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Abstract5

The unfolding (or deconvolution) technique is used in the development of digital pulse processing systems6

applied to particle detection. This technique is applied to digital signals obtained by digitization of analog7

signals that represent the combined response of the particle detectors and the associated signal conditioning8

electronics. This work describes a technique to determine if the signal is unfoldable. For unfoldable signals9

the characteristics of the unfolding system (unfolder) are presented. Finally, examples of the method applied10

to real experimental setup are discussed.11

Keywords: Unfolding, Synthesis, Deconvolution, Digital pulse processing, Pulse shaping12

1. Introduction13

In radiation spectroscopy, the development of Digital Pulse Processing is usually focused on direct14

synthesis of pulse shapes using digitized signals coming from particle detection used in radiation measurement15

systems [1, 2]. The ideal shaping for a given detector depends on the shape of the Digital Pulse Processing16

(DDP) system input signal and the associated noise characteristics [3]. Thus, specific techniques are used to17

synthesize various shapes to maximize their Signal-to-Noise Ratio [4–6] or to minimize the effect of ballistic18

deficit or to reduce the pulse pile-up [1].19

A subset of Digital Pulse Processing is the unfolding (or deconvolution) technique that allows the trans-20

formation of the digitized signal into a unit impulse in the discrete-time domain (see [7] and the references21

therein). The unfolding technique can be applied to linear pulse processing systems that are either time-22

invariant or time-variant. A detection system that uses this technique usually includes the unfolding of the23

digital signals into unit impulses, followed by the synthesis of digital signal processing systems with unit24

impulse responses equivalent to the desired pulse shape.25

In this paper, we describe a technique to determine if a pulse shape can be unfolded (unfoldability), and26

in such case, a method that allows the synthesis of its unfolder, either exactly or as a close approximation.27

The proposed method is suitable for real-time implementation.28
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2. Unfolding and unfoldability29

In general, digital unfolding systems have a unit impulse response h[n] whose convolution with the input

signal x[n] produces a unit impulse δ[n] as explained in [8]

x[n] ∗ h[n] = δ[n− d], d ∈ {0, 1, 2, . . .} (1)

where d is the delay of the unit impulse in cycles.30

Since Eq. (1) is a convolution, in the z-domain, it can be presented as follows

X(z) ·H(z) = z−d (2)

Therefore, the shaper that unfolds the pulse is equal to

H(z) =
z−d

X(z)
(3)

On the other hand, when the z-transform is applied to x[n], the arrangement of its poles and their zeros31

are obtained. It is also known that systems are stable when all its poles are inside the Region Of Convergence32

(ROC) (i.e. z < 1), oscillating when at least one of its poles is at the circle z = 1 and unstable when at33

least one of its poles is outside the ROC (i.e. z > 1).34

When d = 0, according to (3), H(z) is the inverse of X(z). It implies that the zeros of X(z) are the poles35

of H(z) and vice versa. In addition, H(z) must be stable. Therefore, for a signal X(z) to be unfoldable,36

both its zeros and poles must be within the ROC (i.e. z < 1).37

When d > 0, X(z) is delayed by d cycles, so the result X(z) ∗ H(z) must be a unit impulse delayed38

by d cycles (i.e. z−dδ(z)). Adding a delay of a certain number of cycles implies the inclusion of the same39

number of poles in H(z) at z = 0. These poles have no effect on the stability of H(z) but their inclusion40

may be mandatory to convert a non-casual unfolder obtained into a casual one by applying (3). As very41

simple example, if X(z) = 1
z−0.5 , its unfolder is H(z) = z − 0.5 which is non-casual. To convert H(z) into42

casual it must be delayed by one (or more) cycles, that is H(z) = z−0.5
z

whose convolution with X(z) gives43

a unit impulse delayed one pulse.44

Eq. (3) has solution only for signals whose poles and zeros are inside the ROC (e.g. exponential and45

