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Abstract: 

Treatment of the metalloligand [{Ti(5-C5Me5)(-NH)}3(3-N)] with silver(I) 

trifluoromethanesulfonate in different molar ratios gives the ionic compounds [Ag{(3-

NH)3Ti3(
5-C5Me5)3(3-N)}2][O3SCF3] and [Ag{(3-NH)3Ti3(

5-C5Me5)3(3-

N)}][O3SCF3] or the triangular silver cluster [(CF3SO2O)3Ag3{(3-NH)3Ti3(
5-C5Me5)3(3-

N)}2] in which each face is capped by a metalloligand. 
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 As part of a program related to the synthesis of polynuclear nitrido complexes,1 we 

have been studying the coordination chemistry of the trinuclear imido-nitrido complex 

[{Ti(5-C5Me5)(-NH)}3(3-N)]2 (1) with a variety of main-group and transition metals.3 

In those studies, we have noted that 1 is prone to act as tridentate chelate to a single metal 

(e.g. Ti, Sn, Zn, Cu) through the basal NH imido groups, although in some solid-state 

structures coordination by only one NH group to the metal center (Sn, Zn, Al, Ga, In) has 

been observed. In many aspects the metalloligand 1 resembles other well-known tridentate 

nitrogen ligands in coordination chemistry as tris(pyrazolyl)borates,4 

tris(pyrazolyl)methanes,5 1,4,7-triazacyclononanes,6 and especially 1,3,5-

triazacyclohexanes.7 However, the existence of the 3-N nitrido apical group confers a 

more rigid conformation to 1 when compared with those systems. Here we report the 

preliminary study about the interactions of silver(I) salts with our metalloligand. The 

conventional tridentate chelate coordination mode of 1 is observed for several ionic 

complexes while an unprecedented bridging mode (3-
1:1:1) has been structurally 

characterized in the triangular silver(I) cluster [(CF3SO2O)3Ag3{(3-NH)3Ti3(
5-

C5Me5)3(3-N)}2]. 

 The results obtained in the treatment of [{Ti(5-C5Me5)(-NH)}3(3-N)] (1) with 

silver(I) trifluoromethanesulfonate in different ratios are summarized in Scheme 1. The 

reaction of 1 with half equivalent of [Ag(O3SCF3)] in dichloromethane at room temperature 

in the absence of light led to the corner-shared double-cube ionic complex [Ag{(3-

NH)3Ti3(
5-C5Me5)3(3-N)}2][O3SCF3] (2). Analogous treatment in a 1:1 ratio gave the 

complex [Ag{(3-NH)3Ti3(
5-C5Me5)3(3-N)}][O3SCF3] (3). When the ratio of 

[Ag(O3SCF3)] to the metalloligand was higher than 1.5:1 the trinuclear silver(I) compound 

[(CF3SO2O)3Ag3{(3-NH)3Ti3(
5-C5Me5)3(3-N)}2] (4) was obtained. 
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 Compounds 2-4 were isolated in 50-82% yield as air and light sensitive yellow or 

orange solids, which are very soluble in halogenated solvents. However, whereas 2 and 3 

are scarcely soluble in toluene or benzene, according to an ionic composition, complex 4 

exhibits higher solubility in those solvents. The stability of complexes 2-4 in chloroform-d1 

was monitored by NMR spectroscopy. Compound 3 is stable for months, but solutions of 2 

immediately undergo partial dissociation (ca. 5% conversion) to give 3 and 1. This mixture 

remains unaltered for long periods of time even after heating at high temperatures. 

