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 
Abstract— Advanced optical fiber reflectometry techniques 

enable spatially distributed measurements of true relative 
deformations over the length of a conventional optical fiber cable. 
This methodology is attractive for many applications ranging from 
intrusion monitoring to seismology. However, accurate 
quantification of the applied stimulus in general implies 
sophisticated implementations with poor sensitivity performance. 
Coherent reflectometry using chirped pulses is an appealing 
solution, as it provides fast dynamic strain measurements with a 
simple experimental deployment. Here, we analyze for the first 
time to our knowledge the lower performance bounds of this 
technique as a function of the signal-to-noise ratio of the acquired 
optical signal. We demonstrate that implementations realized so 
far have been limited by the temporal sampling used instead of the 
optical signal quality. Through post-processing interpolation 
approaches, we reach the performance limit for a given set of 
signal parameters, attaining unprecedented strain sensitivities 
(~10- 12 ε/√Hz) for km-length distributed sensors in conventional 
single-mode fibers. 
 

Index Terms—Chirp modulation; Optical fiber applications; 
Optical time domain reflectometry; Phase noise; Remote sensing; 
Strain measurement; Vibration measurement 

I. INTRODUCTION 

PTICAL sensors have often shown to be capable of 
reaching ultra-high strain sensitivities. Successive 

attempts at approaching the fundamental noise introduced by 
thermodynamic vibrations within a fiber-optic medium have 
appeared in the literature, attaining remarkable strain 

 
 

sensitivities of 0.03×10-12 ε/√Hz at frequencies above 20 kHz, 
using a short (4.5 mm) Bragg grating interrogated via an ultra-
stable laser source and a lock-in amplifier to reduce electrical 
noise [1], while previously a 130 mm Fabry-Perot fiber 
resonator reached sensitivities of ~0.35×10-12 ε/√Hz in the low 
frequency (Hz) range and ~0.22×10-12 ε/√Hz in the kHz range, 
by using a laser source stabilized against a quartz-oscillator 
phase-locked optical frequency comb [2]. Though highly 
encouraging, these record-breaking sensor designs present 
critical implementation shortcomings and stability 
requirements that restrain their use in most practical 
environments. Moreover, all these studies have been restricted 
to short gauge, point sensor implementations. 

The field of sensing is currently receiving unprecedented 
attention from areas such as defense, energy and civil 
engineering, which are now recognizing the potential of 
endowing increasingly complex structures and materials with 
the ability to self-diagnose and react to environmental changes, 
leading to general increases in safety, production yields and 
considerable cost-savings in long term maintenance and 
inspection [3]. Distributed fiber optic alternatives arise as 
particularly attractive solutions, effectively replacing the need 
for hundreds or thousands of sensors and complex wiring 
schemes with a single optical fiber cable. The benefits come as 
lower cost-per-sensor in applications where multiple sensors 
are to be installed in a remote location, and limited intrusiveness 
of the sensing element in the host material in embedded 
applications (due to the lower number of ingress/egress points, 
lower total weight and smaller dimensions).  

Distributed sensing is made possible by envisioning a single 
fiber as the data transmission and sensing element altogether, 
exploiting light-matter interactions at each position to retrieve 
information about the local fiber properties (e.g. temperature 
[4]–[8] and strain [6]–[9]). Usually, this consists in pairing 
natural elastic and inelastic backscattering phenomena [10] 
with position discrimination techniques such as optical time-
domain reflectometry [11] (OTDR). So far, distributed sensing 
has mostly been represented by implementations based on 
Brillouin or Raman backscattering. Brillouin backscattering 
based techniques have reported dynamic strain sensitivities of 
~50×10-9 ε/√Hz , for very short polarization-maintaining (PM) 
fibers (5 meters) [12].  The requirement of averaging successive 
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measurements, however, severely limits the potential of these 
techniques for fast and dynamic measurements. 

The demand for fast distributed acoustic sensing (DAS) over 
long ranges, for applications such as non-destructive evaluation 
of large structures, early detection of damage or surrounding 
environmental activity, or detection of intrusions over large 
perimeters, has propelled a recent trend of renewed interest 
towards Rayleigh-based techniques [7], [13], [14], particularly 
phase-sensitive (φ)OTDR. Since this technique avoids the need 
for the previously mentioned averaging due to the moderately 
high SNR achievable using single-shot data, the sampling rate 
is ultimately limited by the time-of-flight of the light signal 
inside the fiber, thus allowing sampling rates as high as 1 kHz 
for lengths as large as 100 km. Although extremely powerful, 
conventional schemes of φOTDR present important 
shortcomings, i.e., they are severely limited by power trace 
fading points and fail in providing even SNR along the sensing 
fiber. Recently, a novel interrogation method has been proposed 
by Pastor-Graells et al. [15], which addresses both problems in 
a conventional single-mode fiber with minimal alterations to 
the conventional setup, i.e., by simply introducing a linear chirp 
to the propagated light pulse.  

