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How landscapes change: integration of spatial patterns and human processes in temperate 

landscapes of southern Chile 

 
 

ABSTRACT 

 

5 A comprehensive understanding of the patterns that occur as human processes transform landscapes  is 
 

necessary for sustainable development. We provide new evidence on how landscapes change by 

analyzing the spatial patterns of human processes in three forest landscapes in southern Chile at 

different states of alteration (40% to 90% of old-growth forest loss). Three phases of landscape 

alteration are distinguished. In Phase I (40%-65% of old-growth forest loss), deforestation rates are < 
 

10   1% yr-1, forests are increasingly degraded, and clearance for pastureland is concentrated on deeper  

soils. In Phase II (65%-80%), deforestation reaches its maximum rate of 1 to 1.5% yr -1, with clearance 

for pastureland being the main human process, creating a landscape dominated by disturbed forest  and 

shrubland. In this phase, clearance for pastureland is the primary driver of change, with pastures 

expanding   onto   poorer  soils  in   more   spatially   aggregated   patterns.  In   Phase III  (80%-90%), 

15 deforestation rates are again relatively low (< 1% yr-1) and forest regrowth is observed on marginal 
 

lands. During this phase, clearance is the dominant process and pastureland is the main land cover. As 

a forest landscape is transformed, the extent and intensity of human processes vary according to the 

existing state of landscape alteration, resulting in distinctive landscape patterns in each phase. A 

relationship between spatial patterns of land cover and human-related processes has been identified 
 

20 along the gradient of landscape alteration. This integrative framework can potentially provide insights 
 

into the patterns and processes of dynamic landscapes in other areas subjected to intensifying human 

use. 
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1. INTRODUCTION 
 

The need for a comprehensive assessment of the relationships between landscape spatial patterns 
 

30 (spatial   arrangement   and   composition   of   landscape   elements)   and   human   processes  (forest 
 

fragmentation, forest degradation and deforestation by land use change) has been highlighted in recent 

decades in the context of global environmental change (Ferrier & Drielsma, 2010; Holmes et al., 2010; 

Liu  &  Taylor,  2002;  Nagendra  et  al.,  2004).  Diverse  studies  on  landscape  fragmentation  have 

demonstrated the close relationship between spatial patterns and human processes in many parts  of the 
 

35 world (Cayuela et al., 2006; Echeverría et al., 2006; Fialkowski & Bitner, 2008; Gasparri & Grau, 
 

2009). Some studies have shown that forest degradation by human activities such as livestock grazing 

and tree harvesting is related to changes in spatial patterns (Nandy et al., 2011). Similarly, other 

studies have revealed how deforestation associated with agricultural expansion and forest regrowth 

associated with land abandonment are closely linked to changes in landscape patterns (Abdullah & 
 

40 Nakagoshi, 2008; Zomeni et al., 2008). In addition to evaluating the spatial linkages between  patterns 
 

and processes, there is a need to examine how human processes co-occur over time to change a 

landscape. Most research to date has focused on separately evaluating the impacts of forest loss, 

fragmentation, degradation and agricultural expansion on spatial patterns (An et al., 2008; Putz & 

Redford, 2010), whereas very few studies have analysed how human processes coexist over time and 
 

45 space in dynamic landscapes (Brandt & Townsend, 2006; Panta et al., 2008). 
 

Different classifications of landscape change have been identified in terms of structural 

thresholds (Forman, 1995; McIntyre et al., 1996) or the prevalent land use (Hobbs & Hopkins, 1990). 

In addition to these classifications, a model that synthesizes four landscape states (intact, variegated, 

fragmented and relictual) was proposed by merging the previous classifications of landscape change 
 

50 (McIntyre & Hobbs, 1999). As in Forman’s (1995) and McIntyre and Hobbs’ (1999) models, the 
 

current classifications of landscape change are typically represented by a decrease in connectivity and 

remaining cover, and an increase in edge effects. However, these models do not provide specific 

responses  of  how  spatial patterns  and  human  processes  interact at temporal and spatial scales. For 

instance, when, where and how do clearance, fragmentation and degradation of pristine forests occur 
 

55 as  a  forest  landscape  is  transformed  into  an  agricultural  landscape?  When  and where  can forest 
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regrowth be observed in a changing landscape? There is a need to consider the landscape not only in 

structural terms, but also in relation to the complexity of human-environment interactions that occur 

and vary along a continuum of landscape alteration (Ferrier & Drielsma, 2010; Gutzwiller, 2002). It is 

necessary to refine current models of landscape change by integrating patterns of land cover change 
 

60 with processes relating to human activity. 
 