(RC)n pulses). In contrast, whenever a shape is symmetric (e.g. trapezoidal, triangular or cusp-like),46

their zeros are located at |z| = 1. Consequently, its unfolder has their poles located at |z| = 1 and the47

unfolder is oscillating or potentially unstable. Fortunately, pulses coming from a radiation detector are48

rarely symmetric. In Table 1 the characteristics of the unfolder H(z) as function of the input signal X(z)49

are listed.50

It is known that convolution in time-domain is equal to multiplication in the z-domain. Thus, when51

two signals are convoluted in time-domain it is equivalent to join all their zeros and poles. As mentioned52
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Unfolder characteristic Input signal characteristic Consequence in the unfolder

IIR Zeros at z 6= 0 Poles at z 6= 0

Oscillating, potentially unstable ∃ zeros at |z| = 1 ∃ poles at |z| = 1

Unstable ∃ zeros at |z| > 1 ∃ poles at |z| > 1

Non-causal Grad num < grad den H(z): Grad num > grad den

Table 1: Unfolder characteristics. Non-causal unfolders are not implementable, but they can be solved by adding d grades in

the denominator and thus shifting by d cycles the unit impulse as explained in text.

previously, the placement of their zeros indicate when signals are unfoldable. Therefore, the result of the53

convolution of two unfoldable signals is also unfoldable. In contrast, the result of the convolution of an54

unfoldable signal and a non-unfoldable signal is non-unfoldable. By last, the addition of non-unfoldable55

signals are also non-unfoldable. These facts are always valid unless the two combined signals cancel out each56

of their zeros reciprocally. In this case, a new analysis have to be carried out.57

3. Examples58

3.1. Unfolding of exponential pulses59

In the discrete-time domain, a generic exponential pulse can be defined as

x[n] = A · exp

(

−n

τ

)

(4)

where τ is the decay constant. In the z-domain, it becomes

X(z) =
z

z − a
(5)

where

a = exp

(

−∆T

τ

)

(6)

and ∆T is the sample period of the digitized signal.60

Applying the exposed method, we obtain the following unfolder with no delay (i.e. d = 0)

H(z) =
z − a

z
(7)

The impulse response in time-domain and pole-zero maps of X(z), H(z) and Y (z) are shown in Fig. 1.61

This result agrees with that shown in [7] for exponential pulses.62

3.2. Sum of exponential pulses63

As stated in [7] and according to the explanation given in Section 2, the unfolding of an exponential64

pulse can be extended to additions of exponential pulses.65

3



0 10 20 30
0

0.2

0.4

0.6

0.8

1
Impulse Response

Sample

A
m

p
li

tu
d

e
 (

a
.u

.)

0 10 20
−1

−0.5

0

0.5

1
Impulse Response

Sample

A
m

p
li

tu
d

e
 (

a
.u

.)

0 10 20
0

0.2

0.4

0.6

0.8

1
Impulse Response

Sample

A
m

p
li

tu
d

e
 (

a
.u

.)

−1 0 1
−1

−0.5

0

0.5

1
Pole−Zero Map

Real Axis

Im
a

g
in

a
ry

 A
xi

s

Pole−Zero Map

Real Axis

Im
a

g
in

a
ry

 A
xi

s

−1 0 1
−1

−0.5

0

0.5

1
Pole−Zero Map

Real Axis

Im
a

g
in

a
ry

 A
xi

s

−1 0 1
−1

−0.5

0

0.5

1

Figure 1: Unfolded exponential signal (right) of an input signal (left) using an exponential unfolder (center). In this example,

a = 0.8.

Using the linearity property of the z-transform, the sum of two exponential pulses can be expressed in

the z-domain as

X(z) = Xa(z) +Xb(z) =
Az

z − a
+

Bz

z − b
(8)

where A,B are their amplitudes and a, b are their delay constants. Disregarding A and B, which do not

affect the stability of the system, the equation can be rewritten in the following way

X(z) =
z((z − a) + (z − b))

(z − a)(z − b)
(9)

Recall that for the system to be unfoldable, both poles and zeros must be within the ROC region. Clearly,66

the poles of X(z) are the poles of Xa(z) and the poles of Xb(z). All the poles of X(z) will be within the67

