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Summary 

1. A large proportion of the world’s biodiversity is reportedly threatened by habitat loss 

and climate change. However, there are few studies that investigate the interaction 

between these two threats using empirical data. 

2. Here, we investigate interactions between climate change and land use change in the 

future distribution of 23 dominant tree species in mainland Spain. We simulated 

changes up to year 2100 using a climate-dependent Stochastic Patch Occupancy 

Model, parameterized with colonization and extinction events recorded in 46,569 

survey plots.  

3. We estimated that the distribution of 17 out of 23 tree species are expanding, and 

hence not at equilibrium with the climate. However, climate change will make the 

future occupancy of 15 species lower than expected if climate, and habitat, remained 

stable (baseline scenario). 

4. Climate change, when combined with 20% habitat loss, was estimated to reduce 

species occupancy by an average of 23% if habitat loss is spatially clumped, relative 

to baseline projections, and by 35% if scattered. If habitat loss occurred in areas 

already impacted by human activities, species occupancy would be reduced by 26%. 

Land use changes leading to habitat gain (i.e. creation through e.g. reforestation), 

could slightly mitigate the effects of climate change. But a 20% increment in habitat 

would reduce climate-change-driven losses in species occupancy by only ~3%.  

5. Synthesis and applications. The distributions of the most common tree species in 

mainland Spain are expanding, but climate change threatens to reduce this expansion 

by ~18% for 15 of the 23 studied species. Moreover, if the habitat of each of these 
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species is simultaneously lost, the occupancies of all species will be reduced further, 

with variation depending on the spatial pattern of the lost habitats. However, we did 

not detect synergies between climate change and habitat loss. The combined effect 

(with 20% habitat loss) was 5–13% less than what would be expected if the effects 

were additive. Importantly, reforestation could partially offset the negative effects of 

climate change, but complete mitigation would require an increase in forested land of 

~80%, and the prioritization of territories that are less impacted by human activities.  

 

Key-words: climate change mitigation, deforestation, climatic disequilibrium, 

habitat loss and fragmentation, Iberian Peninsula, Mediterranean, metapopulation 

dynamics, non-equilibrium dynamics, reforestation, Stochastic Patch Occupancy 

Model.  

 

Introduction 

Human-induced climate change and habitat loss rank among the most important threats to 

biodiversity (Sala et al. 2000; Pereira et al. 2010). Several studies have assessed their 

potential impact on the long-term persistence of species (Bascompte & Solé 1996; 

Ovaskainen et al. 2002; Thomas et al. 2004; Thuiller et al. 2005; Araújo et al. 2008; Garcia 

et al. 2012), but their effects have been seldom studied in combination (but see Travis 2003; 

Pearson, Dawson & Liu 2004; Jetz, Wilcove & Dobson 2007; Pompe et al. 2008; Hof et al. 

2011a; Ponce‐Reyes et al. 2013). When studied, the combined impacts of climate and habitat 

loss have been assessed using either theoretical simulations or correlative macroecological 

approaches. Theoretical work suggests these two threats can act in synergy, having a greater 
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effect on species distributions than expected based on simple addition of both impacts (i.e. 

additive effect; e.g. Travis 2003). Here, we provide a dynamic data-driven process-based 

assessment of the combined effects of climate and habitat loss on the distribution of the most 

common tree species in mainland Spain. 

 

Ongoing climate change effects on species distributions have already been documented 

(Walther et al. 2002; Root et al. 2003; Parmesan 2006), and many studies forecast greater 

impacts in the future (Thomas et al. 2004; Thuiller et al. 2005; Araújo et al. 2008; Garcia et 

al. 2012). Past climate changes in the Iberian Peninsula have modified the species 

composition of tree communities (Carrión & Fernández 2009; Postigo Mijarra et al. 2009), 

and there is evidence of current contraction and expansion of tree species distributions across 

this region (Garcı́a et al. 1999; Mejías, Arroyo & Ojeda 2002; Castro et al. 2004; Arrieta & 

Suárez 2006; Jump, Hunt & Peñuelas 2006; Peñuelas et al. 2008; Urli et al. 2013). In 

addition, climate change forecasts project substantial decreases in the potential distribution 

of tree species in the Iberian Peninsula (Benito Garzón, Sánchez de Dios & Sainz Ollero 

2008; but see García-Valdés et al. 2013). Throughout Europe, some tree species are also 

expected to lose climatically favourable areas (Thuiller et al. 2005; Engler et al. 2011), 

whereas others are expected to gain new areas (Kramer et al. 2010; Araújo et al. 2011).  