Given the increasing emphasis on operationalizing the concept of landscape sustainability in 

the real world (Musacchio, 2011; Naveh, 2007), there is a need to further develop an understanding of 

how real landscapes change. While some studies have shown evidence of thresholds in simulated 

landscapes (Gustafson et al., 2006; Trani & Giles, 1999), very few studies have focused on detecting 
 

65 thresholds in real landscapes during the process of land cover change (Oliveira-Filho & Metzger, 
 

2006). Analysis of such thresholds will inform the development of management and conservation 

strategies, which will differ according to the state of alteration of the landscape (Liu & Taylor, 2002; 

McIntyre & Hobbs, 1999). 

The main goal of the present research is to refine the current models of landscape change using 
 

70 an integrative approach for analysing spatial patterns and human processes. In particular, we document 
 

changes in spatial patterns and human processes along a gradient of real forest landscape alteration in 

southern Chile. Then, we examine whether similar trends have been observed in other regions, with 

the aim of identifying generalizations. 

 
 

75 2. MATERIAL AND METHODS 
 

2.1 Study areas 

 
Our research was conducted in three related landscapes located in the Los Lagos Region of 

southern Chile (40° 15’ S, 72° 41’ W and 44° 01’ S, 71° 43’W), which were all covered by near- 

continuous temperate forests until the early 1800s (Fig. 1). This zone is characterised by a rainy 

 

80 temperate climate with an oceanic influence and without dry periods (Di Castri & Hajek, 1976), with a 
 

mean annual precipitation of 2090 mm. The landscapes are located on an acidic, shallow, poorly- 

drained soil referred to as ñadi soil, which is classified as Gleysol (FAO-UNESCO, 1971). Most ñadi 

soil occupies the flatter parts of the landscapes, and occurs in association with better-drained soils also 
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derived from volcanic ash that occupy the hilly parts of the landscapes (IRRI, 1984). Owing to 

 

85 drainage  restriction,  ñadi  soil  is  not  commonly  used  for  crop  cultivation  after  forest  clearance 
 

(Carmona, 1981), but for livestock grazing (Torres, 1992). The landscapes are primarily dominated by 

Valdivian temperate rain forests, surrounded by a matrix of crops and pasturelands. These forests are 

recognised in two international initiatives for their conservation value: WWF Global 200 Ecoregions 

(Olson et al., 2001) and the Global Biodiversity Hotspots (Myers et al., 2000). Today, a gradient of 
 

90 landscape alteration can be observed, ranging from extensive areas covered by pristine forests to  areas 
 

almost completely cleared for agricultural production: 

 
Landscape 1 (L1) corresponds to an initial stage of landscape transformation located on Chiloé Island 

(Fig. 1). Approximately, 51% of the total land (1,681 km2) is currently covered by relatively intact 

old-growth  forest. Deforestation  through  logging  and  cultivation principally  commenced  in  recent 

 

95 decades, owing to its isolation from the continent. L1 is considerably less populated than nearby 
 

continental areas. Over the last four decades, land clearance for agricultural expansion and logging for 

fuelwood have been the most important causes of forest destruction in L1 (Echeverría et al., 2008; 

Lara et al., 2002; Reyes, 2000). 

 

100 

 

 

 

 

 

 

 

105 

Landscape 2 (L2) corresponds to an intermediate stage of landscape transformation in which 34% of 

the total land area (1,281 km2) is currently covered by relatively intact old-growth forest. Clearance of 

forest habitats for agricultural land occurred mainly at the beginning of the 20th century. Large tracts 

of native forest disappeared during the 1980s and 1990s owing to an increase of woodchip export from 

native species and a rapid expansion of urban grounds. 

