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Abstract

This Ph.D. Thesis elaborates on several novel improvements for two specific
state-of-the-art Machine Learning algorithms: the Support Vector Regression
(SVR) approach, and the Group Method of Data Handling. In the case of
the SVR approach, a new multi-parametric evolutionary SVR is proposed.
This new algorithm takes into account a different value of the γ parameter
for each dimension of the feature space. In this case, it is not possible to
apply a classic grid search, due to computational requirements of such an
algorithm, and therefore in this thesis an evolutionary approach is successfully
applied to obtain the optimal values for these SVR parameters. Regarding
the GMDH network, in this thesis a novel construction algorithm based on
a hyper-heuristic approach is proposed. Hyper-heuristic is a novel concept
related to evolutionary computation, in which the algorithm encodes several
smaller heuristics which can be applied in a sequential fashion to solve a given
optimization problem. In this specific application, several basic heuristic are
encoded in an evolutionary algorithm to form a hyper-heuristic approach
which constructs robust versions of GMDH networks for regression problems.
A final contribution of this thesis is the proposal of new validation methods
to better estimate the performance of regression techniques in data-driven
problems. The idea is to obtain better models from the training phase of the
algorithms, in such a way that the performance in the test set is improved,
mainly in training time and overall performance of the system, with respect
to classical evaluation methods such as K-Fold cross validation, etc. All the
proposed and developed methods of the thesis are experimentally evaluated
in benchmark and real-world data-driven regression problems.





Resumen

Esta Tesis plantea nuevas mejoras sobre dos métodos del estado del arte en
el área de Aprendizaje Máquina: Máquinas de Vectores Soporte para Regre-
sión (SVR) y el algoritmo conocido como Group Method of Data Handling
(GDMH). En el caso de las SVR, se ha desarrollado un nuevo algoritmo
de tipo evolutivo para el entrenamiento con kernel multi-paramétrico. Este
nuevo algoritmo tiene en cuenta un parámetro γ distinto, para cada una de
las dimensiones del espacio de entradas. En este caso, debido al incremento
del número de parámetros no puede utilizarse una búsqueda en grid clásica,
debido al coste computacional que conllevaría. Por ello, en esta Tesis se
propone la utilización de un algoritmo evolutivo para la obtención de los
valores óptimos de los parámetros de la SVR. Respecto a las redes GMDH,
esta Tesis propone un nuevo algoritmo de construcción de estas redes basado
en un algoritmo de tipo hiper-heurístico. Esta aproximación es un concepto
nuevo relacionado con la computación evolutiva, que codifica varios heurísticos
que pueden ser utilizados de forma secuencial para resolver un problema de
optimización. En nuestro caso particular, varios heurísticos básicos se codifi-
can en un algoritmo evolutivo, para crear una solución hiper-heurística que
permita construir redes GMDH robustas en problemas de regresión. Como
contribución final de esta Tesis, se proponen nuevos métodos de validación que
mejoren el rendimiento de las técnicas de regresión en problemas data-driven.
La idea es obtener mejores modelos en la fase de entrenamiento del algoritmo,
de tal forma que el desempeño con el conjunto de test mejore, principalmente
en lo que a tiempo de entrenamiento se refiere y en el rendimiento general
del sistema, con respecto a otros métodos de validación clásicos como son
K-Fold cross validation, etc. Todas las propuestas y métodos desarrollados
en esta Tesis han sido evaluados experimentalmente en problemas benchmark,
así como en aplicaciones de regresión reales.
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Chapter 1

Introduction

In today’s world, it is possible to save all kind of information generated in a company,
University, government, mobile application, etc. This information gives the opportunity to
analyze different phenomena and find new useful applications [1], such as tumor detection,
stock market value prediction, Internet personal advertising, tasks automatization or
improve the decision making in very different areas. In order to get this knowledge, it
is necessary to carefully analyze the data and find out the relationships between our
desired outputs and the input data. This analysis could be carried out with traditional
methods where it is necessary to have an expert on the area who knows or has the ability
to find these relationships. However, this is not always possible because the amount of
data is huge or there is a lack of knowledge in order to build a robust model[2].

Due to this fact, and the tremendous increasing of computation capabilities which has
been producing lately, an area called data mining (currently also known as Big Data) has
became very popular [3]. Data mining allows building an expert system without detailed
knowledge about the area1. Data mining involves two main parts, data preparation and
machine learning. The first part is on charge, among others, of the acquisition, cleaning
and filtering of the data. The set of data created by the first part is then passed to the
ML algorithm, which takes care of the mathematical model building.

This thesis is focused on the improvement of a specific number of ML techniques for
prediction and regression problems. In a more specific way, this work is devoted to the
development of hybrid evolutionary neural computation techniques, in a broad sense
(including as neural computation some approaches such as kernel methods or support
vector algorithms). Hybrid techniques involving evolutionary computation and neural
techniques have been applied to a large amount of classification and regression problems,
obtaining excellent results in many application areas. There is, however, a large margin

1This does not mean that there is not necessary previous knowledge in the area. This knowledge is
necessary in order to provide proper data and guide the Machine Learning (ML) to find the best model.
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of improvement in many of these applications, and it has been tried to build this gap
with this research work, in which it has been put together ML regression algorithms with
evolutionary computation techniques.

Since the number of hybrid approaches involving evolutionary techniques and neural
computation algorithms is huge, we have focused on a reduced set of algorithms, according
to their applicability in real problems. First, we have tried to improve hybrid approaches
involving Support Vector Regression (SVR) approaches. In this case, we have tackled
different problems involving standard and multi-parametric SVR approaches, and how
to improve them with a good design of evolutionary algorithms to estimate their hyper-
parameters. Second, we have also considered a fast-training algorithm called Group
Method of Data Handling (GMDH), where we have tried to improve it with a recently
proposed evolutionary technique called Hyper-Heuristic (HH). All the algorithms proposed
can be interpreted in the frame of ML, with different possible problems to be tackled:
supervised classification or regression, clustering (unsupervised learning), etc. In the
following subsection we revise the main concepts associated to ML methods, we also
outline the main concepts of the algorithms involved in this thesis (though in the next
chapter we provide a full description of these approaches), and finally we describe the
main objectives of the thesis and the structure of the rest of the work.

1.1 Machine Learning Overview

ML is a field of computer science that focuses on pattern recognition and developing
algorithms which are able to learn and create estimation models from data. There are
three main groups of ML algorithms:

• Supervised Learning: These algorithms need a data set formed by a vector of
inputs and outputs which represents the results for a given phenomenon. The aim
is to build a mathematical model based on this experience which will be able to
reproduce with a grade of error the phenomenon behavior. This study is focused in
these kind of learning methods and it is described more deeply in the next section.

• Unsupervised Learning: In this case we have a set of inputs but there is not
any information about the desired outputs, so there is not a feedback which
indicates us about the quality of our approach. The goal of these methods usually
is to find patterns between the data and clustering them in several groups, where
the samples have some similar features.These type of learning is very popular as
recommendation algorithm which suggests you a film, a product to buy, etc. based
on the consumption of people with similar profiles.
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Figure 1.1: Supervised learning process

• Reinforcement Learning: These kind of algorithms are not based on a set of
outputs and/or inputs which have been saved previously. Instead of that, the
algorithm starts from a initial state and apply an action, this action moves the
agent to a new state. Every state has associated a reward that evaluates it. The
aim is to collect the maximum cumulative rewards on a path. This technique
is similar to the way animals acquire new knowledge with a learning based on
punishments and recompenses.

1.1.1 Supervised Learning Methods

Supervised learning methods are the most popular ones in ML and have been applied
to a large amount of different applications. These algorithms are methods which infer
an estimation function by learning from a set of labeled data. These data consist of a
group of samples which are formed by a vector of inputs and the desired output. In
other words, there is an unknown target function (f) which represents the problem,
the learning method tries to generate a model (g) as similar as possible to f , with the
assistance of a data set S = [(x1, y1), . . . , (xN , yN )]. The building process of a supervised
machine is described in Figure 1.1:

1. Data collection. As a first task, a set of relevant information about the phenomenon
is gathered in order to create the training set. The more number of samples the
better to get a generalized function, avoiding over-fitting. However, a big data
size implies large computation time. Therefore it is necessary to look for a trade
off, having enough samples to cover the entire sample space but also keeping an
affordable training time. It is important to have samples distributed uniformly in
the sample space, and not concentrate too many points in a small area and too
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few samples in the rest, since the model will focus on the most populated area and
ignore the rest (over-fitting).

2. Data Preprocessing. Before applying any ML algorithm, we have to clean the data
in order to eliminate errors, missing values, noise, apply some interesting transforms
or just convert alphanumerical values to numerical ones.

3. Training process. This step consists in applying the learning algorithm which in
most cases is based on generating different functions (hypothesis hi(x)) and check
their performance over the training set S. Some algorithms have a finite amount
of hypothesis and it is possible to test all of them. However, most of them have a
function model with several parameters and infinite number of combinations, so
the algorithm tunes these parameters trying to improve the training error until
the algorithm converges or a specific condition is satisfied.

4. Keep the best model: From the hypothesis set generated by the learning process
H = [h1(x), h2(x), . . . , hM(x)], it is selected the best one under a specific criteria.
This best hypothesis becomes our model g(x).

The training process is the core of the ML, step where the learning takes place
generating batch of hypothesis with different configurations. Every hi(x) is tested with
the data set, for each sample xi the hypothesis makes a prediction h(xi) and is compared
with the real value yi.

Each input of the problem is a random variable Xi, so there is a set of random
variables given by X = X1, X2, . . . , XK . Therefore the output is also a random variable
given by Y = f(X), but in most of the cases there is not a deterministic relationship
and there is additive noise which represents unknown variables or measurement error,
hence the output is expressed as Y = f(X) + noise. The learning process tries to find
the function f(X) with the minimum estimation error (EE):

EE = Ex[L(f(X), Y)]. (1.1)

where L(f(X), Y) is the loss function, usually it is applied the squared error loss function
L(f(X), Y) = (f(X) − Y)2. The expected value of the squared error loss function is
given by Equation 1.2:

Ex[L(f(X), Y)] =
∫

(f(x) − y)2P (x, y)dx · dy (1.2)

The solution is f(x) = E(Y|X = x) (see [4]). However, as it was previously said the
distributions Y and X are unknown, otherwise the whole problem would be directly solved.
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The different supervised learning algorithms try to implement a recipe to approximate
f(x) with the available training data S.

In most cases, the training process consists in generating a batch of hypothesis with
different configurations. Every hi(x) is tested with the data set and the predictions ŷ
are compared with y in order to get the In Sample Error (Ein) [5]. Hereby, we can
rank all the hypothesis and choose the one who has the least Ein which is supposed to
be the best approximation of f(x).

Ein = error(hi(x), y). (1.3)

error(hi(x), y) = 1
N

N∑
n=1

(hi(xn) − yn)2. (1.4)

Usually, error(hi(xn), yn) is calculated as the average of the squares differences, also
called Mean Square Error (MSE)2 (Equation 1.4). The MSE is the average of the squared
loss function for a vector of predictions y. This Ein is an approximation of the real
error of hi also called Out of Sample Error (Eout). The Eout is the hypothesis error
committed over samples outside the data set and it has the expression showed in Equation
1.5.

Eout = Ex[error(hi(x), y)]. (1.5)

where Ex[error(hi(x), y)] is the expected value over x. This error cannot be calculated
because the probability distribution X and Y are unknown. Therefore, it is essential
that Ein has a similar behavior to Eout and thus the best hypothesis (g(x)) fulfill
Eout(g(x)) ≈ 0. This simple statement Eout(g(x)) ≈ 0 implies two different conditions:

1. Ein(g(x)) ≈ 0. Error minimization. The estimation function generated has to
have a low level error.

2. Eout(g(x)) ≈ Ein . Generalization: The out of sample error has to be an error
close to the real error. Otherwise, it can be achieved an very small error with the
data set, and then get huge error with samples out of this data set. This problem
is called over-fitting and is one of the main problem that we have to deal in ML.

It is critical to have an error metric which satisfies these two conditions at the same
time, because the selection of the best estimation function depends on it. Most of the

2MSE could not be a good error measure when there are outliers, since large errors have more weights
than the small ones. This problem could be reduced by Root Mean Square Error (RMSE).
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Figure 1.2: In Sample Error and Out of sample error.

times, when we improve one of the condition the other one gets worse, it is necessary to
make a trade off. This trade off is represented in Figure 1.2, the more complex is the
model the less in sample error but also the bigger the out of sample error is. Sometimes
it is better to sacrifice one of the conditions in order to get closer to the other one. For
example, an investor needs to have a model which Eout(g) approximates closely to Ein,
despite of Eout is high. If we are able to build a classification model to invert which has
a high in sample error like for example 52%, but we can assure that this measure is close
to the reality, we can invest a great amount of money in our system and get important
profits.

1.1.2 Over-Fitting and Generalization

A ML algorithm creates an estimator which makes predictions from an infinite input
space to a finite space (classification) (f : Rn → Sm) or infinite (regression) output space
(f : Rn → Rm). The algorithm has to work with a small portion of reality given in
a data set and deal with the problem of building a generalizable model with only the
available information. If the algorithm does not take care about generalization and it is
only focused on getting a small error, the result would be a very good model in terms
of the available data (low Ein), but with a poor behavior with new samples (high Eout).
Figure 1.3 shows how a over-fitted model has a more complex shape which fits to all the
samples so takes into consideration the sample noise too.
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Figure 1.3: Graph with a over-fitted system and the objective function f(x).

In most of the algorithms, the learning process cannot handle the over-fitting and
needs an extra step to care about this problem. In this step the so called Validation
Method is applied in order to measure and penalize this over-fitting, thus it is selected
the model with less Validation error.

A naive approach for the calculation of Ein is to get this estimation error using the
training data, thus we will get a model with a low Ein but we do not know if it is
over-fitted or not. One simple approach could be splitting the data into two subsets: the
training set and the validation set. The training set is used for building the hypothesis
and the validation set for calculating the Ein, thus if a hi(x) is over-fitted the error will
be high. However, this solution does not exploit all the data efficiently and when this
has just a few samples and split into two smalls groups of data, the learning algorithm
could have a poor behavior choosing a poor hypothesis.

This problem could be mitigated with Cross-Validation (CV) methods. These kind of
validation methods use the whole data set for training and validating hypothesis. One of
this methods is Leave-One-Out which consists in training with the whole data set and
leave one sample out to estimate it with the resultant model. This process is repeated N

times (one for each sample), therefore the computational cost of this method is very high
and can make the training part too heavy (see Figure 1.4). There is another method
called K-Fold CV which is less time consuming, instead of leaving just one sample out,
each iteration of the algorithms leaves N

K
samples out so this process has to be repeated

only K times3.

3Leave-One-Out is a particularization of K-Fold with K = N .
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Figure 1.4: Leave One Out cross-validation diagram.

The computational cost of these techniques is high, doing the training process very
heavy. Nevertheless, the advantages of the application of these techniques compensates
this increment on time. In this Thesis we present new validation methods which reduce
considerably this training time.

1.1.3 Overview Machine Learning Algorithm

ML algorithms have became very popular thanks to the explosion of Big Data. Nowadays,
there is a huge amount of different learning algorithms which have been applied to too
many different areas. In this section, we show a summary of some of the most important
techniques:

• Artificial Neural Networks: Definitely, neural networks are the most used and
popular ML algorithms. These networks are based on the behavior of the neurons
in our brain, which are the responsible of the information transmission. A neuron
consists of a set of several inputs called dendrites connected to other neurons,
they receive stimulus from these neurons and transmit them to the core also called
soma. The soma processes the inputs from the different dendrites and elaborates a
response which is transmitted by the axon to other neurons or finally to an organ.
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The artificial neural networks try to replicate this behavior in different ways, the
best known is called Multi-Layer Perceptron (MLP). A Perceptron is the name of
the MLP basic unit. These perceptrons consist of several inputs x = [x1, x2, . . . , xN ],
which are weighted xw = [w1x1, w2x2, . . . , wNxN ]. Then, these weighted inputs
are summed up and the result is processed by an activation function and finally
send this output y = f(∑N

i=1 wixi) to others perceptrons or take it as the final
result. A MLP consists of several layers of these elements, usually the standard
configuration has an input layer, one or several hidden layers and the output layer.
These kind of networks need a training process in order to calibrate the weights
of each perceptron. There are many different methods to calibrate these weights,
being Back-propagation error one of the most popular [6].

Neural networks have been implemented and are currently being applied with
success to a wide range of problems, such as: Rainfall forecasting in Australia [7],
breast cancer detection [8], traffic signal recognition [9], etc.

• Bayesian Networks: Also called as belief networks, is a method to find probabil-
ities which look for the relationship between different variables. Bayesian Networks
are graphical models, where each node of the graph represents a random variable
and the arcs represents the probabilistic dependence between two variables, the lack
of arcs indicates conditional independence. The graph generated is called directed
acyclic graph. For a set of variables X = X1, X2, . . . , XN a Bayesian Network
needs to define the conditional probability distribution (CPD), Θxi,Di

= PB(xi|Di),
where Di ∈ X1, X2, . . . , Xi−1 is the subset of nodes that Xi depends on.

P (Xi|Di) = P (Xi|X1, X2, . . . , Xi−1) (1.6)

With the conditional probabilities and applying the probability chain rule, it can
be calculated the joint probability as

P (X1, X2, . . . , XN) =
N∏

i=1
P (Xi|Di) (1.7)

Bayesian networks are not a black box algorithm: the models created can be easily
interpreted and each output has a probability associated. These conditional proba-
bilities can be calculated in different ways: with a supervised learning algorithm,
Maximum-likelihood, expectation maximization algorithm, Bayesian estimation,
etc. Sometimes the structure of the Bayesian Network is also unknown and we do
not have idea of the relationships between the variables. In these cases, there are
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techniques which are able to deduce possible structures from the data: scored-based
method or constraint-based method.

Bayesian Networks have been used for a long time. NASA developed a diagnosis
health system [10]. But also they are very popular in financial risk management [11].
Furthermore, Bayesian networks have resulted in many others successful techniques
such as Naive Bayes, Hidden Markov Model which is used in Kalman filters that
are very popular for tracking problems and turbo codes which are used in 3G and
4G mobile communications [12].

• Support Vector Machines (SVM): it is a very popular technique based on
Kernel theory. During the learning process, the SVM has to solve a convex
optimization problem with a unique solution, this is an advantage with respect
to Artificial Neural Networks since they can fall into a local minimum during the
learning process. Another advantage of SVM is that the models are less over-fitted
than neural networks, because SVM takes care of generalization during the learning
process. However, SVM also needs an extra regularization process to avoid the
over-fitting. In Chapter 2 the theory behind Support Vector Machines and the
learning process is explained.

• Group Method of Data Handling (GMDH): It is a self-organized technique,
which does not need to tune any parameter before the training process. The
algorithm is this way able to create the model by itself. The algorithm builds
a network of nodes which are the combination of different inputs into a n order
polynomial, one of this polynomial could be the output or the input for a new layer
of polynomials. This process is repeated until a certain condition is achieved. The
Group Method of Data Handling is not such popular as the previous techniques,
however it has two main advantages making inputs filtering and a training algorithm
faster than the other techniques, since it is not necessary to repeat the training for
a set of parameters. Section 2.2 gives a deeper introduction to this algorithm.

• Evolutionary Algorithm (EA): are a set of techniques which are based on the
method of natural selection described by Darwin in 1859, whereby the individuals
best fitted to the environment are the ones more likely to survive and reproduce.
Thus each new generation is best prepared to the environment than the previous
one.

Evolutionary philosophy can be applied to solve optimization problems. The
individuals are candidate solutions to the optimization problem, each of these
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solutions is evaluated with a cost function which gives a mark called fitness. This
fitness is used to assign a probability which indicates how likely is an individual
to be elected for the crossover process, where the new generation is created as a
combination of the chosen individuals. This process is repeated until the algorithm
converge to a solution good enough.

The time consumption of this kind of algorithms is considerably smaller than a
simple brute force algorithm. For this reason evolutionary algorithms have become
very popular and have been applied to very different applications such as: Public
transport network optimization [13], mobile network deployment [14], optimal
positioning of wind turbines in wind farms [15], etc.

1.2 Objectives of the Thesis

As mentioned before, the main objective of this thesis is to develop a number of novel
hybrid approaches involving evolutionary algorithms with neural computation techniques.
Specifically, we propose the following objectives:

1. Obtaining robust approaches for training multi-parametric Gaussian SVR algo-
rithms.

2. Developing novel validation methods for improving standard and also multi-
parametric SVR approaches.

3. Improving the performance of GMDH training algorithms.

All these objectives have been approached by evolutionary computation, with hybrid
solutions which improve the performance of the original algorithms.

1.3 Structure of the rest of the work

The structure of the remainder of the thesis is the following: next chapter summarizes a
good description of the main techniques we use in this Thesis. The main concepts of SVR,
GMDH and EAs are fully described at this point. Chapter 3 describes how to improve
the performance of multi-parametric SVR training (hyper-parameters search) with new
evolutionary algorithms. Chapter 4 extends the improvement of SVR algorithms by
means of proposing novel validation methods, for both standard and multi-parametric
SVR approaches. Chapter 5 discusses the improvement of GMDH algorithms using
hyper-heuristics. All these chapters are intended to be self-explanatory, including a brief
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introduction to the hybrid technique, an experimental section to show the improvement
obtained with the hybrid algorithm, and also some conclusions that can be extracted
in each chapter. Chapter 6 provides some final remarks and future lines of research,
whereas this thesis is closed with the Appendix A and B where the main contributions of
the work (in terms of publications and alternative research production) are presented.



Chapter 2

State of art

2.1 Support Vector Machines

Support vector machines are a robust methodology in statistical machine learning that
have been successfully applied to solve classification and regression problems in several
fields. The theory of support vector machines was developed by Vapnik and his team
in AT&T [16][17]. The reason behind the popularity of the SVM is the structural risk
minimization, which not only takes care about fitting the problem, but also its over-fitting.
The next subsections explain the SVM theory. For further information about SVM the
reader is encouraged to review [18] [19] [20].

2.1.1 Introduction to SVMs

Let suppose the classification problem shown in Figure 2.1, there are two different classes:
red triangles and blue circles. It is straightforward to find a line which separates the
data perfectly into two classes. However there are multiples lines which make a perfect
separation (see Figure 2.1). Each separation line shown in Figure 2.2 does not have
classification error, but which one of the three separators is the best? Intuitively we
would choose the one with the largest distance between the two groups of samples. This
reasoning makes the solution more generalizable for future samples, minimizing futures
over-fitting problems.

wT x + b = 0 (2.1)

Equation 2.1 represents a general hyper plane h where w = (w1, w2, . . . , wM) is the
vector of weights, x = (x1, x2, . . . , xM) is the vector of inputs and b is the offset. A
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Figure 2.1: Example of classification problem.

Figure 2.2: Perfect classifiers.
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support vector machine algorithm tries to find the hyper-plane with the largest distance
between classes. The distance between a sample and a given hyper plane is expressed as:

d(x, h) = |wT x + b|
||w||

(2.2)

Since in a classification problem yn = ±1 and yn(wT x + b) ≥ 0 when it is a separable
problem:

|wT x + b|
||w||

= |yn(wT x + b)|
||w||

= yn(wT x + b)
||w||

(2.3)

The aim is to maximize the distance between the hyper plane to the closest point,
expressed in Equation 2.4. The solution of this optimization problem is not straightfor-
ward, however it can be set minn[yn(wT x + b)] to 1 and this converts Equation 2.4 in
a more straightforward problem [18]. Furthermore, maximize the inverse of the weight
is equivalent to minimize the 1

2wT w, which is an easier problem (later we will see the
reason for the 1

2) . Finally, we have to deal with an optimization problem expressed in
Equation 2.5.

arg max
w,b

= { 1
||w||

min
n

[yn(wT x + b)]} (2.4)

minimize: 1
2wT w,

subject to: min
n=1,...,N

yn(wT xn + b) = 1
(2.5)

The equation of constraint can be modified for a new one which makes the problem
easier to solve. This new constraint is yn(wT xn + b) ≥ 1 for n = 1, . . . , N . The solution
for the new optimization problem (Equation 2.6) it is also a solution for Equation 2.5,
since the nearest point xk satisfied yn(wT xk + b) = 1 otherwise w would not be the
minimum.

minimize: 1
2wT w,

subject to: yn(wT xn + b) ≥ 1 (n = 1, . . . , N).
(2.6)

Those points which satisfy the condition yn(wT xn + b) = 1 are the ones that define
the maximum margin and are called support vectors. This subset of points has all
the necessary information to get the optimum hyper plane, if the rest of the points are
removed and just kept the subset with only support vectors the result of solving the
optimization problem would be exactly the same.
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Figure 2.3: Best linear classifier for a non separable data.

