£2% Universidad
#8: de Alcald

BIBLIOTECA

Document downloaded from the institutional repository of the University of
Alcala: http://ebuah.uah.es/dspace/

This is a postprint version of the following published document:

Fernandegz, J., Parra, P., Sanchez-Prieto, S., Polo, O. & Bernat, G. 2015,
"Automatic verification of timing constraints for safety critical space
systems", in Proceedings DASIA 2015, DAta Systems In Aerospace, 19-21
May, 2015, Barcelona, Spain. Edited by L. Ouwehand, ESA-SP, vol. 732, id 63

Available at http://adsabs.harvard.edu/abs/2015ESASP.732E..63F

© 2015 ESA

(Article begins on next page)

[groisle

This work is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License.

http://ebuah.uah.es/dspace/
http://adsabs.harvard.edu/abs/2015ESASP.732E..63F

AUTOMATIC VERIFICATION OF TIMING CONSTRAINTS FOR SAFETY CRITICAL
SPACE SYSTEMS

Javier Fernandez', Pablo Parra!, Sebastian Sanchez Prieto', Oscar Polo!, and Guillem Bernat?

ISpace Research Group, Universidad de Alcala, Madrid, Spain
2Rapita Systems Ltd, York, England, UK

ABSTRACT

In this paper is presented an automatic process of verifi-
cation. We focus in the verification of scheduling analy-
sis parameter. This proposal is part of process based on
Model Driven Engineering to automate a Verification and
Validation process of the software on board of satellites.
This process is implemented in a software control unit
of the energy particle detector which is payload of So-
lar Orbiter mission. From the design model is generated
a scheduling analysis model and its verification model.
The verification as defined as constraints in way of Finite
Timed Automatas. When the system is deployed on tar-
get the verification evidence is extracted as instrumented
points. The constraints are fed with the evidence, if any
of the constraints is not satisfied for the on target evidence
the scheduling analysis is not valid.

Key words: V&V; Automatic Verification; Embedded
Software; Energy Particle Detector; MDE ; CBSE.

1. INTRODUCTION

The verification of embedded software in space appli-
cations is one of the critical tasks in the development
process. The verification activities are specified in de-
tail in several standards, in particular ECCS-E-ST-E40
(1) for the development of space applications. The intro-
duction of model-based software engineering approaches
(MDE) (2) and component-based software development
(CBSE) (3) introduces new challenges in the verifica-
tion of the overall system. The current effort required
to provide enough evidence is costly and time-intensive.
The increase in complexity, functionality and overall size
of software in space makes the verification aspects even
more critical. In this context, approaches that provide au-
tomatic verification of evidence as part of the software
development process result in a higher level of assur-

This work were supported by the MINECO under the project
ESP2013-48346-C2-2-R

Proc. ‘DASIA 2015°, DAta Systems In Aerospace’

ance, therefore addressing the growth in complexity with
a lower overall effort and cost.

In the context of this paper, we draw a very clear distinc-
tion between Validation and Verification (V&V)(4). In
the context of the ”V” development process, verification
is the process of reviewing and ensuring that each step of
the development process is consistent and complete in it-
self. This process can be illustrated by asking the reader
a simple question (are we building the product right?),
whereas validation is the process of testing that the pro-
cess meets the requirements (“are we building the right
product?”). In the context of this paper, verification is the
process of producing evidence of reviewing the evidences
that assure the software conforms with requirements, de-
sign constraints and analysis hypotheses.

A motivational example is the verification objective re-
lated to schedulability analysis. This includes specify-
ing the scheduling type (sequential or multi-task), the
scheduling model (e.g. cyclical or preemptive, fixed
or dynamic priority) and the scheduling algorithm (e.g.
fixed-priority preemptive). In multi-task systems, the
analysis also takes into account how resources are shared,
and what parameters of the scheduling, including periods,
deadlines and worst-case execution times, are used. From
all this information, and by applying schedulability anal-
ysis, we can calculate the worst-case response time and
determine if deadlines are always met (5). The schedula-
bility analysis is correct as long as the input parameters
are correct and guaranteeing that the implementation fol-
lows the scheduling model 2. The key weakness of this
approach is to provide correct parameters to the schedul-
ing model. If the parameters are not correct, the obtained
results are unreliable. This could happen if:

e The tasks are executed with wrong priority or peri-
ods.