Landscape 3 (L3) corresponds to an advanced stage of landscape transformation in which 26% of the 

total landscape (1,254 km2) is currently covered by relatively intact old-growth forest. The area is 

characterised by an undulating hilly terrain in the foothills of the western part of the Andes Mountains 

(Fig. 1). As a result of European settlements in the area since the 1850s, intensive timber exploitation 

began in the area, allowing the establishment of grazing areas and crop cultivation (Donoso & Lara, 

1995). Commercial plantations of Eucalyptus spp. have been established in the landscape. 
 

110 
 

2.2 Satellite data 
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To analyse the spatial and temporal changes of land cover types, a set of six Landsat satellite scenes 

taken in the summer were acquired at different points in time: 1985 (Thematic Mapper, TM), 1999 

(Enhanced Thematic Mapper, ETM+) and 2007 (TM) for L1 and L2, and 1986 (TM), 1998 (ETM+) 
 

115 and 2006 (TM) for L3. 

 

 
 

2.3 Pre-processing, classification and accuracy of the satellite data 

 
Each image was geometrically, atmospherically and topographically corrected. Geometric correction 

 

was performed using “full processing” module in PCI Geomatics and ENVI. This consisted in the 

 

120 transformation  of  each  image  using  GCPs  (ground  control  points)  and  a  2nd  order  polynomial 
 

mathematical model. The satellite images were georeferenced separately by locating approximately 70 

GCPs in each image and producing corresponding reference maps. The geometric accuracy ranged 

from 0.11 to 0.29 pixels, corresponding to 3.3 to 8.7 m. Atmospheric correction was applied to all of 

the scenes, transforming the original radiance image to a reflectance image (Chávez, 1996). The 
 

125 topographic correction was conducted for each scene using the method proposed by Teillet et al. 
 

(1982) in order to remove shadows in hilly areas. Supervised, maximum likelihood classifications 

were performed on each of the three images to classify the land cover types using training locations, 

obtained   from   field   surveys  (Chuvieco,  1996).  Two   types   of  data   were   used   in   the image 

interpretation. “Catastro” is a GIS- based data set of thematic maps derived at 1:50,000 scale from 
 

130 aerial photographs and satellite imagery between 1994 and 1997 (CONAF et al., 1999). The Catastro 
 

data was also used to develop a set of categories of land cover type for the present work. A second 

reference group was comprised of 70 control points of field visits made in July 2007. Land cover types 

that did not show changes in the last 20 years were recorded in the field by consulting local farmers. 

Patches of old-growth forests were also recorded in the field to assist the interpretation of earlier 
 

135 images. 
 

The overall accuracy of the classification of each image was estimated by constructing 

confusion matrices between reference data and classified data (Chuvieco, 1996). The accuracy 

was assessed by ground validation of 260 points visited between 1998 and 2008. For the TM 
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images of 2006 and 2007, reference data (250 points for each image) was obtained in 2007 
 

140 from additional field observations of land cover types that did not exhibit changes between 
 

images over time. The overall accuracy values corresponded to 89.6% for 1985 image, 91.9% 

for the 1999 image, and 93.2% for 2007 image in L1 and L2. These percentages were 90.1% 

for 1986 image, 93.6% for 1998 image and 91.3% for 2006 image in L3. The accuracy of old- 

growth forest reached 95.9% in 1985, 96.1% in 1999, and 93.4% in 2007; and 91.1% in 1986, 

145 90.1% in 1998 and 92% in 2006. The high percentages of overall accuracy of the images 
 

revealed that the supervised classification, which was strongly supported by ground-based 

information, provided a suitable identification of land cover types in each of the satellite 

scenes processed. 

 

 

150 2.4 Land cover types 
 

The following categories of land cover were identified from each image: 1) pasture land (for livestock 

grazing); 2) shrubland (land dominated by shrub species with < 10% tree cover and originating from 

the logging of tree species in disturbed forests or old-growth forest or from natural succession due to 

land abandonment); 3) arboreus shrubland (similar origin to shrubland but with 10-25% tree cover); 4) 
 

155 disturbed  forests  (originated  from  logging  of  tree  species  in  old-growth  forest  or  from  natural 
 

succession); 5) old-growth forest (pristine forest or almost intact mature forest of broad-leaved 

evergreen tree species); 6) commercial plantation (mainly Eucalyptus species for pulp industry); 7) 

bare ground; and 8) urban areas. 