2.1.2 Non Separable Data

So far we have been talking about an idyllic world where the data is linearly separable.
However, most of the times this is not the case and the data is not separable (see
Figure 2.3), so we have to find the best hyper plane which makes fewer mistakes. This
means that the margin would be violated for some data samples, that is why is called
soft-margin. We introduce a new variable ξ which represents the amount exceed for
each point. Equation 2.7 represents the so called soft-margin optimization problem.

minimize: 1
2wT w + C

N∑
n=1

ξn,

subject to: yn(wT xn + b) ≥ 1 − ξn (n = 1, . . . , N) and ξn ≥ 0.

(2.7)

The objective function has a new term C
∑N

n=1 ξn which is the sum of all the excesses
multiplied by cost of this margin violation C. This new penalty parameter C is defined
by the user. A large value of C means a heavy penalization and the margin would be
small with very few violations, otherwise when C is small the margin would be larger. A
very small margin could produce over-fitting so it is important to define carefully this
value.
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2.1.3 Non Linear SVM

So far we have been working with linear problems, but most of the time the data is not
linearly separable. Figure 2.4 represents a problem which cannot be solved by linear
SVM. However, it is possible to work with the same philosophy of SVM by applying a
transformation Φ : Rd → Rd in order to move the data into a higher dimension where
they could be linearly separable [20]. Figure 2.5 shows the transformation into a higher
dimension space where the problem is linearly separable.

Figure 2.4: Non linear data set.

Consider a function Φ : Rd → Rd which transforms the data from the input space X
to the new transformed space Z. This new data set will be the input for our SVM, and
all the theory before still remains the same. Hence, the optimization problem can be
rewritten as Equation 2.8, where u is a new vector of weights different than w because
in this new feature-space we get a completely different hyper plane.

minimize: 1
2uT u + C

N∑
n=1

ξn,

subject to: yn(uT Φ(xn) + b) ≥ 1 − ξn (n = 1, . . . , N) and ξn ≥ 0.

(2.8)
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Figure 2.5: Example of a linearly separable problem in the new transformed space.

Equation 2.8 is an example of quadratic programming problem. In order to obtain
the solution we can work with Lagrange multipliers [21]. Equation 2.9 is the Lagrange
function of our optimization problem.

L(u, b, ξ, α, µ) = 1
2uT u + C

N∑
n=1

ξn −
N∑

n=1
αn(ξn − 1 + yn(uT Φ(xn) + b)) −

N∑
n=1

µnξn (2.9)

Minimize this Lagrange function is similar to optimization problem 2.8. However, this
new approach with KKT [22] conditions gives us the tools to solve easily the optimization
problem. The KKT conditions should be satisfied for constrained optimization problem,
in case of a convex problem like the SVM the KKT conditions are necessary and sufficient.
These are the KKT conditions:

• Stationarity:

∇u,b,ξL(u, b, ξ, α, µ)|u=u∗,b=b∗,ξ=ξ∗,α=α∗,µ=µ∗ = 0 (2.10)

• Complementary slackness:

αnyn(uT Φ(xn) + b) = 0
µnξn = 0

(2.11)
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Stationarity condition establishes that the derivative of L(u, b, ξ, α, µ) respect to u, b

and ξ, has to be zero. Hence, applying this condition we get next useful equations:

∂L

∂u
= u −

N∑
n=1

αnynΦ(xn)

u =
N∑

n=1
αnynΦ(xn)

(2.12)

∂L

∂b
=

N∑
n=1

αnyn = 0 (2.13)

∂L

∂ξn

= C − αn − µn (2.14)

L(α, µ) = −1
2

N∑
n=1

N∑
k=1

ynΦ(xn)αnykΦ(xk)αk +
N∑

n=1
αn (2.15)

Equations 2.12, 2.13 and 2.14 allow simplifying the expression 2.9 leaving the equation
in terms of the Lagrange Multipliers αn as the only unknown variables. This new
representation is called the dual problem1, as in Equation 2.5 this dual representation
takes the form of a quadratic programming of αn. The problem has changed from one
with M variables (input dimension) to a problem of N variables (number of inputs).
According to Bishop [18] this change may be seem disadvantageous. However, this new
representation allows the SVM working with kernels and it performs efficiently in feature
spaces whose dimensionality exceeds the number of data points. In order to get the
solution to the primal problem we must maximize L(α, µ) 2, therefore the optimization
problem has this new form:

maximize: − 1
2

N∑
n=1

N∑
k=1

ynΦ(xn)αnykΦ(xk)αk +
N∑

n=1
αn,

subject to: αn ≥ 0,∑N
n=1 αnyn = 0.

(2.16)

1Equation 2.8 is the primal problem.
2See [23][21] to understand why the dual problem has to be maximized
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We apply a QP-solver to the problem 2.16 to solve this new dual formula. After that
we will have the solution α̂ and we can easily compute u :

u =
N∑

n=1
ynα̂nΦ(xn) (2.17)

At least one of the sample data will be a support vector so that we can use the KKT
condition to get the value of b:

ys(uΦ(xs) + b) = 1 (2.18)

Solving b:

b = ys −
N∑

n=1
ynα̂nxnxs (2.19)

Finally, we have solved the dual problem and the estimation function has the next
expression:

g(x) = sign(uT Φ(x) + b) (2.20)

g(x) = sign(
N∑

n=1
ynαnΦ(xn)Φ(x) + b) (2.21)

At first glance, we see that the dual problem and estimation function always depend
on the inner product Φ(xn)Φ(x). In order to avoid applying the transform to the whole
data set and store them, it is used Kernel theory (see Equation 2.22).

g(x) = sign(
N∑

n=1
ynαnK(xn, x) + b) (2.22)

Kernel functions allow applying the inner product in the transformed space Z to
inputs from X , without the transformation Φ to the whole data set, just applying directly
the kernel function to get the inner products. There is a large amount of Kernels, next
lines summarizes some of the most popular ones:

• Gaussian radial basis function: Probably the most employed kernel in the literature,
it takes the form:

K(x, y) = e( ||x−y||2

2σ2 ) (2.23)
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where ||x − y|| is the Euclidean distance between x and y, and σ is a parameter
which control the kernel width. For the rest of the text it is substituted γ = 1

2σ2 in
order to work with a simpler kernel expression.

K(x, y) = e(γ||x−y||2) (2.24)

• Polynomial: The definition for n-degree polynomial kernel:

K(x, y) = (xT y + c)n (2.25)

Usually, the polynomial degree is n = 2, since polynomials with a degree greater
than 2 are more likely to have over-fitting problems.

• Sigmoid:

This kernel comes from the Neural Networks where the sigmoid function is the
most popular activation function.

K(x, y) = tanh(αxT y + c) (2.26)

Parameter α controls the slope of the function and c is a constant.

2.1.4 Support Vector Machines for Regression

Support Vector Machines can be also applied to regression applications. The theory is
almost the same, there are just a few differences that are clarified in this section.

Similar to the case of non separable data with the margin violation, we have to take
into consideration the error and minimize it. Furthermore, in order to keep the sparseness
of the support vector machine an ϵ-insensitive loss function similar to the Figure 2.7 is
applied to measure the error committed:

Lϵ(x) =

 0 if |wT Φ(xn) − yn| ≤ ϵ

|wT Φ(xn) − yn| − ϵ otherwise
(2.27)
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Figure 2.6: Support vector machine with Gaussian Kernel

Figure 2.7: Linear ϵ-insensitive Loss Function

Two slack variables are defined to measure this ϵ-insensitive error, ξn ≥ 0 and ξ̂n ≥ 0.
Where ξn > 0 correspond to points for which yn > g(xn) + ϵ and ξ̂n > 0 correspond to
points for which yn < g(xn) − ϵ. These changes leave the objective function as:

minimize: C
N∑

n=1
(ξn + ξ̂n) + 1

2 ||w||2

subject to:
yn ≤ wΦ(xn) + b + ϵ + ξn,

yn ≥ wΦ(xn) + b − ϵ − ξ̂n

ξn, ξ̂n ≥ 0

(2.28)
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Doing the same process done previously with SVM for classification, we can apply
the KKT conditions and get the dual representation of the SVR problem.

L(w, b, ξ, ξ̂, ϵ, α, α̂) = 1
2wT w + C

N∑
n=1

(ξn + ξ̂n) −
N∑

n=1
αn(wΦ(xn) + b − yn + ϵ + ξn)

+
N∑

n=1
α̂n(wΦ(xn) + b − yn − ϵ − ξ̂n) −

N∑
n=1

(ηnξn + η̂nξ̂n)

(2.29)

∂L

∂w
=w −

N∑
n=1

αnΦ(xn) +
N∑

n=1
α̂nΦ(xn) = 0,

w =
N∑

n=1
(αn − α̂n)Φ(xn)

(2.30)

∂L

∂b
=

N∑
n=1

(α̂ − α) = 0 (2.31)

∂L

∂ξn

= C + αn − ηn = 0 (2.32)

Equations 2.30, 2.31 and 2.32 are replaced in 2.29. Then the Lagrangian is reduced
to a simpler expression:

L(α, α̂) = −1
2

N∑
n=1

N∑
j=1

(αn − α̂n)(αj − α̂j)Φ(xn)Φ(xj) +
N∑

n=1
yn(αn − α̂n) − ϵ

N∑
n=1

(αn + α̂n)

(2.33)

The dual variables η, η̂ have been removed, thus the optimization problem has the
form:

maximize: − 1
2

N∑
n=1

N∑
j=1

(αn − α̂n)(αj − α̂j)Φ(xn)Φ(xj) +
N∑

n=1
yn(αn − α̂n) − ϵ

N∑
n=1

(αn + α̂n)

subject to:
∑N

n=1(αn − α̂n) = 0
αn, α̂n ≥ 0

(2.34)
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Figure 2.8: Support vector for regression with epsilon - insensitive function.

Solving this dual problem we get the values αn∗, α̂n∗ and they can be replaced on
2.30 to get the value of w:

w =
N∑

n=1
(αn ∗ −α̂n∗)Φ(xn) (2.35)

Hence, the expression for SVR model is:

g(x) =
N∑

n=1
(αn − α̂n)k(x, xn) + b (2.36)

Again, it is necessary to calculate the value of b which is calculated applying Karush-
Kuhn-Tucker slackness condition over a support vector (ξn = 0, ξ̂n = 0). Finally, the
regression model is completely defined.

b = yn − ϵ −
N∑

m=1
(αm − α̂m)k(xn, xm) (2.37)

2.1.5 Training Method for Support Vector Machines

A Quadratic Programming problem (QP) can be solved in many ways, however there is
one method that stands out over every any other for solving Support Vector Machine
QP problem. This method is called Sequential Minimal Optimization (SMO). SMO is an
algorithm proposed in 1998 by Platt in [24] which solves the Support Vector Machine
optimization problem in a very fast way in comparison with other previous methods as
chunking algorithm proposed by Vapnik in [25].

SMO divided the QP problem in the smallest possible optimization problems. Each
one of this problems involves only two Lagrange multipliers. The algorithm focuses on
one sub-problem and tries to find the optimal values for the two multipliers. The solution
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is calculated analytically instead of numerically, and the process is very fast and that is
why the whole process is very quick.

For SVM training we use an open source library called LIBSVM developed by Chang
and Lin [26] and implements a SMO-type algorithm proposed in [27] which enhance the
original one. These library is able to train SVM for classification and regression. It is
implemented in Java and C++, but also has numerous interfaces and extensions for
Matlab, Weka, Python, etc. For all these reasons this library has been chosen to work
with SVM in this Thesis.

2.2 Group Method of Data Handling

Group Method of Data Handling is a self-organized heuristic technique that was developed
in the earliest sixties by Ivakhnenko [28]. Self-organized methods do not need a model
structure previously defined by the user, but is automatically defined by an algorithm
which builds the model based on the cause and effect relationship. Thus, the model is
constructed just with the data and not with any personal assumption about the network
structure.

The learning algorithm creates a set of elementary nodes whose inputs are the data
or the outputs of others elementary nodes, these inputs are processed by a base function
f(x) which gives the node output. This algorithm increases the complexity of the model
each iteration, until a certain criterion reach a minimum which means the model has
an optimal degree of complexity. This external criterion has to take care not only of
the estimation error but also of the over-fitting, otherwise the model will perform poorly
with new samples.

Next section describes with detail the fundamental of GMDH and different kind of
GMDH algorithms.

2.2.1 Introduction to GMDH

It is well known that the relationship between any sets of input-output variables can be
approximated by Volterra functional series. Volterra series are very similar to Taylor
series, the difference between these two systems is that Taylor series give us an output
which strictly depends on the input in a particular time. However, Volterra series output
depends on past inputs, in other words Volterra series have memory [29]. The discrete
Volterra series, also called Kolmogorov-Gabor Polynomial (KGP) has the expression:

p = a0 +
m∑

i=1
aixj +

m∑
i=1

m∑
j=1

aijxixj +
m∑

i=1

m∑
j=1

m∑
k=1

aijkxixjxk + . . . (2.38)
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where, x = (x1, x2, . . . , xm) are the inputs and A = (a0, a1, a2, . . . , am) are the
corresponding coefficients (weights). The KGP is an universal approximator for non-
linear functions, since it can approximate any discrete function on a compact data set
with the enough polynomial terms, for an specific precision given by the measure of the
Mean Square Error [30]:

MSE = 1
N

N∑
i=1

(yi − p(xi))2 (2.39)

where yi are the known outputs and p(x) is the KGP.

The KGP has an important drawback: it is necessary to have a large number of
samples and computation time in order to calculate all the coefficients ai [28]. In order
to overcome this drawback, Ivakhnenko proposes a new algorithm which approximates
the KGP by using low order polynomials, in an iterative method very similar to the
multilayer perceptron neural network. Building a network layer by layer in a bottom-up
way until, the output of the current layer has a worse performance than the previous
layer. This method does not need so many samples and the time consuming is much
lower. In fact, Ivakhnenko proved that using second order polynomials, the complete
KGP can be reconstructed. This is the key idea behind the GMDH neural network.

The GMDH has a great variety of types, depending on the constructive network
algorithm and elemental function. In the next sections, some of the most representative
ones are summarized.

2.2.2 Combinatorial GMDH

This is the basic GMDH algorithm, also called as COMBI, this algorithm explores all
the possible inputs combinations generating a bunch of models which are tested with the
external criterion. This criterion could be a simple error measure or some metric more
complex. There are criterion that takes into consideration the complexity of the model
(avoiding over-fitting). Combinatorial algorithm uses single-layered structure and the
building process is the next [31]:
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• All summation combinations of input arguments are generated x = x1, x2, . . . , xm.

y1 = a
(1)
0 + a

(1)
1 x1,

y2 = a
(2)
0 + a

(2)
1 x2,

...
ym = a

(m)
0 + a

(m)
1 x1 + a

(m)
2 x2

...
y2m−1 = a

(2m−1)
0 + a

(2m−1)
1 x1 + . . . + a(2m−1)

m xm

(2.40)

where a
(k)
i are the polynomial weights.

• Calculate the coefficients by using least squares error method.

• Check the performance of each partial description by the external criterion with a
test set different than the training set used in the second step.

• Choose the model with the minimal value of the criterion. Also it can be chosen
the best models and apply another criterion to select the final one.

The combinatorial GMDH has the structure shown in Figure 2.9. The number of base
nodes K depends on the number of inputs and it is equal to K = 2m − 1. For example,
in Figure 2.9 K = 7 since we have 3 inputs. However, if there are 10 the number of nodes
will be K = 1023. This became a problem when the number of inputs is high because
the computational cost of calculate the coefficients of each node is huge.

Figure 2.9: Example of COMBI GMDH network.
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Ivakhnenko in [31] proposes a recursive method in order to reduce the training time,
based on bordering method [32] [31] which can optimize the calculation of the coefficients
with least squares method:

A = (XT X)−1XT Y (2.41)

The inversion of the matrix XT X is the hardest part, taking a look to the defined
polynomial we see that each one is the same to the previous one but with some extra
terms. With the bordering method, it is possible to calculate the inverse in an iterative
form, where knowing the matrix Mk = XT

k Xk it is straightforward to calculate the inverse
of Mk+1 which can be expressed in terms of Mk as:

Mk+1 =
 Mk mk+1

mT
k+1 ak+1

 (2.42)

Thus the inverse of Mk+1 takes the form

M−1
k+1 =

M−1
k + M−1

k
mT

k+1mk+1M−1
k

ck+1
−M−1

k
mT

k+1
ck+1

−mk+1M−1
k

ck+1
1

ck+1

 (2.43)

where ck+1 = ak+1 − mk+1M
−1
k mk+1. This way increases the calculus speed of each node

coefficients and thus reduces the computational cost.

2.2.3 Harmonic GMDH

Harmonic GMDH is another algorithm very useful when we works with time series which
show an oscillatory behavior. The base function is composed of the sum of several
trigonometric functions, with different frequencies which do not have to be multiple to
each others:

y = a0 +
m∑

k=1
(aksin(wkt) + bk(cos(wkt)) (2.44)

where ak and bk are the polynomial coefficients and wk, 0 < wk < π are the frequencies.
This frequencies are unknown and we cannot use least square errors as before because
this frequencies are nonlinear parameters. There are several calculation methods to find
how many frequencies are needed and estimate their values, such as [31] and [33].

Once the frequencies are known, the calculus of the coefficients in each node can be
easily driven with least square error, since these parameters are linear.
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In article [30] the authors propose an alternative method to deal with oscillatory
processes. Instead of having a trigonometric base functions, they propose to use a
multilayered polynomial network adding as an input several Harmonic Terms of the form:

Hi(t) = Ci · cos(wit − ϕi) (2.45)

In this case the frequencies wi are calculated by applying Discrete Fourier Transform
(DFT) to the data. This harmonics terms are added as input variables thus this
trigonometric function are mixed with the data inputs into the polynomial base function.
With this scheme the authors assure that:

1. Polynomials are taken as they approximate better the monotonic curvatures as
well as the discrepancies and gaps in the time series

2. Harmonics are taken as they approximate better oscillating components, spikes,
and critical changes in the series curvature

2.2.4 Multilayer GMDH

This was the first algorithm developed by Ivakhnenko [34] and by far the most popular
one. This algorithm builds up a multilayer structure where each node consists of several
inputs processed by a polynomial and pass the output to the next layer of nodes. The
difference with other algorithms such as neural networks is that the structure of the
network (number of layer and nodes per layer) is not a predefined parameter by the user,
but the training process defines the structure based on internal and external criteria.

Usually the base function of the node is a second order polynomial of the form:

y = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j (2.46)

Equation 2.46 represents the general form of a bivariate second order polynomial,
where a0, a1, a2, . . . , a5 are the coefficients and xi, xj are two inputs from the data set.

But it is also common the use of first and third order polynomials.

y = a0 + a1xi + a2xj (2.47)

y = a0 + a1xi + a2xj + a3xixj + a4x
2
i + a5x

2
j + a6xix

2
j + a8x

2
i xj + a8x

3
i + a9x

3
j (2.48)
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An interesting read about which polynomial order is better for our application can
be find in [35] [36] [37] where the authors study the behavior of these polynomials over
multiples applications.

Whatever is the polynomial selected as base function, the multilayer algorithm works
in the same way:

Complete graph Optimum graph

non-selected node

selected node

nodes of the optimum GMDH graph

input

GMDH construction process

Figure 2.10: Example of multilayer GMDH network.

1. Split the training set into two subsets A and B3. Subset A is used to calculate the
polynomial coefficients of each node. The subset B, called validation set, checks
out the goodness of each polynomial using the external criterion.

2. Make all the possible combination between pairs of inputs. As a result there will
be N(N − 1)/2 nodes. The polynomial coefficients of these nodes are calculated
using Least Squares Error over the subset A.

3. Next step consists in choosing the best nodes. Every node is tested with the
validation set (B) and the external criterion that gives an objective mark to it.
Once the layer nodes are ranked, those with the best marks are selected for the next

3This division is essential in order to avoid the well-known problem of over-fitting, we always have to
avoid use the same set of data for training and testing.



2.2 Group Method of Data Handling 31

layer. However, there is a question that has not been answered yet, ¿ How many
nodes it has to be saved in each iteration?. In most of the cases, this parameter
has to be chosen by the developer, it could be a fixed or a different number each
iteration. The number of selected nodes Li (where i is the layer) affect considerably
the performance since the number of nodes to process in the next step depends
on it. Furthermore, we cannot take very few nodes, since this could leave some
important data out of the process and get a model with a poor behavior.

4. Once we know the best Li nodes we take their outputs as inputs for the next layer
(i + 1).

This process is repeated until the minimum value of the external criterion in the
current layer is bigger than the previous layer. This means that the new layer does not
improve with respect to the previous one. Finally, we get a network complex enough
to make good estimations of our problem. Figure 2.10 shows an example of the GMDH
construction, and the final optimum GMDH obtained at the end of the process.

2.2.5 External Criterion

Along the description of the different algorithms has been introduced the importance of
the external criterion, choosing the best nodes of each layer. In the literature there have
been presented different alternatives for this criterion.

The most popular is the so called Regularity Criterion. This criterion is a simple
square error (Equation 2.49) obtained over the samples in the validation set (B) with the
polynomial calculated with the subset A.

SE =
B∑

k=1
(yB − ŷB)2 (2.49)

where yB is the output of sample form the data set B and ŷB is the output of the model
created with the set A for that particular sample. The main disadvantage of this criterion
is the dependency with the data partition made previously, the results could change
greatly depending on this partition.

Several solutions have been planned to face this problem, one of the most popular is
the Bias Criterion. This criterion is based on choosing those polynomials (nodes) more
unbiased, i.e depending less on data partition done. With Bias Criterion the whole data
set has to be divided into two subsets with the same size. Each of these subsets is used
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to build a model and check the performance of this model with the whole training data.
Then the two error measure are subtracted to get the final node score Equation 2.50.

BS = |SEW/A − SEW/B| (2.50)

where SEW/A and SEW/B are the models squared error over the complete training set
W = A ∪ B.

By using this criterion it is possible to achieve nodes with coefficients highly indepen-
dent of the partition taken. However, the bias criterion does not give a measure of how
good is the model, because this metric is a comparison between two errors. Usually this
bias criterion is implemented with others which can measure the error committed.

In our case, we will use bias and regularity criteria in order to get the goodness of
both criteria. In [31] the author explains some others interesting criteria.

2.2.6 Coefficients Calculation

In order to calculate the polynomial coefficients in the GMDH, we follow the well known
least squares method that can be described as follows: Let D = (xi, yi)N

i=1 be the set
of samples of the problem data set, and let {fj(x)}m

j=1 be a set of functions, linearly
independent, that will be used as a base of the least squares methods. The goal is to
find a function f(x) formed by linear combinations of functions {fj(x)},

f(x) =
m∑

j=1
ajfj(x), (2.51)

that best represents the samples in D, i.e., in such a way that f(x) minimizes the
root mean square error, defined as:

RMSE =

√√√√√ 1
N

N∑
k=1

yk −
m∑

j=1
ajfj(xk)

2

, (2.52)

This is equivalent to directly minimize

Ec =
N∑

k=1

yk −
m∑

j=1
ajfj(xk)

2

, (2.53)

leading to

∂Ec

∂ai

=
N∑

k=1
2
yk −

m∑
j=1

ajfj(xk)
 (−fi(xk)) = 0, i = 1, 2, . . . , m. (2.54)
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This is a system of m equations with m unknowns, known as Gauss normal equations.
Their matrix representation is the following:



∑N
k=1 f1(xk)f1(xk) . . .