 

Forecasts of species distributional shifts under climate change are commonly achieved using 

correlative Species Distribution Models (SDMs; Pearson & Dawson 2003; Heikkinen et al. 

2006; Araújo & Peterson 2012) that explore the relationship between known species 

distributions and aspects of the environment (also known as ecological niche models, 
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bioclimatic envelope models and habitat suitability models). These models rely on 

correlations estimated in a single moment in time. Therefore, correlative SDMs do not 

explicitly consider fundamental dynamic mechanisms that may affect species distributions 

(but see Nogués-Bravo et al. 2008). Although the calibration of correlative SDMs can be 

implemented without species being in full distributional equilibrium with the climate 

(complete range filling), it is assumed for operational reasons that species occupy their 

climatic limits (full niche filling; Araújo & Pearson 2005; Svenning & Sandel 2013), which 

may not always be true (Baselga & Araújo 2010; Hof et al. 2012; Munguía et al. 2012).  

 

Habitat loss due to logging, mining, deforestation, agriculture, urban expansion and other 

reasons, is another major threat to biodiversity (Sala et al. 2000; Pereira et al. 2010). Habitat 

loss also leads to the fragmentation of landscapes (e.g. Lande 1987), which disconnects 

populations, decreases gene flow and reduces source–sink population dynamics (e.g. 

Bascompte & Solé 1996; Freckleton & Watkinson 2002; Alagador et al. 2012). 

Consequently, the critical threshold in habitat loss that signals the local extinction of a species 

depends on its spatial arrangement (Bascompte & Solé 1996; Bascompte & Rodríguez 2001; 

but see Montoya et al. 2010). Spatially-correlated continuous habitat loss tends to produce 

less-fragmented landscapes and has a weaker impact on species populations than, for 

example, spatially-scattered habitat loss (Bascompte & Solé 1996; Travis 2003). 

Nevertheless, the is a strong collinearity among habitat loss and fragmentation (see Rueda et 

al. 2013), and their effects are often difficult to differentiate (Fahrig 2003; Hof et al. 2011a; 

but see Didham, Kapos & Ewers 2012).  
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Climate change and habitat loss are believed to interact in synergy (Travis 2003). For 

example, habitat fragmentation can affect species dispersal rates, preventing individuals or 

propagules from escaping climate change (Collingham & Huntley 2000). At the same time, 

climate change can reduce the persistence of isolated populations in fragmented landscapes 

(Warren et al. 2001). Conversely, this raises the possibility of using habitat creation to 

partially offset the impacts of climate change. However, the combined effects of climate 

change and habitat loss (or creation) on particular species distributions remain poorly 

explored.  

 

In this study, we used a climate-dependent Stochastic Patch Occupancy Model (SPOM), 

developed by García-Valdés et al. (2013), to study the combined effects of climate and 

habitat change. This model is calibrated with the colonization and extinction rates of tree 

species in permanent survey plots, and it can simulate the timing of climate and habitat 

change effects on species distributions. Moreover, this model can be parameterized for 

species that are not in climatic equilibrium, as is the case for many trees at both Iberian 

(García-Valdés et al. 2013) and European scales (Svenning & Skov 2004). This is possible 

because the SPOM correlates local short-term processes (colonizations and extinctions), 

instead of static variables (presence/absence distributions), with climatic and spatial 

variables.   

 

Using the SPOM we simulated changes in tree species distributions from the year 2000 to 

the year 2100 under a baseline scenario (stable climate and habitat), a climate change 

scenario, and eight spatial patterns of habitat loss and creation. We aimed to determine: (1) 
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the relative contribution of climate change and habitat loss in changing tree species 

distributions in mainland Spain during the 21st century; (2) whether the combined effect of 

climate change and habitat loss is additive, multiplicative or semi-redundant (i.e. both threats 

affect the same populations and hence the combined effect is smaller than the sum of the two 

impacts); and (3) the extent to which increased habitat (e.g. through reforestation) can offset 

the negative impacts of climate change. 

