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Abstract

This Ph.D. Thesis elaborates on several novel improvements for two specific
state-of-the-art Machine Learning algorithms: the Support Vector Regression
(SVR) approach, and the Group Method of Data Handling. In the case of
the SVR approach, a new multi-parametric evolutionary SVR is proposed.
This new algorithm takes into account a different value of the v parameter
for each dimension of the feature space. In this case, it is not possible to
apply a classic grid search, due to computational requirements of such an
algorithm, and therefore in this thesis an evolutionary approach is successfully
applied to obtain the optimal values for these SVR parameters. Regarding
the GMDH network, in this thesis a novel construction algorithm based on
a hyper-heuristic approach is proposed. Hyper-heuristic is a novel concept
related to evolutionary computation, in which the algorithm encodes several
smaller heuristics which can be applied in a sequential fashion to solve a given
optimization problem. In this specific application, several basic heuristic are
encoded in an evolutionary algorithm to form a hyper-heuristic approach
which constructs robust versions of GMDH networks for regression problems.
A final contribution of this thesis is the proposal of new validation methods
to better estimate the performance of regression techniques in data-driven
problems. The idea is to obtain better models from the training phase of the
algorithms, in such a way that the performance in the test set is improved,
mainly in training time and overall performance of the system, with respect
to classical evaluation methods such as K-Fold cross validation, etc. All the
proposed and developed methods of the thesis are experimentally evaluated

in benchmark and real-world data-driven regression problems.






Resumen

Esta Tesis plantea nuevas mejoras sobre dos métodos del estado del arte en
el area de Aprendizaje Maquina: Maquinas de Vectores Soporte para Regre-
sién (SVR) y el algoritmo conocido como Group Method of Data Handling
(GDMH). En el caso de las SVR, se ha desarrollado un nuevo algoritmo
de tipo evolutivo para el entrenamiento con kernel multi-paramétrico. Este
nuevo algoritmo tiene en cuenta un parametro vy distinto, para cada una de
las dimensiones del espacio de entradas. En este caso, debido al incremento
del nimero de parametros no puede utilizarse una busqueda en grid clasica,
debido al coste computacional que conllevaria. Por ello, en esta Tesis se
propone la utilizacién de un algoritmo evolutivo para la obtencién de los
valores 6ptimos de los pardametros de la SVR. Respecto a las redes GMDH,
esta Tesis propone un nuevo algoritmo de construccion de estas redes basado
en un algoritmo de tipo hiper-heuristico. Esta aproximacién es un concepto
nuevo relacionado con la computacion evolutiva, que codifica varios heuristicos
que pueden ser utilizados de forma secuencial para resolver un problema de
optimizacion. En nuestro caso particular, varios heuristicos basicos se codifi-
can en un algoritmo evolutivo, para crear una solucién hiper-heuristica que
permita construir redes GMDH robustas en problemas de regresiéon. Como
contribucion final de esta Tesis, se proponen nuevos métodos de validacién que
mejoren el rendimiento de las técnicas de regresién en problemas data-driven.
La idea es obtener mejores modelos en la fase de entrenamiento del algoritmo,
de tal forma que el desempefio con el conjunto de test mejore, principalmente
en lo que a tiempo de entrenamiento se refiere y en el rendimiento general
del sistema, con respecto a otros métodos de validaciéon clasicos como son
K-Fold cross wvalidation, etc. Todas las propuestas y métodos desarrollados
en esta Tesis han sido evaluados experimentalmente en problemas benchmark,

asi como en aplicaciones de regresion reales.
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Chapter 1

Introduction

In today’s world, it is possible to save all kind of information generated in a company,
University, government, mobile application, etc. This information gives the opportunity to
analyze different phenomena and find new useful applications [1], such as tumor detection,
stock market value prediction, Internet personal advertising, tasks automatization or
improve the decision making in very different areas. In order to get this knowledge, it
is necessary to carefully analyze the data and find out the relationships between our
desired outputs and the input data. This analysis could be carried out with traditional
methods where it is necessary to have an expert on the area who knows or has the ability
to find these relationships. However, this is not always possible because the amount of
data is huge or there is a lack of knowledge in order to build a robust model[2].

Due to this fact, and the tremendous increasing of computation capabilities which has
been producing lately, an area called data mining (currently also known as Big Data) has
became very popular [3]. Data mining allows building an expert system without detailed
knowledge about the area!. Data mining involves two main parts, data preparation and
machine learning. The first part is on charge, among others, of the acquisition, cleaning
and filtering of the data. The set of data created by the first part is then passed to the
ML algorithm, which takes care of the mathematical model building.

This thesis is focused on the improvement of a specific number of ML techniques for
prediction and regression problems. In a more specific way, this work is devoted to the
development of hybrid evolutionary neural computation techniques, in a broad sense
(including as neural computation some approaches such as kernel methods or support
vector algorithms). Hybrid techniques involving evolutionary computation and neural
techniques have been applied to a large amount of classification and regression problems,

obtaining excellent results in many application areas. There is, however, a large margin

1This does not mean that there is not necessary previous knowledge in the area. This knowledge is
necessary in order to provide proper data and guide the Machine Learning (ML) to find the best model.
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of improvement in many of these applications, and it has been tried to build this gap
with this research work, in which it has been put together ML regression algorithms with
evolutionary computation techniques.

Since the number of hybrid approaches involving evolutionary techniques and neural
computation algorithms is huge, we have focused on a reduced set of algorithms, according
to their applicability in real problems. First, we have tried to improve hybrid approaches
involving Support Vector Regression (SVR) approaches. In this case, we have tackled
different problems involving standard and multi-parametric SVR approaches, and how
to improve them with a good design of evolutionary algorithms to estimate their hyper-
parameters. Second, we have also considered a fast-training algorithm called Group
Method of Data Handling (GMDH), where we have tried to improve it with a recently
proposed evolutionary technique called Hyper-Heuristic (HH). All the algorithms proposed
can be interpreted in the frame of ML, with different possible problems to be tackled:
supervised classification or regression, clustering (unsupervised learning), etc. In the
following subsection we revise the main concepts associated to ML methods, we also
outline the main concepts of the algorithms involved in this thesis (though in the next
chapter we provide a full description of these approaches), and finally we describe the

main objectives of the thesis and the structure of the rest of the work.

1.1 Machine Learning Overview

ML is a field of computer science that focuses on pattern recognition and developing
algorithms which are able to learn and create estimation models from data. There are

three main groups of ML algorithms:

e Supervised Learning: These algorithms need a data set formed by a vector of
inputs and outputs which represents the results for a given phenomenon. The aim
is to build a mathematical model based on this experience which will be able to
reproduce with a grade of error the phenomenon behavior. This study is focused in

these kind of learning methods and it is described more deeply in the next section.

o Unsupervised Learning: In this case we have a set of inputs but there is not
any information about the desired outputs, so there is not a feedback which
indicates us about the quality of our approach. The goal of these methods usually
is to find patterns between the data and clustering them in several groups, where
the samples have some similar features. These type of learning is very popular as
recommendation algorithm which suggests you a film, a product to buy, etc. based

on the consumption of people with similar profiles.
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Figure 1.1: Supervised learning process

e Reinforcement Learning: These kind of algorithms are not based on a set of
outputs and/or inputs which have been saved previously. Instead of that, the
algorithm starts from a initial state and apply an action, this action moves the
agent to a new state. Every state has associated a reward that evaluates it. The
aim is to collect the maximum cumulative rewards on a path. This technique
is similar to the way animals acquire new knowledge with a learning based on

punishments and recompenses.

1.1.1 Supervised Learning Methods

Supervised learning methods are the most popular ones in ML and have been applied
to a large amount of different applications. These algorithms are methods which infer
an estimation function by learning from a set of labeled data. These data consist of a
group of samples which are formed by a vector of inputs and the desired output. In
other words, there is an unknown target function (f) which represents the problem,
the learning method tries to generate a model (g) as similar as possible to f, with the
assistance of a data set S = [(x1,y;), .-, (Xn,¥y)]- The building process of a supervised

machine is described in Figure 1.1:

1. Data collection. As a first task, a set of relevant information about the phenomenon

is gathered in order to create the training set. The more number of samples the
better to get a generalized function, avoiding over-fitting. However, a big data
size implies large computation time. Therefore it is necessary to look for a trade
off, having enough samples to cover the entire sample space but also keeping an
affordable training time. It is important to have samples distributed uniformly in

the sample space, and not concentrate too many points in a small area and too
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few samples in the rest, since the model will focus on the most populated area and

ignore the rest (over-fitting).

2. Data Preprocessing. Before applying any ML algorithm, we have to clean the data

in order to eliminate errors, missing values, noise, apply some interesting transforms

or just convert alphanumerical values to numerical ones.

3. Training process. This step consists in applying the learning algorithm which in

most cases is based on generating different functions (hypothesis h;(x)) and check
their performance over the training set S. Some algorithms have a finite amount
of hypothesis and it is possible to test all of them. However, most of them have a
function model with several parameters and infinite number of combinations, so
the algorithm tunes these parameters trying to improve the training error until

the algorithm converges or a specific condition is satisfied.

4. Keep the best model: From the hypothesis set generated by the learning process

H = [h1(x), ha(x), ..., hpy(x)], it is selected the best one under a specific criteria.

This best hypothesis becomes our model g(x).

The training process is the core of the ML, step where the learning takes place
generating batch of hypothesis with different configurations. Every h;(x) is tested with
the data set, for each sample x; the hypothesis makes a prediction h(x;) and is compared
with the real value y;.