Here, we extend the work done in [16], developing and 
formalizing a full derivation of the performance lower bound of 
chirped pulse φOTDR. This is, to our knowledge, the first 
proposal of a sensitivity performance lower bound of an fiber 
optic distributed sensor. We show that, after previously 
developed first-order phase noise and instrument jitter 
compensation techniques [17], the main impediment to reach an 
optimal performance in the technique is related to sampling 
error, which may easily be addressed by reconstructing the 
signal through Whittaker-Shannon (sinc) interpolation [18]. 
The system is then fundamentally limited by the performance 
of the employed estimator when there is unavoidable additive 
noise in the signal, which is bounded by the Cramér-Rao Lower 
Bound (CRLB) for the type of signals acquired with this 
method [19]–[21]. The proposed model is numerically 

validated by a series of simulations. We then apply the 
described strategy experimentally, practically achieving what 
is, to our best knowledge, unparalleled sensitivity for a 
distributed optical fiber strain sensor (~10-12 ε/√Hz), up to the 
kHz frequency range. The result obtained reports an 
improvement of 2 orders of magnitude in strain sensitivity and 
one order of magnitude in distance range over the performance 
reported using other techniques, while ensuring a constant value 
of sensitivity along the length (unlike phase-measuring schemes 
[22]). It is important to point out that the presented performance 
has been achieved with significantly less cumbersome 
stabilization loops than previous short-gauge point-sensor 
implementations [1], [2] while achieving the simultaneous 
interrogation of 1000 consecutive points along the fiber cable 
(10 km of fiber), with a direct detection scheme in a 
conventional optical fiber. 

II. OVERVIEW OF PHASE-SENSITIVE REFLECTOMETRY 

IMPLEMENTATIONS 

Conventional implementations of φOTDR consist in sending 
a train of coherent transform-limited probe pulses into the fiber, 
recovering its noise-like fingerprint, and measuring local 
changes in amplitude as a response to the applied stimulus. This 
method, however, fails to deliver a true linear and monotonic 
relationship with the local stimulus, and given the stochastic 
nature of the retrieved signal, shows a statistically fluctuating 
signal-to-noise-ratio (SNR) at each point in the fiber [22]. 
Indeed, some “fading points” have nearly no visibility, 
preventing any relevant measurement at those positions. 
Overall, the sensor is unable to quantify a perturbation, being 
only able to detect and localize its presence. As an attempt to 
tackle these problems, there have been considerable efforts to 
develop new interrogation techniques. A linear relationship to 
the stimulus may be achieved with single-shot data by 
retrieving the phase of the measured optical trace using e.g. 
coherent I/Q detection schemes [13], [14]. Still, the 

 
Fig. 1.  Working principle of chirped-pulse φOTDR. (1) A coherent probe light pulse is sent into the fiber. Scattering centers within the fiber elastically scatter 
light, some of which is guided in the opposite direction of the probe-pulse with random amplitude and phase. (2) The resulting optical power from the interference 
of all the backscattered light components will change as the optical path distance (OPD) is changed locally within the fiber (changes to the refractive index n or 
length Li) due to an applied perturbation. A frequency detuning may be used to compensate the change in OPD, thus recovering the previous optical power. (3) 
Introducing a linear chirp effectively maps this frequency detuning to delay within the pulse window, so the optical power is recovered as a (4) time delay 
proportional to the perturbation. 
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implementation is rather cumbersome, as it adds complexity to 
the simple design of the conventional method, while retaining 
the problem of “fading points” and uneven SNR [22]. In 
addition, while it is known that the phase-measuring technique 
is extremely sensitive to minute values of strain, no rigorous 
value of strain sensitivity has been given for these sensors, as 
the uneven nature of the SNR makes it impossible to define a 
unique sensitivity value along the whole fiber length. Recent 
wavelength-scanning approaches [23] have been developed, 
reaching ~100×10-12 ε/√Hz sensitivity, using Rayleigh based 
techniques for a 0.5km long fiber, at a limit of 2 kHz sampling-
rate, with 5 m spatial resolution. Through phase detection, 
pε/√Hz levels have been reached in fibers with ultra-weak 
gratings [24], as a quasi-distributed approach, though this value 
remains unattained for standard, readily available single-mode 
fiber in a fully distributed fashion. 

