion artefacts. Subject 3 of the ADB database 

 

To conclude with the comparison, Figures 3.4-2 to 3.4-5 show the detection results for two 

different ECG segments of both algorithms. The signals are taken from records no. 100 and no. 

108 of the MITDB, commonly used for showing the difference between a clear ECG signal (record 

no. 100) and a very difficult one (record no. 108). These results show again a better detection by 

the proposed algorithm, especially with noisy recordings (see Figure 3.5-4). On the other hand, 

P&T’s algorithm integrates the samples to obtain the final trapezoid in which the R peaks are 

detected. In the cases in which the number of noise peaks is high this integration fuses all of them, 

so, the resulting signal gets trapezoids produced by noise peaks which are misclassified as R 

peaks. In other cases, if the QRS complex is too wide (as in the case of the 108m subject, see Figure 

3.5-4), the pre-processing stage generates two trapezoids for each QRS complex. This implies one 

False Positive for each wide-QRS-complex, which decreases drastically the positive predictivity. 
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Figure 3.5-2. Pan & Tompkins. QRS complex detection for record no. 100 (Se=100%; +P=100%; FS=200 Hz) 

 

 

Figure 3.5-3. Proposed algorithm. QRS complex detection for record no. 100 (Se=100 %; +P=100 %; FS=360 Hz) 
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Figure 3.5-4. Pan % Tompkins. QRS complex detection for record no. 108 (Se=98.525 %; +P=88.083 %; FS=200 Hz) 

 

 

Figure 3.5-5.  Proposed algorithm. QRS complex detection for record no. 108 (Se=98.411 %; +P=95.96 %; FS=360 Hz) 
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 Accuracy evaluation using fixed-point representation 

In a real-platform all the data, factors and calculations are made using a fixed-point arithmetic. 

This change of the representation can provoke a reduction of the original accuracy due to the loss 

of precision which produces a quantization error (difference between the real and the converted 

value). Table 3.5-8 lists the quantization error, related to the original value of the samples, of each 

signal involved in the QRS complex detection for the proposed algorithm, and Table 3.5-9, for the 

P&T.  

Table 3.5-6 and Table 3.5-7 list the results obtained in MATLAB analyzing the MITDB with the 

fixed-point version of both algorithms. Sensitivity of the new QRS complex detection algorithm 

has been decreased from 99.731% to 99.638%; and the positive predictivity has been increased 

from 99.774% to 99.777%. The number of cases in which the min (Se, +P) is higher than 99.8% 

has been decreased from 35 to 34 and the worst performance is obtained again with the subject 

108m, in which min (Se, +P) is 95.962%. In the case of the Pan & Tompkins algorithm, the 

sensitivity has been increased from 99.568% to 99.658%; and the positive predictivity from 

99.327% to 99.345%. The number of cases in which the min (Se, +P) is higher than 99.8% is the 

same, 29; and the worst performance has been increased from 87.08% to 87.56%.   

Taking into account the obtained results, it has been considered that the differences between 

both versions are small enough to consider their effect negligible.   

 

 Computational complexity evaluation 

The resources required for each algorithm have been estimated by reckoning the mean number 

of additions and multiplications they need to analyse each sample, and the total number of 

memory cells used to store the variables used. First part of the Table 3.5-10 shows the resources 

required for the implementation of each algorithm. The new algorithm uses less than 25% of the 

memory cells, 30% of the multipliers, and 12% of the adders used by P&Ts. Another analysed 

complexity parameter is the number of operations per second (comparisons, additions and 

multiplications). For the computation of these parameters, all the operations have been made for 

the 48 30-minutes ECG signals of the MITDB.  
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TABLE 3.5-6. RESULTS OF THE FIXED-POINT VERSION OF THE PROPOSED QRS DETECTION ALGORITHM WITH THE MITDB 

ID # Annotation TP FN FP Se (%) +P (%) Min (Se, +P) 
100m 2271 2271 0 0 100,00 100,00 100,00 
101m 1865 1864 1 3 99,946 99,839 99,839 
102m 2186 2186 0 0 100,00 100,00 100,00 
103m 2083 2083 0 0 100,00 100,00 100,00 
104m 2228 2228 0 20 100,00 99,110 99,110 
105m 2572 2556 16 37 99,378 98,573 98,573 
106m 2026 2019 7 0 99,654 100,00 99,654 
107m 2137 2135 2 0 99,906 100,00 99,906 
108m 1774 1735 39 73 97,802 95,962 95,962 
109m 2531 2530 1 0 99,960 100,00 99,960 
111m 2124 2123 1 0 99,953 100,00 99,953 
112m 2539 2539 0 0 100,00 100,00 100,00 
113m 1794 1794 0 0 100,00 100,00 100,00 
114m 1879 1879 0 2 100,00 99,894 99,894 
115m 1952 1951 1 0 99,949 100,00 99,949 
116m 2391 2386 5 4 99,791 99,833 99,791 
117m 1534 1534 0 0 100,00 100,00 100,00 
118m 2278 2278 0 0 100,00 100,00 100,00 
119m 1986 1986 0 0 100,00 100,00 100,00 
121m 1863 1862 1 1 99,946 99,946 99,946 
122m 2476 2476 0 0 100,00 100,00 100,00 
123m 1518 1515 3 0 99,802 100,00 99,802 
124m 1620 1619 1 0 99,938 100,00 99,938 
200m 2597 2596 1 1 99,961 99,961 99,961 
201m 1999 1934 65 0 96,748 100,00 96,748 
202m 2135 2129 6 0 99,719 100,00 99,719 
203m 2979 2867 112 24 96,240 99,170 96,240 
205m 2655 2651 4 0 99,849 100,00 99,849 
207m 1841 1839 2 9 99.891 99,513 99,513 
208m 2953 2937 16 1 99,458 99,966 99,458 
209m 3004 3004 0 0 100,00 100,00 100,00 
210m 2648 2578 70 4 97,356 99,845 97,356 
212m 2746 2746 0 0 100,00 100,00 100,00 
213m 3249 3244 5 0 99,846 100,00 99,846 
214m 2261 2258 3 1 99,867 99,956 99,867 
215m 3362 3357 5 0 99,851 100,00 99,851 
217m 2207 2201 6 1 99,728 99,955 99,728 
219m 2153 2153 0 0 100,00 100,00 100,00 
220m 2047 2047 0 0 100,00 100,00 100,00 
221m 2426 2420 6 0 99,753 100,00 99,753 
222m 2482 2480 2 0 99,919 100,00 99,919 
223m 2604 2601 3 0 99,885 100,00 99,885 
228m 2052 2048 4 62 99,805 97,062 97,062 
230m 2255 2255 0 0 100,00 100,00 100,00 
231m 1570 1570 0 0 100,00 100,00 100,00 
232m 1779 1779 0 0 100,00 100,00 100,00 
233m 3077 3071 6 0 99,805 100,00 99,805 
234m 2752 2750 2 0 99,927 100,00 99,927 
Total 109459 109063 396 244 99,638 99,777 99,638 
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TABLE 3.5-7. RESULTS OF THE FIXED-POINT VERSION OF THE P&T ALGORITHM WITH THE MITDB 

ID #Annotations TP FN FP Se (%) +P (%) min (Se, +P) 

100m 2268 2268 0 0 100,00 100,00 100,00 
101m 1862 1861 1 1 99,946 99,946 99,946 
102m 2183 2183 0 2 100,00 99,908 99,908 
103m 2080 2079 1 1 99,952 99,952 99,952 
104m 2225 2222 3 2 99,865 99,910 99,865 
105m 2568 2550 18 61 99,299 97,664 97,664 
106m 2024 2022 2 1 99,901 99,951 99,901 
107m 2133 2127 6 1 99,719 99,953 99,719 
108m 1760 1718 42 244 97,614 87,564 87,564 
109m 2527 2526 1 0 99,960 100,00 99,960 
111m 2121 2120 1 2 99,953 99,906 99,906 
112m 2535 2535 0 0 100,00 100,00 100,00 
113m 1791 1791 0 3 100,00 99,833 99,833 
114m 1877 1860 17 108 99,094 94,512 94,512 
115m 1950 1950 0 0 100,00 100,00 100,00 
116m 2388 2383 5 5 99,791 99,791 99,791 
117m 1532 1532 0 19 100,00 98,775 98,775 
118m 2274 2274 0 0 100,00 100,00 100,00 
119m 1983 1983 0 47 100,00 97,685 97,685 
121m 1860 1858 2 0 99,892 100,00 99,892 
122m 2471 2470 1 1 99,960 99,960 99,960 
123m 1515 1515 0 0 100,00 100,00 100,00 
124m 1617 1616 1 0 99,938 100,00 99,938 
200m 2594 2593 1 1 99,961 99,961 99,961 
201m 1957 1945 12 138 99,387 93,375 93,375 
202m 2133 2128 5 5 99,766 99,766 99,766 
203m 2975 2837 138 21 95,361 99,265 95,361 
205m 2651 2641 10 1 99,623 99,962 99,623 
207m 1838 1838 0 6 100,00 99,675 99,675 
208m 2950 2931 19 5 99,356 99,830 99,356 
209m 3000 2993 7 5 99,767 99,833 99,767 
210m 2644 2618 26 2 99,017 99,924 99,017 
212m 2743 2743 0 0 100,00 100,00 100,00 
213m 3244 3243 1 0 99,969 100,00 99,969 
214m 2258 2255 3 1 99,867 99,956 99,867 
215m 3357 3354 3 0 99,911 100,00 99,911 
217m 2204 2201 3 1 99,864 99,955 99,864 
219m 2150 2150 0 0 100,00 100,00 100,00 
220m 2044 2044 0 0 100,00 100,00 100,00 
221m 2422 2420 2 1 99,917 99,959 99,917 
222m 2479 2448 31 16 98,749 99,351 98,749 
223m 2601 2600 1 0 99,962 100,00 99,962 
228m 2049 2041 8 11 99,610 99,464 99,464 
230m 2252 2252 0 0 100,00 100,00 100,00 
231m 1567 1567 0 0 100,00 100,00 100,00 
232m 1777 1776 1 6 99,944 99,663 99,663 
233m 3073 3071 2 0 99,935 100,00 99,935 
234m 2748 2748 0 0 100,00 100,00 100,00 
Total 109254 108880 374 718 99,658 99,345 99,345 
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TABLE 3.5-8. RELATIVE ERROR COMPUTATION FOR THE DIFFERENT SIGNALS INVOLVED IN THE QRS COMPLEX DETECTION ALGORITHM 

Signal Mean relative error 
Standard deviation of 

the relative error 

Maximum relative 

error 

Input (ECG), x[n] 2.3608·10-4 3.1043·10-4 1.0558·10-2 

Derivative signal, y0[n] 4.2761·10-5 6.6965·10-3 1.4907·10-2 

Integrate signal, y1[n] 5.1197·10-4 8.4625·10-4 3.5833·10-3 

Pre-processed signal, y[n] 9.3762·10-2 0.1231 0.4994 

Threshold, Th[n] 1.2186·10-2 8.4823·10-2 0.679 

 

TABLE 3.5-9. RELATIVE ERROR COMPUTATION FOR THE DIFFERENT SIGNALS INVOLVED IN THE P&T QRS DETECTION 

Signal 
Mean relative 

error 

Standard deviation of 

the relative error 

Maximum relative 

error 

Input (ECG), x[n] 3.3228·10-4 1.9249·10-4 1.2541·10-3 

Output of the LPF, y[n] 4.4856·10-4 4.4554·10-2 4.9488 

Output of the HPF, p[n] 1.4128·10-3 2.6829·10-2 0.25 

Derivative and squared, s[n] 3.8523·10-3 2.5616·10-2 0.1936 

Output of the preprocessing stage, z[n] 7.4512·10-3 1.2715·10-2 0.1257 

Threshold1, TH1[n] 8.4942·10-3 1.6835·10-2 0.1336 

Threshold2, TH2[n] 8.6038·10-3 1.6835·10-2 0.1336 

 

As can be seen in the second part of the Table 3.5-10  the proposed algorithm makes 1.5 

comparisons, similar number of multiplications and less than the 50% of multiplications of the 

P&T, reducing the total number of operations to 80%. It should be noted that P&T’s algorithm was 

designed to work at a fixed sampling rate FS=200Hz and so, the order of the filters, value of the 

coefficients and length of the windows were defined for this frequency; whereas the parameters 

of the proposed one are adjusted automatically to the input sample frequency without changing 

the resource consumption.  

The last part of Table 3.5-10 shows the mean total number of operations each algorithm should 

perform for getting the value of each sample. It can be seen that the proposed algorithm needs 

50% of the total number of operations needed by P&T. This implies that the proposed algorithm 

needs half of the processing time than P&T’s to carry out the same analysis, letting the processor 

free to perform another tasks. Moreover, this algorithm can be adapted easily to different sample 

frequencies, while it is necessary to recalculate all the parameters of the P&T’s for a sample 

frequency different from 200 Hz. All these facts make the proposed algorithm more suitable for 

working on portable devices than P&T.  
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TABLE 3.5-10. RESOURCE CONSUMPTION OF BOTH ALGORITHMS 

Analysis P&T Proposed 

Resources 

Memory cells 123 28 

Multipliers 18 6 

Adders 41 5 

Operations/s 

Comparisons 1416 2163 

Multiplications 1201 1107 

Additions 2817 1205 

Total operations 5434 4475 

 Comparisons 7.08 6.01 

Operations/sample Multiplications 6.01 3.08 

 Additions 14.09 3.35 

 Total operations 27.17 12.43 

 

 Fixed point implementation 

The fixed point version of the proposed algorithm has been implemented in a Xilinx XC7Z010 

FPGA [Xili14] using VHDL language. The details of this implementation can be found in Appendix 

B. The resources used to get the real version of the proposed algorithm are listed in Table 3.5-11. 

The obtained results are similar to those obtained with the fixed-point version implemented in 

MATLAB, as summarized in Table 3.5-12, which validates the real implementation.   

TABLE 3.5-11. RESOURCE CONSUMPTION OF THE PROPOSED ALGORITHM IN A FPGA 

Resource Number of elements 

DSP48E1 6 (7%) 

RAMB 17 (10%) 

Slices 2366 (53%) 

 

TABLE 3.5-12. COMPARISON OF THE OBTAINED RESULT WITH THE FLOATING-POINT IMPLEMENTATION OF THE PROPOSED ALGORITHM AND 

THE FIXED-POINT VERSION IMPLEMENTED IN THE FPGA 

Resource Floating-point version Fixed-point FPGA version 

R-Peaks 109451 109948 

TP 109157 109391 

FN 294 557 

FP 247 248 

Se 99.731 99.493 

+P 99.774 99.774 
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 Conclusions 

A great number of QRS complex detection algorithms have been proposed over the last three 

decades. Those algorithms have evolved thanks to the new capabilities that technology offers. This 

evolution has led to a significant improvement in the obtained performance, achieving precisions 

near 100%. Nevertheless, regarding the remote monitoring of patients, these detectors may 

become unsuitable due to the lack of resources and computational capabilities. The growing 

interest on continuous-remote monitoring systems (either for clinical or personal applications), 

makes necessary the development of efficient algorithms capable to work on portable devices, 

usually with limited hardware resources.  

A very low-complexity QRS complex detector has been proposed, suitable for wearable 

systems or for its use in telemedicine or remote monitoring systems. In spite of its low complexity, 

taking into account all the ECG signals previously analysed, it achieves a mean sensitivity of 

Se=99.843% and a mean specificity of 99.740%, reaching a performance comparable to other 

proposals. In addition, the algorithm can be tuned online to different sampling rates by changing 

the value of 3 parameters without increasing the resources needed. The pre-processing block of 

the algorithm is mainly based on a differentiation to reduce the low-frequency noises and on an 

integration to smooth the ECG signal. The detection stage is based on a single dynamic threshold, 

whose value is controlled by a finite state machine. 

The behaviour of the algorithm has been tested in mixed conditions, through the cases 

provided by several databases with ECG signal belonging to patients with assorted features (age, 

gender, health condition), affected by varied levels of noise and digitized with diverse sampling 

frequencies. As one of the database is considered to be standard, the obtained performance can 

be easily compared with previous proposals.  

The computational time and the number of resources required by the proposed algorithm to 

detect all the R-peaks of the MITDB database has been estimated and compared with the well-

known P&T algorithm under the same conditions. This comparison shows that the proposed 

algorithm reduces almost 50% the computational time, 78.6% the number of required resources, 

and 17.6% the number of operations per second, and 54.3% the number of operations per sample.  

In spite of this reduction, it provides a better detection with extremely difficult ECG recordings.  
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The analysis carried out over the proposed algorithm regarding accuracy and resources 

employed demonstrates its suitability for working on remote monitoring applications, in which it 

is necessary to get information in real-time and portable devices are used.   

The next chapter studies the Heart Rate Variability of a group of patients undergoing Oral Food 

Challenges. The 18 HRV features used in the previous work are analysed in order to get the one 

providing more information about the effect an allergic reaction has on the HRV signal of allergic 

patients. The comparison of the features of allergic and non-allergic patients under the same 

circumstances will help to discriminate the HRV variations provoked by reasons different than 

allergies.   

 



 

 

 

 

 

 

 

Chapter 4.  

AUTOMATED ALLERGY DETECTION 
 

 

The next step in developing a real time allergy detection algorithm is to reduce the 

computational complexity at the feature stage. This chapter aims to find out which particular set 

of HRV features gives information regarding the physiological changes produced by an allergic 

reaction. This analysis will explain how it is possible to detect an allergic reaction through the 

measurement and analysis of the HRV signal. From the clinical point of view, this fact implies a 

significant novelty as, even though the relationship between the HRV and the existence of allergic 

reactions was already established in the background work, no particular one of the studied 

features was related to the occurrence of an allergic reaction.  

In this chapter the 18 features used in the previous investigation are studied in order to discard 

those features that do not vary sufficiently due to allergic reactions. This study will improve the 

results obtained by the previous one in two main ways: first, the quantity of information will be 

reduced, which will reduce the computational complexity of the allergy detection process, making 

it able to work in real-time; secondly, knowing which one of the features can be used to predict 

the onset of an allergic reaction may help the doctors to get more information about the 

physiological changes produced by them.    
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Oral food challenge (OFC) is the definitive diagnostic test for food allergy [MHAB14], however, it 

poses a risk for the health of the patients, due to the incremental consumption of the implicated 

food allergen. Subtle heart rate changes were detected in children experiencing a positive OFC. In 

previous works [TTHM14], it has been demonstrated the existence of a relationship between the 

variations of the HRV signal and the presence of an allergic reaction, as explained in Chapter 2 of 

this thesis. However, with the previously designed algorithm one unique model for all the patients 

has not been generated, but a unique model for each one of them is used, with the parameters 

selected depending on the rest of subjects of the database. For this reason, it is not possible to 

predict the result that this algorithm would provide with new patients. Besides, the process 

needed to carry out the mathematical model makes the designed algorithm unsuitable to work in 

real-time.  

Thus, the main objective of this chapter is the reduction of the number of features needed to 

detect an allergic reaction and design of an allergy detection algorithm able to work in real time 

during the provocation tests.  

 

 Evaluation methods 

The set of features will be evaluated from two points of view: first, their “allergy diagnostic” 

ability will be obtained; then, as the main objective of this work is the proposal of an algorithm 

able to work in real-time, the computational load needed to obtain the value of each feature is 

compared. These two tests will help to select a feature or a reduced group of them to develop a 

real time allergy detection algorithm based on a trade-off between performance and 

computational cost. There exist several mathematical tools used in the clinical research area to 

test the diagnostic ability of a proposed method. These tools mainly evaluate the ability of the 

studied feature to distinguish between data belonging to people with a specific disease and those 

belonging to healthy people. In this work, t-value, p-value and Area Under the Curve (AUC) have 

been used. These metrics ae explained next.  

 

 T-value and p-value analysis  

These values are obtained by conducting a t-test. This test compares two sets of data and 

determines if there is a significant difference between their means. It is used when the variances 

of both sets are unknown and/or the sample sizes are small. Some useful information regarding 

this test can be found on the VassarStats website[Lowr00]. Statistically, the outcome of a t-test is 
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the rejection of the null hypothesis, which says that the mean value of the data from the two groups 

is equal. A t-test can be: 

 Paired or unpaired depending if the two sets are related directly or not. In the first case, 

the two sets belong to the same population, for instance, data belonging to the same 

group of patients after and before receiving a treatment. 

 One-tailed or two-tailed. This feature depends on the variance of both groups. One-

tailed test is performed when the variance of one set is expected to be always higher 

than the other one. Otherwise, the t-test should be configured as two-tailed test. 

The resulting t-value measures the difference between the mean values of both populations. In 

this case, as the data belong to different subjects, the t-test should be configured as unpaired; and, 

since it is not known previously if the features during an allergic reaction will have bigger or 

smaller values than during normal states, t-tests will be configured as two-tailed.   

P-value measures the probability of getting a difference higher than the obtained t-value 

between subjects from the same group. As an example, getting a t-value of 4.5 and a p-value of 

0.01 means it is 1% likely that the difference between subjects from the same group is higher than 

4.5. In other words, if the difference of two subjects is higher than 4.5, it is 99% likely that these 

two subjects belong to different groups.  

For evaluating the outcome achieved, it is necessary to get the degrees of freedom (df) of the 

analysed database, which is related with the level of arbitrariness of the values belonging to each 

group. Its value is computed depending on the size of both groups according to (eq. 4.1), in which 

Nx represents the size of the group x. 

𝑑𝑓 = (𝑁𝑔𝑟𝑜𝑢𝑝1 − 1) + (𝑁𝑔𝑟𝑜𝑢𝑝2 − 1) (eq. 4.1) 

Finally, the confidence level (CL) should be selected that must be obtained with the studied 

method. Typical values are 90%, 95% and 99%. Depending on the CL, the p-value and t-value 

limits are the ones shown in Appendix C. The p-value limit is named significance level, α. If the p-

value is below α, it is considered that the observed data are inconsistent with the null hypothesis, 

and so, this hypothesis should be rejected.  

In this chapter, data belonging to 15 allergic and 8 non-allergic subjects are analysed so df is 

21. Then, if a CL above 95% is required, α for a two-tailed test is 0.05 (p-value < 0.05) and t-value 

limit is 2.08.  
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 Area under the Receiver Operating Characteristic curve (AUC) 

The Receiver Operating Characteristic, ROC [HuLi05] represents the accuracy of the analysed 

method. It represents the sensitivity, Se, (eq. 4.2) as a function of fall-out or False Positive Rate, 

which value is 1-Specificity, Sp, (eq. 4.3). The AUC measures the diagnostic ability of each 

parameter: if its value is 50%, the result of the classification is random, and above this value, the 

greater the AUC the better the diagnostic ability, 100 % being the perfect classification. Figure 

4.1-1 depicts three examples of ROC curves: the perfect classification is met when AUC is 1 (green 

area), and the minimum AUC value is 0.5 (red area), which implies a random classification result; 

blue area represents a generic classification whose AUC is 0.936. The metrics used for these 

computations are the following ones: 

 True Positive, TP: Allergic subject detected 

 False Negative, FN: Allergic subject not detected 

 True Negative, TN: Non-allergic subject correctly classified 

 False Positive, FP: Non-allergic subject classified as allergic 

 Sensitivity, Se (eq. 4.2): Percentage of positives correctly classified.  