 

Material and Methods 

FOREST DATA 

Data were collected from the second (1986 – 1996; Villaescusa & Diaz 1998) and third (1997 

– 2007; Villanueva 2004) Spanish Forest Inventories (SFIs). Survey plots were uniformly 

distributed in 1 × 1 km grid across all forested areas in Spain. Plots had four size-dependent 

concentric subplots of variable-radii, and the minimum diameter at breast height for trees to 

be recorded in the smallest subplot was 7.5 cm. The inventories included 46,596 permanent 

plots in peninsular Spain, with approximately 10 years between surveys, and 30,478 plots 

that were surveyed only in the last inventory. Only permanent plots were used for 

parameterization of the model and all plots from the last inventory were used as the starting 

point for the simulations. We extracted data from all the species with at least ten presences 

in each inventory, five recorded changes from absent to present between inventories, and five 

recorded changes from present to absent. Pinus radiata and Populus nigra distributions 

largely reflect human management, while the distribution of Ulmus minor is strongly affected 

by mortality due to Dutch elm disease. These three species were excluded from the analysis 

because their distributions were not determined by the factors considered in the SPOM. 
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Finally, 23 species were included, four of which were identified at the genera level only (see 

Table S1 in Supporting Information). See García-Valdés et al. (2013) for more detail on data 

characteristics. 

 

CLIMATE DATA 

We used a climatically stable scenario (i.e., climatic variables were kept constant), and a 

changing climate scenario, with 10-year time steps from the year 2000 to the year 2100. The 

climate change scenario was the outcome of an ensemble of seven General Circulation 

Models (see Fordham et al. 2012; Fordham et al. 2013) of a high CO2 concentration 

stabilizing reference scenario (WRE750; Wigley, Richels & Edmonds 1996). We used the 

GCM ensemble projection for the year 2000 to calibrate the model, avoiding biases 

associated with the use of different climatic models for calibration and simulation. Climatic 

variables included total annual precipitation [mm] and mean annual minimum temperature 

[ºC] (see García-Valdés et al. 2013 for details on the climatic model and the variable 

selection).  

 

STOCHASTIC PATCH OCCUPANCY MODELLING 

We parameterized the SPOM with observed changes on tree species occupancy in the 

permanent plots (García-Valdés et al. 2013). All forested plots (i.e. with woody vegetation) 

were considered available habitat for all tree species. The probability of a species colonizing 

a plot depended on the probability of seeds being dispersed to the plot and the probability of 

these seeds establishing and growing sufficiently to be recorded in the following inventory. 

Dispersal was parameterized with a logistic kernel function, which used the distances to the 
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neighbouring plots (up to 50 km) that were occupied by the species in the first inventory. 

Dispersal could be either random with respect to habitat (for wind-dispersed species), or 

directed with respect to habitat (for animal-dispersed species). The probability of seed 

establishment and growth was defined using a unimodal bell-shaped logistic function of the 

climatic conditions in each plot. The probability of local extinction depended exclusively on 

the climatic conditions found within each plot, as represented by a unimodally-shaped 

logistic function.  

 

Model parameters for each species were estimated under a Bayesian framework. Each model 

and accompanying parameters likelihood was calculated as the probability of observing a 

specific transition (colonization or extinction) from one inventory to the next. We used the 

Metropolis–Hastings MCMC algorithm to generate parameter estimates with 50,000 

iterations after burning. Details on data and model characteristics can be found in Appendix 

S1 and in García-Valdés et al. (2013). The parameter posterior distributions can be found in 

Appendix S2.  

 

HABITAT CHANGE 

Different simulated spatial patterns of habitat loss were used to decipher the effects of 

fragmentation from those of habitat loss alone. Spatially aggregated habitat loss produces 

less fragmentation of the remaining habitat than disaggregated loss of habitat. We explored, 

therefore, three different levels of spatial aggregation: from completely disaggregated habitat 

loss, simulated by removing habitat patches at random; followed by partially aggregated 

habitat loss, simulated by removing spatially continuous habitat patches around multiple 
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(100) randomly selected sites; to completely aggregated habitat loss, simulated by removing 

spatially continuous habitat patches around one single site, also selected at random. On a 

more applied level, we explored the effect of removing habitat primarily in areas that are 

highly impacted by human activities (high Human Influence Index, HII; Sanderson et al. 