∑N
k=1 f1(xk)fm(xk)∑N

k=1 f2(xk)f1(xk) . . .
∑N

k=1 f2(xk)fm(xk)
... ... ...∑N

k=1 fm(xk)f1(xk) . . .
∑N

k=1 fm(xk)fm(xk)




a1

a2
...

am

 =



∑N
k=1 f1(xk)yk∑N
k=1 f2(xk)yk

...∑N
k=1 fm(xk)yk

 (2.55)

Note that Expression (2.55) can be in turn rewritten as

F T · F · A = F T · Y (2.56)

where:

F =


f1(x1) f2(x1) . . . fm(x1)
f1(x2) f2(x2) . . . fm(x2)

... ... ... ...
f1(xN) f2(xN) . . . fm(xN)

 (2.57)

A =


a1

a2
...

am

 (2.58)

Y =


y1

y2
...

yN

 (2.59)

Hence

A = (F T · F )−1 · F T · Y (2.60)
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2.2.7 Regularized least squares errors

A classical way of avoiding overfitting and obtaining less complex and highly generalizable
models is to include a regularization penalty in the least squares error method [38]. This
leads to the Regularized Average Error (RAE):

RAE = 1
N

N∑
k=1

yk −
m∑

j=1
ajfj(xk)

2

+ λ
1
2

M∑
m=1

a2
m, (2.61)

where λ is a parameter that controls the smoothness of the polynomial (the higher λ,
the smoothest the polynomial), and should be previously estimated. By optimizing the
RAE expression, we obtain the following final expression for the coefficients:

A = (F T · F + λ · I)−1F T · Y (2.62)

2.2.8 Multicollinearity

One of the problems that arises with GMDH, and particularly with multilayer GMDH,
is the so-called multicollinearity issue [39]. This problem occurs when the independent
variables in a regression model, are highly correlated, and they may create instabilities
in the regressor coefficients, that produce high unexpected errors with small data or
model changes. This is common with multilayer GMDH, since it tends to produce inputs
highly correlated in the last layers where the inputs for the regressors are a mix from the
original ones. The use of regularized techniques like the one described in the previous
section can help minimize the multicollinearity problem.

2.3 Evolutionary Algorithms

Evolutionary algorithms try to simulate the natural selection process explained by
Darwing in 1859, through which a population of living beings evolves during generations
selecting in each one the best fitted individuals. In other words, the individuals with best
features for a particular environment are more likely to survive and to have offsprings
for the next generation. This concept is an optimization algorithm itself, where each
individual is a possible solution for a given problem. Thus evolving the population during
a few generation the algorithm is able to find good solutions with a low computational
cost.

Evolutionary computation starts in the 1950s when biologists and computer scientists
studied the evolutionary process in nature to find a system who can reproduce that
behavior. It was not until the 1960s when Rechenberg [40] introduced the Evolutionary
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Strategies (ES), a simple evolutionary algorithm that have one single individual and
mutates this individual in order to generate a new one. An evaluation function (fitness
function) scores both individuals, the best one passes to the next mutation and the other
is discarded. Later the algorithm has evolved and there are a great amount of different
approaches based on the Rechenberg principles [41].

Almost at the same time, a group of computer scientists L.J. Fogel, A.J. Owens
and M.J. Walsh [42] developed another evolutionary algorithm called Evolutionary
Programming (EP). This approach is quite similar to evolutionary strategies, mutation
is also the only operator that evolutionary programming has. They also are Phenotypic
algorithms because can work directly with system parameters instead of create strings
representing the system parameters to be optimized (genotypic algorithms). The main
difference is that evolutionary programming starts with a population of more than one
individual (L), mutation is applied to each individual and after that the population
increases to 2 · L. The fitness of each individual is calculated and the best L individuals
are selected for the next generation.

Evolutionary programming and evolutionary strategies are two algorithms which have
been applied during decades and today are still being applied in different optimization
problems. However, they have a drawback which is the long convergence time since
mutation operator is slow finding good solutions. This drawback is overcome by genetic
algorithms and the crossover operator. The first approach to genetic algorithm was
proposed in 1970s by J. Holland [43], who describes an algorithm called fundamental
theorem of genetic algorithms. Genetic algorithms use also mutation and add two
new operators crossover and selection. Figure 2.11 shows a block diagram of a genetic
algorithms with all the steps:

1. Algorithm starts with a population of L individuals (chromosomes) generated
randomly.

2. The fitness function evaluates the whole population.

3. Selection operator chooses K chromosomes from the entire population. The fitter
the chromosome, the more probability to be selected.

4. Crossover operator generates L new chromosomes by crossing in pairs the K

chromosomes selected in the last step.

5. These entire new population pass throw the mutation operator. The mutation
operator does not change all the individuals, instead of that it has a probability of
mutation which defines the number of chromosomes to be mutated.
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Figure 2.11: Evolutionary Algorithm diagram.

6. The fitness operator evaluates these new chromosomes, if the stopping criterion is
satisfied the algorithm finish and the best chromosomes conform the best solution
found. Otherwise, the process is repeated.

EA are used as search algorithm in problems where there are several parameters to be
tuned. Each chromosome represents a specific value for those parameters. The success of
the EA depends on how these parameters are codified: binary, real, natural codification,
etc.

These is a general description of EA, this kind of algorithm are very problem dependent
that is why there are too many different possible configuration depending on the operators
implementation, fitness function, chromosome codification, etc. In each chapter there are
a description with the operators and parameters values used in each EA implementation.
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2.4 Hyper-Heuristics

Many times the heuristic building process requires complex parameter tune process or the
building process depends greatly on the specific problem. Because of this tricky process
some inexperience users avoid using more complex machine learning systems and employ
simple heuristic easier to implement [44]. Hyper-Heuristics is a new search methodology
which has appeared to overcome this problem and creates more generalizable systems.
Hyper-Heuristics try to find the configuration or combination of heuristics more suitable
for a given problem instead of solving it directly. In other words "a heuristic to choose
heuristics" [45].

The first approach to an HH algorithm was made in 1960s by Crowston et al in [46].
Similar approaches were developed in the 80’s and 90’s. It was not until early 2000s
when the term HH was first time mention in a paper by Cowling in [47]. Since then, the
popularity of this concept began to increase and it has been applied to many problems,
such us production scheduling [48], timetable and rostering [44], vehicle routing [49],
channel assignment in cellular communication [50], etc.

According to [51] "A hyper-heuristic can be seen as a (high-level) methodology
which, when a particular problem instance or class of instances, and a number of low-
level heuristics (or its components) produces an adequate combination of the provided
components to effectively solve the given problem(s)". In order to classify Hyper-Heuristic
methods there are two different criteria, first one based on the nature of the search and
the other based on how the HH receives the feedback. According to the first criteria
Hyper-heuristic can be divided into two groups: HHs for heuristic selection where the
HHs look for the best heuristic from an existing set of heuristics and HHs for heuristic
generation which are able to build new heuristics employing parts from existing ones.
Other classification can be done taking into account the nature of the feedback received
by the HH. On the other hand, the HH is called online when receives the feedback
during the solving process and HH offline are those whose feedback is given by the result
of a set of training instances.

2.5 Statistical Hypothesis Tests

In order to further study the performance of the different algorithms proposed in this
Thesis, it have been carried out statistical comparative analysis. These tests allow
concluding if a new algorithm approach has statistical difference on performance compared
to the other methods. This section introduces a brief explanation of those methods that
will be applied throughout the Thesis.
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2.5.1 Student’s t-Test

Student’s t-test (or just t-test) is a parametric hypothesis test which checks whether two
data set have statistically different means, assuming that the samples means follows a
normal distribution. This assumption of normality could be a limiting factor for some
data set whose distribution is unknown. However for large sets of data the mean can
be considered distributed normally by the central limit theorem [52]. There are several
implementations of t-test to compare two different samples, in this Thesis is applied
paired t-test, because of the sample dependence [53]. The paired t-test metric is given
by the following expression:

t = d
sd√
N

(2.63)

where d and sd are the mean and standard deviation of the difference between the samples
(di = xi − yi), and N is the sample size. T-test is a ratio between the means difference
and the standard deviation [54].

After getting the t-test value, we have to check out whether the value is large enough
to consider different the two set of data. We need to set a significance level α for the test.
This value is usually set as α = 0.05. Looking at this value in standard normal table we
set that t1−α/2 = 1.9673. This means that we can reject the null hypothesis when

|t| > t1−α/2 (2.64)

which means a p-value less than 0.05.

2.5.2 Kolmogorov-Smirnov Test

Kolmogorov-Smirnov Test (KS-Test) is a non-parametric test, this means that it is not
necessary to do any assumption about data distribution. The test can compare a data
set with a probability distribution (one sample KS-Test) or compare two samples (two
sample KS-test). In our case we use one sample KS-Test to further probe the normality
of the samples. Thus it can be decided to use a paired t-test when the KS-Test confirms
that the mean data set follows a normal distribution. Using this test, it is also possible
to get graph and visualize if the data has or not a normal distribution. Figure 2.12 shows
a comparison between an example data set taken it from MATLAB ®[55] and a normal
distribution.
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Figure 2.12: Distribution comparison between an example data set and the standard
normal distribution.

2.5.3 Sign Test

Sign test is also another non-parametric statistical test [56], which compares the perfor-
mance of the algorithms in terms of wins, loss and ties. The null hypothesis establishes
that one algorithm estimation sample has a probability of P = 0.5 of being better
than the estimation from the other algorithm. Suppose we have two predictors and the
results on terms of win-loss are 13-2. The results are distributed according to a binomial
distribution, so the probability of get a result as extreme as this one is given by the sum
of probabilities of all these cases:

• Algorithm #1 win 15 loss 0, P = 3.0518E − 05.

• Algorithm #1 win 14 loss 1, P = 4.5776E − 04.

• Algorithm #1 win 13 loss 2, P = 3.2043E − 03.

• Algorithm #2 win 15 loss 0, P = 3.0518E − 05.

• Algorithm #2 win 14 loss 1, P = 4.5776E − 04.

• Algorithm #2 win 13 loss 2, P = 3.2043E − 03.
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Thus P = 0.007385 is the probability of get a result as extreme as the one of the
example. With a level of significance of α = 0.05 we can reject the null hypothesis. This
test is applied when is not possible to ensure that our sample has a normal distribution,
taking into consideration the result of Kolmogorov-Smirnov Test.

2.5.4 Friedman Test

Friedman test [57] is another non-parametric test, similar to one-way ANOVA. Friedman
test null hypothesis states equality of medians between the compared algorithms [56].
This test does not work directly with the samples values, but it works with ranks values.
Therefore we have to convert the original results to a rank, ri

j where i = 1, . . . , K is the
algorithm and j = 1, . . . , N refers to the sample. The best algorithm is ranked with 1,
the second with 2 and so on. In case of ties, it is recommended to use the average rank.
Once we have ranked the results, it is apply the following expression:

F = 12
N · K(K + 1)

K∑
i=1

(
Ri − N(K + 1)

2

)2

(2.65)

where Ri = 1
K

∑N
j=1 ri

j. Friedman statistic is distributed according to a χ2 distribution
with K − 1 degrees of freedom.

Iman and Davenport [58] proposed a derivation in Friedman statistic in order to
correct the undesirable conservative behavior:

FID = (N − 1)χ2

N(K − 1) − χ2 (2.66)

If one by one, an algorithm is better than an specific control algorithm it is necessary
a post-hoc procedure. This post-hoc test give us a p-value to see if the null hypothesis
can be rejected or not. One approach is the conversion of the rankings computed by each
test by using a normal approximation [56][59]:

z = Ri − Rj√
K(K+1)

6N

(2.67)

This simple post-hoc procedure does not take into consideration any adjustment in α

due to the effect of multiple comparison. We use the Holland procedure [60] as p-value
adjusted method. Holland adjust α with a process which consists in sorting the p-values
(p1, p2, . . . , pK) from the smallest to the largest. The Holland test rejects the hypothesis
(H1, H2, . . . , HK) if ’i’ is the smallest integer so that pi > 1 − (1 − α)K−i.



Chapter 3

Evolutionary Optimization of
Multi-Parametric Kernel ϵ-SVR

In Section 2.1 we explain deeply the theory behind the Support Vector Machine for
classification and regression (SVR). However, note that calculation of the parameters C,
ϵ (in case of regression) and γ (in case of Gaussian kernel) is an open question which
was not tackled in that description. These parameters also called, hyper-parameters,
cannot be calculated by an exact method, so a search algorithm must be applied in order
to get the best possible set. It is important to note that the training time heavily depends
on the choice of these hyper-parameters so the more efficient is the search algorithm the
better performance of the SVM in terms of computation time.

Usually, the search algorithms used to obtain SVM hyper-parameters are based on
Grid Search (GS) [61], where the search space of parameters is divided into groups of
possible parameters to be tested (an uniform partition of the search space is generally
considered). This algorithm can be easily implemented, but it has an important drawback:
since the number of combinations is large, the training time becomes very high, even
considering only the three standard hyper-parameters defined before C, ϵ and γ.

Different works have dealt with the problem of considering different kernels in SVMs
in general ([62], [63], [64], [65]) and also specifically for SVR algorithms ([66], [67], [68]).
Depending on the problem, the choice of the kernel (or group of kernels) function is key
to obtain good results. As mentioned, several works have tackled the inclusion of multi-
parametric kernels in SVMs. There are a number of approaches to multi-parametric
kernel optimization in SVM that use GS [67] or gradient-based approaches [69][70],
though it has been seen that these approaches have some problems such as convergence
to suboptimal solutions. For this reason, evolutionary-based approaches are the most
used techniques in the optimization of multi-parametric kernel, obtaining good results
in this task [71][72]. In fact, there are different works in the literature tackling similar



42 Evolutionary Optimization of Multi-Parametric Kernel ϵ-SVR

problems of multi-parametric kernels optimization that have different names, such as
the optimization of anisotropic Gaussian Kernels [63][73], where a different γ parameter
is used in each feature of the input data, or Mahalanobis kernels [74] [75] that consider
the same idea, but formalized by means of the Mahalanobis distance and the associated
kernel. These approaches are focussed on the optimization of SVMs for classification
problems. In [76] several evolutionary strategies are applied to a problem of tuning
multi-parametric generic Gaussian Kernels, considering also a SVM for classification.
In [64] several evolutionary strategies are used to solve a slightly different problem of
kernel optimization with multiple parameters: in this case, the authors propose the linear
combination of several Gaussian Kernels, each one with a different γ parameter. This
approach is called by the authors as multi-scale kernel.

A generalization of the standard Gaussian kernel has been applied to SVR machines
in this Thesis. This approach follows the methodology described in [63][74][75] for classi-
fication problems, where the Gaussian kernel function depends on several γi parameters,
instead of considering only one general γ. In this case, each dimension of the feature
space is related to a different γi parameter, i.e, the width of the Gaussian kernels is
different depending on the dimension considered (M dimensions or features in the input
samples). This generalization can be implemented by considering M + 2 parameters in
the SVR (C,ϵ,γi, i = 1, . . . , M). Basically the idea is to maintain the C and ϵ parameters
which define the SVR optimization problem, and M different γ parameters, one for each
dimension of the data. This way the final SVR model should be more effective, since it
has better ability to discriminate important data components. Note that the application
of a multi-parametric kernel in SVR involves several important aspects: first, there are
more SVR parameters to be obtained (M -1 more than in the case of the standard SVR
approach). On the other hand, note that GS approach is computationally not affordable
in this case, so meta-heuristic approaches such as evolutionary algorithms can also be
a good option in the SVR case [77], as they have shown in the case of classification
problems [69] [76].

Therefore, in this chapter we propose an evolutionary algorithm to carry out the
complete SVR hyper-parameters search when considering a multi-parametric kernel SVR.
We present the encoding proposed, the different operators that have been applied, and
the validation methodology followed to avoid over-training of the machine. As a novelty,
we also propose a reduction of the hyper-parameters search space by applying different
lower and upper bounds to the multi-parametric kernel.
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3.1 SVR Multi-parametric Gaussian Kernel

The expression obtained in the previous chapter for SVR is the following:

g(x) =
M∑

n=1
(αn − α̂n)k(x, xn) + b (3.1)

In this chapter we will work with a Gaussian kernel, whose regular expression is:

K(x, y) = exp γ(||x − y||2) (3.2)

Considering a multi-parametric Gaussian kernel function, with different γ’s for each
feature of the input space:

K(xi, xj) = exp
(

−
M∑

m=1

M∑
n=1

γmn(xim − xjm)(xin − xjn)
)

(3.3)

where M is the number of dimensions in the feature space, γmn represents the width of
the Gaussian function in each direction in the feature spaces. Without loss of generality,
in this work we consider that the matrix with values of γmn is a diagonal matrix, so the
simplified Gaussian kernel considered is then:

K(xi, xj) = exp
(

−
M∑

m=1
γm(xim − xjm)2

)
(3.4)

Thus, the hyper-parameter of the proposed multi-parametric kernel SVR are C, ϵ

and γm, m = 1, . . . , M .

3.1.1 Hyper-parameters search space reduction using theoreti-
cal bounds

Using this model, we carry out a search space reduction for the multi-parametric Gaussian
kernel based in the bounds proposed by [78] for the standard kernel function (only one
γ parameter case). Following, the same reasoning we extend the bounds for γm to our
multi-parametric Gaussian Kernel.

In [78] the authors study the influence of each hyper-parameter in the estimation
model and the construction process, in order to determine which values are useless:

• Parameter C: It is the regularization parameter which controls outliers weight
into the optimization problem. C is always positive so the lower bound is C ≥ 0.
On the other side, when C is very high the training time increases considerably
because the model has to fit very well each sample in order to have very few outliers.
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Ortiz et al, have found an upper bound based on the relationship between C and
γ, which is defined in this expression:

C <
ymax

i − b − ϵ

1 − 1
N−1

N∑
m=1,m̸=i

K(xi, xm)
1 (3.5)

• Parameter ϵ: This value defines the maximum distance between the estimation
value and the real one without any penalty. For this parameter there is an exact
bound described in [79]. This bound is:

ϵ = ymax
i − ymin

i

2 (3.6)

The reasoning behind the bound is straightforward: when ϵ is greater than a half of
the maximum distance between samples, it means that there is not support vector.
Thus the SVM is just the bias parameter and if we increase ϵ the result is the same
as model with a bias.

• Parameter γ: This parameter controls the Gaussian width, low values of γ means
wider Gaussian and vice versa. According to [78] the maximum value of γ is the
one in which the influence between support vectors is negligible. This influence is
considered negligible for a value of 0.1% of the amplitude (A). The closest input
vectors are the most extreme case, so we can find them to calculate the upper
bound:

A · exp(−γ · d2
min) ≤ 0.001 · A (3.7)

where:

dmin = mini ̸=jd(xi, xj) (3.8)

Thus the parameter bound is:

γ ≤ − loge(0.001)
d2

min

(3.9)

1ymax
i is the highest output value
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In our study case with a multi-parametric Gaussian Kernel we need to extend this
bound to the vector (γ1, . . . , γM). In this case we have the following expression:

M∑
m=1

γm · (xim − xjm)2 ≤ 0.001 · A (3.10)

Now we isolate the value of one hyper-parameter γl as a function of the rest of
hyper-parameters:

γl ≤ −
loge(0.001) −

M∑
m=1,m ̸=l

γm · (xim − xjm)2

(xil − xjl)2 (3.11)

As in [78] the bound of each hyper-parameter in the kernel function is related to
their closest vectors. In this case, related to the closest vectors considering just
the feature m. Note that the previous equation achieves the maximum value if the
rest of γm parameters are supposed to be zero. In this way, we define the minimum
distance between features as:

dmin(xim, xjm) = mini ̸=j(xim − xjm) (3.12)

Thus the bound for each γm is:

γm ≤ − loge(0.001)
d2

min(xim, xjm) (3.13)

3.2 Optimization of the proposed multi-parametric
Gaussian kernel function

Grid search is perhaps the most used algorithm in SVR to obtain a good set of hyper-
parameters. GS establishes a grid of possible points to be explored, keeping parameters
which show the best performance in a validation data set. There are recent works in
the literature which have proposed the application of meta-heuristic techniques, such as
evolutionary approaches, to carry out this search [80][81], obtaining good results even in
the case of the traditional SVR with three parameters (C,ϵ and γ). However, note that in
terms of training time it would not be manageable to extend the GS to multi-parametric
kernels, since the number of parameters grows to M + 2 parameters (instead of only 3).

We then propose an evolutionary algorithm to obtain the best possible set of parame-
ters for the multi-parametric Gaussian kernel in SVR. Each individual in the evolutionary
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population is defined to be a vector representing the hyper-parameters (C,ϵ,γ1,. . .,γM ) in
real encoding.

Several parameters have to be previously defined in order to tune the evolutionary
algorithm, these parameters can heavily affect the performance of the algorithm and
training time. First of all, we have to define the number of individuals in the population,
each individual represents an instance of the vector (C,ϵ,γ1,. . .,γM). For this implemen-
tation a total of 25 individual are generated randomly at the beginning of the algorithm.
We also have to bound the number of iterations in order to stop the algorithm in case
this does not converge to a solution: this maximum is ℵ = 35.

3.2.1 Fitness

This operator is in charge of the individual evaluation in order to get a ranking of the
best ones of each iteration. As fitness function, we have used the error obtained by
means of a K-Fold cross-validation procedure (note that this is the same scheme used as
validation method in the grid search).

Fi = 1
RMSE

= 1√
1
N

∑N
k=1

(
Yk − Ŷik

)2
(3.14)

where Y is the real output, Ŷi is the predicted output by the individual i and N is the
number of samples of the training set. This function has to be executed for every new
individual and before the selection process.

3.2.2 Selection operator

This operator is responsible for generating an intermediate population by selecting
individuals within a population. This selection is done randomly, where the individuals
with better fitness value are more likely to form part of the intermediate population.

The roulette-wheel procedure has been applied as selection mechanism [82] many times
in the literature. The roulette wheel is divided in segments where each one represents
an individual and the size is proportional to the fitness value of the individual, in other
words, the probability of survival is defined to each individual depending on its fitness.

fi = Fi∑N
k=1 Fk

(3.15)

Note that these values are normalized between 0 and 1. Once the roulette is defined,
we can sample it in order to create the intermediate population with the parents of the
new population.
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Parent 1 Parent 2

Child 1 Child 2

Crosspoints in 3 and 8

Figure 3.1: Example of the two-point crossover implemented.

3.2.3 Crossover and mutation operators

Once the selection has been made, the crossover operator is applied. This operator selects
a couple of individuals and recombine them in order to create a new one by exchanging
their genetic material. The crossover probability has been set to a value of 0.7, so the 70%
of the individuals in the population will be involved in this operator. The individuals of
the population are then chosen in pairs. For each couple, a random number is generated.
If it is less than the crossover probability, the crossover is carried out. The process of
crossover carried out is a two-point crossover. An example of the crossover operation is
in Figure 3.1.

On the other hand, the mutation operator is applied after crossover. In this case, the
probability of mutation is set to 10%. When an individual gene must be modified, a new
random value different from the current one is generated and assigned to that gene. In
this way, diversity in the population is obtained, and possible local minimums can be
avoided.

3.2.4 Elitism

A genetic algorithm attempts to reach to the individual with the highest fitness value.
In order to avoid the elimination of the optimal individual randomly, it is introduced
an operator called Elitism. This operator is based on keep in a privilege position in
the population the best individual of every generation, so that it cannot be deleted or
modified by other operators. Thus it is ensured that the best individual, which has
appeared during the execution survives. In occasions, more individuals are saved in every
iteration of the algorithm. In consequence, it is achieved a high level of goodness in the
populations, since thanks to the elitism there are always high quality genes. On the
other hand, keeping a large number of previous best individuals leads to a poorly diverse
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population and it would be easier to fall into a local minimum. In our Genetic Algorithm,
the three best individuals are kept as elitism operator for the next generation.