 Specificity, Sp (eq. 4.3): Percentage of negatives correctly classified.  

𝑆𝑒 =
# 𝑜𝑓 𝑎𝑙𝑙𝑒𝑟𝑔𝑖𝑐 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑎𝑙𝑙𝑒𝑟𝑔𝑖𝑐 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (eq. 4.2)  

𝑆𝑝 =
# 𝑜𝑓 𝑛𝑜𝑛𝑎𝑙𝑙𝑒𝑟𝑔𝑖𝑐 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑛𝑜𝑛𝑎𝑙𝑙𝑒𝑟𝑔𝑖𝑐 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
=

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (eq. 4.3) 

As was explained in Chapter 2, each feature was obtained using epochs of 60, 120, 180 and 300 

minutes with one-second shift. For this work, the smallest epoch has been selected (60 seconds) 

to compute all the features. The short length of this window allows the immediate or short time 

effects on the analysed signal to be observed. Thus, for each feature there is a data vector whose 

length is the number of seconds of the test duration.  

In order to test how the values of the HRV features are related with presence of allergic 

reactions, the metrics described above have been used to evaluate 6 statistical parameters of each 

feature: mean, median, mode, interquartile range, range and standard deviation. Thus, 23 values 

of each statistical parameter were obtained (one for each subject, 15 allergic and 8 non-allergic).  

The meanings of these statistics are explained in Table 4.1-1. Mean, median and mode analyse the 
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general value of each feature during the whole OFC; while range, interquartile range, and standard 

deviation yield information about how much the features have changed during the tests.  

 

 

Figure 4.1-1. Example of ROC curves with different AUC 

 

TABLE 4.1-1. STATISTICAL PARAMETERS USED FOR EVALUATING EACH HRV FEATURE 

Parameter Meaning 

Mean (eq. 4.4) Average value of the samples. 

Median 

In a sorted set of values, the median is the value in the central 

position. If the number of values is even, the median is the mean value 

of the two central samples.  

Mode The value that appears most often in a set of data 

Interquartile range (IQR) 
Difference between the upper and lower quartiles. Measures the 

statistical dispersion of the samples. 

Range 
Difference between the maximum and the minimum values of the 

data. 

Standard deviation, std (eq. 4.5) Quantifies the dispersion of the data.   

 

𝑚𝑒𝑎𝑛 =
1

𝑁
∑ 𝑓𝑒𝑎𝑡𝑖

𝑁

𝑖=1

 (eq. 4.4)  

𝑠𝑡𝑑 = √
1

𝑁
∑(𝑓𝑒𝑎𝑡𝑖 − 𝑚𝑒𝑎𝑛)2

𝑁

𝑖=1

 (eq. 4.5) 

where N, is the number of elements in the set of data.  
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 HRV feature selection 

 Diagnostic ability study 

The list of the studied features and the acronyms used are: 

 MRR: Average HRV 

 STDNN: Standard deviation of the RR intervals 

 CV: Coefficient of variance 

 RMSSD: Root mean square of the RR intervals 

 NN50: Number of successive pairs of RR intervals differing for more than 50 ms.  

 pNN50/pNN25: Percentage of successive pairs of RR intervals that differ for more than 

50/25 ms. of the RR intervals within the analysed epoch.  

 STPP/STNN: Number of RR intervals that are longer/shorter than the previous one 

 CSI/CVI: Cardio Sympathetic/Vagal Index 

 SD1/SD2: Short/Long axis of the poincaré ellipsis  

 VLF/LF/HF: Total power in the very low/low/high frequency bands 

 ratioLFHF or LFHF: ratio between LF and HF 

 Histo: Histogram index 

For this study the features obtained in the previous work were used i.e., the QRS complex 

detection algorithm proposed in Chapter 3 has not been employed to get the RR intervals of the 

ECG signals in order to isolate the results of the allergy study from the variations that a different 

QRS complex detection algorithm could introduce. These features were extracted from the HRV 

signals computed through the manual ECG annotations.  

As has been explained in the previous section, the t-test evaluates the differences between data 

belonging to two different groups. In this case, the database has been divided in ‘allergic’ and ‘non-

allergic’ groups. The six statistical parameters listed in Table 4.4-1 have been computed for the 18 

features of each subject. In this way, for each feature, there are 23 values of each statistical 

parameter: 15 of belonging to the non-allergic, and 8 to the allergic. An unpaired, two-tailed t-test 

has been applied to each statistical parameter of each feature, getting the difference between the 

allergic and the non-allergic group showed by each feature.  

 



Chapter 4. Automated Allergy Detection 

HRV feature selection 

 

77 

The obtained absolute t-values are shown in Figure 4.2-1, and 1-(p-values) in Figure 4.2-2. Best 

t-value and p-value are obtained with the standard deviation of the Mean (p-value = 6.82·10-5; t-

value=4.65) and with the range of the Mean (p-value=8.92·10-5; t-value=4.54). Since df in this case 

is 21, the CL for these two parameters is higher than 99.9%.  The next best result is obtained with 

the standard deviation of CV (p-value=0.0133; t-value=2.3837) for which the CL is 95%, followed 

by the standard deviation of STDNN (p-value=0.0339; t-value=1.9263) with a CL of 90%. The exact 

quantitative results are given following: Table 4.2-1 lists the t-values obtained with all the 

parameters and Table 4.2-2, the p-values for all the parameters multiplied by 103. The CL of each 

parameter is shown in Table 4.2-3. All the CL below 80% have been set to 0.  

The mode of the RMSSD feature is 0 (i.e. the value most repeated). Due to this fact, its p-value 

and t-value cannot be computed (Not-a-Number, NaN), and its AUC is the minimum possible (0.5).  

 

 

 

Figure 4.2-1. T-value for the six statistical parameters for the studied HRV features 
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Figure 4.2-2. (1 - p-value) of the six statistical parameters for the studied HRV features 

 

TABLE 4.2-1. T-VALUES OBTAINED WITH THE PERFORMED T-TEST FOR THE 6 STATISTICAL PARAMETERS OF THE HRV FEATURES 

 
Statistical Parameter 

Mean Median Mode Iqr Range Std 

HRV feature 

MRR 0,1261 0,5466 0,7366 1,7375 4,5410 4,6531 

STDNN 1,1174 1,0353 0,6074 1,4641 1,0438 1,9263 

CV 1,0077 0,7867 0,5370 1,5619 1,1659 2,3837 

RMSSD 1,8017 0,3600 NaN 1,5811 1,1618 1,3425 

NN50 0,9674 1,0428 0,6495 0,3786 0,6865 0,5029 

pNN50 0,9502 0,9684 0,3861 0,4915 0,3755 0,4840 

pNN25 0,7444 0,7021 0,4064 0,8306 0,7889 0,6679 

STPP 1,0324 1,0407 1,1352 1,8045 0,4593 1,5470 

STNN 0,3359 0,4572 0,6312 1,2023 0,2678 1,5056 

CSI 0,0826 0,3274 0,5482 0,3562 0,9416 0,3597 

CVI 1,0548 1,2026 0,4745 0,0706 0,0605 0,7306 

SD1 1,6926 1,3942 0,3240 1,4164 1,2386 1,1789 

SD2 0,3096 0,6214 0,3026 0,4140 0,2108 0,3899 

VLF 0,5909 0,6745 0,8503 0,2939 0,4595 0,1987 

LF 0,7476 0,6626 1,4235 0,8667 0,4138 0,7544 

HF 0,8210 0,8624 0,6126 0,4836 0,4008 0,6165 

LFHF 0,6587 0,8108 0,0673 0,7459 0,1672 0,2189 

Histo 0,7805 0,7938 0,5645 0,2158 0,6838 1,1440 
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TABLE 4.2-2. P-VALUES (·10-3) OBTAINED WITH THE PERFORMED T-TEST FOR THE 6 STATISTICAL PARAMETERS OF THE HRV FEATURES 

 
Statistical Parameter 

Mean Median Mode Iqr Range Std 

HRV feature 

MRR 900,8414 590,4451 469,5369 48,4738 0,0891 0,0682 

STDNN 276,4551 312,3018 550,0819 78,9936 154,2299 33,8563 

CV 325,0716 440,2468 596,9158 66,6293 128,3625 13,3272 

RMSSD 85,9684 722,4734 NaN 64,3962 870,8327 96,8877 

NN50 344,3449 308,9169 523,0408 354,3982 249,9596 310,1384 

pNN50 352,8162 343,8708 703,3234 314,0969 355,5403 316,7001 

pNN25 464,9068 490,3009 688,527 207,7846 219,4881 255,7499 

STPP 313,6263 309,856 269,0787 42,7614 325,3781 68,4021 

STNN 740,2673 652,2195 534,71 121,3073 395,7222 73,5259 

CSI 934,9782 746,5969 589,3615 637,3845 178,5419 361,3469 

CVI 303,4945 242,5302 640,0557 527,792 476,1757 236,5396 

SD1 105,3258 177,8215 749,1526 85,6551 114,5714 125,8168 

SD2 759,9192 541,0155 765,1783 658,4505 417,5519 350,2788 

VLF 560,8725 507,3479 404,7505 614,1572 674,6846 577,7976 

LF 463,0038 514,8191 169,2724 802,0452 658,3944 770,5128 

HF 420,8598 398,2163 546,7215 316,8251 346,3118 272,0994 

LFHF 517,2189 426,5494 947,0032 768,0012 565,5818 585,5614 

Histo 443,8205 436,2051 578,4262 415,6167 250,7965 132,7578 

 

TABLE 4.2-3. CONFIDENCE LEVEL OBTAINED WITH THE PERFORMED T-TEST FOR THE 6 STATISTICAL PARAMETERS OF THE HRV FEATURES 

 Statistical Parameter  

Mean Median Mode Iqr Range Std 

HRV feature 

MRR 0 0 0 90 99,9 99,9 

STDNN 0 0 0 80 0 90 

CV 0 0 0 80 0 95 

RMSSD 90 0 0 80 0 80 

NN50 0 0 0 0 0 0 

pNN50 0 0 0 0 0 0 

pNN25 0 0 0 0 0 0 

STPP 0 0 0 90 0 80 

STNN 0 0 0 0 0 80 

CSI 0 0 0 0 0 0 

CVI 0 0 0 0 0 0 

SD1 80 80 0 80 0 0 

SD2 0 0 0 0 0 0 

VLF 0 0 0 0 0 0 

LF 0 0 80 0 0 0 

HF 0 0 0 0 0 0 

LFHF 0 0 0 0 0 0 

Histo 0 0 0 0 0 0 
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Finally, Figure 4.2-3 represents the resulting AUC of each parameter and Table 4.2-4 lists their 

values. The best AUC is achieved with the standard deviation (0.958) and the range (0.933) of the 

Mean, whose values are 0.958 and 0.933, respectively. There are two more features whose AUC is 

higher or equal to 0.8:  interquartile range of MRR (AUC=0.8) and standard deviation of CV 

(AUC=0.825). These two features have been discarded due to their t-values: 1.7375 and 2.3837, 

respectively.  

The obtained results confirm the mean of the HRV signal as the best feature to distinguish 

between allergic and non-allergic subjects. The statistical parameters through which the 

differences are better observed are the standard deviation and the range, which implies that there 

exist abrupt variations in the MRR of the allergic children that are not present in the non-allergic 

ones.   

 

 

 

Figure 4.2-3. AUC for the six statistical parameters for the studied HRV features 
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TABLE 4.2-4. AUC OBTAINED FOR THE 6 STATISTICAL PARAMETERS OF THE HRV FEATURES 

 
Statistical Parameter  

00 Median Mode Iqr Range Std 

HRV feature 

MRR 0,517 0,592 0,633 0,800 0,933 0,958 

STDNN 0,667 0,633 0,517 0,733 0,708 0,717 

CV 0,642 0,542 0,508 0,750 0,775 0,825 

RMSSD 0,700 0,525 0,500 0,708 0,575 0,692 

NN50 0,600 0,625 0,558 0,546 0,579 0,525 

pNN50 0,642 0,642 0,563 0,575 0,546 0,525 

pNN25 0,583 0,583 0,542 0,575 0,592 0,550 

STPP 0,617 0,600 0,633 0,750 0,513 0,675 

STNN 0,550 0,558 0,608 0,675 0,542 0,708 

CSI 0,542 0,575 0,592 0,567 0,558 0,517 

CVI 0,600 0,617 0,550 0,517 0,500 0,592 

SD1 0,717 0,692 0,575 0,642 0,792 0,758 

SD2 0,575 0,600 0,517 0,575 0,517 0,517 

VLF 0,592 0,633 0,533 0,550 0,533 0,542 

LF 0,583 0,600 0,650 0,625 0,550 0,608 

HF 0,600 0,617 0,538 0,558 0,567 0,558 

LFHF 0,608 0,617 0,533 0,650 0,592 0,583 

Histo 0,600 0,604 0,592 0,550 0,596 0,650 

 

 Complexity analysis 

The proposed algorithm should be able to work online during real OFCs, so it has to be efficient 

from a computational cost point of view. The computational cost employed by MATLAB® to 

compute each feature has been obtained. To do so, all the features were computed and the 

percentage of the total time employed for getting the value of each one has been used to compare 

their complexity. Some of the HRV features are obtained directly from the RR intervals, such as 

the MRR or the RMSSD. However, to compute other features, previous computations should be 

performed. For instance, the periodogram of the RR intervals is needed to compute the frequency 

domain features (VLF, LF, HF and LFHF). The whole set of features have been divided into 5 

categories on the basis of the previous operations they need: 

1. Features obtained directly from the RR measurement: MRR, RMSSD, STDNN and CV 

2. Features obtained through RR differentiation: NN50, pNN50, pNN25, STPP and STNN 

3. Features obtained by using the auto covariance: CSI, CVI, SD1 and SD2 

4. Features obtained through the periodogram: VLF, LH, HF and LFHF ratio 

5. Features obtained by computing the histogram: Histo 
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The computational time taken for the initial computations have been considered once for each 

group. The computational time percentage used to obtain each group of features, and each feature 

within its group is represented in Figure 4.2-4. 

Frequency domain features take the most part of the computational time (97 %) whereas the 

whole group of features obtained through the computation of the RR differentiation need only 1 

% of the total time. For a computer with an Intel® Core™ 2 Quad CPU Q9450 @ 2.66GHz, 4 GB 

RAM, the total computation of the features takes a mean time of 97.785 ms, including the 

initialization of the variables involved in the operations. This value is the average time computed 

for 17 ECG signals, with a total recording of 16 hours, 58 minutes and 41 seconds, which implies 

61121 computations for each feature (one each second).  

It is important to recall that these operations were performed using MATLAB, taking advantage 

of its ability to perform matrix calculation. Working on real-time with a portable platform, the 

time employed to obtain all the features would be much higher. Thus, the study performed here 

compares the computational cost needed to get these 18 features. The absolute computational 

time will depend on the specific platform used to run these computations. Taking into account 

only this comparison, frequency domain features should be avoided from this study, as they need 

more than 11 times the time employed to compute all the rest of the features together. Besides, 

they do not present a good diagnostic ability, as shown in section 4.2.1.  

 

 

Figure 4.2-4. Relative computational time needed to compute each feature 
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 Feature selection 

Figure 4.2-5 shows the differences regarding the normal Probability Density Function (PDF) of 

the statistics computed for the MRR, as well as their boxplot. As it was expected, there are no 

significant differences between mean, median and mode since there are no background 

physiological differences between allergic ad non-allergic subjects: age, fitness, health status, etc. 

On the contrary, the interquartile range, range and the standard deviation are higher in the case 

of the allergic subjects. This means that in those cases the HRV suffered big changes during the 

OFC but these changes lasted for short periods of time, then the HRV of the allergic subjects came 

back to the background range. The allergy detection algorithm should be able to detect that kind 

of change and distinguish it from HRV changes produced by normal activities. 

 

 

Figure 4.2-5. Comparison between mean HRV of allergic (red) and non-allergic (blue) subjects using (a) mean, (b) 

median, (c) mode, (d) range, (e) standard deviation and (f) interquartile range 
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Figure 4.2-6 represents the metrics of the diagnostic ability (t-value, p-value and AUC) attained 

with the standard deviation of each feature versus the percentage of computational time needed 

to obtain their values. P-value and t-value have been normalized to easily compare all the 

parameters. Best AUC (0.958), p-value (6.82·10-5) and t-value (4.653) is always obtained with the 

MRR. Taking into account these results and that the relative computational load needed to obtain 

its value is only 3 % of the total time, this feature has been chosen to design the allergic reactions 

detection algorithm. Figure 4.2-7 shows an example of HRV signal and its corresponding MRR 

feature, computed in a 60-seconds window with 1-second shift. 

 

 

Figure 4.2-6. AUC, p-value, t-value of the standard deviation of all the features and relative computational time needed to 

obtain them. 

 

Figure 4.2-7. ECG (a); Heart Rate Variability (b), and mean Heart Rate Variability signal examples 
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 Allergic reaction detection algorithm  

The analysis carried out in the previous section demonstrates that the standard deviation of 

the mean HRV shows a clear difference in those cases in which the patients suffered an allergic 

reaction. Besides, the computational load needed to compute its value is low, which allow its 

analysis in real-time and so, the detection of the allergic reactions in an online mode. This section 

aims to define the effect an allergic reaction has on the mean HRV signal of allergic patients for its 

detection. Figure 4.3-1 shows an example of the differences between the MRR signal (black solid 

line) of an allergic and a non-allergic subject during OFCs. The background data has been 

shadowed with grey, and each one of the check-up periods (in which new portions of the allergen 

are given to the subjects) has been coloured with light blue.  Table 4.3-1 lists the statistical 

parameters of both subjects. Mean, median and mode are slightly higher for the non-allergic 

subject, but the difference is not significant enough. On the other hand, interquartile range is 

slightly higher for the allergic subject, while the range and standard deviation are much higher in 

the case of the allergic subject. The reason of these differences are the “peaks” appearing in the 

MRR signal of the allergic subject, starting on minutes 26 and 46, approximately.  

 

 

Figure 4.3-1. MRR signal of an allergic (a) and a non-allergic (b) subject. Purple dotted line represents the mean value of 

the MRR signal during each “background” period, or MBG signal.  
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TABLE 4.3-1. STATISTICAL DIFFERENCES BETWEEN AN ALLERGIC SUBJECT AND A NON-ALLERGIC ONE 

Parameter Allergic Non-allergic 
Mean 91.62 104.13 
Median 86.28 103.99 
Mode 74.31 98.6 
Interquartile range 7.54 5.55 
Range 83.44 57.45 
Standard Deviation 16.49 4.18 

 

Looking at the MRR signal of all the 23 subjects (Appendix D) it can be observed that high rises 

of the MRR signal appear in most of the allergic subjects as will be shown later on, while they are 

not present in the MRR signals of the non-allergic subjects. This fact provokes the differences 

between allergic and non-allergic regarding the standard deviation and range of the mean HRV, 

so they have been considered the representation of the effect an allergen has on the allergic 

subjects. Following this hypothesis, the detection of an allergic reaction will consist of the 

detection of those increases of the HRV. As was stated in Chapter 2, the HRV signal of a healthy 

person does not have a constant value, but it should increase and decrease continuously. For this 

reason, it is necessary to distinguish normal variations from those representing an allergic 

reaction. Figure 4.3-2 represents the flow chart of the designed allergy detection algorithm. It is 

composed of the following stages: 

1. When the first check-up ends, the mean of the MRR signal since the beginning of the test is 

computed (MBG signal, displayed by a dotted purple line in the Figure 4.3-1). This period 

represents the normal HRV of each subject, as they do not take the first portion until it 

finishes. 

2. During the following observation period, the MRR signal is compared with the background 

data, i.e. the MBG value is subtracted from each new sample of the MRR signal. The result of 

this operation is called NMRR signal (Normalized MRR). This signal represent how different 

is the MRR signal from the background data i.e. how the actual value of the mean HRV differ 

from the ‘normal’ mean HRV of the value. Figure 4.3-3 represents the NMRR signal for an 

allergic subject (a) and a non-allergic subject (b). 

3. The mean value of the NMRR signal during each increase has been computed, the result is 

called MeanPeak. If the value of a MeanPeak is higher than a threshold (Th), it is considered 

an allergic reaction.  

4. When the next Check-Up starts, the last observation period is considered as the new 

background interval (as the medical staff did not detect any allergy symptom during it) and 

the algorithm goes back to the point 1.  
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The value of Th depends on the maximum MeanPeak of each subject, from now on, 

MaxMeanPeak. The low limit of the threshold is the maximum MaxMeanPeak of the non-allergic 

subjects and its high limit, the minimum MaxMeanPeak of the allergic group. 

 

 

Figure 4.3-2. Flow chart of the proposed allergy detection algorithm 

 

 

Figure 4.3-3. Normalized MRR (NMRR) signal for an allergic (a) and a non-allergic (b) subject 
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Figure 4.3-4. Maximum MeanPeak value for each subject of the Allergy Database 

 

Figure 4.3-4 shows the MaxMeanPeak value for each allergic (purple bars) and non-allergic 

(blue bars) subject, as well as the mean value for each group (25.93 and 7.01, respectively). It can 

be observed how these values are much higher in most of the cases for the allergic subjects than 

for the non-allergic group. However, subjects 14 and 15 present values very similar to those from 

the non-allergic group even they reacted to the allergen during the OFC (MaxMeanPeak 9.40 and 

9.03, respectively). To set the value of Th, subjects 14 and 15 have not been taken into account. 

With this consideration, the minimum MaxMeanPeak of the allergic subjects is 10.92; and the 

maximum MaxMeanPeak of the non-allergic, 9.99. Thus, the value of the threshold, Th, has been 

set to 10.5, getting 100% of specificity, as all the non-allergic subjects are correctly classified; and 

86.67% of sensitivity (13 out of 15 allergic subjects detected). 

  

  Results 

Twenty-three children were studied (Table 4.4-1) aged 9 months to 10 years. Fifteen OFC 

(62%) were positive, confirming food allergy, and eight OFC were negative. OFC duration ranged 

from 14 to 133 minutes and the mean number of doses they had was 4.5. With the algorithm 

configured as explained before, it would have been possible to classify correctly all the non-

allergic subjects, detect 14 out of 15 allergic ones, and improve their diagnosis by reducing the 

duration and the number of doses of the OFC, as is summarized in Table 4.4-1.  
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It has been observed that the features (Table 4.4-2) of the MRR signals belonging to subjects 

14 and 15 are more similar to those of the non-allergic group than of the allergic ones. As is 

represented in Figure 4.3-4, their MaxMeanPeak value is below 10, while the mean MaxMeanPeak 

of the allergic subjects is 25.93 (28.5 not considering 14 and 15) and 7.3162 for the non-allergic 

group. For this reason, these two subjects have been considered as outliers. The mean number of 

portions that could have been avoided is 1.4 out of 3.73 that were needed. This would imply a 

37.5% reduction in the number of doses. The length of the test could have been reduced to the 

60% of the mean length employed in the case of the allergic subjects due to the fact that the allergic 

reactions would have been detected before.  

