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19 Abstract 

 

20 
 

21 Two novel materials based on periodic mesoporous organosilica (PMO) with 
 

22 cationic amine-bridged ligands, (styrylmethyl)bis(triethoxysilylpropyl)ammonium 
 

23 chloride (PMO-STPA) and bis(3-triethoxysilyl)amine (PMO-TEPA), were synthesized 
 

24 in this work to obtain materials with reverse-phase/strong anionic exchange mixed- 
 

25 mode or strong anionic exchange retention mechanism, respectively. The resulting 
 

26 materials were comprehensively characterized and showed functionalization with 
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2  

27 cationic amine-bridged ligands, and an acceptable surface area. These materials were 
 

28 evaluated for the off-line solid-phase extraction (SPE) of a mixture of six phenoxy acid 
 

29 herbicides (fenoprop, mecoprop, dichlorprop, 2-(4-chlorophenoxy)propionic acid (4- 
 

30 CPPA), 2-(3-chlorophenoxy)propionic acid (3-CPPA), 2-phenoxypropionic acid (2- 
 

31 PPA)) from water samples previous to their simultaneous enantiomeric analysis by CE 
 

32 using a dual chiral selector system (20 mM of heptakis(2,3,6-tri-O-methyl)-β-CD (TM- 
 

33 β-CD) and 7 mM of (2-hydroxypropyl)-β-CD (HP-β-CD) dissolved in 50 mM 
 

34 phosphate buffer, pH 7.0) which enabled the simultaneous enantiomeric separation of 
 

35 the six phenoxy acid herbicides in 11 min. SPE parameters were optimized and 
 

36 recoveries obtained for PMO-STPA and PMO-TEPA sorbents were compared. Under 
 

37 the  optimized  conditions,  it  was  demonstrated  that  using  100  mg  of  PMO-STPA 
 

38 sorbent, a preconcentration factor (PF) of 1500 was achieved with 750 mL of solution, 
 

39 allowing recoveries between 75.5 and 112.2%, with good repeatability (RSD =1.9- 
 

40 8.7%, n= 6). Analytical characteristics of the method were evaluated in terms of 
 

41 precision, linearity and accuracy with method quantitation limits (MQL) between 1.5 
 

42 and 3.3 µg/L. The developed method was applied to the analysis of river samples and 
 

43 effluents from wastewater treatment plants, with recoveries ranging from 78.3 to 107.5 
 

44 %. 
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Highlights 
 
 
 
 
 

Highlights 
 

- Two novel PMOs were synthesized for phenoxy acid herbicides solid-phase extraction 

 
- A preconcentration factor of 1500 enabled to detect phenoxy acids at µg/L levels 

 
- The use of a mixture of two CDs allowed acceptable chiral resolution for herbicides 

 
- The simultaneous enantiomeric separation of six phenoxy acids is obtained in 11 min 



51 1. Introduction 

 

52 
 

53 Nowadays, many commercial agrochemicals are chiral and about 30% of them 
 

54 are pesticides with active ingredients containing one or more chiral centers, being 
 

55 herbicides one of the pesticides most used today [1]. The enantiomers of chiral 
 

56 herbicides possess different enantioselectivity on target weeds and different toxic effects 
 

57 on non-target organisms because of their enantioselective interactions with enzymes and 
 

58 biological receptors in organisms. Some chiral herbicides are sold as pure active 
 

59 stereoisomers, but for economic reasons, many other are still used as racemates, being 
 

60 commonly only one enantiomer active [1]. In the case of phenoxy acid herbicides, the 
 

61 R-enantiomer is biologically active [1, 2], whereas the other isomer is inactive or less 
 

62 active enantiomer, which simply contributes to the chemical load that pollutes the 
 

63 environment. For these reasons, analytical methods are needed to separate the 
 

64 stereoisomers of these compounds and to evaluate the pollution grade. 
 

65 Phenoxyalkanoic acids and derivatives comprise a broad spectrum of herbicides 
 

66 extensively used in agriculture. Their behavior in soils (solubility, adsorption- 
 

67 desorption, chemical resistance and biodegradation) is governed by their chemical 
 

68 structures whose essential features are the presence of a carboxylic acid group and a 
 

69 chlorinated aromatic ring. A filtering process may occur through the soils originating 
 

70 that these herbicides can achieve ground waters, so that rivers, dams, etc., can be 
 

71 polluted at concentrations in the µg/L levels [3], so that it is usually necessary to use a 
 

72 preconcentration process, such as SPE, prior to their analysis, being this technique 
 

73 widely used to clean samples. 
 

74 In recent years, the application of mesostructured materials as new sorbents has 
 

75 considerably increased for sample preparation. These materials present high surface 



76 area, well-defined pore size distribution, large pore volume and can be chemically 
 

77 modified with organo-functional groups to obtain functionalized silicas with specific 
 

78 binding sites on their surface, which is potentially useful in those processes where the 
 

79 specific and selective retention of different kinds of compounds is required [4, 5]. 
 

80 Moreover, the preparation for the first time in 1999 of the so-called periodic 
 

81 mesoporous organosilica (PMOs) offered a new family of hybrid mesoporous materials 
 

82 with very interesting surface and mechanical properties [6]. These materials are organic- 
 

83 inorganic hybrid materials that combine the properties of the organic functionality and 
 

84 the chemical stability of the inorganic silica as well as some other desirable 
 

85 characteristics like great surface area. Generally, PMOs are synthesized by the sol-gel 
 

86 method, using bridged organosilane precursors of the type (R’O)3Si-R-Si(R’O)3, as Si 
 

87 source and at the same time as organic moiety in which -R is the organic functional 
 

88 group, and a directing agent [7]. These materials suppose a great advantage with respect 
 

89 to other mesoporous materials and have originated a great interest among the 
 

90 researchers. PMOs incorporate the organic functionalities directly into the silica 
 

91 framework, as molecular bridging ligands, in contrast to other modified mesoporous 
 

92 silicas where the organic groups are pending from the walls. This aspect allows higher 
 

93 degrees of organic functionality and a more homogenous distribution of them through 
 

94 the whole framework. This improves the chemical and thermal properties of the 
 

95 materials and reduces the problems of channel blockage or diffusion of analytes, in 
 

96 comparison with other mesoporous materials functionalized with the post-synthesis 
 

97 method [8]. On the other hand, PMOs can be modified or tuned with different organic 
 

98 moieties (such as methylene, ethylene, ethenylene, phenylene) and other more complex 
 

99 functionalities  like  thiol,  metal  complexes,  chiral  groups,  ionic  entities  or disulfide 
 

100 groups [9, 10]. These organic functionalizations allow the modification and 



101 optimization of their hydrophobic/hydrophilic behavior [11] or the ability to form metal 
 

102 complexes, among others [10]. All these properties stated above confer to these 
 

103 materials a wide variety of applications such as catalysis, drug delivery, sensing, 
 

104 adsorption, preparation of stationary phases for chromatography, separation, etc. 
 

105 Among the different analytical techniques enabling the separation of 
 

106 stereoisomers, CE has widely been employed with this aim due to its advantages, such 
 

107 as simplicity, the use of small volume of reagents and samples, high efficiency and 
 

108 resolution power, rapid analysis and a reasonable operating cost which presents a high 
 

109 interest   from   the   economic  and  environmental   viewpoints.   The  most   employed 
 

110 separation mode in chiral CE is Electrokinetic Chromatography (EKC) in which a chiral 
 

111 selector is added to the buffer to allow the separation of enantiomers. A wide range of 
 

112 chiral selectors have been tested, such as cyclodextrins (CDs), proteins, surfactants, 
 

113 antibiotics, polysaccharides, etc, being CDs the most widely used chiral selectors [12, 
 

114 13]. 
 