On the other hand, chirped-pulse φOTDR [15] employs a 
linearly chirped pulse as probe signal. If the bandwidth of this 
chirped-pulse is much larger than the transform-limited pulse 
bandwidth, any local change in the fiber optical path (e.g. strain 
or temperature induced) will translate into a local time shift at 
the corresponding power trace position (see figure 1). 

Consequently, the measurement is converted into a time-
delay estimation (TDE) problem, in which the fading points 
have a minor impact. Thus, unlike the phase-measuring 
schemes, this technique ensures a consistent value of sensitivity 
along the length regardless of the fading points [25], which 
makes it extremely appealing for applications demanding 
similar measuring quality in all the points along the interrogated 
fiber. Still, the effects of the different noise sources on the 
signal-to-noise ratio (SNR) of the retrieved strain signal should 
be evaluated, and a sensitivity limit should be rigorously 
explored. The TDE problem has been extensively studied in 
fields such as radar/sonar [26] and ultrasound elastography 
[27]. In these other problems the conventionally employed 
estimator of time-delay consists in determining the lag 
corresponding to the maximum of the cross-correlation function 
[19], [20], [28]–[30]. This method, though computationally 
demanding, offers distinct advantages in computation time over 
other time-delay estimation alternatives due to its ability to be 
computed in the frequency domain by exploiting the 
convolution theorem. Still, the fundamental performance limits 
of this estimator as a function of φOTDR parameters (pulse 
width, chirp bandwidth, signal to noise ratio, sampling rate), are 
still to be determined. In the remainder of this work, we provide 
the analytical derivation of the performance lower bound of the 
chirped pulse φOTDR technique, together with the numerical 
and experimental verification of the presented analysis. 

III. THEORETICAL MODEL 

A. The TDE problem in chirped-pulse φOTDR 

φOTDR consists in sending a train of successive coherent 
light pulses into the fiber and retrieving the backscattered light, 
thus acquiring a series of successive ( , )measx t i  signals for each 

successive i-th laser pulse. Each trace constitutes a noise-like 
“fingerprint” along the total length of the fiber under test (FUT), 

where the time-of-flight of the retrieved light,  t, can be 
correlated to the position in the fiber as / 2z ct n , c being 
the speed of light in vacuum and n the refractive index of the 
fiber. A measurement is then obtained by comparing the 
“fingerprint” acquired at a specific instant, to a reference 
fingerprint obtained at a previous one (usually the first shot, 
i=0). Employing a chirped-pulse in φOTDR effectively maps a 
strain change in the optical fiber into a local delay in the trace 
pattern, fundamentally converting the interrogation into a local 
TDE problem. This may be formalized as the measurement of 
the true delay D(i) between sections of two traces (a 
measurement trace, and a reference trace), each consisting of a 
section of the complete power trace measured at different times. 

( , ) ( ( )) ( , )

( ) ( , 0), (0) 0

meas

ref meas

x t i s t D i n t i

x t x t D

  
 

 (1) 

( )s t  and ( , )n t i  being the signal and noise portions of each 

individual optical trace acquired.   

An estimation of the true delay,  ( )D i , can be obtained by 

finding the delay corresponding to the maximum of the cross-
correlation between the two sections, enabling fast computation 
in the spectral domain through the convolution theorem. For the 
fiber position limited between T1 and T2, this can be defined as 
follows: 

2

1

2 1 1 2

, ) ( , ) ( )

* ( ( ))

T

meas ref

T

ss sn sn n n

R i x t i x t dt

R h t D i R R R

   

    

  (2) 

 ( ) arg max ( )D i R i   (3) 

Where ( )xyR i  ( is the lag) is the cross-correlation 

function (
ssR being the signal’s autocorrelation function). The 

correlation time window 
2 1T T T   defines the spatial 

resolution of the measurement, though it is ultimately limited 
by the pulse width: it can be shown that each measured point 

't  results from the interference of light from all scatterers 
within the fiber length covered by the pulse surrounding 

'/ 2z ct n . Thus, any local change to the local optical paths 
will influence the backscatter signal measured at that point. 
Since the SNR is maximized by employing the largest possible 
pulse for a given spatial resolution, the optimal resolution is 

achieved when pulseT  . Note that effective TDE using 

cross-correlation requires a well-conditioned signal. A 
minimum correlation length is required with respect to the trace 
bandwidth ( 1 /T B ,B being the chirp bandwidth) [30], the 
SNR should not be very low, and the signals should be highly 
correlated. These three conditions are generally fulfilled when 
measuring dynamic perturbations in chirped-pulse φOTDR.  