e The Real Time Operating System (RTOS) imple-
ments priority levels different from the programmers

2The assurance that the scheduling tool and the implementation of
the schedulability analysis is correct belongs to the realm of tool quali-
fication and is not addressed in this paper

Barcelona, Spain, 19-21 May 2015 (ESA SP-732, September 2015)

assumption’
e The estimated WCET is not correct.
e The RTOS implements the scheduling incorrectly.

e There exists a priority inversion not addressed in the
analysis *

e The hardware is configured incorrectly leading to a
time base on the RTOS that is not real-time.

o Interrupts are assumed to be disabled, but an im-
proper configuration of interrupt handlers still al-
lows interrupts to be raised.

e There are operations on shared resources that have
not been modeled by the schedulability analysis. A
typical example of these operations is hidden mu-
texes. These mutexes are inside either library mod-
ules or the RTOS.

In any of these scenarios the behavior of the system on
target is different from the one obtained from the mod-
els and therefore any schedulability analysis is wrong.
The problem is therefore how to provide evidence that
show whether the assumptions under which the schedul-
ing model is performed are or are not preserved in the im-
plementation. A manual process for determining all this
evidence is not only extremely effort-intensive, but error-
prone and impractical. Some of these scenarios may lead
to a non-functioning system and, as such, would be rela-
tively easy to resolve. The problem arises from those rare
events that do not manifest themselves until the integra-
tion tests. Consequently, they can be by nature extremely
difficult to find and replicate.

The hypothesis of this paper is that there exists a pro-
cess for automatic verification of a set of assumptions
and properties from high level models. This process can
be fully supported by tools that are able to perform an
automatic verification of the properties. This results in
greater confidence in the correctness of the analysis and
the implementation. At the same time, it enables an early
identification of the violations of these assumptions.

The underlying principle that has motivated this work is
the statement”you shall trust no one”. By providing a
systematic and automatic process for verifying each of
the transformations from evidence of the execution of the
system in the final target it is possible to reduce, if not
remove, the need for assumptions that a transformation is
correct, or at least provide evidence that a set of hypothe-
ses or assumptions are preserved. We understand that it is
not possible to provide perfect bug-free systems, but the
quality of current development practices can be raised at
a lower cost by adopting a systematic approach in order
to verify the expected behavior of the final system.

3large numbers are assigned to lower priorities instead of low num-
bers to low priorities or vice versa.

4 A notorious example of this situation is the Mars Pathfinder priority
inversion.

The process is based on the specification of the assump-
tions at the different stages of the design and analysis
process as constraints described as finite timed automata.
The alphabet of these constraints are events in the ex-
ecution of the final system. An instrumentation step
adds lightweight placeholders in the source code to ob-
serve these events. This can be performed by a trans-
parent automatic process. As a consequence, the exe-
cution of the system on target (or representative hard-
ware) results in a timing trace of the execution that can
then be checked against the list of constraints. A tool
can then produce a report that shows that all constraints
have always been satisfied (positive constraints) or that a
constraint has never been achieved (negative constraints).
The end result is a report that produces the necessary ev-
idence (qualifiable) that can be used as part of the certifi-
cation process.

2. THE PROCESS TOOLSET

The EDROOM (6) tool is based on a Component-Based
Software Engineering model (CBSE). EDROOM is sim-
ilar to tools such as: SOFA and ObjectTime (7; 8) (in fact
EDROOM is inspired by latter, but more focused on em-
bedded systems). It defines the communication among
components in terms of protocols, and the components
instantiate ports associated to protocols as communica-
tion interfaces. The behaviour description of the compo-
nents is defined as ROOMcharts. ROOMcharts are based
on Harel state charts (9), and they are semantically equiv-
alent to UML2 statecharts (10).

The EDROOM tool generates code application from the
EDROOM model description. The code generated is sup-
ported by a component runtime, called EDROOM Ser-
vice Library, that is based on a two-layer architecture.
The top layer, which is independent of the platform, pro-
vides a service interface for code application (task and
task priority management, subscription to message ser-
vices, mutexes, etc.); the bottom layer provides the inter-
face with the RTOS. The current version of the EDROOM
runtime supports RTEMS, CMX, RTAI and Linux.