115 In this article, a simple method of synthesis, with only one step, is described for 
 

116 the preparation of two new PMOs using styrylmethylbis(triethoxysilylpropyl) 
 

117 ammonium chloride (STPA) or bis(3-triethoxysilylpropyl)amine (TEPA) and 
 

118 tetraethylorthosilicate (TEOS) as silica sources. All the materials were thoroughly 
 

119 characterized and evaluated as SPE sorbents for the extraction of six phenoxy acid 
 

120 herbicides (fenoprop, mecoprop, dichlorprop, 2-(4-chlorophenoxy)propionic acid (4- 
 

121 CPPA), 2-(3-chlorophenoxy)propionic acid (3-CPPA), 2-phenoxypropionic acid (2- 
 

122 PPA)) from water samples, before their simultaneous enantiomeric separation and 
 

123 determination by CE. The effect of the different interactions between sorbents and 
 

124 analytes due to a reverse-phase/strong anionic exchange mixed-mode (PMO-STPA) or 



125 strong anionic exchange (PMO-TEPA) retention mechanism on the performance of the 
 

126 extraction was also investigated. 

 
127127 

 

128 2. Materials and methods 

 
129129 

 

130 2.1. Reagents 
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132 Poly(ethylene glycol) (EO20PO70EO20, Pluronic 123), cetyltrimethyl- 

 

133 ammonium bromide (CTAB) 98%, ortophosphoric acid 85%, sodium hydroxide 

134 (NaOH), ammonium formate, formic acid, boric acid and TEOS 98% were purchased 

135 from Sigma-Aldrich (St. Louis, MO, USA). TEPA 95% and STPA 40% were obtained 

136 from ABCR GmbH (Karlsruhe, Germany). Methanol (MeOH), ethanol (EtOH) 99.5%, 

137 hydrochloric acid solution 37% and ammonia solution (NH3) 32% were obtained from 

138 Scharlau Chemie (Barcelona, Spain). 

139 The employed water was Milli-Q quality (Millipore, Bedford, MA, USA). α- 

140 Cyclodextrin (α-CD), heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) and TM- 

141 β-CD were bought in Sigma Aldrich (St. Louis, MO, USA); β-cyclodextrin (β-CD) and 

142 HP-β-CD in Fluka (Buchs, Switzerland); and (2-hydroxypropyl)-γ-cyclodextrin (HP-γ- 

143 CD) was obtained from Cyclolab (Budapest, Hungary). 

144 
 
145 

 
2.2. Standard solutions and water samples 

146 
 

147 Standard compounds with high purity (> 98%) were purchased: (R,S)-2-(2,4,5- 
 

148 trichlorophenoxy)propanoic acid (fenoprop) 97%, (R,S)-2-(4-chloro-2- 
 

149 methylphenoxy)propanoic acid (mecoprop), (R,S)-2-(2,4-dichlorophenoxy)propanoic 



150 acid (dichlorprop), 4-CPPA and 3-CPPA from Sigma-Aldrich (St. Louis, MO, USA). 2- 
 

151 PPA from Chem Service (West Chester, USA). Stock standard solutions were prepared 
 

152 in MeOH (in a concentration of 1000 mg/L) and then diluted with Milli-Q water until 
 

153 desired concentration to obtain working solutions, and were stored at 4 ºC. All solutions 
 

154 were filtered through 0.45 µm pore size nylon membrane filters before analysis. For 
 

155 SPE optimization purposes, an herbicide mixture of fenoprop at a racemic concentration 
 

156 of 5 mg/L, and 10 mg/L for the rest of phenoxy acid herbicides, was analyzed. 
 

157 Water samples (WS) analyzed in this work were collected through different 
 

158 locations: WS 1 was obtained from effluent treatment plant (Cádiz, Spain, pH 7.6), WS 
 

159 2 from an effluent treatment plant (Sevilla, Spain, pH 7.3), and WS 3 from Henares 
 

160 river (Alcalá de Henares, Spain, pH 7.8). WS were stored in glass bottles at 8 ºC and 
 

161 filtered with 0.45 µm nylon filters before being analyzed. 

 
162162 

 

163 2.3. Synthesis of periodic mesoporous organosilicas 

 
164  

165 For the synthesis of the PMO materials, chemicals were added in a molar ratio as 

166 follows: 1 (ligand): 0.05 Pluronic 123: 0.15 CTAB: 7.14 NH3: 56.4 EtOH: 1471.4 H2O: 

167 10 TEOS (in the case of TEPA ligand) and :14 TEOS (in the case of STPA ligand). For 

168 the synthesis of the organosilica employing STPA as organic ligand and TEOS as silica 

169 sources (denoted PMO-STPA), 2.7 g of Pluronic 123 and 0.5 g of CTAB were dissolved 

170 in a solution formed by mixing 31 mL of NH3 2M, 229 mL H2O and 28 mL EtOH. After 

171 1 h of stirring, a mixture of 13.8 mL of STPA and 27 mL TEOS (with molar ratio 1:14) 

172 was added with droplet system. In the case of TEPA as organic ligand and TEOS as 

173 silica sources (denoted PMO-TEPA), 4.6 g of Pluronic 123 and 0.8 g of CTAB were 

174 dissolved in a solution formed by mixing 52 mL of 2 M ammonia solution, 384 mL H2O 



175 and 48 mL EtOH. After 1 h of stirring, a mixture of 6.4 mL of TEPA and 31.8 mL of 
 

176 TEOS (with molar ratio 1:10) was added with a droplet system and stirring for 1 h. 
 

177 After the addition of the ligand, each solution was transferred into a teflon-lined steel 
 

178 Parr autoclave and heated at 100 ºC for 16 h. The precipitate (white colour with TEPA 
 

179 and orange colour in the case of STPA) was filtered off, washed with Milli-Q water and 
 

180 EtOH, and dried at 60 ºC for 6 h. 
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182 2.4. Characterization of periodic mesoporous organosilicas 

 
183183 

 

184 N2 gas adsorption–desorption isotherms were obtained using a Micromeritics 
 

185 ASAP 2020 analyzer (Norcroos, Atlanta, GA, USA). Adsorption isotherms were 
 

186 measured at -196 ºC over the interval of relative pressures from 10-4 to 0.993. Prior to 
 

187 each adsorption analysis the samples were outgassed at 90 ºC in vacuum during 10 h in 
 

188 the port of degasification of the instrument. Such temperature was chosen to avoid any 
 

189 degradation of the organic ligands and to remove adsorbed species, solvents and water. 
 

190 The specific surface areas were calculated using the BET model. The pore size 
 

191 distributions were calculated using the Barrett–Joyner–Halenda (BJH) model on the 
 

192 desorption branch. Elemental analysis (%C, %N, %H) was performed with a LECO 
 

193 CHNS-932 analyzer (St. Joseph, MI, USA). Thermogravimetric analysis (TGA) was 
 

194 carried out using a Setsys 18 A (Setaram, Caluire, France) thermogravimeric analyzer 
 

195 with a 100 µL platinum crucible, in a synthetic air atmosphere with a temperature 
 

196 increasing from 25 ºC to 800 ºC at a speed of 10 ºC per min. 13C CP/MAS NMR was 
 

197 recorded on a Bruker Avance III/HD Spectrometer (Rheinstetten, Germany) at 100.53 
 

198 MHz as resonance frequency (2000 transients, spinning speed of 12 KHz, contact time 3 
 

199 ms, pulse delay 5 s) and 29Si MAS NMR spectra was recorded on a Bruker Avance 



200 III/HD 9.4T Spectrometer (Rheinstetten, Germany) at 79.49 MHz, as resonance 
 

201 frequency and 1H resonance frequency of 400 MHz (1000 transients, spinning speed of 
 

202 5  KHz,  contact  time  3  ms,  pulse  delay  60  s),  using  high  power  decoupling pulse 
 

203 program with unplugging as sequence and a Varian sounding line arranged to a Bruker 
 

204 7.5 mm T3 HX. 
 