Under the aforementioned assumptions, the maximum strain 
measurement performance implies the determination of the 
mean-square-error lower bound for the TDE problem, under the 
effects of additive noise in detection. For the moment, we will 
consider that all other sources of error are negligible in the 
system. The CRLB for TDE gives a lower bound on the mean-
square error for any minimum variance unbiased system [19], 
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[20], [29]. Determining a CRLB for our system is in many ways 
analogous to standard radar and sonar postulations, though it 
demands a detailed look at (2). Assuming relatively high optical 
SNR, the convolution term of both noises in (2)  

1 2
( , 0) ( , )n nR n t n t i   may be neglected. The resulting 

noise influence is due to the convolution of the signal with the 
noises in the reference and measurement traces. Unlike standard 
postulations, however, despite having noise in both the 
reference and measurement signals, the noise in the reference 
remains constant for each successive measurement. As such, in 
variance, the system actually performs analogously to an active 
detection system (no noise in the reference) [19], with a 
systematic error in the acoustic measurement due to the term 

1snR . 

Quazi et al. [19] derived the lower bound for TDE under high 
and low SNR conditions, for bandlimited active and passive 
systems, with a constant noise and signal spectrum. The 
photodetected Rayleigh backscattered spectrum in a typical 
chirped-pulse φOTDR is triangle-shaped (corresponding to a 
rectangular-shaped linearly chirped pulse in the temporal 
domain), while the noise is constant across the whole detected 
band. Since noise outside the signal bandwidth can be easily 
filtered during detection, we can determine the CRLB for a 
triangle shaped (from –B to B) signal spectrum and constant 
noise (from –B to B), by adapting to this case the derivation 
done by Quazi et al. (see the Appendix), as 

2
2 3

3 1 1

4CRLB T B SNR



  (4) 

For a standard single-mode fiber, the rate of strain change per 
measured time-shift of the φOTDR is related to the chirp 
bandwidth and pulse duration as [15] 

0

/
( 0.78) pulse

B
t 

 



 (5) 

Where 𝜈଴ is the center frequency of the laser probe pulse. 

Assuming an optimal resolution by making,

 

pulse T  , the 

lower bound for a strain measurement becomes 
2 2 2

2 3
0

3 1 1 1
( )

(( 0.78)2CRLB CRLB SNR B T
    

 
 

 (6) 

From this equation, we fully determine the lower bound for 
the strain determination error as a function of the acquired trace 
bandwidth, SNR and the correlation window size. These 
parameters are not independent, however, as the total energy of 
the retrieved signal is proportional to the pulse width, which 
translates to increased SNR. Conversely, the total noise energy 
will scale in proportion to the bandwidth.  

It should be instructive to think how the performance will be 
affected as a function of independent properties of the input 
probe pulse and test fiber.  The signal energy at any position in 
the fiber may be determined as 

exp( 2 )MI BS pulseP z   S  (7) 

Assuming the peak power is set to the maximum one can use 
without reaching the onset of modulation instability [31], PMI, 
the measured signal power then becomes a function of the 
backscatter coefficient of the optical fiber  

( 82  dB/ns @  1550 nmBS   , for a standard SMF-

28), the pulse width, and the total traveled length of the pulse in 
the fiber, where exp(-2 )z is the intrinsic loss from 

propagation of the retrieved light, for each position in the fiber, 
taking into account the full roundtrip [32]. 

Furthermore, considering a spectrally flat additive noise in 
detection across the full signal bandwidth B, of some noise 
spectral density 

T , the noise energy is given by 

T BN  (8) 
From (7) and (8), we can estimate the SNR as 

exp( 2 )pulseMI BS

T

P
z

B

 


 
  
 

S

N  (9) 
And thus, we can re-write (6) as a function of the probe pulse 

and input fiber parameters  
2

0

3 1 1
exp( )

((0.78)2 )
T

CRLB
MI BS pulse

z
P
 
   

 
   

 

 (10) 

Where exp( )z  can be considered constant for a small 

enough length of fiber, consisting of the measured correlation 
window.   

