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2

Abstract29

Reduction in plant size and tissue nutrient concentration is widely considered to increase30

seedling drought resistance in dry and oligotrophic plantation sites. However, much evidence 31

indicates that increase in size and tissue nutrient concentration improves seedling survival in 32

Mediterranean forest plantations. This suggests that the ecophysiological processes and 33

functional attributes relevant for early seedling survival in Mediterranean climate must be 34

reconsidered. We propose a physiological conceptual model for seedling survival in 35

Mediterranean-climate plantations to provide a physiological explanation of the frequent36

positive relationship between outplanting performance and seedling size and nutrient 37

concentration. The model considers the physiological processes outlined in the plantation 38

establishment model of Burdett (1990), but incorporates other physiological processes that 39

drive seedling survival, such as N remobilization, carbohydrate storage and plant hydraulics. 40

The model considers that seedling survival in Mediterranean climates is linked to high growth 41

capacity during the wet season. The model is for container plants and is based on three main 42

principles, 1) Mediterranean climates are not dry the entire year but usually have two 43

seasons of contrasting water availability; 2) summer drought is the main cause of seedling 44

mortality; in this context deep and large roots is a key trait for avoiding lethal water stress; 3) 45

attainment of large root systems in the dry season is promoted when seedlings have high 46

growth during the wet season. High growth is achieved when seedlings can divert large 47

amount of resources to support new root and shoot growth. Functional traits that confer high 48

photosynthesis, nutrient remobilization capacity, and non-structural carbohydrate storage49

promote high growth. Increases in seedling size and nutrient concentration, strongly affect 50

these physiological processes. Traits that confer high drought resistance are of low value 51

during the wet season because hinder growth capacity. We provide specific evidence to 52

support the model and finally we discuss its implications and the factors that may alter the 53

frequent increase in performance with increase in seedling size and tissue nutrient 54

concentration.55

56
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Keywords: Carbohydrates, drought stress, fertilization, forest plantation, nitrogen, nutrients, 57

photosynthesis, plant quality, remobilization, root growth.58

59

60

Introduction 61

62

Water stress is a major cause of failure in forest restoration projects in Mediterranean63

ecosystems (Alloza and Vallejo 1999; Mendoza et al. 2009). Summer drought is the main 64

cause of water stress and seedling mortality is concentrated during the first summer after 65

planting (Castro et al. 2004). Plants usually do not experience water stress during the 66

reminder of the year (Sala and Tenhunen 1994; Mediavilla and Escudero 2004), due to either 67

low air vapor pressure deficit or high rainfall. Consequently, forest plantations in the 68

Mediterranean basin are done in the wet season with the planting window spanning from 69

early November to early April in most sites. Most stocktype is container plant, which is 70

planted when seedlings are 8-12 months old in most species.71

Mediterranean woody flora is mainly composed of evergreen species, which maintain 72

appreciable photosynthesis and root elongation during the wet season (Leshem, 1965; Sala 73

and Tenhunen 1994; López et al. 2001). Plant functional attributes exert a significant 74

influence on the carbon (C), water and mineral nutrient economy of plants and thus on their 75

fitness. Nursery cultivation regimes strongly influence seedling morphology and physiology 76

and, consequently, their potential outplanting performance (van den Driessche 1991a; Arnott 77

et al. 1993; Villar-Salvador et al. 2004). Shoot height and root collar diameter are the most 78

commonly functional attributes used for operational plant quality assessment due to their 79

measurement simplicity. European Union has regulated the shoot height and root-collar 80

diameter standards for acceptable seedlings for forest restoration in several Mediterranean 81

tree species (Alía et al. 2005). For instance, one-year old Quercus ilex L. seedlings of 82

acceptable quality must have a shoot height ranging between 8 and 30 cm. Seedling size is 83

a relatively good predictor of outplanting performance in boreal and humid-temperate species 84
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when seedlings are similar in physiological quality, with survival frequently increasing with85

shoot size (Thompson 1985; Tuttle et al. 1988; Mexal and Landis 1990; Bayley and Kietzka 86

1997; South et al. 2005; Pinto et al. 2012). In the last 20 years, there has been a growing 87

body of evidence also in Mediterranean environments that, for a given species and for plants88

of the same age, seedling survival increases with plant size (Guehl et al. 1989; Villar-89