 

 

160 2.5 Temporal and spatial patterns of land cover change 
 

For each study landscape we analyzed the classified maps using ArcGIS 9.3.1 (ESRI, 2009) and its 

extension Spatial Analyst to estimate the area of the landscape occupied by each land cover type. A 

cross-tabulation procedure between land cover maps was undertaken with IDRISI Andes (Clark-Labs, 

2007) to determine land cover transitions for each time interval. The smallest patches (< 5 pixels) were 
 

165 removed from all of the images to reduce errors during image comparison. 
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Relationships between forest cover and soil depth were examined to assess the spatial pattern 

of agricultural expansion in flat areas susceptible to livestock grazing (<5% slope). Soil depths were 

obtained for each soil series (CIREN, 2003) and were overlaid on forest cover maps of the earliest 

study year (1985 and 1986). 
 

170 
 

2.6 Loss, degradation and fragmentation of old-growth forest 

 
Land cover was grouped into forest or non-forest categories using ARC GIS 9.3.1 (ESRI, 2009) to 

estimate  and  map  the  spatial  pattern  of  forest  loss.  A  compound-interest  formula  was  used  to 

determine the annual rate of deforestation in each study landscape (Echeverría et al., 2007a). The 
 

175 spatial pattern of forest degradation was analysed examining the conversion of i) old-growth forest to 
 

disturbed forest, arboreus shrubland or shrubland; and ii) from disturbed forest to arboreus shrubland 

or shrubland. The spatial pattern of forest fragmentation was assessed using the following indices of 

FRAGSTATS (Mcgarigal et al., 2002): a) patch density (number of patches per 100 hectares), b) 

proximity index (ratio between the size and distance of all patches whose edges are within a specified 
 

180 search radius of the local patch (1 km) and c) largest patch index (percentage of area accounted for  by 
 

the largest forest patch). These indices provide information about the patterns of subdivision of forest 

patches, in which forest cover becomes disaggregated and isolated across the landscape (Forman & 

Godron, 1986). 

 

 

185 3. RESULTS 
 

3.1 Changes in landscape composition 

 
In L1 (initial stage of landscape transformation), old-growth forest was the predominant land cover 

type with 52% of the landscape in 1985 (Fig. 2). All of the human-related land cover types such as 

disturbed forest, arboreus shrubland, shrubland and pastureland exhibited the highest increase in area 
 

190 over time. In contrast old-growth forest, the only non-human related land cover type, showed a decline 
 

in the area occupied in the landscape. By 2007, commercial plantations represented 1% of the 

landscape (Fig. 2). 
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In L2 (intermediate stage of landscape transformation), old-growth forest was the predominant 
 

land cover type with 34% in 1985, whereas in 2007 arboreus shrubland and pastureland were the 
 

195 major land cover types, each representing 27% of the landscape (Fig. 2). Similarly to L1, all human- 
 

related land cover types exhibited an increase in area over time, while old-growth forest decreased 

dramatically from 34% in 1985 to 7% in 2007. Disturbed forest and arboreus shrubland were the land 

cover types that showed the highest increase in area across the landscape. Commercial plantations of 

exotic species occupied 1% of the landscape. 
 

200 In L3 (advance stage of landscape transformation), pastureland was the predominant land 
 

cover type across the study period (Fig. 2). Over the whole study period, disturbed forest and arboreus 

shrubland increased in area, but at a lower increment compared to L1 and L2. In contrast to L1 and L2, 

a reduction of shrubland from 20% to 13% was observed in L3. In 2006, forest plantation of exotic 

species occupied a greater proportion than in L1 and L2; equivalent to 2% of the landscape.  
 

205 
 

3.2 Trajectories of land cover change 

 
In L1, the major contributions to the net change were the conversion of old-growth forest to arboreus 

shrubland during the first time interval and to disturbed forest in the second one (Fig. 3). Another 

important trajectory of change corresponded to the conversion of 19% of arboreus shrubland to 
 

210 pastureland (Fig. 3). Similar to L1, the major trajectory of change in L2 was the formation of disturbed 
 

forest through degradation of old-growth forests (Fig. 3). Similar but less pronounced trajectories of 

forest degradation were identified in L3. Contrary to the trends observed in L1 and L2, 12% of the 

shrubland  exhibited  forest  re-growth  to  secondary  forest  (disturbed  forest)  during  the  first  time 

interval. Similarly, 7% of the pastureland regenerated to arboreus shrubland (Fig. 3).  
 