3.2.5 Stopping Criteria

We have three different stopping criteria in our algorithm. The first one consists in
evaluating the differences in fitness between the best individual in the population and
the third best one. Then, along the evolution, this fitness difference between the best
and third best individuals are obtained. If this difference is less than T times the first
difference found during at least G generations, we stop the algorithm. Note that this
criterion is related to the diversity in the population of the evolutionary algorithm. This
diversity-based criterion has a drawback: if the initial population is good enough, it is
possible that we cannot reach to the specific reduction in fitness difference between the
best and third best individuals in the population.

In order to solve this point, we introduce a second stopping criterion based on the
best individual in the population, in such a way that if the fitness of this individual
remains constant during K generations, we also stop the algorithm.

The third stopping criterion is based on a maximum number of generations ℵ. If the
algorithm reaches this maximum number of generations, then it is stopped.

3.2.6 Repair Function

When the γm values are quite different, it means that the chromosome may be generating
a model with over-fitting in some of the coordinates. In order to keep the difference
between the γm parameters of an individual in a reasonable level, a repair function is
used to correct high variations among them. To do this, the repair function adjusts the
value of the different γm in order to keep the maximum deviation among them to be less
than a given threshold, in this case 0.2.

Table 3.1 summarizes the evolutionary algorithm specifications.

3.3 Experimental Part

This section presents the experimental part of the chapter, structured in several subsec-
tions: first, we consider different experiments in standard repository databases, where we
discuss the performance of the evolutionary multi-parametric kernel SVR in comparison
to the standard SVR with GS. Section 3.3.1 briefly describes the methodology followed
in these experiments, and Section 3.3.2 contains the results obtained in them. Sections
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Table 3.1: Summary of the evolutionary algorithm parameters.

Population 25
Selection Roulette wheel
Crossover Two-points crossover
Elitism Yes

Pc 0.7
Pm 0.1

γm threshold (repairing) 0.2
T 10
G 5
ℵ 35
K 6

3.3.3 and 3.3.4 discuss about two real applications of temperature and ozone forecasts,
using the proposed approach in this chapter.

3.3.1 Simulation methodology

In an initial step, prior to the application of the SVR, all the data sets are treated in
order to homogenize them. First, the samples with missing values of each data set are
eliminated to simplify their treatment, and the non-numerical attributes are substituted
by integer numbers. Then, each data set is divided into two sets, the training and test
sets, by selecting 80% of instances for the training set and the rest (20%) of the instances
for the test set. In a final common step, the data are normalized to zero mean and unit
variance.

In order to further study the performance of the different approaches proposed in this
Thesis, we have carried out statistical tests. The statistical analysis is based on paired
t-test whether the result has a normal distribution (checked with Kolmogorov-Smirnov
test), otherwise we use sign-test. The tests have been running over 5 permutations of
each data set, with 20 runs per permutation for the evolutionary algorithm. The RMSE
and time consumption values presented are the average of these 5 permutations.

Regarding the validation methods for choosing the hyper-parameters, we use a K-Fold
cross-validation with K = 10, i.e., we divide into K folds the train set and evaluate each
fold with the model and training with the rest of the folds. For speeding up the training
of the models for each fold, we have modified the functions related to the matrix kernel in
the LIBSVM library, in such a way that we keep in memory the complete kernel matrix,
and it is only modified when the parameters γm are changed. This allows calculating
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only one kernel matrix for all K-Fold training and all the range of iterations with the
same γm parameters.

The experiments have been performed on three different implementations: standard
SVR with three hyper-parameters, optimized with a GS and bounds proposed in [78]
and two multi-parametric kernel SVR optimized with the proposed EA, one with all the
bounds included the new one proposed for the multi-parametric Gaussian Kernel and
another without the new bounds proposed.

All the experiments performed in this chapter have been running in the same machine:
an Intel Xeon E5645 (6 cores of 2.4 GHz), 12 GB RAM, 500 GB hard disk of 5400 rpm
and Windows 7.

3.3.2 Experiments in standard repository data sets

The data sets considered in this Thesis are forecasting problems obtained from the
UCI machine learning repository [83] and the data archive of Statlib [84]. Table 3.2
shows the main properties of the selected data sets. Mortpollution measures the age-
adjusted mortality rate, taking into account some properties of pollution. Bodyfat
estimates the percentage of body fat determined by underwater weighing and various
body circumference measurements. Betaplasma and Retplasma study the relationship
between personal characteristics and dietary factors, and plasma concentrations of beta-
carotene and retinol which might be associated with increased risk of developing cancer.
Autompg concerns city-cycle fuel consumption in function of parameters of the car.
Housing concerns housing values in suburbs of Boston. Concrete estimates the concrete
compressive strength through the components of the mixture. Finally, Abalone set can be
handled as a multi-classification or regression problem, and predicts the age of abalones
from their physical measurement.

The results obtained with these public repositories with the three different imple-
mentations are shown in Table 3.3. As it was said, we use the standard SVR (with 3
hyper-parameters), optimized with a GS approach as comparison algorithm. In terms
of accuracy, the different approaches have results very close. In 5 of 8 data set the
multi-parametric kernel have lower error than standard SVR, obtaining an error quite
close to the standard SVR with GS in the other 3 data sets. The computation time is
another important factor to be evaluated in this work. As the data sets are sorted by the
number of samples, the increment of training time is evident as the number of samples
grows. Note that the computation time with the evolutionary algorithm is much lower
than the one provided by the GS in the standard SVR, in all the problems tackled. Of
course, this is due to the fact that the evolutionary algorithm evaluates less points in
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Table 3.2: Data sets used in experiments carried out.

Data set Samples Attributes Repository
(N)

MortPollution 60 15 StatLib
Bodyfat 252 13 StatLib

Betaplasma 315 12 StatLib
Retplasma 315 12 StatLib
Autompg 392 7 UCI
Housing 506 13 UCI
Concrete 1030 16 UCI
Abalone 4177 8 UCI

Table 3.3: SVR performance and training time for the standard SVR (with a GS) and
the multi-parametric kernel SVR (with the EA).

Grid Search EA with bounds EA without bounds
(standard SVR) (multi-parametric kernel SVR) (multi-parametric kernel SVR)

Data set Error Time (s) Error Time (s) Error Time (s)
Mortpollution 48.4622 1.7796 47.0041 0.8944 49.1451 3.9109

BodyFat 0.01056 20.3806 0.01069 12.3272 0.01067 21,9863
Betaplasma 185.7698 22.1930 183.8452 20.5092 183.5862 70.2850
Retplasma 221.4400 21.4288 220.5198 19.3134 221.5484 66.1389
Autompg 2.8191 40.1328 2.8425 29.2307 2.8588 134.5198
Housing 3.6175 64.1164 3.6107 44.0433 3.8571 169.3014
Concrete 28.7645 370.2846 28.6867 144.1444 28.6021 817.3912
Abalone 2.0700 2932.6520 2.0774 1348.7630 2.0738 7870.0225

the search space than the GS. This point, together with the performance of the multi-
parametric kernel SVR in RMSE, shows that this approach is able to outperform the
performance of the standard SVR in regression problems. Thus it is a very good option
to obtain accurate results with a reduced computation time in these kind of problems.
Results 3.3 also compare the performance of the evolutionary multi-parametric kernel
SVR with and without the new theoretical bounds to reduce the hyper-parameters search
space. These results show the good performance of the SVR bounds, which reduce the
computation time without modifying its performance in terms of RMSE. Figure 3.2 shows
a comparison of computation time of the different algorithms compared (multi-kernel
SVR with and without bounds, and standard SVR with GS). It is possible to see the
effect of including the new theoretical bounds in the multi-kernel case (optimized with
an EA).
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Figure 3.2: Average time (seconds) of the multi-kernel SVR (with and without bounds)
and standard SVR (GS) in the UCI data sets.

For a deeper analysis of the multi-parametric kernel SVR, we have carried out an
statistical comparative analysis of standard SVR (with GS) and the multi-parametric
kernel SVR (optimized with the evolutionary algorithm). Table 3.4 shows the result of the
statistical tests, where in five of them there are significant differences. Multi-parametric
kernel approach is better in three data sets (Mortpollution, Betaplasma and Retplasama)
and worse in two (Bodyfat and Autompg). In the rest of the data sets there are not
differences, even in the win-loss-tie metric the results are close.

3.3.3 Temperature forecasting at Barcelona’s airport

We further test the multi-parametric kernel SVR performance in a real forecasting
problem, specifically we consider the short-term temperature forecasting (1 h,2 h, . . ., 6 h)
in the airport of Barcelona ("El Prat"). We have available meteorological data from the
Spanish Meteorological State Agency (AEMET), organism that has a measuring station
belonging to the network of meteorological observatory at "El Prat" airport (41º17’34”N,
2º04’12”W). This station measures different meteorological variables given in Table 3.5,
where we show the variables and their measurement units. Note that we include two
extra variables apart from the meteorological ones, i.e., the synoptic condition and a
monthly cycle. The synoptic condition or GWL (from the German word Grosswetterlage),
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Table 3.4: Statistical tests (t-test or sign-test) with significance (α = 0.05) over 10-Fold
GS and the multi-kernel evolutionary SVR, for public data sets. W-L-T stands for win,
lost, tie in the set of 20 experiments carried out in each permutation.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Mortpollution 0.0048 t-test 1 0.0357 61-39-0

Bodyfat 0.1042 t-test 1 3.2994e-09 21-79-0
Betaplasma 0.3385 t-test 1 9.9542e-05 73-27-0
Retplasma 0.4488 t-test 1 0.0292 58-42-0
Autompg 0.6357 t-test 1 3.7558e-04 31-69-0
Housing 0.0105 sign-test 0 0.1336 58-42-0
Concrete 0.0077 sign-test 0 0.7642 48-52-0
Abalone 5.4800e-06 sign-test 0 0.9203 49-51-0

represents the climatology situation at a large scale (synoptic scale). We have considered
in this case the classical Hess Brezowsky Classification (HBC) to include the GWL
condition in the system. Also a monthly cycle to consider variations in solar activity due
to the different seasons of the year is included among the prediction variables, given by
the following expression:

MCi = sin
(

(mi − 1)π
12

)
, i = 1, · · · N, (3.16)

where mi represents the month corresponding to the sample i and N represents the
number of total samples. The considered data in Barcelona start on January 1st, 2009,
and they extend until February 19th, 2009. We consider hourly values of all the prediction
variables, and a short-term temperature forecasting problem (from hourly to 6 hour time
horizon prediction). Therefore, the data set consists of 1200 samples, where 80% of them
form the training set and the other 20% are the test set. The accuracy results obtained
are referred to prediction errors in the test set.

Table 3.6 shows the results obtained using the proposed multi-parametric kernel SVR,
compared to the results of the classical SVR, with a GS to set its parameters. It is
easy to see how the proposed multi-parametric kernel SVR obtains results comparable
or better than the standard SVR in terms of RMSE, in almost all the time-horizons
predictions considered. The RMSE obtained is quite low, increasing moderately with the
time-horizon, as expected. This indicates that the prediction obtained with the SVR is
accurate. It is also important that the computation time of the multi-parametric kernel
SVR is much better than the classical SVR. This means that the evolutionary algorithm
used to set the parameters of the multi-parametric kernel is able to quickly converge to a
very good solution. Table 3.6 also shows the effect of the inclusion (or not) of theoretical
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Table 3.5: Available data variables, units of measurement and measuring instruments.
SC stands for Synoptic Condition, and MC stands for Monthly Cycle.

var. number Met. variable units Instrument
1 Relative humidity % Relative humidity probe Vaisala HMP45D
2 Precipitation mm Precipitation Transmiter Thies 5.4032.35.008
3 Pressure hPa Barometer Vaisala PA21
4 Global radiation kJ/m2 Pyranometer Kipp & Zonen CM11
5 Air temperature oC Temperature probe Vaisala HMP45D
6 Wind speed m/s Anemometer Vaisala WAA15
7 Wind direction Degrees Wind vane Vaisala WAV15
8 SC - HBC
9 MC - Equation (3.16)

Table 3.6: SVR performance and training time for the standard SVR (with a GS) and
the multi-parametric kernel SVR (with the EA) in the problem of temperature prediction
in Barcelona’s airport.

Grid Search EA with bounds EA without bounds
(standard SVR) (multi-parametric kernel SVR) (multi-parametric kernel SVR)

Gap RMSE Time (s) RMSE Time (s) RMSE Time (s)
1 hour 0.5078 315.4014 0.5319 157.8238 0.5342 208.7516
2 hours 0.9077 317.2938 0.8891 220.3528 0.8894 235.0006
3 hours 1.0578 328.6482 1.0259 220.7146 1.0251 272.4376
4 hours 1.1546 358.4986 1.1257 207.3694 1.1256 309.7138
5 hours 1.1737 339.6676 1.1595 233.9528 1.1544 334.7152
6 hours 1.2380 356.2790 1.2140 251.4552 1.2171 349.3596

bounds in the multi-parametric kernel with evolutionary optimization. it is easy to see
how the computation time is much lower in the case of considering bounds to reduce the
hyper-parameters search space.

Table 3.7 shows the results of the statistical tests carried out. The results show that
the multi-parametric kernel SVR performs statistically better than the standard SVR
(GS) in all the time horizons except for 1 hour time horizon. These results confirm that
multi-parametric evolutionary SVR approach is superior to the standard SVR with GS for
this particular problem. Regarding the computation time, multi-parametric evolutionary
SVR with EA is much faster, around 30% − 50% less than the standard SVR with GS.
Thus, we can conclude that the proposed multi-parametric kernel SVR offers a good
performance in terms of error in the prediction with an excellent computation time for
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Table 3.7: Statistical tests (t-test or sign-test) with significance (α = 0.05) over 10-Fold
GS and the multi-kernel evolutionary SVR, for Barcelona’s airport temperature data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hours 0.2138 t-test 1 1.1218e-09 26-74-0
2 hours 0.3881 t-test 1 1.1209e-05 62-38-0
3 hours 0.4669 t-test 1 3.8245e-15 85-15-0
4 hours 0.0768 t-test 1 2.3492e-09 79-21-0
5 hours 0.7584 t-test 1 0.0268 64-36-0
6 hours 0.5433 t-test 1 8.6891e-09 80-20-0

its implementation in real prediction systems, such as the temperature prediction shown
in this work.

Finally, Figure 3.3 shows the prediction given by the multi-parametric kernel SVR,
compared to the real values of temperature. As we can see, the prediction fits quite well
to the real signal.
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Figure 3.3: Multi-parametric kernel SVR output for 6 hours time horizon temperature
prediction at Barcelona’s airport.
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3.3.4 Total ozone content (TOC) prediction at the Iberian Penin-
sula

The last real prediction problem that is considered in this chapter is the Total Ozone
Content (TOC) prediction at different stations situated in the Iberian Peninsula. Pre-
diction of the ozone series from past data is an important topic that is often addressed
in atmospheric physics and chemistry [85, 86]. Specifically, the well documented TOC
daily data series over the Iberian Peninsula2 is available from the Total Ozone Mapping
Spectrometer (TOMS), located on board the NASA Nimbus-7 satellite [87], for the period
ranging from 1 November 1978 to 6 May 1993 (a total of 173 samples). This data set
has been widely used, and it is one of the sources that was used to confirm a linear TOC
decrease over that time period. We have chosen overpass data that are calculated with
an algorithm that is similar to TOMS Version 8.5 (V8.5) [88]. Specifically, a compact
data set of monthly average values has been built that includes TOC over 5 sites in the
Iberian Peninsula: Madrid, Arenosillo, Lisbon, Mont-Louis and Murcia (see Table 3.8
and Figure 3.4). In all of the experiments at each site, we used a training period from
November 1978 to April 1990, inclusive. The test period comprised 35 months, from
June 1990 through April 1993.

Table 3.8: Geographical coordinates of TOMS Nimbus-7 overpass sites.

TOMS Nimbus-7 Latitude Longitude Altitude
overpass site

Madrid (Spain) 40.40N 3.68W 548m
Murcia (Spain) 38.00N 1.17W 70m

Lisbon (Portugal) 38.77N 9.13W 105m
Mont-Luis (South France) 42.50N 2.13E 1650m

Arenosillo (Spain) 37.10N 6.73E 41m

The final set of prediction variables that were included in this study (monthly average
values over the previous mentioned area) includes the following variables: Ongoing
long-wave radiation (OLR), temperature at 50 hPa level (t50), pressure at the tropopause
level (TPP), longitudinal component wind at 200 hPa (u200), latitudinal component wind
at 200 hPa (v200) and omega vertical velocity at 200 hpa (ω200). Additional data were
taken from the Earth System Research Laboratory, which included the Solar Cycle (SC)
monthly value expressed as the 10.7cm solar radio flux (used as a solar activity proxy in

2TOC data are given in Dobson Units (1DU = 1m · atm · cm, or 2.69 × 1016cm−2).
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Figure 3.4: TOMS Nimbus-7 overpass observation sites; (1) Madrid National Radiometric
Centre; (2) Arenosillo meteorological base; (3) Lisbon; (4) Mont-Louis and (5) Murcia
Meteorological Centre. The observation sites are marked by circles.

[89]), the Quasi-Biennial Oscillation (QBO) (as calculated from the zonal average of the
30 mb zonal wind at the Equator, as computed from the NCEP/NCAR Reanalysis), the
Singapore observed 30 mb zonal wind (SOZW, related to QBO), and the North Atlantic
Oscillation (NAO) Index (as calculated by NOAA and the Multivariate ENSO Index
(MEI) [90]).

Table 3.9 shows the RMSE for the three different implementations. The results are
not very different from those got it with public repositories where in terms of RMSE
the differences are not very high. A further analysis with statistical tests between GS
and EA with bounds is presented in Table 3.10, where there is two set with significant
differences (Lisbon and Murcia) in favor of the multi-parametric evolutionary SVR. In
terms of training time, it is also similar to the others problems, EA improves substantially
the grid search training time but also the bounds introduce an important reduction in
training time.
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Table 3.9: SVR performance and training time for the standard SVR (with a GS) and
the multi-parametric kernel SVR (with the EA) in the problem of Ozone at the Iberian
peninsula

Grid Search EA with bounds EA without bounds
(standard SVR) (multi-parametric kernel SVR) (multi-parametric kernel SVR)

Data set Error Time(s) Error Time(s) Error Time(s)
Arenosillo 12.1999 10.6800 12.1691 4.4607 12.5750 5.4516

Lisbon 12.8912 12.0998 13.3267 4.5329 13.4212 6.2281
Madrid 14.3797 12.2650 13.6795 4.6033 13.8544 6.8840

Mont-Louis 14.8559 12.4894 14.8057 4.6596 15.2393 6.7216
Murcia 11.8828 11.6628 11.5465 4.3632 11.6430 6.8315

Table 3.10: Statistical tests (t-test or sign-test) with significance (α = 0.05) over 10-Fold
GS and the multi-kernel evolutionary SVR, for Ozone data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.4278 t-test 0 0.7611 58-42-0

Lisbon 0.7790 t-test 1 0.0071 67-33-0
Madrid 0.0072 sign-test 0 0.0891 41-59-0

Mont-Louis 0.5453 t-test 0 0.6204 45-55-0
Murcia 0.2870 t-test 1 8.8139e-06 66-34-0

3.4 Conclusions

In this chapter, we have proposed a novel evolutionary-optimized multi-parametric kernel
Support Vector Regression algorithm (multi-parametric kernel SVR). We have described
the main characteristics of the multi-parametric model proposed, and an evolutionary
algorithm considered to optimize this kernel, since standard grid search is computationally
too expensive to be applied in this task. A reduction of the search space for the multi-
parametric kernel has been presented, based on different theoretical lower and upper
bounds. We have tested the proposed approach in different regression problems, including
databases from popular public repositories and real applications. The results obtained
have shown the good performance of the multi-parametric kernel approach against the
standard SVR with grid search, both in accuracy and computation time.



Chapter 4

New validation methods for
improving regressors training time

In the previous chapter we have explained and demonstrate that the training process for
SVM is usually very time consuming. That is why we have tried to introduce evolutionary
algorithms which reduce the training time, since EA focuses on the areas where the
results are better instead of use a brute force algorithm such as grid search.

In this chapter we have the same objective: reduce training time of regression
algorithms. However, we are dealing with a different part of the training process:
the validation method. In Chapter 1, it is explained the typical problem in machine
learning: over-fitting. This over-fitting creates models very well tuned to the training set
but with a poor behavior with new samples. In order to prevent over-fitting and get the
best possible hyper-parameters values we need a validation method during the training
process. This validation method must select the best values for the vector (C,ϵ,γ) or
(C,ϵ,γ1,. . .,γM) from the training data. Most of the authors use traditional validation
methods such as K-Fold cross-validation, Leave One Out, Bootstrap, etc., but these
validation techniques are not focused on improving the SVR training time. They create
a bunch of models with different partition in the training set, and calculate the average
performance. This produces an important computational overhead. Note that this high
training time is specially important in multi-parametric SVR, since it is much harder to
find the optimal vector (C,ϵ,γ1,. . .,γM).

In this chapter, we propose two new validation methods that considerably reduce
the training time of the SVR, maintaining in most cases its performance in terms of
accuracy. The first new validation technique, called percentage cross-validation, is
based on splitting the initial training set into two subsets with different percentage of
samples, one with P% of the samples an another with the rest of the samples (100-P%),
obtaining two models from these subsets and testing them in the complementary set.
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This process is repeated several times by increasing the value of P in each step. The
second method is called generalized predictive cross-validation, and it is based on
testing the behavior of sub-models which are created using predictions of an input set.
We will test the proposed CV methods with the same data sets used in the previous
chapter: data sets from standard repository and also two real problems.

4.1 New Validation Methods to improve the train-
ing time of SVR

Every vector (C,ϵ,γ) in the standard SVR or (C,ϵ,γ1,. . .,γM) in the multi-parametric
case, generated by the search algorithm considered, has to be evaluated in order to know
its goodness and thus it can be selected as the best individual. This task is carried out
using a validation method, which has to choose those SVR hyper-parameters which may
generate a good model in terms of generalization. Note that this process is as important
as the search algorithm itself, and both of them determine the quality of the final SVR
model. One of the most used procedures for carrying out this validation process is the
K-Fold CV approach, which we have already described in Section 1.1.2 and we use it in
this chapter as a reference in the experimental part. In the current chapter, we propose
two alternative algorithms to carry out the cross validation process: the percentage
cross-validation approach and the generalized predictive cross-validation method.

4.1.1 K-Fold cross validation for reference

K-Fold CV method is one of the most used validation method in the literature. This
validation method is able to select hyper-parameters (in most of the cases) with a good
generalization performance, in a reasonable amount of time. This method can briefly
summarize as follows:

• Let us consider a set of samples S = {(xi, yi), i = 1, . . . , N}.

• The set is first partitioned into K equally (or near equally) sized subsets or folds
C1, C2, ..., CK .

• One fold Ci is selected for validation and the rest of the folds Ci are used to create
a model fCi

.

• Once the model fCi
is created by the learning process it is tested with the fold Ci.

The difference between the predictions and the real outputs generates an error Ei.
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• The K-Folds algorithm is carried out by repeating steps 3 to 4 during K iterations,
in order to use every fold as validation set.

• The average error is calculated as:

Eav = 1
K

K∑
i=1

(Ei) (4.1)
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Figure 4.1: Training time in terms of value of the fold size (K). Abalone data set.

Figure 4.1 shows the evolution of training time as a function of K, this training time
is clearly linear with the fold size K. On the other hand, the increment of training as
a function of number of samples is represented in Figure 4.2. In this case, the training
time is not linear is an exponential increase. Hereby, it is necessary to reduce the size of
the folds, but also the number of trainings, in order to define new validation methods
which can reduce the training time.