 

TABLE 4.4-1. PERFORMANCE OF THE ALLERGY DETECTION ALGORITHM 

Patient ID Allergic? Detected? 
Total  
doses 

OFC  
duration 

Doses  
saved 

Time gain 

1 Yes Yes 1 0h. 14min. 0 0h. 00min. 
2 Yes Yes 5 1h. 40min. 3 0h. 56min. 
3 Yes Yes 5 1h. 34min. 3 0h. 58min. 
4 Yes Yes 4 1h. 44min. 1 0h. 50min. 
5 Yes Yes 7 2h. 13min. 2 0h. 32min. 
6 Yes Yes 1 0h. 35min. 0 0h. 14min. 
7 Yes Yes 3 0h. 57min. 2 0h. 26min. 
8 Yes Yes 5 1h. 46min. 2 0h. 44min. 
9 Yes Yes 2 0h. 50min. 1 0h. 22min. 
10 Yes Yes 3 1h. 24min. 0 0h. 01min. 
11 Yes Yes 5 1h. 26min. 2 0h. 35min. 
12 Yes Yes 2 0h. 41min. 1 0h. 09min. 
13 Yes Yes 5 1h. 46min. 4 1h. 07min. 
14 Yes No 1 0h. 33min. 0 0h. 00min. 
15 Yes No 7 1h. 37min. 0 0h. 00min. 
16 No No 4 2h. 10min. 0 0h. 00min. 
17 No No 5 1h. 42min. 0 0h. 00min. 
18 No No 9 2h. 09min. 0 0h. 00min. 
19 No No 8 2h. 11min. 0 0h. 00min. 
20 No No 8 1h. 51min. 0 0h. 00min. 
21 No No 6 1h. 29min. 0 0h. 00min. 
22 No No 4 1h. 03min. 0 0h. 00min. 
23 No No 6 1h. 33min. 0 0h. 00min. 
Mean (allergic)   3.73 1h. 16min. 1.40 0h. 28min. 
Mean (detected)   3.93 1h. 19min. 1.61 0h. 32min. 
Mean (doses 
avoided) 

 
 4.42 1h. 28min. 2.10 0h. 40min. 
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TABLE 4.4-2. STATISTICAL PARAMETERS OF SUBJECTS 14 AND 15 

Parameter Subject 14 Subject 15 
Mean 138.76 104.79 
Median 139 104.85 
Mode 134.9 102.24 
Interquartile range 6.96 6.33 
Range 30.28 31.83 
Standard Deviation 4.86 6.65 

 

There are three cases in which the subject only had one dose. In this cases, physical symptoms 

appeared quicker than usual as happened to subject 1, whose test lasted for 14 minutes. The 

algorithm detected the reaction at the end of the test, but it was not able to reduce its length. The 

test of subject 6 lasted for 35 minutes, and the algorithm detected a reaction 14 minutes before 

its end. In this case, the test might have been reduced to 21 minutes. Finally, in the case of subject 

14, the test lasted for 33 minutes and the algorithm was not able to detect any symptom of allergic 

reaction. Figure 4.4-1 shows the MRR signal of this subject. In this case, the MRR did not present 

any variation similar to those representing an allergic reaction (as seen in the previous 

subsection). Consequently, the algorithm was not able to detect the allergic reaction for this 

subject.  

Taking into account only the cases in which the subjects had more than one dose, the algorithm 

could have decreased the mean number of doses needed from 4.42 to 2.32 (52 % reduction), and 

the mean length of the OFC from 1h. 28min. to 48 minutes (55 % reduction). These reductions 

imply as well a reduction of the risk the patients are exposed to. Firstly, as the avoided doses are 

the last ones, which are the biggest ones, the risk of suffering a severe reaction is lower. Secondly, 

the medical staff could be warned before the patient gets sick, so they could have acted faster with 

the use of this algorithm, reducing again the risk of the OFC. 

Using only the 60-second epoch, the algorithm developed by Niall Twomey did not get any false 

positive as well, and detected correctly all the allergic subjects but numbers 1, 3 and 13, getting 

Se=86.66%. The mean time gain was 22.26 minutes. Using the 4 epoch together, subjects 3 and 13 

were correctly detected, increasing the obtained sensitivity to 93.33%. The time gain was 

increased to 30.8 minutes with this fusion. 
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Figure 4.4-1. Subject 18's mean HRV signal during the OFC 

 

 Conclusions 

Oral Food Challenge is the definitive test for food allergy. The findings explained in this chapter 

show distinct differences in routinely measurable electrocardiographic signals relating to heart 

rate variability that appear unique to subjects whose OFC is positive, not being seen in OFC 

negative subjects. This retrospective study has suggested HRV is perturbed before objective, 

evaluable clinical signs are noted, in keeping with the original observation, which had prompted 

this study, relating to simple elevation of heart rate.  

A previous work demonstrated that there exist observable differences between the HRV of an 

allergic and a non-allergic subject. In that work, classification techniques were used to analyse 18 

features of the HRV. A novelty detector was designed and it was possible to get 100% of sensitivity 

and 93.33% of specificity, reducing the length of the tests by 39 minutes and 30% the number of 

total doses. However, a single model for all the patients was not proposed and the designed 

classifier was not able to work during real OFCs due to its computational complexity.  

Once it is known that the presence of an allergic reaction influences the HRV, it is possible to 

eliminate uninformative features to simplify the allergic detection algorithm. Six statistical 

computations of each feature were performed: mean, median, mode, range, standard deviation 

and interquartile range. The diagnostic ability of each one of these statistical parameters for each 

feature has been obtained by calculating their t-value, p-value and AUC. These analyses 
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demonstrated that only the Mean feature provides useful information regarding the physiological 

changes produced by an allergic reaction. The comparison between the p-value, t-value and AUC 

of its statistics confirm the standard deviation (p-value < 0.0001; t-value: 4.653; AUC=0.958) as 

the best indicator of the presence of allergic reactions. 

The reduction of the information needed to detect an allergic reaction has led to the proposal 

of a new real-time allergy detection algorithm. The designed algorithm improves the first proposal 

in at least two significant ways: firstly, it uses only one feature of the HRV, which reduces the 

computational complexity; and, secondly, is completely subject-independent. By using this 

algorithm, none of the non-allergic patients were misclassified, getting 100% of specificity; and 

13 out 15 allergies were detected (Se = 86.66%). Only 60 % of the total number of doses used in 

real-tests would be required, which implies a 40% reduction of the mean tests length.  

The reduction of the computational resources and time needed would enable the development 

of a user-friendly commercial portable device to implement the proposed algorithm. This device 

could be composed of a heart rate monitor and a smart phone (tablet, laptop or PC) through which 

the medical staff can be aware of the patient’s HRV changes.  

The implementation of HRV assessment and its use in termination of OFC - before the final 

largest doses are given - could shorten OFC thereby making them safer and more acceptable to 

hospital units who do not currently offer them to patients, who often worry about OFC safety. It is 

important to bear in mind that the size of each dose is double that of the previous one, which 

means that reducing 60 % the number of doses imply a great reduction of the quantity of allergen 

that the allergic patients need to consume. Thus, the proposed allergy detection algorithm reduces 

considerably the risk of the allergic patients during the provocation tests. 

The allergy detection algorithm proposed in this chapter is based on the data extracted from 

the HRV signal of 23 subjects performing allergy provocation tests to food allergens. This number 

of subjects is not enough to establish a behaviour pattern for the whole population. In addition, 

the conditions in which the patients are during these tests vary depending on the hospital. In the 

next chapter, a new database is used with which, even the patients have similar features (children 

exposed to food allergen), the results of the allergy detection algorithm change due to other 

factors.  

  



 

 

 

 

 

 

 

Chapter 5.  

ARTEFACT DETECTION AND POSITIONING 
 

 

Chapter 4 proposed a real-time allergy detection algorithm that has been designed based on 

the information extracted from 23 ECG signals belonging to children undergoing OFCs. Although 

the algorithm needs to be tested with more subjects, it has been shown that the effect that the 

allergies have on the HRV of allergic subjects can be detected thanks to the proposed algorithm. 

However, the ECG signals used for the design of the algorithm belong to children who were 

required to remain on a bed during the OFCs. As was explained in chapter 2, the HRV can be 

affected by several factors, with one of the most important for our goal, being the physical activity 

carried out by the patients.  

This chapter introduces a new dataset, which is used as “testing dataset” for the allergy 

detection algorithm. This new trial was carried out in a different hospital, in which a different 

protocol is followed during the OFCs. The main difference is that the patients of the second dataset 

were allowed to move freely. As will be explained in Section 5.3, some categories of movement 

have an effect on the HRV signal that is quite similar to those provoked by allergic reactions. For 

this movement, the algorithm misclassifies these events, increasing the number of false positives. 

To face this new challenge, two approaches based on the measurement of the subjects’ movement 

are proposed in this chapter. 
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 Introduction to the new trial 

A collaboration has been established with the Allergy Section of the Guadalajara University 

Hospital (GUH) in order to collect new data. This Allergy Section performs an average of 15-20 

provocations test every week. However, these tests are not only carried out on children but also 

adults and not only for food allergens, but also for drug allergy. The required ethical approval from 

the Ethic Board was obtained to record the ECG of patients exposed to the allergy provocation 

tests (Appendix E). Patients (or legal guardian, if they are underage) willing to participate in the 

data collection had to sign an informed consent (Appendix F).  

The provocation tests at the GUH are carried out using the following steps: 

1. When the patient arrives to the hospital, his/her health status is checked by measuring 

his/her blood pressure, heart rate and blood oxygen saturation.  

2. The nurses place the Shimmer device on the patient and place the electrodes to allow the 

ECG to be recorded. 

3. A dose of the substance is then divided into several portions of different sizes. Usually, each 

portion is a half of the next one, the maximum being a half of the whole dose. The number 

of doses depends on the kind of allergen and the subject’s features and clinical history. 

Usually, the food is divided into 6-7 portions, and drugs into 3.  

4. The medical staff give the smallest portion to the subject. 

5. For a time interval of 30 minutes (if the allergen is food or certain kind of drugs) or 60 

minutes (for the rest of the drugs) the subject remains under observation. If the subject 

does not show any symptom, the next dose is given to him/her. 

When all the doses are finished, the subject remains under medical observation for a further 2 

hours and then the Shimmer device is removed. If the patient does not react to the allergen during 

the provocation test or in the following 24 hours, he/she is classified as non-allergic; otherwise, 

his/her symptoms are treated and the patient is diagnosed as allergic.  

 

 Differences between protocols 

As previously indicated, there are some important differences between the protocols followed 

by the Cork University Hospital (CUH) and the Guadalajara University Hospital (GUH) performing 

the provocation tests. These differences should be taken into consideration since they modify 
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significantly performance of the algorithm presented in Chapter 4. The main differences between 

both protocols are the following: 

 Target of the test: At CUH only provocation tests to food allergies in children are 

performed, while at the GUH, these tests are carried out on both children and adults (every 

patient older than 12 years). In addition, the provocation test to drug allergies in both 

children and adults is carried out. This fact provides the opportunity to check the proposed 

algorithm in those new groups. 

 Inclusion criteria: If there is a relative high probability that a patient is allergic, at the GUH 

they diagnose the allergy and do not carry out the test, trying to minimize the risk of a 

severe reaction. In the same situation at the CUH they do the provocation test in order to 

avoid false positives. For this reason, the prevalence of allergic subjects undergoing OFC 

at the CUH is higher.  

 Length of the observation periods: At the CUH the observation periods lasted for 10 to 20 

minutes, while at the GUH they usually last for 30 minutes when the allergen is food (30 

to 60 minutes when it is a drug).  

 Status of the patients: During the observation periods, the patients were required to stay 

seated and relaxed in the CUH, whereas at the GUH the patients can move freely, provided 

they do not leave the room. In fact, the children have a “play corner”.    

From these differences, only movement will result in a significant change in the results, 

compared to those presented in Chapter 4, whereas the effect of age and allergen on the HRV is 

investigated in Chapter 6.  The movement affects directly the observed physiological parameter, 

resulting in the HRV changing due to other factors than an allergic reaction. Due to this fact, it will 

be necessary to detect which HRV variations are provoked by which event. 

 

 Data collection set-up 

A Shimmer device (Figure 5.1-1, [Shim00a]) was employed for collecting the data during the 

provocation tests. This device is able to store the measured data in its internal memory card. 

Furthermore, it measures and stores the data acquired by the internal inertial sensors: 3-axis 

accelerometer, 3-axis gyroscope and 3-axis magnetometer. For all the signals, the sampling 

frequency Fs has been set to 256Hz. The main advantage of this system is that once the devices are 

attached, the patients can move freely. At the end of the tests, the measured data are extracted 

from the SD cards of the Shimmers and analyzed.  
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During this data collection at the GUH, the ECG signal for 154 tests was measured, from which 

147 were valid. The rest of the signals were discarded because, due to different problems during 

the measurement (like electrodes detachment), the ECG signals were so corrupted by artefacts 

that the HRV signal could not be obtained from them. The ECG signals belong to 20 children 

performing food provocation tests, and 8 drug provocation tests; and 8 adults performing food 

provocation tests, and 111 drug provocation tests.   

Due to the fact that the algorithm presented in Chapter 4 was developed for children exposed 

to food allergens, the performance of the algorithm on this GUH subgroup will first be assessed. 

In this case, the testing set is composed of 20 subjects from which 8 resulted in a positive reaction. 

Table 5.1-1 summarizes the main features of each one of these tests. Due to the fact that the 

observation periods are longer at the GUH, it can be seen that the mean length of the tests is longer 

than those from the CUH (1h. 25 min. at CUH) while the mean number of doses is slightly smaller 

(4.5 at CUH).  

 

TABLE 5.1-1. FEATURES OF THE NEW DATASET 

ID Age Gender Allergen OFC length Total doses Result 

GU042 3 years M Hake 2h. 55min. 2 

Allergic 

GU053 6 years M Egg  0h. 43min. 1 
GU074 5 years M Egg 2h. 05min. 3 
GU085 5 years M Egg 0h. 30min. 1 
GU091 1 year F Milk 4h. 59min. 6 
GU113 8 months M Milk 3h. 30min. 6 
GU138 6 years F Milk 4h. 15min. 6 
GU178 18 months F Milk 2h. 00min. 4 

GU045 12 years F Nectarine 3h. 46min. 4 

Non-allergic 

GU051 7 years F Salmon 3h. 35min. 4 
GU056 3 years M Milk 3h. 20min. 5 
GU069 3 years M Omelet 3h. 17min. 4 
GU080 8 years M Tuna 3h. 50min. 4 
GU082 4 years M Omelet 3h. 45min. 4 
GU088 12 years M Dory 3h. 33min. 4 
GU106 2 years F Omelet 2h. 25min. 1 
GU107 8 years F Egg 5h. 40min. 7 
GU118 8 years M Omelet 3h. 58min. 4 
GU147 5 years M Milk 4h. 59min. 7 
GU151 3 years M Milk 4h. 23min. 5 

Total 5.2 ± 3.3 y 35% F, 65% M  232.4 ± 150.2 min. 4.1 ± 1.8  
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Figure 5.1-1. Shimmer3 unit and orientation of the inertial sensors 

 

 Test of the Allergy Detection algorithm 

Choosing the configuration set in Chapter 4 for the allergy detection algorithm for the new data 

set, 7 out of 8 allergic patients are detected, Se=87.5%; and 4 out of 12 non-allergic patients are 

correctly classified, getting a Sp=33.3%.  

Table 5.2-1 summarizes the results obtained with each subject. Taking into account only the 

allergic subjects, the number of allergen doses that could be avoided is 12 out of 29 (more than 40 

%), with a mean length reduction of 80.88 min. out of 157.12 minutes (more than 50%).   

Figure 5.2-1 shows the normal PDF of the standard deviation of the Mean HRV obtained for the 

allergic and non-allergic groups of the two datasets. It can be noticed how the new two groups are 

more similar between them than the original ones. Due to this increase of their similarities, t-value 

has decreased from 4.653 to 2.274; and p-value increased from less than 0.0001 to 0.0355, which 

lead to the reduction of the confidence level from 99.9% to 95%. The AUC has reduced  as well, 

from 0.94 to 0.79 as depicted in Figure 5.2-2. GU053 is the only allergic subject that was not 

detected. As can be seen in Figure 5.2-3, the MRR signal during the observation period has similar 

features than during the background interval. As a consequence, the maximum MeanPeak of this 

subject is 6.29 which is much lower than the threshold set in the last chapter (Th=10.5). 

  

X
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TABLE 5.2-1. RESULTS OBTAINED WITH THE NEW DATASET 

ID Age Gender Allergen OFC 
length 

Total 
doses 

Result Algorithm 
result 

Doses  
saved 

Time gain 

GU042 3 years M Hake 2h. 55min. 2 

Allergic 

TP 0 0h. 48min. 
GU053 6 years M Egg  0h. 43min. 1 FN 0 0h. 00min. 
GU074 5 years M Egg 2h. 05min. 3 TP 0 0h. 00min. 
GU085 5 years M Egg 0h. 30min. 1 TP 0 0h. 43min. 
GU091 1 year F Milk 4h. 59min. 6 TP 5 4h. 08min. 
GU113 8 months M Milk 3h. 30min. 6 TP 5 2h. 36min. 
GU138 6 years F Milk 4h. 15min. 6 TP 2 2h. 29min. 
GU178 18 months F Milk 2h. 00min. 4 TP 0 0h. 03min. 

GU045 12 years F Nectarine 3h. 46min. 4 

Non-
allergic 

TN 0 0h. 00min. 
GU051 7 years F Salmon 3h. 35min. 4 TN 0 0h. 00min. 
GU056 3 years M Milk 3h. 20min. 5 FP 4 2h. 38min. 
GU069 3 years M Omelet 3h. 17min. 4 FP 0 0h. 00min. 
GU080 8 years M Tuna 3h. 50min. 4 FP 2 2h. 35min. 
GU082 4 years M Omelet 3h. 45min. 4 TN 0 0h. 00min. 
GU088 12 years M Dory 3h. 33min. 4 FP 3 3h. 00min. 
GU106 2 years F Omelet 2h. 25min. 1 FP 0 0h. 27min. 
GU107 8 years F Egg 5h. 40min. 7 FP 1 2h. 06min. 
GU118 8 years M Omelet 3h. 58min. 4 FP 3 3h. 34min. 
GU147 5 years M Milk 4h. 59min. 7 FP 5 3h. 49min. 
GU151 3 years M Milk 4h. 23min. 5 TN 0 0h. 00min. 

 

 

 

 

Figure 5.2-1. PDF of the standard deviation of the MRR for the training and testing datasets 
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Figure 5.2-2. ROC of the standard deviation of the new dataset 

 

 

Figure 5.2-3. MRR signal of the subject GU053 

 

Two special cases are GU042 and GU091. These two subjects resulted positive but suffered 

delayed reactions. Subject GU042 took a new dose of the allergen 6 hours after the end of the OFC 

at his house. This last portion was bigger than the two taken during the OFC and he reacted to this 

dose. Therefore, even though no physical symptom appeared during the OFC, the algorithm was 

able to detect the allergy 72 minutes after the intake of the last dose. Subject GU091 had 6 doses 

of milk during the OFC and did not present any allergy symptom until 10 hours after the end of 

the test. The algorithm detected an allergy 4 times during the OFC: once 30 minutes after the first 

dose, twice after the fourth dose (10 and 24 minutes after); and the fourth reaction 12 minutes 

after the last dose. In these two cases, the length of the tests could have been reduced from the 

normal ending (two hours after the intake of the last portion) to the instant in which the algorithm 

detected the allergen. In these two cases, the appearance of the delayed reactions could have been 

predicted with the use of the algorithm and the doctors could have prevented the symptoms.   
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However, there is an unexpected increase of the false positives. It is believed that this increase 

is due to the fact that the patients were moving during the OFC, rather than for the change on the 

length of the observation periods. It is known that the physical activity produces an increase of 

the heart rate, which is reflected in the HRV signal. For this work, the variations of the HR due to 

other factors than allergic reactions can be considered artefacts. From now on, the effect that the 

movement has on the HRV signal will be called motion artefact, and one the objectives is the 

reduction of its effect on the HRV signal for improving the accuracy of the allergy detection 

algorithm. 

 

 Movement artefact reduction 

Although there are several factors that can modify the heart rate of a subject, under the 

circumstances in which the provocation tests are executed, the most important factor affecting 

the heart rate (aside from the allergic reactions) is the physical activity performed by the subjects. 

When a subject changes its posture from lying to seated, from seated to standing, from standing 

to walking, when he/she walks, runs, goes upstairs, etc. variations appear on the measured HRV.  

Figure 5.3-1 represents an example of the mean HRV of a healthy individual doing diverse 

physical activities. A Shimmer device was used to record the ECG signal (FS=256 Hz), and the 

proposed QRS complex detection for obtaining the HRV was used. It can be observed that a peak 

of increase 20 bpm was produced when the subject went from standing to walking, which is likely 

to be confused as an allergic reaction. When the individual walked upstairs, the mean heart rate 

increased by more than 50 bpm and then it decreased by more than 70 bpm when the subject sat 

down again.  

Two approaches are proposed next for taking into account movement in the allergy detection 

algorithm. The first one is based on the measurement of the quantity of movement, and the second 

one on the detection of the activity and posture of the subject.  
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Figure 5.3-1. Example of MRR signal variations depending on the subject's physical activity or posture: standing (red), 

sitting (purple), walking (green), walking downstairs (cyan) and walking upstairs (orange). 

 

 First approach: Measurement of the chest movement 

This approach results from the hypothesis that the increase of the HRV is directly proportional 

to the quantity of movement of the patient. Mathematically, this means that for each unit of 

movement, the heart rate is increased a fixed number of beats. The factor representing the number 

of beats per unit of movement has been called GAcc (beats/G). In this work it will be considered 

that this factor is the same for all the patients of the database. The more similar the patients are, 

the truer is this assumption. In this case, all the subjects are healthy children aged 12 or less, so 

their health condition should be similar and so, the response of their heart to the same stimulus. 

It has been considered as well that this movement can be measured in the centre of the body. For 

this reason, the position in which the Shimmer was placed for acquiring the ECG (trunk) has been 

used to measure the movement.  

The same device was used to get the acceleration and the ECG signals, so the same sample 

frequency was used for both measurements, FS = 256 Hz. Figure 5.3-2.a) shows the MRR signal of 

the subject GU069. It can be seen that, even if the patient is not allergic, a MeanPeak is produced 

Standing
Walking

Sitting
Walking upstairs

Walking downstairs
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starting at minute 170 (approx.) whose value is higher than the threshold. As a result, this patient 

is classified as allergic by the algorithm. Figure 5.3-2.b) represents the root mean square of the 3-

axes acceleration (eq. 5.1).  

  𝐴𝑐𝑐𝑒𝑙 = √𝐴𝑐𝑐𝑋
2 + 𝐴𝑐𝑐𝑌

2 + 𝐴𝑐𝑐𝑍
22

 (eq. 5.1)  

Accel measures the linear acceleration of the subject’s chest avoiding the dependency with the 

shimmers orientation during the measurement. The mean Accel signal has been computed in 60-

seconds windows with 1-second shift, in the same way that the MRR signal is extracted from the 

HRV. In this way, it is possible to compare both signals, as they represent two magnitudes 

measured using the same timing. As can be observed, there are several similarities between both 

signals and most of the times the Accel signal changes, the MRR signal changes proportionally. 

Specifically, during the interval that provokes the false alarm, there is a high rise of the Accel signal, 

which provokes a rise of the MRR signal with a similar shape.   