Each input of the problem is a random variable X;, so there is a set of random
variables given by X = X, Xy, ..., Xk. Therefore the output is also a random variable
given by Y = f(X), but in most of the cases there is not a deterministic relationship
and there is additive noise which represents unknown variables or measurement error,
hence the output is expressed as Y = f(X) + noise. The learning process tries to find

the function f(X) with the minimum estimation error (E'E):
EF = B[L(f(X), Y)]. (1)

where L(f(X),Y) is the loss function, usually it is applied the squared error loss function
L(f(X),Y) = (f(X) — Y)% The expected value of the squared error loss function is
given by Equation 1.2:

ELL(F(X),Y)] = [(f(x) = y)2P(x,y)da - dy (1.2
The solution is f(x) = E(Y|X = x) (see [4]). However, as it was previously said the

distributions Y and X are unknown, otherwise the whole problem would be directly solved.
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The different supervised learning algorithms try to implement a recipe to approximate
f(x) with the available training data S.

In most cases, the training process consists in generating a batch of hypothesis with
different configurations. Every h;(x) is tested with the data set and the predictions y
are compared with y in order to get the In Sample Error (£;,) [5]. Hereby, we can
rank all the hypothesis and choose the one who has the least E;, which is supposed to
be the best approximation of f(x).

Eiyn, = error(hi(x),y). (1.3)
error(h(.¥) = 3 3 () = y.)* (1.4

Usually, error(h;(x,),y,) is calculated as the average of the squares differences, also
called Mean Square Error (MSE)? (Equation 1.4). The MSE is the average of the squared
loss function for a vector of predictions y. This £, is an approximation of the real
error of h; also called Out of Sample Error (E,,;). The E,,; is the hypothesis error
committed over samples outside the data set and it has the expression showed in Equation
1.5.

Eou = Eglerror(hi(x),y)]. (1.5)

where E,[error(h;(x),y)] is the expected value over x. This error cannot be calculated
because the probability distribution X and Y are unknown. Therefore, it is essential
that Ej, has a similar behavior to E,, and thus the best hypothesis (g(x)) fulfill
E,.t(g(x)) = 0. This simple statement F,,;(g(x)) ~ 0 implies two different conditions:

1. E;u(g9(x)) = 0. Error minimization. The estimation function generated has to

have a low level error.

2. E,u(g9(x)) = E;, . Generalization: The out of sample error has to be an error
close to the real error. Otherwise, it can be achieved an very small error with the
data set, and then get huge error with samples out of this data set. This problem

is called over- fitting and is one of the main problem that we have to deal in ML.

It is critical to have an error metric which satisfies these two conditions at the same

time, because the selection of the best estimation function depends on it. Most of the

2MSE could not be a good error measure when there are outliers, since large errors have more weights
than the small ones. This problem could be reduced by Root Mean Square Error (RMSE).
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Figure 1.2: In Sample Error and Out of sample error.

times, when we improve one of the condition the other one gets worse, it is necessary to
make a trade off. This trade off is represented in Figure 1.2, the more complex is the
model the less in sample error but also the bigger the out of sample error is. Sometimes
it is better to sacrifice one of the conditions in order to get closer to the other one. For
example, an investor needs to have a model which E,,;(g) approximates closely to Ej,,
despite of E,,; is high. If we are able to build a classification model to invert which has
a high in sample error like for example 52%, but we can assure that this measure is close
to the reality, we can invest a great amount of money in our system and get important
profits.

1.1.2 Over-Fitting and Generalization

A ML algorithm creates an estimator which makes predictions from an infinite input
space to a finite space (classification) (f : R™ — S™) or infinite (regression) output space
(f : R — R™). The algorithm has to work with a small portion of reality given in
a data set and deal with the problem of building a generalizable model with only the
available information. If the algorithm does not take care about generalization and it is
only focused on getting a small error, the result would be a very good model in terms
of the available data (low Ej,), but with a poor behavior with new samples (high F,.;).
Figure 1.3 shows how a over-fitted model has a more complex shape which fits to all the

samples so takes into consideration the sample noise too.
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In most of the algorithms, the learning process cannot handle the over-fitting and
needs an extra step to care about this problem. In this step the so called Validation
Method is applied in order to measure and penalize this over-fitting, thus it is selected
the model with less Validation error.

A naive approach for the calculation of E;, is to get this estimation error using the
training data, thus we will get a model with a low FE;, but we do not know if it is
over-fitted or not. One simple approach could be splitting the data into two subsets: the
training set and the validation set. The training set is used for building the hypothesis
and the validation set for calculating the Ej,, thus if a h;(x) is over-fitted the error will
be high. However, this solution does not exploit all the data efficiently and when this
has just a few samples and split into two smalls groups of data, the learning algorithm
could have a poor behavior choosing a poor hypothesis.

This problem could be mitigated with Cross-Validation (CV) methods. These kind of
validation methods use the whole data set for training and validating hypothesis. One of
this methods is Leave-One-Out which consists in training with the whole data set and
leave one sample out to estimate it with the resultant model. This process is repeated N
times (one for each sample), therefore the computational cost of this method is very high
and can make the training part too heavy (see Figure 1.4). There is another method
called K-Fold CV which is less time consuming, instead of leaving just one sample out,
each iteration of the algorithms leaves % samples out so this process has to be repeated

only K times?®.

3Leave-One-Out is a particularization of K-Fold with K = N.



8 Introduction

Y= Output
XZ Input
S= Sample, S=[X,, ... X\,Yq, o, Yyl

mm)  (\/alidation Error|

Figure 1.4: Leave One Out cross-validation diagram.

The computational cost of these techniques is high, doing the training process very
heavy. Nevertheless, the advantages of the application of these techniques compensates
this increment on time. In this Thesis we present new validation methods which reduce

considerably this training time.

1.1.3 Overview Machine Learning Algorithm

ML algorithms have became very popular thanks to the explosion of Big Data. Nowadays,
there is a huge amount of different learning algorithms which have been applied to too
many different areas. In this section, we show a summary of some of the most important

techniques:

o Artificial Neural Networks: Definitely, neural networks are the most used and
popular ML algorithms. These networks are based on the behavior of the neurons
in our brain, which are the responsible of the information transmission. A neuron
consists of a set of several inputs called dendrites connected to other neurons,
they receive stimulus from these neurons and transmit them to the core also called
soma. The soma processes the inputs from the different dendrites and elaborates a

response which is transmitted by the axon to other neurons or finally to an organ.
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The artificial neural networks try to replicate this behavior in different ways, the
best known is called Multi-Layer Perceptron (MLP). A Perceptron is the name of
the MLP basic unit. These perceptrons consist of several inputs x = [z, za, ..., Zx],
which are weighted x,, = [wiz1, wazs, ..., wyxy]. Then, these weighted inputs
are summed up and the result is processed by an activation function and finally
send this output y = f(XN, w;r;) to others perceptrons or take it as the final
result. A MLP consists of several layers of these elements, usually the standard
configuration has an input layer, one or several hidden layers and the output layer.
These kind of networks need a training process in order to calibrate the weights
of each perceptron. There are many different methods to calibrate these weights,

being Back-propagation error one of the most popular [6].

Neural networks have been implemented and are currently being applied with
success to a wide range of problems, such as: Rainfall forecasting in Australia [7],

breast cancer detection [8], traffic signal recognition [9], etc.

« Bayesian Networks: Also called as belief networks, is a method to find probabil-
ities which look for the relationship between different variables. Bayesian Networks
are graphical models, where each node of the graph represents a random variable
and the arcs represents the probabilistic dependence between two variables, the lack
of arcs indicates conditional independence. The graph generated is called directed
acyclic graph. For a set of variables X = X7, Xs,..., Xy a Bayesian Network
needs to define the conditional probability distribution (CPD), ©,, p, = Pg(x;|D;),
where D; € X1, Xo, ..., X;_1 is the subset of nodes that X; depends on.

P(Xi|D;) = P(Xi| X1, Xa, ..., Xi1) (1.6)

With the conditional probabilities and applying the probability chain rule, it can
be calculated the joint probability as

N

P(X1,Xs,...,Xn) = [[ P(Xi|Dy) (1.7)

i=1

Bayesian networks are not a black box algorithm: the models created can be easily
interpreted and each output has a probability associated. These conditional proba-
bilities can be calculated in different ways: with a supervised learning algorithm,
Maximum-likelihood, expectation maximization algorithm, Bayesian estimation,
etc. Sometimes the structure of the Bayesian Network is also unknown and we do

not have idea of the relationships between the variables. In these cases, there are
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techniques which are able to deduce possible structures from the data: scored-based

method or constraint-based method.

Bayesian Networks have been used for a long time. NASA developed a diagnosis
health system [10]. But also they are very popular in financial risk management [11].
Furthermore, Bayesian networks have resulted in many others successful techniques
such as Naive Bayes, Hidden Markov Model which is used in Kalman filters that
are very popular for tracking problems and turbo codes which are used in 3G and

4G mobile communications [12].

Support Vector Machines (SVM): it is a very popular technique based on
Kernel theory. During the learning process, the SVM has to solve a convex
optimization problem with a unique solution, this is an advantage with respect
to Artificial Neural Networks since they can fall into a local minimum during the
learning process. Another advantage of SVM is that the models are less over-fitted
than neural networks, because SVM takes care of generalization during the learning
process. However, SVM also needs an extra regularization process to avoid the
over-fitting. In Chapter 2 the theory behind Support Vector Machines and the

learning process is explained.