At a given acoustic detection bandwidth (of half the laser 
repetition rate, / 2acqf ) the lower bound for TDE of dynamic 

strain measurements is expected at / / 2   ε/ HzCRLB acqf


 . 

Note that the laser repetition rate is only limited by the total 
time-of-flight of the pulse in the fiber (1kHz ~ 100 km). 

Plugging in the following conventional numbers into the 
above expression (10):

 

200 mW, 100 nsMI pP     and 

noise density estimated as Johnson-Nyquist noise at 
temperature Θ=300 K across a 50 Ω resistor 4T Bk R    (kB 

being the Boltzmann constant), we end up obtaining that 
sensitivities of ~10-12 ε/√Hz at 10 kHz laser repetition rate (10 
km fiber length) could be readily obtained with the settings of 
most of the developed chirped-pulse φOTDR implementations 
published to date. However, other limitations, not considered in 
the CRLB limit, have hampered achieving this performance up 
to now. To reach the CRLB limit of performance, we need to 
ensure that we remove all other sources of error: in this case, 
sampling error and the effect of phase noise or instrument jitter. 
Phase-noise and jitter are perceived as a time delay propagated 
through the whole fiber and thus contribute directly as noise in 
the acquired acoustic signal. These sources are fully spatially 
correlated over the whole interrogated length, and thus can be 
cancelled (to first order) by using an unperturbed section of the 
fiber to measure the jitter and phase noise, and then compensate 
any influence in the strain measurements in perturbed sections 
of the fiber [17]. 

In addition, when dealing with discrete signals, even in 
infinite SNR, an error of half the sampling period remains as 
sampling error. Several methods have been employed in TDE 
literature to achieve sub-sample accuracy, though some 
considerations are important to prevent biasing the 
measurement. Curve-fitting methods, such as a parabolic fit of 
the three points surrounding the maximum of the cross-
correlation function [29], generally bias the measurement [21]. 
When opting for such a method, the bias should be negligible 
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when compared to other error sources by oversampling the 
signal adequately. An alternative way of reducing the sampling 
error in bandlimited signals, while avoiding the introduction of 
bias, is by reconstructing the signal through Whittaker-Shannon 
(sinc) interpolation. This results directly from the Nyquist 
theorem, so that assuming adequate sampling (i.e. fulfilling the 
Nyquist criterion), any infinite or periodic discrete signal can 
be perfectly and unbiasedly reconstructed at higher sampling 
rates. Though aperiodic and finite signals face small time-
domain ringing errors due to Gibbs’ phenomenon [33], [34], 
these are easily addressed by having a large enough correlation 
window. 

B. Numerical verification of the lower-bound 

The validity of the lower bound determined in (6) was tested 
using simulated data, so parameters can be tuned 

independently. A section of 400 m of fiber, sampled at 10 GS/s, 
was simulated with a 1 kHz sinusoidal variation of refractive 
index corresponding to an amplitude of 1 nε, according to the 
relation / / 0.78n n         [7]. Each acquisition 
was made at 10 kHz (corresponding to a distance range limit of 
10 km of fiber) for a total integration time of 0.05 s (500 laser 
pulses). 

The signal was corrupted with additive, spectrally flat 
Gaussian noise across the signal bandwidth to reach the desired 
SNR. Each obtained cross-correlation is reconstructed at a 1000 
times higher sampling, by bandlimited interpolation through 
zero-padding in the frequency domain [35], [36]. Phase noise 
was not considered for the simulation, since the proposed lower 
bound assumes an additive noise-limited system. In the 
presented cases, the SNR is kept relatively high and the signal 
bandwidth is kept large enough with respect to the correlation 
time window to consider a negligible probability of anomalous 
estimates. Figure 2 shows the effects of different chirp 
bandwidths for different values of (high) signal-to-noise-ratio. 
It can be seen that there is generally a good agreement between 
the simulated limit and the one obtained through (6). One can 
verify that for the lowest considered SNR (10 dB), the obtained 
sensitivity starts to show some small deviation from the 
calculated CRLB. For cases of poor SNR, alternative lower 
bounds have been proposed in the literature [30]. Though the 
SNR is made to be constant in the simulations, in general, an 
increase in bandwidth in a real system would influence the 
amount of additive noise, translating into worse SNR. 