Finally, Figure 5.3-2.c), shows the resulting signal of subtracting from the MRR signal 50 beats 

per unit of acceleration (i.e. GAcc=50). With this value of GAcc, the corrected MRR signal during 

periods of high movement is lower than in other periods, so the value of GAcc should be lower.  

In order to set the configuration of the algorithm, an accuracy test has been carried out (based 

on sensitivity –eq. 4.1- and specificity –eq. 4.2- values) using 50 values of GAcc (from 1 to 50) and 

151 values of Th (from 5 to 20 in 0.1 steps). Figure 5.3-3 illustrates the obtained results. It is 

necessary to reach a trade-off between both parameters since, as can be seen in Figure 5.3-3, a 

high sensitivity implies a small specificity and vice versa. With a large value of Th, the algorithm 

classifies many patients as non-allergic, reducing the number of positives (true and false); on the 

contrary, if the value of Th is small, most of the subjects are classified as allergic, which increases 

the sensitivity and reduces the specificity.  

The combinations of GAcc and Th that provide the best sensitivity (100%), only one of the non-

allergic subjects is correctly classified (Sp=8.33%). Conversely, the maximum sensitivity obtained 

with 100% of specificity is 50%. The best mean between both metrics that it is possible to obtain 

is 89.58%, which implies 87.5% of sensitivity (7/8 allergic detected); and 91.67% of specificity 

(11/12 of the non-allergic correctly classified).  The combinations of GAcc and Th that lead to these 

results are the ones coloured in blue in the Figure 5.3-4.  



Chapter 5. Artefact Detection and Positioning 

Movement artefact reduction 

 

 

103 

Another factor to optimize is the time reduction in the OFC test that can be achieved using the 

algorithm. This parameter has been evaluated with all the combinations that lead to obtain the 

maximum mean between the sensitivity and the specificity (Figure 5.3-4). Based on these results, 

the best combinations within those that provide the best mean (Se, Sp) are (Th; GAcc) = {(9.5; 

31), (9.6; 31)}. These combinations are coloured in dark blue in Figure 5.3-4. Table 5.3-1  lists the 

results obtained when setting Th=9.5 and GAcc=31. 

Figure 5.3-5 represents the maximum MeanPeak of each subject before and after the artefact 

reduction. Most of the maximum MeanPeaks have been reduced using the measurement of the 

chest movement to reduce the false positives. However, MeanPeaks of the non-allergic are now 

more similar to each other, with the exception of subject GU118, whose value is still higher than 

without the movement artefact reduction.  

 

 

Figure 5.3-2. Example of False Positive due to the presence of movement artefacts. a) MRR signal of the Subject GU069; b) 

Movement of the subject; and c) MRR signal corrected with the movement with GAcc=50 
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Figure 5.3-3. Sensitivity and Specificity obtained depending on GAcc and Th values 

 

 

Figure 5.3-4. Time gain obtained with several combinations of GAcc and Th parameters 
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TABLE 5.3-1. RESULTS OF THE ALLERGIC REACTIONS DETECTION ALGORITHM WITH THE ARTEFACT REDUCTION 

ID OFC length Total doses Result Algorithm result Doses saved Time gain 

GU042 2h. 55min. 2 

Allergic 

TP 0 0h. 51min. 
GU053 0h. 43min. 1 FN 0 0h. 00min. 
GU074 2h. 05min. 3 TP 0 0h. 36min. 
GU085 0h. 30min. 1 TP 0 0h. 00min. 
GU091 4h. 59min. 6 TP 5 4h. 08min. 
GU113 3h. 30min. 6 TP 5 2h. 36min. 
GU138 4h. 15min. 6 TP 2 2h. 29min. 
GU178 2h. 00min. 4 TP 0 0h. 02min. 
GU045 3h. 46min. 4 

Non-
allergic 

TN 0 0h. 00min. 
GU051 3h. 35min. 4 TN 0 0h. 00min. 
GU056 3h. 20min. 5 TN 0 0h. 00min. 
GU069 3h. 17min. 4 TN 0 0h. 00min. 
GU080 3h. 50min. 4 TN 0 0h. 00min. 
GU082 3h. 45min. 4 TN 0 0h. 00min. 
GU088 3h. 33min. 4 TN 0 0h. 00min. 
GU106 2h. 25min. 1 TN 0 0h. 00min. 
GU107 5h. 40min. 7 TN 0 0h. 00min. 
GU118 3h. 58min. 4 FP 3 3h. 36min. 
GU147 4h. 59min. 7 TN 0 0h. 00min. 
GU151 4h. 23min. 5 TN 0 0h. 00min. 

Mean 3h. 22min. 4.1     

 

 

 

Figure 5.3-5. Maximum MeanPeak value comparison between allergic and non-allergic subjects, before and after the 

artefact reduction 
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Figure 5.3-6 shows the mean HRV of the subject GU118 during the OFC corrected with the 

measurement of the movement. The measurement of its movement during the same time is 

depicted in Figure 5.3-7.  The HRV of this patient increased from the beginning of the test until the 

minute 120 by almost 40 bpm, while its movement was similar during the whole test. Thus, there 

is an increase of the HRV but it is not due to the movement, so the algorithm it is not able to correct 

this variation and classify this subject as allergic (false positive) 

 

 

Figure 5.3-6. MRR of the subjects GU118 during the OFC, corrected using the chest movement 

 

 

Figure 5.3-7. Accel of subject GU118 during the OFC 
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  Second approach: Detecting subject posture and activity 

In the previous section it has been demonstrated that the hypothesis that the movement affects 

the HRV of the patients analysed here in a similar way is correct. However, if the allergy detection 

algorithm should be used with a different group of patient, the GAcc value should be recalculated 

based on their physiological differences. The approach presented in this section aims to find a 

more generic way to remove the movement artefacts, and so the false positives. The hypothesis 

that leads to this approach is that the movements that provoke larger variations of the HR are the 

posture changes. If the posture of the subjects is known during the whole test, it is possible to 

check if it has changed when the allergy detection algorithm produces an alarm. In this approach, 

if an alarm is generated by the allergy detection algorithm while the subject is changing his/her 

posture, the false alarm is removed. The Pocket Navigation System proposed by Munoz et al. in 

[Muno15] will be used to get the information regarding subjects’ activity and posture.  

 

 Pocket Navigation system 

The Pocket Navigation System is a personal navigator based on inertial sensors designed to be 

placed on the upper part of the leg. This location allows the sensor either to be directly introduced 

in the front pocket of the trousers or to be fastened with an elastic band to the leg, as shown in 

Figure 5.3-8. The Shimmer device used to measure the ECG also contains as described previously, 

three mutually orthogonal accelerometers and gyroscopes, therefore the navigation system can 

be used without the need of additional hardware.  

 

 

Figure 5.3-8. Shimmer allocation for the second approach 
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This alternative is not compatible with the first approach, as the position of the Shimmer is 

different and so the way in which the movement is measured. The pocket navigation system, 

represented in Figure 5.3-9, is divided into two subsystems: hardware and software. The 

hardware subsystem corresponds to the left box in the figure and consists of the inertial 

measurement unit (IMU).  

The software subsystem refers to the source code represented in Figure 5.3-9 with the outer 

right box. The inputs of the software subsystem are the measurements from the accelerometers 

and gyroscopes, and the output is the patient’s position and activity. It has two main parts: the 

orientation estimation and the position estimation.  First block is based on an unscented Kalman 

Filter (UKF) [Foxl05] whose states are the Euler attitude angles roll (φ) and pitch (Θ) and the 

heading angle yaw (ψ), defined as depicted by Figure 5.3-10; and the biases of the gyroscope, 

which are the out values of the gyroscope when it is not moving and should be corrected. The UKF 

prediction stage integrates the turn rate measurements and applies an autoregressive model for 

the biases. The UKF update stage makes use of the accelerometer and the gyroscope 

measurements to correct the orientation and the biases estimation. In [MPJZ15], a detailed 

explanation of the orientation estimation is given.  

The position estimator consists of three algorithms: the step detector, the step length estimator 

and the vertical displacement estimator [Muno15, MuGo14]. In order to use this algorithm 

together with the allergy detector, the sample frequency has been set to 256 Hz, so the inertial 

measurements are sampled at the same time instant as the ECG signal.  

 

 

Figure 5.3-9. Block diagram of the inertial pocket navigation system. 
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Figure 5.3-10. Roll, Pitch and Yaw angles definition 

 

The pocket navigation system is able to solve 3D positioning by using the aforementioned 

sensors. The navigation, thus, eliminates the restriction of staying within the same room under 

the observation of the nurse during the observation periods, which lasts for up to 2 hours, and 

allows the patient to be located in case of a severe allergic reaction occurring. The pocket 

navigation system can identify five physical activities, i.e. walking, walking upstairs, walking 

downstairs, standing and sitting [Muno15]. This set of basic physical activities are the most 

common activities the patient performs during the provocation tests and, therefore, likely to be 

confused with allergic reactions. 

The pitch angle is used for the posture detection and classification of the physical activity 

performed by the subjects. Figure 5.3-11 shows an example of the pitch angle estimation during 

different postures and physical activities. If the subjects are seated, or standing, it remains almost 

invariable but with different angles (≅ 70ᵒ – 90ᵒ while sitting; ≅ 0ᵒ when standing). Then, the 

wave form while walking is completely different that the one obtained while the subject is going 

upstairs or downstairs. The different activities are indicated with colours in the figure.  

Even if an inertial navigation system has many advantages, it suffers from long-term errors in 

the orientation estimation mainly due to the integration of noisy measurements. This error is 

critical within the provocation tests framework, since they last up to 5 hours. However, doctors 

and nurses affirm that usually patients are seated most of the time. During these sitting periods 

the biases of the gyroscope are observable the most of the time, therefore it is possible to keep the 

orientation error bounded through an accurate biases estimation. 
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Figure 5.3-11. Example of pitch angle depending on the subject posture and physical activity; (cyan) seated, (red) 

standing, (blue) walking, (green) walking upstairs and (purple) walking downstairs. 

 

 Test of the Pocket Navigation System 

Test of the physical activity classification and localization ability 

A test of the Pocket Navigation System has been carried out at the GUH. In this test, an 

individual did a representative walk of 10 minutes, in which s/he performed the five activities 

that the Pocket Navigation System is able to detect. During this experiment, the patient did not 

take any allergen, so the variations of the HRV are only due to the physical activity. Figure 5.3-12 

shows in magenta the trajectory of the patient during the test. The coordinates of the starting 

point are known, which correspond to the Allergy Unit of the hospital. The initial heading is the 

direction of the door to leave the room. The patient left the Allergy Unit, which is located on the 

third floor of the hospital, took the stairs and walked to the restaurant, situated on the ground 

floor, where s/he queued for a coffee. S/he sat for approximately 1 minute and finally walked back 

to the Allergic Unit on the third floor.  

Figure 5.3-12 shows the stairs up and down as superimposed circular lines. The starting and 

ending point is the same, as well as the staircase. Therefore, the drift in heading accumulated in 

the corridor causes a displacement of 4 meters. Figure 5.3-13 shows the pitch angle estimation 

for the aforementioned walk and the MRR signal measured in beats per minute. The patient’s 

different physical activities are indicated in the figure. As the figure shows, the HRV increases 

when the patient starts walking and significantly decreases when s/he sits in the restaurant. 

Moreover, the HRV increases again when the subject starts walking and continues growing 

because s/he walks upstairs, as expected.  
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Figure 5.3-12. Trajectory followed by the subject during the testing experiment. 

 

 

Figure 5.3-13. The upper subfigure shows the pitch angle estimation for the 10-minutes-walk at the hospital. The lower 

subfigure shows the MRR signal, measured in beats per minute, for the same walk. 
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Test of the Pocket Navigation system during a provocation test 

This system has been tested during a real OFC. The test lasted for 189 minutes, and the subject 

had 3 doses. This patient resulted in a negative outcome, as he/she did not present any reaction 

to the allergen. The MRR signal of this subject is showed in Figure 5.3-14. Some MeanPeaks appear 

in the MRR signal which are considered as allergic reactions by the allergy detection algorithm 

starting on minutes 89, 146, 157 and 159; their values are, respectively, 18.18, 11.52, 17.56 and 

14.53 (Th=10.5). 

However, as can be observed in Figure 5.3-15, Figure 5.3-16 and Figure 5.3-17, these rises of 

the MRR signal are due to posture changes of the subject from sitting to walking. Between the 

third and the fourth alarms, the activity of the subject could not be identified by the Pocket 

Navigation System. However, the change from sitting to walking is correctly detected, which can 

be used to remove the detection.  

This solution makes the result of the algorithm independent of the patient’s features. However, 

in some cases (mainly in the children’s tests) the posture of the patient changes many times during 

the provocations. It should be studied how this kind of filtering affects the cases in which the 

patient is allergic.  

 

 

Figure 5.3-14. MRR signal of the subject with which the Pocket Navigation System was tested 
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Figure 5.3-15. Pitch angle and physical activity classification during the first false alarm 

 

Figure 5.3-16. Pitch angle and physical activity classification during the second false alarm 

 

Figure 5.3-17. Pitch angle estimation and physical activity classification during the third and fourth false alarms  
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 Conclusion  

The initial motivation of this chapter was the acquisition of new data for testing the algorithm 

designed in the previous chapter. However, due to the differences found in the conditions under 

which the provocation tests were performed for the patients of the new dataset, it was necessary 

to redesign the original algorithm. It has been shown that the effect that movement has on the 

mean HRV is similar to that produced by an allergic reaction. For this reason, the preliminary 

results of the allergy detection algorithm under conditions in GUH show several false alarms when 

the patients are allowed to move during the OFCs. Thanks to the internal sensors of the Shimmer 

it is possible to measure how much the subjects move during the tests. However, there are several 

ways to take into account the movement. Two approaches to remove the movement artefacts have 

been proposed in this chapter. 

The first proposal is based on the measurement of the movement performed by the subjects 

and correction of the MRR signal. The Shimmer was placed on the trunk of the patients, getting 

the movement measured on their chest. This approach improves the specificity from 33.33% to 

91.67% (from 8 to 1 false detections out of 12 non-allergic subjects). This version shows a clear 

improvement of the original algorithm, however, its configuration has been tuned depending on 

the particular features of the new dataset which makes the algorithm specific for these subjects. 

The number of individuals studied here cannot be considered representative of the whole 

population. For this reason, the performance of this method should be studied with more patients. 

It has been assumed for this method that the movement affects in the same manner to all the 

subjects. This can be considered true if their features are similar, but the proper value of the GAcc 

parameter for patients with different features (such as adults) should be studied and adjusted 

accordingly.  

The second approach is based on the detection of the subjects’ posture in order to relate this 

information with the appearance of allergy alarms. The most important advantages of this 

proposal are two: first, the algorithm is the same for all the patients; and second, it is possible to 

locate the patients within the hospital, improving significantly their comfort during the 

provocation tests, which can last for up to 5 hours. Although the obtained results are promising, 

it is necessary to check its performance with other patients and further studies need to be done 

in order to evaluate its suitability for the proposed application. The main weakness of this 
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approach is that if an allergic subject change his/her posture during the occurrence of an allergic 

reaction, the alarm would be ignored by the algorithm.  

Despite the fact that both approaches are based on the movement to reduce the number of false 

positives, they cannot be used within the same device. First of all, the Shimmer device needs to be 

placed in different location for each application and, secondly, the information extracted from the 

movement is completely different. First approach performs a quantitative analysis (how much the 

subject is moving), while the Pocket Navigation System does a qualitative analysis (which 

movement is the subject making). Because of these reasons, two devices need to be used 

simultaneously for employing the two approaches. Further studies need to be done as well in 

order to get the best way of fusing the information produced by both systems.  

In the next chapter, subjects with different features are analysed: adults and children exposed 

to food and drugs. The whole group will be divided depending on the age of the subjects and the 

type of the taken allergen. The features of the groups will be compared in order to find out how 

the age and the allergen affects to the results of the allergy detection algorithm. For the movement 

artefact reduction, the first proposal of this chapter will be used in Chapter 6.  
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Chapter 6.  

EXTENSION OF THE ALGORITHM 

APPLICATION 
 

 

During the data collection carried out at the Guadalajara University Hospital (GUH the ECG 

signal of children and adults undergoing food and drug allergy provocation tests has been 

acquired. In the previous chapter, only the children exposed to food allergens were considered. 

This chapter aims to apply the automated allergy detection algorithm to all the subjects and to 

study the differences between this group and the rest of the subjects.  

The designed allergy detection algorithm is based on the response of the heart to the presence 

of allergens. In this chapter, the first proposal for the reduction of movement artefacts will be 

used. For the designing of this approach it was assumed this response of the heart would be the 

same for all the subjects due to the similarities between them and the features of the tests. 

However, it is known that the heart performance has a strong dependency on the fitness and 

health status of each individual. For this reason, the physiological response of the allergic adults 

is not expected to be the same as that of the children and so, the result of the allergy detection 

algorithm in these cases is expected to be different. Besides, the allergic reactions to some of the 

drugs are different to those produced by other drugs or food, which should be reflected in the 

results as well. In order to adapt the allergy detection to different patterns of patients and 
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allergens, the whole set of data has been divided depending on the subjects age and the kind of 

allergen. The adaptation of the algorithm to the differences between those groups is explained 

below.  

 

 Description of the new dataset 

A total number of 147 ECG signals were acquired during the data collection phase, from which 

those belonging to children undergoing oral food challenges were studied in Chapter 5. Here the 

rest of the groups will be studied (Table 6.1-1). The new data include 8 children and 111 adults 

exposed to drug allergens, and 8 adults to food.  

As is explained by Kowalski et al. in [KABB13], reactions to NSAID (NonSteroidal Anti-

Inflammatory Drugs) can be divided into allergic, when they are immunologically mediated i.e. 

when the symptoms that the patient suffers are provoked by the immunological system; and non-

allergic in the cases in which the drug produces a hypersensitivity reaction in susceptible 

individuals. For this reason, drugs group will be split into NSAIDs and non-NSAIDs.  

The positive cases will be classified based on the reaction and the time in which it appears. 

Depending on the physiological system affected, the reaction can be digestive (D), vascular (V), 

dermatological (S), respiratory (R), anaphylaxis (A), conjunctivitis (C) or rhino conjunctivitis (RC). 

Depending on the time the reaction appears, it is considered immediate (I), if the symptoms 

started before the end of the tests (until two hours after the intake of the last dose) or delayed (D) 

if they appeared several hours later. The provocation tests proceed in the same way for all the 

subjects except for the observation periods when testing some kind of NSAID (such as 

acetylsalicylic acid), which lasted for 1 hour instead of 30 minutes.  

 

TABLE 6.1-1. SUBJECTS (ALLERGIC/NON-ALLERGIC) DIVIDED BY AGE AND TYPE OF ALLERGEN 

 Children Adults 

Food 8/12 1/7 

Drugs 
NSAID 0/1 5/43 

Non-NSAID 0/7 1/62 

 



Chapter 6. Extension of the Algorithm Application 

Description of the new dataset 

 

 

119 

Figure 6.1-1 shows the classification and statistics of all the subjects who have participated in 

the data collection for this study. The last column indicates the features of the reactions that the 

positive patients suffered expressed in the format organ affected/time to appear. For the rest of 

the chapter all the subjects will be taken into consideration, including the 23 children exposed to 

food whose data was analysed in chapters 4 and 5. 

 

 

 

Figure 6.1-1. Classification of the subjects from the database 

 

 

 

 

Age Allergen Test result
Reaction

organ/temp

Total 147

1 NSAID
3.57 %

7 non-NSAID
25.00 %

48 NSAID
40.34 %

1 D/D

2 D/I

1 R+D/D

1 R+D/I

1 V/I

1 RC+D/I

1 S+D/I

1 S+C/I

1 S/D

1 S+R/I

3 S/I

1 S/I

12 negative

1 positive

1 negative

7 negative

7 negative

5 positive

43 negative

1 positive

62 negative

8 positive
20 food
71.43 %

8 food
6.72 %

63 non-NSAID
52.94 %

28 children
19.05 %

119 adults
80.95 %
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TABLE 6.1-2. PREVALENCE OF ALLERGIC SUBJECTS DEPENDING ON THEIR AGE AND THE TYPE OF ALLERGEN 

 Children Adults Total 
Food 35% 12.5% 28.6% 

Drugs 
NSAID 0% 10.2% 10% 
non-NSAID 0% 1.6% 1.4% 
All 0% 5.4% 5% 

 

Several conclusions can be extracted from these data: 

 Most of the tests are performed with adults exposed to drugs. 

 The number of provocation tests with NSAIDs and non-NSAIDs is similar.  

 Only one of the adults exposed to food was allergic. The patient had erythema, localized 

itching and conjunctivitis 30 minutes after the last dose. Thus, the reaction is classified 

as skin+conjunctivitis/immediate. 

 None of the children exposed to drugs (NSAID or non-NSAID) was allergic. 

 Only one subject (adult) exposed to non-NSAID resulted positive. Some hives and 

localized itching affected the patient 2 hours and 30 minutes after the intake of the last 

dose. This reaction is classified as skin/immediate. 

 The prevalence of allergic subjects within the initial group (children, food) at GUH is 

similar to the one in CUH.  

 The prevalence of allergic subjects depending on the group is summarized in Table 

6.1-2 

 

 Analysis of the new dataset 

 Group [Children, Drugs] 

This group is composed of eight children, and none of them resulted positive. The PDF of the 

MRR’s standard deviation of this group has been compared with the one of allergic and non-

allergic children exposed to food. The result is shown in Figure 6.2-1. As expected, the PDF of this 

group is similar to the non-allergic group exposed to food provocation tests, as they belong to the 

same group (non-allergic children). A significant difference between these two groups would 

imply a change of the HRV provoked by drugs, even if the patients were not allergic to them. Due 

to the lack of data belonging to children allergic to drugs, it is not possible to check if there is any 

difference between the allergic reactions provoked by a drug and that provoked by food.  
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Figure 6.2-1. PDF of the MRR’s standard deviation of allergic and non-allergic children exposed to food, and non-allergic 

children exposed to drugs 

 

 Group [Adults, Food] 

This group is composed of eight adults, seven of them resulted negative and one reacted to the 

given substance. The positive patient is a female with age 18 years, and she had an immediate 

reaction 30 minutes after the 4th dose that affected her eyes and skin. Figure 6.2-2 shows the PDF 

of the MRR’s standard deviation of the seven non-allergic of this group and the data of the positive 

one, compared with the [children, food] group.  

There is a clear difference between adults and children that can be checked by observing the 

two non-allergic groups. The standard deviation of the mean HRV of the adults is much lower than 

the one of the children, which means that the variance of their heart rate during the provocation 

test is lower than that of the children’s. This difference is probably due to two main factors: firstly, 

children usually perform more actively physical activities during the provocation test, while the 

adults are seated during the most part of it; secondly, the variation of the heart rate of the children 

is higher than the adults’ one performing the same activity.  