Group Method of Data Handling (GMDH): It is a self-organized technique,
which does not need to tune any parameter before the training process. The
algorithm is this way able to create the model by itself. The algorithm builds
a network of nodes which are the combination of different inputs into a n order
polynomial, one of this polynomial could be the output or the input for a new layer
of polynomials. This process is repeated until a certain condition is achieved. The
Group Method of Data Handling is not such popular as the previous techniques,
however it has two main advantages making inputs filtering and a training algorithm
faster than the other techniques, since it is not necessary to repeat the training for

a set of parameters. Section 2.2 gives a deeper introduction to this algorithm.

Evolutionary Algorithm (EA): are a set of techniques which are based on the
method of natural selection described by Darwin in 1859, whereby the individuals
best fitted to the environment are the ones more likely to survive and reproduce.
Thus each new generation is best prepared to the environment than the previous

one.

Evolutionary philosophy can be applied to solve optimization problems. The

individuals are candidate solutions to the optimization problem, each of these
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solutions is evaluated with a cost function which gives a mark called fitness. This
fitness is used to assign a probability which indicates how likely is an individual
to be elected for the crossover process, where the new generation is created as a
combination of the chosen individuals. This process is repeated until the algorithm

converge to a solution good enough.

The time consumption of this kind of algorithms is considerably smaller than a
simple brute force algorithm. For this reason evolutionary algorithms have become
very popular and have been applied to very different applications such as: Public
transport network optimization [13], mobile network deployment [14], optimal

positioning of wind turbines in wind farms [15], etc.

1.2 Objectives of the Thesis

As mentioned before, the main objective of this thesis is to develop a number of novel
hybrid approaches involving evolutionary algorithms with neural computation techniques.

Specifically, we propose the following objectives:

1. Obtaining robust approaches for training multi-parametric Gaussian SVR algo-

rithms.

2. Developing novel validation methods for improving standard and also multi-
parametric SVR approaches.

3. Improving the performance of GMDH training algorithms.

All these objectives have been approached by evolutionary computation, with hybrid

solutions which improve the performance of the original algorithms.

1.3 Structure of the rest of the work

The structure of the remainder of the thesis is the following: next chapter summarizes a
good description of the main techniques we use in this Thesis. The main concepts of SVR,
GMDH and EAs are fully described at this point. Chapter 3 describes how to improve
the performance of multi-parametric SVR training (hyper-parameters search) with new
evolutionary algorithms. Chapter 4 extends the improvement of SVR algorithms by
means of proposing novel validation methods, for both standard and multi-parametric
SVR approaches. Chapter 5 discusses the improvement of GMDH algorithms using

hyper-heuristics. All these chapters are intended to be self-explanatory, including a brief
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introduction to the hybrid technique, an experimental section to show the improvement
obtained with the hybrid algorithm, and also some conclusions that can be extracted
in each chapter. Chapter 6 provides some final remarks and future lines of research,
whereas this thesis is closed with the Appendix A and B where the main contributions of

the work (in terms of publications and alternative research production) are presented.



Chapter 2

State of art

2.1 Support Vector Machines

Support vector machines are a robust methodology in statistical machine learning that
have been successfully applied to solve classification and regression problems in several
fields. The theory of support vector machines was developed by Vapnik and his team
in AT&T [16][17]. The reason behind the popularity of the SVM is the structural risk
minimization, which not only takes care about fitting the problem, but also its over-fitting.
The next subsections explain the SVM theory. For further information about SVM the

reader is encouraged to review [18] [19] [20].

2.1.1 Introduction to SVMs

Let suppose the classification problem shown in Figure 2.1, there are two different classes:
red triangles and blue circles. It is straightforward to find a line which separates the
data perfectly into two classes. However there are multiples lines which make a perfect
separation (see Figure 2.1). Each separation line shown in Figure 2.2 does not have
classification error, but which one of the three separators is the best? Intuitively we
would choose the one with the largest distance between the two groups of samples. This
reasoning makes the solution more generalizable for future samples, minimizing futures

over-fitting problems.

wix+b=0 (2.1)

Equation 2.1 represents a general hyper plane h where w = (wy, ws, ..., wy,) is the

vector of weights, x = (x1,2,..., ) is the vector of inputs and b is the offset. A
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support vector machine algorithm tries to find the hyper-plane with the largest distance

between classes. The distance between a sample and a given hyper plane is expressed as:

(2.2)

Since in a classification problem y,, = 4+1 and y,(w’x +b) > 0 when it is a separable
problem:

(wix+b] _ |ya(W'x+0)] _ ya(Ww'x+0) (2.3)

[Iwl| [Iwl| [Iwl| '
The aim is to maximize the distance between the hyper plane to the closest point,
expressed in Equation 2.4. The solution of this optimization problem is not straightfor-
ward, however it can be set min,[y,(w?x + b)] to 1 and this converts Equation 2.4 in
a more straightforward problem [18]. Furthermore, maximize the inverse of the weight

is equivalent to minimize the %WT

w, which is an easier problem (later we will see the
reason for the %) . Finally, we have to deal with an optimization problem expressed in

Equation 2.5.

1
arg max = {W min[y, (w’x + b)]} (2.4)
w,b w n
o 1 o
minimize: W' W,
2 (2.5)
subject to: min Yn(wix, +0) =1

The equation of constraint can be modified for a new one which makes the problem
easier to solve. This new constraint is y,(wlx, +b) > 1 for n = 1,..., N. The solution
for the new optimization problem (Equation 2.6) it is also a solution for Equation 2.5,
since the nearest point x; satisfied y,(w?x; + b) = 1 otherwise w would not be the
minimum.

o I 7
minimize: —W' W,
2 (2.6)
subject to: Yn(Wix, +b) > 1 (n=1,...,N).

Those points which satisfy the condition y,(w’x, + b) = 1 are the ones that define
the maximum margin and are called support vectors. This subset of points has all
the necessary information to get the optimum hyper plane, if the rest of the points are
removed and just kept the subset with only support vectors the result of solving the

optimization problem would be exactly the same.
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Figure 2.3: Best linear classifier for a non separable data.

2.1.2 Non Separable Data

So far we have been talking about an idyllic world where the data is linearly separable.
However, most of the times this is not the case and the data is not separable (see
Figure 2.3), so we have to find the best hyper plane which makes fewer mistakes. This
means that the margin would be violated for some data samples, that is why is called
soft-margin. We introduce a new variable ¢ which represents the amount exceed for

each point. Equation 2.7 represents the so called soft-margin optimization problem.

I al
minimize: -ww+C ) &,
2 nz::l (2.7)
subject to: Yo (Wix,+0)>1—&,  (n=1,...,N)and &, > 0.

The objective function has a new term C 3", &, which is the sum of all the excesses
multiplied by cost of this margin violation C. This new penalty parameter C' is defined
by the user. A large value of C means a heavy penalization and the margin would be
small with very few violations, otherwise when C is small the margin would be larger. A
very small margin could produce over-fitting so it is important to define carefully this

value.
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2.1.3 Non Linear SVM

So far we have been working with linear problems, but most of the time the data is not
linearly separable. Figure 2.4 represents a problem which cannot be solved by linear
SVM. However, it is possible to work with the same philosophy of SVM by applying a
transformation ® : R? — R? in order to move the data into a higher dimension where
they could be linearly separable [20]. Figure 2.5 shows the transformation into a higher

dimension space where the problem is linearly separable.

Figure 2.4: Non linear data set.

Consider a function ® : R — R? which transforms the data from the input space X
to the new transformed space Z. This new data set will be the input for our SVM, and
all the theory before still remains the same. Hence, the optimization problem can be
rewritten as Equation 2.8, where u is a new vector of weights different than w because

in this new feature-space we get a completely different hyper plane.

1, ol
minimize: —uu+C)» &,
2 nE_:l (2.8)

subject to: Yo (u'®(x,) +0) >1-¢, (n=1,...,N)and &, > 0.
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Figure 2.5: Example of a linearly separable problem in the new transformed space.

Equation 2.8 is an example of quadratic programming problem. In order to obtain
the solution we can work with Lagrange multipliers [21]. Equation 2.9 is the Lagrange

function of our optimization problem.

N N N
L(u,b,& a,p) = ;uTu +CY & =D an(&n — 14y (" ®(x,) +0) — D pinn (2.9)
n=1 n=1 n=1

Minimize this Lagrange function is similar to optimization problem 2.8. However, this
new approach with KKT [22] conditions gives us the tools to solve easily the optimization
problem. The KKT conditions should be satisfied for constrained optimization problem,
in case of a convex problem like the SVM the KKT conditions are necessary and sufficient.
These are the KKT conditions:

« Stationarity:
vU,b,ﬁL(uv ba 57 «, ,U/)|u=u*,b:b*,§:§*,a:a*,#:“* =0 (210)

o Complementary slackness:

antn (U ®(x,) +0) =0

e 0 (2.11)
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Stationarity condition establishes that the derivative of L(u,b, &, «, u) respect to u, b

and &, has to be zero. Hence, applying this condition we get next useful equations:

oL al
Ju = u— Z anyn®(x,)
n=1
- (2.12)
u= Z anyn(b(xn)
n=1
oL &Y
— =) Y, =0 (2.13)
o~ =
gg_c_an—un (2.14)
1NN N
Lo, ) = -5 SN Yn®(xn) nye® (i) + Y an (2.15)
n=1k=1 n=1

Equations 2.12, 2.13 and 2.14 allow simplifying the expression 2.9 leaving the equation
in terms of the Lagrange Multipliers «,, as the only unknown variables. This new
representation is called the dual problem?!, as in Equation 2.5 this dual representation
takes the form of a quadratic programming of «,,. The problem has changed from one
with M variables (input dimension) to a problem of N variables (number of inputs).
According to Bishop [18] this change may be seem disadvantageous. However, this new
representation allows the SVM working with kernels and it performs efficiently in feature
spaces whose dimensionality exceeds the number of data points. In order to get the
solution to the primal problem we must maximize L(a, i) 2, therefore the optimization

problem has this new form:

N N N

1
maximize: — — Z Z Un @ (%) 00,y @ (x5 ) ot + Z On,
2 n=1 k=1 n=1
(2.16)
. a, > 0,
subject to: N
ne1 OnlYn = 0.