Model-driven engineering (MDE) techniques support the
definition of software processes. It defines the process as
models and model transformations. This implies a high
degree of model cohesion and continuity of the models.
In this paper, this paradigm is supported by the MICOBS
framework (11). The MICOBS targets the requirements
of the development process of embedded real-time sys-
tems, as it is the on-board satellite software. Central to
the framework is a platform-aware approach for model
annotation. It enables the introduction of extra-functional
properties in the model specific to each potential deploy-
ment platform and configuration parameters. In addition,
it enables the definition of transactional models that make
it easy to implement model transformations. The trans-
actional analysis is the main goal of this work. As part
of the automatic transformation, a set of constraints that
define the transformation are also generated. These con-

straints can be automatically verified by evidence of the
execution of the final systems execution on the target.
The transactional model 1s widely explained in section
3

RapiCheck is a tool developed by Rapita Systems Lid.
as part of their toolset for software verification: Rapita
Verification Suite (RVS)®. Constraints are specified in the
RapiCheck language and provided as an input on the in-
strumentation process. This process determines the al-
phabet of the constraints as events in the code execu-
tion (for example, entry points in a function call, end
of a function, etc.) and automatically adds instrumen-
tation points to the code which will generate a trace of
the execution when the system runs. When the system is
compiled and run on the target, a data collection mecha-
nism captures the trace of the execution (only the events
that need to be observed) and sends the trace to a host.
The final stage consists of processing the trace against
the constraints and providing a report that shows which
constraints are satisfied or failed and in which cases they
have been satisfied in the trace. The constraint language
of RapiCheck is based on a timed automata with arbitrary
guards.

Figure 1 shows the global process that automates the
generation of the scheduling analysis and the RapiCheck
which verifies a set of evidence in the target. The struc-
tures of transactional models of analysis are generated
from the EDROOM models. In unitary tests these models
of analysis are annotated along with the execution time.
This is done thanks to the RVS 3.0 tool and the use of
a logic analyzer. From transactional models of analysis,
both the scheduling analysis model as well as the corre-
sponding models of verification, can be generated.

3. TRANSACTIONAL ANALYSIS MODELS

The transactional analysis models are composed for a
set of models. Each of these models describes, from
an orthogonal perspective, the real-time analysis based
on the CBSE paradigm. The Transactional Component
Description AOM is responsible for describing the extra-
functional properties related to the behaviour of the com-
ponents. The Transactional Platform Description model
is responsible for defining the extra-functional properties
of the platform (run-time and hardware). The Flat Sys-
tem Deployment AOM is responsible for describing the
system depending on the component composition. Fi-
nally, the Transactional Real-Time Requirement model
describes the events and the time constraints. The fol-
lowing paragraphs will provide a detailed description of
each one of the afore mentioned models.

The Transactional Component Description model de-
scribes the reactive behaviour of the components
in terms of the messages that can be received.
Each action is specified using an artifact such as

Shitp:/fwww.rapitasystems.com/

TSAMMessageHandler. This elements is com-
posed of the definition of a tuple (port, mes-
sage) and by a sequence of execution items called
TSAMBasicHandler. The tuple (port, message) in-
dicates when the handler TSAMMessageHandler is
triggered, and the TSAMBasicHandler elements spec-
ify the sequence of steps that comprises the message re-
sponse.

There are two types of TSiMMesssageHandler,
which can be categorized according to the mes-
sage that triggers them. The definition of
TSAMAsynchMsgHandler is shown in Figure 2
and it models the response to an asynchronous message
reception. A TSAMAsynchMsgHandler is triggered
by receiving an asynchronous message from another
component, or from the run-time system as a result of
an event. The other type is TSAMSynchMsgHandler
which models the response to a synchronous messages
invoked from other component.

E TSAMRequiredSAP
o nbSAPCalls : Eint

D.#
requiredSAPs
[TSAMMsgHandlertem |

[[E TSAMMHISend]

[TSAMMHIAction|

actions

basicHandlers

9
| B TSAMAsynchMsgHandler

Figure 2. Transactional analysis model of asynchronous
message handlers.

As it was noted before, each TSAMMessageHandler
defines the sequence of TSAMBasicHandler
that comprises the message response. Each
TSAMBasicHandler, is composed by different
items that are executed sequentially. These items are
called TSAMMHIItems. There are four types of
TSAMMHItenms, as specified below:

TSAMMHiAction : Defines an action whose
effect is restricted to the scope of the
TSAMBasicHandler. This action does not
involve the sending of any message, nor the
handling of data attached to the received message.

