

BIBLIOTECA

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

Document downloaded from the institutional repository of the University of
Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Fernández, J., Parra, P., Sánchez-Prieto, S., Polo, O. & Bernat, G. 2015,

"Automatic verification of timing constraints for safety critical space

systems", in Proceedings DASIA 2015, DAta Systems In Aerospace, 19-21

May, 2015, Barcelona, Spain. Edited by L. Ouwehand, ESA-SP, vol. 732, id 63

Available at http://adsabs.harvard.edu/abs/2015ESASP.732E..63F

 © 2015 ESA

(Article begins on next page)

http://ebuah.uah.es/dspace/
http://adsabs.harvard.edu/abs/2015ESASP.732E..63F

AUTOMATIC VERIFICATION OF TIMING CONSTRAINTS FOR SAFETY CRITICAL

SPACE SYSTEMS

Javier Fernandez1, Pablo Parra1, Sebastian Sanchez Prieto1, Oscar Polo1, and Guillem Bernat2

1Space Research Group, Universidad de Alcala, Madrid, Spain
2Rapita Systems Ltd, York, England, UK

ABSTRACT

In this paper is presented an automatic process of verifi-
cation. We focus in the verification of scheduling analy-
sis parameter. This proposal is part of process based on
Model Driven Engineering to automate a Verification and
Validation process of the software on board of satellites.
This process is implemented in a software control unit
of the energy particle detector which is payload of So-
lar Orbiter mission. From the design model is generated
a scheduling analysis model and its verification model.
The verification as defined as constraints in way of Finite
Timed Automatas. When the system is deployed on tar-
get the verification evidence is extracted as instrumented
points. The constraints are fed with the evidence, if any
of the constraints is not satisfied for the on target evidence
the scheduling analysis is not valid.

Key words: V&V; Automatic Verification; Embedded
Software; Energy Particle Detector; MDE ; CBSE.

1. INTRODUCTION

The verification of embedded software in space appli-
cations is one of the critical tasks in the development
process. The verification activities are specified in de-
tail in several standards, in particular ECCS-E-ST-E40
(1) for the development of space applications. The intro-
duction of model-based software engineering approaches
(MDE) (2) and component-based software development
(CBSE) (3) introduces new challenges in the verifica-
tion of the overall system. The current effort required
to provide enough evidence is costly and time-intensive.
The increase in complexity, functionality and overall size
of software in space makes the verification aspects even
more critical. In this context, approaches that provide au-
tomatic verification of evidence as part of the software
development process result in a higher level of assur-

This work were supported by the MINECO under the project

ESP2013-48346-C2-2-R

ance, therefore addressing the growth in complexity with
a lower overall effort and cost.

In the context of this paper, we draw a very clear distinc-
tion between Validation and Verification (V&V)(4). In
the context of the ”V” development process, verification
is the process of reviewing and ensuring that each step of
the development process is consistent and complete in it-
self. This process can be illustrated by asking the reader
a simple question (are we building the product right?),
whereas validation is the process of testing that the pro-
cess meets the requirements (”are we building the right
product?”). In the context of this paper, verification is the
process of producing evidence of reviewing the evidences
that assure the software conforms with requirements, de-
sign constraints and analysis hypotheses.

A motivational example is the verification objective re-
lated to schedulability analysis. This includes specify-
ing the scheduling type (sequential or multi-task), the
scheduling model (e.g. cyclical or preemptive, fixed
or dynamic priority) and the scheduling algorithm (e.g.
fixed-priority preemptive). In multi-task systems, the
analysis also takes into account how resources are shared,
and what parameters of the scheduling, including periods,
deadlines and worst-case execution times, are used. From
all this information, and by applying schedulability anal-
ysis, we can calculate the worst-case response time and
determine if deadlines are always met (5). The schedula-
bility analysis is correct as long as the input parameters
are correct and guaranteeing that the implementation fol-
lows the scheduling model 2. The key weakness of this
approach is to provide correct parameters to the schedul-
ing model. If the parameters are not correct, the obtained
results are unreliable. This could happen if:

• The tasks are executed with wrong priority or peri-
ods.

• The Real Time Operating System (RTOS) imple-
ments priority levels different from the programmers

2The assurance that the scheduling tool and the implementation of

the schedulability analysis is correct belongs to the realm of tool quali-

fication and is not addressed in this paper

Proc. ‘DASIA 2015’, DAta Systems In Aerospace’

Barcelona, Spain, 19–21 May 2015 (ESA SP-732, September 2015)

assumption3

• The estimated WCET is not correct.

• The RTOS implements the scheduling incorrectly.

• There exists a priority inversion not addressed in the
analysis 4

• The hardware is configured incorrectly leading to a
time base on the RTOS that is not real-time.