ROC if those of Xa(z) and Xb(z) are too. With respect to the zeros, the system has one at z = 0 and68

another at z = (a+ b)/2, so if a, b < 1, the zeros will also be within the ROC.69

In general, (9) can be extended to an arbitrary number of exponentials and it is trivial to demonstrate70

that X(n) is unfoldable whenever their decay constants are below 1. Therefore, we can conclude that the71

sum of exponential pulses are unfoldable.72

In the case where one of the pulses is delayed with respect to the others, this affirmation cannot be73

always true since new poles are added and they can make the system unstable or oscillating. In Fig. 2 an74

oscillating unfolder shaper is shown. The input signal is the sum of two exponential signals with a = b = 0.8,75

one of them is delayed by one cycle.76
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Figure 2: Unfolded signal (right) of a sum of two exponential signals with 2 poles in total (left) using an oscillating unfolder

(center).

3.3. Convolution of exponential pulses and (RC)n pulses77

As exposed in Section 2, the convolution of exponential pulses in time-domain is equivalent to multiplica-78

tion in z-domain. Thus, the effect of convolving signals is to add new poles and zeros without displacing the79

original ones. Therefore, because exponential pulses are unfoldable, the convolution of exponential pulses80

are unfoldable.81

An arbitrary convolution of exponential pulses gives rise to (RC)n pulses. This pulse can be represented

in the z-domain as

X(z) =
z2

(z − a)
2 (10)

Applying the exposed method, we obtain the following unfolder with no delay (i.e. d = 0):

H(z) =
(z − a)

2

z2
(11)

The impulse response in time-domain and pole-zero maps of X(z), H(z) and Y (z) are shown in Fig. 3.82

This result also agrees with that shown in [7] for exponential pulses.83

3.4. Derivatives and integrals of unfoldable signals84

It is known that given an input signalX(z), its derivative is
(

z−1
z

)n
X(z) whereas its integral is

(

z

z−1

)n

X(z).85

In both cases X(n) is multiplied by
(

z−1
z

)n
(n = 1 in case of the derivative n = −1 in case of integral).86

Thus, given a stable signal X(z),
(

z−1
z

)n
X(z), n ∈ Z will be also stable if either poles and zeros of

(

z−1
z

)n
87

are within the ROC. In case of integrals (n ≤ −1), the poles are located in z = 1 being able to make the88
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Figure 3: Unfolded signal (right) of an input RC signal (left) using an unfolder (center). The decay constant is a = 0.8. Both

zeros and poles are of order m = 2. Either poles and zeros are double and located at the same place that in Fig. 1.

system oscillating or unstable depending on X(z). However, due to the fact that
(

z−1
z

)n
itself is unfoldable89

(see Section 2), we can conclude if a signal is unfoldable, its n-derivative or n-integral is also unfoldable.90

To illustrate this fact, Fig. 4 and 5 show an example of the derivative and integral of an exponential91

signal respectively. The location of the poles and zeros changes depending on whether the signal is derived92

or integrated, but the location of the poles and zeros of the exponential (see Fig. 1) does not change.93

Additionally, applying the properties of the z-transform (decimation, time shifting, etc.), it can be94

predicted if a transformation of a pulse are unfoldable from another pulse.95

4. Input signal modeling96

To obtain an unfolder as simple as possible it is necessary to correctly model the input signal.97

In the examples we have just shown, such modeling was trivial: the exponential signal is modeled by98

Eq. (5), the step signal is a particular case with a = 0 and the unit impulse is another particular case99

with a = ∞. As we have also shown, (RC)n signals can be obtained by convolution (multiplication in the100

z-domain) of exponential signals.101

However, for more complex signals, the unfolder may also become more complex. In Fig. 6 can be102

observed an example of the unfolding of an exponential signal represented as a sequence of unrelated pulses103

(x[n] = 1 + 0.8z−1 + 0.64z−2 + . . .). This signal, despite more complex, is similar than obtained using (5).104

Their unfolder response is also similar. It can be observed comparing Fig. 1 with Fig. 6; in both cases105

a = 0.8.106
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Figure 4: Unfolded signal (right) of a derivative of an exponential pulse (left) using an unfolder (center). The exponential pulse

has a = 0.8.
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Figure 5: Unfolded signal (right) of an integral of an exponential pulse (left) using an unfolder (center). The exponential pulse

has a = 0.8.