205 Scanning electron microscopy (SEM) was carried out on a XL20 ESEM Philips 
 

206 (Resto, VA, USA) with an energy-dispersive spectrometry system (EDS). Samples were 
 

207 treated with a sputtering method with the following parameters: sputter time 100 s, 
 

208 sputter current 30 mA, and film thickness 20 nm using sputter coater BAL-TEC SCD 
 

209 005. SEM was  used to  study the  morphology and size of the  particles of  the materials 
 

210 prepared in this work. Conventional transmission electron microscopy (TEM) was 
 

211 carried out on a TECNAI 20 Philips microscope (Hillsboro, OR, USA) operating at 200 
 

212 KV, with a resolution of 0.27 nm and ±70º of sample inclination, using a beryllium 
 

213 oxide sample holder. The samples were prepared by dispersing the powder products as 
 

214 slurry in acetone and subsequently deposited and dried on a honey carbon film on a Cu 
 

215 grid. 
 

216 Finally, the infrared spectra were recorded on a Perkin Elmer Frontier FTIR 
 

217 spectrophotometer (Waltham, MA, USA) in the region of 4000-400 cm-1 by using 
 

218 spectra quality KBr powder, to determine the presence of functional groups in the 
 

219 mesoporous structure. 

 
220220 

 

221 2.5. CE separation 

 
222  

223 Electrophoretic experiments were carried out on a HP 3DCE system from Agilent 

224 Technologies (Palo Alto, CA, USA) with a diode array detector (DAD) controlled by a 



225 HP 3DCE ChemStation software. Background electrolytes (BGE) tested in the CE-DAD 
 

226 experiments consisted of 50 mM formate buffer (pH 5.0), 50 mM phosphate buffer (pH 
 

227 7.0) containing individual CDs as chiral selectors or a dual system of CDs at different 
 

228 concentrations. Separations were performed in an uncoated fused-silica capillary of 50 
 

229 µm I.D. and a total length of 58.5 cm or 63.5 cm (50 or 55 cm effective length, 
 

230 respectively)  acquired  in  Polymicro  Technologies  (Phoenix,  AZ,  USA). Different 
 

231 separation voltages (15, 20, 25 and 30 kV) and working temperatures (15, 20 and 25 ºC) 
 

232 were tested. Injections were carried out by applying 50 mbar for 5 or 10 s. Detector 
 

233 parameters were as follows: a response time of 1.0 s and a wavelength of 194 nm (2- 
 

234 PPA and 4-CPPA), 200 nm (mecoprop, dichlorprop and 3-CPPA) and 210 nm 
 

235 (fenoprop) (bandwidth 5 nm). At the beginning of each working day the capillary was 
 

236 flushed with NaOH 0.1 M for 5 min, Milli-Q water for 5 min, buffer solution for 5 min 
 

237 and BGE for 10 min, and at the end of the day it was flushed with NaOH 0.1M and 
 

238 Milli-Q water, both of them for 5 min. In order to ensure the repeatability between 
 

239 injections, the capillary was flushed with Milli-Q water for 2 min, NaOH 0.1 M for 2 
 

240 min, Milli-Q water for 2 min and BGE for 5 min. 
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242 2.6. SPE conditions 

 
243243 

 

244 The extraction procedure was carried out in a 20-position extraction manifold 
 

245 purchased from Waters (Barcelona, Spain), at a flow rate of 1 mL/min, connected to a 
 

246 vacuum pump at 16 InHg. SPE 6 mL cartridges (65 mm length, 11 mm diameter) were 
 

247 packed with 100 or 200 mg of each PMO synthetized (PMO-STPA or PMO-TEPA) and 
 

248 plugged with polyethylene frits at both ends along with a 0.45 µm pore size nylon filter 
 

249 membrane inserted at the bottom of the mesoporous silica bed in order to avoid the 



250 material  lost  during  the  sample  loading.  The  work  methodology was  carried  out as 
 

251 follows: the conditioning process previous to sample loading was realized with 5 mL 
 

252 MeOH and 5 mL Milli-Q water. Once the sample was loaded at a flow of 1 mL/min, 
 

253 cartridges were dried by passing just air for 20 min without any solvent to delete the 
 

254 interferences. Elution was performed by passing 2 x 4 mL MeOH and picked up in a 
 

255 vial whose eluate was evaporated to dryness in a Eppendorf Concentrator plus (1400 
 

256 rpm,  250  RCF,  30ºC)  coupled  with  a  6  cone-shaped  tube  rotor,  purchased  from 
 

257 Eppendorf Ibérica S.L.U. (Madrid, Spain), and re-dissolved in 500 µL of MeOH:Milli- 
 

258 Q water (10:90 v/v) for subsequent analysis by CE. 
 

259 The optimization of the extraction procedure was carried out using three 
 

260 different solutions spiked with the six phenoxiacid herbicides, two of them prior to 
 

261 extraction and one of them after extraction process (simulated sample) in the desired 
 

262 level concentration to obtain a final extract of 500 µL of MeOH:Milli-Q water (10:90 
 

263 v/v) with a racemic concentration of 5 mg/L for fenoprop and 10 mg/L for the rest of 
 

264 phenoxy acids for subsequent analysis by CE. Recovery values were calculated by 
 

265 comparison of the corrected peak areas for the phenoxy acid herbicides studied with 
 

266 those obtained for the simulated sample. 
 

267 When water samples from river and effluents of treatment plants were analyzed, 
 

268 method accuracy was evaluated as the recovery values obtained for the phenoxy acid 
 

269 herbicides studied at low and high concentrations levels when comparing the spiked 
 

270 amounts added to the water samples and the herbicides concentrations by using the 
 

271 developed methodology. 

 
272272 

 

273 2.7. Data treatment and calculations 

 
274274 



275 Microsoft Excel Professional Plus 2010 was employed for calculations of 
 

276 recoveries and statistical analysis. OriginPro 8 software was used to create the artwork. 
 

277 Van der Waals forces and Hückel charges calculations were carried out by means of 
 

278 Chem3D Pro 12.0 software. 
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280 3. Results and discussion 
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282 3.1. Synthesis and characterization of the periodic mesoporous organosilica materials 
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284 PMO-STPA and PMO-TEPA materials have not been synthesized previously. 
 

285 Compared with common synthesis used for PMO type materials, the main variation 
 

286 presented in this work was the use of a basic medium instead of acid. In the acid 
 

287 medium, the synthesis employing STPA or TEPA as cationic amine-bridged ligands 
 

288 was completely unsuccessful to obtain PMOs. A possible explanation for these results 
 

289 can be the fact that these ligands (employed in the synthesis of PMOs for the first time 
 

290 in this work) are positively charged in strong acid media, due to the amino groups that 
 

291 they have in their structures. Therefore, these positive charged ligands can suffer 
 

292 electrostatic repulsions with the ions of the CTAB template not allowing the correct 
 

293 formation of the micelles, necessary to obtain a mesoporous structure. 
 

294 N2 adsorption-desorption isotherms obtained for PMO-STPA and PMO-TEPA 
 

295 materials are shown in Figures 1a and 1c, respectively. For PMO-STPA material (Fig. 
 

296 1a) the isotherm is a typical type IV isotherm, which corresponds with mesoporous 
 

297 materials,  according to the  IUPAC  classification. The isotherm  has  a very prominent 
 

298 adsorption step at around 0.9 P/P0, this steep capillary condensation shows that the 
 

299 capillary condensation of nitrogen takes place in highly uniform mesopores [14]. 



