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Abstract7

This paper presents the structure, design and implementation of a novel technique for determining the8

optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically9

designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for10

shaping an input signal. Results of this experiment have been compared to a previous simulated annealing11

algorithm. Lastly, its performance and capabilities were tested using simulation data and a real particle12

detector, as a scintillator.13
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1. Introduction15

In spectroscopy, the value of energy of incident particles can be extracted from the peak amplitude of16

the input pulses coming from particle detectors. This method is called Pulse Height Analysis (PHA) and17

provides a value of energy proportional to the incident particle energy. Thus, identical particles with the18

same energy must generate identical peak values. The ability of a given measurement to resolve fine detail19

in the incident energy of the radiation is improved as the width of the response function becomes smaller.20

This feature is called resolution. Nowadays, this property remains determining for all spectroscopy systems21

[1–4].22

The resolution of these measurements is affected by noise. This noise has a spectral density that de-23

pends on the type of detector and the features of the spectroscopy system. To mitigate this type of noise,24

spectroscopy systems have filters at the output of particle detectors called shapers.25

The shaper’s effectiveness in a spectroscopy system depends on the spectral density of noise. However,26

finding the optimal shaper is a problem with multiple degrees of freedom. This fact implies that optimal27

shapers should be selected using numerical and/or iterative procedures (e.g. [3, 5–8]).28
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This article describes the development of an algorithm based on a GA for providing the optimal shaping29

for spectroscopy systems. The paper is structured as follows. Section 2 presents the fundamentals of the30

GA. Section 3 provides details of the GA used and the cost functions. Section 4 presents the theoretical and31

experimental results of this algorithm. Finally, Section 5 covers the conclusions and the future work.32

2. Genetic algorithms33

In the computer science field of artificial intelligence, a GA is a heuristic search that tries to imitate the34

process of natural selection and mutations. This heuristic is used to generate useful solutions to optimization35

and searching problems [9, 10]. GAs belong to the larger class of evolutionary algorithms, which generate36

solutions to optimization problems using techniques inspired by the natural evolution, such as inheritance,37

mutation, selection, and crossover.38

In a genetic algorithm, a population of candidate solutions (called individuals or phenotypes) to an39

optimization problem is evolved toward better solutions. Each candidate solution has a set of properties40

(its chromosomes or genotype) which can be mutated and altered. Traditionally, solutions are represented41

as strings of information, usually in binary format [11].42

The evolution process usually starts from a population of randomly generated individuals. The pop-43

ulation in each iteration is called generation. In each generation, the fitness of every individual in the44

population is evaluated; the fitness is usually the value of the objective function in the optimization prob-45

lem being solved. The individuals best suited are stochastically selected from the current population, and46

selected individual’s genome is modified (recombined and possibly randomly mutated) to form a new gener-47

ation. The new generation of candidate solutions is then used in the next iteration of the algorithm. Finally,48

the searching process terminates when either a maximum number of generations has been produced, or a49

satisfactory fitness level has been reached for the population.50

Interest in such algorithms is intense because some important combinational optimization problems can51

be solved exactly in a reasonable time.52

3. Proposed genetic algorithm53

A typical genetic algorithm requires: (a) a cost function to evaluate the candidate solutions, (b) chro-54

mosomic representation of the solution domain.55

A combinational optimization problem is aimed at finding among many configurations the one which56

minimizes a given function which is usually referred to as the cost function. This function is a measurement57

of goodness of a particular configuration of parameters. The selection of an appropriate cost function is58

crucial for achieving good results using this algorithm.59
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In this work, and in order to reduce the searching space and the processing time, we assume that the60

chromosomic representation is a monotonically increasing function until it reaches the maximum level, and61

then it follows a monotonically decreasing function. Thus, for each individual,62

I =
{
x1, x2, · · · , xN/2 : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN/2 = 1

}
(1)

where N is the shaper order. From these individuals, a symmetrical shaper can be obtained63

S =
{
I, IR

}
=

{
x1, x2, . . . , xN/2 = 1, · · · , x2, x1

}
(2)

where IR is I reversed.64

For all the considered shapers, the flat-top duration is equal to Ts. As in [8], when flat-tops with a65

duration of τt clock cycles, an additional constraint must be included with a number of ones equal to66

L = τt/τs added in the middle of S. In this case, the new equation is67

S =
{
I, 1 · · · 1, IR

}
=

{
x1, x2, . . . , xN/2−L/2 = 1, · · · , xN/2+L/2 = 1, · · · , x2, x1

}
(3)