Salvador et al. 2004a; Tsakaldimi et al. 2005; del Campo et al. 2007; Luis et al. 2009; Oliet et 90

al. 2009 Cuesta et al. 2010b). For instance, Q. ilex seedlings that were 12.5 cm in height had 91

50% less survival than seedlings that were 16.4 cm in height (Villar-Salvador et al. 2004a). In 92

Pinus canariensis C.Sm. ex DC, 8-cm tall seedlings survived 40% less than 20-cm tall plants 93

(Luis et al. 2009). Similarly, differences in sapling survival across Quercus suber L. 94

provenances were also positively related to the height of planted seedlings (Ramírez-95

Valiente et al. 2009). In this study, seedling size was closely related to acorn size, which was 96

bigger in populations from warm and drier locations. In their meta-analysis of 30 forest 97

plantation studies in Mediterranean-climate areas of Spain, Navarro et al. (2006) concluded 98

that plant size at planting significantly explained survival differences in 43% of the case99

studies, whereas survival was not related to plant size in the remaining cases studies (Figure 100

1). Among the former, positive relationships between survival and seedling size were three 101

times more frequent than cases showing negative relationships. Rainfall differences among 102

sites did not affect the outlined pattern in this meta-analysis and both positive and negative 103

survival-plant size relationships have been reported in semiarid sites (Luis et al. 2009; Oliet 104

et al. 2009; Trubat et al. 2011). Navarro et al (2006) concluded that the target seedling for 105

Mediterranean forest plantations should be larger than the conventional seedling used in 106

most forestation programs. Many of the positive relationships between survival and plant size 107

are supported by nursery fertilization experiments, which suggests that plant nutritional 108

status (mainly of nitrogen) is also an important issue in explaining outplanting performance in 109

Mediterranean environments (Villar Salvador et al. 2004a; Luis et al. 2009; Oliet et al. 2009). 110

The outlined trends are in conflict with results indicating that reduction in seedling size 111

and tissue nutrient concentration increases drought resistance and performance in 112
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oligotrophic soils located in dry environments (Tuttle et al. 1988; Tan and Hogan 1997; Leiva 113

and Fernández-Alés 1998; Trubat et al. 2011). Therefore, we believe that the physiological 114

processes and functional attributes underlying seedling survival in Mediterranean forest 115

plantations must be revisited based on a different view of the Mediterranean climate.116

This study proposes a physiological conceptual model of seedling survival in 117

Mediterranean sites to explain why seedling survival frequently increases with seedling size 118

and tissue nutrient concentration. The conceptual model considers the physiological 119

processes outlined in Burdett’s plantation establishment model (Burdett 1990) but120

incorporates other relevant physiological processes driving seedling survival, such as 121

nitrogen (N) remobilization, carbohydrate storage and plant hydraulics, which were not 122

explicitly considered in Burdett’s model. Additionally, our model also extends the timeframe123

beyond the establishment phase and considers that dry season survival is strongly linked to 124

physiological activity in the wet season. Finally, we provide evidence for the model based125

either on ad hoc designed experiments to test predictions derived from an earlier version of 126

the model (Villar-Salvador 2003) or published studies on transplanting performance of forest 127

species. 128

129

The conceptual physiological model 130

The model assumes the use of container stocktypes, that selected species and provenances 131

are appropriate for the planting site, seedlings are healthy and cold-hardy, and operational 132

activities before, during and after planting, such as soil preparation, irrigation, weed control or 133

herbivore exclusion, are properly implemented. It is based on three major principles:134

135

1. Mediterranean climates have two seasons of contrasting water availability (Mitrakos 136

1980). Drought is usually concentrated in the summer when the combination of high 137

temperature and lack of rainfall occur for one to five months. Plants usually do not 138

experience drought stress during the wet season, except in very dry sites or during 139

extraordinary drought events and in sites that experience severe frost. In this scenario of 140
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variable water availability in time, correct outplanting timing (i.e. during the wet season) 141

allows seedling establishment and growth to lessen dry season stresses.142

2. Survival to summer drought is linked to the capacity of seedlings to avoid lethal water 143

stress, which is mainly achieved by having a large, deep root system during the dry 144

season.145

3. Reallocation of large amounts of resources during the wet season is critical for great new 146

growth prior to the onset of the dry season. The model therefore, emphasizes the 147

physiological processes that underlie root and shoot growth. 148

149

Model description150

New growth depends on seedling capacity to supply C and mineral nutrients (mainly N) as 151

long as the plant water potential does not limit cell elongation and gas-exchange (Willaume 152

and Pages 2006; Millard and Grelet 2010). Carbon can be supplied by both current 153

photosynthesis and carbohydrates stored during nursery cultivation. Most boreal and wet 154

temperate conifers rely mainly on current photosynthesis to support early root growth in 155

spring (van den Driessche 1987; van den Driessche 1991b; Hansen et al. 1996; Millard and 156