'Equation 2.8 is the primal problem.
2See [23][21] to understand why the dual problem has to be maximized
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We apply a QP-solver to the problem 2.16 to solve this new dual formula. After that

we will have the solution & and we can easily compute u :

N
U= yudn®(x,) (2.17)
n=1

At least one of the sample data will be a support vector so that we can use the KKT

condition to get the value of b:

ys(ud(xs) +0) =1 (2.18)
Solving b:
N
b=y, — Z YnOnXnXs (2.19)
n=1

Finally, we have solved the dual problem and the estimation function has the next

expression:

g(x) = sign(u’ ®(x) + b) (2.20)
g(x) = sign(Z:1 Ynn @ (x,)P(x) + b) (2.21)

At first glance, we see that the dual problem and estimation function always depend
on the inner product ®(x,)®(x). In order to avoid applying the transform to the whole

data set and store them, it is used Kernel theory (see Equation 2.22).

9(x) = sign(>_ ynn K (X4, %) + b) (2.22)

n=1
Kernel functions allow applying the inner product in the transformed space Z to
inputs from X', without the transformation ® to the whole data set, just applying directly
the kernel function to get the inner products. There is a large amount of Kernels, next

lines summarizes some of the most popular ones:

o Gaussian radial basis function: Probably the most employed kernel in the literature,
it takes the form:

Hx—yH?)

K(x,y) = el 52 (2.23)
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where ||x — y|| is the Euclidean distance between x and y, and o is a parameter
which control the kernel width. For the rest of the text it is substituted v = ﬁ in

order to work with a simpler kernel expression.

K(x,y) = eOIx=yl*) (2.24)

o Polynomial: The definition for n-degree polynomial kernel:
Kx,y)=x'y+c)" (2.25)

Usually, the polynomial degree is n = 2, since polynomials with a degree greater

than 2 are more likely to have over-fitting problems.

e Sigmoid:

This kernel comes from the Neural Networks where the sigmoid function is the

most popular activation function.

K(x,y) = tanh(ax"y + ¢) (2.26)

Parameter a controls the slope of the function and c is a constant.

2.1.4 Support Vector Machines for Regression

Support Vector Machines can be also applied to regression applications. The theory is

almost the same, there are just a few differences that are clarified in this section.

Similar to the case of non separable data with the margin violation, we have to take
into consideration the error and minimize it. Furthermore, in order to keep the sparseness
of the support vector machine an e-insensitive loss function similar to the Figure 2.7 is

applied to measure the error committed:

L(z) = (2.27)

0 if [(Wld(x,) —ya| <e
WI®(x,) — yn| — € otherwise
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A Loss function value

+& Error value
|

Figure 2.7: Linear e-insensitive Loss Function

Two slack variables are defined to measure this e-insensitive error, &, > 0 and én > 0.
Where &,, > 0 correspond to points for which y,, > g(x,) + € and én > ( correspond to

points for which y, < g(x,) — €. These changes leave the objective function as:
N 1

minimize: C' Y (&, + &) + 5HWH2

n=1

Yn S WO(Xp) + b+ €+ &y, (2.28)
subject to: y, > wd(x,) +b—¢c— én
& 6n >0
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Doing the same process done previously with SVM for classification, we can apply
the KKT conditions and get the dual representation of the SVR problem.

N

A 1
L(w,b,€,& 6,0,0) = gw w+OZ &n+&n) — Z (WP (xp) + b — Yo + €+ &)
n=1 n=1
N N
+ Z Cfn(wq)(xn) +b—y,—€— én Z Mn&n + nnén
n=1 n=1
(2.29)
GL N N
0 =W — Z a,®(x,) + Z a,®(x,) =0,
n=1 n=1
N (2.30)
w =) (a, — &,)P(xp)
n=1
oL XL .
o Y (G@—a)=0 (2.31)
n=1
oL

Equations 2.30, 2.31 and 2.32 are replaced in 2.29. Then the Lagrangian is reduced

to a simpler expression:

) 1NN ) A N N
L(a, &) = ) Z Z(an — Gy (aj — &;)P(x,)P(x;) + Z Yn (o, — Z an + ay)
n=1j=1 = n=1
(2.33)
The dual variables 7,7 have been removed, thus the optimization problem has the
form:
1NN N N
maximize: — — Z > (o, — ;)P (x,)P(xj) + Y Ynln — ) — € (v + &)
n=1j=1 = n=1

Y (an —dn) =0

subject to: )
Oy 2 0

(2.34)
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X

Figure 2.8: Support vector for regression with epsilon - insensitive function.

Solving this dual problem we get the values a,,*, &,* and they can be replaced on

2.30 to get the value of w:

N
W= (o * —Gnx)D(x,) (2.35)
n=1
Hence, the expression for SVR model is:

9(x) = 3 (an — &) k(x, %) + b (2.36)

n=1
Again, it is necessary to calculate the value of b which is calculated applying Karush-
Kuhn-Tucker slackness condition over a support vector (£, = 0, én = 0). Finally, the

regression model is completely defined.

b=yn—€— Y (n — Gu)k(2y, Tpy) (2.37)

m=1

2.1.5 Training Method for Support Vector Machines

A Quadratic Programming problem (QP) can be solved in many ways, however there is
one method that stands out over every any other for solving Support Vector Machine
QP problem. This method is called Sequential Minimal Optimization (SMO). SMO is an
algorithm proposed in 1998 by Platt in [24] which solves the Support Vector Machine
optimization problem in a very fast way in comparison with other previous methods as
chunking algorithm proposed by Vapnik in [25].

SMO divided the QP problem in the smallest possible optimization problems. Each
one of this problems involves only two Lagrange multipliers. The algorithm focuses on

one sub-problem and tries to find the optimal values for the two multipliers. The solution
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is calculated analytically instead of numerically, and the process is very fast and that is
why the whole process is very quick.

For SVM training we use an open source library called LIBSVM developed by Chang
and Lin [26] and implements a SMO-type algorithm proposed in [27] which enhance the
original one. These library is able to train SVM for classification and regression. It is
implemented in Java and C++4, but also has numerous interfaces and extensions for
Matlab, Weka, Python, etc. For all these reasons this library has been chosen to work
with SVM in this Thesis.

2.2 Group Method of Data Handling

Group Method of Data Handling is a self-organized heuristic technique that was developed
in the earliest sixties by Ivakhnenko [28]. Self-organized methods do not need a model
structure previously defined by the user, but is automatically defined by an algorithm
which builds the model based on the cause and effect relationship. Thus, the model is
constructed just with the data and not with any personal assumption about the network
structure.

The learning algorithm creates a set of elementary nodes whose inputs are the data
or the outputs of others elementary nodes, these inputs are processed by a base function
f(x) which gives the node output. This algorithm increases the complexity of the model
each iteration, until a certain criterion reach a minimum which means the model has
an optimal degree of complexity. This external criterion has to take care not only of
the estimation error but also of the over-fitting, otherwise the model will perform poorly
with new samples.

Next section describes with detail the fundamental of GMDH and different kind of
GMDH algorithms.

2.2.1 Introduction to GMDH

It is well known that the relationship between any sets of input-output variables can be
approximated by Volterra functional series. Volterra series are very similar to Taylor
series, the difference between these two systems is that Taylor series give us an output
which strictly depends on the input in a particular time. However, Volterra series output
depends on past inputs, in other words Volterra series have memory [29]. The discrete

Volterra series, also called Kolmogorov-Gabor Polynomial (KGP) has the expression:

m

P = Qo + ZCLZ'IJ' + Z Z Qi TiZ -+ Z Z Z QT T 5Tk —+ ... (238)
=1 j

i=1j=1 i=1 j=1k=1



26 State of art

where, x = (z1,%9,...,2,) are the inputs and A = (ag,aq,as,...,a,) are the
corresponding coefficients (weights). The KGP is an universal approximator for non-
linear functions, since it can approximate any discrete function on a compact data set
with the enough polynomial terms, for an specific precision given by the measure of the

Mean Square Error [30]:

MSE = S0~ p(a)f (2.39)

where y; are the known outputs and p(x) is the KGP.

The KGP has an important drawback: it is necessary to have a large number of
samples and computation time in order to calculate all the coefficients a; [28]. In order
to overcome this drawback, Ivakhnenko proposes a new algorithm which approximates
the KGP by using low order polynomials, in an iterative method very similar to the
multilayer perceptron neural network. Building a network layer by layer in a bottom-up
way until, the output of the current layer has a worse performance than the previous
layer. This method does not need so many samples and the time consuming is much
lower. In fact, Ivakhnenko proved that using second order polynomials, the complete
KGP can be reconstructed. This is the key idea behind the GMDH neural network.

The GMDH has a great variety of types, depending on the constructive network
algorithm and elemental function. In the next sections, some of the most representative

ones are summarized.