However, addition of [Ag(O3SCF3)] (1 equiv) to this solution at room temperature afforded 

immediately the complete consumption of 2 and only resonance signals assigned to 

complex 3 were observed in the NMR spectra. On the other hand, spectra taken after 

heating of 4 in chloroform-d1 revealed minor resonance signals due to 3, but only upon 

leaving the NMR tube at 80 ºC for 3 days the spectra showed complete consumption of 4 to 

give complex 3 along with the precipitation of [Ag(O3SCF3)]. Stirring of this mixture at 

room temperature for 1 day regenerated complex 4. 
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Scheme 1. Reactions of 1 with [Ag(O3SCF3)]. [Ti] = Ti(5-C5Me5). 
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 Compounds 2-4 were characterized by analytical and spectroscopic methods, as 

well as by X-ray crystal structure determinations for 2 and 4.‡ IR spectra (KBr) of 

complexes 2-4 show two NH vibrations, between 3357 and 3261 cm-1, in a similar range to 

the value determined for 1,2 3352 cm-1. Information regarding the possible interaction of 

the triflate anion with a metal center may be obtained from the solid IR spectra in the 1350-

1000 cm-1 range.8 While in 2 the as(SO3) band is observed at 1274 cm-1, which is closely 

similar to that found for the free CF3SO3
- ion,8b the analogous stretching mode in 3 splits 

into two bands at 1276 and 1263 cm-1, indicating some interaction of the triflate ion with 

the silver cation in the solid state.8c,d The splitting in two well-defined bands at 1290 and 

1236 cm-1 found in compound 4 may agree with the coordination of the triflate groups. The 

1H and 13C{1H} NMR spectra in chloroform-d1 of 2 and 3 at room temperature show 

resonance signals for equivalent NH and 5-C5Me5 groups, suggesting a highly 

symmetrical structure or very fast exchange processes in solution, as those observed 

previously in other adducts of 1.3 The NH resonance signals,  = 12.12 (2) and 12.25 (3), in 

the 1H NMR spectra are shifted to higher field with respect to that found for 1 ( = 13.40), 

suggesting a tridentate coordination of the ligand to the silver(I) ion.3d Thus, the NMR data 

for 2 would be consistent with a trigonally distorted octahedral geometry around the silver 

center, as determined previously for other silver(I) ionic complexes with two tridentate 

nitrogen ligands.6b,9 However, the solid-state structure of 2 determined by an X-ray analysis 

reveals a linear two-coordinate environment for the silver center in the cationic fragment 

(Figure 1). The silver atom lies on a inversion center and exhibits two silver-nitrogen 

distances, Ag(1)-N(13) 3.240(4) and Ag(1)-N(12) 2.900(4) Å, clearly longer than that to 

N(23) 2.205(4) but still shorter than the sum of the van der Waals radii (3.30 Å).10 
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Geometrical parameters of the organometallic ligand are similar to those of the parent 

compound 1.2 

 

Figure 1. Cationic fragment of the crystal structure of complex 2 (thermal ellipsoids at the 

50% probability level). The prime character in the labels indicates that these atoms are at 

equivalent position (-x,-y,-z). Selected lengths (Å) and angles (º): Ag(1)-N(23) 2.205(4), 

Ag(1)-N(13) 3.240(4), Ag(1)-N(12) 2.900(4), Ag(1)···Ti(1) 3.784(1), Ag(1)···Ti(2) 

3.102(1), Ag(1)···Ti(3) 3.377(1), averaged values for N(1)-Ti 1.93(1), Nbasal-Ti 1.96(2), 

Ti···Ti 2.848(5), N(23)-Ag(1)-N(23)’ 180.0, Ti-Nbasal-Ti 93(1), Ti-Napical-Ti 94.9(5), Nbasal-

Ti-Nbasal 106.6(9), Nbasal-Ti-Napical 85.6(5). 

 

 Compound 4 is soluble in toluene or benzene, and its 1H, 13C{1H} and 19F NMR 

spectra in benzene-d6 or chloroform-d1 at room temperature are very similar. The spectra 

show resonance signals for equivalent NH and 5-C5Me5 ligands. The 1H NMR spectrum in 
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chloroform-d1 reveals 1H-107,109Ag couplings (2JH,Ag = 6 Hz) for the imido groups, 

suggesting a static structure in solution. 13C{1H} NMR spectrum shows a singlet for the 

ipso-carbon resonance of the C5Me5 groups at  = 127.2, which is ca. 7 ppm shifted 

downfield with respect to those found in complexes 2 ( = 119.9) and 3 ( = 120.6). These 

data are consistent with the solid-state structure determined by X-ray crystallography 