On the other hand, the difference between the allergic and the non-allergic adults is lower than 

in the case of the children exposed to food, which means that the allergen provoked a more 

dramatic changes in the HRV of the children, as happens with other stimulus such as the 

realization of physical activities. Even if the allergic adult suffered an allergic reaction, the 

standard deviation of her mean HRV is lower than the one belonging to the non-allergic children.  
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Figure 6.2-2. PDF of MRR’s standard deviation of adults and children exposed to food 

 

 Group [Adults, non-NSAID] 

During the data collection, sixty-three adults underwent allergy provocation tests to non-

NSAID. Only one of them resulted positive, a 48 years old female whom symptoms consisted on 

generalized itching and hives 2 hours and 30 minutes after the third dose. Figure 6.2-3 depicts the 

PDF of allergic and non-allergic of this group compared to the previous one, i.e. adults exposed to 

food allergens. Although non-allergic subjects of both groups have similar features, their similarity 

is lower than in the case of non-allergic children. This is because this group includes individuals 

with ages from 122 to 92 years old, and their fitness and health condition vary considerably. With 

regard to the allergic subjects, the one in this group is more distinguishable from the non-allergic 

than in the case of the food.  

The features of the reactions that both patients suffered where different, and so their ages, 

which may explain the differences of their HRV during the provocation test. However, there is not 

enough information in this or in the previous group regarding the allergic subjects to establish a 

physiological behaviour pattern. However, as in the case of the previous group, it is not possible 

to establish a physiological pattern with only one allergic subject.  

                                                             

2 Regarding the use of drugs, an individual is considered adult when is older than 12 years.    
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Figure 6.2-3. PDF of MRR’s standard deviation of adults exposed to food and non-NSAID 

 

 Group [Adults, NSAID] 

This group is composed of 48 subjects, and five of them resulted positive. The PDF of these 

groups are compared with that of [Adults, non-NSAID] group in Figure 6.2-4. The PDF of allergic 

and non-allergic to NSAID are completely overlapped. As was explained above, the reactions to 

some NSAIDs are not classified as allergic reactions, but as hypersensitivities to the particular 

drug in some studies. Furthermore, in some cases, the NSAID does not induce the reaction, but 

exacerbates the symptoms of an underlying chronic disease that the patients have. For this reason, 

the subjects from this group should be further studied in order to find out which ones can be 

grouped and analysed together to find a pattern.   

Table 6.2-1 lists the mean and standard deviation of allergic and non-allergic subjects from 

each one of the groups analysed in this section. As has been graphically shown, through this table 

it is possible to check quantitatively the differences and similarities of the groups explained above. 

From this data, two conclusions can be extracted: adults cannot be analysed as children, since 

their physiological behaviour is different, and so the response of their body to the allergen under 

test in the case of positive patients.  
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Figure 6.2-4. PDF of MRR’s standard deviation of adults exposed to non-NSAID and NSAID 

 

TABLE 6.2-1. MEAN AND STANDARD DEVIATION OF EACH ONE OF THE GROUPS ANALYSED IN THIS CHAPTER 

GROUP SUBGROUP MEAN STANDARD DEVIATION 

[Children, Food] 
Allergic 7.5158 2.3471 

Non-allergic 5.5940 1.6549 

[Children, Drugs] Non-allergic 6.7369 1.8465 

[Adults, Food] 
Allergic 4.6556 0 

Non-allergic 4.0153 1.2868 

[Adults, Non-NSAID] 
Allergic 6.5253 0 

Non-allergic 4.7272 1.6281 

[Adults, NSAID] 
Allergic 5.0609 0.9438 

Non-allergic 5.3788 1.9978 

 

 

As can be checked in Table 6.2-1, the mean of the non-allergic children is even higher than that 

of the allergic adults. The second conclusion is that patients exposed to NSAID drugs should be 

taken out from this study. It should be clarified which one of the patients that suffered a reaction 

was, actually, allergic to the given substance. 
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 Adaptation of the allergy detection  

It has been shown that there exist differences between adults and children mean HRV during 

the provocation tests, as was expected due to their physiological differences. For this reason, the 

allergy detection algorithm should be adapted to such differences. Regarding the analysis carried 

out in the previous section, the following assumptions have been made: 

 There are not allergic children exposed to drugs, so there should not be differences 

between this group and the non-allergic children exposed to food. For this reason, the 

configuration set in the previous chapter should work in these cases as it worked 

previously. 

 There is a clear physiological difference between adults and children observable through 

the data belonging to the non-allergic subjects from both groups. The standard deviation 

of the adults’ MRR tends to be lower. This fact implies that there is a smaller variation of 

the HRV in the adults. For this reason, the configuration of the allergy detection algorithm 

should be different to the one used with the children.  

 It has been demonstrated that the standard deviation of the MRR cannot be used to 

distinguish between allergic and non-allergic subjects undergoing provocation tests with 

NSAID. Thus, this group should be studied independently from the rest of the adults.  

In order to adapt the algorithm to the new subjects, they have been divided into children, adults 

with NSAID, and adults with non-NSAID (including food as non-NSAID). [Children, food] group 

will be included in the group Children for the rest of the chapter. Table 6.3-1 lists the evaluation 

of the standard deviation of the mean HRV for each one of the defined groups (following the same 

study carried out in Chapter 4); Figures 6.3-1 to 6.3-3 represent the PDFs of the allergic and non-

allergic subjects from each one of the three groups.  

 

 

TABLE 6.3-1. EVALUATION OF THE STANDARD DEVIATION OF THE MEAN HRV DEPENDING ON THE GROUP 

GROUP SUBGROUP MEAN STANDARD DEVIATION P-VALUE T-VALUE AUC 

Children 
Allergic 7.5158 2.3471 

0.1037 1.6913 0.7153 
Non-allergic 6.1020 1.7875 

[Adults, Non-NSAID] 
Allergic 5.5904 1.3221 

0.4066 0.8349 0.7286 
Non-allergic 4.6357 1.5983 

[Adults, NSAID] 
Allergic 5.0609 0.9438 

0.7287 0.3490 0.5136 
Non-allergic 5.3788 1.9978 
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Figure 6.3-1. PDF of the Children group 

 

 

Figure 6.3-2. PDF of the group [Adults, non-NSAID] including food 

 

 

Figure 6.3-3. PDF of the [Adults, NSAID] group 
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TABLE 6.3-2. EVALUATION OF THE ALLERGY DETECTION ALGORITHM WITH THE DEFINED GROUPS 

GROUP 
Configuration 

TP FN TN FP Se (%) Sp (%) 
Time gain 

(total time) 

Doses avoided 

(total doses) GAcc Th 

Children 32 10.5 7 1 19 1 87.5 95 
69.75min 

(196.12min) 
9 (29) 

Adults, non-

NSAID 
10 12.4 2 0 66 3 100 95.65 

88.77min 

(199.5min) 
0 (6) 

Adults, 

NSAID 
25 5.4 5 0 20 23 100 46.51 

76.6min 

(226.6min) 
1 (15) 

Adults, 

NSAID 
10 12.4 1 4 36 7 20 83.72 

0 

(226.6min) 
0 (15) 

 

A performance test of the allergy detection algorithm has been done for the three groups, using 

50 values of GAcc (from 1 to 50) and 151 values of Th (from 5 to 20 in 0.1 steps). The combination 

that provides the maximum average between Se, and Sp has been considered the best one for each 

group. With these considerations, the best obtained results and the combination of parameters 

that provides them are listed in Table 6.3-2.  

The algorithm shows a similar performance with children and adults exposed to food and non-

NSAID. Seven of the eight allergic children were detected, reducing the required number of doses 

from 29 to 20 and 30% the length to the tests. Only one of the 20 non-allergic children was 

misclassified. The algorithm detects the two allergic adults exposed to food and non-NSAID 

without avoiding any dose, but a mean time of 88.77 minutes before the end of the tests. Sixty-six 

out of the sixty-nine non-allergic from this group were correctly classified. The threshold has 

similar value for both groups, while the GAcc value of the children is three times higher than of the 

adults. This implies that the same movement increases the mean HRV of the adults a number of 

beats 3 times lower than in the case of the children.   

One of the subjects of the [adults, non-NSAID] group that was classified by the algorithm as 

allergic was following an immunotherapy treatment for tolerating the allergen. This subject did 

not present any physical symptom during the provocation, and so, the result of this test was 

negative. However, the algorithm did detect an allergic reaction through the HRV, but due to the 

difference with the provocation, this result is considered a false positive. 

Finally, regarding the NSAID group, the best (Se, Sp) average is obtained with Se=100%. This 

result implies that the algorithm misclassifies 23 out of the 43 non-allergic subjects. Since this 

group is composed of adults, the same parameters as for the other adults has been tested. With 

this second configuration only 1 of the patients that had a reaction are classified as allergic, but as 
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is explained before, it is not possible to know if these subjects were allergic or hypersensitive to 

the substance they got and so, these results cannot be validated. With this configuration, 36 out of 

the 43 non-allergic subjects are correctly classified. Figure 6.4-1 shows the classification of the 

obtained results depending on the age of the subjects, types of the allergen and kind of reaction of 

the allergic subjects.  

 

 Conclusions 

This chapter analyses the differences between the allergic reactions suffered by children and 

adults exposed to different types of allergens. The original children database has been increased 

by adding the data of 12 children exposed to drugs (both NSAID and non-NSAIDs). Any of the 

patients of this new dataset resulted allergic, so they belong to the same group. The parameters 

of the original algorithm have been tuned according to the new inclusion of children to the original 

database. The values of the parameters were selected based on the optimization of the average 

value between sensitivity and specificity, and of the time gain. With this configuration 7 out of the 

8 allergic subjects are detected, and all but one non-allergic subjects correctly classified. The value 

of the parameters should be validated by checking the performance of the allergy detection 

algorithm over a new and larger database.  

As was expected, there is a clear difference between the mean HRV of children and adults, 

regardless the result of the provocation tests. The variability of the adults’ heart rate is much 

lower than that of the children probably due to the lack of movement and to the fact that their 

heart rate variability varies less with the same physical activity (e.g. change posture from sitting 

to standing, or walking). The features of allergic and non-allergic adults exposed to NSAID are not 

distinguishable, which might be due to the fact that likely some of the considered allergic of this 

group had not an allergic reaction but a hypersensitive reaction. Nevertheless, the NSAID effects 

have some special features that makes the proposed algorithm unable to detect the allergic 

reactions provoked by these substances through the analysis of the mean HRV.  

Furthermore, the rest of the adults have been grouped together, getting a sensitivity of 100% 

(two allergic detected) and 95.65 % of specificity. No doses were avoided in this case, but the 

algorithm was able to detect the allergies a mean time of 88.77 minutes before the appearance of 

symptoms. However, even taking all these subjects together, there are only two positive cases 

(prevalence of 2.82%), which is not enough to define a pattern. Besides, this group includes 



Chapter 6. Extension of the Algorithm Application 

Conclusions 

 

 

129 

subjects from a wide range of ages. And as it has been demonstrated comparing children with 

adults, the age affects the way the HRV is modified by the allergy reactions. 

For these reasons, the following tasks should be done in the future to complete this study:  

 A new children (exposed to food and drugs) database should be obtained in order to 

validate the results derived from this study.  

 It should be clarified which ones of the adults exposed to NSAID drugs who suffered 

reactions can be considered allergic to the given substance 

 The adults’ groups should be divided into smaller groups depending on the fitness/age of 

the subjects, because these parameters might affect to the response of their heart to an 

allergic reaction.  

 

 

Figure 6.4-1. Division of the database subjects depending on the algorithm's results 

  

Reaction
organ/tempComparisonTest resultAllergenAge

Total 147

1 NSAID
3.57 %

7 non-NSAID
25.00 %

48 NSAID
40.34 %

1 D/D
2 D/I

1 R+D/D
1 R+D/I

1 V/I

1 RC+D/I

1 S+D/I

1 S+C/I

3 S/I
1 S+R/I

1 S/D

1 S/I

7 TP

1 FN

11 TN

1 FP

1 TP

1 TN

7 TN

1 FP

6 TN

1 TP

4 FN

7 FP

36 TN

1 TP

60 TN

2 FP

12 negative

1 positive

1 negative

7 negative

7 negative

5 positive

43 negative

1 positive

62 negative

8 positive

20 food
71.43 %

8 food
6.72 %

63 non-NSAID
52.94 %

28 children
19.05 %

119 adults
80.95 %
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Chapter 7.  

CONCLUSIONS AND FUTURE WORKS 
 

 

This chapter summarizes the main contributions of this Thesis. First, the most important 

conclusions extracted from this work are analysed; then, the publications that have resulted from 

this research are listed; finally, some future research lines are suggested. 

 

 Contributions 

The main objective of this research was to investigate the way of predicting the appearance of 

allergic reactions based on the analysis of the HRV signal during allergy provocation tests. Thanks 

to the work carried out during this Thesis, a real-time and low-cost early detection of allergic 

reactions system has been proposed. The main contributions of this work are summarized below. 

 

 Novel real-time QRS complex detection algorithm 

In order to achieve one of the primary aims of this Thesis a real-time QRS complex detection 

algorithm has been proposed. The performance and computational complexity of this algorithm 

have been evaluated and compared with the Gold Standard of real-time QRS complex detectors, 

the Pan & Tompkins algorithm. It has been demonstrated that the proposed algorithm maintains 
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the accuracy of the state of the art algorithms. However, the real benefit of the proposal is its low 

complexity and resources consumption. Its fixed-point version has been evaluated as well, and it 

has been implemented on a FPGA, demonstrating that the obtained results are, from a practical 

point of view, as good as the ones obtained using floating-point arithmetic.   

 

 Development of an algorithm based on HRV for the early detection of 

allergy reactions 

For the development of the final allergy detection algorithm, the following steps were followed;  

1. Study of the ability of 18 HRV features to distinguish between allergic and non-allergic 

patients of the 23 subjects participating in the data collection in the Cork University 

Hospital. The features studied in the previous research [Twom13] have been evaluated by 

using different metrics. It has been demonstrated that it is possible to extract enough 

information from the mean HRV to observe the effect an allergen produces on an allergic 

subject. Furthermore, this effect is observable long before the appearance of physical 

symptoms and, in several cases, with less doses than needed in the real tests.   

 

2. The effect of the allergic reactions on the mean HRV (MRR) has been modelled in order to 

design an allergic reaction detection algorithm able to work in real time. This algorithm is 

verified on 23 subjects (fifteen of them are allergic). All the subjects were younger than 13, 

and they participated in food allergies provocation tests. 13 allergic subjects were detected, 

getting 86.67% sensibility; and there were no false alarms, so Sp=100%. The tests could 

have been reduced for the allergic subjects from a mean length of 1 hour and 16 minutes, to 

only 48 minutes; and the number of doses from 3.93 to 1.61.  

 

The designed algorithm has been tested on 20 new subjects in the Guadalajara University 

Hospital (also children exposed to food), 8 allergic and 12 non-allergic. However, at this hospital 

the provocation tests are carried out under different conditions. The change that affected most 

this work is the fact that the patients were allowed to move during these tests. This fact leads to 

the reduction of the specificity from 100% to 33.33%. Two approaches were proposed to deal 

with these problems, both involving the measurement of the patients’ movement or posture: 
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 First approach corrects the HRV by filtering the movement effect. This filter is made by 

subtracting a number of beats per unit of movement, assuming this factor is constant 

and the same for all the individuals. All the false positives but one were removed with 

this approach, leading to a specificity of 91.67 %, while the obtained sensitivity was 

87.5 %. The length of the positive tests could have been reduced from a mean length of 

2 hours and 37 minutes to 1 hour and 17 minutes, and the number of doses from 3.63 

to 2.12. 

 Second approach consists of detecting the subjects’ posture. Because the patients stay 

in the same room during the whole test, it has been considered that the movement that 

affects most the HRV variability is any change between postures, i.e. from sitting to 

standing, from standing to walking, etc. This approach proposes the use of this 

information to remove false alarms. In addition, it is possible to track the movement of 

the patients and get information regarding their localization within a building. This 

system would allow them to move freely within the hospital during the observation 

periods (which can last for up to 2 hours). Although this system has been tested with 

only one subject, the preliminary results show its suitability for this application.  

 

 Study of the HRV signal in adults and children exposed to food and 

drugs allergens 

The same studies carried out over the data belonging to children undergoing OFCs, have been 

performed with other groups: children exposed to drugs provocation tests, and adults exposed to 

food and drugs provocation tests. Despite the fact that a big effort has been made at this point, 

there are not enough subjects from each group to define a pattern, and so, adapt the allergy 

detection algorithm to each group. Even this information is currently being analysed by an 

epidemiologist in order to extract as much information as possible, there are some conclusions 

that can be addressed from the preliminary analyses:  

 There is a clear difference between adults and children: standard deviation of non-

allergic adults is lower than that of the children.  

 The diagnostic ability of the selected feature for the allergy detection is very reduced: 

the AUC is less than 0.52. This is due to the fact that the reactions to NSAIDs are not 

always classified as allergies, but in some cases they are defined as hypersensitivities. 
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 Future Works 

In this Thesis a comprehensive study with regard to the use of the mean Heart Rate Variability 

for the early detection of allergic reactions has been carried out.  As it has been shown, there are 

few works related to this topic. For this reason, this research can be considered the starting point 

of any forthcoming study in this area. Some of the main potential future works are: 

 Increase of the database in order to get enough information for establishing a pattern 

representing each one of the studied groups. Any of the studied groups has enough number 

of subjects to consider it representative. Despite the fact that the results in some of these 

groups are promising, (that is the case of [children, food] group), it is necessary to test the 

designed algorithm with new data to check its reliability. In the cases in which the results 

are not considered good ([Adults, NSAID]), a further study should be done in order to find 

the potential factors that make this group different, maybe including more variables in the 

study (fitness or/and clinical history of the subjects, particular features of each drug, etc.). 

 

 More subjects performing OFC need to be monitored for the configuration and validation of 

the Pocket Navigation System. It should be established how the HRV varies with a posture 

change and whether this variation is similar for subjects with different features. Then, it 

should be studied how to include this information in the allergy detection algorithm 

(turning off the analysis of the HRV during a posture change, filtering the HRV signal, etc.) 

 

 Real implementation of the whole allergy detection system. At this time, the QRS complex 

detection algorithm has been implemented in the Shimmer platform, providing very good 

results. Shimmer measures the ECG signal and sends the RR intervals to a computer via 

Bluetooth. The next step will consist of implementing the allergy detection algorithm in 

Shimmer as well, and the design of a GUI for a computer through which the medical staff 

would be able to: 

o Connect to the Shimmer devices used during the OFCs 

o Introduce the features of each subject and the tests they are performing 

o Check the localization of each subject 

o Indicate whenever the subjects are having a new dose 

o Be warned when a particular subject is likely to suffer an allergic reaction, his/her 

posture, localization, level of activity, etc.  

o End a test and save the results of each one of the patients electronically 
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 Development of a health control application for Android. Once the Shimmer is programmed 

to send the HRV information via Bluetooth, it is possible to change the host from a computer 

to a smart phone. The number of different applications that can be developed is as high as 

the number of health factors that are observable through the HRV signal (apnoea detection, 

mood estimation, glucose level control in diabetic patients, etc.). 

 

 Publications Derived from the Thesis 

 International Journals 

1. R. Gutierrez-Rivas, J. J. Garcia, W. P. Marnane, and A. Hernandez, “Novel Real-Time Low-

Complexity QRS Complex Detector Based on Adaptive Thresholding,” IEEE Sens. J., vol. 

15, no. 10, pp. 6036–6043, Oct. 2015.  

2. R. Gutierrez-Rivas, E. Munoz, J.J. García, W. Marnane. (2016), “Heart Rate Variability 

Analysis and Physical Activity Detection for Improving the Early Detection of Allergic 

Reactions during Provocation Tests”. IEEE Journal of Biomedical and Health Informatics. 

Under review.  

3. R. Gutierrez-Rivas, J. Hourihane, J. J. Garcia, and W. P. Marnane, “Loss of Normal Heart 

Rate Variability during Positive Oral Food Challenges in Children” International Journal 

of Medical Informatics. In preparation.  

 International Conferences 

1. R. Gutierrez, J. J. Garcia, J. C. Garcia, L. Marnane, D. Gualda, S. Fernandez, and E. Garcia, 

“Activity monitoring and emergency warning with location information of the user,” in 

2011 IEEE 7th International Symposium on Intelligent Signal Processing, 2011, pp. 1–6.  

2. R. Gutierrez, S. Fernandez, J. Jesus Garcia, J. Carlos Garcia, and L. Marnane, “Monitoring 

vital signs and location of patients by using ZigBee wireless sensor networks,” in 2011 

IEEE SENSORS Proceedings, 2011, pp. 1221–1224.  

3. R. Gutierrez Rivas, J. J. G. Dominguez, W. P. Marnane, N. Twomey, and A. Temko, “Real-

time allergy detection,” in 2013 IEEE 8th International Symposium on Intelligent Signal 

Processing, 2013, pp. 21–26. 



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

4. R. Gutierrez, C. Spagnol, J. J. Garcia, L. Marnane, and E. Popovici, “Low complexity QRS 

detectors for performance and energy aware applications,” in IEEE-EMBS International 

Conference on Biomedical and Health Informatics (BHI), 2014, pp. 256–259.  

5. R. Gutiérrez Rivas, J. J. García Domínguez, and W. P. Marnane, “Use of the Heart Rate 

Variability as a Diagnostic Tool,” in 8th International Joint Conference on Biomedical 

Engineering and Technologies, 2015, pp. 25–35. 

6. R. Gutierrez-Rivas, A. Hernandez, J. J. Garcia, and W. Marnane, “SoC-based architecture 

for biomedical signal processing,” in 2015 37th Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 6018–6021. 

7. E. Diaz, R. Gutierrez-Rivas, and J. J. Garcia, “Indoor navigation applied to the detection 

of allergic reactions during provocation tests,” in 2015 International Conference on 

Indoor Positioning and Indoor Navigation (IPIN), 2015, pp. 1–7. 

8. R. Gutiérrez-Rivas, J. J. García, Liam Marnane, “Study of the Heart Rate Variability Signal 

during Oral Food Challenges”, in 2016 Global Medical Engineering & Physics Exchanges 

(GMEPE) / Pan American Health Care Exchanges (PAHCE). 

9. A. Vega, R. Gutierrez Rivas, A. Alonso, J.M. Beitia, B. Mateo, R. Cárdenas, J.J. Garcia-

Dominguez, “Use of an electronic device and a computerized mathematic algorithm to 

detect the allergic drug reactions through the analysis of heart rate variability”, 7th 

Drug Hypersensitivity Meeting (DHM), Málaga (Spain), 21-23 April 2016 

 

 

 

 



 

 

 

 

 

 

 

APPENDIX A – HRV FEATURES 

 

  

 The Heart Rate Variability signal is a powerful tool to evaluate not only the health of the 

subject’s heart, but also provides several indicators of the subject’s general fitness and particular 

information related with the behaviour of some physiological systems. Its main advantage is that 

it can be obtained through a non-invasive measurement. Besides, it is computed by counting the 

time between R peaks, so it is unnecessary the use of complex and expensive acquisition devices.  

The HRV signal has been widely studied in order to define which of its features is related with 

each physiological system. Malik in [Task96] published a comprehensive study of the HRV 

analysis, explaining some of its more important features: their meanings, clinical implications, 

ECG recording requirements, standards of ECG measurement, etc. Depending on the application, 

and the physiological system of interest, a different feature should be selected, which implies a 

different way of analysing the HRV signal.  