215 
 

3.3 Changes in forest cover 

 
In L1, forest loss (old-growth forest plus disturbed forest) occurred at a rate of 1%yr-1, with the highest 

loss during the last time interval at a rate of 1.4% yr-1. In L2, forest loss also occurred at a rate of 1% 

yr-1, but the highest loss was observed in the first time interval at a rate of 1.1% yr -1. In L3, forest loss 
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220 

 

 

 

 

 

 

 

225 

was at a lower rate (0.8 % yr-1) than in L1 and L2. During the first time interval, deforestation 

occurred at a rate of 1.1 yr-1, while in the second interval this rate decreased to 0.4% yr-1. 

Largest patch index and proximity index declined consistently over time in the three study 

areas (Fig 4a,c). The greatest absolute decline in these two indices was observed in L1, followed by L2 

and then L3. In particular, the faster decline was observed in L1 where the proportion of the landscape 

occupied by the largest patch decreased from 18% to 6.5% and when the old-growth forest loss 

increased from 49% to 79% (Fig. 4a). Moreover, isolation of old-growth forest patches was more rapid 

in L1 than in the other landscapes (Fig. 4c). 

This change in the spatial pattern of old-growth forest in L1 was associated with a consistent 
 

increase in patch density (Fig. 4b). In L2 this index remained constant (0.42) when the loss of old- 
 

230 growth forest accounted for 71% of the landscape. However, patch density declined to 0.35 when old- 
 

growth forest loss reached 90%, which denotes the elimination of forest fragments and not the division 

of forest patches as observed in L1. In L3, the index was also constant at 0.35 when the old-growth 

forest loss reached up to 83% of the landscape. Nevertheless, patch density showed an increase to 

0.43,  despite  the  progressive  reduction  of  old-growth  forest.  This  increase  in  patch  density was 
 

235 observed only in L3 and is the result of the creation of new forest patches (Fig. 4b). 

 

 
 

3.4 Phases of forest landscape alteration 

 
We identified the following three phases of forest landscape alteration (Fig. 5):  

 

Phase I:  Old growth forests lost from 40% to 65% of their original extent. Forest degradation was the 

 

240 major human-related  process while  forest clearance  tended  to  decline. Maximum  degradation  was 
 

observed when the old-growth forest cover was between 30% and 40% and the deforestation rate was 

less than 1% yr-1. Large fragments of old-growth forest were rapidly divided and isolated. Pastureland 

expansion occurred primarily in forest areas located in deep soils. 

Phase II:  Old growth forests lost from 65% to 80% of their original extent (Fig. 5). Landscape was 
 

245 increasingly affected by forest clearance while forest degradation tended to decline. The landscape 
 

became more dominated by disturbed forest and shrubland. The deforestation rate was higher than in 

Phase I (up to 1.5% yr-1). Old-growth forest was characterised by a loss of fragments rather than a 
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division of them as recorded in Phase I. A change in direction in patch density was observed when 
 

old-growth forests dropped to 30% of the landscape. Deeper soils (>1 m depth) presented a lower 
 

250 amount of old-growth forest cover than in Phase I. The highest rates of forest plantations of exotic 
 

species are observed in this phase. 

 
Phase III:  Old growth forests lost from 80% to 90% of their original extent (Fig. 5). This landscape 

 

was more affected by forest clearance than by degradation. The landscape became dominated by 

pastureland. The deforestation rate was lower (0.4 to 1.0%yr-1) than in Phase II and relatively similar 

255 to Phase I. A slight increase in the number of forest patches was associated with changes from 
 

shrubland to secondary forest in some specific sites. Commercial forest plantations of exotic species 

continued to be established across the landscapes but at a lower rate than in Phase II.  