4.1.2 Percentage cross-validation

K-Fold CV keeps fixed the size of the training and validation partitions depending on
the value of K. If the value of K is high the training time is also elevated. However, if
the value is low the training set could not have enough representatives samples. We also
know that a high K not always means better performance than a lower value, figure 4.3
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Figure 4.2: Training time in terms of data set size. X axis represents the percentage of
total samples of Abalone used for the training

shows the representation of f(x) = sinc(x) and several estimation models. Each model
has been created with a different partition size starting from 10% to 90% of the training
size and the rest of the training set is used as validation set. This figure shows that
partitions with less data have better performance than other with more data.

We propose a new method called percentage cross-validation. This method builds
several model with training set of different size. The original training set is split into two
subsets with different percentage of samples: one with P % of the samples an another
with the rest of the samples (100 − P )%. This process is detailed in the next steps:

1. Let us consider a set of samples s = (xi, yi) where i = 1, . . . , N , xi = [xi1, xi2, . . . , xiM ]
and P % = 1, 2, . . . , 100%.

2. The set is partitioned into two subsets, one with P % of samples (CP %) and the
other with the rest of the samples (C(100−P )%)

3. Both subset are used to generate two models, obtaining fC
P % and fC(100−P )%

.

4. Every model is then tested in the complementary set:

fCP %(xi), xi ∈ C(100−P )% (4.2)
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Figure 4.3: Sinc signal estimated by predictors created with different percentage of the
training data.

fC(100−P )%(xj), xj ∈ CP % (4.3)

5. Percentage CV algorithm is carried out by repeating steps 2, 3 and 4 for P %
k = k ·P %,

while Pk < 100%.

6. Both comparisons generate an error EP %
k

where k = 1, . . . , K and K the number
of partitions:

Eav = 1
K

K∑
k=1

EPk
(4.4)

Figure 4.4 represents the block diagram of the process already described.

4.1.3 Generalized predictive cross-validation

This method uses a new idea for model performance testing and over-fitting checking.
Most of validation methods are based on building an estimator and measure the error with
the validation set. We propose to build a second model based on the estimations made
by the first one, and check out the performance of this second model with the validation
set. This idea allows increasing the difference between the good and generalizable model
with respect to the ones with a poor performance or over-fitted, because in the first case
both models would be very similar to each other and the error measure by the second
model will be close to the error of the first model. However, in case of poor performance
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Figure 4.4: Percentage cross-validation block diagram.

the second model will have a worse behavior than the first one in most of the times, since
it has been created with an image that significantly distorts the reality.

Based on this concept we have developed a validation method which is summarized
in the next steps:

1. Let us consider a set of samples s = (xi, yi) where i = 1, . . . , N and xi =
[xi1, xi2, . . . , xiM ].

2. The set is first partitioned into K equally (or near equally) sized subsets or folds
C1, C2, . . . , CK .

3. A subset of data Ci is selected to create a model fCi
.

4. This model makes predictions over the next subset of data Ci+1, obtaining fCi
(xj)

where xj ∈ Ci+1.

5. A new data set is obtained with the Ci+1 inputs xj and the predictions over these
inputs fCi

(xj). This new set is defined as Ĉi+1 = (xj, fCi
(xj)).

6. Another model fĈi+1
is generated by using this new prediction set.
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7. The new model is tested over the rest of the original data set Ci
⋃

Ci+1, generating
an error Ei.

8. This process is repeated K times, in order to apply the described procedure over
all the subsets.

9. The average error is calculated as:

Eav = 1
K

K∑
i=1

Ei (4.5)

Figure 4.5: Generalized predictive cross-validation block diagram.

The advantage of this method is that we do not need to train almost the whole set
of data to create our validation models, instead of that we only need a small subset of
data for the two models. This is the reason why even training the double of models the
time consumption of this technique is much lower then K-Fold CV. Figure 4.5 shows the
diagram process described before.
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Similar to K-Fold CV, generalized predictive needs to define the number of folds K.
For this purpose, we have carried out several tests to find the best value. First, Table
4.1 shows the error for different number of folds over the public data sets. It seems that
values K = 9, . . . , 14 have better results, being K = 14 and K = 9 the best in terms of
RMSE. In order to make a good decision, a further analysis has been made in Table 4.2,
where it has been studied the error evolution with the increment of data size (Abalone).
The results does not have big differences: having a look at the Average column we see
that most of the values are in the error interval 2.1000 − 2.1200, which corresponds
to a 1% of error. Finally, in Table 4.3 generalized predictive is evaluated in terms of
training time. In this case, there are notorious differences: the higher the number of
folds (K), the faster the training is. This fact could be counterintuitive since a higher K

means more number of trainings. However, we have shown in Figure 4.2 that the training
time exponentially increases with the data size, so with smaller folds the training time
decreases even if the number of trainings is higher. Finally, we have decided to select a
trade off between low error and training time, for this reason we use K = 14 during the
experimental part.

Table 4.1: Public data sets RMSE for different values of K.

K Mortpollution Bodyfat Betaplasma Retplasma Autompg Housing Concrete
Error Error Error Error Error Error Error

2 48.2712 0.01258 168.5612 285.3060 4.6882 5.3108 31.4700
3 47.5030 0.01132 168.5612 282.5161 4.4532 4.3727 29.1183
4 47.5030 0.01130 166.8480 272.3210 4.5977 4.6502 28.8535
5 48.2712 0.01127 162.6510 276.9712 4.7848 4.3923 28.8535
6 47.5030 0.01133 171.2110 262.7470 4.8069 4.7410 28.8590
7 46.6592 0.01132 162.4712 254.3715 4.5895 4.3923 28.8234
8 46.6592 0.01134 173.2971 261.4200 4.59767 4.9176 28.5865
9 46.6592 0.01129 173.2971 248.2706 4.5293 3.9750 28.5865
10 47.5030 0.01133 168.0370 254.3715 4.7774 4.9176 28.5865
11 47.5030 0.01134 168.1570 251.1190 4.5977 4.9374 28.5865
12 48.2712 0.01127 168.1570 255.0180 4.7041 4.1116 28.6565
13 50.3591 0.01134 167.6731 250.2131 4.7041 4.9176 28.5865
14 46.4561 0.01127 169.0853 254.3715 4.4446 4.1155 28.6379
15 48.2712 0.01134 170.1480 260.5500 4.6432 4.3923 28.5865
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Table 4.2: RMSE with different partitions of Abalone data set, over several values of K.

K 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% Average
Error Error Error Error Error Error Error Error Error Error Error

2 2.8628 2.8037 2.5693 1.9179 1.6254 2.8933 2.1236 2.2455 2.3036 2.0452 2.3390
3 2.5768 2.8607 2.1280 1.6221 1.5681 2.8028 1.9761 1.9036 2.0058 1.8372 2.1281
4 2.5176 2.8607 2.0088 1.6061 1.5013 2.7684 2.0528 1.9371 2.0297 1.8234 2.1106
5 2.5721 2.8370 2.2108 1.6221 1.5148 2.7958 2.0117 1.9033 2.0598 1.8661 2.1393
6 2.5914 2.9420 1.8833 1.7449 1.5148 2.7684 2.0280 1.9111 2.0297 1.8146 2.1228
7 2.5465 2.9148 1.8771 1.6221 1.5681 2.7692 2.0117 1.9267 2.0670 1.7996 2.1102
8 2.5176 2.9757 1.8892 1.6221 1.5042 2.7638 2.0216 1.9111 2.0598 1.8501 2.1115
9 2.5736 2.8851 1.8671 1.6559 1.5124 2.8116 2.0280 1.9267 2.0392 1.8383 2.1138
10 2.5041 2.9594 1.9209 1.7213 1.5013 2.7684 2.0369 1.9111 2.0598 1.8234 2.1207
11 2.5214 2.8924 1.8852 1.6559 1.5013 2.7692 2.0280 1.9111 2.0509 1.8146 2.1030
12 2.5214 2.8924 1.8852 1.7086 1.5148 2.7816 2.0216 1.9685 2.0392 1.8146 2.1148
13 2.5110 2.9304 1.8852 1.6221 1.5042 2.7816 2.0280 1.9111 2.0670 1.8383 2.1079
14 2.5098 2.8924 1.8892 1.7213 1.5013 2.7638 2.0280 1.9111 2.0509 1.8599 2.1127
15 2.5139 2.9053 1.8892 1.6559 1.3366 3.2691 2.0369 1.9267 2.0598 1.9015 2.1495

Table 4.3: Training time with different partitions of Abalone data set, over several values
of K.

K 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

2 26.379 101.29 133.443 205.608 308.147 438.095 573.378 710.268 894.831 1163.35
3 16.036 56.129 138.544 171.756 267.478 358.145 482.43 590.475 735.447 936.124
4 12.168 66.378 100.464 202.628 262.127 383.276 442.79 556.14 681.206 851.292
5 9.828 38.828 73.258 133.817 235.529 290.519 366.397 482.555 582.161 699.691
6 8.845 65.801 59.795 90.855 174.627 294.753 284.342 422.557 481.79 620.381
7 7.909 65.582 50.715 84.755 141.742 205.704 274.311 390.312 413.041 483.912
8 7.035 19.204 39.655 75.956 116.672 198.031 211.817 253.172 315.931 370.578
9 6.63 16.957 40.31 63.82 101.634 140.918 177.652 225.296 271.798 352.685
10 6.443 16.287 33.259 52.525 87.875 138.05 160.399 200.257 249.164 354.089
11 5.678 52.354 29.359 50.731 78.796 109.174 145.641 190.46 241.379 312.452
12 5.351 14.055 28.751 45.022 73.195 110.139 139.963 181.116 245.715 297.336
13 5.304 12.558 27.722 43.758 66.347 98.251 133.692 173.223 240.91 284.762
14 4.789 12.464 25.459 41.309 64.943 94.241 129.152 169.946 235.825 276.963
15 5.741 11.747 23.697 40.077 63.726 91.525 124.41 163.675 222.206 268.491

4.2 Evolutionary Algorithm

In this chapter we consider as well an evolutionary algorithm to obtain the best possible
set of parameters for the multi-parametric Gaussian Kernel in SVR. This evolutionary
algorithm is similar to the one applied in the previous chapter described in section 3.2.

The algorithm is defined in the following way: each individual in the evolutionary
population (with a total of 25 individuals) is defined to be a vector representing the hyper-
parameters of the SVR (C,ϵ,γ1,. . .,γM). We consider a real encoding, with a standard
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two-points crossover operator and a random mutation using a Gaussian function. The
roulette-wheel selection procedure has been applied as selection mechanism. As objective
function, we have used the error obtained by mean of a given validation procedure. In
order to avoid the random elimination of the optimal individual, we also apply Elitism
saving three individuals each iteration. In addition, we consider the same three stooping
criteria described in Section 3.2.5. Finally, it is also used the same repair function from
the Section 3.2.6.

4.3 Experimental Part

The procedure to test the new proposed algorithms is similar to the one explained in
Section 3.3.1: each data set is divided into two sets, the training and test sets, by selection
80% of the instances for training and the rest of the instances for the test set. The data
sets are also the same applied in the previous chapter: UCI Data set, Barcelona airport
temperature and total ozone content at Iberian peninsula. The employed machine is the
same as the one used also in Chapter 3.

As a benchmark method to compare the two different validation methods proposed, we
use the well-known K-Fold CV method with K = 10. The same as K-Fold CV, percentage
CV and generalized predictive CV have both a parameter to set. For percentage CV
method, the P value has been initially set to 20% (Pi = 20 · i with i = 1, . . . , 4). In case
of generalized predictive CV the number of subsets have been fixed to 14, which have
provided the best balance between error (RMSE) and training time. Point out that in
this chapter it also compared the different validation methods with grid search algorithm,
in this case we use 20 permutations instead of 5. For evolutionary algorithm tests we
still use 5 permutation and 20 repetitions. SVR with GS has been tested in this section
with the bounds proposed in [78] and for the multi-parametric kernel the new bounds
explained in Chapter 3.

4.3.1 Results on public data sets

In this chapter we use the same data set taken from UCI and Statlib [83, 84]: Abalone,
Autompg, Betaplasma, Bodyfat, Concrete, Housing, Mortpollution and Retplasma.
First of all, we show the results obtained with the standard version of the SVR (3
hyper-parameters), using a GS to obtain them, with the 10-Fold CV, and the proposed
percentage CV and generalized predictive CV. The results are shown in terms of perfor-
mance (mean RMSE in the test set) and training time in Table 4.4. First of all, we see
clear differences in time consuming where the new methods overcome 10-Fold CV. In fact,
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this difference in computation is dramatic in large training sets such as Housing, Concrete
and Abalone. The comparison between the percentage CV and the generalized predictive
CV indicates that the generalized predictive obtains smaller computation times, which
in large training sets is about half of the computation time using the percentage CV
method.
Table 4.4: UCI results (RMSE and time) of the standard SVR using grid search with
10-Fold, percentage and generalized predictive cross validation methods.

GS 10-Fold GS Percentage GS GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)

Mortpollution 48.4622 1.7796 49.6654 0.7546 57.8183 0.2903
Bodyfat 0.01056 20.3806 0.01063 6.7246 0.01064 1.6401

Betaplasma 185.7698 22.1930 183.2204 8.9388 188.5184 2.4742
Retplasma 221.4400 21.4288 218.065 12.2392 226.9704 2.3712
Autompg 2.8191 40.1328 2.9093 16.8562 2.9408 4.3210
Housing 3.6175 64.1164 3.7899 26.804 3.8707 11.4040
Concrete 28.7645 370.2846 28.6222 164.7522 29.2511 24.3678
Abalone 2.0700 2932.6520 2.0786 1313.1100 2.1177 298.0416

In terms of RMSE, there are not great differences between 10-Fold and percentage
CV, the best results are shared between this two methods. Generalized predictive has
results close to the others methods in most of the data sets, and important differences in
Mortpollution. Considering the statistical tests, Table 4.5 shows the comparison between
the standard SVR with 10-Fold CV and the percentage CV approach. The results in
terms of RMSE are similar using both approaches, and there are only one database with
significant differences, Autompg, where the 10-Fold CV performs statistically better than
the percentage CV. Also generalized predictive CV has been compared to 10-Fold CV, the
results (Table 4.6) show only two significant differences in favor of 10-Fold CV: Concrete
and Abalone. The rest of the data sets have small differences regarding Win-Loss-Tie;
GP has more wins in Bodyfat and Betaplasma, and 10-Fold in Mortpollution, Retplasma,
Autompg and Housing.

In a second round of experiments, we analyze the new validation methods proposed
with the evolutionary-trained multi-parametric SVR approach. In Table 4.7, it is shown
the results in terms of average RMSE and training time obtained with the three validation
methods with the evolutionary algorithm. In terms of training time, we see that the
evolutionary algorithm has reduced the training time of 10-Fold and percentage. However,
generalized predictive does not improve, in fact in some databases the time is slightly
higher. Anyway, GP is the fastest method follows by percentage CV. Figure 4.6 shows
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Table 4.5: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold and percentage CV with grid search, for public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Mortpollution 0.7917 t-test 0 0.5572 11-7-2

Bodyfat 0.9354 t-test 0 0.1151 11-8-1
Betaplasma 0.5211 t-test 0 0.0962 13-6-1
Retplasma 0.1174 t-test 0 0.1215 13-6-1
Autompg 0.8605 t-test 1 0.0351 4-14-2
Housing 0.0992 t-test 0 0.3264 8-10-2
Concrete 0.1534 t-test 0 0.8399 7-9-4
Abalone 0.0354 sign-test 0 1 7-7-6

Table 4.6: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold and generalized predictive CV with grid search, for public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Mortpollution 0.1923 t-test 0 0.0796 7-12-1

Bodyfat 0.6590 t-test 0 0.8400 11-9-0
Betaplasma 0.2945 t-test 0 0.7081 12-8-0
Retplasma 0.4390 t-test 0 0.1238 7-13-0
Autompg 0.6402 t-test 0 0.0545 4-16-0
Housing 0.5541 t-test 0 0.2668 7-13-0
Concrete 0.9391 t-test 1 0.0001 4-16-0
Abalone 0.4212 t-test 1 0.0012 4-16-0

the training time for all the different configurations presented in this section, where
generalized predictive GS is the fastest method and 10-Fold is the slowest one.

If we look at mean error the differences are not very significant between 10-Fold CV
and percentage CV, however we see that 10-Fold CV has the best mark in most of the
data sets. Tables 4.8 and 4.9 show the statistical test for percentage and generalized
predictive CV against grid search 10-Fold CV. Table 4.8 shows four statistical differences,
percentage CV is better in two Betaplasma and Retplasma, and 10-Fold is better in
Bodyfat and Autompg. On the rest of data sets, percentage CV has more wins than
10-Fold. On the other hand, Table 4.9 shows the statistical result between 10-Fold GS
and GP with EA, in this case the results confirm that 10-Fold overcomes GP with EA in
all the data sets with significant differences.
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Figure 4.6: Training time for the different validation methods and search algorithms.

Table 4.7: Results (RMSE and time) of the standard SVR using evolutionary algorithm
with 10-Fold, percentage and generalized predictive cross validation methods.

EA 10-Fold EA Percentage EA GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)

Mortpollution 47.0041 0.8944 47.5583 0.6381 51.9764 0.2952
Bodyfat 0.01069 12.3272 0.01073 11.3683 0.01130 4.2830

Betaplasma 183.8452 20.5092 184.2736 15.3602 186.0556 4.5665
Retplasma 220.5198 19.3134 219.4802 15.3159 226.6678 7.3043
Autompg 2.8425 29.2307 2.9066 21.2836 2.9507 12.3580
Housing 3.6107 44.0433 3.8346 31.5425 4.7138 23.7308
Concrete 28.6867 144.1444 28.7238 96.5022 29.1270 42.6267
Abalone 2.0774 1348.7600 2.0764 958.8950 2.3522 332.6770

4.3.2 Temperature forecasting at Barcelona’s airport

Similar to Chapter 3, we also test the validation methods with the same real problems.
The first real problem is temperature forecasting at Barcelona’s airport. Table 4.10 shows
the average error and training time for the three validation methods with GS. In this case,
we see a deterioration of the RMSE in the two new validation methods in comparison to
10-Fold CV, over all the time steps 10-Fold has the best RMSE. However, in terms of
training time the results are the opposite, the new approaches improve clearly 10-Fold
CV procedure and again generalized predictive validation method is the fastest one.



72 New validation methods for improving regressors training time

Table 4.8: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold with grid search and percentage CV with the evolutionary algorithm, for
public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Mortpollution 0.0344 sign-test 0 0.1936 57-43-0

Bodyfat 0.0169 sign-test 1 4.3896e-12 16-83-1
Betaplasma 0.0005 sign-test 1 3.3965e-07 76-24-0
Retplasma 0.1063 t-test 1 8.9677e-05 56-44-0
Autompg 0.0221 sign-test 1 3.6350e-09 20-80-0
Housing 5.4171e-06 sign-test 0 0.2713 56-44-0
Concrete 0.0276 sign-test 0 0.7642 52-48-0
Abalone 2.4576e-07 sign-test 0 0.1936 57-43-0

Table 4.9: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05) over
10-Fold with grid search and generalized predictive CV with the evolutionary algorithm,
for public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Mortpollution 0.3836 t-test 1 2.8634e-07 27-73-0

Bodyfat 0.0031 sign-test 1 2.0989e-21 2-98-0
Betaplasma 3.5609e-05 sign-test 1 1.7080e-05 28-72-0
Retplasma 0.2081 t-test 1 2.3452e-10 27-73-0
Autompg 0.0513 t-test 1 2.7017e-08 33-67-0
Housing 8.5197e-05 sign-test 1 3.0150e-22 1-99-0
Concrete 0.0228 sign-test 1 0.0037 35-65-0
Abalone 0.0763 t-test 1 1.8207e-32 0-100-0

Table 4.10: Barcelona’s airport results (RMSE and time) of the standard SVR using grid
search with 10-Fold, percentage and generalized predictive cross validation methods.

GS 10-Fold GS Percentage GS GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)
1 hour 0.5078 315.4014 0.5266 123.6832 0.5333 22.2836
2 hours 0.9077 317.2938 0.9825 124.1448 1.0495 27.0884
3 hours 1.0578 328.6482 1.1508 130.3130 1.2682 26.8198
4 hours 1.1546 358.4986 1.2274 139.7820 1.4317 32.0800
5 hours 1.1737 339.6676 1.3091 138.0010 1.4274 28.6486
6 hours 1.2380 356.2790 1.3113 139.9860 1.5240 30.8726

Tables 4.11 and 4.12 show the results of the statistical tests over the two proposed val-
idation methods against 10-Fold CV with GS. These tests confirm the results commented
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previously from the Table 4.10. In most of the data sets there are significant differences
in favor of 10-Fold CV method, so that the new proposed methods have poorer behavior
in terms of accuracy but a better performance in terms of training time.

Table 4.11: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold and percentage CV with grid search, for Barcelona’s airport temperature
data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.0789 t-test 0 0.4089 3-11-6
2 hours 0.9082 t-test 1 3.3379e-07 0-20-0
3 hours 0.9957 t-test 1 6.7417e-07 1-19-0
4 hours 0.9061 t-test 1 1.4572e-04 3-16-1
5 hours 0.4095 t-test 1 1.6825e-05 1-18-1
6 hours 0.9738 t-test 1 1.2403e-05 2-17-1

Table 4.12: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold and generalized predictive CV with grid search, for Barcelona’s airport data
set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.1181 t-test 0 0.4541 6-11-3
2 hours 0.9077 t-test 1 8.5234e-09 0-20-0
3 hours 0.7816 t-test 1 3.8072e-12 0-20-0
4 hours 0.4952 t-test 1 2.2550e-09 0-20-0
5 hours 0.8388 t-test 1 2.1669e-11 0-20-0
6 hours 0.8185 t-test 1 3.0971e-08 1-19-0

Table 4.13 shows the results of RMSE and training time for the three different
validation methods, employing now the evolutionary algorithm proposed. In terms of
accuracy, the results are very similar to the one obtained with GS. 10-Fold CV is still the
one with the lowest error followed by percentage CV and GP CV. It is also proved what
we concluded in Chapter 3: the evolutionary algorithm improves the error over all the
methods in comparison with the GS. On the other hand, in terms of training time the
there is a mix: 10-Fold CV improves with EA and generalized predictive increases this
training time, for percentage cross validation the training time is very similar between
both search algorithms.

Table 4.14 presents the statistical test between 10-Fold CV with grid search and
percentage CV with the EA. These results show a better performance of 10-Fold CV
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Table 4.13: Barcelona’s airport results (RMSE and time) of the standard SVR using evo-
lutionary algorithm with 10-Fold, percentage and generalized predictive cross validation
methods.

EA 10-Fold EA Percentage EA GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)
1 hour 0.5318 157.8238 0.5207 103.3356 0.6603 46.7727
2 hours 0.8891 220.3528 0.9608 138.7492 1.0709 57.0534
3 hours 1.0259 220.7146 1.0871 144.7054 1.2636 64.3997
4 hours 1.1257 207.3694 1.2029 145.9100 1.3538 70.0105
5 hours 1.1595 233.9528 1.2315 164.8830 1.3898 74.8906
6 hours 1.2140 251.4552 1.2872 162.4358 1.4457 64.1505

with significance differences in all the time horizons. However, in this case thanks to
the EA the RMSE is closer than in the case with GS. Something similar happens with
generalized predictive CV (Table 4.15), it has improved the results but still the error is
not as good as 10-Fold CV with grid search, and in all the cases there are significant
differences where 10-Fold CV is superior.