This Appendix explains how to obtain the 18 features used in the previous work [Twom13], 

and studied in Chapter 4. These features will be divided into different categories depending on 

their domain: time, graphical and frequency domains.  
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A.1 Time domain features 

For all the following equations 𝑅𝑅𝑖 represents the ith RR interval and 𝑁 is the number of RR 

intervals in the analysed epoch.  

A.1.1 Mean Heart Rate Variability  

The Mean of the Heart Rate Variability (eq. A.1) measures the average heart rate over each 

epoch.  

𝑀𝑒𝑎𝑛 =
1

𝑁
∑

60

𝑅𝑅𝑖

𝑁

𝑖=1

 (eq. A.1) 

 

A.1.2 Standard Deviation 

This feature measures the variance of the RR intervals within the analysed time interval 

following (eq. A.2). 

𝑆𝑇𝐷𝑁𝑁 = √
1

𝑁
∑ (

60

𝑅𝑅𝑖

− 𝑀𝑒𝑎𝑛)
2𝑁

𝑖=1

 (eq. A.2) 

 

A.1.3 Coefficient of Variation 

The Coefficient of Variation is a normalised measure of the RR intervals variance, and is 

computed as the ratio between the Mean and the STDNN features (eq. A.3).  

𝐶𝑉 =
𝑆𝑇𝐷𝑁𝑁

𝑀𝑒𝑎𝑛
 (eq. A.3) 

 

A.1.4 Root Mean Square 

The RMSSD feature measures the root mean square of the differences between adjacent RR 

intervals (eq. A.4). 

𝑅𝑀𝑆𝑆𝐷 = √
1

𝑁 − 1
∑(𝑅𝑅𝑖 − 𝑅𝑅𝑖−1)2

𝑁−1

𝑖=2

 (eq. A.4) 
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A.1.5 NN50, pNN50, pNN25 

NNx counts the number of successive pairs of RR intervals that differ for more than x ms. In 

this work, 50ms has been chosen.  pNNx measures the percentage of NNx out of the total pairs of 

RR intervals (eq. A.5.). 50ms and 25ms limits were used here.  

𝑝𝑁𝑁𝑥 =
𝑁𝑁𝑥

𝑁 − 1
 (eq. A.5) 

 

A.1.6 Histogram Index  

This feature is obtained by computing the histogram of the RR intervals. Usually, the histogram 

is computed with bins of 1/Fs seconds (with Fs=256Hz, the length of the bins is 3.9063 ms). 

Histogram index is then obtained by dividing the height of the largest bin by the total number of 

RR intervals (eq. A.6). In other words, the histogram index measures the percentage of RR 

intervals that have the most common duration. Figure A- 1 plots an example of the histogram 

computed for an ECG signal which length is 130 minutes approximately. hist feature for this 

example is 0.0424 (630/14873). 

ℎ𝑖𝑠𝑡 =
ℎ

𝑁
 (eq. A.6) 

 

 

Figure A- 1. Example of HRV histogram and Histogram index computation 
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A.1.7 Positive and Negative trends (STPP, STNN) 

These features provide information about the inter-beat variability of the HRV, in particular 

regarding the acceleration (Sequential Trend Positive, STPP) and deceleration (Sequential Trend 

Negative, STNN). STPP measures the percentage of successive RR interval pairs which are larger 

than the previous ones, and STNN the percentage of those pairs that are shorter than the previous 

ones. Figure A- 2 shows the relationship between the difference of each RR pairs and the previous 

one. STPP is the percentage of ‘points’ in the STPP quadrant, and STNN, the percentage of points 

in the STNN quadrant.  

 

A.2 Graphical domain features 

Graphical features are extracted from the Poincaré plot, which depicts the relationship 

between each RR interval with the following RR interval.  As can be seen in the  Figure A- 3, the x 

axis indicates a RR interval, and the y axis, the immediate posterior RR interval. The 

representation of all the RR pairs form an elliptic-shaped cluster dispersed along a line oriented 

at 45ᵒ (Figure A- 3). The length of the major axis of the ellipse is the standard deviation in the 

longitudinal direction, SD2; and the length of the minor axis, the standard deviation in the 

transversal direction, SD1. SD1 and SD2 quantize the long and short term variability of the HRV, 

respectively. 

 

 

Figure A- 2. Representation of the relationship between the difference between each RR pair and the previous one 
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Figure A- 3. Representation of the relationship between the difference between each RR pair and the previous one 

 

The Cardiac Sympathetic Index (CSI) and Cardiac Vagal Index (CVI) provide information about 

sympathetic and parasympathetic (or vagal) nervous systems and are computed based on both 

axes of the Poincaré ellipse as depicted by (eq. A.7) and (eq. A.8), respectively. The relationship 

between both indexes has been also measured by analysing the features ratioSV (eq. A.9) and SxV 

(eq. A.10) 

𝐶𝑆𝐼 = log (𝑆𝐷1 · 𝑆𝐷2)   
(eq. A.7) 

𝐶𝑉𝐼 =
𝑆𝐷2

𝑆𝐷1
 (eq. A.8) 

𝑟𝑎𝑡𝑖𝑜𝑆𝑉 =
𝐶𝑆𝐼

𝐶𝑉𝐼
  (eq. A.9) 

𝑆𝑥𝑉 = 𝐶𝑆𝐼 · 𝐶𝑉𝐼  
(eq. A.10) 

 

A.3 Frequency domain features 

For the computation of these features, it should be taken into account that the HRV is an 

aperiodic signal, so the Fourier Transform (FFT) cannot be applied directly.  For this reason, the 

Lomb periodogram [Lomb76] was employed to estimate the spectrum of the HRV signal. The 

frequency domain features are: 
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 VLF: Total power in the very-low frequency band (0.0033 to 0.04 Hz).  

 LF: Total power in the low frequency band (0.04 to 0.15 Hz) 

 HF: Total power in the high frequency band (0.15 to 0.4 Hz) 

 LFHF: Ratio between HF and LF.  

An example of the HRV spetrum in the VLF, LF andf HF bands is represented in Figure A- 4.  

 

 

Figure A- 4. Example of Power spectrum in the VLF, LF and HF bands 

 



 

 

 

 

 

 

 

APPENDIX B – SOC-BASED ARCHITECTURE FOR THE 

PROPOSED QRS COMPLEX DETECTION ALGORITHM 

 

 

The proposed QRS complex detection algorithm has been implemented in a Zybo platform by 

Digilent, Inc, with a Xilinx Zynq XC7Z010 FPGA [Xili14]. This process has helped to both, check the 

resources the algorithm needs, and design a system able to analyse the HRV signal in real-time.  

Thanks to the flexibility of an FPGA, this system has been proposed as a “Biomedical Signal 

Processor” since, by changing a few parameters it is possible to adapt the whole system for other 

applications based on the measurement of different biomedical signals. The sampling frequency 

fs for input biomedical signals x[n] is always far below the common clock frequencies fCLK in current 

SoC- and FPGA- based designs (fCLK=100MHz for the configurable logic in the device used here). 

This high frequency ratio between the clock and the sampling frequencies allows time-

multiplexed architectures to be proposed, achieving an efficient resource reutilization.  

Two advanced peripherals, called low-level and high-level peripherals, have been developed 

here. The first one is focused on the processing of the biomedical signal x[n], providing basic 

functions as filtering, integration, moving average, etc. The high-level peripheral operates as a co-

processor with the ARM processor to compute advanced tasks. The proposed QRS complex 

detection algorithm is implemented, then, in the low-level peripheral. The high-level one is in 

charge of computing the HRV signal and several of its features. Figure B- 1 shows the general block 
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diagram of the proposed architecture. Both peripherals are connected to the ARM processor 

through an AXI-lite bus, which allows the definition of a register bank for every peripheral, making 

it possible to configure them, as well as access to their status and partial results.  

The low-level peripheral is capable of sending the input raw signal x[n] to an external DDR3 

memory bank, together with the corresponding output signal r[n]. A DMA controller has been 

included in order not to waste processor time in data moving from peripherals to the external 

memory. The ARM processor can access the external DDR3 bank to recover the information stored 

by the peripherals in order to send them to any destination through the Ethernet link available in 

the system.  

 

B.1 Low-level peripheral 

As mentioned above, the proposed biomedical signal processing architecture has been 

particularized for the proposed QRS complex detection algorithm, which has been implemented 

in the low-level peripheral following the block diagram shown inFigure B- 2.  It is composed of 

four modules: a configurable FIR filter, a moving average, a squaring module, and an R-peak 

detection block.  

The FIR filter (Figure B- 3) implements the high-pass filtering following eq. 3.13. The SOP (Sum 

Of Products) involved in FIR filtering has been computed by only one DSP48E MAC cell (multiplier 

+ accumulation). The input samples x[n] and the coefficients cn are stored in slices configured as 

shift registers SRL16, with a maximum length of 16 coefficients. Both the filter length and the 

coefficients can be modified in run-time by the processor for any mathematical function. This filter 

uses the same DSP48E1 cell over time, thanks to the high ratio between the clock frequency fCLK 

and the sampling frequency, fs. The latency of this module is 18 cycles.  

Next module of the preprocessing stage is a moving average with a configurable length of N 

samples (eq. 3.14). Figure B- 4 depicts the block diagram of this module, based on a buffer with N 

positions and on a DSP48E1 cell. This buffer is dedicated to accumulation operations, as well as to 

the division by the number of samples, N. The parameter N can be modified in run-time for a better 

adaptation. The latency of this block is 7 lock cycles.  
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Figure B- 1. General block diagram of the proposed SoC architecture 

 

 

Figure B- 2. Block diagram of the proposed low-level peripheral 

 

 

Figure B- 3. Block diagram of the configurable FIR filter 
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The last part of the pre-processing stage is a squaring module, according to eq. 3.15, which is 

also based on a DSP48E1 cell and with a latency of 5 cycles. The whole preprocessing stage has a 

latency of 30 clock cycles, which allows the real-time constrains to be met, in order to compute 

the corresponding sample y[n] before the next input sample x[n+1] is available, with a sampling 

frequency of 360 Hz (which is the one used for the MITDB). After this pre-processing stage, the 

resulting signal y[n] is analyzed by a FSM in order to find the position of the R peaks, as explained 

in chapter 3. The more complex task of this module is likely the exponential function associated 

to the state no. 3. (eq. 3.16). This exponential function has been approximated by a Taylor series 

with three terms, as shown in (eq. B.1).  

𝑡ℎ[𝑛] = 𝑡ℎ[𝑛] · 𝑒−𝑃𝑡ℎ·𝑇𝑠 ≈ 𝑡ℎ[𝑛] · (1 + 𝑃𝑡ℎ · 𝑇𝑠 +
(𝑃𝑡ℎ · 𝑇𝑠)2

2
) (eq. B.1) 

The exponential function requires two DSP48E1 cells, one for the Taylor approximation and 

the other for the product 𝑃𝑡ℎ · 𝑇𝑠. A third DSP48E1 cell is used in the product 𝑡ℎ[𝑛] · 𝑒−𝑃𝑡ℎ·𝑇𝑠  , all of 

them involved in the state no. 3. The remaining computing related to the other two states has been 

implemented using generic adders, not requiring any specific resource from the architecture. The 

maximum latency of the R-peaks detector is 11 clock cycles. The results of this module (position 

of the detected R peaks) are sent to the output ports, both for the DMA channel and for the high-

level peripheral.  

 

 

Figure B- 4. Block diagram of the moving average block 
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B.2 High-level peripheral 

This peripheral is responsible for measuring the time interval between consecutive R-peaks, 

and so, generate the HRV signal. Some statistical HRV parameters are computed in the ARM 

processor, which could be changed depending on the application. The architecture of this module 

consists of a counter to measure the timing interval. Whether a new R-peak is identified by the 

low-level peripheral, the event is notified to the high-level one, where the RR interval is computed 

and reported to the ARM processor.  

 

B.3 Test of the proposed architecture 

The architecture described here implies a fixed-point representation for the proposed ECG 

signal processing, adapted to the resources available in the FPGA device. This always involves a 

quantization error on the final result to be analyzed. These errors were computed in MATLAB 

before the real implementation of the whole system. Chapter 3 explains the details of this 

quantization. 

Table B- 1 describes the word widths defined for the architecture. It should be noted that most 

of these widths are limited by the size of the input data (18 bits) in the multipliers from the 

DSP48E1 cells. Table B- 2 summarizes the resource consumption for the different elements in the 

system. Note that the global system also includes those resources for communications and control 

of the ADC converter. Although the clock frequency defined by the Zynq device for the 

configurable logic is 100 MHz, the synthesis tool achieves a critical path for the design of 7.9 ns.  

Finally, the design has been successfully verified with the ECG data coming from the MIT 

database, MITDB. The ECG signal is previously downloaded in an emulation module that provides 

the ECG signal to the ADC in the SoC device for its real-time processing. The SoC design is also 

connected to a PC, where all the obtained results are collected and shown in real-time. By 

comparing the obtained results with those obtained by the floating-point version of the proposed 

algorithm, in terms of sensitivity, Se, and positive predictivity, +P, it is possible to observe how the 

results from the hardware implementation are comparable to the original ones, as shown in Table 

B- 3. 
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TABLE B- 1. DATAPATH DIMENSIONS IN THE PROPOSED ARCHITECTURE 

Variables No. of bits No. of fractional bits 

Input x[n] 12 11 
Coefficients cn 16 14 
Signal y0[n] 18 17 
Signal y1[n] 18 17 
Signal y[n] 18 17 
Threshold th[n] 18 17 
Period TS 9 0 
Internal 
counters 

12 0 

 

 

TABLE B- 2. RESOURCE CONSUMPTION OF THE PROPOSED SYSTEM IN A ZYNQ XC7Z010 FPGA 

Resource 
Low-level 

peripheral 
High-level 
peripheral 

Global 
system 

DSP48E1 6 0 6 (7%) 
RAMB 10 0 17 (10%) 
Slices 817 276 2366 (53%) 

 

 

TABLE B- 3. COMPARISON BETWEEN THE RESULTS OBTAINED WITH THE FLOATING-POINT VERSION OF THE PROPOSED QRS COMPLEX 

DETECTION ALGORITHM AND WITH THE PROPOSED SOC ARCHITECTURE 

Parameters 
Floating-point 

version 
Fixed-point SoC 

version 

R-Peaks 109451 109948 
TP 109157 109391 
FN 294 557 
FP 247 248 
Se 99.731 99.493 
P+ 99.774 99.774 

 

 

  

 



 

 

 

 

 

 

 

APPENDIX C – T-VALUE LEVEL OF SIGNIFICANCE 

LIMIT DEPENDING ON THE DEGREE OF FREEDOM 
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Confidence interval 80 % 90 % 95 % 98 % 99 % 99.5 % 99.8 % 99.9 % 
α two-tailed test 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 
α one-tailed test 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 
df t-value 
1 3.078 6.314 12.706 31.820 63.657 127.321 318.309 636.619 
2 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599 
3  1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924 
4  1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 
5  1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 
6  1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7  1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 
8 1.397 1.860 2.306 2.897 3.355 3.833 4.501 5.041 
9  1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 
10  1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 
11  1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12  1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 
13  1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14  1.345 1.761 2.145 2.625 2.977 3.326 3.787 4.140 
15  1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16  1.337 1.746 2.120 2.584 2.921 3.252 3.686 4.015 
17  1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18  1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19  1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 
20  1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21  1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22  1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23  1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768 
24  1.318 1.711 2.064 2.492 2.797 3.090 3.467 3.745 
25  1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26  1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27  1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28  1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 
29  1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 
30  1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 
32  1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622 
34  1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601 
36  1.306 1.688 2.028 2.434 2.719 2.991 3.333 3.582 
38  1.304 1.686 2.024 2.429 2.712 2.980 3.319 3.566 
40  1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 
42  1.302 1.682 2.018 2.418 2.698 2.963 3.296 3.538 
44  1.301 1.680 2.015 2.414 2.692 2.956 3.286 3.526 
46  1.300 1.679 2.013 2.410 2.687 2.949 3.277 3.515 
48  1.299 1.677 2.011 2.407 2.682 2.943 3.269 3.505 
50  1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496 
60  1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 
70  1.294 1.667 1.994 2.381 2.648 2.899 3.211 3.435 
80  1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416 
90  1.291 1.662 1.987 2.369 2.632 2.878 3.183 3.402 
100  1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.391 
150  1.287 1.655 1.976 2.351 2.609 2.849 3.145 3.357 
200  1.286 1.652 1.972 2.345 2.601 2.839 3.131 3.340 
300  1.284 1.650 1.968 2.339 2.592 2.828 3.118 3.323 
500  1.283 1.648 1.965 2.334 2.586 2.820 3.107 3.310 
∞  1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 

 



 

 

 

 

 

 

 

APPENDIX D – MEAN HRV OF THE SUBJECTS FROM 

THE CUH DATABASE DURING THE OFCS 

 

 

The following figures in this appendix represent the MRR signal of the 23 subjects of the CUH 

database computed in 60-second windows with 1-second shift, as explained in Chapter 4. The first 

15 figures correspond to the allergic subjects, and the rest to the non-allergic subjects.  

In order to ease the comparison process, the HRV range is the same for all the subjects (60 – 

165 bpm). Background area has been shaded in grey, and each one of the check-ups in blue. From 

the minute the test is considered finished to the end of the measurement, the plot is shadowed 

with grey as well.  
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Non-allergic subjects 
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APPENDIX E – ETHICAL APPROVAL DOCUMENTS 

 

The following document was presented to the Guadalajara Hospital Ethical Board in 

order to obtain the ethical approval needed to measure the ECG signal of the patients 

exposed to the allergy provocation tests. The approval is included next in Spanish.    
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VALIDACIÓN DE UN ALGORITMO DIAGNÓSTICO DE DETECCIÓN PRECOZ DE LAS 

REACCIONES ALÉRGICAS MEDIANTE LA MEDICIÓN DE LA VARIABILIDAD 

CARDÍACA. 

Palabras clave 

Variabilidad Cardíaca, Reacción Alérgica, Prueba de Provocación.  

INTRODUCCIÓN 

La variabilidad cardíaca (VC) ha resultado ser una herramienta de gran importancia tanto para 

investigaciones sobre el sistema nervioso autónomo, como sobre las relaciones entre procesos psicológicos 

y funciones fisiológicas, o evaluaciones del desarrollo cognitivo y el riesgo clínico [1]. Se han realizado 

estudios que relacionan esta variabilidad con determinadas enfermedades, como es el caso de pacientes 

seropositivos o diabéticos [2]; con factores externos que afectan al funcionamiento cardíaco [3]; así como 

estudios en los que se relaciona el estado mental de los mismos con su variabilidad cardíaca [4], [5].  

La prueba de exposición o de provocación (PdE), es la prueba diagnóstica considerada como patrón-

oro en algunas patologías alérgicas, como la alergia a alimentos o a medicamentos. En ella al paciente 

sospechoso de alergia se le administran cantidades progresivamente crecientes del alimento o del fármaco 

a estudiar para comprobar su tolerancia o su alergia al mismo.  La PdE, que se realiza bajo el criterio del 

alergólogo y con el consentimiento del paciente, consume tiempo y recursos y no está exenta de riesgos por 

la aparición de reacciones alérgicas potencialmente graves. La indicación de realizar la prueba de 

exposición se apoya en los resultados obtenidos mediante otros estudios complementarios, tanto in vivo 

como in vitro, que permiten hacer una estimación aproximativa de la tolerancia del paciente en estudio. 

Cabe decir que no siempre dichas pruebas complementarias están disponibles. Actualmente no existe 

ninguna herramienta diagnóstica que ayude a detectar de forma precoz una reacción alérgica y permita 

reducir el tiempo de realización de una PdE, y disminuya la aparición de reacciones graves. 

 

OBJETIVOS 

El objetivo principal es validar un algoritmo diagnóstico mediante el uso de un dispositivo automático 

de medición de FC que permita un diagnóstico precoz en tiempo real de las reacciones alérgicas que 

aparecen en los pacientes que son sometidos a pruebas de exposición a alimentos o medicamentos. Dicho 

algoritmo sería capaz de reducir el tiempo de las PdE que se realizan actualmente, así como las dosis 

necesarias para la detección de alergia. Como objetivos secundarios: 

 Correlacionar los síntomas presentados por los pacientes con los patrones de VC. 

 Objetivar si existen diferencias en cuanto a resultados dependiendo de la edad (niños o adultos) 

 Objetivar si existen diferencias en cuanto a resultados dependiendo del tipo de alergia (alimentos 

o medicamentos). 
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ANTECEDENTES Y SITUACIÓN ACTUAL  

La VC, desde el punto de vista de teoría de la señal, es una métrica de la que puede extraerse información 

relevante, así como relacionar dicha información con los procesos que influyen en la misma. Debido a la 

importancia diagnóstica de esta señal y la facilidad con la que es posible obtenerla, su uso ha despertado 

un gran interés en diversos grupos de perfil ingenieril.  

Se han definido una serie de parámetros de la variabilidad cardíaca, calculados tanto en el dominio 

temporal (SDNN, RMSSD, pNN50, índice triangular, TINN, etc.) como en el dominio de frecuencia (VLF, 

LF, HF, ratio LF/HF, etc.) [6], gracias a los que es posible, no sólo ayudar al diagnóstico de determinadas 

enfermedades, sino fomentar el estudio de las mismas con el fin de correlacionar variaciones de dichos 

parámetros, con diversos estados tanto de salud física, como mental de los pacientes. Así, se han realizado 

estudios en pacientes seropositivos o diabéticos [2]; correlaciones con factores externos que afectan al 

funcionamiento cardíaco [3]; así como estudios en los que se relaciona el estado mental de los mismos con 

su variabilidad cardíaca [4], [5] 

Algunas de las investigaciones más importantes y recientes en el ámbito de aplicación de la variabilidad 

cardíaca se resumen a continuación: 

 En el trabajo presentado por Mikko et al. [7], se propone un sistema de monitorización de la señal 

electrocardiográfica nocturna no invasivo. Este sistema está compuesto por 8 electrodos textiles 

dispuestos en línea en una sábana de una cama. La novedad de este trabajo estriba en el uso de 

electrodos textiles y en la disposición de los mismos, de manera que la comodidad del paciente se ve 

beneficiada sin perjudicar la eficiencia del sistema. 

 Scully et al. [8], proponen el uso de un teléfono móvil para la medida de la frecuencia respiratoria, la 

variabilidad cardíaca y la saturación de oxígeno en sangre. A partir de este trabajo y debido a la, cada 

vez mayor, potencia computacional de los teléfonos móviles, es posible desarrollar diversos sistemas 

de monitorización cuya principal ventaja es el ahorro económico en dicha monitorización, así como 

la implicación directa de los pacientes en su propio cuidado tras un proceso de información de los 

mismos. 

 En [9], Pecchia et al. realizan un estudio de los parámetros “short-term” (Media de los intervalos RR, 

SDNN, RMSSD, pNN50, Potencia total del espectro, VLF, LF, HF y ratio LF/HF) de la variabilidad 

cardíaca para la discriminación de pacientes sanos, de pacientes con insuficiencia cardíaca. Con este 

objetivo proponen un modelo de clasificación basado en los parámetros de la variabilidad de la 

frecuencia cardíaca escogidos. 