TSAMMessageSend : Sends an asynchronous mes-
sage to another component. The port and the mes-
sage 0 be sent are the parameters.

TSAMMHiInvoke : Sends a synchronous message o a

equiregments
Engineering

¢

Oriality Asswrance Achons ystem Valldaton

<=M odet= i
Venfication
e Fapichesk

0 vellied
=<fodel=> Trafisionm =<Modet=x et
Transachanal T Senedulabilily
Analysss model Analysic MAST
Design il Integration and Sorfied
Testing
An lated
eModalan Trargiom of Vo) sMogel==
o " molel Varification
[ransiomm Fiapicheck
migdel
Programming \ Modyle testing

==podess
EDROOM Cé+
Placeholders And
Librarics

<=Codasx
Creployment
nsirumenied
code
VS

Figure 1. The whole Validation and verification process.

component. The sending port and the message are
the parameters.

TSAMMHiReply : Defines the answer to a synchronous
message (TSAMMHIInvoke). The response mes-
sage must be specified.

Two components types have been defined, task
components and shared resource components.
These components have restrictions related to
the TSAMMessageHandler type they can con-
tain and their relationship with the systems ex-

ecution threads. Proactive components can con-
tain the TSAMAsychMessageHandler and
TS5AMSynchronous. Shared resource com-

ponents can only contan TSAMSynchronous
Aside from this, task components define their
own task, executing the TSAMMHItems of each
TSAMAsychMessageHandler on its task. Reactive
components have no associated task. This constraint on
items by TSAMMessageHandler and the definition of
components is related to the fact that the model 1s free
from effects related with deadlock phenomena.

Each TSAMHIItem is annotated with values for the
worst-case execution time (WCET). As mentioned previ-
ously, the WCET can be characterized during the unitary
tests.

Each component can define more than one
TSAMMessageHandler per tuple (port, message).
The one that is selected for execution depends on the
components internal state, and the real-time situations
at system level. Each real-time situation determines
which TSAMMessageHandlers can happen in it
This fact enable the composition of the end-to-end
flow of the scheduling analysis in order to choose only
those TSAMMessageHandlers that correspond (o
the real-time situation to be analyzed. Consequently as
previously mentioned, our model is restricted to a single
TSAMMessageHandler by the following elements:
port, message and real-time situation.

Once the components are defined, they are instantiated
in order to build the real-time system. The flat deploy-
ment model describes the instances of the components
and the topology of the communication. The commu-
nication topology resolves the connections between the

component ports.

The extra-functional properties of the platform are de-
fined in a platform model. These properties include: con-
text switch time, timers and alarms, interrupt handler rou-
tines and hardware jitter. The users must note each of the
properties in the scheduling analysis.

Finally, a real-time requirement model compiles the sys-
tem level information that is required to complete the
schedulability analysis. This model defines the event ac-
tivation patterns and the event deadlines. Three activation
patterns can be defined, periodic, sporadic and bursty.
The parameter for periodic events is the frequency. The
parameter for sporadic events is the minimum arrival
time between two successive activations. The pattern
for the bursty events has two parameters, the minimum-
interarrival time and the maximum number of elements
per burst. Each event defines the tuple (component, port,
message) associated to its trigger. The deadlines specify
the maximum time that can elapse from the activation of
an event until a specific TSAMMhItem.

A set of real-time requirements models can be spec-
ified with the objective of specifying different real-
time situations. Each one will contain different ac-
tivation events and time constraints. The name of
each model will be used as a iag to record which
TSAMMessageHandlers are activated for a given
real-time situation.

4. CONSTRAINTS

A set of constraints profiles have been defined with the
objective of verifying the evidence in the system tar-

get. Evidence verify on one hand, the behaviour and the
WCET as annotations in the transactional models, and on
the other hand, that the transformations from the design
model to the analysis model are correct. During the inte-
gration test a combination of profiles to be verified may
be chosen. The steps that have to be followed are: 1)
enable the profiles to be verified, 2) automatically gener-
ate and implement the Timed Finite Automata (TFA), 3)
run the integration test and 4) extract the target trace us-
ing a data logger or logic analyzer and verify the restric-
tions with the profiles that were generated before using a
Rapicheck tool.