300 Although the desorption branch of the material has no a tailing before it reaches the 
 

301 adsorption branch, the isotherm does not show a plateau at high pressures. This fact 
 

302 could indicate the presence of some amorphous non-mesostructured domains in the 
 

303 material, and the pore size distribution of the material could have some non-uniformity 
 

304 of pore opening sizes. This is also in good agreement with the wide pore size 
 

305 distribution that the material shows (Fig. 1b) with most of the pores centered at 235 Å, 
 

306 which could be explained as a consequence of the big size of the STPA ligand (see 
 

307 Table 1). The isotherm also has a H1 type hysteresis loop with almost parallel branches 
 

308 confined to relative pressures between 0.85 and 0.95, this fact indicates the 
 

309 irreversibility of the adsorption-desorption behavior in primary mesopores [15]. All 
 

310 these features are characteristic of large channel mesostructures and pores with 
 

311 cylindrical shape. In the case of the PMO-TEPA material, the N2 adsorption-desorption 
 

312 isotherms  (Fig.  1c)  also  show  a  typical  type  IV  isotherm,  which  corresponds with 
 

313 mesoporous materials. The isotherm has a very prominent  adsorption step at around 0.8 
 

314 P/P0, this steep capillary condensation and the final adsorption plateau show that the 
 

315 capillary condensation of nitrogen takes place in more uniform mesopores compared 
 

316 with the PMO-STPA material. This result is also confirmed by the narrower pore size 
 

317 distribution of the PMO-TEPA material (Fig. 1d) which most of the pores centered at 
 

318 152  Å.  In  addition,  the  lower  value  of  the  pore  size  obtained  with  PMO-TEPA 
 

319 compared to PMO-STPA is in agreement with the smaller size of the TEPA ligand. The 
 

320 isotherms also have a H1 type hysteresis loop with almost parallel branches confined to 
 

321 relative pressures between 0.8 and 0.95, these facts indicating the irreversibility of the 
 

322 adsorption-desorption behavior in primary mesopores and large channel mesostructures 
 

323 with pores with cylindrical shape in PMO-STPA material. 



324 The SEM micrographs (Figs. S1 a and c in supplementary material) show that 
 

325 the morphology of these materials is not well defined, where small numbers of the 
 

326 particles are spherical, being most of them amorphous or prism-shaped. This fact can be 
 

327 explained taking into account the size and the shape of the STPA and TEPA ligands 
 

328 (Fig. 2) and the basic pH employed in the synthesis. Also, the high ratio surfactant/silica 
 

329 source (w/w) employed in the synthesis, 9.8% and 12.8% for STPA and TEPA, 
 

330 respectively, can avoid the formation of spherical micelles during the synthesis of the 
 

331 materials and affect the shape of the particles [16]. The dispersion in particle size in 
 

332 both materials is quite big, which in the case of PMO-STPA goes from 16 to 30 µm, 
 

333 whereas the material PMO-TEPA shows bigger particles that go from 12 to 40 µm. On 
 

334 the other hand, TEM images (Figs. S1 b and d in supplementary material) show that 
 

335 both materials have a porous structure with a wormhole-like arrangement of channels. 
 

336 These results are in agreement with previous works that reveal that high ratios of 
 

337 surfactant lead to a non-hexagonal pore arrangement material [17, 18]. 
 

338 The FTIR spectra of the two materials synthesized (Fig. S2 in supplementary 
 

339 material) show a similar pattern for both, with most remarkable peaks in the fingerprint 
 

340 region.  Stretching bands  between 1645 and 1379 cm-1, as  well  as  C-H bend bands  at 

341 1456 cm-1 confirmed the presence of the aromatic moiety in the solid framework of 
 

342 PMO-STPA. At the same time, the N-H bend of amine moiety could be overlaid at 1625 
 

343 cm-1, which is more intense in the case of PMO-TEPA. In addition, this region bending 
 

344 and rocking bands of C-H bonds of alkane moiety appear. These FTIR spectra showed 
 

345 that  the  organic  ligand  was  correctly  introduced  in  the  PMO  network.  In  order to 
 

346 quantify the amount of organic ligand incorporated into the silica framework, by means 
 

347 of elemental analysis, the %N was calculated. As shown in Table 1, PMO-STPA has a 
 

348 functionalization degree of 0.93 mmol ligand/g material whereas for PMO-TEPA it was 



349 1.14 mmol ligand/g material, which means that ligands were successfully incorporated 
 

350 in the framework of each material. What is more, the decrease in the amount of the 
 

351 ligand STPA, incorporated into the silica framework of PMO-STPA compared with 
 

352 PMO-TEPA is due to the higher steric hindrance of the more voluminous STPA ligand. 
 

353 To corroborate the presence of the ligand in the framework and the thermal stability of 
 

354 the  materials,  TGA was  carried  out.  Figure S3  (supplementary material)  shows  the 
 

355 TGA curves for these materials. It can be observed a loss in mass (8.25% and 16% for 
 

356 PMO-STPA and PMO-TEPA, respectively) that occurs between 300 ºC and 600 ºC 
 

357 (exothermic process) and that is due to cleavage / degradation of the ligand in the frame. 
 

358 The thermal stability of these samples is also in agreement with previous results given 
 

359 in the literature for other functionalized organo silicas [10]. 
 

360 Additional characterization of PMO-STPA material was also carried out by 

 

361 solid-state 13C and 29Si NMR spectroscopy (Figs. 3a and 3b, respectively) that 
 

362 confirmed the presence of the STPA ligand in the material. The high ratio between the 

 

363 Q/T sites in the 29Si MAS NMR spectrum (Fig. 3b) shows that the silicate bonds are 
 

364 mainly present in the framework of the silica, which can be explained because of the 
 

365 low ligand/TEOS ratio used during the synthesis. 
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367 3.2. Simultaneous enantiomeric separation of a mixture of phenoxy acid herbicides by 
 

368 CE 
 

369 In order to develop a CE method enabling the simultaneous enantiomeric 
 

370 separation of six chiral phenoxy acid herbicides (fenoprop, mecoprop, dichlorprop, 4- 
 

371 CPPA, 3-CPPA and 2-PPA) with an acceptable enantioselectivity and enantioresolution, 
 

372 and based on previous chiral separations reported in the literature for some of the 
 

373 herbicides studied [19-28], in which neutral CDs [19-22] or dual system of CDs were 



374 usually employed [20, 23], an initial screening of neutral CDs was carried out (α-CD, 
 

375 β-CD, DM-β-CD, TM-β-CD, HP-β-CD and HP-γ-CD). For this purpose, a 15 mM 
 

376 concentration of each neutral CD in a 50 mM formate buffer at pH 5.0, a separation 
 

377 voltage of 20 kV and a temperature of 25 ºC, were chosen. Among the  CDs studied, the 
 

378 best chiral separation for the group of compounds analyzed was achieved with β-CD 
 

379 (Rs between 0.7 and 4.4, no chiral separation of dichlorprop, in 27.5 min), HP-β-CD 
 

380 (Rs between 1.4 and 2.7, no chiral separation of fenoprop, in 27.4 min) and TM-β-CD 
 

381 (Rs between 0.8 and 5.2, no chiral separation of 2-PPA, in 36.7 min), whereas no 
 

382 enantioseparation was obtained with the remaining CDs studied for the herbicides 
 

383 analyzed. 
 

384 With the aim to increase the Rs values obtained for the six herbicides, dual CDs 
 

385 systems were employed using different combinations of the three CDs (β-CD, HP-β-CD 
 

386 and TM-β-CD) that originated enantioseparation when employed individually. Each CD 
 

387 was at a 15 mM concentration in the dual mixture and the same experimental conditions 
 

388 were employed. Among the three possible combinations, only the HP-β-CD/TM-β-CD 
 

389 dual system allowed the simultaneous separation of the enantiomers of the six 
 

390 herbicides studied although the Rs obtained for fenoprop was low (Rs 0.4). 
 

391 Once selected the most suitable combination of CDs, the effect of their 
 

392 concentration was evaluated in the range from 5 to 20 mM (5, 7, 10, 15 and 20 mM). It 
 

393 could be observed that fenoprop, mecoprop, dichlorprop and 4-CPPA improved their Rs 
 

394 at low HP-β-CD concentrations, whereas 3-CPPA and 2-PPA improved their Rs at high 
 

395 TM-β-CD concentrations. A 7 mM HP-β-CD/20 mM TM-β-CD dual system enabled 
 

396 the simultaneous separation of all compounds with Rs values between 1.2 (fenoprop) 
 

397 and 3.0 in an analysis time of 34.9 min. 



398 In order to decrease the analysis time, a 50 mM phosphate buffer (pH 7.0) was 
 

399 employed. Under these conditions an important decrease in the analysis time (11.7 min) 
 

400 was achieved without significant loss in Rs (Rs between 1.0 and 2.5). 
 