2002).  

 

We used a similar approach to simulate habitat creation. We reproduced habitat growth in a 

totally disaggregated fashion (random new habitat patches), in a partially aggregated fashion 

(continuous new habitat patches around 100 sites), in a completely aggregated fashion 

(continuous new habitat patches around one single site), and we created habitat in areas that 

are currently less impacted by human activities (low HII). We simulated habitat change (loss 

and creation) along the 21st century up to 20%, 40%, 60% and 80% of the initial available 

habitat. 

 

MODEL DESIGN AND ANALYSIS  

If the distribution of a species is not at climatic equilibrium, the SPOM would predict that 

the species would change its distribution (expand or contract) even if climate and habitat 

remained stable. For this reason we compared the effects of climate and habitat change on 

each species future (year 2100) distribution, against the future distribution of the same 

species if climate and habitat had remained stable (baseline scenario; see also Anderson et 

al. 2009; García-Valdés et al. 2013). For each species we used the Bayesian mean for each 

parameter, which represents the most likely value given the parameter posterior distribution 

(see Appendices S1 & S2). For the current analysis, we decided to use this single estimation 



García-Valdés et al. J. Appl. Ecol. 2015 

 

 

11 

 

(Bayesian mean) for each parameter and to focus on differences between scenarios among 

all species. An alternative would be to use more than one estimation per parameter, with, for 

example, an error propagation function that shows the parameter’s uncertainty in the 

predictions (see García-Valdés et al. 2013 for an example). Next, we ran each scenario 10 

times to reduce biases associated with the random selection of the starting patch, or patches, 

and to report the variability produced by the inherent stochasticity of the model. We explored 

the relative differences between each alternative scenario and the baseline in the year 2100 

for each species and model run. We created bar-plots showing mean and confidence intervals 

(from the 10 runs) of these differences, for each species and scenario. We also created box-

plots aggregating the results from different species (mean value of each species), first using 

all species together and then dividing the species depending on their response to climate 

change. Our modelling approach, as any simplification of a complex reality, carries a number 

of limitations. We have detailed some of these limitations in Appendix S3, along with 

possible solutions and improvements for the future.  

 

Results 

BASELINE, CLIMATE CHANGE AND HABITAT LOSS 

With a stable climate and habitat (baseline scenario), the occupancy of 17 out of 23 species 

expanded through the 21st century a median of 60% in comparison with current levels (Fig. 

S1). The occupancy of the remaining six species declined by 51%.  

 

With climate change, the future occupancies of 15 of 23 species were reduced by 18% in 

median (Fig. 1 & 2), in comparison to the baseline. Meanwhile, climate change increased the 
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occupancy of 8 out of 23 species by 10% in median, again compared with the baseline. Loss 

of 20% of the habitat during the 21st century under a stable climate also decreased the 

occupancy of 22–23 out of 23 species (Fig. 1), with median occupancy reductions between 

18% and 25%, depending on how habitat loss was spatially structured (Fig. 2). The 

combination of climate change and the loss of 20% of the habitat resulted in decreased 

occupancy, compared with the baseline, for 21–23 of out 23 species (Fig. 1), and median 

reductions in occupancy of 26–35% (Fig. 2).  

 

Averaged across all species, continuous loss of habitat around multiple sites produced the 

greatest negative effect, with median reductions in occupancy of 25% in a stable climate, and 

35% in a changing climate. Random habitat loss had the second-greatest negative effect on 

species occupancies, with median reductions of between 21% and 30%. Habitat loss biased 

towards the most human-affected regions reduced median occupancy between 21% and 26%. 