Grelet 2010). Some evidence also point out the importance of recently assimilated C for new 157

growth in conifers and in evergreen broadleaf Mediterranean species (Atzmon et al. 1994; 158

Cerasoli et al. 2004; Maillard et al. 2004). The importance of current photosynthesis and 159

stored non-structural carbohydrates (NSC) for early root growth in deciduous species 160

depends on whether roots resume their growth before or after shoot flush in spring. When 161

root growth initiates after shoot flushing, shoot growth is strongly dependent on NSC but root 162

growth is then supported by recently expanded leaves (Abod et al. 1991). When shoot and 163

root growth initiation occurs simultaneously in spring, as in Q. rubra L., early root growth 164

depends on stored NSC, but as new leaves mature current photosynthates assume a greater 165

role (Sloan and Jacobs 2008). 166

The greater the contribution of photosynthesis or stored NSC, the more C there is for 167

growth (Figure 2). Greater seedlings shoot size increases foliage biomass (del Campo et al. 168
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2010; Trubat et al. 2011) and, consequently, photosynthesis per plant (Dyckmans and Flessa 169

2001). Higher foliage N concentration may also increase net photosynthesis rate (A) due to 170

higher stomatal conductance (gs) and carboxylation capacity (Field and Mooney 1986; 171

Clearwater and Meinzer 2001).172

Variations in seedling size determine NSC content if there is not any change in NSC 173

concentration. An increase in NSC content can enhance growth in species that chiefly rely on174

NSC for early growth or disturbance recovery (Puttonen 1986; McPherson and Williams 175

1998). NSC availability also depends on the balance between photosynthesis and 176

maintenance respiration, which will be reduced if the proportion of “heterotrophic”�organs in a 177

seedling increases. The shoot-to-root mass ratio (S/R) and the leaf mass ratio usually scale 178

up with increased seedling size if rooting volume does not vary (Villar-Salvador et al. 2005). 179

Therefore, it can be expected that maintenance costs will increase with reduction in seedling180

size in container seedlings. 181

New organ growth depends on soil N and N remobilization from pre-existing organs182

(Salifu and Timmer 2003; Millard and Grelet, 2010). Nitrogen remobilization is a source-183

driven process, i.e, the higher the N content of an organ the greater the amount of N 184

remobilized from it (Millard and Grelet 2010). Therefore, an increase in plant size and tissue 185

N concentration will increase N remobilization potential (Figure 2).186

Plant hydraulic conductance is the water flow rate through the plant per change in 187

hydraulic pressure driving the flow (Sperry 2000). It is usually standardized with leaf area 188

(leaf specific conductance, LSC), the transversal sapwood area (specific conductance, ks) or 189

by root surface area (kr) when the root hydraulic conductance is studied. An increase in k190

enhances water flow through the plant. This effect is attributed to the link between k and gs,191

mediated by water potential. A higher k permits the plants to maintain higher water potential 192

at similar transpiration rate than a lower k (Bucci et al. 2006; Sperry 2000). Increase in 193

hydraulic conductance (k) can increase gs and, consequently, A (Sperry 2000). k can 194

increase with plant size (Lovelock et al. 2004) and enhance water uptake capacity 195

(Grossnickle and Russell 1990; Sword Sayer et al. 2005) and, consequently, plant hydration.196
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Variations in photosynthesis, mediated by changes in foliage surface and gs, also positively 197

affect transpiration and, therefore, negatively plant water potential.  198

Higher C and N availability can support higher root and shoot growth, leading to a 199

feed-back cycle where root growth supports photosynthesis and photosynthesis supports 200

root and shoot growth (Burdett 1990) (Figure 2). This process will ensure seedling 201

establishment right after planting (Burdett 1990; Grossnickle 2005) and extension of the root 202

system during the rest of the wet season. If seedlings exhibit vigorous root growth during the 203

wet season, root systems should be large and reach deep moist soil horizons at the onset of 204

the dry season. This increases water uptake capacity during the dry season (Padilla and 205