401 Finally, the effect of different instrumental parameters on the separation was 
 

402 also evaluated. First, to obtain an increase in the Rs, an injection of 50 mbar in 5 s was 
 

403 tested, but a loss of sensitivity was observed without improving de Rs. Hence, the 
 

404 previous injection conditions (50 mbar x 10 s) were chosen. The influence of the 
 

405 temperature on the Rs values was also investigated using values of 15, 20 and 25 ºC. 
 

406 The results obtained showed that a temperature of 15 ºC gave rise to a slightly decrease 
 

407 in the analysis time (11 min) and Rs values slightly increased (Rs between 1.1 and 2.7). 
 

408 Hence a temperature of 15 ºC was chosen. Finally, the influence of the applied voltage 
 

409 between 15 and 30 kV (15, 20, 25, 30 kV) was also investigated. An increase in the 
 

410 separation voltage originated a decrease in the analysis time but a slight variation of  the 
 

411 Rs values between 15 and 25 kV, with total loss of resolution for most compounds at 30 
 

412 kV. Therefore, a separation voltage of 25 kV was considered as the best. 
 

413 Under the optimal separation conditions (50 mM phosphate buffer at pH 7.0, 7 
 

414 mM HP-β-CD - 20 mM TM-β-CD, 25 kV, 15 ºC, hydrodynamic injection of 50 mbar x 
 

415 10 s), the simultaneous enantiomeric separation of the six phenoxy acid herbicides 
 

416 studied was obtained in 11 min with Rs values ≥ 1.6 for mecoprop (Rs 2.7), dichlorprop 
 

417 (Rs 1.9), 4-CPPA (Rs 1.8) and 2-PPA (Rs 1.6) and Rs values of 1.1 and 1.2 for 
 

418 fenoprop and 3-CPPA, respectively. 
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420 3.3. Evaluation of PMO materials for solid-phase extraction of phenoxy acid herbicides 
 

421 from water samples 
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423 The two PMOs synthesized in this work were evaluated as sorbents in SPE to 
 

424 study the extraction efficiency of six chiral phenoxy acid herbicides from water samples 
 

425 and to select the sorbent providing the highest recovery for these analytes. The PMO- 
 

426 STPA material shows a reverse-phase/strong anionic exchange mixed-mode retention 
 

427 mechanism due to this material possesses a styrylmethyl moiety that interacts by means 
 

428 of Van der Waals forces with the aromatic ring of the phenoxy acids at the same time 
 

429 that ionic interaction occurs between carboxyl and positively charged amine groups, 
 

430 whereas in the case of PMO-TEPA material only strong anionic exchange retention 
 

431 mechanism takes place (see Fig. 2). Related to textural properties previously discussed 
 

432 for both materials, it has not been found notable differences between them except for 
 

433 the greatest surface BET (SBET) and pore volume in PMO-STPA material with respect 
 

434 to PMO-TEPA material, that could favor the interaction with phenoxy acid herbicides 
 

435 given the big substituent linked to the amine moiety in PMO-STPA. 
 

436 With the aim to calculate the recovery values for the analytes in the SPE process, 
 

437 solutions of each racemic herbicide were prepared in Milli-Q water so that applying the 
 

438 corresponding PF in each optimization step, the final analyzed concentration by CE was 
 

439 5 mg/L for fenoprop, and 10 mg/L for the rest of the phenoxy acids studied. 
 

440 First of all, different sorbent amounts (100 and 200 mg) and pH values of elution 
 

441 solvent (2 x 4 mL of MeOH at pH 5.6 or 1.8) were tested by passing 100 mL of Milli-Q 
 

442 water solution (pH = 6.3) spiked with the compounds (25 µg/L of fenoprop and 50 µg/L 
 

443 for the remaining herbicides) through the cartridge. As can be seen in Figure 4, at a pH 
 

444 of 5.6, using PMO-STPA material as sorbent, recovery values between 90.2 and 103.7% 
 

445 were obtained with 100 mg (Fig. 4a) and recovery values between 89.0 and 109.2% 
 

446 with 200 mg (Fig. 4b). However, with 100 mg of PMO-TEPA material sorbent (Fig. 
 

447 4a) eluting with MeOH at pH 5.6, a poor recovery value between 20.3 and 59.7% was 



448 obtained, except for fenoprop (recovery 84.3%), whereas using 200 mg of sorbent (Fig. 
 

449 4 b), with the same elution process, the recovery values were higher, between 89.2 and 
 

450 105.3% for mecoprop, dichlorprop and fenoprop, and between 37.8 and 73.9% for 4- 
 

451 CPPA, 3-CPPA and 2-PPA. 
 

452 To increase the recovery values with PMO-TEPA as sorbent, it was decided to 
 

453 use MeOH acidified at pH 1.8 as elution solvent, in order to avoid the deprotonation of 
 

454 the carboxyl moiety in phenoxy acids, whose pKa values are between 2.8 and 4.3, and 
 

455 to break up the ionic interaction with positive amine moiety (see Fig. 2). As it can be 
 

456 seen in Figure 4, with 100 mg of this sorbent, an increase in the recovery from 20.3- 
 

457 82.0% to 39.9-110.2% took place, whereas using 200 mg of this sorbent the increase in 
 

458 recovery percentages reached values from 37.8-105.3% to 65.2-178.3%, obtaining 
 

459 always the lowest recoveries for 4-CPPA, 3-CPPA and 2-PPA. There is hard evidence 
 

460 that the ionic interaction plays an important role in the recovery process, although 
 

461 values up to 178.3% showed some questionable interferences in the extraction of the 
 

462 analytes under these conditions with PMO-TEPA and eluting with MeOH at pH 1.8. 
 

463 The differences observed in the recovery values comparing both sorbents could 
 

464 be explained as a function of the Van der Waals forces and Hückel charge values shown 
 

465 in Table S1 (supporting material). Both cationic amine ligands show a similar value of 
 

466 Hückel charge but STPA possesses a high value of Van der Waals forces. With regard 
 

467 to analytes, all of them show similar Van der Waals forces values, whereas a noticeable 
 

468 difference in the Hückel charge of oxygens in the carboxyl moiety was observed, whose 
 

469 values are lower for 4-CPPA, 3-CPPA and 2-PPA (Table S1). This fact confirms that 
 

470 the PMO-STPA material involves a mixed-mode mechanism retention by Van der 
 

471 Waals forces and ionic exchange that favor the retention of 4-CPPA, 3-CPPA and 2- 
 

472 PPA, whose values of Hückel charge are lower and show higher recovery values 



473 compared  with  PMO-TEPA  sorbent  that  only  shows  anionic  interaction  with  the 
 

474 negatively charged  analytes.  Hence, PMO-STPA was  selected in order  to achieve  the 
 

475 higher efficiency in the extraction of the six chiral phenoxy acid herbicides in water 
 

476 samples. 
 

477 Using PMO-STPA, the next step was to study the breakthrough volume, 
 

478 parameter that determines the maximum volume of sample that can be passed through 
 

479 the sorbent without losing a significant recovery. This study was carried out with 100 
 

480 mg of PMO-STPA and the volume of spiked sample was increased sequentially to 100, 
 

481 200, 500, 750 and 1000 mL. The highest recoveries (see Fig. 5) were obtained up to 750 
 

482 mL, considered the optimum volume, with values between 75.5 and 112.2% and a PF of 
 

483 1500, since with 1000 mL the enantiomeric recovery value obtained for 2-PPA 
 

484 decreased from 75.5 - 77.1% to 55.5 - 56.6%, although the remaining compounds kept 
 

485 their recovery values between 89.6 and 102.4%. These results show that PMO-STPA 
 

486 possesses a high capacity to concentrate the phenoxy acid herbicides studied in this 
 

487 work in diluted samples. 
 

488 Table S2 (supplementary material) groups the recovery values reported 
 

489 previously in the pre-concentration of some of the phenoxy acids studied in this work in 
 

490 water samples employing other commercial and non-commercial SPE sorbents [29-44]. 
 