• Interrupts are assumed to be disabled, but an im-
proper configuration of interrupt handlers still al-
lows interrupts to be raised.

• There are operations on shared resources that have
not been modeled by the schedulability analysis. A
typical example of these operations is hidden mu-
texes. These mutexes are inside either library mod-
ules or the RTOS.

In any of these scenarios the behavior of the system on
target is different from the one obtained from the mod-
els and therefore any schedulability analysis is wrong.
The problem is therefore how to provide evidence that
show whether the assumptions under which the schedul-
ing model is performed are or are not preserved in the im-
plementation. A manual process for determining all this
evidence is not only extremely effort-intensive, but error-
prone and impractical. Some of these scenarios may lead
to a non-functioning system and, as such, would be rela-
tively easy to resolve. The problem arises from those rare
events that do not manifest themselves until the integra-
tion tests. Consequently, they can be by nature extremely
difficult to find and replicate.

The hypothesis of this paper is that there exists a pro-
cess for automatic verification of a set of assumptions
and properties from high level models. This process can
be fully supported by tools that are able to perform an
automatic verification of the properties. This results in
greater confidence in the correctness of the analysis and
the implementation. At the same time, it enables an early
identification of the violations of these assumptions.

The underlying principle that has motivated this work is
the statement”you shall trust no one”. By providing a
systematic and automatic process for verifying each of
the transformations from evidence of the execution of the
system in the final target it is possible to reduce, if not
remove, the need for assumptions that a transformation is
correct, or at least provide evidence that a set of hypothe-
ses or assumptions are preserved. We understand that it is
not possible to provide perfect bug-free systems, but the
quality of current development practices can be raised at
a lower cost by adopting a systematic approach in order
to verify the expected behavior of the final system.

3large numbers are assigned to lower priorities instead of low num-

bers to low priorities or vice versa.
4A notorious example of this situation is the Mars Pathfinder priority

inversion.

The process is based on the specification of the assump-
tions at the different stages of the design and analysis
process as constraints described as finite timed automata.
The alphabet of these constraints are events in the ex-
ecution of the final system. An instrumentation step
adds lightweight placeholders in the source code to ob-
serve these events. This can be performed by a trans-
parent automatic process. As a consequence, the exe-
cution of the system on target (or representative hard-
ware) results in a timing trace of the execution that can
then be checked against the list of constraints. A tool
can then produce a report that shows that all constraints
have always been satisfied (positive constraints) or that a
constraint has never been achieved (negative constraints).
The end result is a report that produces the necessary ev-
idence (qualifiable) that can be used as part of the certifi-
cation process.

2. THE PROCESS TOOLSET

The EDROOM (6) tool is based on a Component-Based
Software Engineering model (CBSE). EDROOM is sim-
ilar to tools such as: SOFA and ObjectTime (7; 8) (in fact
EDROOM is inspired by latter, but more focused on em-
bedded systems). It defines the communication among
components in terms of protocols, and the components
instantiate ports associated to protocols as communica-
tion interfaces. The behaviour description of the compo-
nents is defined as ROOMcharts. ROOMcharts are based
on Harel state charts (9), and they are semantically equiv-
alent to UML2 statecharts (10).

The EDROOM tool generates code application from the
EDROOM model description. The code generated is sup-
ported by a component runtime, called EDROOM Ser-
vice Library, that is based on a two-layer architecture.
The top layer, which is independent of the platform, pro-
vides a service interface for code application (task and
task priority management, subscription to message ser-
vices, mutexes, etc.); the bottom layer provides the inter-
face with the RTOS. The current version of the EDROOM
runtime supports RTEMS, CMX, RTAI and Linux.

Model-driven engineering (MDE) techniques support the
definition of software processes. It defines the process as
models and model transformations. This implies a high
degree of model cohesion and continuity of the models.
In this paper, this paradigm is supported by the MICOBS
framework (11). The MICOBS targets the requirements
of the development process of embedded real-time sys-
tems, as it is the on-board satellite software. Central to
the framework is a platform-aware approach for model
annotation. It enables the introduction of extra-functional
properties in the model specific to each potential deploy-
ment platform and configuration parameters. In addition,
it enables the definition of transactional models that make
it easy to implement model transformations. The trans-
actional analysis is the main goal of this work. As part
of the automatic transformation, a set of constraints that
define the transformation are also generated. These con-

get. Evidence verify on one hand, the behaviour and the
WCET as annotations in the transactional models, and on
the other hand, that the transformations from the design
model to the analysis model are correct. During the inte-
gration test a combination of profiles to be verified may
be chosen. The steps that have to be followed are: 1)
enable the profiles to be verified, 2) automatically gener-
ate and implement the Timed Finite Automata (TFA), 3)
run the integration test and 4) extract the target trace us-
ing a data logger or logic analyzer and verify the restric-
tions with the profiles that were generated before using a
Rapicheck tool.