2.2.2 Combinatorial GMDH

This is the basic GMDH algorithm, also called as COMBI, this algorithm explores all
the possible inputs combinations generating a bunch of models which are tested with the
external criterion. This criterion could be a simple error measure or some metric more
complex. There are criterion that takes into consideration the complexity of the model
(avoiding over-fitting). Combinatorial algorithm uses single-layered structure and the

building process is the next [31]:
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o All summation combinations of input arguments are generated x = 1, x9, ..., T,
p = o + oV,
Yo = aéQ) + (1/52)1’2,
(m) (m) (m) (2.40)

Ym = Gy =+ a1 "T1 4 ay T2

Yam_1 = a((fm*l) + a?m*l)xl + ...+ agm’l)xm

(%)

where a, ~ are the polynomial weights.

o (alculate the coefficients by using least squares error method.

o Check the performance of each partial description by the external criterion with a

test set different than the training set used in the second step.

e Choose the model with the minimal value of the criterion. Also it can be chosen

the best models and apply another criterion to select the final one.

The combinatorial GMDH has the structure shown in Figure 2.9. The number of base

nodes K depends on the number of inputs and it is equal to K = 2™ — 1. For example,

in Figure 2.9 K = 7 since we have 3 inputs. However, if there are 10 the number of nodes

will be K = 1023. This became a problem when the number of inputs is high because

the computational cost of calculate the coefficients of each node is huge.

X, X, X3

Y Y- Ys Ya Ys Ye Y7

Figure 2.9: Example of COMBI GMDH network.
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Ivakhnenko in [31] proposes a recursive method in order to reduce the training time,
based on bordering method [32] [31] which can optimize the calculation of the coefficients

with least squares method:

A= (XTX)'XTY (2.41)

The inversion of the matrix X7 X is the hardest part, taking a look to the defined
polynomial we see that each one is the same to the previous one but with some extra
terms. With the bordering method, it is possible to calculate the inverse in an iterative
form, where knowing the matrix M, = X[ X} it is straightforward to calculate the inverse

of My, which can be expressed in terms of M, as:

Mk my
+1
M= | (2.42)
mg., Qg1
Thus the inverse of M., takes the form
-1 —1 —1
M—l + My m£+lmk+1Mk M ngrl
ML =" Ch1 Cht1 (2.43)
k+1 _mk+1M;1 1 .
Ck+1 Ck+1

where cp11 = ag1 — M1 My, Ymyi1. This way increases the calculus speed of each node

coefficients and thus reduces the computational cost.

2.2.3 Harmonic GMDH

Harmonic GMDH is another algorithm very useful when we works with time series which
show an oscillatory behavior. The base function is composed of the sum of several
trigonometric functions, with different frequencies which do not have to be multiple to
each others:

y=ag+ ki(aksm(wkt) + b (cos(wyt)) (2.44)

where a; and b are the polynomial coefficients and wy, 0 < wy < 7 are the frequencies.
This frequencies are unknown and we cannot use least square errors as before because
this frequencies are nonlinear parameters. There are several calculation methods to find

how many frequencies are needed and estimate their values, such as [31] and [33].

Once the frequencies are known, the calculus of the coefficients in each node can be

easily driven with least square error, since these parameters are linear.
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In article [30] the authors propose an alternative method to deal with oscillatory
processes. Instead of having a trigonometric base functions, they propose to use a

multilayered polynomial network adding as an input several Harmonic Terms of the form:

In this case the frequencies w; are calculated by applying Discrete Fourier Transform
(DFT) to the data. This harmonics terms are added as input variables thus this
trigonometric function are mixed with the data inputs into the polynomial base function.
With this scheme the authors assure that:

1. Polynomials are taken as they approximate better the monotonic curvatures as

well as the discrepancies and gaps in the time series

2. Harmonics are taken as they approximate better oscillating components, spikes,

and critical changes in the series curvature

2.2.4 Multilayer GMDH

This was the first algorithm developed by Ivakhnenko [34] and by far the most popular
one. This algorithm builds up a multilayer structure where each node consists of several
inputs processed by a polynomial and pass the output to the next layer of nodes. The
difference with other algorithms such as neural networks is that the structure of the
network (number of layer and nodes per layer) is not a predefined parameter by the user,

but the training process defines the structure based on internal and external criteria.

Usually the base function of the node is a second order polynomial of the form:

Yy = ap + a12; + asx; + asx;x; + asx? + a5x? (2.46)

Equation 2.46 represents the general form of a bivariate second order polynomial,
where ag, ai, ag, ..., as are the coefficients and x;, x; are two inputs from the data set.

But it is also common the use of first and third order polynomials.

Y = ag + a1x; + azx; (2.47)

2 2 2 2 3 3
Yy =ao+ a1x; + aexj + asr;x; + aax; + asxj + agx;r; + asT;T; + asx;y + agx; (2.48)
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An interesting read about which polynomial order is better for our application can
be find in [35] [36] [37] where the authors study the behavior of these polynomials over
multiples applications.

Whatever is the polynomial selected as base function, the multilayer algorithm works

in the same way:

GMDH construction process

Complete graph Optimum graph

non-selected node

nodes of the optimum GMDH graph

®

O selected node
@

B input

Figure 2.10: Example of multilayer GMDH network.

1. Split the training set into two subsets A and B?. Subset A is used to calculate the
polynomial coefficients of each node. The subset B, called validation set, checks

out the goodness of each polynomial using the external criterion.

2. Make all the possible combination between pairs of inputs. As a result there will
be N(N — 1)/2 nodes. The polynomial coefficients of these nodes are calculated

using Least Squares Error over the subset A.

3. Next step consists in choosing the best nodes. Every node is tested with the
validation set (B) and the external criterion that gives an objective mark to it.

Once the layer nodes are ranked, those with the best marks are selected for the next

3This division is essential in order to avoid the well-known problem of over-fitting, we always have to
avoid use the same set of data for training and testing.
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layer. However, there is a question that has not been answered yet, ; How many
nodes it has to be saved in each iteration?. In most of the cases, this parameter
has to be chosen by the developer, it could be a fixed or a different number each
iteration. The number of selected nodes L; (where i is the layer) affect considerably
the performance since the number of nodes to process in the next step depends
on it. Furthermore, we cannot take very few nodes, since this could leave some

important data out of the process and get a model with a poor behavior.

4. Once we know the best L; nodes we take their outputs as inputs for the next layer
(i +1).

This process is repeated until the minimum value of the external criterion in the
current layer is bigger than the previous layer. This means that the new layer does not
improve with respect to the previous one. Finally, we get a network complex enough
to make good estimations of our problem. Figure 2.10 shows an example of the GMDH

construction, and the final optimum GMDH obtained at the end of the process.

2.2.5 External Criterion

Along the description of the different algorithms has been introduced the importance of
the external criterion, choosing the best nodes of each layer. In the literature there have
been presented different alternatives for this criterion.

The most popular is the so called Regularity Criterion. This criterion is a simple
square error (Equation 2.49) obtained over the samples in the validation set (B) with the

polynomial calculated with the subset A.

SE=3 (ys—0n)° (2.49)

k=1
where yp is the output of sample form the data set B and ¢z is the output of the model
created with the set A for that particular sample. The main disadvantage of this criterion
is the dependency with the data partition made previously, the results could change
greatly depending on this partition.
Several solutions have been planned to face this problem, one of the most popular is
the Bias Criterion. This criterion is based on choosing those polynomials (nodes) more
unbiased, i.e depending less on data partition done. With Bias Criterion the whole data

set has to be divided into two subsets with the same size. Each of these subsets is used
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to build a model and check the performance of this model with the whole training data.

Then the two error measure are subtracted to get the final node score Equation 2.50.

BS = [SEw/a — SEw;s| (2.50)

where SEw/ 4 and SEw,p are the models squared error over the complete training set
W =AUB.

By using this criterion it is possible to achieve nodes with coefficients highly indepen-
dent of the partition taken. However, the bias criterion does not give a measure of how
good is the model, because this metric is a comparison between two errors. Usually this
bias criterion is implemented with others which can measure the error committed.

In our case, we will use bias and regularity criteria in order to get the goodness of

both criteria. In [31] the author explains some others interesting criteria.

2.2.6 Coefhicients Calculation

In order to calculate the polynomial coefficients in the GMDH, we follow the well known
least squares method that can be described as follows: Let D = (x;, yi)i]\il be the set
of samples of the problem data set, and let {f;(z)}2; be a set of functions, linearly
independent, that will be used as a base of the least squares methods. The goal is to

find a function f(z) formed by linear combinations of functions {f;(x)},

f0) = 3 asfs(o), (251

that best represents the samples in D, i.e., in such a way that f(x) minimizes the

root mean square error, defined as:

2
1 N m
RMSE = I Slue =D aifi(ze) ] (2.52)
k=1 j=1
This is equivalent to directly minimize
N m 2
E.=> luye—> a;filz)] , (2.53)
k=1 j=1
leading to
OF

k=1

aa,c - 22 (Zlk - 3 ajfj(fl?k)) (—filxg))=0,i=1,2,...,m. (2.54)
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This is a system of m equations with m unknowns, known as Gauss normal equations.