Finally, completely continuous habitat loss around a single site produced the lowest impact, 

and reduced median occupancy between 16% and 23%. The results for this last pattern 

exhibit strong variation between runs, with generally larger confidence intervals than the 

other patterns (Fig. 1), reflecting the importance of the geographical location of the randomly 

selected starting patch. Each pattern of habitat loss reduced the number of colonizations and 

increased the number of extinctions to different degrees. Colonizations suffered a relative 

reduction of between 8% and 16% under stable climate compared to baseline projections, 

and between 25% and 32% under climate change (Fig. S2). Extinctions increased between 

33% and 65% under a stable climate and between 12% and 56% under climate change. Such 

extinctions can be classified as direct extinctions (occurring in eliminated patches) or indirect 
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extinctions (occurring in the remaining non-eliminated patches). The frequency of both types 

of extinctions varied depending on the spatial pattern of loss, but the indirect extinctions were 

more common, representing between 59% and 71% of all extinctions under stable climate, 

and between 57% and 69% under climate change (Fig. S3). 

 

When occurring independently, both climate change and habitat loss reduced the occupancy 

of 15 of the 23 species (Fig. 1). Meanwhile, for 7–8 species, climate change increased their 

occupancies whereas habitat loss decreased them. For this last group of species and with the 

exception of Pinus halepensis, the negative effect of habitat loss was greater than the positive 

effect of climate change. Our results also indicated that the spatial pattern of habitat loss 

modified the strength of the combined effect. With 20% completely continuous habitat loss, 

the joint effect was 5% in mean smaller than the additive effect, and if habitat loss was biased 

towards human-impacted areas the joint effect was 13% smaller than the additive effect (Fig. 

S4). If 40% of the initial available habitat was lost, the combined effect was 11–15% smaller 

than the additive effect. 

 

CLIMATE CHANGE AND HABITAT CREATION 

Habitat creation under a stable climate increased species occupancies in comparison with the 

baseline (Figs 2 & 3). Although these changes were not similar in importance to those 

triggered by habitat loss (Figs 1 & 2). Twenty percent habitat creation achieved 

approximately 4–5% median increase in occupancy depending on the spatial pattern of 

creation, while 40% increase in habitat had more differentiated effects depending on the 

spatial pattern of the created habitat (Fig. S5), with the completely continuous pattern 
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resulting in the greatest occupancy increase (14%). Habitat creation had no considerable 

effect on the number of extinctions and changed species occupancy mainly by increasing 

colonizations (Fig S2), although the number of these colonizations occurring in new habitat 

was significantly smaller than the number of colonizations occurring in old habitat patches 

(which represented 93–95% of all colonizations; Fig. S3). 

 

Future species losses in occupancy due to climate change were not easily mitigated by habitat 

creation (Fig. 2). With the creation of 20% of new habitat, the losses in occupancies produced 

by climate change were reduced by approximately 3%. If 40% of new habitat was created 

following a continuous spatial pattern, the negative effect of climate change was reduced by 

10% (Fig. S5). An 80% of new habitat was required to completely reverse, in median, the 

negative effects of climate change on threatened species (Fig S6), and this occurred only if 

habitat was restored in areas with low human impact. 

 

Discussion  

We used tree species local colonization and extinction rates across mainland Spain to 

simulate the effect of climate and land use change on their future distributions. We estimated 

that climate change would reduce the occupancy of 15 out of 23 species by 2100, relative to 

baseline projections. If, simultaneously, habitats are lost during this period, species 

occupancies would decline even further. However, climate change and habitat loss did not 

act in synergy, given that their combined effect was slightly smaller than expected if they 

were additive. Also, habitat creation (e.g., reforestation) was much less effective to offset 

climate change negative effects than it might have been expected. However, creating new 
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habitat in areas that are currently not impacted by human activities would improve on efforts 

of mitigation the negative effect of climate change on tree species distributions.  

 

CLIMATE CHANGE 

Consistent with a previous study (García-Valdés et al. 2013), we estimated that the 

distribution of many tree species is currently expanding in mainland Spain, and would 

continue to do so in the absence of climate change (Fig. S1). Hence, their current ranges are 

smaller, and/or occurrence within their ranges lower, than the equilibrium (Svenning & 

Sandel 2013). These dynamics may reflect recent agricultural abandonment, decreased 

traditional silvicultural activities (Debussche, Lepart & Dervieux 1999; Debussche, 

Debussche & Lepart 2001; Rounsevell et al. 2006), or long-term postglacial dispersion-

limited range expansions (Svenning & Skov 2004; Montoya et al. 2007; Svenning, Normand 

& Skov 2008; Baselga & Araújo 2010).  