The inset of figure 2 represents the impact on performance of 
changing the spatial resolution of the system (correlation 
window length and pulse width). In this case, the SNR was 
forced to be the same for all measurements, though in a real 
implementation, a longer probe pulse would entail more signal 
energy, and as such better SNR. As it is visible, the pulse length 
has a major impact in the performance, improving substantially 
the sensitivity as the resolution is worsened. However, it should 

 
Fig. 2.  Noise floors of simulated data and the respective calculated CRLB, for 
different correlation window sizes and optical trace SNR, using a 1 GHz chirp 
bandwidth. Inset plot shows the one-sided strain spectral density for the 
measurements at 20 dB optical SNR. Lines represent the calculated CRLB, 
points represent the results from simulated data.  
  

Fig. 4.  Noise floors of simulated data and the respective calculated CRLB, for 
different chirp bandwidths and pulse width/correlation window size, with 20 dB 
optical SNR. Inset plot shows the one-sided strain spectral density for the 
measurements at 100 ns pulse width. Lines represent the calculated CRLB, 
points represent the results from simulated data. 

Fig. 3.  Noise floors of simulated data and the respective calculated CRLB, for 
different SNR levels and laser chirp bandwidths, for a 100 ns laser pulse (10 
m correlation window). Inset plot shows the one-sided strain spectral density 
for the measurements at 1 GHz. Lines represent the calculated CRLB, points 
represent the results from simulated data. 
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be noted that this is not a major concern in most of the leading 
applications of this technology (e.g. intrusion detection, 
seismology), which can afford worsening the resolution at the 
expense of gaining sensitivity. 

Figure 3 represents the strain noise floor for different chirp 
bandwidths, for different values of optical SNR. As in figure 2, 
one should keep in mind that in a real system the bandwidth 
would also influence the amount of thermal noise added to the 
system, and would thus generally imply worse SNR. In 
simulation, however, this parameter is controlled 
independently.  

It should be considered that reducing the spectral content also 
entails additional implications, regarding the physical 
limitations of φOTDR and cross-correlation. In general, the 
Cramér-Rao Lower Bound is not achievable with very 
narrowband signals, and other bounds have been developed for 
that purpose (such as the Barankin and Ziv-Zakai bounds [37]). 
For the case of chirped pulse phase-sensitive OTDR, a large 
bandwidth is intrinsically desired for the frequency-to-time 
mapping within the optical pulse, as a smaller bandwidth also 
leads to a faster signal decorrelation as the perturbation 
increases (since the measured frequency detuning constitutes a 
larger portion of the total bandwidth of the probe signal). Figure 
4 shows the effects of changing the pulse width for different 
levels of chirp bandwidth, assuming a constant optical SNR. In 
all simulated cases, there is a very good agreement between the 
simulation noise floor and the calculated lower bound. 

IV. EXPERIMENTAL RESULTS 

We tested our model using a conventional φOTDR design, 
modulating the current of the laser in order to introduce a linear 
chirp to the pulse, as proposed by Pastor-Graells et al. [15]. The 
employed setup is depicted in Figure 5. 

An external cavity semiconductor laser diode (RIO Planex) 
working in continuous wave emission at the center wavelength 
1550.2 nm, is driven by a current and temperature ILX 
Lightwave LDC-3724 laser diode controller, with an additional 
sawtooth-shaped modulation, driven by an Agilent 81150A 
signal generator. The emitted light is sent through a Thorlabs 
Semiconductor Optical Amplifier SOA1013SXS (SOA), to be 
gated as 100 ns light pulses, synchronously to the sawtooth 
current modulation. Optical isolators were introduced after the 
laser and SOA to prevent the introduction of any instabilities in 
the cavities. The resulting pulse is then amplified through an 
erbium-doped fiber amplifier (EDFA) and filtered to remove 
amplified spontaneous emission (ASE) noise using a dense 
wavelength division multiplexer (DWDM). After that, the pulse 
is sent to the fiber under test through a circulator. 

The fiber under test consists of a first section of 
approximately 200 m, with 20 meters tightly wrapped around a 
cylindrical piezoelectric actuator, followed by a roll of 
approximately 1km of fiber, placed within a water bath to 
prevent unwanted temperature or wind draft induced 
measurements. The measurements in this piece of fiber are used 
for first-order phase noise compensation [17]. The 
compensating fiber is followed by a ~8.7 km roll, for a total 

interrogation length of 10 km. 
The backscattered light is redirected to the detection arm, 

being first amplified through a second EDFA, then filtered with 
a tunable filter to mitigate the effect of ASE as much as 
possible, being finally detected using an 8GHz PDA8GS 
Thorlabs photodetector. The generated electrical signal is 
electrically filtered with an analog 900MHz low-pass filter, 
prior to the digitizer. 