The defined profiles are: 1) End-to-End flow
profile, responsible for checking that the
TSAMMessageHandler sequence triggered by
an event is defined in the transactional model, 2)
TSAMMHIItems WCET profile that checks if the
WCET associated with the TSAMMHIItems is listed
in the transactional models, 3) Platform jitter and
WCET runtime primitives profile that verifies if the
WCET and jitters associated with the platform and
run-time are correct, 4) Real-time requirements dead-
lines profile that verifies if the deadlines are defined.
It must check that the deadline is not greater than the
elapsed time from the activation of the event to the
TSAMMessageHandlerItem execution deadline,
and 5), Event pattern trigger profile that verifies if the
parameters associated with the activation patterns are
specified, if the WCET and the jitter are correct and
if the data obtained from the tests do not exceed the
WCET. In this paper we will focus on the End-to-End
and Real-time situation profile.

With the aim of demultiplexing different events a point
identifier has been defined. The reason for this implemen-
tation is that the same TSAMMHItem can be executed
for different events. If separate checking is desired for
two execution sequences associated with two events that
run the same TSAMMHItem, the trace must be demulti-
plexed. It consists of the following elements: 1) Event-
seed, which identifies a separate event and it is randomly
generated. 2) Event-identifier, which identifies the event.
3) The identifier of the specific point to be checked.

4.1. End-to-End profile

For each event, a verification element is generated in the
form of a Rapicheck FTA. The transactional models re-
quired to generate this profile are the real-time require-
ment model, the transactional component model, and the
flat system deployment model. The TSAMEvents are
extracted from the real-time requirement model. The se-
quence of actions that makes the system react can be
extracted from each TSAMEvent. The first element
in this sequence is the TSAMMessageHandler that
is associated with the (port, message) tuple, and with
the component that initially handles the event. All the
TSAMMessageHandlers are contained in the transac-
tional component model along with each TSAMHItems.

Each TSAMHItems is transformed into a Rapicheck
state. The precedence of the states will depend on the
order defined in the TSAMMessageHandler and how
the TSAMMHISend or TSAMMHI Invoke are resolved.
In order to resolve that TSAMMessageHandler reacts
to the TSAMMHISend or TSAMMHIInvoke, the con-
nections between ports must be known. These connec-
tions are defined in the Flat System deployment model.

The TSAMMHIInvoke and TSAMMHISend types gen-
erate new dependencies on other components that have
to be resolved because these operations model the com-
munication between components and generate new sub-
sequences of states in the resulting Rapicheck FTA.

The thread that executes a TSAMMHInvoke waits
for the reception of a TSAMMHIReply from the re-
active component that handles the synchronous mes-
sage. This behaviour is solved by first seeking the
TSAMSynchronous that satisfies the synchronous call
and then by generating two states in Rapicheck, one cor-
responding to TSAMMHInvoke and then another corre-
sponding to TSAMMHIReply.

The TSAMMHISend are more complex to solve due to
the fact that they are executed in the context of another
task. Execution thus depends on the task priority and
systems architecture. In mono-processor systems such as
ERC-32, LEON2, etc., the TSAMMessagehandlers
that handle the message are executed sequentially so the
issue is solving the order of precedence. This will de-
pend on the priority of each component. The algorithm
is a tree search, where each TSAMMe ssageHandler is
a node, and the arcs contain the priority associated with
the component where the TSAMMessageHandler first
visits the highest priority nodes. The visit order of the
TSAMMessageHandler is the sequence in which the
TSAMMhItems must be included.

A set of TSAMMessagehandler can be associated
with the same (port, message) tuple. This struc-
ture is transformed in Rapicheck, generating different
arcs, one for each TSAMMessagehandler. The
TSAMMhItems of each one is solved separately us-
ing the transformation rules described above. It should
be noted that for each branch a list of TSAMMHISend
must be resolved and the order of precedence will be al-
tered. If the TSAMMhItems sequence is the same for
two branches, they are simplified. This aspect will be
clarified in 6.