 

Nonetheless, climate change is likely to modify future range expansions of species, and its 

effects will differ depending on species characteristics, such as tolerance to drought, current 

distributions and dispersal ability (García-Valdés et al. 2013; see also Nogués-Bravo et al. 

2014). In general, while a few tree species will be positively affected by climate change many 

more will be negatively impacted. This would lead to changes in species distributions and 

hence changes in forest species co-occurrences and communities, with potentially negative 

consequences for biodiversity and ecosystem functioning. This predominantly negative 

impact might occur because many species are already close to the drought-limited southern 

edge of their ranges in mainland Spain and thus sensitive to increasing drought (Castro et al. 
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2004; Lloret, Siscart & Dalmases 2004; Arrieta & Suárez 2006; Jump, Hunt & Peñuelas 

2006; Peguero-Pina et al. 2007). Nonetheless, like previous studies (García-Valdés et al. 

2013; Svenning & Sandel 2013) our results support the idea that, when exposed to climate 

change, tree species distributions would not dramatically change over the period of just one 

century. Instead, discernible consequences of climate change would be expected to manifest 

themselves over hundreds of years (Botkin et al. 2007; Svenning & Sandel 2013). Yet, 

extreme climatic events such as persistent droughts could lead to rapid and dramatic declines 

in populations (Allen 2009; Hof et al. 2011b).  

 

HABITAT LOSS  

In our simulations, habitat loss influenced future occupancies by decreasing the probability 

of future colonizations and increasing the probability of future extinctions. As expected, the 

frequency of colonizations is significantly reduced during habitat loss in comparison with the 

baseline scenario. Moreover, colonization rates vary depending on the spatial pattern of 

habitat loss, demonstrating that varying the spatial arrangement of the remaining habitat 

allows for different degrees of dispersion. Indirect extinctions, occurring in non-eliminated 

patches, were more abundant than the direct extinctions occurring in eliminated patches. In 

addition, different spatial patterns of habitat loss produced varying indirect extinction rates, 

which can only be explained by different levels of isolation in the remaining populations 

produced by different degrees of fragmentation of the landscape. 
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Continuous vs. random habitat loss 

The present model demonstrates that habitat loss reduces the future occupancy of almost all 

species and that it causes different effects depending on how it is aggregated (Figs 1 & 2). 

Fully spatially autocorrelated habitat loss impacts future occupancies less than completely 

random loss. These findings are consistent with previous results by Travis (2003), who 

indicated that continuous habitat loss produces landscapes that are less fragmented and thus 

less prone to extinction (see also Bascompte & Solé 1996; Hill & Caswell 1999; With & 

King 1999). Interestingly, when continuous habitat loss occurs around multiple sites, the 

negative impact on future occupancies is even greater than when habitat loss occurs at 

random. This may be because completely random loss does not eliminate all habitat patches 

in any given location, allowing for certain degree of connectivity between populations. In 

contrast, continuous habitat loss around multiple sites eliminates all habitat patches in each 

location, whilst occurring in a significant number of places to produce great habitat 

fragmentation. 

 

Human-associated habitat loss  

When habitat loss is associated with areas of high human influence, losses in occupancy are 

projected to be in the mid-range between those of the partially aggregated and the totally 

aggregated loss. This pattern may occur because the aggregation of the human-impacted 

patches lies between the other two scenarios, or because many tree species primarily occur 

at sites with relatively low human influence, e.g. low agricultural land cover (Fig. S7). 

Consequently, the negative effect of eliminating patches that are impacted by human 

activities is partially ameliorated because those patches have fewer species.  
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CLIMATE CHANGE AND HABITAT LOSS SYNERGY 

For most (15 out of 23) species, climate change and habitat loss had negative effects on their 

distributions, and for some (7–8) climate change increased their occupancies while habitat 

loss decreased them. For all of these latter species but one, the negative impact of habitat loss 

was greater than the positive effect of climate change. The exception is the efficiently 

dispersed, heat- and drought-tolerant Pinus halepensis, which increased its occupancy so 

much under climate change that even if 20% of its habitat is lost (with a continuous spatial 

pattern), its occupancy will still increase overall. 