Pugnaire 2007) and, consequently, gas-exchange capacity. Root elongation during the wet 206

season should also favor soil nutrient uptake to support root and shoot growth along with 207

nutrient remobilization. Similarly, production of high photosynthetically active new shoots in 208

spring should foster photosynthesis in Mediterranean evergreen species, in which currently 209

formed leaves coexist with older less photosynthetically active leaves during spring (Milla et 210

al. 2005).211

Plant water potential ultimately depends on the balance between plant water loss and 212

uptake. If the root system is too small in relation to the plant’s transpiration capacity or too 213

shallow to reach deep moist soil layers, plant water uptake will not meet transpirational214

demand and cause a reduction in water potential. This will reduce gas-exchange through 215

stomatal closure and growth. Increased water uptake during the dry season prevents the 216

plant from reaching lethal water potential, at which extensive embolism can cause 217

catastrophic hydraulic failure inducing leaf shedding and, lastly, seedling death (Vilagrosa et 218

al. 2003; Brodribb and Cochard 2009). Prolonged periods of very low photosynthesis can 219

lead to C starvation (Adams et al. 2009), which also might be also a potential cause of 220

seedling mortality (Canham et al. 1999; McDowell et al. 2008) (Figure 2). As high summer 221

temperature can exacerbate C starvation by increasing seedling respiration, maintenance of 222

a significant level of photosynthesis is critical for maintenance of plant metabolism during the 223

dry season.224
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225

Predictions from the model and evidence of the physiological mechanisms underlying 226

the frequent outplanting performance improvement with seedling size and N227

concentration increase in Mediterranean plantations.228

Several predictions can be established from the conceptual model and in this section we 229

provide evidences that support main predictions and help to understand the frequent superior 230

outplanting performance of larger and N-rich seedlings relative to smaller and poor-N plants 231

in Mediterranean environments.232

233

Prediction 1: Root system size and depth determines plant water status and survival in 234

summer235

236

Size of the root system drives drought survival of woody species in dry climate areas 237

(Grossnickle 2005). Seedling survival differences among common woody species in the 238

semiarid Iberian Peninsula were positively linked to the root depth achieved during summer239

(Padilla and Pugnaire 2007). Species that had high seedling survival produced roots that 240

reached deeper moisture soil horizons than species that had low survival. Summer predawn 241

water potential of Quercus coccifera L. seedlings that were planted within different 242

treeshelters was positively related to the length of new roots (Bellot et al. 2002). Similarly, Q. 243

ilex seedlings that differed in vigor and in planting date were also different in their mid-day 244

water potential and survival by the end of the first summer, which were positively correlated 245

with new root growth at the beginning of the summer among (Figure 3).246

247

Prediction 2: An increase in seedling size and N content increases root growth248

249

Many studies have shown that differences in seedling morphology and physiology status 250

influence root growth capacity (RGC). Most RGC studies have been conducted under 251

glasshouse or growth chamber conditions for short time periods but field studies are scarce. 252
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RGC increases with plant size (South et al. 1989). High fertilized seedlings, which are 253

bigger and richer in N than low fertilized plants, have greater RGC (van den Driessche 1992; 254

Villar-Salvador et al. 2004a). Further, field studies rend similar results to those in controlled 255

conditions. High N fertilized Juniperus thurifera L. seedlings grew deeper roots than low N 256

fertilized plants when transplanted into 1 m long metacrylate tubes that were inserted into the 257

soil. Deeper roots were attributed to higher root elongation rate in high fertilized plants 258

(Figure 4). Using the same methodology, Cuesta et al. (2010a) found that larger Pinus259

halepensis Mill. seedlings had greater root systems than smaller seedlings, but no difference 260

in root depth could be observed. Contrary to the results for J. thurifera, a greater root system 261

in larger P. halepensis plants was attributed to a greater number of new roots rather than a262

higher elongation rate of each root.263

Large, nutrient rich P. canariensis plants produced greater root systems than small, 264

nutrient-poor seedlings three years after outplanting (Luis et al. 2009). Similarly, large P. 265

halepensis had greater new root mass at the beginning of the dry period than small 266

seedlings, and this difference was more pronounced in the presence rather than in the 267

absence of weeds (Cuesta et al. 2010b). 268

269

Prediction 3: N remobilization increases with increase in plant N content. 270

271

Greater plant size and tissue N concentration increases plant N content. The proportion of N 272

remobilized to support new growth depends on species, source organ, and source/sink 273

interactions (Silla and Escudero 2003; Millard and Grelet 2010). For instance, the proportion 274

of new N in growing organs derived from remobilized N from old leaves and woody fractions 275

varied from 17 to 88% in Mediterranean oak saplings (Silla and Escudero 2003). The amount 276

of remobilized N depends on source strength, i.e. plant N content. Using 15N labeled fertilizer,277