Throughout the setup, variable optical attenuators (VOA) are 
inserted to control the peak power and prevent the onset of non-
linear effects during amplification or propagation through the 
test medium, and to prevent damage to the photodetector. As in 
the simulated examples, the acquisition was done at 10 GS/s. 
All the experimental measurements used a 1 GHz bandwidth, 
100 ns pulse (10 m correlation window). Calculating the strain 
sensitivity per sample for the system within the specified 
parameters yields a sampling error of ±3.3128 nε, which was 
then reduced 1000 times through interpolation of the cross-
correlation function.  

The measurements were done for 0.2 seconds, at 10 kHz 
repetition rate, forcing perturbations with a 300 mV amplitude 
sine wave applied to the piezoelectric actuator at frequencies 
from 1 kHz to 4 kHz (10 n). Laser phase noise and instrument 
jitter were compensated using the thermally stable section of 
the fiber [17]. Figs. 6 and 7 show the obtained strain spectra at 
the output of the system for the two extreme cases of 1 and 4 
kHz, in order to show that the processing does not affect the 

 
Fig. 5.  Experimental setup. Acronyms explained in the text.  

 
Fig. 6.  Strain spectral density from a 0.2 second acquisition with a 1 kHz 
sinusoidal perturbation.  Estimated optical SNR = 19.47 dB. CRLB calculated 
at 2.715×10-12 ε/√Hz median noise floor measured at  5.178×10-12 ε/√Hz. 
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frequency response of the system. 
In each figure, we represent the proposed CRLB limit 

(Equation (6).) in a solid black line, with dashed black lines 
representing the median of the noise floor. It can be observed 
that after interpolation and phase noise compensation, the noise 
of our experimental measurements is very close to the one 
established by the CRLB.  

The actual noise limit of our system was measured in an 
unperturbed zone, in the stabilized section of the fiber, to 
prevent an increase of the noise floor due to forced convection 
in the exposed areas of the fiber. 

As it is visible in Fig 8, we were able to reach 3.590×10-12 
ε/√Hz strain sensitivity, versus a calculated lower bound of 
2.668×10-12 ε/√Hz for an estimated optical trace SNR of 19.62 
dB. The slight differences in estimated lower bound and the 
obtained noise floor could originate from error in the estimation 
of signal parameters (optical SNR and chirp bandwidth), and 
due to statistical local variations of the acoustic SNR over time 
for any given correlation window [25]. 

V. DISCUSSION AND CONCLUSIONS 

In this study, we have investigated and formalized a lower 
bound limit on the strain sensitivity performance of chirped 
pulse phase-sensitive OTDR, considering a given SNR, 
bandwidth and spatial resolution. The model assumes high SNR 
and negligible decorrelation between the two measured traces 
(i.e. relatively small perturbations for the given bandwidth). 
Further study is required on how the distortion of the optical 
trace for larger relative frequency detuning affects acoustic 
measurement performance, as well as on techniques to mitigate 
the effects of the distortions for large strain, such as smart, 
periodic updates to the trace reference. Nevertheless, the 
determined lower bound was found to be in good agreement 
with simulated data, within the specified assumptions (high 
SNR, large enough bandwidth compared to window size). To 
attain such a good agreement, the sampling error has been 
removed without introducing bias through a Whittaker-
Shannon interpolation. Using this interpolation strategy 

together with laser phase noise compensation allowed us to 
reach experimentally the proposed lower bound, thus achieving 
for the first time, to the best of our knowledge, 10-12 ε/√Hz 
sensitivities in distributed strain measurements, in the kHz 
range and over km-long fibers. This represents several orders 
of magnitude better strain sensitivity in a distributed sensor than 
the best previously reported strain measurements published to 
date. Though the method was designed for distributed strain 
sensing using chirped-pulse φOTDR, the interpolation 
techniques used to remove the sampling error, and the 
determination of the Cramér-Rao Lower Bound can be easily 
extended to other measurands, such as temperature, pressure or 
birefringence, and even extended to similar Rayleigh-based 
sensing techniques more apt for quasi-static strain and 
temperature measurements, as these commonly employ 
frequency detuning estimation methods which also rely on 
cross-correlation, analogous to the problem of TDE [38].  