Their matrix representation is the following:

Sicy fl@e) f(ee) oo Sl fi(mk) fm(ae) | | @ Saiy fi(z)yn
Siey falwr) flxe) oo Xl fa(we) fmae) | | a2 Yaiy fo(@r) Y

| - ' (2.55)
Sher fm(@i)ful@k) - Thoy fm(@e) fm(@n) | Jam] [ SRl fm (@)
Note that Expression (2.55) can be in turn rewritten as
F'.F-A=FT.Yy (2.56)
where:
Hlz)  falz) o fn(2)
o fl(:@) f2(:$2) fm(:@) (2.57)
fHlan) folaw) o fn(en)
a2
A= (2.58)
am
Y1
Y = yf (2.59)
YN
Hence

A=F"-F)y 1. FT.y (2.60)
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2.2.7 Regularized least squares errors

A classical way of avoiding overfitting and obtaining less complex and highly generalizable
models is to include a regularization penalty in the least squares error method [38]. This
leads to the Regularized Average Error (RAE):

2
1 N m 1 M

RAFE = N E Yk — E a;fi(zy) +)\§ E afn, (2.61)
k=1 j=1 m=1

where ) is a parameter that controls the smoothness of the polynomial (the higher A,
the smoothest the polynomial), and should be previously estimated. By optimizing the

RAFE expression, we obtain the following final expression for the coefficients:
A=F"-F+Xx-D)'F'.Y (2.62)

2.2.8 Multicollinearity

One of the problems that arises with GMDH, and particularly with multilayer GMDH,
is the so-called multicollinearity issue [39]. This problem occurs when the independent
variables in a regression model, are highly correlated, and they may create instabilities
in the regressor coefficients, that produce high unexpected errors with small data or
model changes. This is common with multilayer GMDH, since it tends to produce inputs
highly correlated in the last layers where the inputs for the regressors are a mix from the
original ones. The use of regularized techniques like the one described in the previous

section can help minimize the multicollinearity problem.

2.3 Evolutionary Algorithms

Evolutionary algorithms try to simulate the natural selection process explained by
Darwing in 1859, through which a population of living beings evolves during generations
selecting in each one the best fitted individuals. In other words, the individuals with best
features for a particular environment are more likely to survive and to have offsprings
for the next generation. This concept is an optimization algorithm itself, where each
individual is a possible solution for a given problem. Thus evolving the population during
a few generation the algorithm is able to find good solutions with a low computational
cost.

Evolutionary computation starts in the 1950s when biologists and computer scientists
studied the evolutionary process in nature to find a system who can reproduce that
behavior. It was not until the 1960s when Rechenberg [40] introduced the Evolutionary
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Strategies (ES), a simple evolutionary algorithm that have one single individual and
mutates this individual in order to generate a new one. An evaluation function (fitness
function) scores both individuals, the best one passes to the next mutation and the other
is discarded. Later the algorithm has evolved and there are a great amount of different
approaches based on the Rechenberg principles [41].

Almost at the same time, a group of computer scientists L.J. Fogel, A.J. Owens
and M.J. Walsh [42] developed another evolutionary algorithm called Evolutionary
Programming (EP). This approach is quite similar to evolutionary strategies, mutation
is also the only operator that evolutionary programming has. They also are Phenotypic
algorithms because can work directly with system parameters instead of create strings
representing the system parameters to be optimized (genotypic algorithms). The main
difference is that evolutionary programming starts with a population of more than one
individual (L), mutation is applied to each individual and after that the population
increases to 2 - L. The fitness of each individual is calculated and the best L individuals
are selected for the next generation.

Evolutionary programming and evolutionary strategies are two algorithms which have
been applied during decades and today are still being applied in different optimization
problems. However, they have a drawback which is the long convergence time since
mutation operator is slow finding good solutions. This drawback is overcome by genetic
algorithms and the crossover operator. The first approach to genetic algorithm was
proposed in 1970s by J. Holland [43], who describes an algorithm called fundamental
theorem of genetic algorithms. Genetic algorithms use also mutation and add two
new operators crossover and selection. Figure 2.11 shows a block diagram of a genetic

algorithms with all the steps:

1. Algorithm starts with a population of L individuals (chromosomes) generated

randomly.
2. The fitness function evaluates the whole population.

3. Selection operator chooses K chromosomes from the entire population. The fitter

the chromosome, the more probability to be selected.

4. Crossover operator generates L new chromosomes by crossing in pairs the K

chromosomes selected in the last step.

5. These entire new population pass throw the mutation operator. The mutation
operator does not change all the individuals, instead of that it has a probability of

mutation which defines the number of chromosomes to be mutated.
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Figure 2.11: Evolutionary Algorithm diagram.

6. The fitness operator evaluates these new chromosomes, if the stopping criterion is
satisfied the algorithm finish and the best chromosomes conform the best solution

found. Otherwise, the process is repeated.

EA are used as search algorithm in problems where there are several parameters to be
tuned. Each chromosome represents a specific value for those parameters. The success of

the EA depends on how these parameters are codified: binary, real, natural codification,
etc.

These is a general description of EA, this kind of algorithm are very problem dependent
that is why there are too many different possible configuration depending on the operators
implementation, fitness function, chromosome codification, etc. In each chapter there are

a description with the operators and parameters values used in each EA implementation.
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2.4 Hyper-Heuristics

Many times the heuristic building process requires complex parameter tune process or the
building process depends greatly on the specific problem. Because of this tricky process
some inexperience users avoid using more complex machine learning systems and employ
simple heuristic easier to implement [44]. Hyper-Heuristics is a new search methodology
which has appeared to overcome this problem and creates more generalizable systems.
Hyper-Heuristics try to find the configuration or combination of heuristics more suitable
for a given problem instead of solving it directly. In other words "a heuristic to choose
heuristics" [45].

The first approach to an HH algorithm was made in 1960s by Crowston et al in [46].
Similar approaches were developed in the 80’s and 90’s. It was not until early 2000s
when the term HH was first time mention in a paper by Cowling in [47]. Since then, the
popularity of this concept began to increase and it has been applied to many problems,
such us production scheduling [48], timetable and rostering [44], vehicle routing [49],
channel assignment in cellular communication [50], etc.

According to [51] "A hyper-heuristic can be seen as a (high-level) methodology
which, when a particular problem instance or class of instances, and a number of low-
level heuristics (or its components) produces an adequate combination of the provided
components to effectively solve the given problem(s)". In order to classify Hyper-Heuristic
methods there are two different criteria, first one based on the nature of the search and
the other based on how the HH receives the feedback. According to the first criteria
Hyper-heuristic can be divided into two groups: HHs for heuristic selection where the
HHs look for the best heuristic from an existing set of heuristics and HHs for heuristic
generation which are able to build new heuristics employing parts from existing ones.
Other classification can be done taking into account the nature of the feedback received
by the HH. On the other hand, the HH is called online when receives the feedback
during the solving process and HH offline are those whose feedback is given by the result

of a set of training instances.

2.5 Statistical Hypothesis Tests

In order to further study the performance of the different algorithms proposed in this
Thesis, it have been carried out statistical comparative analysis. These tests allow
concluding if a new algorithm approach has statistical difference on performance compared
to the other methods. This section introduces a brief explanation of those methods that

will be applied throughout the Thesis.



38 State of art

2.5.1 Student’s t-Test

Student’s t-test (or just t-test) is a parametric hypothesis test which checks whether two
data set have statistically different means, assuming that the samples means follows a
normal distribution. This assumption of normality could be a limiting factor for some
data set whose distribution is unknown. However for large sets of data the mean can
be considered distributed normally by the central limit theorem [52]. There are several
implementations of t-test to compare two different samples, in this Thesis is applied
paired t-test, because of the sample dependence [53]. The paired t-test metric is given

by the following expression:

ul

t =

(2.63)
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where d and s, are the mean and standard deviation of the difference between the samples
(d; = x; — y;), and N is the sample size. T-test is a ratio between the means difference
and the standard deviation [54].

After getting the t-test value, we have to check out whether the value is large enough
to consider different the two set of data. We need to set a significance level o for the test.
This value is usually set as o = 0.05. Looking at this value in standard normal table we

set that ¢;_,/» = 1.9673. This means that we can reject the null hypothesis when

‘t’ > tl_a/g (264)

which means a p-value less than 0.05.

2.5.2 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test (KS-Test) is a non-parametric test, this means that it is not
necessary to do any assumption about data distribution. The test can compare a data
set with a probability distribution (one sample KS-Test) or compare two samples (two
sample KS-test). In our case we use one sample KS-Test to further probe the normality
of the samples. Thus it can be decided to use a paired t-test when the KS-Test confirms
that the mean data set follows a normal distribution. Using this test, it is also possible
to get graph and visualize if the data has or not a normal distribution. Figure 2.12 shows
a comparison between an example data set taken it from MATLAB ®[55] and a normal

distribution.
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Figure 2.12: Distribution comparison between an example data set and the standard
normal distribution.

2.5.3 Sign Test

Sign test is also another non-parametric statistical test [56], which compares the perfor-
mance of the algorithms in terms of wins, loss and ties. The null hypothesis establishes
that one algorithm estimation sample has a probability of P = 0.5 of being better
than the estimation from the other algorithm. Suppose we have two predictors and the
results on terms of win-loss are 13-2. The results are distributed according to a binomial
distribution, so the probability of get a result as extreme as this one is given by the sum

of probabilities of all these cases:
o Algorithm #1 win 15 loss 0, P = 3.0518FE — 05.
o Algorithm #1 win 14 loss 1, P = 4.5776 E — 04.
o Algorithm #1 win 13 loss 2, P = 3.2043F — 03.
o Algorithm #2 win 15 loss 0, P = 3.0518E — 05.
o Algorithm #2 win 14 loss 1, P = 4.5776 E — 04.

o Algorithm #2 win 13 loss 2, P = 3.2043F — 03.
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Thus P = 0.007385 is the probability of get a result as extreme as the one of the
example. With a level of significance of e = 0.05 we can reject the null hypothesis. This
test is applied when is not possible to ensure that our sample has a normal distribution,

taking into consideration the result of Kolmogorov-Smirnov Test.