 Con respecto al diseño de dispositivos, en [10] se explica la propuesta de Massagram et. al. para el 

diseño de un chip dedicado exclusivamente a la medida de la variabilidad cardíaca. La ventaja de este 

chip es que, al ser específico para la medida de la variabilidad de la frecuencia cardíaca, tanto el 

consumo de potencia, como el tiempo de proceso están optimizados para la realización de esta medida. 

 Por último, en [11] se realiza un estudio de los parámetros “long-term” de la variabilidad cardíaca 

(típicamente tomados durante 24 h.) para detectar condiciones físicas de los individuos a partir del 
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uso de algoritmos de computación inteligente. Como ejemplo de aplicación de este estudio, se ha 

empleado el mismo para el análisis de pacientes afectados por Parkinson. 

Puede deducirse, a partir de los trabajos comentados, el interés que despierta el estudio de la variabilidad 

cardíaca, tanto desde el punto de vista de métodos de análisis, como desde el punto de vista de aplicabilidad 

de su estudio.  

El algoritmo diagnóstico se ha diseñado a partir de los datos obtenidos tras la realización de 24 PdE a 

alimentos en pacientes pediátricos en el hospital de Cork (Irlanda). Durante dichas pruebas se adquirieron 

las señales electrocardiográficas de los pacientes con un dispositivo inalámbrico llamado Shimmer [12]. 

Este dispositivo está compuesto por un microprocesador y una serie de periféricos, entre otros, un accesorio 

para la medida del ECG con 3 electrodos y una antena Bluetooth a través de la que se enviaban los datos 

del dispositivo a un PC en tiempo real, para ser almacenados en el mismo. Una vez adquiridas dichas 

señales, se realizó un análisis de las mismas y se correlacionó con el resultado de la PdE: positivo (paciente 

alérgico) o negativo (paciente no alérgico).  

El presente estudio parte de un estudio previo realizado por la University College Cork (Irlanda) en el 

que se evaluó la variación de 18 parámetros de la variabilidad cardíaca, tanto del dominio temporal (media, 

desviación estándar, NN50, etc.), como de la frecuencia (VLF, LF, HF, etc.). Tras dicho estudio, se 

comprobó que el parámetro cuya variación presentaba más correlación con la presencia de una reacción 

alérgica, era la media de la variabilidad cardíaca, calculada en ventanas de un minuto con un desplazamiento 

de 1 segundo.  

El resultado de este estudio, por lo tanto, es el diseño de un algoritmo diagnóstico de detección precoz 

de reacciones alérgicas a partir de la media variabilidad de la frecuencia cardíaca. Los resultados obtenidos 

muestran un 100 % de especificidad (9/9 pacientes clasificados como no alérgicos) y un 93.33 % de 

sensibilidad (14/15 pacientes clasificados como alérgicos) en este número reducido de pacientes y se 

muestran en la Tabla 1. 

Tanto el diseño del algoritmo, como las pruebas realizadas con el mismo se desarrollaron en modo 

offline en un PC. Actualmente se ha implementado el algoritmo diagnóstico en el dispositivo Shimmer. Por 

lo tanto, gracias al uso de dicho dispositivo, es posible medir el electrocardiograma, calcular la variabilidad 

cardíaca y detectar reacciones alérgicas en tiempo real; así como enviar los datos obtenidos a un PC y 

generar mensajes de alerta en caso de detección. En este estudio se puede, por lo tanto, validar el 

funcionamiento de dicho algoritmo funcionando en tiempo real durante pruebas reales.  

Así mismo, como puede observarse en la tabla I, todos los pacientes de los que se obtuvieron datos son 

niños, por lo que se pretende comprobar el funcionamiento del sistema en adultos y en pruebas de alergias 

a medicamentos, con el fin de detectar las posibles diferencias, primero, entre niños y adultos y, segundo, 

entre alergias alimentarias y medicamentosas. 
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APLICABILIDAD Y UTILIDAD PRÁCTICA DE LOS RESULTADOS 

Como puede observarse en la tabla I los resultados obtenidos pueden reducir tanto la duración de las 

pruebas de provocación, como el número de dosis necesarias para detectar una reacción alérgica.  

El sistema puede generar una alarma al detectar una reacción, por lo que el personal sanitario encargado 

de supervisar este tipo de pruebas puede ser avisado en el momento en el que empiecen los primeros 

síntomas, sin necesidad de que esta progrese en el tiempo. Esto permite incrementar la seguridad del 

paciente, permitiendo un control más estrecho del mismo con una mayor autonomía del personal sanitario 

y disminuyendo la posibilidad de reacciones graves. 
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DISEÑO DEL ESTUDIO 

Estudio observacional prospectivo que evidencia los cambios en la frecuencia cardíaca durante una 

reacción alérgica. 

Participantes 

Departamento de electrónica, Universidad de Alcalá: 
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Pacientes  

Pacientes que sean sometidos a pruebas de exposición o provocación con alimentos y/o medicamentos 

como protocolo diagnóstico. Los pacientes cuyo resultado sea positivo serán utilizados como casos y los 

pacientes con estudio negativo serán los controles.  

Criterios de Inclusión 

 Pacientes de la Sección de Alergia del Hospital de Guadalajara, en estudio por sospecha de alergia a 

alimentos y/o medicamentos, que como resultado de la práctica clínica habitual vayan a ser sometidos a 

una prueba de exposición. 

 No límite de edad. 

 Pacientes (o tutores en caso de menores) que hayan dado su consentimiento a la realización de la PdE.  

 Pacientes (o tutores en caso de menores) que hayan dado su consentimiento a la participación en este 

estudio. 

Criterios de Exclusión 

 Pacientes que rehúsen su participación en el estudio. 

 Pacientes en los que concurra alguna de las situaciones que contraindique la realización de una Prueba 

de exposición. 

 Pacientes con patologías cardíacas 
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Material 

 Material y espacio físico habitual de la Sección de Alergia para la realización de pruebas de exposición 

en la práctica clínica habitual. 

 Dispositivo inalámbrico Shimmer, compuesto por un microprocesador y periféricos (medida del ECG 

con 3 electrodos, antena Bluetooth) 

 PC con sistema operativo diagnóstico. 

Método 

1. Valoración del paciente y toma de constantes previa al inicio de la prueba de exposición: TA, FC, 

SatO2 

2. Colocación del dispositivo Shimmer con medición de electrocardiograma. 

3. Realización de las pruebas de exposición según protocolo habitual de la Sección de Alergia, en 

dosis crecientes, con intervalos variables de 30 a 60 minutos (según el alérgeno a estudio). 

4. Obtención de la variabilidad cardíaca. Esta señal se obtiene midiendo el ECG de forma continua, 

detectando los picos R del mismo, y calculando la frecuencia cardíaca equivalente a cada uno de 

los intervalos. Posteriormente, se calcula la media de estos valores, promediando todos los 

intervalos presentes en una ventana de 60 segundos con un desplazamiento de 1 segundo, es decir, 

en cada segundo se obtiene la media de la variabilidad cardíaca del minuto transcurrido. Esta señal 

está representada en color azul en las Figuras 2 y 3. 

5. Tras cada dosis (zonas sombreadas en verde en las figuras 2 y 3), se calcula la media de la 

variabilidad de la frecuencia cardiaca entre el intervalo de tiempo entre la presente dosis y la dosis 

anterior o, en caso de ser la primera dosis, entre esta dosis y el inicio de la prueba. El valor 

resultante será utilizado en el intervalo entre la presente dosis y la siguiente, a este valor le 

llamaremos media de la variabilidad cardíaca, o MVC. El valor de la MVC está representado por 

una línea verde en las figuras 2 y 3. 

6. A partir de cada nueva toma, se compara la variabilidad cardíaca con la MVC obtenida en el punto 

4. Se calcula el factor que relaciona la diferencia entre la VC con el tiempo durante el que son 

diferentes. Cuanta más diferencia exista entre ambos valores, y cuanto mayor sea el tiempo durante 

el que se dé esta circunstancia, mayor será el valor de dicho factor.  

Se ha establecido un umbral para este factor a partir de las pruebas realizadas hasta el momento. 

En el momento en el que el factor supere dicho umbral, se considerará que se está dando una 

reacción alérgica. Se muestra un ejemplo de esta situación en la Figura  2. En dicha figura, la zona 

sombreada en rojo indica el momento a partir del cual el factor supera el umbral predeterminado. 
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Variables de estudio 

Variable principal 

 Variabilidad de la frecuencia cardíaca 

Variables secundarias 

 Datos de filiación 

  Edad 

  Sexo 

 Datos de diagnóstico 

  Reacción sistémica inicial 

  Alérgeno responsable 

 Datos de la Prueba de Exposición 

  Duración  

  Número de dosis/mg administrados 

  Síntomas presentados 

Tamaño de la muestra 

Se realizarán 20 pruebas en una fase inicial. Dependiendo de los resultados obtenidos durante la 

realización éstas, necesitarán realizarse cambios en el algoritmo de detección para asegurar su 

funcionamiento óptimo. Una vez se consiga un funcionamiento correcto, se llegará a 150 muestras para 

validar el funcionamiento del algoritmo final.  

 

Análisis de datos 

Se realizará un estudio de sensibilidad, especificidad, valor predictivo positivo y negativo, y curva ROC 

(Figura 1) para comprobar la capacidad diagnóstica del algoritmo diseñado. Para esta evaluación se definen 

los siguientes términos: 

- Verdadero positivo (VP): Paciente alérgico, clasificado por el algoritmo como alérgico. 

- Verdadero negativo (VN): Paciente no alérgico, no clasificado por el algoritmo como alérgico.  

- Falso positivo (FP): Paciente no alérgico, clasificado por el algoritmo como alérgico. 

- Falso negativo (FN): Paciente alérgico, no clasificado por el algoritmo como alérgico. 

 

  Sujeto 

  Alérgico No alérgico 

Clasificado como: 
Alérgico  VP FP 

No alérgico FN VN 
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En función de estos parámetros, se define: 

 Sensibilidad: Proporción de VP identificados del total de alérgicos 

𝑆𝑒 =  𝑉𝑃/(𝑉𝑃 + 𝐹𝑁) 

 Especificidad: Proporción de VN identificados del total de no alérgicos 

𝐸𝑠 = 𝑉𝑁/(𝐹𝑃 + 𝑉𝑁) 

 Valor predictivo positivo: Proporción de VP sobre el total de clasificados como alérgicos 

𝑉𝑃+= 𝑉𝑃/(𝑉𝑃 + 𝐹𝑃) 

 Valor predictivo negativo: Proporción de VN sobre el total de no clasificados como alérgicos 

𝑉𝑃−= 𝑉𝑁/(𝐹𝑁 + 𝑉𝑁) 

Para el análisis de la curva ROC, se representa el resultado obtenido sobre una gráfica en la que el eje 

X indica la especificidad y el eje Y, la sensibilidad. Cuanto más cercano esté nuestro resultado de la esquina 

superior derecha (Se=100 % y Es=0 %), mejor es el resultado. Cualquier punto que se encuentre en la 

diagonal de esta gráfica (Se=Es) o por debajo, indica que la prueba no tiene capacidad diagnóstica.  

  Se estudiarán, así mismo, las posibles diferencias entre os resultados obtenidos con pruebas realizadas 

a niños y a adultos, así como entre pruebas de exposición a alimentos y a medicamentos.  

 

 

Figura 1. Representación de la curva ROC 
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ASPECTOS ÉTICOS 

La prueba de exposición se realizará según la práctica clínica habitual en todos los participantes por lo 

que no se altera el manejo rutinario del paciente. A los pacientes que se sometan a esta prueba se les 

proporcionará información escrita y verbal y deberán firmar el correspondiente consentimiento informado 

según está protocolizado en la Sección de Alergia  

A los pacientes que participen en el estudio se les proporcionará información escrita y verbal sobre los 

contenidos del proyecto y deberá ser recogida su aceptación para participar en el mismo, mediante la firma 

del correspondiente consentimiento informado. 

Debido a que el dispositivo de medida está alimentado eléctricamente por una batería, se encuentra 

completamente aislado de la red eléctrica, por lo que el presente estudio no conlleva ningún riesgo adicional 

a los riesgos propios de una provocación, salvo las molestias que pueda sufrir el paciente por los electrodos 

empleados en la medida del electrocardiograma.  

 

LIMITACIONES DEL ESTUDIO 

En caso de producirse algún tipo de complicación durante la provocación para la que sea necesaria la 

medida del electrocardiograma, se retirará el dispositivo empleado para el estudio, por lo que no se 

dispondrá de los datos de ECG a partir de este momento.   

Por otra parte, debido a que la correcta obtención de la variabilidad cardíaca pasa por la correcta 

detección de los complejos QRS del electrocardiograma, en caso de existir movimientos excesivos por parte 

del paciente, pueden aparecer artefactos en el ECG y, por lo tanto, no detectarse correctamente la 

variabilidad cardíaca. Sin embargo, se realiza un promediado de esta señal, lo que reduce el efecto de las 

detecciones erróneas de los complejos QRS.  

 

COSTES 

La realización del estudio no supone coste extra añadido a la prueba de exposición que se realiza de 

forma habitual en la Sección de Alergia del Hospital. 

El coste del dispositivo, material informático, análisis de datos, etc. será sufragado por una beca de 

Formación de Personal Investigador (FPI) de la Universidad de Alcalá.  
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Figura 2. Ejemplo de detección de reacción alérgica 

 

 

Figura 3. Ejemplo de paciente no alérgico 
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APPENDIX F – INFORMED CONSENTS 

 

Patient or, if underage, guardians, who wanted to participate in the data collection process had 

to read and sign two of the three following documents. First one is the informed consent to carry 

out the food allergy tests, and the second one for drug tests. Depending on the kind of test, they 

must sign one of these documents, even if the ECG signal is not recorded. Finally, participants (or 

guardians) of the data collection process must sign the third document, which is the informed 

consent of this research. Note that all the documents are in Spanish.  
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F.1 Informed consent for a Food Allergy Test 

 

CONSENTIMIENTO INFORMADO PARA LA REALIZACION DE ESTUDIOS DE 

ALERGIA A ALIMENTOS 

 

Nombre del paciente ………………………………………………………. 

Documento Nacional de Identidad ……………………………………….. 

Nombre del médico que informa …………………………………………. 

Fecha ……………. /…………………… /…………………. 

En virtud del artículo 10 de la ley General de Sanidad es obligatorio que usted sea informado de 

su enfermedad, así como de las distintas opciones diagnósticas y terapéuticas, y de las ventajas e 

inconvenientes de las mismas. 

Tras el estudio de alergia a alimentos que se le ha realizado creemos necesaria la realización de una prueba de 

tolerancia. 

La prueba de tolerancia consiste en la administración de cantidades del alimento sospechoso de producir alergia, 

progresivamente crecientes, hasta llegar a la cantidad que se toma habitualmente en una comida. Con esta prueba 

comprobamos que el paciente no es alérgico al mismo, o bien sabiendo que es alérgico determinamos que cantidad 

de alimento puede tomar el paciente sin presentar ninguna reacción.  

El alimento se administrará a lo largo de la mañana, bien de forma directa, o bien camuflado en un puré, yogurt 

u otro medio que consideremos necesario. El paciente debe permanecer en observación durante toda la prueba, sin 

poder abandonar el hospital hasta que nuestro personal lo autorice. 

La prueba de tolerancia no está libre de riesgo. Pueden aparecer síntomas similares a los que presentó con 

anterioridad cuando comió el mismo alimento, aunque al comenzar con cantidades pequeñas estos son 

generalmente más leves. En ocasiones Los síntomas desaparecen sin necesidad de tratamiento. Otras veces 

administraremos medicación para combatir la reacción alérgica presentada (corticoides, antihistamínicos orales o 

intramusculares). Es excepcional la necesidad de tratamiento con adrenalina.  Por ello estas pruebas se realizan en 

medio hospitalario, por personal especializado, siguiendo los protocolos e indicaciones de la especialidad, con la 

cobertura sanitaria adecuada. 

En caso de no realizarse la prueba de tolerancia con alimentos no podremos confirmar la existencia o no de 

alergia al mismo y, ante la duda, prohibiremos la administración de dicho alimento, tanto crudo como cocinado, 

en cualquier preparado alimenticio. 
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DECLARACIONES Y FIRMAS 

Declaro que:  

He sido informado de forma comprensible de la naturaleza y riesgos del procedimiento mencionado, así como 

de sus alternativas. He podido formular todas las preguntas que he creído convenientes y doy mi consentimiento 

voluntario para la realización del estudio, pudiendo, no obstante, revocarlo en cualquier momento. 

 

Firma del paciente     Firma del médico 

 

 

CONSENTIMIENTO SUBROGADO 

Firmado por el representante legal del paciente ya sea por minoría de edad, incapacidad legal o incompetencia. 

 

Nombre …………………………………………………………………….. 

Documento Nacional de Identidad ……………………………………….. 

En calidad de (padre, madre, tutor) …………………………………………… autorizo la realización del 

procedimiento mencionado. 

Firma del representante legal: 
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F.2 Informed consent for a Drug Allergy Test 

 

CONSENTIMIENTO INFORMADO PARA LA REALIZACION DE ESTUDIOS DE 

ALERGIA A MEDICAMENTOS 

 

Nombre del paciente ………………………………………………………. 

Documento Nacional de Identidad ……………………………………….. 

Nombre del médico que informa …………………………………………. 

Fecha ……………. /…………………… /…………………. 

INFORMACIÓN 

 El estudio de alergia a medicamentos se completará con la realización de pruebas de tolerancia ante la 

negatividad o inexistencia de las pruebas cutáneas. La prueba de tolerancia consiste en la administración de 

cantidades de fármaco progresivamente crecientes para verificar que el paciente no es alérgico a dicho 

medicamento. 

 Estas pruebas no están libres de riesgo. Aunque raramente pueden aparecer síntomas estos son generalmente 

menores. En ocasiones excepcionales pueden aparecer complicaciones graves.  Por ello estas pruebas se 

realizan en medio hospitalario, por personal especializado, siguiendo los protocolos e indicaciones de la 

especialidad, con la cobertura sanitaria adecuada. 

 Una vez finalizado el estudio de tolerancia a un medicamento no quiere decir que en un futuro más o menos 

lejano no pueda sensibilizarse al mismo. 

 

DECLARACIONES Y FIRMAS 

Declaro que:  

He sido informado de forma comprensible de la naturaleza y riesgos del procedimiento mencionado, así como 

de sus alternativas. He podido formular todas las preguntas que he creído convenientes y doy mi consentimiento 

voluntario para la realización del estudio, pudiendo, no obstante, revocarlo en cualquier momento. 

Firma del paciente     Firma del médico 
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CONSENTIMIENTO SUBROGADO 

Firmado por el representante legal del paciente ya sea por minoría de edad, incapacidad legal o incompetencia. 

 

Nombre …………………………………………………………………….. 

Documento Nacional de Identidad ……………………………………….. 

En calidad de (padre, madre, tutor) …………………………………………… autorizo la realización del 

procedimiento mencionado. 

Firma del representante legal: 
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F.3 Informed consent for the data collection 

process 

 

VALIDACIÓN DE UN ALGORITMO DIAGNÓSTICO DE DETECCIÓN PRECOZ 

DE LAS REACCIONES ALÉRGICAS MEDIANTE LA MEDICIÓN DE LA 

VARIABILIDAD CARDÍACA. 

HOJA DE INFORMACIÓN PARA EL PACIENTE 

El Hospital de Guadalajara en colaboración con la Universidad de Alcalá está realizando un estudio cuyo 

objetivo principal es validar un algoritmo diagnóstico mediante el uso de un dispositivo automático de medición 

de frecuencia cardíaca que permita un diagnóstico precoz en tiempo real de las reacciones alérgicas que aparecen 

en los pacientes que son sometidos a pruebas de exposición a alimentos o medicamentos. Dicho algoritmo sería 

capaz de reducir el tiempo de las pruebas alérgicas que se realizan actualmente, así como las dosis necesarias para 

la detección de alergia. 

El presente estudio parte de un estudio previo realizado por la University College Cork (Irlanda) en el que se 

evaluó la variación de 18 parámetros de la variabilidad cardíaca. 

Se han realizado estudios que relacionan esta variabilidad con determinadas enfermedades, como es el caso de 

pacientes seropositivos o diabéticos, con factores externos que afectan al funcionamiento cardíaco; así como 

estudios en los que se relaciona el estado mental de los mismos con su variabilidad cardíaca. 

Para realizar el estudio se le colocará al paciente, durante toda la prueba de provocación un dispositivo Shimmer 

con medición de electrocardiograma. 

Debido a que el dispositivo de medida está alimentado eléctricamente por una batería, se encuentra completamente 

aislado de la red eléctrica, por lo que el presente estudio no conlleva ningún riesgo adicional a los riesgos propios 

de una provocación, salvo las molestias que pueda sufrir el paciente por los electrodos empleados en la medida del 

electrocardiograma.  

 

CONSENTIMIENTO INFORMADO 

A la vista de lo anterior, deseo hacer constar que he recibido suficiente información y he podido hacer las 

preguntas pertinentes acerca de los estudios en los que se solicita mi colaboración. 

He sido informado que toda la información personal y familiar dada por mí y los resultados que se deriven de 

estos estudios serán tratados de forma estrictamente confidencial y no se mostrarán a terceros sin mi 

consentimiento. 
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Acepto que la información derivada de los estudios a realizar sea incluida en un fichero informático. 

Comprendo que mi participación en este estudio es voluntaria y que puedo abandonarlo en cualquier momento, 

sin dar explicaciones, y sin que esta decisión afecte a los cuidados médicos que haya de recibir. 

La información relativa al tratamiento, comunicación y cesión de los datos de carácter personal, se ajustará a 

lo dispuesto en la Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter Personal. Según 

la citada Ley, el consentimiento para el tratamiento de sus datos personales y para su cesión es revocable. Por lo 

tanto, en cualquier momento usted puede ejercer su derecho de acceso, rectificación, oposición y cancelación de 

sus datos dirigiéndose a: Dra. Arantza Vega, de la Sección de Alergia del Hospital Universitario de Guadalajara. 

 

DATOS DEL PACIENTE O DE FAMILIAR EN PRIMER GRADO (en el caso de pacientes menores de 

edad) 

Nombre y Apellidos del paciente: _______________________________________________________________ 

DNI: _____________________ 

Nombre y Apellidos de quien firma el consentimiento informado (si no es el paciente): 

 

DNI: ______________________ 

 

Relación con el paciente (si no firma el paciente): ________________________________________________ 

Nombre y Apellidos del médico que da la información: _____________________________________________ 

 

Firma del paciente o representante legal:                                            Firma del médico: 

 

                             

      __________________________     __________________________ 

 

 

 



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

 

 

 

 

 

 

 

 



 

 

 

BIBLIOGRAPHY 

[ABRB03] Aberer, W.; Bircher, A.; Romano, A.; Blanca, M.; Campi, P.; Fernandez, J.; … Demoly, P. (2003). 
Drug provocation testing in the diagnosis of drug hypersensitivity reactions: general 
considerations. Allergy, 58(9), 854–863 

[AdJC09] Adnane, Mourad; Jiang, Zhongwei; & Choi, Samjin. (2009). Development of QRS detection 
algorithm designed for wearable cardiorespiratory system. Computer Methods and Programs in 
Biomedicine, 93(1), 20–31 

[Afon93] Afonso, Valtino X. (1993). ECG QRS Detection. In Willis J. Tompkins,Univ. of Wisconsin-Madison 
(Ed.), Biomedical digital signal processing (pp. 236–264). Upper Saddle River, NJ, USA: Prentice-
Hall, Inc. 