The defined profiles are: 1) End-to-End flow
profile, responsible for checking that the
TSAMMessageHandler sequence triggered by
an event is defined in the transactional model, 2)
TSAMMHIItems WCET profile that checks if the
WCET associated with the TSAMMHIItems is listed
in the transactional models, 3) Platform jitter and
WCET runtime primitives profile that verifies if the
WCET and jitters associated with the platform and
run-time are correct, 4) Real-time requirements dead-
lines profile that verifies if the deadlines are defined.
It must check that the deadline is not greater than the
elapsed time from the activation of the event to the
TSAMMessageHandlerItem execution deadline,
and 5), Event pattern trigger profile that verifies if the
parameters associated with the activation patterns are
specified, if the WCET and the jitter are correct and
if the data obtained from the tests do not exceed the
WCET. In this paper we will focus on the End-to-End
and Real-time situation profile.

With the aim of demultiplexing different events a point
identifier has been defined. The reason for this implemen-
tation is that the same TSAMMHItem can be executed
for different events. If separate checking is desired for
two execution sequences associated with two events that
run the same TSAMMHItem, the trace must be demulti-
plexed. It consists of the following elements: 1) Event-
seed, which identifies a separate event and it is randomly
generated. 2) Event-identifier, which identifies the event.
3) The identifier of the specific point to be checked.

4.1. End-to-End profile

For each event, a verification element is generated in the
form of a Rapicheck FTA. The transactional models re-
quired to generate this profile are the real-time require-
ment model, the transactional component model, and the
flat system deployment model. The TSAMEvents are
extracted from the real-time requirement model. The se-
quence of actions that makes the system react can be
extracted from each TSAMEvent. The first element
in this sequence is the TSAMMessageHandler that
is associated with the (port, message) tuple, and with
the component that initially handles the event. All the
TSAMMessageHandlers are contained in the transac-
tional component model along with each TSAMHItems.

Each TSAMHItems is transformed into a Rapicheck
state. The precedence of the states will depend on the
order defined in the TSAMMessageHandler and how
the TSAMMHISend or TSAMMHIInvoke are resolved.
In order to resolve that TSAMMessageHandler reacts
to the TSAMMHISend or TSAMMHIInvoke, the con-
nections between ports must be known. These connec-
tions are defined in the Flat System deployment model.

The TSAMMHIInvoke and TSAMMHISend types gen-
erate new dependencies on other components that have
to be resolved because these operations model the com-
munication between components and generate new sub-
sequences of states in the resulting Rapicheck FTA.

The thread that executes a TSAMMHInvoke waits
for the reception of a TSAMMHIReply from the re-
active component that handles the synchronous mes-
sage. This behaviour is solved by first seeking the
TSAMSynchronous that satisfies the synchronous call
and then by generating two states in Rapicheck, one cor-
responding to TSAMMHInvoke and then another corre-
sponding to TSAMMHIReply.

The TSAMMHISend are more complex to solve due to
the fact that they are executed in the context of another
task. Execution thus depends on the task priority and
systems architecture. In mono-processor systems such as
ERC-32, LEON2, etc., the TSAMMessagehandlers
that handle the message are executed sequentially so the
issue is solving the order of precedence. This will de-
pend on the priority of each component. The algorithm
is a tree search, where each TSAMMessageHandler is
a node, and the arcs contain the priority associated with
the component where the TSAMMessageHandler first
visits the highest priority nodes. The visit order of the
TSAMMessageHandler is the sequence in which the
TSAMMhItems must be included.

A set of TSAMMessagehandler can be associated
with the same (port, message) tuple. This struc-
ture is transformed in Rapicheck, generating different
arcs, one for each TSAMMessagehandler. The
TSAMMhItems of each one is solved separately us-
ing the transformation rules described above. It should
be noted that for each branch a list of TSAMMHISend
must be resolved and the order of precedence will be al-
tered. If the TSAMMhItems sequence is the same for
two branches, they are simplified. This aspect will be
clarified in 6.

4.2. Real-time situation profile

This profile allows the real-time situations defined in the
rt-requirement model to verified. We saw in section 2
that each TSAMMessageHandler in the transactional
component model can have a relationship 1 to n with
real-time situations. This means that the elements of
these TSAMMessageHandlers, the TSAMMhItems,
are only executed when a specific real-time situation is
activated in the system. A real-time situation consists of

an identifier and a modulation point. A modulation point
consists of two parameters, the real-time input status and
the TSAMMessageHandler indicating the activation
of the real-time situation. When a change in a real-time
situation is produced, the new TSAMEvents can only
execute the TSAMMessageHandler corresponding to
this real-time situation.