Salifu and Timmer (2003) demonstrated that N-loaded Picea mariana (Mill.) BSP seedlings278

remobilized three times as much N as conventional fertilized seedlings did, which had lower 279

N content than the former seedlings. Similar trends have also been reported for other wet 280
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temperate and boreal woody species (Millard and Neilsen 1989; Grelet et al. 2003; Millet et 281

al. 2005).282

Using a N budget approach, Cuesta et al. (2010b) found that large P. halepensis283

seedlings remobilized four to six times more N than small seedlings to support spring growth.284

Both seedling types did not differ in their tissue N concentration but large seedlings 285

contained five more times N than small seedlings. El Omari et al. (2003) reported that 286

fertilized Q. ilex saplings remobilized higher amounts of N than N-deprived seedlings, which 287

was attributed to greater N reserves in high-fertilized seedlings.288

289

Prediction 4: Increase in seedling size and nutrient concentration at planting increases water 290

potential and photosynthesis rate in the field during the dry season.291

292

Large, nutrient-rich P. canariensis seedlings had higher water potential and photochemical 293

efficiency than small, nutrient-poor seedlings three years after planting (Luis et al. 2009).294

Furthermore, large P. halepensis seedlings had greater field gas-exchange capacity than 295

small plants, independent of their tissue N concentration (Cuesta et al. 2010b). These 296

differences were apparent under moderate but not under high drought stress conditions. 297

However, the authors did not observe differences in water potential between seedling types. 298

Similarly, moderate and high N fertilized Ceratonia siliqua L. plants had greater A than low-299

fertilized plants after planting in a site with <200 mm of annual rainfall (Planelles González 300

2004). High-fertilized J. thurifera seedlings had higher daily course of A in mid-summer than301

low-fertilized seedlings. Higher A was linked to significantly higher water potential in high-302

than in low-fertilized plants (Figure 5). Unfertilized seedlings of the deciduous Mediterranean 303

oak Q. faginea Lam. had lower mid-day water potential in mid summer than fertilized 304

seedlings at two inside Spain locations (Villar-Salvador, unpublished data; Figure 6). 305

306

Prediction 5: Increase in seedling size and new root enhances hydraulic capacity.307

308
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Large plants produced by high fertilization regimes have greater xylem transversal area,309

wider xylem conduits and consequently higher ks than small plants cultivated with low 310

fertilization (Krasowski and Owens 1999; Hacke et al. 2010). These changes in xylem 311

structure permit high fertilized plants to meet their greater transpiring capacity. However, 312

increases in xylem conduit diameter may increase vulnerability of xylem to embolism, as 313

reported in hybrid poplar (Hacke et al. 2010). Published studies on the effect of nursery 314

cultivation regimes on hydraulic properties of Mediterranean plants are scarce and show 315

varied trends. Trubat et al. (2006) found that N- and P-deficient Pistacia lentiscus L. 316

seedlings had lower kr than well fertilized seedlings, which were larger and had higher 317

nutrient concentration than the former. On the contrary, high fertilization decreased kr in P. 318

lentiscus and P. canariensis but did not have any influence in Q. suber seedlings (Hernández 319

et al. 2009; Luis et al. 2010). 320

Cuesta et al. (2010b) observed higher field gas-exchange in large compared to small P. 321

halepensis seedlings but no differences in their water potential, suggesting that higher gas-322

exchange might be attributed to k differences between plant types.323

324

Discussion and concluding remarks325

326

We suggest that high resource mobilization capacity to support high growth during the wet 327

season is a key process for seedling survival during the dry season in seasonally dry climate 328

environments such in Mediterranean ecosystems. This ensures high growth capacity, which 329

allows rapid seedling establishment during the wet season and drought stress avoidance 330

during summer drought. Therefore, nursery cultivation should seedling promote functional 331