The complexity of the unfolder is directly proportional to the complexity of the signal. Thus, whether107

we want to simplify the unfolder, we have to take into account that the signals whose equation is simpler are108

those that their current values are related to their previous values. One example is the exponential signal109

(see Eq. (5)) but there are many others. This also occurs with Infinite Impulse Respose (IIR) filters, which110
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Figure 6: Unfolded exponential signal (right) of an input signal (left) using an unfolder (center). The exponential pulse has

been modeled as a FIR pulse of order N = 20 coefficients. In this example, a = 0.8.

usually have a simpler equation than Finite Impulse Response (FIR) filters. Procedures to simplify signals111

relating their current values with their previous values can be found in [9, 10].112

5. Experimental tests113

The unfolding method presented in this paper has been tested using a signal coming from a radiation114

detector. This test has been carried out in the Castilla-La Mancha Neutron Monitor (CaLMa) located in115

Guadalajara, Spain. The instrument was made up of fifteen proportional gas counter tubes. In this test,116

a tube LND2061 connected to a Canberra ACHNA98 preamplifier was used. More information about the117

characteristics, setup and results of this facility can be found in [11].118

The signal from the preamplifier was digitized by an ADC with sampling period Ts = 1 µs The signal119

from the ADC is shown in the top graphs of Fig. 7. The signal shown in the bottom graph of both figures120

is the result of unfolding the pulses according to the explained method.121

The input signal was modelled as a system of 21th order whose transfer function is

hi(z) = x1 + x2z
−1 + x3z

−2 + . . .+ x21z
−20 (12)

Thereby, this pulse has a pole at z = 0 of order k = 20.122

The output signal (ideally a unit impulse) was delayed by one cycle (d = 1). According to (3), the123

unfolder has been modeled as h(z) = z

hi(z)
. The input signal model, impulse response of the unfolder and124
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Figure 7: Example of unfolding of two pulses obtained from the Neutron Monitor. The signal amplitude is measured in volts

at the output of the preamplifier.

the result of the unfolding, as well as their pole-zero diagrams, are shown in Fig. 8. The obtained results125

are similar to those obtained in [7].126
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Figure 8: Unfolded signal (right) of an input signal (left) using the calculated unfolder (center).
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The results for a non-delayed signal (i.e. d = 0) were identical to those of a delayed signal by one cycle,127

except that the unit impulse of the unfolder and the unfolding (top-center and top-right graphs of Fig. 8)128

was advanced one cycle.129

It should be noted that when the threshold level is very low, the unfolder becomes unstable because a130

zero of the input signal turns up at z = −3.3 and therefore a pole of the unfolder turns up at the same131

position. The effect is the same when the input signals starts sightly negative. This effect can be explained132

using Eq. (12). Dividing this equation between x1 it results133

hi(z)

x1
= 1 +

x2

x1
z−1 +

x3

x1
z−2 + . . .+

x21

x1
z−20 (13)

It is known from Vieta’s Formulas that the second factor of a polynomial with a minus sign (in this case134

−x2

x1

) is equal to the sum of all the roots of the polynomial. The smaller x1 the larger the sum and so the135

roots (poles and zeros) will be closer to the limit of the ROC, even it may even exceed it. Nevertheless,136

raising the trigger makes the unfolded signal not an ideal unit impulse as seen in Fig. 8.137

6. Conclusions138

In this article, a method to determine when pulses coming from a radiation detector are unfoldable has139

been describedand in such case, it allows to find the unfolder characteristics and calculate its coefficients.140

Based on the properties of z-transform, we can conclude that whenever two pulses are unfoldable their sum141

and convolution are also unfoldable. Besides, their n-derivatives and n-integrals are unfoldable too. It is142

shown a set of examples of application of the method. Finally, it has been tested using pulses obtained from143

a radiation detector.144
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