2.5.4 Friedman Test

Friedman test [57] is another non-parametric test, similar to one-way ANOVA. Friedman
test null hypothesis states equality of medians between the compared algorithms [56].
This test does not work directly with the samples values, but it works with ranks values.
Therefore we have to convert the original results to a rank, rﬁ- where ¢ = 1,..., K is the
algorithm and 7 = 1,..., N refers to the sample. The best algorithm is ranked with 1,
the second with 2 and so on. In case of ties, it is recommended to use the average rank.

Once we have ranked the results, it is apply the following expression:

B 12 K N(K +1)\
P =N RETD = (Ri - 2> (2.65)

where R; = % Zj-v:l 'r’; Friedman statistic is distributed according to a x? distribution
with K — 1 degrees of freedom.
Iman and Davenport [58] proposed a derivation in Friedman statistic in order to

correct the undesirable conservative behavior:

(N —1)x?
N(K —1) — 2

If one by one, an algorithm is better than an specific control algorithm it is necessary

Fip =

(2.66)

a post-hoc procedure. This post-hoc test give us a p-value to see if the null hypothesis
can be rejected or not. One approach is the conversion of the rankings computed by each

test by using a normal approximation [56][59]:

__ Ri—R,

K(K+1)
6N

(2.67)

This simple post-hoc procedure does not take into consideration any adjustment in «a
due to the effect of multiple comparison. We use the Holland procedure [60] as p-value
adjusted method. Holland adjust a with a process which consists in sorting the p-values
(p1,D2, - - -, pr) from the smallest to the largest. The Holland test rejects the hypothesis
(Hy, Ho, ..., Hg) if %’ is the smallest integer so that p; > 1 — (1 — )%



Chapter 3

Evolutionary Optimization of
Multi-Parametric Kernel e-SVR

In Section 2.1 we explain deeply the theory behind the Support Vector Machine for
classification and regression (SVR). However, note that calculation of the parameters C,
€ (in case of regression) and v (in case of Gaussian kernel) is an open question which
was not tackled in that description. These parameters also called, hyper-parameters,
cannot be calculated by an exact method, so a search algorithm must be applied in order
to get the best possible set. It is important to note that the training time heavily depends
on the choice of these hyper-parameters so the more efficient is the search algorithm the

better performance of the SVM in terms of computation time.

Usually, the search algorithms used to obtain SVM hyper-parameters are based on
Grid Search (GS) [61], where the search space of parameters is divided into groups of
possible parameters to be tested (an uniform partition of the search space is generally
considered). This algorithm can be easily implemented, but it has an important drawback:
since the number of combinations is large, the training time becomes very high, even

considering only the three standard hyper-parameters defined before C, € and ~.

Different works have dealt with the problem of considering different kernels in SVMs
in general ([62], [63], [64], [65]) and also specifically for SVR algorithms ([66], [67], [68]).
Depending on the problem, the choice of the kernel (or group of kernels) function is key
to obtain good results. As mentioned, several works have tackled the inclusion of multi-
parametric kernels in SVMs. There are a number of approaches to multi-parametric
kernel optimization in SVM that use GS [67] or gradient-based approaches [69][70],
though it has been seen that these approaches have some problems such as convergence
to suboptimal solutions. For this reason, evolutionary-based approaches are the most
used techniques in the optimization of multi-parametric kernel, obtaining good results

in this task [71][72]. In fact, there are different works in the literature tackling similar
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problems of multi-parametric kernels optimization that have different names, such as
the optimization of anisotropic Gaussian Kernels [63][73], where a different  parameter
is used in each feature of the input data, or Mahalanobis kernels [74] [75] that consider
the same idea, but formalized by means of the Mahalanobis distance and the associated
kernel. These approaches are focussed on the optimization of SVMs for classification
problems. In [76] several evolutionary strategies are applied to a problem of tuning
multi-parametric generic Gaussian Kernels, considering also a SVM for classification.
In [64] several evolutionary strategies are used to solve a slightly different problem of
kernel optimization with multiple parameters: in this case, the authors propose the linear
combination of several Gaussian Kernels, each one with a different v parameter. This

approach is called by the authors as multi-scale kernel.

A generalization of the standard Gaussian kernel has been applied to SVR machines
in this Thesis. This approach follows the methodology described in [63][74][75] for classi-
fication problems, where the Gaussian kernel function depends on several ~; parameters,
instead of considering only one general +. In this case, each dimension of the feature
space is related to a different v; parameter, i.e, the width of the Gaussian kernels is
different depending on the dimension considered (M dimensions or features in the input
samples). This generalization can be implemented by considering M + 2 parameters in
the SVR (C,e,y;, 7 = 1,..., M). Basically the idea is to maintain the C and e parameters
which define the SVR optimization problem, and M different v parameters, one for each
dimension of the data. This way the final SVR model should be more effective, since it
has better ability to discriminate important data components. Note that the application
of a multi-parametric kernel in SVR involves several important aspects: first, there are
more SVR parameters to be obtained (M-1 more than in the case of the standard SVR
approach). On the other hand, note that GS approach is computationally not affordable
in this case, so meta-heuristic approaches such as evolutionary algorithms can also be
a good option in the SVR case [77], as they have shown in the case of classification
problems [69] [76].

Therefore, in this chapter we propose an evolutionary algorithm to carry out the
complete SVR hyper-parameters search when considering a multi-parametric kernel SVR.
We present the encoding proposed, the different operators that have been applied, and
the validation methodology followed to avoid over-training of the machine. As a novelty,
we also propose a reduction of the hyper-parameters search space by applying different

lower and upper bounds to the multi-parametric kernel.
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3.1 SVR Multi-parametric Gaussian Kernel

The expression obtained in the previous chapter for SVR is the following:

9(x) = (an — Gn)k(x,x,) + b (3.1)

n=1

In this chapter we will work with a Gaussian kernel, whose regular expression is:

K(x,y) = expy(|[x - yl*) (3.2)

Considering a multi-parametric Gaussian kernel function, with different v’s for each

feature of the input space:

M

K(x;,%;) = exp (— S Y (@im — Tjm) (Tin — x]n)> (3.3)

m=1n=1
where M is the number of dimensions in the feature space, 7,,, represents the width of
the Gaussian function in each direction in the feature spaces. Without loss of generality,
in this work we consider that the matrix with values of 7,,, is a diagonal matrix, so the

simplified Gaussian kernel considered is then:

K(x;,%x;) = exp (— 2—:1 Yo (i, — $jm)2> (3.4)

Thus, the hyper-parameter of the proposed multi-parametric kernel SVR are C, ¢
and v, m=1,..., M.

3.1.1 Hyper-parameters search space reduction using theoreti-
cal bounds

Using this model, we carry out a search space reduction for the multi-parametric Gaussian
kernel based in the bounds proposed by [78] for the standard kernel function (only one
v parameter case). Following, the same reasoning we extend the bounds for ~,, to our
multi-parametric Gaussian Kernel.

In [78] the authors study the influence of each hyper-parameter in the estimation

model and the construction process, in order to determine which values are useless:

o Parameter C: It is the regularization parameter which controls outliers weight
into the optimization problem. C' is always positive so the lower bound is C' > 0.
On the other side, when C' is very high the training time increases considerably

because the model has to fit very well each sample in order to have very few outliers.
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Ortiz et al, have found an upper bound based on the relationship between C' and

v, which is defined in this expression:

b b
I N .
1 > K(z,rm)

N—-1
m=1,m%#1

C < ! (3.5)

o Parameter e: This value defines the maximum distance between the estimation
value and the real one without any penalty. For this parameter there is an exact
bound described in [79]. This bound is:

max man
_YiT Y

5 (3.6)

The reasoning behind the bound is straightforward: when € is greater than a half of
the maximum distance between samples, it means that there is not support vector.
Thus the SVM is just the bias parameter and if we increase € the result is the same

as model with a bias.

o Parameter v: This parameter controls the Gaussian width, low values of v means
wider Gaussian and vice versa. According to [78] the maximum value of v is the
one in which the influence between support vectors is negligible. This influence is
considered negligible for a value of 0.1% of the amplitude (A). The closest input
vectors are the most extreme case, so we can find them to calculate the upper
bound:

A-exp(—vy-d?,;) <0.001-A (3.7)

where:
dmin = mini;ﬁjd(xia Xj) (38)
Thus the parameter bound is:

l0g.(0.001)
TS

min

(3.9)

lymaz i5 the highest output value
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In our study case with a multi-parametric Gaussian Kernel we need to extend this

bound to the vector (71, ...,7a). In this case we have the following expression:

M
> Y (Tim — Tjm)? <0.001 - A (3.10)
m=1

Now we isolate the value of one hyper-parameter +; as a function of the rest of

hyper-parameters:

M
10g:(0.001) — 3 p - (Tim — Zjm)?

m=1,m##l
Tl — le)Q

As in [78] the bound of each hyper-parameter in the kernel function is related to
their closest vectors. In this case, related to the closest vectors considering just
the feature m. Note that the previous equation achieves the maximum value if the
rest of 7, parameters are supposed to be zero. In this way, we define the minimum

distance between features as:
Thus the bound for each ~,, is:

.001
< l0g.(0.001) (3.13)

dgmn (xim? xjm)

3.2 Optimization of the proposed multi-parametric
Gaussian kernel function

Grid search is perhaps the most used algorithm in SVR to obtain a good set of hyper-
parameters. GS establishes a grid of possible points to be explored, keeping parameters
which show the best performance in a validation data set. There are recent works in
the literature which have proposed the application of meta-heuristic techniques, such as
evolutionary approaches, to carry out this search [80][81], obtaining good results even in
the case of the traditional SVR with three parameters (C,e and 7). However, note that in
terms of training time it would not be manageable to extend the GS to multi-parametric
kernels, since the number of parameters grows to M + 2 parameters (instead of only 3).