 

When climate change and habitat loss had a negative effect on a group of species, the joint 

effect was worse than either of the individual effects. However, in contrast with the 

theoretical findings of Travis (2003), the combined effect was semi-redundant (or sub-

additive, i.e. slightly smaller than the addition of the two). Likewise, Cabral et al. (2013) 

found no additive or multiplicative effects of these two factors on the distribution of woody 

plants (Proteaceae) in South Africa (see also Hof et al. 2011a). In the study by Travis (2003), 

habitat loss removed habitat patches and prevented migration of species from areas that had 

become unsuitable into regions that had become suitable due to climate change. Although 

our SPOM simulates a process similar to the one used by Travis (2003), the extinction and 

colonization dynamics followed by our targeted species were very slow, and our model 

captures these processes more realistically. Thus, distributional shifts in response to climate 

change will occur over several centuries or more (see also Vanderwel & Purves 2014). 

Nonetheless, we had anticipated manifestation of this negative synergy by the year 2100 (Fig. 
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2), but found that a ‘deadly anthropogenic cocktail’ of climate change and habitat loss (Travis 

2003) was not noticeable at this geographical and temporal scale. 

 

HABITAT CREATION 

The SPOM simulations indicate that the negative effects of a given amount of habitat loss 

would be greater than the positive effects of a similar amount of habitat creation. Our results 

show time-lagged responses to both, climate change and change in habitat cover. Hence, 

there seems to be a qualitative asymmetry of the consequences of habitat loss and creation 

that might not come as a surprise, because the positive effects of reforestation require time 

for establishment and growth whereas the negative effects of habitat loss take place instantly 

in most cases. Our model also provides quantitative estimates of this asymmetry of habitat 

changes. In particular, a 20% increase in habitat only resulted in a 4–5% averaged gain in 

occupancy after 100 years in comparison with the baseline (Fig. 2), while a loss of 20% of 

the habitat would decrease occupancies by 16–25%. Moreover, complete mitigation of 

climate change effects by 2100 would require reforestation on scale of 80% of the current 

habitat (Fig S6). Such habitat creation would have a greater positive impact on species 

threatened by climate change if territories that are less influenced by human activities (more 

pristine) are prioritized. 

 

CONCLUSIONS 

Climate change and habitat loss, acting together or alone, are going to limit the expansion of 

tree species in mainland Spain, with likely deleterious impacts forest biodiversity. In general, 

climate change and habitat loss may have complex, synergistic effects depending on the 
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species and communities. However, over the timescale of one century, geographical 

distributions of long-lived species, such as the trees studied here, may respond to these two 

factors in a relatively simple manner, producing a sub-additive effect that depends on the 

spatial pattern and amount of lost habitat. Finally, illustrating an important time lag between 

habitat creation and environmental benefits, the effects of reforestation will generally 

compensate for the negative effects of climate change only to a minor extent. 
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Fig. 1: Bar-plots of the mean ± confident interval (out of 10 simulations) relative difference 

in species occupancies in the year 2100, between each climate and habitat loss (20%) scenario 

and the baseline scenario. OCC stands for only climate change, and the four spatial patterns 

of habitat loss were: random, partially continuous around multiple (100) sites, completely 

continuous around one (1) single site, and biased towards areas currently impacted by human 

activities (HII).  
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Fig. 2: Box-plots of the relative difference in numbers of occupied patches in the year 2100 

between each climate and habitat change scenario (up to 20% of current habitat) and the 

baseline scenario. Species were divided into those subject to decreased (N = 15) and 

increased (N = 8) occupancy with climate change. OCC means only climate change, and the 

four spatial patterns of habitat loss are: random, partially continuous around multiple (100) 

sites, completely continuous around one (1) single site and habitat change biased towards 

areas currently impacted (habitat loss) or non-impacted (habitat creation) by human activities 

(HII).  
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Fig. 3: Bar-plots of the mean ± confident interval (out of 10 simulations) relative difference 

in species occupancies in the year 2100, between each climate and habitat creation (20%) 

scenario, and the baseline scenario. OCC stands for only climate change, and the four spatial 

patterns of habitat creation were: random, partially continuous around multiple (100) sites, 

completely continuous around one (1) single site, and biased towards areas currently non-

impacted by human activities (HII). 