 

 

 
 

260 4. DISCUSSION 
 

Previous attempts to classify landscape alteration have distinguished four states of habitat 

destruction based on structural attributes of the landscape (Hobbs & Hopkins, 1990; McIntyre & 

Hobbs, 1999): intact (>90% of habitat remaining), variegated (60-90%), fragmented (10-60%) and 

relictual (<10%). On the other hand, Forman (1995) identifies five main ways in which humans can 
 

265 alter a landscape spatially: perforation, dissection, fragmentation, shrinkage, and attrition. Although all 
 

of these models of landscape change recognise a continuum of habitat modification and destruction, 

they do not illustrate how such processes gradually alter landscape composition and configuration 

(spatial patterns). Also, these previous models fail to consider explicitly the complex linkages between 

spatial patterns and human processes that occur as a forest landscape is transformed by  anthropogenic 
 

270 activities. 
 

In the present work, we documented the interaction between spatial patterns and human 

processes of land cover change to examine how real landscapes change. In particular, we observed 

distinctive spatial patterns and human processes as the loss of old-growth forests increased from 40% 

to 90% of its original extent (Fig. 5). For values of forest loss lower than 40%, it is highly probable  
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275 that forest loss and fragmentation are the major processes of landscape transformation (Echeverría et 
 

al., 2008). 

 
In Phase I, forest degradation and fragmentation increase to its maximum when old-growth 

forest loss is between 60% and 70%. Forest logging for firewood and timber, livestock grazing and 

fire are more intense and are the main driving factors that lead to a forest degradation in this phase 
 

280 (Echeverría  et al., 2007b). In  the  study areas, forest degradation  and  clearance  for  agriculture   are 
 

highly related to subsistence farms, which use the forest in an unsustainable way and are affected by 

the lack of productive alternatives (Carmona et al., 2010; Elmúdesi & Cox, 2006). Increasing trends in 

forest degradation have also been reported for accessible rain forests in primary forest-dominated 

landscapes in Papua New Guinea (Shearman et al., 2009), where the primary forest is degraded owing 
 

285 to   forest   logging.   Diverse   forest   landscapes   around   the   world   have   exhibited   a  consistent 
 

fragmentation of forest habitat at initial stages of landscape alteration (Echeverría et al., 2006; Ranta et 

al., 1998; Zipperer et al., 1990). Forest fragmentation is not a random process, but it follows a specific 

pattern across the landscape (Lindenmayer and Fischer 2006). In the present study, fragmentation 

occurred preferably in forests located in deeper soils. Evidence from  other studies shows that changes 
 

290 in spatial pattern are driven by various landscape attributes (Iverson, 1988) such as soil fertility (Alig 
 

et al., 2005). These changes can be easily observed at this state of landscape alteration, where areas 

more profitable for agriculture are associated with forest fragmentation, while in areas with poorly 

drained soils agricultural production is almost unfeasible and fragmentation does not occur (Baldi et 

al., 2006). 
 

295 In Phase II there are substantial areas of degraded forests that are susceptible to clearing for 
 

pastureland. A similar trend was observed in Belize, where the major human process is the clearance 

of forests for cattle when 67% of the forest cover has been eliminated (Wyman & Stein, 2010). The 

highest  rate  of  deforestation  was  observed  in  Phase  II  of  the  gradient  of  landscape  alteration. 

Similarly, high rates of deforestation have been reported in other study areas when between 60% and 
 

300 80% of forest cover has been lost (Cayuela et al., 2006; Ite & Adams, 1998; Schulz et al.,  2010). 
 

In Phase II, the loss of old-growth forest brings substantial changes in landscape connectivity, 

with changes in metric directions and landscape composition. A steady increase of patch density until  
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50% of forest cover has been lost, followed by a decline in the patch density is also observed in studies 
 

conducted using modelled deforestation maps (Trani & Giles, 1999) and satellite imagery-based maps 
 

305 (Zipperer et al., 1990). These studies also conclude that forest contiguity declines with each stage of 
 

deforestation, dropping rapidly after aggregate forest loss surpassed 75%. 