4.2. Real-time situation profile

This profile allows the real-time situations defined in the
rt-requirement model to verified. We saw in section 2
that each TSAMMessageHandler in the transactional
component model can have a relationship 1 to n with
real-time situations. This means that the elements of
these TSAMMessageHandlers, the TSAMMhItems,
are only executed when a specific real-time situation is
activated in the system. A real-time situation consists of

an identifier and a modulation point. A modulation point
consists of two parameters, the real-time input status and
the TSAMMessageHandler indicating the activation
of the real-time situation. When a change in a real-time
situation is produced, the new TSAMEvents can only
execute the TSAMMessageHandler corresponding to
this real-time situation.

A Rapicheck FTA is generated in order to check that the
order of real-time situation activation corresponds to the
defined modulation points. This allows for the gener-
ation of a state for each real-time situation. The arcs
of this FTA are the modulation points, and to transit
from one state to another is through the execution of the
TSAMMessageHandlers which are selected as modu-
lation point.

Once a real-time situation is activated, it must be veri-
fied that the TSAMMessageHandlers are related to
that real-time situation. In order to verify this aspect,
one Rapicheck FTA per real-time situation is generated
and one per TSAMEvent. This FTA is generated in the
same way as those for the End-to-End profile. but they
will only contain the TSAMMessageHandlers related
to the real-time situation to be verified. The elements of
the trace generated by the integration test may contain
more than one real-time situation. This implies that the
trace must be divided into as many traces as there are de-
fined real-time situations, in order to verify each of the
FTAs relating to each TSAMEvent and real-time situ-
ation. The division is easy to perform since the modu-
lation points become trace elements. It should be noted
that the TSAMEvent for which their execution was not
finalized should be included in this trace. These elements
are easy to identify as the event-seed identifiers after the
modulation point are still those belonging to the previous
real-time situation. Once each FTA is fed, it is possible
to check if the evidence matches the model.

5. INSTRUMENTATION AND OVERHEADS

This proposed verification is based on evidences that are
obtained by code instrumentation. This instrumentation
generates overheads in the execution times so this has to
be taken into account. It would be interesting to gener-
ate the smallest number of elements to be instrumented
in order to verify all the previously cited profiles. The
instrumentation policy is performed for the profiles that
have been enabled, so that the instrumentation code is the
smallest possible in order to allow all the profiles to be
observed. In fact, if the End-to-End profile is active only
the TSAMMessageHandlerItem, WCET profile will
generate new instrumentation points, meaning that addi-
tional overhead is avoided. It should be noted that the
overhead will depend on the number of instrumentation
points and on its execution periodicity. For example, ele-
ments to be verified relative to jitters or operating system
context switches generate a high overhead in the system.

One of the most effective ways for reducing the over-

head is through the specification of levels of de-
tail for each of the profiles. A total of three lev-
els of detail have been defined. The most de-
tailed level takes into account the TSAMMHItem
into the account, the intermediate level takes into
account the theTSAMBasicHandler into account
and, finally, the lowest level takes into account the
TSAMMessageHandler into account. This means that
only the first and last elements in the level of detail along
with the connections points are instrumented with other
TSAMMessagehandlers such as TSAMMHISend.
For example, a TSAMBasicHandler level of detail
that contains a TSAMMHISend is instrumented in the
following way: the start of the first TSAMMHItem of
the TSAMBasicHandler, the first TSAMMHItem of
the start of the TSAMMessagehandlers that is re-
solved with the TSAMMHISend and the end of the last
TSAMMHItem; this way the WCET will correspond to
the sum of the TSAMMHItems contained in the se-
quence.

6. CASE STUDY

The aim of this study is to verify the flight software for the
Instrument Control Unit (ICUSW) of the Energetic Parti-
cle Detector (EPD) instrument on board of the Solar Or-
biter satellite . The ICUSW is the interface between the
EPD sensors and the missions spacecraft. The onboard
computer interface provides management of the telecom-
mands that change the instruments behaviour. The sen-
sors interface manages the telemetry and housekeeping.

Figure 3 shows a diagram of the ICUSWs EDROOM
model. Four tasks have been defined to meet the func-
tional requirements. The specific roles of each one are
the following:

EPDManager captures the telecommands sent from the
spacecraft and executes those with highest priority as
soon as possible. The rest of the telecommands are for-
warded to other components, depending on the destina-
tion of the relative service. This component also han-
dles the critical events relating to both hardware and
software. HK_FDIRManager manages the ICUSWs
housekeeping service and the fault detection procedures.
It notifies the EPD Manager of any detected critical
event. It also executes telecommands related to the
housekeeping service and the fault detection procedures.
SensorTMManager captures the telemetry from the
sensors and forwards it to the spacecraft onboard com-
puter. The telemetry transmission rate is controlled ac-
cording to a maximum limit. SensorTMManager exe-
cutes, also, the telecommands related to the science ser-
vice. Finnaly, BKG_.TC_Executor executes the back-
ground telecommands forwarded by the EPDManager
component.