traits that confer seedlings high photosynthesis and nutrient remobilization capacity and low 332

maintenance costs. Fertilization regime, container volume, cultivation density, growing media 333

together with the length of the growing season have strong influences on these traits (van 334

den Driessche, 1991a; South et al. 2005; Oliet et al. 2009; Cuesta et al. 2010b, Verdaguer et 335

al. 2011). In this framework seedling size is an important attribute because it strongly 336
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determines plant photosynthesis and nutrient storage capacity and, consequently, resource 337

mobilization and growth capacity. This explains why large seedlings frequently have higher 338

absolute growth than small seedlings (Puértolas et al. 2003; Villar-Salvador et al. 2004a). 339

Shoot and root elongation in small P. halepensis seedlings had an antagonistic pattern 340

through time, indicating that the growth of both organs depresses each other. In contrast, 341

large seedlings were able to simultaneously maintain high root and shoot growth without 342

interference, evidencing that large seedlings have the capacity to divert resources to sustain 343

two main resource sinks (Cuesta et al. 2010a).344

Our model predicts that an increase in seedling size and N concentration can result in 345

higher transpiration, which increases plant vulnerability to drought on the short-term. This is 346

the main argument for using small seedlings in dry sites. However, seedlings with high 347

drought resistance traits (low transpiration) have low root growth capacity resulting in a long-348

term survival cost. This idea is supported by results in Villar-Salvador et al (2004b), which 349

showed that osmotic adjustment and reduction in stomatal conductance in drought-350

conditioned Q. ilex seedlings were associated with a reduction in RGC. Plantation of 351

seedlings in the wet season, long before summer drought onset, can minimize transpiration 352

costs associated to increasing seedling size. This is a critical issue for two reasons. First, air 353

vapor pressure deficit usually remains low during most of the wet season imposing low 354

transpiration demand on seedlings. This is very important for maintaining high water potential 355

immediately after transplanting until new root egress, especially in high transpiring seedlings. 356

Secondly, because root system size at the beginning of the dry season is directly related to 357

the length of the wet season lasting after plantation takes place. As root growth in 358

Mediterranean forests is inhibited during the dry season (Leshem 1965; López et al. 2001), 359

seedling survival is not expected to occur at the expense of root growth during the dry 360

season. In support to this reasoning, Corchero de la Torre et al. (2002) found that P.361

halepensis seedlings planted in the fall had larger roots at the beginning of the dry season 362

than seedlings planted in early spring. This likely explains the higher mortality in late-planted363

plantations of Q. ilex as compared to those planted during the early and mid wet season 364
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(Palacios et al. 2009). Studies on natural regeneration of Mediterranean woody species also 365

point to the importance of early seedling emergence in the wet season as a major driver for366

resisting drought stress during the first summer (Castro 2006; De Luis et al. 2008). The 367

length of the optimal root growth period determines the strength of the positive and negative 368

feedback physiological process of the model. Extreme climatic events, such as very low 369

winter temperatures or very dry and warm spells during winter or lengthy delays in planting 370

date will shorten the period of optimum growth and decrease the potential advantage of 371

increase in seedling size and nutrient concentration. Results from an experiment performed 372

under semi-arid condition in SE Spain on degraded soils and with a shallow soil preparation, 373

where smaller, poor nutrient seedlings had higher survival better than larger, rich nutrient 374

plants, supports this idea (Trubat et al. 2011). 375

Shoot-to-root ratio scales up with above-ground seedling size when rooting volume 376

remains constant (Villar-Salvador et al. 2005). S/R reflects the amount of roots in the plug 377

respect to shoot size. High S/R may cause drought stress immediately after transplanting 378

(Burdett 1990). However, seedling establishment depends on the production of new high 379

water-uptake capacity roots which grow out of the plug into the surrounding soil shortly after 380

transplanting (Burdett 1990; Brissette and Chambers 1992; Sword Sayer et al. 2005). The 381

proportion of new roots relative to shoot size (NR/S) is thus a more meaningful proxy of the 382

balance between transpiration demand and water uptake than S/R (Grossnickle 2012). Villar-383

Salvador et al. (2005) reported that large seedlings in several Mediterranean species had 384

similar or greater NR/S than small plants after RGC tests. This suggests that the “potential”385

vulnerability to water stress of larger seedlings due to higher S/R relative to smaller plants386

disappears soon after planting. This might explain the poor relationship between outplanting 387

performance and S/R in container plants (Bernier et al., 1995).388

Enhanced root growth with greater seedling size and N concentration could be 389

reduced in soils restricting root growth, thus reducing differences in outplanting performance. 390