 
In Phase II, forest cover tended to decline in deeper soils in the study landscapes. Consistent 

with previous studies (Fu et al., 2006; Sklenicka & Salek, 2008), forests on high quality, deeper soils, 

are progressively cleared for pastureland. At this stage of landscape alteration, most of the remaining 
 

310 old-growth forest has progressively been converted into shrubland or pastureland as a consequence of 
 

a greater need for forage. Diverse landscapes with conversion of forest into cropland and pastureland 

exhibit an extensification of agricultural land (Mottet et al., 2006), as producers respond to changes in 

food consumption habits and market requirements (Matson et al., 1997). However, this general trend 

to homogenisation of the landscape can also be altered as a consequence of enforced reforestation laws 
 

315 (Zeledon & Kelly, 2009). This was observed in the study area, where the highest rate of subsidised 
 

plantations of exotic species such as E. globulus and E. nites were concentrated in this phase of 

landscape alteration. 

In Phase III landscapes become more dominated by pastureland and clearance is the major 
 

human process. Landscapes with no limits to agricultural expansion can reach the spatial pattern 
 

320 observed  in  Phase  III  that  describes  a  largely  deforested  landscape  with  few  small  and  poorly 
 

connected forest patches, surrounded by degraded forest or pasture land (Gasparri & Grau, 2009). At 

this stage, accessibility becomes a key variable in determining when forest patches would be cleared 

as the landscape is transformed to agricultural land (Nagendra et al., 2003). If the current rates of 

afforestation with exotic species remain constant, it is possible to expect a further homogenisation of  
 

325 the landscape by one or two dominant tree species (Echeverría et al., 2006; Padilla et al.,  2010). 
 

Similar to other landscapes (Evans & Kelley, 2008), the slight increase in the number of forest 

patches and the changes in trajectories indicate the existence of some forest regrowth in deforested 

areas.  This  can  be  related  to  land  abandonment  where  forest  returns  as  a  result  of unregulated 

productive cycle (Carmona et al., 2010; Geri et al., 2010). Recent research conducted in the study 
 

330 landscapes also confirm land abandonment in remote areas located far from production centres, which 
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produce low yields at high cost (marginal land) (Carmona et al., 2010; Díaz et al., 2011). Forest 

regrowth in accessible areas, resulting from the abandonment of marginally productive agricultural 

farms owing to agricultural intensification (Nagendra et al., 2003), has been observed after a period of 

forest loss and fragmentation (Evans & Kelley, 2008). Forest regrowth can lead to a defragmentation 
 

335 (Hale et al., 2001) of forest patches in marginal lands while in other places old-growth forest is 
 

progressively cleared (Fig. 7). 

 

 
 

CONCLUSION 
 

The  processes  of clearance, fragmentation  and  degradation  of forest cover as well as forest 
 

340 regrowth operate in spatially differentiated patterns and their occurrences vary over time according  to 
 

the phase of landscape alteration. Forest clearance for pastureland can be expected along the entire 

gradient of landscape alteration, while forest fragmentation and degradation are only dominant until 

certain thresholds of forest loss. In advanced states of landscape alteration, forest regrowth appears as 

a process modifying the spatial pattern of the landscape. 
 

345 The three phases of landscape alteration offer a framework that could potentially be applied 
 

and further tested in other regions, leading towards a generalised understanding of how landscapes 

change in the real world. 

 

 

 
 

350 
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FIGURE CAPTIONS 

 

 
 

Figure 1. Location of study areas in southern Chile representing a gradient of landscape 

alteration states: L1 (initial), L2 (intermediate), and L3 (advanced). 

Figure 2. Temporal variation in the proportion of the major land cover types in L1 (initial stage 

of landscape alteration), L2 (intermediate), and L3 (advanced). 

Figure 3. Major trajectories of land cover change and their contributions to net change in 

percentage of the total area of the respective land cover types in L1 (initial stage of landscape 

alteration), L2 (intermediate), and L3 (advanced). Lines represent net changes > 5%. 

Figure 4. Temporal variations in landscape pattern indices for native forest cover in the three 

study areas. 

Figure 5. Temporal variation of major landscape patterns and processes observed along a 

gradient of loss of old-growth forest in three study landscapes in southern Chile. Forest 

regrowth is the transition from pastureland to shrubland and arboreus shrubland; forest 

clearance is the transition from old-growth forest, disturbed forest, arboreus shrubland and 

shrubland to pastureland; forest degradation is the transition from old-growth forest to disturbed 

forest, arboreus shrubland and shrubland. 
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