EPDManager, HK.FDIR Manager and SensorTM
Manager tasks require the use of periodic timers. The
EDPManager task is subscribed to the run-time excep-

tion service through an exception port. This means that
it receives a message whenever an exception occurs. The
four tasks also access the shared SCTxCannelCtrl re-
source with the aims of sending the telemetry generated
by the spacecraft. Figure 3 shows the time and excep-
tion ports required for each task, as well as the topology
of the communication between tasks through the connec-
tion between the ports. The exchange of information be-
tween the tasks takes the form of either asynchronous or
synchronous messages.

Inter-ccapenont
commnication

B Enzap darpest BT marPact

g EPDManager @

NS G

BEGTC
Exncstor

Figure 3. ICUSW component topology.

The set of the extra-functional properties related
to the systems response time requires the ap-
propriate assignment of task priorities. Specif-
ically for the ICUSW the following priori-
ties (P) have been established between tasks:
P(EPDManager) > P(HK_FDIRManager) >
P(SensorTM _Manager) > P(BKGTC _Ezecutor)

Figure 4 shows the TSAMEvent associated with the
reception of science telecommands by EPD and the
TSAMMessageHandler describing the reaction. This
allows us to understand how the reactions are described in
the transactional model. The periodic event sends a time-
out message to the EPDManager component that trig-
gers the capture of the reception buffers telecommands
and their subsequent handling. The telecommands re-
ceived by the missions onboard computer are stored in
memory by a dedicated DMA-based hardware module.

Figure 5 shows the TSAMEvent associated with the pe-
riodic management of the telemetry by the SensorTM
Manager component. This component manages the
telemetry from the sensors, encapsulating the packets to
the spacecraft computer. The telemetry can be generated
in different ways depending on the real-time situation.
Three real-time situation have been defined: 1) nominal,
representing the normal state of operating state; 2} con-
figuration, that corresponds to the instruments configura-
tion; and 3) singular science event, corresponding to the
occurrence of a science event of particular interest. This
work only focuses on nominal real-time and singular sci-
ence event situations.

The real-time situation associated with the singular sci-
ence event is the one related to the telecommand (TC) 42

for End-to-End profile.

Telecomm andScience; TSAMEvant Ls‘ ’

I [
¥
Active: TEAMM, | | 8 TEAMM |
L

L
']‘SA[\I)]HIA(II

| TSAMMHiAction | | de: TSAMMHi Action |

Figure 4. Top picture shows the Rapicheck FTA
Bottom picture shows the
TsaMEvent and TSAMMessageHandler for retriv-

ing science telecommands.

(TC-42) function. The main function of TC-42 is to share
scientific information among Solar Orbiters instruments.
Each instrument can define a number of thresholds for
activating a local singular science event mode based on
information generated by other instruments. This pro-
cess involves four steps: 1) periodically, each instrument
sends four bits of information to the onboard computer, 2)
the onboard computer generates TC-42. This TC contains
all the information provided by all instruments, 3) TC-42
is broadcast to all the instruments, 4) the instruments act
according to the information contained in TC-42.

Once TC-42 has been received and checked by the
ICUSW, depending on the defined thresholds, it can ac-
tivate a singular science mode. Within this mode, the
generation of telemetry packets changes. The sensors
telemetry generation rate is related to a Pulse Per Second
(PPS) signal generated by the ICU and this is kept con-
stant over time. If singular science event mode is active,
data are time tagged with one second resolution; other-
wise, a ten second resolution is used. The transition back
to nominal mode is done after a predefined time period.
Thus two RT-requirement models have been generated
and two modulation points have been defined.