491 Different types of materials have been used, some commercials such as Oasis HLB 
 

492 [29,30,34,37,42] or C18 [31,32,35,36] and C18 assisted with CTAB [43,44], and other 
 

493 non-commercial such as polystyrene-divinylbenzene polymer [33], molecularly 
 

494 imprinted polymers (MIPs) [38, 39], graphene oxide [40] and graphitized carbon black 
 

495 (GCB) [41]. As it can be seen, most of the extraction procedures carried out with water 
 

496 samples were focused on fenoprop, mecoprop and dichlorprop, whereas 4-CPPA has 



497 only been extracted in one of them [33], and 3-CPPA and 2-PPA have not been 
 

498 analyzed in none of them. 
 

499 In general terms recovery values obtained in all cases are higher than 80%, 
 

500 except in two of them that use graphene oxide as sorbent [40] or a commercial Oasis 
 

501 HLB SPE cartridge [29], in which recovery values between 40 and 75% were obtained. 
 

502 Basically,  all  these  procedures  are  based  on  the  Van  der  Waals,  noncovalent  or 
 

503 hydrophobic interactions in order to retain the analytes, although some of them [43,44] 
 

504 joined the effect of the sorbent with an ion-pairing agent, such as CTAB to achieve an 
 

505 increase of the recovery thanks to the exchange mixed-mode, such as it has been made 
 

506 in this work, which could provide an increase of recovery values. 
 

507 Regarding PF obtained in the published papers (see Table S2, supplementary 
 

508 material) only when commercial sorbents were employed, higher PFs were achieved 
 

509 between 200 and 5000, whereas with non-commercial sorbents PF obtained were found 
 

510 in the range from 2 to 100, with the exception of the employ of graphene oxide as 
 

511 sorbent that provided a PF of 2000 but a very low recovery value (40%). 
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513 3.4. Analytical characteristics of the developed SPE-CE method and analysis of water 
 

514 samples 
 

515 Analytical characteristics of the developed SPE-CE method using PMO-STPA 
 

516 sorbent were evaluated in terms of linearity, precision, accuracy, instrumental limits of 
 

517 detection (LOD) and quantitation (LOQ), and method limits of detection (MDL) and 
 

518 quantitation (MQL) (see Table 2). 
 

519 Linearity was determined by plotting the corrected peak area as a function of the 
 

520 enantiomer concentration for each compound with a total of six standard solutions 
 

521 injected by triplicate, at different concentrations (mg/L) as follows: fenoprop (2-30), 



522 mecoprop (3-30), dichlorprop (4-30), 4-CPPA (4-30), 3-CPPA (3-25) and 2-PPA (5- 
 

523 25). This procedure was repeated during three different days to fix the linear range for 
 

524 each compound. Linear equations were expressed according to a confidence range 
 

525 taking into account the mean value of the slope and its statistical error at 95% (Table 2). 
 

526 Satisfactory results were obtained in terms of linearity with R2 values ≥ 0.995 in all 
 

527 cases. ANOVA confirmed through the p-values (p-value > 0.09 in all cases for a 95% 
 

528 confidence level) that the experimental data fit properly to linear models. 
 

529 Instrumental LODs and LOQs were calculated considering 3 and 10 times the 
 

530 S/N ratio, respectively, with values ranging from 0.7 to 1.5 mg/L and from 2.2 to 5.0 
 

531 mg/L, respectively. MDLs and MQLs were experimentally calculated considering 3 and 
 

532 10 times the S/N ratio, respectively, estimated from the lowest concentration level of the 
 

533 calibration curve and taking into account a PF of 1500. Values for MDLs ranged from 
 

534 0.5 to 1.0 µg/L and for MQLs from 1.5 to 3.3 µg/L (Table 2). 
 

535 Precision of the method was evaluated in terms of instrumental repeatability and 
 

536 intermediate precision. The first one was determined from nine repeated injections of a 
 

537 standard solution in Milli-Q water at low (5 mg/L for each enantiomer of all 
 

538 compounds) and high (25 mg/L for each enantiomer of 3-CPPA and 2-PPA and 30 
 

539 mg/L   for   each   enantiomer   of   fenoprop,   mecoprop,   dichlorprop   and   4-CPPA) 
 

540 concentration levels without employing the SPE procedure, that is, by directly injecting 
 

541 the different standard solutions in the CE system. RSD values (%) were between 4.8 
 

542 and 12.9% for corrected peak areas (Ac) and between 1.2 and 2.8% for migration time 
 

543 (tm) at both concentrations levels. Intermediate precision was determined also at the 
 

544 above-mentioned concentration levels for three consecutive days injecting each sample 
 

545 by triplicate each day, with RSD values in a range from 2.8 to 12.7% for corrected peak 
 

546 area and 0.6 to 3.6% for migration time. 



547 Finally, accuracy was evaluated as recovery values obtained for three spiked WS 
 

548 from different locations at low and high concentration levels (Table 3). Since phenoxy 
 

549 acid herbicides were not detected in these samples, they were spiked at a concentration 
 

550 so that after preconcentration process, analytes were detected and quantified just beyond 
 

551 their LOD and LOQ, respectively. For WS 2 and 3, due to the plugging of the pores of 
 

552 the packed material produced by the presence of organic matter, only 200 mL of these 
 

553 spiked water sample (PF = 400) were passed through the cartridge, whereas 750 mL (PF 
 

554 = 1500) were passed with WS 1. As observed in Table 3, accuracy was acceptable 
 

555 (without significant differences at both concentration levels) with values for WS 1  from 
 

556 96.3 to 107.5%, for WS 2 from 91.7 to 104.2% and for WS 3 from 78.3 to 105.9%. 
 

557 Figure 6 shows the electropherogram obtained for spiked and non-spiked WS 1 using 
 

558 100 mg of PMO-STPA sorbent, 750 mL of sample volume and elution with 2 x 4 mL 
 

559 MeOH pH 5.6. 
 

560 Comparing the results obtained in this work with those reported in the  literature, 
 

561 high recovery values were obtained in addition to the simultaneous determination of 6 
 

562 phenoxy acid herbicides as well as a high PF of 1500 with only 100 mg of a novel 
 

563 PMO-STPA material as sorbent, amount much lower than that usually employed in the 
 

564 extraction of these compounds for SPE. 
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566 4. Concluding remarks 

 
567  

568 Two novel materials based on periodic mesoporous organosilica with cationic 

569 amine-bridged ligands, (styrylmethyl)bis(triethoxysilylpropyl)ammonium chloride 

570 (STPA) and bis(3-triethoxysilyl)amine (TEPA), were synthesized in this work using 

571 tetraethyl orthosilicate as additional silica source in basic medium, in order to obtain 



572 materials with reverse-phase/strong anionic exchange mixed-mode or strong anionic 
 

573 exchange retention mechanism, respectively. Although interesting characteristics with 
 

574 good recovery values for six phenoxy acid herbicides from several water samples were 
 

575 shown by PMO-TEPA material, PMO-STPA was found to be the best sorbent for the 
 

576 off-line solid-phase extraction of the compounds studied, which confirmed that a 
 

577 mixed-mode retention mechanism by Van der Waals forces and ionic exchange, that 
 

578 favor the retention of 4-CPPA, 3-CPPA and 2-PPA, was necessary for the extraction of 
 

579 these selected compounds. Optimized conditions for SPE enabled a preconcentration 
 

580 factor of 1500 using 100 mg sorbent and 750 mL of water sample allowing high 
 

581 recovery values for the compounds studied and enabling method quantitation limits 
 

582 from 1.5 to 3.3 µg/L using CE for the simultaneous enantiomeric separation of the six 
 

583 phenoxy acid herbicides in 11 min. The results presented in this article show the high 
 

584 potential of the PMO materials synthesized in this work as sorbents for off-line SPE 
 

585 previous to CE separation in the simultaneous chiral analysis of phenoxy acids in water 
 

586 samples. 
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739 Figure captions 

 

740 
 

741 Figure 1. N2 adsorption-desorption isotherms and pore-size distribution of PMO-STPA 
 

742 (a and b) and PMO-TEPA materials (c and d). 