Table 4.14: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold with grid search and percentage CV with the evolutionary algorithm, for
Barcelona’s airport data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.3672 t-test 1 1.7079e-04 32-68-0
2 hours 0.3162 t-test 1 1.7409e-17 18-82-0
3 hours 0.3884 t-test 1 2.3956e-07 31-69-0
4 hours 0.1654 t-test 1 2.3296e-12 17-83-0
5 hours 0.0613 t-test 1 3.3290e-06 37-63-0
6 hours 0.7392 t-test 1 2.9975e-06 34-66-0

4.3.3 Total ozone content (TOC) prediction at the Iberian Penin-
sula

The last real prediction problem that is considered in this chapter is the Total Ozone
Content prediction at different stations situated in the Iberian Peninsula, which has been
already used on section 3.3.4.
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Table 4.15: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05) over
10-Fold with grid search and generalized predictive CV with the evolutionary algorithm,
for Barcelona’s airport data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.0131 sign-test 1 2.0989e-21 2-98-0
2 hours 0.2079 t-test 1 7.0774e-19 8-92-0
3 hours 0.2836 t-test 1 3.7420e-29 4-96-0
4 hours 0.6606 t-test 1 5.1249e-32 7-93-0
5 hours 0.7388 t-test 1 4.0286e-24 10-90-0
6 hours 0.0906 t-test 1 4.2004e-31 4-96-0

Table 4.16 shows the average error and training time for the different validation
methods with grid search. In terms of training time, the results are similar to the
previous data sets, where 10-Fold is the slowest and generalized predictive CV the fastest.

Table 4.16: Ozone results (RMSE and time) of the standard SVR using grid search with
10-Fold, percentage and generalized predictive cross validation methods.

GS 10-Fold GS Percentage GS GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)

Arenosillo 12.1999 10.6800 12.0945 3.6846 11.7992 0.9224
Lisbon 11.8828 11.6628 11.8588 3.6956 11.2990 0.9341
Madrid 12.8920 12.0998 13.6182 3.8036 13.4253 0.9654

Mont-Louis 14.8559 12.4894 15.3384 3.7822 15.9262 0.9754
Murcia 14.3797 12.2650 13.5392 3.7600 13.1443 0.9650

Regarding the RMSE there is not a clear method with better results over the two
others, 10-Fold and percentage CV methods are quite similar. In fact, Table 4.17 shows
that there is just one significant difference, in Mont-Louis, where percentage CV overcomes
10-Fold CV. Table 4.18 presents the statistical test between 10-Fold and generalized
predictive, there is again only one data set with significant differences where 10-Fold
overcomes GP, in terms of win-loss-tie there are not big differences between the two
methods.

Table 4.19 has the RMSE average and time consumption for the same validation
methods but employing the evolutionary algorithm. In terms of RMSE, the results
are similar to the ones with grid search, there is not a clear improvement with the
evolutionary algorithm in any of the validation methods. Table 4.20 shows the statistical
tests over 10-Fold CV with grid search and percentage CV with the EA. There are three
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Table 4.17: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold with and percentage CV with grid search, for Ozone at Iberian peninsula
data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.1242 t-test 0 0.0591 10-7-3

Lisbon 0.1491 t-test 0 0.0679 4-13-3
Madrid 0.0748 t-test 0 0.8028 7-4-9

Mont-Louis 0.0771 t-test 1 0.0145 4-11-5
Murcia 0.0551 t-test 0 0.1804 10-5-5

Table 4.18: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold with and generalized predictive CV with grid search, for Ozone at Iberian
peninsula data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.8165 t-test 0 0.7693 10-9-1

Lisbon 0.9872 t-test 0 0.0522 8-12-0
Madrid 0.4938 t-test 0 0.0822 7-12-1

Mont-Louis 0.3525 t-test 1 0.0004 4-14-2
Murcia 0.7733 t-test 0 0.2260 11-8-1

data sets with significant differences: Lisbon and Murcia have better performance with
percentage CV and Mont-Louis with 10-Fold. Statistical tests for generalized predictive
CV against 10-Fold (Table 4.21) confirm a slightly better performance of 10-Fold, where
three data sets (Arenosillo, Madrid and Mont-Louis) have significant differences in favor
of 10-Fold and one (Murcia) with better performance for generalized predictive CV.
Regarding training time, it happens something similar to the previous sections where
the EA does not reduce the training time in all the validation methods. 10-Fold CV has
reduced considerably the time and with EA is three times faster. However, generalized
predictive has increased this training time. The reason is the fact that with small data
sets the training process is not the bottleneck, but the evolutionary algorithm which is
more time consuming than a grid search.

4.4 Conclusions

In this chapter, we have proposed two new validation methods to reduce the SVR
training time (search of the SVR hyper-parameters) while maintaining the accuracy
and generalization properties of the final machine. These new validation methods can
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Table 4.19: Ozone results (RMSE and time) of the standard SVR using evolutionary
algorithm with 10-Fold, percentage and generalized predictive cross validation methods.

EA 10-Fold EA Percentage EA GP
Data set RMSE Time(s) RMSE Time(s) RMSE Time(s)

Arenosillo 12.1691 4.4607 12.2146 3.48108 12.5430 1.7334
Lisbon 11.5465 4.3632 11.3992 3.06917 11.9130 1.5450
Madrid 13.3267 4.5329 12.9889 3.32392 13.5393 1.6713

Mont-Louis 14.8057 4.6596 15.2268 3.29758 15.4591 1.5727
Murcia 13.6795 4.6033 13.4343 3.30502 13.9272 1.5214

Table 4.20: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over 10-Fold with grid search and percentage CV with the evolutionary algorithm, for
Ozone at Iberian peninsula data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.7927 t-test 0 0.8984 53-47-0

Lisbon 0.4952 t-test 1 3.4468e-07 75-25-0
Madrid 0.0009 sign-test 0 0.0574 60-40-0

Mont-Louis 0.8709 t-test 1 0.0010 35-65-0
Murcia 0.3502 t-test 1 1.1561e-09 70-30-0

Table 4.21: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05) over
10-Fold with grid search and generalized predictive CV with the evolutionary algorithm,
for Ozone at Iberian peninsula data set.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.7443 t-test 1 0.0032 38-62-0

Lisbon 0.1327 t-test 0 0.8084 57-43-0
Madrid 0.0145 sign-test 1 9.6684e-04 33-67-0

Mont-Louis 0.7570 t-test 1 3.5013e-06 32-68-0
Murcia 0.1766 t-test 1 0.0225 51-49-0

be applied to the standard and multi-parametric versions of the SVR with any type
of search algorithm for the hyper-parameters, including grid search and meta-heuristic
search approaches such as evolutionary algorithms. In the experimental section of the
chapter we have tested the proposed methods in different experiments with grid search
and an evolutionary algorithm as a search algorithm, and the K-fold cross-validation
as a reference approach. We have shown that the proposed approaches obtain most
of the times similar performance than the K-Fold approach in terms of the final SVR
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accuracy, but in much shorter time, both when using the grid search and the evolutionary
algorithm as SVR hyper-parameters search techniques.



Chapter 5

GMDH Networks construction with
Evolutionary-based Hyper-Heuristic

In this Chapter, we present a novel method aiming to construct Group Method of Data
Handling (GMDH) networks, assisted by hyper-heuristics algorithms. The proposed
approach is based on an evolutionary hyper-heuristic, which completely automates
the GMDH construction, by evolving the number of layers, the polynomial order and
the number of selected nodes in each layer of the network. It results in a completely
self-organized algorithm called Hyper-Heuristic GMDH (HH-GMDH).

5.1 Introduction

During Chapter 2 the GMDH theory and the different kind of algorithms that are
implemented has been described. We have seen that the building process is almost
automated, but there are some parameters that should be set up at the beginning of
the development process, such as the number of nodes in each layer, etc. Note that
these parameters will influence not only the performance but also the training time of
the algorithm. Another problem that is related to the original GMDH algorithm is the
well-known over-fitting, which occurs when the model is too complex, and more, there is
another important problem specific to the GMDH architecture, namely multicollinearity:
multicollinearity appears when the nodes’ coefficients in different layers are highly
correlated. This problem can substantially increase the average error of the GMDH
approach.

In the last few years, intense research has been reported on GMDH-type networks
to improve their performance and to overcome their inherent problems. There are
several studies that address useful modifications of the basic GMDH approach: in [30], a
polynomial harmonic GMDH is presented for time series modeling. In [91] a generalization
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of GMDH called the Polynomial Neural Network (PNN) is described and applied to two
different industrial problems: the gas furnace process time series prediction and the pH
neutralization process problem. In [92], a modification of the standard GMDH algorithm,
leading to good performance reported for different prediction problems [93–96]. However,
the most important lines of research to improve the performance of GMDH are related
to its hybridization with the use of evolutionary algorithms. Several evolutionary-based
approaches have been used to this end, such as genetic algorithms [97–99], evolutionary
algorithms [100, 101], genetic programming [102, 103], particle swarm optimization [104]
and differential evolution [105]. Usually, these approaches attempt to replace or improve
the least squares regression method of the classical GMDH and to design the different
layers and layer characteristics of the network. These evolutionary approaches have
produced good results in terms of the network performance, at the expense of increasing
the computational cost of the algorithm.

In this chapter, we propose an alternative option to optimally construct GMDH
networks using hyper-heuristics described in section 2.4. We use an evolutionary-based
hyper-heuristic to find the optimal complete GMDH configuration and the polynomial
order that is used in each layer, i.e., the hyper-heuristic controls the number of layers, the
number of nodes and the polynomial order of each layer. The network is then constructed
in a classical way, i.e., by using the least squares approach to set the network parameters.
The use of the hyper-heuristic to construct the GMDH decreases the probability of
over-fitting and multicollinearity because several models are generated and evaluated
during run time. Thus, we choose the best model for the problem that is being solved.
Two different versions of the HH-GMDH approach have been defined, depending on
whether a regularization parameter (λ) is precalculated or encoded in the algorithm.

5.2 The proposed Hyper-Heuristics GMDH

As mentioned before, when designing a multi-layer GMDH algorithm for a specific
problem, it is essential to properly adjust a number of parameters, such as the number of
selected nodes in each step, the stopping condition or the polynomial type in each layer.
The GMDH performance severely depends on the optimal tuning of these parameters,
and this is a task usually carried out off-line by the network designer. We consider the use
of a hyper-heuristic algorithm that automatically configures these network’s construction
parameters.

Specifically we have considered an evolutionary-based hyper-heuristic, in which an
EA searches for the best sequence of possible heuristics to configure the number of nodes
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in each layer, polynomial type and stopping condition of the GMDH. Note that using
this approach, the need for the designer’s intervention in the construction of the network
is reduced to a minimum. In addition, as it will be shown, the use of hyper-heuristics
allows avoiding over-fitting due to the stopping criterion, and also the multicollinearity
problem, inherent to classically constructed multi-layer GMDH networks.

It is important to note that, to evaluate the GMDH construction process, the nodes’
selection and the hyper-heuristic evolution, we need three different sets of data:

1. A fitting set F , in order to obtain the polynomial coefficients for each layer of the
network

2. A validation set V , to check the goodness of every node created.

3. An extra set to evaluate the performance of each individual (GMDH network) of
the evolutionary algorithm, called fitness set S 1.

In the following subsections we show details on the proposed evolutionary-based
hyper-heuristic approach to construct GMDH networks, such as the list of heuristics
which form the search space, the encoding, selection, crossover and mutation operators
and finally the optimization process carried out to improve the algorithm’s computation
time.

5.2.1 Basic heuristics considered

We consider two groups of Basic Heuristics (BH) for the network construction, depending
on the way the nodes are selected in each layer. Then, these basic heuristics will be
combined with different types of polynomials to get the final set of heuristics to be
applied to the GMDH construction. These two groups of BH are as follows:

1. Selection of the M best nodes: in each layer, the nodes are sorted in terms of
the external criterion used (regularity criteria, i.e. error obtained in a validation
set), and the M first nodes are selected. The value of M is equal to the number of
inputs, and it is varied along the steps depending on the heuristic chosen.

BH1: The value of M is not modified. BH2: M is decreased in a unit. BH3: M is
a half of the previous value.

1Note that in situations where the available data is extremely reduced, the correct application of
the HH-GMDH may be compromised by the necessity of the training set partition into three subsets.
However, the experiments carried out in problems with small data sets available (Mortpollution and
Bodyfat from UCI, for example), indicate a good performance of the proposed approach also in these
case.
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2. M Random nodes selection: the external criterion is not taken into account
in this case, but the nodes in each layer are randomly chosen. As in the previous
group, the difference among heuristics is the number of chosen nodes.

BH1: The value of M is not modified. BH2: M is decreased in a unit. BH3: M is
a half of the previous value.

The final list of heuristics to construct the GMDH is formed by the BH combined with
polynomials of different degrees. To be more explicit, H1 to H6 are the BHs considering
the polynomials of degree 1:

y = a0 + a1x1 + a2x2 (5.1)

heuristics H7 to H12 are the BHs making use of polynomials of degree 2:

y = a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2 (5.2)

and finally, heuristics H13 to H18 are the BHs considering polynomials of degree 3:

y = a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2 + a6x1x

2
2 + a7x

2
1x2 + a8x

3
1 + a9x

3
2 (5.3)

Note that, on contrary to the conventional GMDH approach, we consider different
heuristics with polynomials of degree different than 2 in the proposed HH-GMDH. Since
the GMDH is an approximation to the KGP, the inclusion of polynomials of degree
different than 2 may provide more flexibility in the model’s construction procedure and,
as will be shown in the experimental section of this chapter, it is possible to obtain
better results. This technique has been previously used by other authors in [106, 107]. In
addition, different experiments including only heuristics related to polynomials of degree
2 have shown an increasing appearance of collinearity events, what makes even more
useful the inclusion of these heuristics with polynomials of degree 3 and 1.

5.2.2 The evolutionary algorithm

Evolutionary algorithms has been previously used to evolve hyper-heuristics’ solutions
[108, 109]. The one developed in this hyper-heuristic has some peculiarities and differences
respect to the previous algorithms implemented in chapters 3 and 4. Next sections describe
the main characteristics and operators for the evolutionary algorithm implemented to
HH-GMDH.
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5.2.2.1 Encoding

The encoding of the evolutionary algorithm is based on integer individuals of length K.
Each gene in an individual represents the construction of a layer from a previous one
(or the input layer in the case of the first layer). In other words, its value labels the
type of heuristic to be used to select the nodes in that layer. The zero value indicates
the stopping of the network construction. Only the first 0 value is considered. As an
example, in an individual defined as [1,3,10,17,0,2,15,0,6,4,8], the network is composed
of four layers, with heuristics H1, H3, H10 and H17. In this individual, the GMDH
will be constructed as follows: the first layer of the network keeps the same number
of nodes as the initial input layer, with linear polynomials (H1). The second layer is
constructed by choosing the best M/2 nodes, again with linear polynomials (H3), the
third layer is constructed by randomly chosen M nodes with second order polynomial
(H10), and finally the fourth layer is constructed by randomly choosing M − 1 nodes
from the previous layer (H17). The final 0 indicates that at this stage the construction
of the network is complete, and then the result from the best node in this layer will be
set as the network result.

5.2.2.2 Fitness function

The evaluation of each individual in the population is made by using a set of data called
fitness set, not used during the construction of the network coefficients nor the external
criterion to evaluate the network’s nodes. The fitness value is calculated as follows:

Fitness = 1
RMSE

= 1√
1
N

∑N
k=1(Y − Ŷ )2

(5.4)

where Y is the real output, Ŷ is predicted output obtained by the GMDH model and N

is the number of samples for the fitness set. This function has to be executed for every
new individual and before the selection process.

5.2.2.3 Selection operator

In this implementation we use rank-based wheel selection mechanism the same as the
SVM implementation for this chapter. First, the individuals are sorted in a list based on
their quality. The position of the individuals in the list is called rank of the individual,
and denoted Ri, i = 1, . . . , ξ, with ξ number of individuals in the population of the EA.
We consider a rank in which the best individual is assigned R1 = ξ, the second best y,
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R2 = ξ − 1 and so on. A probability of survival associated to each individual is then
defined, as follows:

fi = 2 · Ri

ξ · (ξ + 1) (5.5)

Note that these values are normalized between 0 and 1, depending on the position of
the individual in the ranking list. It is important to note that this rank-based selection
mechanism is static, in the sense that probabilities of survival (given by fi) do not
depend on the generation, but on the position of the individual in the list. As a small
example, consider a population formed by 5 individuals, in which individual 1 is the
best quality one (R1 = 5), individual 2 the second best (R2 = 4), and so on, with fitness
F1 = 3.4, F2 = 1.8, F3 = 0.5, F4 = 0.20, F5 = 0.10. In case of rank-based wheel, the
probability associated to the individuals are 0.33, 0.26, 0.2, 0.13, 0.06, and the associated
probability for the roulette wheel are 0.56, 0.3, 0.083, 0.03, 0.016.

5.2.2.4 Crossover and mutation operators

Once we have a set of selected individuals, the crossover operator is applied. In this case
we set the probability of crossover to 60%. For mutation process we set the probability
to 5%. The crossover and mutation operators are similar to the ones already explained
in section 3.2.3.

5.2.2.5 Individuals correction process

Due to the peculiarities of the problem, it is necessary to implement a correction process
to obtain feasible solutions that lead to a proper construction of GMDH networks. For
example, it is necessary that all the inputs are passed to the first layer of the GMDH,
to obtain all possible combinations of the input variables. Thus, the first gene in every
individual must have as heuristic H1, H7 or H13 (heuristics that consider the pass of
M nodes from the previous layer to the current one). Since in the initialization of the
algorithm, M is equal to the number of inputs, then the first layer will always have M
nodes to operate. It is also possible, due to the construction dynamics of the network,
that the number of selected nodes reaches 1 before the stopping condition (a 0 in the
encoding) appears. In this case a value of 0 is forced in the layer where this problem
appears.
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5.2.3 Estimation of the regularization parameter λ

In this Thesis, we have considered two different ways of estimation the regularization
parameter λ. First, a general procedure, valid for the classical GMDH and HH-GMDH,
consists in checking out a range of λ values using the classical GMDH in the whole
training set. We found that a good range to fix λ is [2−15, . . . , 23] (18 exponential values).
We have called this approach HH-GMDHλ algorithm.

A second approach for the calculation of the parameter λ, in this case specific for
the HH-GMDH, consists in including λ in the evolutionary algorithm which conforms
the HH-GMDH. In fact, note that we can encode the 18 exponent values of the λ range
directly in the considered evolutionary algorithm (since there also 18 heuristics to be
selected). Thus, λ is encoded as an extra parameter in the evolutionary algorithm, let
us call it l, located at the rightmost part of the evolutionary encoding, and its value is
just calculated as λ = 2−l+3 (to maintain the exponent range between -15 and 3). In this
case we call the algorithm HH-GMDH∗

λ.

5.2.4 Avoiding multicollinearity with HH-GMDH

Multicollinearity in an inherent GMDH-type networks problem, easily detectable in the
majority of occasions, which produces outputs that are huge in comparison with the rest
of correct ones. We can therefore detect it by using standard deviation of the training set
outputs. The procedure we have included in the HH-GMDH is the following: for every
sample in the test set (to be predicted), we select the best individual of the evolutionary
algorithm, encoding a GMDH. If the prediction value is larger than 4 times the standard
deviation of the training set, we assume that multicollinearity has been produced, and
then we discard this solution and choose the next best individual in the population.
Figure 5.1 shows an example of multicollinearity with Mortpollution data set.

5.3 Experimental part

In this section, we present different results that were obtained by the proposed HH-
GMDH approaches (HH-GMDHλ and HH-GMDH∗

λ) with the same data sets that we
have already used in chapters 3 and 4. We compare the results that were obtained by the
proposed HH-GMDH algorithms with those obtained by the classical GMDH approach
(considering M − 1 nodes from one layer to the next layer and quadratic polynomials).

The methodology chosen for the experiments conducted is as follows: first, the data
are divided into a training set and a test set (80% of the data for training and the
remaining 20% of the data for testing). The training set is then divided into three subsets
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Figure 5.1: a) Standard GMDH estimation over Mortpollution data set: example of
multicollinearity problem. b) HH-GMDH∗

λ estimation over Morpollution data set.

(fitting (F , 70% of the training data), validation (V , 15% of the training data) and fitness
(S, of the training data)). The HH-GMDH approaches are launched to obtained the
best method to construct the GMDH, in terms of the training set, and a final evaluation
of the problem is conducted on the test set. Note that all of the results that will be
shown have been computed over the test set. For this tests, it have been used a different
machine which has this features: CPU Intel Core 2 Duo P8600 (2 cores of 2.4GHz), 4GB
RAM, 320GB hard disk of 5400 rpm and Windows 7.

Although the aim of this chapter is to evaluate the improvement that is obtained
with the HH-GMDH when compared to a classical GMDH, in some of the applications
we also include a comparison with the Support Vector Regression algorithm with the
standard 10-Fold cross validation for the parameter selection (explained in Chapter 2).
As a benchmark, a MLP has been also implemented by using the Neural Network Toolbox
from MATLAB [110]. The MLP consists of two hidden layers with log-sigmoid transfer
function and an output layer linear transfer function, with a Levemberg-Marquardt
training procedure.

5.3.1 Results on public data sets

We first test the proposed HH-GMDH with the well-known UCI data sets. Table 5.1
shows the results that were obtained by the different approaches that were compared on
the UCI datasets. It can be seen that the two versions of the HH-GMDH (HH-GMDHλ

and HH-GMDH∗
λ) achieve the best average RMSE in the Mortpollution, Retplasma,

Betaplasma and Housing data sets. The SVR obtains the best results, which were
compared in terms of RMSE, in Bodyfat and Autompg data sets. For Abalone data
set the best result is achieved by the MLP. Regarding the computation time, we see
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that the fastest algorithm among all of the tested algorithms is the classical GMDH.
The HH-GMDH, in general, performs worse in terms of the computation time compared
with the other approach on small data sets, but it appears to be more scalable than the
other approaches in comparison; thus, its computation time is equal to or better than
those of the MLP and SVR for large data sets. There are also some differences in the
computation time between the HH-GMDHλ and HH-GMDH∗

λ approaches, in favor of the
first approach.

Table 5.1: UCI sets results. ∗ stands for cases in which multicollinearity appeared in at
least one permutation with the classical GMDH.

GMDH HH-GMDHλ HH-GMDH∗
λ SVM MLP

Data set RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s)
Mortpollution 43.1∗ 0.7 42.11 69.6 41.24 91.2 45.57 1.9 48.26 13.0

Bodyfat 0.0139∗ 0.4 0.0112 54.0 0.0113 85.6 0.0111 27.0 0.0120 44.6
Betaplasma 173.1 0.8 143.3 47.2 142.0 100.2 147.3 41.7 222.7 50.2
Retplasma 216.72∗ 0.4 211.8 74.5 209.8 93.6 218.1 41.9 307.6 50.1
Autompg 4.14 0.4 3.95 45.2 3.99 65.3 3.67 84.8 4.73 27.7
Housing 5.23 0.6 4.36 68.8 4.33 97.0 4.49 143.2 15.28 94.2
Abalone 2.18 1.04 2.01 96.4 1.91 103.4 2.02 6715.3 1.83 368.1

Note that the symbol (*) in the GMDH results of Table 5.1, in different data sets,
indicates that the multicollinearity problem has occurred at least in 1 permutation out
of the 5 considered. In this case, the sample presents a very high error; thus, the average
error for all of the sets is also very high. We have calculated then the average error after
eliminating cases of multicollinearity.

Table 5.2: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDHλ, for public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Autompg 2.0539e-06 sign-test 1 6.7953e-06 73-27-0

Betaplasma 0.0604 t-test 0 0.0594 62-38-0
Bodyfat 7.9980e-22 sign-test 1 2.0989e-21 98-2-0
Housing 5.1581e-06 sign-test 1 3.7979e-08 78-22-0

Mortpollution 7.9960e-22 sign-test 1 5.4959e-16 91-9-0
Retplasma 8.7126e-22 sign-test 1 6.7953e-06 73-27-0
Abalone 0.0221 sign-test 1 1.2476e-12 86-14-0

We also conduct a statistical analysis and a discussion of the results that were obtained
in each group of problems. The objective of this analysis is to test what extent the
behavior for the proposed HH-GMDH approaches (both HH-GMDHλ and HH-GMDH∗

λ)
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Table 5.3: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDH∗

λ, for public data sets.