We then propose an evolutionary algorithm to obtain the best possible set of parame-

ters for the multi-parametric Gaussian kernel in SVR. Each individual in the evolutionary
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population is defined to be a vector representing the hyper-parameters (C,e,y1,. . .,ya) in
real encoding.

Several parameters have to be previously defined in order to tune the evolutionary
algorithm, these parameters can heavily affect the performance of the algorithm and
training time. First of all, we have to define the number of individuals in the population,
each individual represents an instance of the vector (C,e,y1,...,7ar). For this implemen-
tation a total of 25 individual are generated randomly at the beginning of the algorithm.
We also have to bound the number of iterations in order to stop the algorithm in case

this does not converge to a solution: this maximum is N = 35.

3.2.1 Fitness

This operator is in charge of the individual evaluation in order to get a ranking of the
best ones of each iteration. As fitness function, we have used the error obtained by
means of a K-Fold cross-validation procedure (note that this is the same scheme used as

validation method in the grid search).

1 1

~ RMSE \/]1V S (Ve 1@2

where Y is the real output, Y is the predicted output by the individual ¢ and N is the

F;

(3.14)

number of samples of the training set. This function has to be executed for every new

individual and before the selection process.

3.2.2 Selection operator

This operator is responsible for generating an intermediate population by selecting
individuals within a population. This selection is done randomly, where the individuals
with better fitness value are more likely to form part of the intermediate population.
The roulette-wheel procedure has been applied as selection mechanism [82] many times
in the literature. The roulette wheel is divided in segments where each one represents
an individual and the size is proportional to the fitness value of the individual, in other

words, the probability of survival is defined to each individual depending on its fitness.

K
Zg:1 F k
Note that these values are normalized between 0 and 1. Once the roulette is defined,

fi (3.15)

we can sample it in order to create the intermediate population with the parents of the

new population.
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Figure 3.1: Example of the two-point crossover implemented.

3.2.3 Crossover and mutation operators

Once the selection has been made, the crossover operator is applied. This operator selects
a couple of individuals and recombine them in order to create a new one by exchanging
their genetic material. The crossover probability has been set to a value of 0.7, so the 70%
of the individuals in the population will be involved in this operator. The individuals of
the population are then chosen in pairs. For each couple, a random number is generated.
If it is less than the crossover probability, the crossover is carried out. The process of
crossover carried out is a two-point crossover. An example of the crossover operation is
in Figure 3.1.

On the other hand, the mutation operator is applied after crossover. In this case, the
probability of mutation is set to 10%. When an individual gene must be modified, a new
random value different from the current one is generated and assigned to that gene. In
this way, diversity in the population is obtained, and possible local minimums can be

avoided.

3.2.4 Elitism

A genetic algorithm attempts to reach to the individual with the highest fitness value.
In order to avoid the elimination of the optimal individual randomly, it is introduced
an operator called Elitism. This operator is based on keep in a privilege position in
the population the best individual of every generation, so that it cannot be deleted or
modified by other operators. Thus it is ensured that the best individual, which has
appeared during the execution survives. In occasions, more individuals are saved in every
iteration of the algorithm. In consequence, it is achieved a high level of goodness in the
populations, since thanks to the elitism there are always high quality genes. On the

other hand, keeping a large number of previous best individuals leads to a poorly diverse
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population and it would be easier to fall into a local minimum. In our Genetic Algorithm,

the three best individuals are kept as elitism operator for the next generation.

3.2.5 Stopping Criteria

We have three different stopping criteria in our algorithm. The first one consists in
evaluating the differences in fitness between the best individual in the population and
the third best one. Then, along the evolution, this fitness difference between the best
and third best individuals are obtained. If this difference is less than T times the first
difference found during at least G generations, we stop the algorithm. Note that this
criterion is related to the diversity in the population of the evolutionary algorithm. This
diversity-based criterion has a drawback: if the initial population is good enough, it is
possible that we cannot reach to the specific reduction in fitness difference between the
best and third best individuals in the population.

In order to solve this point, we introduce a second stopping criterion based on the
best individual in the population, in such a way that if the fitness of this individual
remains constant during I generations, we also stop the algorithm.

The third stopping criterion is based on a maximum number of generations N. If the

algorithm reaches this maximum number of generations, then it is stopped.

3.2.6 Repair Function

When the ~,, values are quite different, it means that the chromosome may be generating
a model with over-fitting in some of the coordinates. In order to keep the difference
between the ~,, parameters of an individual in a reasonable level, a repair function is
used to correct high variations among them. To do this, the repair function adjusts the
value of the different ~,, in order to keep the maximum deviation among them to be less
than a given threshold, in this case 0.2.

Table 3.1 summarizes the evolutionary algorithm specifications.

3.3 Experimental Part

This section presents the experimental part of the chapter, structured in several subsec-
tions: first, we consider different experiments in standard repository databases, where we
discuss the performance of the evolutionary multi-parametric kernel SVR in comparison
to the standard SVR with GS. Section 3.3.1 briefly describes the methodology followed

in these experiments, and Section 3.3.2 contains the results obtained in them. Sections
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Table 3.1: Summary of the evolutionary algorithm parameters.

Population 25
Selection Roulette wheel
Crossover Two-points crossover

Elitism Yes
P. 0.7
P, 0.1
Ym threshold (repairing) 0.2
T 10
G 5
N 35
K 6

3.3.3 and 3.3.4 discuss about two real applications of temperature and ozone forecasts,

using the proposed approach in this chapter.

3.3.1 Simulation methodology

In an initial step, prior to the application of the SVR, all the data sets are treated in
order to homogenize them. First, the samples with missing values of each data set are
eliminated to simplify their treatment, and the non-numerical attributes are substituted
by integer numbers. Then, each data set is divided into two sets, the training and test
sets, by selecting 80% of instances for the training set and the rest (20%) of the instances
for the test set. In a final common step, the data are normalized to zero mean and unit
variance.

In order to further study the performance of the different approaches proposed in this
Thesis, we have carried out statistical tests. The statistical analysis is based on paired
t-test whether the result has a normal distribution (checked with Kolmogorov-Smirnov
test), otherwise we use sign-test. The tests have been running over 5 permutations of
each data set, with 20 runs per permutation for the evolutionary algorithm. The RMSE
and time consumption values presented are the average of these 5 permutations.

Regarding the validation methods for choosing the hyper-parameters, we use a K-Fold
cross-validation with K = 10, i.e., we divide into K folds the train set and evaluate each
fold with the model and training with the rest of the folds. For speeding up the training
of the models for each fold, we have modified the functions related to the matrix kernel in
the LIBSVM library, in such a way that we keep in memory the complete kernel matrix,

and it is only modified when the parameters v,, are changed. This allows calculating
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only one kernel matrix for all K-Fold training and all the range of iterations with the
same -y, parameters.

The experiments have been performed on three different implementations: standard
SVR with three hyper-parameters, optimized with a GS and bounds proposed in [7§]
and two multi-parametric kernel SVR optimized with the proposed EA, one with all the
bounds included the new one proposed for the multi-parametric Gaussian Kernel and
another without the new bounds proposed.

All the experiments performed in this chapter have been running in the same machine:
an Intel Xeon E5645 (6 cores of 2.4 GHz), 12 GB RAM, 500 GB hard disk of 5400 rpm
and Windows 7.

3.3.2 Experiments in standard repository data sets

The data sets considered in this Thesis are forecasting problems obtained from the
UCI machine learning repository [83] and the data archive of Statlib [84]. Table 3.2
shows the main properties of the selected data sets. Mortpollution measures the age-
adjusted mortality rate, taking into account some properties of pollution. Bodyfat
estimates the percentage of body fat determined by underwater weighing and various
body circumference measurements. Betaplasma and Retplasma study the relationship
between personal characteristics and dietary factors, and plasma concentrations of beta-
carotene and retinol which might be associated with increased risk of developing cancer.
Autompg concerns city-cycle fuel consumption in function of parameters of the car.
Housing concerns housing values in suburbs of Boston. Concrete estimates the concrete
compressive strength through the components of the mixture. Finally, Abalone set can be
handled as a multi-classification or regression problem, and predicts the age of abalones
from their physical measurement.

The results obtained with these public repositories with the three different imple-
mentations are shown in Table 3.3. As it was said, we use the standard SVR (with 3
hyper-parameters), optimized with a GS approach as comparison algorithm. In terms
of accuracy, the different approaches have results very close. In 5 of 8 data set the
multi-parametric kernel have lower error than standard SVR, obtaining an error quite
close to the standard SVR with GS in the other 3 data sets. The computation time is
another important factor to be evaluated in this work. As the data sets are sorted by the
number of samples, the increment of training time is evident as the number of samples
grows. Note that the computation time with the evolutionary algorithm is much lower
than the one provided by the GS in the standard SVR, in all the problems tackled. Of

course, this is due to the 