 
743 

 

744 Figure 2. Schematic representation for retention mechanism inside the pore of PMO- 
 

745 STPA and PMO-TEPA materials. 

 
746 

 

747 Figure 3. 13C CP/MAS NMR spectra (a) and 29Si MAS NMR spectra (b) of PMO- 
 

748 STPA material. 

 
749 

 

750 Figure 4. Recovery percentages and error bars obtained for each enantiomer of the six 
 

751 phenoxy acid herbicides using 100 mg (a) and 200 mg (b) of sorbent packing at two pH 
 

752 values of elution solvent (5.6 and 1.8) and 100 mL of Milli-Q water sample spiked in a 
 

753 concentration of 25 µg/L for fenoprop, and 50 mg/L for the other five phenoxy acid 
 

754 compounds. F: fenoprop, M: mecoprop, D: dichlorprop, 4C: 4-CPPA, 3C: 3-CPPA, 2P: 
 

755 2-PPA. 1: First-migrating enantiomer, 2: Second-migrating enantiomer. Experimental 
 

756 conditions: BGE, 50 mM phosphate buffer (pH 7.0), 20 mM TM-β-CD and 7 mM HP- 
 

757 β-CD, capillary (50 µm I.D., total length of 58.5 cm (50 cm effective length)), injection: 
 

758 50 mbar x 10 s, temperature: 15 ºC, separation voltage: 25 kV, UV detection at 194 nm 
 

759 (2-PPA and 4-CPPA), 200 nm (mecoprop, dichlorprop and 3-CPPA) and 210 nm 
 

760 (fenoprop) (bandwidth 5 nm). 

 
761761 

 

762 Figure 5. Recovery percentages and error bars obtained for each enantiomer of the 
 

763 phenoxy acid herbicides taking into account the breakthrough volume loaded in the 



764 cartridges (n = 6) at 100, 200, 500, 750 and 1000 mL of spiked Milli-Q water solution 
 

765 with phenoxy acid herbicides at a concentration of 5 mg/L for fenoprop, and 10 mg/L 
 

766 for the other five phenoxy acid compounds using 100 mg of PMO-STPA as sorbent. F: 
 

767 fenoprop, M: mecoprop, D: dichlorprop, 4C: 4-CPPA, 3C: 3-CPPA, 2P: 2-PPA. 1: 
 

768 First-migrating enantiomer, 2: Second-migrating enantiomer. Other experimental 
 

769 conditions as in Fig. 4. 

 

770770 
 

771 Figure 6. Electropherograms obtained for the enantiomeric separation of the mixture of 
 

772 six phenoxy acid herbicides in spiked (top) and non-spiked (down) WS 1 using 100 mg 
 

773 of PMO-STPA sorbent and 750 mL of sample volume. Spiked concentrations of 3.3 
 

774 µg/L for the six phenoxy acids. Compounds: F: fenoprop (Rs = 1.1), M: mecoprop (Rs 
 

775 = 2.7), D: dichlorprop (Rs = 1.9), 4C: 4-CPPA (Rs = 1.7), 3C: 3-CPPA (Rs = 1.2), 2P: 
 

776 2-PPA (Rs = 1.6). 1: First-migrating enantiomer, 2: Second-migrating enantiomer. UV 
 

777 detection at 200 nm. Other experimental conditions as in Fig. 4. 

 
778    
 
 

 



779 Table 1.- Textural properties of the PMO materials synthesized in this work. 
 

 
SBET 

 

Pore volume 

Elemental analysis (%) 

Pore size    
Material 

(m2/g)a (cm3/g)b (Ǻ)c 
 

C N H 
mmol 

 

 

 

 

 

 

 

 

 

 

 
 

780 a: BET stands for Brunauer, Emmett and Teller. 

781 b: Total pore volume were measured at relative P/P0 = 0.97. 

782 c: Pore diameter estimated by using the BJH (Barrett, Joyner and Halenda) model applied on the 

783 desorption branch of the isotherm. 

784 d: mmol of ligand per gram of PMO calculated with the %N obtained in elemental analysis. 

785785 
 

 ligand/gd 

 

PMO-STPA 
 

316 
 

1.30 
 

235.0 
 

18.4 
 

1.3 
 

2.9 
 

0.93 

 

PMO-TEPA 
 

238 
 

0.85 
 

152.3 
 

11.8 
 

1.6 
 

2.5 
 

1.14 
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786 Table 2. Analytical characteristics of the developed CE method for the enantiomeric determination of phenoxy acid herbicides in water samples. 
 

Analyte Linearity Precision 
 

Instrumental repeatability Intermediate precision 

Linear Linear equation 
Sb Ac // tm (RSD (%)) Ac // tm (RSD (%)) 

LOD (mg/L) /
 
 

LOQ (mg/L) / 
range bx + a b ± t Sb 

Sa Low High Low High MDL (µg/L) MQL (µg/L) 
 concentration concentration concentration concentration  

0.48 ± 0.25 6.6 // 1.8 6.3 // 2.0 10.4 // 2.9 5.5 // 0.6 0.7 / 0.5 2.3 / 1.5 

0.42 ± 0.16 5.2 // 1.8 12.3 // 1.9 10.4 // 3.0 6.6 // 0.6 0.7 / 0.5 2.2 / 1.5 

0.62 ± 0.29 7.0 // 1.2 5.4 // 2.1 7.9 // 3.1 4.3 // 0.6 0.8 / 0.5 2.6 / 1.7 

0.68 ± 0.38 7.3 // 1.2 6.0 // 2.2 6.7 // 3.1 6.1 // 0.6 0.8 / 0.5 2.7 / 1.8 

0.45 ± 0.14 10.1 // 1.2 9.2 // 2.1 10.6 // 3.1 2.8 // 0.6 1.0 / 0.7 3.3 / 2.2 

0.51 ± 0.25 11.9 // 1.2 4.8 // 2.2 9.6 // 3.1 4.7 // 0.7 1.0 / 0.7 3.4 / 2.3 

0.66 ± 0.29 5.0 // 1.3 6.1 // 2.2 8.1 // 3.1 5.3 // 0.7 1.2 / 0.8 4.0 / 2.7 

0.65 ± 0.27 7.2 // 1.3 6.9 // 2.3 8.8 // 3.2 4.2 // 0.7 1.2 / 0.8 4.0 / 2.7 

0.69 ± 0.27 7.3 // 1.3 5.8 // 2.3 12.7 // 3.2 5.3 // 1.2 0.9 / 0.6 2.9 / 1.9 

0.60 ± 0.18 5.8 // 1.3 7.0 // 2.3 9.2 // 3.2 4.2 // 1.2 0.8 / 0.5 2.7 / 1.8 

0.71 ± 0.36 11.3 // 1.6 7.2 // 2.7 8.7 // 3.6 4.8 // 1.4 1.5 / 1.0 5.0 / 3.3 

0.68 ± 0.29 12.9 // 1.6 6.9 // 2.8 9.3 // 3.6 3.2 // 1.4 1.4 / 0.9 4.7 / 3.1 

 

787 a: intercept; b: slope; Sa: intercept standard deviation; Sb: slope standard deviation; Confidence interval at 95% as confidence level (n = 9); E1: first-migrating enantiomer; 

788   E2: second-migrating enantiomer; Ac: corrected area; tm:  migration time; LOD: instrumental limit of detection; LOQ: instrumental limit of quantification; MDL:  method    

789  limit of detection; MQL: method limit of quantification; Low concentration level for each enantiomer: 5 mg/L. High concentration level for each enantiomer: 25 mg/L in the  

790 case of 3-CPPA and 2-PPA or 30 mg/L in the case of Fenoprop, Mecoprop, Dichlorprop and 4-CPPA. 