Data set Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Autompg 5.2023e-10 sign-test 1 9.5837e-07 75-25-0

Betaplasma 0.0417 sign-test 1 0.0037 65-35-0
Bodyfat 7.9979e-22 sign-test 1 2.0989e-21 98-2-0
Housing 6.2670e-06 sign-test 1 9.5837e-07 75-25-0

Mortpollution 7.9960e-22 sign-test 1 2.7890e-15 90-10-0
Retplasma 8.5866e-22 sign-test 1 0.0037 65-35-0
Abalone 0.0991 t-test 1 0.0105 95-5-0

is superior to that of the classical GMDH approach, e.e, to show that the optimal
application of heuristics for the GMDH construction outperforms the classical way of
constructing a GMDH network. This calculation will also show that the hyper-heuristic
approach for GMDH construction is a robust method that can be accounted for in the
design of neural computation algorithms.

Tables 5.2 and 5.3 show pairwise comparison between GMDH/HH-GMDHλ and
GMDH/HH-GMDH∗

λ. Depending on whether the result distribution is normal or not, we
use t-test in case of normal distribution and sign-test otherwise. In order to check the
distribution Kolmogorov-Smirnov test is applied to the results. Focus on the p-values and
Win-Loss-Tie, we see that both Evolutionary GMDH alternatives overcome in almost all
the data set to the standard GMDH, in fact, there is not a simple case were standard
GMDH improves the hyper-heuristic approaches.

Table 5.4: Friedman ranks (public data sets).

Algorithm Ranking
GMDH 2.2086

HH-GMDHλ 1.9857
HH-GMDH∗

λ 1.9857

Table 5.4 shows the Friedman ranking that was obtained. The Iman-Davenport
statistics and the p-value are, in this case, 0.02082 and 0.9793, which appears to indicate
that there is no statistical evidence of the HH-GMDH algorithm’s superiority in these
problems. Table 5.5 shows the adjusted p-values for the Friedman test and the results
that were calculated by using the Holland procedure [56], using the HH-GMDHλ as a
control method. The results in this table do not confirm any significant difference in these
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Table 5.5: Public data sets prediction. Adjusted p-values for the Friedman test (HH-
GMDHλ is the control method).

Algorithm unadjusted p pHolland

GMDH 0.8577 0.9797
HH-GMDHλ 1 1

problems for the HH-GMDHλ over the HH-GMDH∗
λ or the classical GMDH, although

the ranking values show superior behavior for the HH-GMDH approaches.

5.3.2 Temperature forecasting at Barcelona’s airport

We further test the HH-GMDH performance on a real prediction problem; specifically,
with the Barcelona airport temperature described in Section 3.3.3. Table 5.6 shows the
results that were computed by with the classical GMDH, HH-GMDH (HH-GMDHλ and
HH-GMDH∗

λ), SVR and MLP algorithms. Note that the two versions of the proposed
HH-GMDH reached excellent results in terms of RMSE, which were better than the
results of the classical GMDH and comparable to or even better than those of the
SVM and MLP algorithms. Regarding the computation time, the proposed HH-GMDH
outperformed SVM and MLP, although (as expected) its computation time was higher
than that of the classical GMDH approach. Thus, we can conclude that the HH-GMDH
offers reasonable performance in terms of error prediction, with an affordable computation
time for its implementation in real prediction systems. Figure 5.2 shows an example
of the HH-GMDH fitness evolution in the 1-hour time prediction case. Note how the
high-level evolutionary algorithm improves the fitness (Equation 5.4), i.e., it obtains
better GMDH structures during the evolution.

Table 5.6: Temperature prediction in Barcelona’s airport results.

GMDH HH-GMDHλ HH-GMDH∗
λ SVM MLP

Gap RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s) RMSE Time(s)
1 hour 0.7525 0.96 0.6796 173.1 0.6783 459.1 0.6534 1065.3 0.7391 416.4
2 hours 1.2688 0.60 1.1415 175.4 1.1213 428.7 1.0655 959.8 1.1369 498.3
3 hours 1.6792 0.64 1.4235 189.4 1.4652 379.2 1.3492 941.0 1.3986 434.9
4 hours 1.8220 0.43 1.5909 181.1 1.6218 473.4 1.4710 1026.0 1.6730 415.6
5 hours 1.9253 0.43 1.7656 161.0 1.7671 283.5 1.6372 1011.2 1.7136 422.8
6 hours 2.0313 0.60 1.8470 215.7 1.8501 239.5 1.7496 1002.8 1.9515 434.3
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Figure 5.2: HH-GMDH fitness evolution for 1 hour prediction time horizon at Barcelona’s
airport.

Tables 5.7 and 5.8 have the results of t-test/sign-test. We see that Hyper-Heuristic
solutions are better than classical GMDH, the p-value in all the cases reject the null
hypothesis so the distribution are statistically different, in fact in almost all the execution
the hyper-heuristic approaches win.

Table 5.7: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDHλ, for Barcelona’s airport data set.

Gap Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.0069 sign-test 1 1.0411e-16 92-8-0
2 hours 0.4926 t-test 1 9.1346e-19 99-1-0
3 hours 0.2404 t-test 1 3.7664e-31 100-0-0
4 hours 0.6877 t-test 1 1.9236e-19 100-0-0
5 hours 0.9718 t-test 1 8.5344e-10 100-0-0
6 hours 0.0994 t-test 1 3.0601e-07 99-1-0

Friedman ranking can be seen in Table 5.9, where the Friedman ranking is reported.
The Iman-Davenport statistics and the p-value are, in this case, 89.09 and 0, respectively,
which indicates that there are significant differences in the behavior of the different
algorithms in these problems. Table 5.10 shows the adjusted p-values for the Friedman
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Table 5.8: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDH∗

λ, for Barcelona’s airport data sets.

Gap Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
1 hour 0.0567 t-test 1 1.8068e-36 91-9-0
2 hours 0.3568 t-test 1 9.1539e-24 99-1-0
3 hours 0.9906 t-test 1 3.2879e-25 100-0-0
4 hours 0.9826 t-test 1 7.2964e-14 100-0-0
5 hours 0.2072 t-test 1 9.3772e-08 100-0-0
6 hours 0.2301 t-test 1 2.8052e-07 99-1-0

test using the Holland procedure. This table indicates that the classical GMDH performs
statistically worse than the HH-GMDHλ, whereas the HH-GMDH∗

λ appears to perform
similarly to the control method (the HH-GMDHλ).

Table 5.9: Friedman ranks (Temperature prediction).

Algorithm Ranking
GMDH 3

HH-GMDHλ 1.4333
HH-GMDH∗

λ 1.5667

Table 5.10: Temperature prediction. Adjusted p-values for the Friedman test (HH-
GMDHλ is the control method).

Algorithm unadjusted p pHolland

GMDH 0 0
HH-GMDH∗

λ 0.6055 0.6055

5.3.3 Total ozone content (TOC) prediction at the Iberian Penin-
sula

The last real prediction problem that is considered in this chapter is the Total Ozone
Content (TOC) prediction at different stations situated in the Iberian Peninsula. Table
5.11 shows a comparison of the results that were obtained by the classical GMDH and the
proposed HH-GMDHλ and HH-GMDH∗

λ in terms of the RMSE in the test set considered.
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It can be seen that the results that were obtained by the HH-GMDH approaches are
consistently better than the results that were offered by the classical GMDH at all of
the sites that were considered. The experiments that were conducted show differences
between the classical GMDH and the two proposed HH-GMDH, although the differences
between the two versions of the HH-GMDH algorithms are small. In this problem, the
computation time for the training in all of the approaches was within one second in
the case of the classical GMDH and within 10 seconds in the case of the HH-GMDH
approaches (note that the number of training samples in this problem is reduced).

Table 5.11: TOC average RMSE obtained with the different GMDH versions (classical
and HH-GMDH) discussed in this chapter.

TOMS Nimbus-7 GMDH HH-GMDHλ HH-GMDH∗
λ

overpass site
Arenosillo 13.435 12.311 12.242

Lisbon 13.474 13.122 12.890
Madrid 20.652 13.598 13.637

Mont-Louis 15.356 14.869 15.115
Murcia 13.276 13.337 13.549

Tables 5.12 and 5.13 presents the result of the Kolomogorov-Smirnov test and sign-test.
Similar to the other two previous sections the hyper-heuristic approaches outperform the
classical GMDH in almost all the repetitions and p-value clearly reject the null hypothesis
for all the cases.
Table 5.12: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDHλ, for Ozone at Iberian peninsula data set.

TOMS Nimbus-7 Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.00989953 sign-test 1 6.79535e-06 73-27-0

Lisbon 7.996e-22 sign-test 1 0.00693395 64-36-0
Madrid 5.04323e-10 sign-test 1 8.032e-11 83-17-0

Mont-Louis 1.80974e-21 sign-test 1 3.31884e-18 94-6-0
Murcia 3.64981e-21 sign-test 1 0.0357288 61-39-0

Figure 5.3 finally shows the HH-GMDHλ prediction (over the test set) of TOC at
the Madrid overpass site. Note the good reconstruction that the proposed HH-GMDH is
able to obtain.

Table 5.14 shows the Friedman ranking that was obtained in these problems from the
different algorithms that were considered. The Iman-Davenport statistic and the p-value
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Table 5.13: Statistical tests (t-test or sign-test) with statistical significance (α = 0.05)
over GMDH and HH-GMDH∗

λ, for Ozone at Iberian peninsula data set.

TOMS Nimbus-7 Kolmogorov-Smirnov(p-value) test significance p-value W-L-T
Arenosillo 0.0024207 sign-test 1 0.000215599 69-31-0

Lisbon 7.996e-22 sign-test 1 4.1315e-05 71-29-0
Madrid 2.00823e-10 sign-test 1 2.0842e-11 84-16-0

Mont-Louis 1.80974e-21 sign-test 1 5.49592e-16 91-9-0
Murcia 3.65115e-21 sign-test 1 0.0214482 62-38-0
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Figure 5.3: Real TOC and HH-GMDH prediction for Madrid TOM Nimbus-7 overpass
observation site.

are 0.96 and 0.6279, respectively. Table 5.15 shows the adjusted p-values after application
of the post hoc methods. In this case, the Holland procedure discards a significant
difference between the GMDH and HH-GMDH∗

λ with the control method (HH-GMDHλ),
although the GMDH appears to perform worse than the proposed HH-GMDH approaches.

Finally, we apply this statistical analysis methodology to all sets of experiments
together. Table 5.16 shows the Friedman ranking that was obtained in this case. Table
5.17 shows the adjusted p-values after application of the post hoc methods. The Holland
procedure does not show a significant difference between the GMDH and HH-GMDH∗

λ

with the control method (HH-GMDHλ), but the GMDH performs consistently worse
than the proposed HH-GMDH approaches.
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Table 5.14: Friedman ranks (TOC prediction).

Algorithm Ranking
GMDH 2.16

HH-GMDHλ 1.92
HH-GMDH∗

λ 1.92

Table 5.15: TOC prediction. Adjusted p-values for the Friedman test (HH-GMDHλ is
the control method).

Algorithm unadjusted p pHolland

GMDH 0.3961 0.6353
HH-GMDH∗

λ 1 1

Table 5.16: Friedman ranks (all considered problems together).

Algorithm Ranking
GMDH 2.34

HH-GMDHλ 1.82
HH-GMDH∗

λ 1.82

Table 5.17: All considered problems together. Adjusted p-values for the Friedman test
(HH-GMDHλ is the control method).

Algorithm unadjusted p pHolland

GMDH 0.1984 0.3865
HH-GMDH∗

λ 1 1

5.4 Conclusions

In this study, we have presented a modification of the construction of group method of
data handling networks (GMDH), using hyper-heuristics algorithms (HH-GMDH) driven
by evolutionary computation algorithms. Our method allows automatic construction
of the network by evolving the number of layers, the polynomial order and the number
of nodes in each layer of the network. We have detailed the encoding and the different
evolutionary operators specifically designed for the proposed hyper-heuristic approach.
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In the experimental part of the chapter, we have shown the performance of the proposed
technique on several prediction problems from the UCI public repository and two different
real-world applications concerning temperature and ozone prediction. We have compared
the HH-GMDH results with those by the classical GMDH. In some applications, we have
also compared the HH-GMDH results with those of multi-layer perceptrons and Support
Vector Regression algorithms. These results have shown the good performance of the
hyper-heuristic approach in the automated construction of GMDH networks.





Chapter 6

Conclusions and future work

This Ph.D. Thesis has tackled different problems related to improvements on two state-
of-the-art algorithms: Support Vector Regression (SVR) approaches and Group Method
of Data Handing (GMDH). Specifically, an evolutionary-based multi-parametric version
of the SVR is proposed, in such a way that the Gaussian kernel shows a different γi

parameter for each dimension of the features space. This evolutionary version of the
SVR allows a more accurate prediction within much less computational time that the
classic grid search parameter selection, for the multi-parametric kernel case. In this case,
a real-encoding evolutionary approach has been developed and adapted to be effective in
the selection of the best SVR parameters for the multi-parametric kernel.

Two new validation methods to calibrate the performance of regression techniques.
This new validation framework has been successfully tested for the SVR approach in
several specific problems, with accurate results in terms of regression techniques evaluation
capabilities, in comparison with a K-Fold cross validation approach.

A final contribution of this thesis consists of proposing a novel hyper-heuristic approach
for the optimal construction of GMDH networks is the second major contribution of this
thesis. In this case, the hyper-heuristic paradigm has been used to improve the GMDH
construction, by encoding several basic heuristic for selecting the nodes for the next
layer of the network, and also the network length. This hybrid approach was coined as
HH-GMDH, and it was shown that the HH-GMDH was able to improve the performance
of the classic GMDH approach in regression problems.

Direct applications of the improvements carried out in the SVR and GMDH techniques
are the following:

• Development and analysis of an evolutionary multi-parametric SVR algorithm.

• Development of a new validation framework for data-driven regression techniques.

• Development and analysis of the HH-GMDH approach.
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• Application of all these new proposals in two different real problems: Temperature
forecasting at Barcelona’s airport and Total ozone content (TOC) prediction at
the Iberian Peninsula.

• Development of a missing value reconstruction system based on GMDH networks
for wind farm management (Appendix B).

• Development of a system for wind speed estimation from pressure data (Appendix
B).

6.1 Future work

This thesis opens an important amount of new research lines, in all the topics treated
during this research:

• A first line of future research consists of the application of the techniques developed
in this thesis for the case of classification problems, taken into account the specific
problematic of this field.

• For both classification and Regression problems, the evolutionary multi-parametric
SVR developed in this thesis could be further improved. The basic idea is, not only
consider a different γ for each dimension of the feature space, but also, consider a
different vector of γ for each support vector of the problem. This would require a
kind of re-evaluation of the SVR after a first step of training with a single-parameter
Gaussian kernel. Figure 6.1 shows a problem where we have just three support
vector and the Gaussians of each support vector are presented. We can see that
these Gaussians have different widths but have exactly the same shape which
correspond to the expression:

K(xi, xj) = exp (−
M∑

m=1
γm(xim − xjm)2) (6.1)

g(x) = sign(
N∑

n=1
ynαnK(xn, x) + b) (6.2)

We propose for future works to define different Kernel parameters for each support
vector, thus there would be infinite amount of shapes which can adapt better to
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(a) (b)

(c) (d)

Figure 6.1: Example with three different support vector machines with the same multi-
parametric Kernel.

complex problems. Figure 6.2 shows an example with Kernel tuned for each support
vector.

Kn(xi, xj) = exp (−
M∑

m=1
γnm(xim − xjm)2) (6.3)

g(x) = sign(
N∑

n=1
ynαnKn(xn, x) + b) (6.4)

• Regarding new research lines in GMDH networks, this is a field not much explored
in terms of its application to regression problems. One of the main advantages of
this network is its extremely fast training, which makes it perfect to hybridize with
evolutionary algorithms. In the last few years, these hybrid approach have been
mainly constructed using alternative fast-training approaches, such as Extreme
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(a) (b)

(c) (d)

Figure 6.2: Example with three different multi-parametric Kernels for each support
vector.

Learning Machines (ELMs) [111], but these networks have different problems of
variance control when they are evaluated to obtain the fitness values of evolutionary
algorithms. The use of GMDH type networks can help control this problem,
obtaining good performance hybrid approaches to difficult regression problems.

• The further development of GMDH networks implies to tackle an issue of this
approach, the so-called multicollinearity of the network, which produces very high
error values in specific cases. A deeper study of this phenomenon could lead to new
or alternative implementations of the GMDH, either evolutionary-based approaches,
such as the one proposed in this Thesis, or based on different computational
frameworks.
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Appendix B

Technology transfer to productive
sector

The research process of this Thesis has been accompanied by software development works
for the productive sector. The main contribution of this Thesis to the productive sector
is concentrated in three different software tools. The first one is a wind forecasting tool
developed for Etulos Solute, S.L. This program use different machine learning algorithms
to estimate the wind speed and direction for a given time horizon (24, 12 or 6 hours),
based on meteorological data such as pressure and temperature. The second contribution
is a real Measure-Correlate-Predict operation software for data reconstruction, which has
been applied in order to fill wind data generated by turbines in a wind farm of Iberdrola
S.A. Finally, a software to classify a company into bankrupt or healthy, given certain
finance information.

B.1 Wind Prediction based on pressure data

Accurate wind speed prediction is an important problem that energy companies face
every day when they have to estimate this wind farms production. Sometimes they need
short-term forecastings, due to the fact that wind resource is not always available, and it
is necessary to forecast the production that is going to be thrown into the energy system.
For example, in USA hourly energy prediction is required in every wind farm. Regarding
long-term forecasting, it is used in order to search the best place to install a wind farm
and the distribution of the wind turbines into the selected area.

Usually, algorithms for long-term forecasting are based on historical wind measures,
such us [112] and [113]. However, there are some atmospheric variables such as pressure,
temperature and radiation which can help explain certain wind conditions. These
variables can be used to make a wind long-term reconstruction in those areas where we
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do not have wind historical data. We have developed a software which can make wind
reconstruction and long-term prediction based on synaptic pressure data, given a certain
coordinates of the area we want to know about.

B.1.1 Theoretical Background

Atmospheric pressure is the main source of wind generation due to pressure gradient in the
high layers of the atmosphere. The simplest model of wind generation by pressure gradient
is obtained by equalizing pressure gradient and the Coriolis force in the atmosphere. It is
called the geostrophic wind approximation. The geostrophic wind derivation is as follows:

The Coriolis force by unit of volume is:

fcx = ρ · f · v

fcy = −ρ · f · u
(B.1)

where fcx and fcy are the zonal and meridional components of the force, and f stands
for the Coriolis parameter. On the other hand, the force due to pressure gradient can be
expressed as follows:

fpx = −∂p

∂x

fpy = −∂p

∂y

(B.2)

Making equal Equations (B.1) and (B.3) we obtain the expression for the geostrophic
wind:

ug = − 1
f · ρ

∂p

∂x

vg = 1
f · ρ

∂p

∂y

(B.3)

Geostrophic wind is a simple, but effective model of wind speed in high levels of
atmosphere, out of the Planetary Boundary Level (about 1000m of height). It, however,
differs from the measured wind measured at the ground, due to turbulence and other
effects.
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B.1.2 Data source

The meteorological data were provided by National Oceanic and Atmospheric Adminis-
tration (NOAA) or European Centre for Medium-Range Weather Forecast (ECMWF).
These two organizations have freely available a great amount of meteorological data,
including wind speed and pressure. ECMWF provides us with scripts to access to the
data in several different languages (Python, Perl, Ruby, CSharp, etc), all the source code
and information about the API are available at [114]. We can download the data with
two different format netcdf and grib, but also there is available a library to work with
these two formats in [115]. Pressure is given by a grid of points with a certain resolution,
ECMWF gives the possibility of data in different resolutions: 2.5º, 1.5º and 0.75º. On
the other hand, NOAA has available all the data on a ftp server in [116], the data is in
netcdf format. NOAA only has an unique possible resolution of 2.5º for free access. The
data is available in sampling steps of 6 hours, 12 hours and 24 hours.

In order to get the wind estimator the system need wind historical data from an area
as close as possible to the region of the study. The program parses the pressure data
from the region around point and generate a file for the dates that we have previously
read it from the wind file. As a result, we get the full training set with pressure and
wind data (inputs/output). Once the model has been created the program only needs a
new grid of pressure to make a wind speed estimation.

B.1.3 Learning algorithms

Regarding the training process, two different machine learning algorithms are implemented
in this software, the user has the possibility to choose which of them to apply. The first
one is a clustering method presented in [117]. This article describes an evolutionary
algorithm for clustering in a search space of atmospheric pressures in a grid. This is
the first work which incorporates an evolutionary algorithm to the extraction of these
synoptic pressure patterns. The objective is to obtain N groups of synoptic pressure
situations which produce the most similar wind vectors (wind speed and direction) in a
given point (usually a wind farm project).

The second algorithm is the well-known Support Vector Regression, already described
in Section 2.1. In this case, we treat the wind forecasting as a regression problem and we
get a real value output. In addition, SVR has the advantage of add news meteorological
information (just appending them to the input vector) and see whether the new data is
useless or not.
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B.1.4 Results

In this section, it is presented a performance demonstration of this software over one
location that there are available wind data. This data is from Colorado: Latitude North
37.7078º, longitude West 104.8112º and elevation of 1886 meters. The data have been
recorded from 2/1/2006 to 9/8/2010 in time steps of 10 minutes, daily average will be
obtained from these data.

Table B.1 shows the forecasting made with Clustering evolutionary algorithm for
daily average wind. The table contains the result for different number of classes, and
also shows the results with two different data sources (NOAA and ECMWF). In terms
of number of classes, it seems that with a few number of classes (less than 24) the error
is lower than with a large number of classes. Also we see that the results with data from
NOAA are better than the one obtained with data from the European agency. Table B.2
shows the results for SVR algorithm. In this case, the error is lower than the clustering
method and also the results are better with NOAA data pressure than ECMWF. Figures
B.1 and B.2 represent the wind prediction for Colorado with the real values. We can see
how close is our two estimation methods graphically. Furthermore, Figures B.3 and B.4
present in other way the wind forecasting with the Weibull distribution, we see that for
B.4 there is not big differences between the real and estimated distribution. However
Figure B.3 shows that the Weibull distribution obtained with 10 classes clustering, is
quite different than the original one. Note however, that in terms of error (1.9347 m/s)
it is very similar to the estimation made by SVM (1.9076 m/s). This means that the 10
classes have values in those areas where more wind values are concentrated.

B.2 Real Measure-Correlate-Predict Operation Soft-
ware

Usually, a typical problem collecting data is the existence of gaps, due to errors in the
measurements or because over certain circumstances the measures could not be carried
out. This is a typical problem in wind farms using data from in-situ measuring towers
(see [118]). Data reconstruction also known as Measure-Correlate-Predict (MCP) is
usually carried out by different statistical methods: traditional ones, such as linear MCP
techniques have been applied in different studies of wind farm site assessment [119] or
wind speed reconstruction [120]. But also some machine learning methods such as neural
networks [121], Support Vector Machines [122] or Bayesian Networks [123].

However most of the articles do not cover Real MCP Operations (RMCPO). A
RMCPO problem consists in tackling the raw reconstruction or prediction problem by
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Figure B.1: Comparison between real wind value (blue line) and estimation with 10
classes clustering (red line).

Figure B.2: Comparison between real wind value (blue line) and estimation with SVR
algorithm (red line).
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Figure B.3: Weibull distribution for real data and estimation results with 10 classes
clustering.

Figure B.4: Weibull distribution for real data and estimation results with SVR algorithm.
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Table B.1: Clustering evolutionary algorithm forecasting results for different number of
classes. Pressure data are from NOAA and ECMWF both with 2.5º of resolution.