[AhMA12] Ahmad, Ida Laila binti; Mohamed, Masnani binti; & Ab Ghani, Norul Ain binti. (2012). 
Development of a concept demonstrator for QRS complex detection using combined algorithms. 
In 2012 IEEE-EMBS Conference on Biomedical Engineering and Sciences (pp. 689–693). 
Langkawi: IEEE  

[Asso98] Association for the Advancement of Medical Instrumentation American National Standards 
Institute. (1998). Testing and reporting performance results of cardiac rhythm and ST-segment 
measurement algorithms. Airlington, VA: Association for the Advancement of Medical 
Instrumentation 

[BGIC13] Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; & Laguna, Pablo. 
(2013). Influence of running stride frequency in heart rate variability analysis during treadmill 
exercise testing. IEEE Transactions on Bio-Medical Engineering, 60(7), 1796–805  

[BeAF12] Begum, Shahina; Ahmed, Mobyen Uddin; & Filla, Reno. (2012). Mental State Monitoring System 
for the Professional Drivers Based on Heart Rate Variability Analysis and Case-based Reasoning. 
In 2012 Federated Conference on Computer Science and Information Systems (FedCSIC) (pp. 35–
42). Wroclaw: IEEE Comput. Soc 

[BEDD11] Benseñor, Isabela M.; Eira, Margareth; Dorea, Egídio Lima; Dantas, Eduardo M.; Mill, José 
Geraldo; & Lotufo, Paulo a. (2011). Heart Rate Variability in HIV Patients, Diabetics, and 
Controls: The AGATAA Study. ISRN Vascular Medicine, 2011, 1–8 

[BTEG97] Berntson, Gary G.; Thomas Bigger, J.; Eckberg, Dwain L.; Grossman, Paul; Kaufmann, PeterG.; 
Malik, Marek; … Der molen, Maurots W. (1997). Heart rate variability: Origins, methods, and 
interpretive caveats. Psychophysiology, 34(6), 623–648 

[ChCC06] Chen, Szi-Wen; Chen, Hsiao-Chen; & Chan, Hsiao-Lung. (2006). A real-time QRS detection 
method based on moving-averaging incorporating with wavelet denoising. Computer Methods 
and Programs in Biomedicine, 82(3), 187–95 

[ChPa00] Chimene, M. F.; & Pallas-Areny, R. (2000). A comprehensive model for power line interference 
in biopotential measurements. IEEE Transactions on Instrumentation and Measurement, 49(3), 
535–540 

[ChKS12] Choi, Changmok; Kim, Younho; & Shin, Kunsoo. (2012). A PD control-based QRS detection 
algorithm for wearable ECG applications. Conference Proceedings : ... Annual International 
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine 
and Biology Society. Conference, 2012, 5638–41  

 



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

[CTCL11] Chou, Chia-ching; Tseng, Shao-yen; Chua, Ericson; Lee, Yaw-chern; Fang, Wai-chi; & Huang, 
Hsiang-Cheh. (2011). Advanced ECG processor with HRV analysis for real-time portable health 
monitoring. In 2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin) 
(pp. 172–175). IEEE 

[Chri04] Christov, Ivaylo I. (2004). Real time electrocardiogram QRS detection using combined adaptive 
threshold. Biomedical Engineering Online, 3(1), 28  

[JRLJ11] De Jonckheere, J.; Rakza, T.; Logier, R.; Jeanne, M.; Jounwaz, R.; & Storme, L. (2011). Heart rate 
variability analysis for newborn infants prolonged pain assessment. Conference Proceedings : ... 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE 
Engineering in Medicine and Biology Society. Conference, 2011, 7747–50  

[EyDB12] Eyal, Shuli; Dagan, Yoni; & Baharav, Anda. (2012). Sleep in the Cloud: On How to Use Available 
Heart Rate Monitors to Track Sleep and Improve Quality of Life. In Computing in Cardiology 
(CinC) (pp. 329–332). Krakow: IEEE  

[FFRM12] Farahabadi, A.; Farahabadi, Eiman; Rabbani, Hossein; & Mahjoub, Mohammad Parsa. (2012). 
Detection of QRS complex in electrocardiogram signal based on a combination of hilbert 
transform, wavelet transform and adaptive thresholding. In Proceedings of 2012 IEEE-EMBS 
International Conference on Biomedical and Health Informatics (Vol. 25, pp. 170–173). IEEE  

[Foxl05] Foxlin, Eric. (2005). Pedestrian tracking with shoe-mounted inertial sensors. IEEE Computer 
Graphics and Applications, 25(6), 38–46 

[FJJY90] Friesen, G. M.; Jannett, T. C.; Jadallah, M. a; Yates, S. L.; Quint, S. R.; & Nagle, H. T. (1990). A 
comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Transactions on Bio-
Medical Engineering, 37(1), 85–98 

[FMSN14] Furuya, Masaki; Masuda, Yuta; Sato, Kei; Nishibe, Toshihiro; Yana, Kazuo; & Ono, Takuya. 
(2014). Long and short term QT-RR interval co-variability in type 2 diabetes. In 2014 36th 
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 38–
41). IEEE  

[GhGG08] Ghaffari, A.; Golbayani, H.; & Ghasemi, M. (2008). A new mathematical based QRS detector using 
continuous wavelet transform. Computers & Electrical Engineering, 34(2), 81–91  

[GAGH00] Goldberger, A. L.; Amaral, L. A. N.; Glass, L.; Hausdorff, J. M.; Ivanov, P. Ch.; Mark, R. G.; … Stanley, 
H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research 
Resource for Complex Physiologic Signals. Circulation 101 (23), 101(23), e215–e220  

[GSCR12] Goya-Esteban, R.; Sarabia-cachadina, Elena; De la cruz-Torres, Blanca; & Rojo-Alvarez, Luis. 
(2012). Heart Rate Variability Non Linear Dynamics in Intense Exercise. In Computing in 
Cardiology (CinC) (pp. 177–180). Krakow: IEEE 

[GKLE12] Gradl, Stefan; Kugler, Patrick; Lohmuller, Clemens; & Eskofier, Bjoern. (2012). Real-time ECG 
monitoring and arrhythmia detection using Android-based mobile devices. Conference 
Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society. IEEE Engineering in Medicine and Biology Society. Conference, 2012, 2452–5  

[GFJC11] Gutierrez, Raquel; Fernandez, Samuel; Jesus Garcia, J.; Carlos Garcia, J.; & Marnane, Liam. (2011). 
Monitoring vital signs and location of patients by using ZigBee wireless sensor networks. In 
2011 IEEE SENSORS Proceedings (pp. 1221–1224). Limerick: IEEE  

[GSGM14] Gutierrez, Raquel; Spagnol, Christian; Garcia, J. Jesus; Marnane, Liam; & Popovici, Emanuel. 
(2014). Low complexity QRS detectors for performance and energy aware applications. In IEEE-
EMBS International Conference on Biomedical and Health Informatics (BHI) (pp. 256–259). 
Valencia: IEEE 

 

 



Bibliography 

 

185 

[HWSS11] Hayano, Junichiro; Watanabe, Eiichi; Saito, Yuji; Sasaki, Fumihiko; Kawai, Kiyohiro; Kodama, 
Itsuo; & Sakakibara, Hiroki. (2011). Diagnosis of sleep apnea by the analysis of heart rate 
variation: a mini review. In Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference (Vol. 2011, pp. 
7731–4). Boston, MA: IEEE 

[HJHJ15] Homin Park; Jongjun Park; Hyunhak Kim; Jongarm Jun; Sang Hyuk Son; Taejoon Park; & JeongGil 
Ko. (2015). ReLiSCE: Utilizing Resource-Limited Sensors for Office Activity Context Extraction. 
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(8), 1151–1164  

[HWCT12] Hu, Sheng; Wei, Hongxing; Chen, Youdong; & Tan, Jindong. (2012). A real-time cardiac 
arrhythmia classification system with wearable sensor networks. Sensors (Basel, Switzerland), 
12(9), 12844–12869 

[HNVB07] Hu, Xiao; Nenov, Valeriy; Vespa, Paul; & Bergsneider, Marvin. (2007). Characterization of 
interdependency between intracranial pressure and heart variability signals: a causal spectral 
measure and a generalized synchronization measure. IEEE Transactions on Bio-Medical 
Engineering, 54(8), 1407–17 

[HuLi05] Huang, Jin; & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning algorithms. IEEE 
Transactions on Knowledge and Data Engineering, 17(3), 299–310  

[IeVM08] Ieong, Chio In; Vai, Mang I.; & Mak, Peng Un. (2008). ECG QRS Complex detection with 
programmable hardware. Conference Proceedings : ... Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology 
Society. Conference, 2008, 2920–3 

[IMLD12] Ieong, Chio-in; Mak, Pui-In; Lam, Chi-pang; Dong, Cheng; Vai, Mang-i; Mak, Peng-un; … Martins, 
Rui P. (2012). A 0.83- μW QRS detection processor using quadratic spline wavelet transform for 
wireless ECG acquisition in 0.35- μm CMOS. IEEE Transactions on Biomedical Circuits and 
Systems, 6(6), 586–95 

[Ito13] Ito, Komei. (2013). Diagnosis of food allergies: the impact of oral food challenge testing. Asia 
Pacific Allergy, 3, 59–69 

[JZLQ15] Jin, Min; Zhou, Xiang; Luo, Enze; & Qing, Xiongzhi. (2015). Industrial-QoS-Oriented Remote 
Wireless Communication Protocol for the Internet of Construction Vehicles. IEEE Transactions 
on Industrial Electronics, 62(11), 7103–7113 

[JiCh15] Jin, Zhanpeng; & Chen, Yu. (2015). Telemedicine in the Cloud Era: Prospects and Challenges. 
IEEE Pervasive Computing, 14(1), 54–61 http://doi.org/10.1109/MPRV.2015.19 

[KIKP14] Karmakarl, Chandan; Imaml, Mohammad Hasan; Khandokerl, Ahsan; & Palaniswamil, 
Marimuthu. (2014). Influence of Psychological Stress on QT Interval. In Computer in Cardiology 
Conference (CinC) (pp. 1009–1012). Cambridge, MA: IEEE 

[Kenn13] Kennedy, Harold L. (2013). The evolution of ambulatory ECG monitoring. Progress in 
Cardiovascular Diseases, 56(2), 127–32 

[KhBJ13] Khiari, Bochra; Ben Braiek, Ezzedine; & Jemni, Mohamed. (2013). R-wave detection using EMD 
and bionic wavelet transform. In 2013 International Conference on Electrical Engineering and 
Software Applications (pp. 1–5). IEEE 

[KöHO02] Köhler, Bert-Uwe; Hennig, Carsten; & Orglmeister, Reinhold. (2002). The principles of software 
QRS detection. IEEE Engineering in Medicine and Biology Magazine : The Quarterly Magazine of 
the Engineering in Medicine & Biology Society, 21(1), 42–57 

[KABB13] Kowalski, M. L.; Asero, R.; Bavbek, S.; Blanca, M.; Blanca-Lopez, N.; Bochenek, G.; … Makowska, J. 
(2013). Classification and practical approach to the diagnosis and management of 
hypersensitivity to nonsteroidal anti-inflammatory drugs. Allergy, 68(10), 1219–1232  

 



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

[KWVK07] Kumar, Mohit; Weippert, Matthias; Vilbrandt, Reinhard; Kreuzfeld, Steffi; & Stoll, Regina. (2007). 
Fuzzy Evaluation of Heart Rate Signals for Mental Stress Assessment. IEEE Transactions on 
Fuzzy Systems, 15(5), 791–808 

[LeKL11] Lee, SangJoon; Kim, Jungkuk; & Lee, Myoungho. (2011). A real-time ECG data compression and 
transmission algorithm for an e-health device. IEEE Transactions on Bio-Medical Engineering, 
58(9), 2448–55 

[LANC14] Lewandowski, Jacek; Arochena, Hisbel; Naguib, Raouf; Chao, Kuo-Ming; & Garcia-Perez, Alexeis. 
(2014). Logic-Centred Architecture for Ubiquitous Health Monitoring. IEEE Journal of 
Biomedical and Health Informatics, 2194(c), 1–1 

[LWSG12] Liou, Shih-hao; Wu, Yi-heng; Syu, Yi-shun; Gong, Yi-lan; Chen, Hung-Chin; & Pan, Shing-Tai. 
(2012). Real-Time remote ECG signal monitor and emergency warning/positioning system on 
cellular phone. In Pan,Jeng-Shyang, Chen,Shyi-Ming, & Nguyen,Ngoc Thanh (Eds.), Intelligent 
Information and Database Systems Lecture Notes in Computer Science (Vol. 7198, pp. 336–345). 
Berlin, Heidelberg: Springer Berlin Heidelberg 

[Lomb76] Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and 
Space Science, 39(2), 447–462  

[Lowr00] Lowry, Richard. (n.d.). VassarStats: Website for Statistical Computation Retrieved November 19, 
2015, from http://vassarstats.net/index.html 

[MaMe09] Malarvili, M. B.; & Mesbah, Mostefa. (2009). Newborn seizure detection based on heart rate 
variability. IEEE Transactions on Bio-Medical Engineering, 56(11), 2594–603  

[MKAV11] Mamaghanian, Hossein; Khaled, Nadia; Atienza, David; & Vandergheynst, Pierre. (2011). 
Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor 
nodes. IEEE Transactions on Bio-Medical Engineering, 58(9), 2456–66  

[MILP12] Melillo, Paolo; Izzo, Raffaele; De Luca, Nicola; & Pecchia, Leandro. (2012). Heart rate variability 
and renal organ damage in hypertensive patients. In Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. 
Conference (Vol. 2012, pp. 3825–3828). San Diego, CA: IEEE  

[MoMa01] Moody, G. B.; & Mark, R. G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE 
Engineering in Medicine and Biology Magazine, 20(3), 45–50 

[MFVC02] Moraes, Jctb; Freitas, M. M.; Vilani, F. N.; & Costa, E. V. (2002). A QRS complex detection algorithm 
using electrocardiogram leads. In Computers in Cardiology (pp. 205–208). IEEE  

[MuMM13] Mukhopadhyay, S. K.; Mitra, M.; & Mitra, S. (2013). ECG signal processing: Lossless compression, 
transmission via GSM network and feature extraction using Hilbert transform. In 2013 IEEE 
Point-of-Care Healthcare Technologies (PHT) (pp. 85–88). IEEE  

[Muno15] Munoz Diaz, Estefania. (2015). Inertial Pocket Navigation System: Unaided 3D Positioning. 
Sensors, 15(4), 9156–9178  

[MPJZ15] Munoz Diaz, Estefania; de Ponte Müller, Fabian; Jiménez, Antonio R.; & Zampella, Francisco. 
(2015). Evaluation of AHRS Algorithms for Inertial Personal Localization in Industrial 
Environments. In IEEE International Conference of Industrial Technology (ICIT) (pp. 3412–
3417). Sevilla (Spain): IEEE 

[MuGo14] Munoz Diaz, Estefania; & Gonzalez Mendiguchia, Ana Luz. (2014). Step Detector and Step Length 
Estimator for an Inertial Pocket Navigation System. In Indoor Positioning and Indoor Navigation 
(IPIN 2014) (pp. 1–6). Korea: IEEE 

[MHAB14] Muraro, Antonella; Halken, S.; Arshad, S. H.; Beyer, K.; Dubois, a. E. J.; Du Toit, G.; … Sheikh, a. 
(2014). EAACI Food Allergy and Anaphylaxis Guidelines. Primary prevention of food allergy. 
Allergy: European Journal of Allergy and Clinical Immunology, 69(5), 590–601  



Bibliography 

 

187 

[NEBA12] Nielsen, Dorthe B.; Egstrup, Kenneth; Branebjerg, Jens; Andersen, Gunnar B.; & Sorensen, Helge 
B. D. (2012). Automatic QRS complex detection algorithm designed for a novel wearable, 
wireless electrocardiogram recording device. In 2012 Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society (Vol. 2012, pp. 2913–2916). IEEE  

[PBTK10] Pal, S.; Bhattacharyya, D.; Tomar, G. S.; & Kim, T. (2010). Wireless Sensor Networks and Its 
Routing Protocols: A Comparative Study. In 2010 International Conference on Computational 
Intelligence and Communication Networks (pp. 314–319). IEEE  

[PaMi12] Pal, Saurabh; & Mitra, Madhuchhanda. (2012). Empirical mode decomposition based ECG 
enhancement and QRS detection. Computers in Biology and Medicine, 42(1), 83–92  

[PaTo85] Pan, J.; & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Bio-
Medical Engineering, 32(3), 230–6 

[PBDT14] Pani, Danilo; Barabino, Gianluca; Dessi, Alessia; Tradori, Iosto; Piga, Matteo; Mathieu, 
Alessandro; & Raffo, Luigi. (2014). A Device for Local or Remote Monitoring of Hand 
Rehabilitation Sessions for Rheumatic Patients. IEEE Journal of Translational Engineering in 
Health and Medicine, 2(November 2013), 1–11 

[PMSB11] Pecchia, Leandro; Melillo, Paolo; Sansone, Mario; & Bracale, Marcello. (2011). Discrimination 
Power of Short-Term Heart Rate Variability Measures for CHF Assessment. IEEE Transactions 
on Information Technology in Biomedicine, 15(1), 40–46  

[PZZX09] Phyu, Myint Wai; Zheng, Yuanjin; Zhao, Bin; Xin, Liu; & Wang, Yi Sheng. (2009). A real-time ECG 
QRS detection ASIC based on wavelet multiscale analysis. In 2009 IEEE Asian Solid-State Circuits 
Conference (pp. 293–296). IEEE 

[PuLL12] Puteh, Saifullizam; Langensiepen, Caroline; & Lotfi, Ahmad. (2012). Fuzzy ambient intelligence 
for intelligent office environments. In 2012 IEEE International Conference on Fuzzy Systems (pp. 
1–6). Brisbane, QLD: IEEE 

[Rang01] Rangayyan, Rangaraj M. (2001). Biomedical Signal Analysis. IEEE  

[RiKW01] Rijnbeek, P. R.; Kors, J. A.; & Witsenburg, M. (2001). Minimum Bandwidth Requirements for 
Recording of Pediatric Electrocardiograms. Circulation, 104(25), 3087–3090  

[SLYJ14] Shifeng Fang; Li Da Xu; Yunqiang Zhu; Jiaerheng Ahati; Huan Pei; Jianwu Yan; & Zhihui Liu. 
(2014). An Integrated System for Regional Environmental Monitoring and Management Based 
on Internet of Things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605  

[Shim00a] Shimmer. SHIMMER (Sensing Health with Intelligence, Modularity, Mobility, and Experimental 
Reusability) Retrieved December 11, 2015, from http://www.shimmer-research.com/ 

[Shim00b] Shimmer. Shimmer ECG Module Retrieved from http://www.shimmer-research.com/wp-
content/uploads/2012/10/Shimmer-ECG-Promo-Sheet.pdf 

[SuMu14] Suryadevara, Nagender K.; & Mukhopadhyay, Subhas C. (2014). Determining Wellness through 
an Ambient Assisted Living Environment. IEEE Intelligent Systems, 29(3), 30–37  

[Task96] Task Force of the European Society of Cardiology the North American Society of Pacing 
Electrophisiology. (1996). Heart Rate Variability : Standards of Measurement, Physiological 
Interpretation, and Clinical Use. Circulation, 93(5), 1043–1065  

[TeEB15] Tentori, Monica; Escobedo, Lizbeth; & Balderas, Gabriela. (2015). A Smart Environment for 
Children with Autism. IEEE Pervasive Computing, 14(2), 42–50  

[TrDu15] Truong, Hong-linh; & Dustdar, Schahram. (2015). Principles for Engineering IoT Cloud Systems. 
IEEE Cloud Computing, 2(2), 68–76 

[Twom13] Twomey, Niall. (2013). Digital Signal Processing and Artificial Intelligence for the Automated 
Classification of Food Allergy. National University of Ireland 



Real-Time Detection of Allergic Reactions based on Heart Rate Variability 

Raquel Gutiérrez Rivas 

 

 

[TTHM14] Twomey, Niall; Temko, Andriy; Hourihane, J. Ob; & Marnane, W. P. (2014). Automated Detection 
of Perturbed Cardiac Physiology During Oral Food Allergen Challenge in Children. IEEE Journal 
of Biomedical and Health Informatics, 18(3), 1051–1057  

[VaLS12] Valenza, Gaetano; Lanatà, Antonio; & Scilingo, Enzo Pasquale. (2012). Oscillations of heart rate 
and respiration synchronize during affective visual stimulation. IEEE Transactions on 
Information Technology in Biomedicine : A Publication of the IEEE Engineering in Medicine and 
Biology Society, 16(4), 683–90 

[Webb93] Webb, Andrew R. (1993). Statistical Pattern Recognition. SIAM Review (Second Edi, Vol. 35). John 
Wiley & Sons, Ltd 

[WiJK47] Wilson, Frank N.; Johnston, R.; & Kossmann, Charles E. (1947). The substitution of a tetrahedron 
for the Einthoven triangle. American Heart Journal, 33(5), 594–603  

[XiAZ13] Xia, Henian; Asif, Irfan; & Zhao, Xiaopeng. (2013). Cloud-ECG for real time ECG monitoring and 
analysis. Computer Methods and Programs in Biomedicine, 110(3), 253–9  

[Xili14] Xilinx, Inc. (2014). 7 Series FPGAs Overview, Product Specification 

[YaSQ13] Yan, Ruqiang; Sun, Hanghang; & Qian, Yuning. (2013). Energy-Aware Sensor Node Design With 
Its Application in Wireless Sensor Networks. IEEE Transactions on Instrumentation and 
Measurement, 62(5), 1183–1191 

[ZhLi09] Zhang, Fei; & Lian, Yong. (2009). Wavelet and Hilbert transforms based QRS complexes 
detection algorithm for wearable ECG devices in wireless Body Sensor Networks. In 2009 IEEE 
Biomedical Circuits and Systems Conference (pp. 225–228). IEEE  

[ZhWu08] Zheng, Huabin; & Wu, Jiankang. (2008). Real-time QRS detection method. In HealthCom 2008 - 
10th International Conference on e-health Networking, Applications and Services (pp. 169–170). 
Singapore: IEEE  

[ZDPL14] Zheng, Ya-Li; Ding, Xiao-Rong; Poon, Carmen Chung Yan; Lo, Benny Ping Lai; Zhang, Heye; Zhou, 
Xiao-Lin; … Zhang, Yuan-Ting. (2014). Unobtrusive sensing and wearable devices for health 
informatics. IEEE Transactions on Bio-Medical Engineering, 61(5), 1538–54  

[ZAAB12] Zidelmal, Zahia; Amirou, Ahmed; Adnane, Mourad; & Belouchrani, Adel. (2012). QRS detection 
based on wavelet coefficients. Computer Methods and Programs in Biomedicine, 107(3), 490–6  

[ZoCh09] Zong, Cong; & Chetouani, Mohamed. (2009). Hilbert-Huang transform based physiological 
signals analysis for emotion recognition. In 2009 IEEE International Symposium on Signal 
Processing and Information Technology (ISSPIT) (pp. 334–339). IEEE  

 