791 

 (mg/L) R2  

 
Fenoprop (E1) 0.48x-0.38 0.11 

 
2 – 30 

0.9950 0.46 

Fenoprop (E2) 0.42x-0.17 0.07 
 0.9957 0.38 

Mecoprop (E1) 0.62x-0.25 0.13 
 

3 – 30 
0.9966 0.33 

Mecoprop (E2) 0.68x-0.51 0.17 

 0.9953 0.47 

Dichlorprop (E1) 0.45x-0.23 0.06 
 

4 – 30 
0.9962 0.32 

Dichlorprop (E2) 0.51x-0.37 0.11 
 0.9961 0.16 

4-CPPA (E1) 0.66x-0.50 0.13 
 

4 – 30 
0.9965 0.48 

4-CPPA (E2) 0.65x-0.39 0.12 
 0.9962 0.45 

3-CPPA (E1) 0.69x-0.36 0.12 
 

3 – 25 
0.9987 0.34 

3-CPPA (E2) 0.60x-0.19 0.08 

 0.9977 0.26 

2-PPA (E1) 0.71x-0.75 0.16 
 

5 – 25 
0.9981 0.53 

2-PPA (E2) 0.68x-0.55 0.13 

 0.9974 0.51 
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792 Table 3. Recovery values (%) and RSD (%) obtained for phenoxy acid herbicides using 100 mg PMO-STPA and 750 mL sample volume for 

793 WS1 and 200 mL for WS2 and WS3 (n=6). 
 

 
 

Recov 

Water sample 1 Water sample 2 Water sample 3 

Recover 

Analyte ery 
RSD 

y 

High 

RSD Recovery RSD Recovery RSD Recovery RSD Recovery RSD 

 
High 

Low concentration 
concentration 

Low concentration High concentration Low concentration 
concentration 

 

Fenoprop (E1) 100.5 2.9 97.3 1.3 96.5 3.9 99.8 4.3 88.5 6.2 100.5 2.3 

Fenoprop (E2) 103.5 4.6 96.3 1.1 96.2 2.3 100.4 4.8 86.0 7.9 100.9 2.0 

Mecoprop (E1) 105.0 1.8 100.6 1.8 91.9 2.7 99.7 4.6 98.6 8.5 101.6 0.8 

Mecoprop (E2) 101.8 1.5 101.6 4.1 91.7 1.9 100.1 3.4 98.2 7.5 101.4 1.4 

Dichlorprop (E1) 99.3 2.2 100.5 3.3 95.2 2.3 104.2 7.4 95.1 11.4 101.7 1.2 

Dichlorprop (E2) 98.6 2.5 100.2 1.8 95.6 2.8 99.4 4.5 100.5 10.4 101.9 1.1 

4-CPPA (E1) 101.7 3.1 103.3 1.5 102.2 2.5 100.6 5.4 93.3 9.1 103.5 1.5 

4-CPPA (E2) 103.8 5.2 98.5 0.6 101.2 4.9 103.4 5.7 93.2 9.4 103.7 1.3 

3-CPPA (E1) 102.2 4.0 102.8 1.9 96.9 2.4 101.4 4.0 92.6 9.5 102.4 1.4 

3-CPPA (E2) 103.4 3.3 100.9 1.2 98.6 7.1 98.7 5.7 91.3 8.1 104.8 1.6 

2-PPA (E1) 104.7 3.5 107.5 1.7 95.4 3.5 97.8 5.3 78.3 9.2 105.9 1.6 

2-PPA (E2) 99.9 4.0 103.3 1.7 93.4 5.0 98.0 7.2 83.0 8.1 104.5 1.7 

794     Experimental conditions:  BGE:  50 mM  phosphate buffer (pH 7.0) / 20 mM  TM-β-CD  - 7 mM  HP-β-CD, injection: 50 mbar  x 10 s, voltage: 25 kV,      
795   temperature:  15 ºC,  capillary: 58.5 cm total length (50 cm effective length) x 50 µm I.D. Concentration levels spiked in water samples for each enantiomer   
796     (µg/L): WS 1 (Low 3.3 and High 16.7 for 3-CPPA and 2-PPA or 20 for Fenoprop, Mecoprop, Dichlorprop and 4-CPPA);  WS 2 and WS 3 (Low 12.5 and     
797 High 62.5 for 3-CPPA and 2-PPA or 75 for Fenoprop, Mecoprop, Dichlorprop and 4-CPPA).Water samples were collected from: WS1 from effluent treatment 

798 plant in Cádiz (Spain); WS2 from effluent treatment plant in Sevilla (Spain); WS3 from Henares river in Alcalá de Henares (Spain). 
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Supplementary Material 

 

 
   

Figure S1. SEM micrographs (a, c) and TEM pictures (b, d) for PMO-STPA and PMO-

TEPA materials, respectively. 
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Figure S2. FTIR spectra of PMO-STPA (a) and PMO-TEPA (b) materials. 
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Figure S3. Thermogravimetric analysis of PMO-STPA (a) and PMO-TEPA (b) 

materials. 
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Table S1. Values of Van der Waals forces and Hückel charge of ligands (STPA and TEPA) and phenoxyacid herbicides studied.  

 Cationic amine-bridge ligand Phenoxyacid herbicides 

 STPA TEPA Fenoprop Mecoprop Dichlorprop 4-CPPA 3-CPPA 2-PPA 

Van der Waals forces 
(Kcal/mol) 

29.6 19.2 12.0 10.8 11.4 9.9 10.0 9.5 

Hückel charge +0.7006a +0.6464a -0.7694b -0.6698b -0.6490b -0.4599b -0.4332b -0.4523b 

a: Hückel nitrogen charge for amine moiety. 

b: Hückel oxygen charge for carboxyl moiety (Mean value of charge of two oxygens). 

 

 

 
 

 



 

 

 

Table S2. Use of other commercial and non-commercial materials for SPE extraction of the phenoxyacid 

herbicides studied from water samples. 

 
 

 

N/A: Not available; PF: Preconcentration factor. 

MIP: Molecularly imprinted polymers 

GCB: Graphitized carbon black 
 

Analyte Sorbent (Amount) Recovery (%) PF Sample Ref. 

Mecoprop 
Oasis HLB (200 mg) 

42-65 
2000 Surface waters [29] 

Dichlorprop 55-75 

Fenoprop 

Oasis HLB (150 mg) 

90 

3177 Drinking water [30] Mecoprop 100 

Dichlorprop 85 

Fenoprop 

C18 (N/A) 93 133 Water [31] Mecoprop 

Dichlorprop 

Dichlorprop 
C18 (N/A) 

84-92 
1000 Drinking water [32] 

Mecoprop 83-101 

Fenoprop 

Polystyrene-divinylbenzene 

(N/A) 

81 

100 Water samples [33] 

Dichlorprop 143 

4-CPPA 85-94 

Mecoprop 79-86 

Fenoprop 79-88 

Fenoprop 

Oasis HLB (60 mg) 

94-98 

1000-2000 
River and sewage 

water 
[34] Mecoprop 82-103 

Dichlorprop 83-98 

Mecoprop 
C18 (500 mg) 

96-103 
4000 Tap water [35] 

Dichlorprop 93-96 

Mecoprop 
C18 (500 mg) 

89 
1000 Drinking water [36] 

Dichlorprop 96 

Fenoprop 

Oasis HLB (500 mg) 

86 

5000 River water [37] Mecoprop 86 

Dichlorprop 84 

Fenoprop 

MIP (500 mg) 

81-93 

500 River water [38] Mecoprop 89 

Dichlorprop 89-114 

Mecoprop 

MIP (200 mg) 

88 

2 Deionized water [39] Dichlorprop 95 

Fenoprop 96 

Dichlorprop Graphene oxide-based SPE and 

electro membrane extraction 

(N/A) 

40 
1950-2000 River and sea water [40] 

Mecoprop 40 

Dichlorprop 
GCB (300 mg) 

83-103 
10 River water [41] 

Mecoprop 80-107 

Fenoprop 

Oasis HLB (200 mg) 

91-131 

200-500 
Tap, Surface and 

wastewater 
[42] Mecoprop 97-117 

Dichlorprop 91-120 

Dichlorprop C18 assisted with CTAB 

(500 mg) 

100 
100 Pond water [43] 

Fenoprop 97 

Fenoprop 

C18 and CTAB (500 mg) 

85-105 

N/A Tap water [44] Mecoprop 90-102 

Dichlorprop 94-101 
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