Figure 4 shows the two FTA related to the End-to-End-
flow profile for the TSEMEvent managing the science
telecommands. We can see how the TSAMMHItems
which are shared in different TSAMMessageHandler
are composed in the same state, as getNextTC.
The TSAMMHISend TCToSensorManager is fe-

Wodulation Point MNominal Single science event

Proeenmnomln§ :) gsP

¥ ¥
Process’ | Process ¥ |
I & &5
Procasa TENemingd: TSAMMHI A | Procass TRBuraty; TSAMMHIA ofi o
I

Li
‘ 83]
QueusTH-TSAMM essageHandler | GueueTh . TEAMMessagetandler
| SendTelemetryOk: TSAMMHiReply SendTelemetryOk-TSAMMHIReply

| en OnBlosre: TSA

Figure 5. Top picture shows the Rapicheck FTA, the mod-
ulation point FTA verifies the crossed between the both
real-time situation, the nominal and Single science event
verify the right TSAMMessageHandler for each real
time situation. Bottom picture shows the TSAMEvent
and TSAMMessageHandler for periodic management
of science telemetry

solved and placed following completion of all the
TSAMMHitems of the TSAMMessageHandler
EDPManagerGetNext Te. This i because they have a
lower priority than EPDManager. With this profile we
will be able to check that the sequence of actions for the
execution of science telecommands is correct.

Figure 5 shows the two real-time situations imple-
mented in the ICUSW being checked. The nomi-
nal state is the initial state; the transition from one
state to another is performed by executing TC-42 for
activation and deactivation. The image also shows
the FTA concerning the TSAMMessageHandler
states for the SensorManager and TSZMEvent
HandleSensorTelemet ry components. We can see
that each one has different items related to the telemetry
managemem,

7. CONCLUSIONS

In this work we have shown a process for automatic gen-
eration of timing constraints that can be verified antomat-
ically through the execution of a system on target. The
timing constraints are generated from attributes in the de-
sign and the models, and the transformation rules of these
models. This allows additional evidence to be produced
proving that the transformations are correct and that the

implementation behaves as expected. Of particular inter-
est is the automatic verification of the schedulability anal-
ysis assumptions. Real life examples that are part of the
flight software for the Instrument Control Unit of the En-
ergetic Particle Detector on-board Solar Orbiter are used
to ilustrate its applicability.

REFERENCES

[1] ECSS Secretariat, “Telemetry and telecommand
packet utilization.” ECSS-E-ST-40C, March 2009.

[2] S. Kent, “Model driven engineering,” in Proceed-
ings of the Third International Conference on In-
tegrated Formal Methods, IFM 02, (London, UK,
UK), pp. 286-298, Springer-Verlag, 2002.

[3] C. Szyperski, Component Software: Beyond Object-
Oriented Programming. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
2nd ed., 2002.

[4] B. W. Boehm, “Verifying and validating software
requirements and design specifications,” IEEE Sofi-
ware, pp. 75-88, 1984.

[5]1 M. G. Harbour, J. G. Garcia, J. P. Gutiérrez, and
J. D. Moyano, “Mast: Modeling and analysis suite
for real time applications,” Real-Time Systems, Eu-
romicro Conference on, vol. 0, p. 0125, 2001.

[6] O. R. Polo, S. Esteban, A. Grau, and J. M. de la
Cruz, “Control code generator used for control ex-
periments in ship scale model,” in Proceedings of
the CAMS2001 IFAC Conference, 2001.

T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Bal-
ancing advanced features in a hierarchical compo-
nent model,” in Proceedings of the Fourth Inter-
national Conference on Sofiware Engineering Re-
search, Management and Applications, (Washing-
ton, DC, USA), pp. 4048, IEEE Computer Society,
2006.

[8] B. Selic, G. Gullekson, and P. T. Ward, Real-time
object-oriented modeling. New York, NY, USA:
John Wiley & Sons, Inc., 1994,

[9] D. Harel, “Statecharts: A visual formalism for
complex systems,” Sci. Comput. Program., vol. §,
pp. 231-274, June 1987.

[10] B. Selic, “Uml 2: a model-driven development
tool,” IBM Systems Journal, vol. 43, no. 3, pp. 607—
620, 2006.

[11] P. Parra and O. R. Polo, “MICOBS: multi-platform
multi-model component based software develop-
ment framework,” in Proceedings of the 14th in-
ternational ACM Sigsoft symposium on Component
based software engineering, CBSE "11, (New York,
NY, USA), pp. 1-10, ACM, 2011.

[7

	Automatic_Fernandez_DASIA_2015 (portada)
	Automatic_Fernandez_DASIA_2015 (articulo)