(Figure 2). The complex contains an equilateral triangular cluster of AgI ions, with Ag-Ag 

separations of av. 2.978(3) Å; each face of the triangle is capped by a single “(3-

NH)3Ti3(
5-C5Me5)3(3-N)” metalloligand which binds to each silver center by one NH 

imido group. Therefore, every AgI is coordinated, in addition to the two Ag-Ag 

interactions, by two NH ligands and one oxygen atom of a triflate group. Thus, the 

geometry around the silver centers becomes a distorted trigonal-bipyramid with the 

nitrogen atoms at the axial positions (N-Ag-N 170.7(3)º) and two silver and the oxygen 

atoms at the equatorial plane (sum of angles = 357(1)º). The Ag-N distances (av. 2.175(7) 

Å) range between those found for two-coordinate [av. 2.11 Å] and six-coordinate [av. 2.27 

Å] AgI ions in trinuclear silver complexes with (3-
1:1:1) tris(pyrazolyl)borate ligands11 

and are also similar to that found in complex 2. The Ag-O distance of av. 2.66(3) Å is 

smaller than the sum of the van der Waals radii of 3.20 Å,10 and could be considered to be a 

coordinative Ag···O interaction,12 in good agreement with the IR data. The coordination of 

the metalloligand to three silver atoms in 4 results in a slightly lengthening of the Ti-Nimido 

and Ti···Ti distances, average 2.009(7) Å and 2.879(5) Å respectively, when compared 

with 1 (average 1.924 Å and 2.802 Å) without any other significant changes in bond 

lengths and angles.2 
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Figure 2. Crystal structure of complex 4 (thermal ellipsoids at the 50% probability level). 

The methyl groups of the pentamethylcyclopentadienyl ligands are omitted for clarity. 

Average of selected lengths (Å) and angles (º): Ag-Ag 2.978(3), Ag-N 2.175(7), Ag-O 

2.66(3), Ti-Nbasal 2.009(7), Ti-Napical 1.922(4), Ti···Ti 2.879(5), Ag-Ag-Ag 60.0(1), Ag-Ag-

O 149(1), N-Ag-N 170.7(3), N-Ag-Ag 94(4), N-Ag-O 85(7), Ti-Nbasal-Ti 91.5(3), Ti-Napical-

Ti 96.9(2), Nbasal-Ti-Nbasal 110.0(7), Nbasal-Ti-Napical 85.4(2), Ti-Ti-Ti 60.0(1). 

 

 In conclusion, we have demonstrated that [{Ti(5-C5Me5)(-NH)}3(3-N)] can 

interact with both a single silver cation or trinuclear silver clusters through different 

binding modes. In particular, the unprecedented coordination mode (3-
1:1:1) observed 

in complex 4 should be common for trinuclear systems containing metal-metal bonds or 

metallophilic interactions and will be the scope of our next investigations. 
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Notes and references 

‡ Crystal data for 2: C61H96AgF3N8O3STi6, M = 1473.79, triclinic, a = 11.6024(18), b = 

11.61.93(11), c = 14.7433(18) Å,  = 109.264(9),  = 111.742(12),  = 95.191(9), U = 

1690.8(4) Å3, T = 200(2) K, space group P-1, Z = 1, (Mo-K) = 1.042 mm-1, 41498 

reflections measured, 7597 unique (Rint = 0.057) which were used in all calculations. R1(F2) 

= 0.064 (for 5044 reflections with Fo > 4(Fo)) and wR2 = 0.237 for all data. 

Crystal data for 4·C7H8: C70H104Ag3F9N8O9S3Ti6, M = 2079.8, monoclinic, a = 16.058(3), 

b = 20.694(6), c = 37.507(11) Å, = 93.956(19), U = 12434(5) Å3, T = 200(2) K, space 

group P21/c, Z = 4, (Mo-K) = 0.927 mm-1, 117004 reflections measured, 28264 unique 

(Rint = 0.076) which were used in all calculations. R1(F2) = 0.051 (for 16649 reflections 

with Fo > 4(Fo)) and wR2 = 0.146 for all data. 
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