Equation (10) suggests an important trade-off between 
spatial resolution and acoustic SNR: for a given position on the 
fiber, it might be reasonable to assume that in order to increase 
spatial resolution while retaining performance, the SNR should 
be increased through processing or the onset of non-linear 
effects in the fiber should be addressed. This motivates research 
in new ways to improve the signal-to-noise-ratio of the optical 
trace, to be able to further improve spatial resolution while 
mitigating the performance decrease. We envisage that this may 
be achieved through special fibers, such as enhanced 
backscattering fibers [39], in order to improve the signal power. 
Available demonstrations in the literature have shown up to 
~14dB increase in backscatter coefficient with a relatively small 
increase in fiber losses [39]. Such a fiber would lead to a ~7dB 
reduction in the CRLB. Other approaches, such as changes in 
the pulse shape [40], or pulse compression methods [41] may 
allow greater input powers without modulation instability. Of 
course, multi-mode fibers can also be used to avoid 

 
Fig. 7.  Strain spectral density from a 0.2 second acquisition with a 4 kHz 

sinusoidal perturbation.  Estimated optical SNR = 19.38 dB. CRLB calculated 
at 2.744×10-12 ε/√Hz median noise floor measured at 3.421×10-12 ε/√Hz. 

Fig. 8.  Strain spectral density from a 0.2 second acquisition in the
thermally stable, unperturbed section of the fiber. The data is acquired in the 
same spool used for phase-noise compensation, outside the region used to 
measure the phase-noise. The PSDs were averaged over 25 m for better 
comparison to the lower bound. Estimated optical SNR = 19.62 dB. CRLB
calculated at  2.668×10-12 ε/√Hz  median noise floor measured at  3.590×10-12

over the whole frequency range. 
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nonlinearities and gain backscatter capture fraction, although 
such fibers allow covering distances that are much smaller than 
the ones covered using single-mode fibers. 

Although processing speed optimization is out of the scope 
of this work, it is clear that the processing time required to 
achieve the extreme interpolation process used in our 
demonstration is quite heavy. Some improvement may be easily 
achieved by limiting the maximum perturbation amplitude and 
interpolating only a smaller region surrounding the peak of the 
cross correlation, as long as the number of points is enough to 
make the Gibbs’ phenomenon errors negligible. For real-time 
measurements or applications demanding faster processing, 
allowing some bias in the measurement of each lag and 
employing computationally efficient interpolators such as a 
spectral centroid, or fitting a parabola to the points surrounding 
the main peak [29] is also a viable option. Cespedes et al. [21] 
have shown that the error introduced through bias in most 
curve-fitting methods is relatively small, so even the CRLB 
retains some usefulness in evaluating the performance in the 
case of biased estimators. Real-time implementations of the 
technique may also benefit heavily from hardware 
multithreading or parallel computing methods, such general-
purpose computing on graphics processing units (GPGPU), in 
order to dramatically increase performance [42]. Parallelization 
of the chirped-pulse technique should be very efficient and 
straightforward, as it consists of an “embarrassingly parallel” 
problem, involving the execution of the same independent 
processing on all the virtual sensors (or sections of the optical 
fiber), in which the processing itself also mostly consists of 
easily parallelized techniques by computing the cross-
correlation in the frequency domain through the convolution 
theorem, taking full advantage of efficient Fast Fourier 
Transform methods. 

The attained sensitivity is approximately only three orders of 
magnitude higher than the noise induced due to thermal 
agitations in the optical fiber over a distance equivalent to the 
pulse resolution [1]. Furthermore, our result was also achieved 
without the use of ultra-stable lasers unlike the current record-
holding attempt for a single short-gauge sensor [1], while 
simultaneously interrogating as many as 1000 sensing 
positions with the same setup, in a time-domain multiplexing 
technique. We believe that this performance sets a milestone in 
distributed sensing research. 

APPENDIX: FINDING THE CRLB FOR AN ACTIVE SYSTEM WITH 

THE SPECTRAL CHARACTERISTICS OF CHIRPED-PULSE ΦOTDR 

The detected signal in chirped-pulse ϕOTDR shows a 
bandlimited triangle-shaped spectrum (across the baseband), 
with approximately constant noise across the same band. Since, 
in variance, ϕOTDR behaves as an active system, we may 
follow the derivation done by Quazi et al. [26] for a band-
limited active system. The minimum variance for a 
measurement of delay can be defined as 

2
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So the lower bound becomes 
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Since E ST  and the noise power is BN N B , assuming 

constant noise across the signal band, we can rewrite the 
equation as 
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As shown in (4) in the main text. 
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