NOAA (2.5º) ECMWF (2.5º)
Class RMSE(m/s) Bias RMSE(m/s) Bias

4 2.0434 -0.0145 2.3310 -0.0426
6 2.0022 -0.2407 2.2053 -0.2798
8 2.0162 -0.1271 2.1646 -0.2325
10 1.9347 -0.1097 2.1618 -0.1156
12 2.0685 -0.2651 2.3316 -0.1570
14 2.0996 -0.0427 2.1822 -0.0391
16 2.0224 -0.0151 2.2117 -0.1692
18 2.0705 0.0500 2.1605 -0.0720
20 2.1296 -0.0387 2.3174 -0.0401
22 2.0830 0.0774 2.2201 0.0232
24 2.3309 0.1866 2.2622 -0.1553
26 2.1429 -0.1733 2,3847 -0.0388
28 2.1367 0.0366 2.2410 0.0563
30 2.1139 -0.0714 2,2647 0.0307
32 2.0161 0.1282 2.4446 0.0750
34 2.0526 0.0984 2.2562 -0.0055
36 2.2160 -0.0443 2.3576 0.0341
38 2.0643 -0.0697 2.2979 0.0746
40 2.3606 0.0673 2.7552 -0.0211
42 2.3312 -0.0880 2.3600 -0.1635
44 2.2205 -0.0172 2.4053 0.0087
46 2.3818 0.0332 2.3213 -0.1085
48 2.0942 -0.1337 2.2329 -0.0180
50 2.4222 -0.0125 2.2577 0.0035

Table B.2: SVR algorithm forecasting Colorado wind results. Pressure data are from
NOAA and ECMWF both with 2.5º of resolution.

NOAA (2.5º) ECWMF (2.5º)
RMSE(m/s) Bias RMSE(m/s) Bias

1.9076 -0.4623 1.9582 -0.3602

training prediction models from the existing data and estimates the missing values. With
large set of data a lot of different models have to be created to fill all the gaps. Thus,
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Figure B.5: RMCPO User Interface with MATLAB.

very fast training approaches must be used in RMCPO problems, and that is why linear
regression approaches are usually applied in industry for RMCPO problems.

Our RMCPO software has been developed in order to perform the gap filling task in
a straightforward way. The machine learning method behind this software is the Group
of Method of Data Handling, described in Section 2.2 where we saw that GMDH is a very
fast method with a training time much lower than other usual methods such as SVM,
neural network, etc, that makes GMDH an excellent option for RMCPO processes. We
also implement HH-GMDH algorithm described in Chapter 5 which training process takes
a bit longer but in general gets better results than the basic GMDH. As a benchmark it
is also implemented the Multiple Linear Regression (MLR) with Least Squares Error as
parameters estimator (2.2.6).

B.2.1 User Interface

The program has been developed with MATLAB. The User Interface has been designed
to be very simple in order to help those people that are not very familiar with computer
science and machine learning. Most of the bottoms and combo boxes are self-descriptive.
This software has two operating ways, first one and principal is filling incomplete data
sets (RMCPO). But also the program has the possibility of making estimations over a
new data inputs, with a model previously trained and saved. Figure B.5 shows this user
interface.

B.2.2 RMCPO

This mode receives a data set with gaps of correlated measures and the software fills
these gaps with the information available. Let D be a N × M matrix, where N is the
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number of samples and M is the number of inputs for a given sample. The RMCPO
problem consists in, given D, build a set of K(D) regression models, for covering all the
possible combinations of available data and missing values to be reconstructed. All the
regressions models have at least two inputs features.

D =



5.1 X 3.8 2.9
6.0 7.2 X X

X X 1.3 1.2
9.4 6.2 4.8 7.9
X 9.6 X 8.5
6.2 2.9 4.0 X

4.1 7.2 4.3 6.8
4.5 5.2 6.1 X

2.1 3.6 5.1 3.8
8.6 9.2 10.0 X



(B.4)

Matrix B.4 is an example of a data set with gaps, and represents wind speeds of four
different wind turbines. If we would like to fill wind speed of turbine #2 in the first
row, we should create a model with three inputs from turbines #1, #3, and #4. So the
training set needs sample with the four inputs, that is rows 4, 7, and 9. However, if we
need to get the value of turbine #3 in the second row, we need inputs from turbine #1
and #2, the training set needs values from turbines #1, #2 and #3 to create the model,
we can use rows 4, 6, 7, 8, 9 and 10.

The total number of models to cover all the possibilities depends on the input feature
space M and it equals:

K(D) =
M−3∑
i=0

M !
i!(M − i)!(M − i) (B.5)

Next steps summarize how to use the program for RMCPO:

• Select mode Generate Models, choose the data file that we want to refill and
press start. The process will take a while till all the models are created.

• Once we have all the models, change the mode to Fill Data/Prediction and
press start. This way, it is created a file called FileName_reconst.dat. This
file has all the gaps filled.

It is also possible to test the performance of the software and different techniques (GMDH
and MLR). For this task, we pass a full data set without any gap, this way the program
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generate automatically a new file with random gaps, generate all model to refill the file
and finally check the error with the original file.

B.2.2.1 File Format

Data files extension uses .dat, where each input data is separated by coma and the output
is the last value of the row. See the next example:


X11, X12, X13, . . . , X1N , Y1

X21, X22, X23, . . . , X2N , Y2
...

XM1, XM2, XM3, . . . , XMN , YM

 (B.6)

B.2.2.2 RMCPO performance comparison over a real problem

The performance of this software has been measured in real data from a wind farm in
Spain. Figure B.6 shows the location of the eight measuring stations considered, within
the same wind farm, situated in Guadalajara, Spain. The data set gathers hourly wind
samples from November 2008 to November 2010. We have carried out and experiment in
order to focus on the specific reconstruction. We have available a total of 239 complete
temporal series, of different length, with a total of 4391 hours of average wind speed data
for the eight towers. The distribution length of the considered series is shown in Figure
B.7. The performance of GMDH in a RMCPO, consisting in the reconstruction of the
missing values in the set of eight considered towers.

First, the problem of wind speed reconstruction using the complete data from neighbor
towers is tackled. In this problem, the wind value of different neighbor towers is used as
input in the regression techniques, in order to estimate the wind at the same time in an
objective tower. Since we have available all the data in each tower, we can evaluate the
accuracy of each considered method. This evaluation is carried out in terms of different
well-known statistical evaluation indices in each tower: such as root mean square error
(RMSE) and the mean bias error (MBE), which checks whether the model overestimates
or underestimates the wind speed, the Coefficient of Determination (R2), which provides
information about the percentage of the variance that the model is able to explain, and
the Index of Agreement (IoA), which gives information about how close the predicted
wind speed values are to the observed ones. These performance indices have been used
profusely before in different studies, including in environmental applications [124–126].
We also compare the algorithms in terms of the final computation time for training each
method. We have carried out wind speed reconstruction and prediction for all the towers
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Height of the

wind measurement

T-5 50m     T-6 50m

T-7 50m     T-8 50m

T-3 50m     T-4 40m

T-1 50m     T-2 50m

Figure B.6: Situation of the wind measuring towers in Spain and within the wind farm.
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by using a different number of neighbor towers: the 3 nearest towers to the target one
(called 3T case), the 5 nearest (called 5T case) and all the available towers (called 7T
case). Table B.3 shows a summary of towers used to reconstruct/predict each target
tower. This table can be seen together with Figure B.6, where the current disposition
of the towers is shown. The table details which towers are used in the 3T case (using
the 3 nearest towers to do the reconstruction/prediction) and in the 5T case (using the
5 nearest towers to do the reconstruction/prediction). Note that in the 7T case all the
towers but the target one are used in the reconstruction/prediction process.

Table B.3: Towers used to reconstruct/predict the target tower, by using a different
number of neighbor towers (the 3 nearest (3T case) or the 5 nearest (5T case)). Note that
in the 7T case all the towers but the target one are used in the reconstruction/prediction
process.

Target tower Nearest neighbor towers (3T case) Nearest neighbor towers (5T case)
1 2, 3, 4 2, 3, 4, 6, 7
2 1, 3, 4 1, 3, 4, 6, 7
3 1, 2, 4 1, 2, 4, 6, 8
4 1, 2, 3 1, 2, 3, 6, 8
5 6, 7, 8 2, 3, 6, 7, 8
6 2, 3, 8 2, 3, 5, 7, 8
7 5, 6, 8 2, 3, 5, 6, 8
8 5, 6, 7 2, 3, 5, 6, 7

Table B.4 shows the performance of the GMDH, and Tables B.5, B.6 and B.7 show
the alternative methods for comparison (MLR, MLP and SVR), in terms of the different
evaluation indices considered. Note that the performance of GMDH is quite acceptable,
with evaluation indices comparable to the obtained by the compared approaches. The
SVR seems to be the most accurate method among all tested in general, the MLR
(reference method) is the one which provides the poorer results. Regarding the differences
between the wind speed reconstruction using 3, 5 or 7 towers, it is interesting to see how
the reconstruction using 3 reference towers (3T case) provides poorer results than the
reconstruction using 5 (5T case) or 7 (7T case). However, the reconstruction using 5
towers (5T case) is, in many cases, better than the one using 7 towers. This indicates that
the information provided by 5 towers is enough to obtain a good quality reconstruction of
the wind speed, whereas the information of the 3 nearest towers is not enough to provide
the best possible reconstruction.
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Table B.4: Wind speed reconstruction results obtained by the GMDH network.

GMDH reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.955 0.019 0.977 0.950
2 0.952 0.001 0.987 0.676
3 0.946 0.002 0.9823 0.738
4 0.938 0.058 0.983 0.761
5 0.965 -0.001 0.985 0.818
6 0.781 -0.009 0.976 0.847
7 0.951 0.001 0.969 1.263
8 0.972 -0.006 0.986 0.789

GMDH reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.928 0.010 0.978 0.928
2 0.950 -0.003 0.990 0.599
3 0.974 0.003 0.985 0.690
4 0.941 0.047 0.984 0.730
5 0.969 -0.009 0.987 0.773
6 0.787 -0.018 0.975 0.868
7 0.987 0.013 0.970 1.256
8 0.985 -0.010 0.987 0.770

GMDH reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.928 0.010 0.978 0.928
2 0.949 -0.003 0.990 0.585
3 0.973 0.003 0.985 0.690
4 0.941 0.047 0.984 0.730
5 0.969 -0.009 0.987 0.773
6 0.796 -0.030 0.975 0.871
7 0.926 -0.041 0.971 1.248
8 0.985 0.005 0.987 0.760
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Table B.5: Wind speed reconstruction results obtained by the MLR method (Reference).

MLR reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.937 -0.084 0.976 0.966
2 0.961 0.080 0.989 0.611
3 0.944 0.038 0.983 0.712
4 0.959 -0.059 0.984 0.747
5 0.968 0.021 0.987 0.770
6 0.830 -0.053 0.977 0.835
7 0.822 -0.190 0.964 1.312
8 0.975 0.071 0.986 0.780

MLR reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.962 -0.059 0.978 0.936
2 0.981 0.087 0.990 0.599
3 0.953 0.032 0.9841 0.702
4 0.949 -0.045 0.984 0.727
5 0.963 0.016 0.986 0.766
6 0.824 -0.059 0.978 0.830
7 0.806 -0.202 0.966 1.280
8 0.959 0.057 0.987 0.764

MLR reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.963 -0.052 0.978 0.943
2 0.983 0.057 0.990 0.590
3 0.954 0.031 0.984 0.700
4 0.948 -0.048 0.984 0.727
5 0.963 0.019 0.987 0.767
6 0.826 -0.058 0.977 0.837
7 0.812 -0.169 0.966 1.271
8 0.962 0.041 0.987 0.755
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Table B.6: Wind speed reconstruction results (average values of 30 runs) obtained by
the MLP.

MLP reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.958 -0.080 0.977 0.950
2 0.968 0.084 0.989 0.616
3 0.938 -0.010 0.985 0.677
4 0.911 -0.097 0.981 0.783
5 0.942 0.014 0.986 0.762
6 0.836 -0.066 0.977 0.846
7 0.834 -0.169 0.966 1.292
8 0.992 0.069 0.987 0.755

MLP reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.965 -0.056 0.978 0.930
2 0.982 0.086 0.989 0.605
3 0.937 -0.003 0.985 0.669
4 0.933 -0.039 0.984 0.724
5 0.946 0.006 0.987 0.760
6 0.840 -0.052 0.976 0.852
7 0.819 -0.238 0.967 1.269
8 0.970 0.043 0.987 0.751

MLP reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.968 -0.059 0.978 0.935
2 0.981 0.056 0.990 0.590
3 0.952 0.012 0.986 0.668
4 0.931 -0.046 0.983 0.748
5 0.945 0.018 0.987 0.766
6 0.853 -0.073 0.975 0.878
7 0.844 -0.130 0.969 1.232
8 0.982 0.041 0.988 0.729
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Table B.7: Wind speed reconstruction results obtained by the SVR.

SVR reconstruction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.952 -0.141 0.977 0.961
2 0.972 0.088 0.989 0.616
3 0.953 0.038 0.985 0.672
4 0.931 -0.011 0.983 0.747
5 0.965 0.081 0.987 0.772
6 0.833 -0.015 0.977 0.844
7 0.832 -0.129 0.967 1.275
8 0.984 -0.036 0.988 0.734

SVR reconstruction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.979 -0.106 0.978 0.930
2 0.978 0.069 0.990 0.599
3 0.955 0.039 0.986 0.665
4 0.944 -0.019 0.984 0.726
5 0.965 0.077 0.987 0.768
6 0.807 -0.043 0.977 0.844
7 0.789 -0.211 0.967 1.252
8 0.981 -0.036 0.988 0.738

SVR reconstruction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.984 -0.099 0.978 0.941
2 0.976 0.058 0.990 0.590
3 0.958 0.039 0.986 0.661
4 0.940 -0.029 0.984 0.727
5 0.965 0.078 0.987 0.767
6 0.817 -0.048 0.977 0.845
7 0.831 -0.121 0.970 1.214
8 0.979 -0.036 0.989 0.704

Table B.8 shows the training time in the reconstruction problem, in the case of data
from 7 towers (7T case). This table shows one of the main advantages of using GMDH
networks in wind speed reconstruction. This algorithm takes about 1 second per training
model, but it is still less than the MLP, and of course than the SVR approach, which is
the algorithm that employs more time in a single model training. On the other hand,
MLR approach is the fastest one (about 30 ms per training).
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Table B.8: Computation time of wind speed reconstruction (using data from 7 towers) in
each considered tower, in the example with complete wind speed samples (in seconds).

Tower GMDH MLP SVR MLR
(Reference)

T1 1.078 20.001 584.5 0.028
T2 1.149 21.315 617.1 0.023
T3 0.788 20.975 586.5 0.029
T4 0.891 22.850 601.3 0.030
T5 0.982 21.153 596.7 0.027
T6 1.034 22.179 589.9 0.027
T7 1.101 20.336 598.1 0.031
T8 0.972 22.891 619.2 0.024

B.2.3 Forecasting

The Software has also a mode to make predictions with a model previously trained. We
summarize in the next steps how this forecasting mode works:

• Build the estimation model: we set the mode General Models and select the file
with the training data. After press start the program initiate the training process
and after a few time we get a model save in a folder with the name selected mode
GMDH_model.mat, HHGMDH_model.mat or MLR_model.mat.

• Once created the model, we use it to get predictions from a file with new sam-
ples to estimate. This case we have to select mode Fill Data/Prediction and
press start. The results are saved in GMDH_pred.dat, HHGMDH_pred.dat or
MLR_pred.dat

Like for RMCPO mode, in prediction, there is also the possibility of checking the
performance with a complete data set, the program will make a partition in two different
subsets one for training and one for the test. After a training process we get a model
which performance is measured with the test set. The program allows choosing the size of
the partition, and also creating graphs with the estimations and the real outputs (Figure
B.8).

B.2.3.1 Results

The performance of the forecast module will be tested over the same data set than the
RMCPO, predicting the wind speed in each of the towers from the measures of the other
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Figure B.8: Checking performance in prediction mode.

towers. In order to face this problem with complete samples the initial data have been
split in train, validation and test sets. Figure B.9 shows how the 239 time series have
been split. The distribution in seasons of the samples in the train, validation and test
sets considered is shown in Figure B.10. Tables B.9 to B.12 show the results obtained by
the different techniques considered in the prediction problem, with different number of
towers to train the predictors (3T, 5T and 7T cases). Note that the results obtained in
the prediction problem are slightly worse in terms of accuracy (in all evaluation indices)
for the compared algorithms, as expected. However, again the results obtained by the
GMDH are quite competitive to the other tested algorithms, and improve the results
of the reference method (MLR). We can also observe in this problem the same effect
regarding the number of reference towers used to do the prediction: the results with
3 towers are worse than with 5 and 7 towers in the prediction, but the results using 5
towers are, in average, slightly better than the results obtained using 7 towers in the
prediction. Table B.13 shows the training time obtained by the compared algorithms in
each tower, for the case of predictions using data from 7 towers. As in the previous case,
the training time of the GMDH is less than the other neural approaches compared.
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Figure B.10: Balanced distribution over the time of the sets.
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Table B.9: Wind speed prediction results obtained by the GMDH network.

GMDH prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.836 0.004 0.945 1.409
2 0.875 -0.023 0.957 1.182
3 0.842 -0.012 0.939 1.305
4 0.833 0.022 0.946 1.282
5 0.884 -0.032 0.947 1.470
6 0.702 -0.054 0.934 1.346
7 0.843 -0.030 0.930 1.823
8 0.867 -0.004 0.951 1.406

GMDH prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.775 0.016 0.943 1.400
2 0.846 -0.022 0.956 1.181
3 0.867 -0.003 0.943 1.272
4 0.833 0.023 0.946 1.285
5 0.897 -0.043 0.952 1.410
6 0.717 -0.031 0.939 1.305
7 0.899 -0.015 0.933 1.804
8 0.920 -0.015 0.955 1.361

GMDH prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.777 0.017 0.944 1.395
2 0.868 -0.029 0.957 1.185
3 0.867 -0.003 0.943 1.272
4 0.841 -0.036 0.944 1.310
5 0.926 -0.075 0.949 1.459
6 0.717 -0.031 0.939 1.305
7 0.934 -0.074 0.936 1.785
8 0.948 -0.044 0.954 1.387
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Table B.10: Wind speed prediction results obtained by the MLR method (Reference).

MLR prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.853 -0.081 0.945 1.408
2 0.876 0.063 0.958 1.175
3 0.832 0.037 0.939 1.305
4 0.869 -0.035 0.947 1.282
5 0.861 0.057 0.949 1.436
6 0.746 -0.053 0.941 1.297
7 0.733 -0.154 0.924 1.834
8 0.877 0.106 0.952 1.394

MLR prediction 5T
Tower R2 MBE (m/s IoA RMSE (m/s)

1 0.885 -0.051 0.949 1.377
2 0.890 0.068 0.958 1.170
3 0.840 0.048 0.941 1.291
4 0.863 -0.021 0.948 1.273
5 0.849 0.040 0.950 1.413
6 0.743 -0.060 0.941 1.295
7 0.714 -0.174 0.927 1.789
8 0.856 0.081 0.953 1.370

MLR prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.885 -0.047 0.948 1.381
2 0.891 0.045 0.959 1.171
3 0.838 0.040 0.941 1.284
4 0.860 -0.026 0.948 1.270
5 0.850 0.048 0.949 1.422
6 0.740 -0.052 0.942 1.281
7 0.726 -0.132 0.927 1.795
8 0.857 0.077 0.954 1.362
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Table B.11: Wind speed prediction results (average values of 30 runs) obtained by the
MLP.

MLP prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.833 -0.081 0.945 1.401
2 0.877 0.072 0.957 1.188
3 0.802 -0.003 0.942 1.265
4 0.821 -0.046 0.944 1.295
5 0.834 0.060 0.949 1.416
6 0.755 -0.028 0.939 1.314
7 0.750 -0.147 0.926 1.819
8 0.886 0.100 0.954 1.371

MLP prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.850 -0.075 0.948 1.374
2 0.881 0.055 0.958 1.180
3 0.817 0.058 0.944 1.253
4 0.842 -0.018 0.946 1.278
5 0.851 0.004 0.951 1.402
6 0.763 -0.057 0.941 1.302
7 0.738 -0.182 0.930 1.768
8 0.873 0.089 0.955 1.349

MLP prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.845 -0.060 0.947 1.379
2 0.881 0.048 0.958 1.179
3 0.832 0.065 0.945 1.246
4 0.844 -0.003 0.947 1.272
5 0.835 0.079 0.949 1.425
6 0.758 -0.069 0.940 1.312
7 0.752 -0.074 0.931 1.760
8 0.893 0.080 0.956 1.350
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Table B.12: Wind speed prediction results obtained by the SVR.

SVM prediction 3T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.865 -0.052 0.948 1.378
2 0.886 0.024 0.959 1.168
3 0.799 0.041 0.942 1.263
4 0.804 -0.002 0.946 1.272
5 0.884 0.031 0.951 1.411
6 0.769 0.005 0.943 1.279
7 0.785 -0.120 0.932 1.769
8 0.898 0.105 0.956 1.349

SVM prediction 5T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.850 -0.054 0.948 1.377
2 0.862 0.057 0.958 1.173
3 0.792 0.051 0.941 1.270
4 0.867 -0.067 0.947 1.279
5 0.887 0.018 0.951 1.417
6 0.764 0.009 0.942 1.295
7 0.764 -0.247 0.931 1.771
8 0.885 0.098 0.955 1.353

SVM prediction 7T
Tower R2 MBE (m/s) IoA RMSE (m/s)

1 0.852 -0.065 0.945 1.407
2 0.881 0.053 0.958 1.175
3 0.854 -0.021 0.943 1.272
4 0.858 -0.091 0.946 1.289
5 0.884 0.017 0.950 1.437
6 0.775 0.006 0.942 1.296
7 0.730 -0.162 0.926 1.809
8 0.904 0.122 0.953 1.390
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Table B.13: Computation time of wind speed prediction (using data from 7 towers) in
each considered tower, in the example with complete wind speed samples (in seconds).

Tower GMDH MLP SVR MLR
(Reference)

T1 0.992 17.254 501.4 0.024
T2 1.091 17.973 507.9 0.025
T3 0.699 18.597 505.1 0.023
T4 0.783 17.366 499.3 0.027
T5 0.647 17.426 517.9 0.025
T6 0.546 18.007 499.6 0.024
T7 0.981 17.884 534.4 0.027
T8 1.127 17.677 525.9 0.028

B.3 Company bankrupt classification software

The third software development from this Thesis which produced technology transfer to
the productive sector was a program to classify the bankrupt of companies. It was called
NeuCompBankrupt, and consists of a graphical user interface which allows the user to
launch different machine learning tools to classify a company into bankrupt or healthy.
Figure B.11 shows a screen shot of the NeuCompBankrupt user interface.

Figure B.11: Image from the graphical user interface of software tool NeuCompBankrupt.

The tool allows training different machine learning classifiers, such as SVMs and
GMDH networks, defined in this Thesis in Chapter 2. Note that in this case these
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techniques are defined for classification problems. These machine learning tools are fed
with several economic parameters of the company in order to classify it as bankrupt
or healthy. This inputs are: ROA, ROIC, ROCE, cash ratio, guarantee ratio, debt to
equity ratio, debt to capital ratio, sales, interest coverage ratio, distress criterion, working
capital as a percentage of total assets, debt to income ratio, economic threshold level
and financial independence.

The behavior is very similar to the previous software user interface. By pressing the
button “model generation” and setting the algorithm to be used, the tool trains the
selected approach, and generates a file Modelo_AlgoritmoUti.mat, which includes the
definition of the trained classifier. In order to carry out the final bankrupt prediction, we
have to select the option “prediction” in the tool’s menu. Once the file with the inputs
has been selected, a new file will be generated with the result of the classification for the
company (bankrupt or healthy).
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