A Rapicheck FTA is generated in order to check that the
order of real-time situation activation corresponds to the
defined modulation points. This allows for the gener-
ation of a state for each real-time situation. The arcs
of this FTA are the modulation points, and to transit
from one state to another is through the execution of the
TSAMMessageHandlers which are selected as modu-
lation point.

Once a real-time situation is activated, it must be veri-
fied that the TSAMMessageHandlers are related to
that real-time situation. In order to verify this aspect,
one Rapicheck FTA per real-time situation is generated
and one per TSAMEvent. This FTA is generated in the
same way as those for the End-to-End profile. but they
will only contain the TSAMMessageHandlers related
to the real-time situation to be verified. The elements of
the trace generated by the integration test may contain
more than one real-time situation. This implies that the
trace must be divided into as many traces as there are de-
fined real-time situations, in order to verify each of the
FTAs relating to each TSAMEvent and real-time situ-
ation. The division is easy to perform since the modu-
lation points become trace elements. It should be noted
that the TSAMEvent for which their execution was not
finalized should be included in this trace. These elements
are easy to identify as the event-seed identifiers after the
modulation point are still those belonging to the previous
real-time situation. Once each FTA is fed, it is possible
to check if the evidence matches the model.

5. INSTRUMENTATION AND OVERHEADS

This proposed verification is based on evidences that are
obtained by code instrumentation. This instrumentation
generates overheads in the execution times so this has to
be taken into account. It would be interesting to gener-
ate the smallest number of elements to be instrumented
in order to verify all the previously cited profiles. The
instrumentation policy is performed for the profiles that
have been enabled, so that the instrumentation code is the
smallest possible in order to allow all the profiles to be
observed. In fact, if the End-to-End profile is active only
the TSAMMessageHandlerItem, WCET profile will
generate new instrumentation points, meaning that addi-
tional overhead is avoided. It should be noted that the
overhead will depend on the number of instrumentation
points and on its execution periodicity. For example, ele-
ments to be verified relative to jitters or operating system
context switches generate a high overhead in the system.

One of the most effective ways for reducing the over-

head is through the specification of levels of de-
tail for each of the profiles. A total of three lev-
els of detail have been defined. The most de-
tailed level takes into account the TSAMMHItem

into the account, the intermediate level takes into
account the theTSAMBasicHandler into account
and, finally, the lowest level takes into account the
TSAMMessageHandler into account. This means that
only the first and last elements in the level of detail along
with the connections points are instrumented with other
TSAMMessagehandlers such as TSAMMHISend.
For example, a TSAMBasicHandler level of detail
that contains a TSAMMHISend is instrumented in the
following way: the start of the first TSAMMHItem of
the TSAMBasicHandler, the first TSAMMHItem of
the start of the TSAMMessagehandlers that is re-
solved with the TSAMMHISend and the end of the last
TSAMMHItem; this way the WCET will correspond to
the sum of the TSAMMHItems contained in the se-
quence.

6. CASE STUDY

The aim of this study is to verify the flight software for the
Instrument Control Unit (ICUSW) of the Energetic Parti-
cle Detector (EPD) instrument on board of the Solar Or-
biter satellite . The ICUSW is the interface between the
EPD sensors and the missions spacecraft. The onboard
computer interface provides management of the telecom-
mands that change the instruments behaviour. The sen-
sors interface manages the telemetry and housekeeping.

Figure 3 shows a diagram of the ICUSWs EDROOM
model. Four tasks have been defined to meet the func-
tional requirements. The specific roles of each one are
the following:

EPDManager captures the telecommands sent from the
spacecraft and executes those with highest priority as
soon as possible. The rest of the telecommands are for-
warded to other components, depending on the destina-
tion of the relative service. This component also han-
dles the critical events relating to both hardware and
software. HK FDIRManager manages the ICUSWs
housekeeping service and the fault detection procedures.
It notifies the EPD Manager of any detected critical
event. It also executes telecommands related to the
housekeeping service and the fault detection procedures.
SensorTMManager captures the telemetry from the
sensors and forwards it to the spacecraft onboard com-
puter. The telemetry transmission rate is controlled ac-
cording to a maximum limit. SensorTMManager exe-
cutes, also, the telecommands related to the science ser-
vice. Finnaly, BKG TC Executor executes the back-
ground telecommands forwarded by the EPDManager
component.

EPDManager, HK FDIR Manager and SensorTM

Manager tasks require the use of periodic timers. The
EDPManager task is subscribed to the run-time excep-

	Automatic_Fernandez_DASIA_2015 (portada)
	Automatic_Fernandez_DASIA_2015 (articulo)