Compact or low air-filled porosity soils can constrain root growth even under optimal moisture 391

conditions (Zou et al. 2001). Shallow soils limit vertical moisture gradients and limit root 392
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extension, which can exacerbate drought vulnerability with increasing seedling size. This 393

highlights the importance of soil preparation for the success of Mediterranean plantations394

(Palacios et al. 2009; Löf et al 2012). 395

Most of the studies that inspired this model have been performed with Mediterranean 396

conifers. Mediterranean flora has a high diversity of functional groups and it is likely that the 397

relative importance of physiological processes outlined in the model may differ among 398

functional groups. For instance, we expect that the potential negative effect of seedling size 399

on its water status might be lower in water-saver plants (e.g. Pinus species) than in water-400

spending species (e.g. oaks and Pistacia lentiscus) (sensu Levitt, 1980). Similarly, 401

performance differences associated with seedling size are expected to be greater in pioneer 402

rather than in late-successional species. Therefore, future studies should consider the high 403

functional diversity of Mediterranean ecosystems and directed to provide more solid404

evidence of the outlined physiological processes underpinning the proposed model. 405

Specifically, we need information on how cultivation conditions affect seedling hydraulics and 406

the role of plant hydraulics on seedling outplanting performance. We also need to understand 407

better the role of current photosynthesis and stored NSC on root and shoot growth in most 408

Mediterranean woody species. Although the model has been established from the 409

experience gained in Mediterranean environments, we consider that it can be a suitable 410

conceptual framework for other seasonal dry biomes, such as dry tropical forests. Moreover, 411

it can be used to understand the effect of other planting and post-planting operational works 412

on plant performance.413
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Figure 1. Frequency of cases studies in which the relationship between seedling survival in673

Mediterranean-climate areas of Spain and seedling shoot size at planting was null, positive 674

or negative. The figure has been redrawn from the meta-analysis in Navarro et al. (2006) that675

included 30 forest plantation studies, in which stocktype was container plant and in most676

cases 1+0 seedlings were used. The range in seedling size and other relevant information of 677

each case study can be found in the original publication.678
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Figure 2. Conceptual model of the physiological process that link seedling size and tissue N 694

concentration with seedling survival in Mediterranean forest plantations. Continuous and 695

dotted lines indicate positive and negative relationships, respectively.696
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Figure 3. Relation of a) predawn water potential in mid summer and b) survival at the end of 703

the summer with new root mass as determined at the beginning of the summer in Quercus 704
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ilex seedlings. Each point in the graphs represents the mean of five plants for root mass and 705

water potential, and 30 plants for survival (redrawn from data in Rodríguez-García 2003). 706
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Figure 4. Time course of root depth (upper figure) and mean root elongation rate (lower 711

figure) in three periods of high- and low-N fertilized Juniperus thurifera seedlings. 712

Measurements were made by transplanting seedlings into 1 m long metacrylate tubes filled 713

with sand that were inserted in the field. Data are means ± 1 SE. N=6. In the upper figure the 714
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mean plant mass and shoot N concentration of high- and low-fertilized seedlings is provided. 715

(modified from Martínez-Sanz 2006).716
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Figure 5. Daily course of net photosynthesis rate in high and low fertilized two-year old 720

Juniperus thurifera seedlings in late July during the first summer after transplanting in the 721

field. The plant mass and shoot nitrogen concentration at the end of the cultivation of each 722

seedling type is shown together with the field predawn water potential (pd), which was 723

determined on the same day that gas-exchange measurements were obtained. Differences 724

in pd were statistically significant (P=0.012, N=8, Villar-Salvador, unpublished data).725
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Figure 6. Mid-day water potential of unfertilized and fertilized Quercus faginea seedlings 739

transplanted at two locations inside Spain. Data are means ± 1 SE. Measurements were 740

taken in late July. Water potential of fertilized treatments is the average data of four nitrogen 741

fertilization rate treatments, which did not significantly differ. N>5. Insert data show P-values 742

derived from ANOVA. Mean height of unfertilized and fertilized plants was 9.6 and 16.1 cm, 743

respectively (Villar-Salvador, unpublished data).744
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