The shaper S works as a digital Finite Impulse Response (FIR) filter. Thus xn are the coefficients of the68

FIR filter.69

Once both genotype and phenotype are defined, a GA proceeds to initialize a population of shapers,70

and then to improve it through repetitive application of the mutation, crossover and selection operators71

according to a cost function. Thus, in order to get an optimal shaper, the following steps are to be taken:72

1. Establish the sampling period Ts of the input signal, the maximum shaping time τmax and the maximum73

shaper order Nmax. The relationship among these parameters is74

Nmax =
τmax

Ts
(4)

2. Establish the number of generations G (i.e. iterations), the population P for each generation and the75

cost function. If mutations are desired, set pm (probability of mutation) and Sn mutation maximum76

value.77

3. Create a population of P shapers. Each shaper shall have a random integer N where N ∈ [1, Nmax]78

to try different values of shaping time.79

4. For each generation:80

(a) Generate a new population based on the crossover between the set that had got the best score

(based on the cost function) in the present population. For this algorithm, the crossover is given

by the following equation

Inew =
φI1 + (1− φ)I2

max(φI1 + (1− φ)I2)
(5)
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where I1, I2 are two individuals Inew the resulting individual from the crossover and φ ∈ [0, 1] is a

real number to set the weight of I1 and I2 proportional to the score of both individuals according

to the following equation

φ =
score(I1)

score(I1) + score(I2)
(6)

(b) Include within the population the individual of the past generation that get the best score.81

(c) For each value of Inew, add mutations ramdomly with a probability pm. If a mutation occurs,

the new value of xn ∈ Inew is now equal to x̃n in this way

x̃n = xn + χSn (7)

where χ ∈ [−1, 1] is a real random number.82

(d) Generate a shaper S for each individual I (see Eq.(2)) and test it.83

(e) Evaluate S according to a cost function previously selected (see Section 3.1). Assign a score to84

each shaper based on the evaluation.85

5. At the end of the process, the optimal shaper will be the final best shaper.86

In specific environments, it can be interesting the execution of this algorithm at a certain intervals. For87

instance, in space systems, the GA could be executed at regular intervals to counter the effects of radiation88

damages as was proposed in [12].89

3.1. Cost functions90

In this work, the cost function used for simulated tests is the Equivalent Noise Charge (ENC), calculated91

using the noise indices [13], whereas for real test, the cost function is the Signal/Noise Ratio (SNR). In92

the experimental ones, the Full Width at Half Maximum (FWHM), as a percentage, was used to measure93

the quality of the final shaper, but it has not been used as cost function due to the enormous burden of94

calculation and time taken to generate a histogram for each individual in the population.95

3.1.1. ENC96

To evaluate the results of simulation tests, noise indexes have been used as a cost function. Noise indexes97

in analog domain were introduced by Goulding in [13]. The noise indexes, calculated in time-domain, are98

inversely proportional to the SNR, and they can be used to calculate the ENC [14]. This noise analysis is99

valid for any detector/preamplifier/analog filtering/ADC/PHA combination.100

The noise indexes for serial (white) noise N2
∆, parallel (red or brownian) noise N2

S and 1/f series (pink)101

noise N2
F were adapted to the digital domain in [8]:102

N2
S =

1

S2

τs/Ts∑
n=0

w2[n] Ts (8)
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N2
∆ =

1

S2

τs/Ts∑
n=1

(w[n]− w[n− 1])
2 1

Ts
(9)

N2
F =

1

S2

∞∑
n=1

(
1√
πnTs

∗ (w[n]− w[n− 1])

)2

Ts (10)

where τs is the shaping time, S is the maximum amplitude of the shaper and w[t] is the weighting103

function of the shaper. For time-invariant shapers, w[t] is equal to the step response of the system [13] given104

by the xn coefficients of Eq. (1).105

Furthermore, although the 1/f parallel noise is nowadays negligible compared to other types of noise106

above, the index of this noise has also been adapted in this work with the aim of evaluating the GA as107

discussed in Section 4.1. The 1/f parallel noise is proportional to τ2s and equal to108

N2
FS =

1

S2

∞∑
n=1

(
1√
πnTs

∗ w[n]
)2

T 3
s . (11)

These formulae (8, 9, 10, 11) are used to get the four noise indexes and calculate the ENC. Thus,109

ENC2 = i2nN
2
S + v2nC

2
i N

2
∆ + vfn

2C2
i N

2
F + i2fnN

2
FS (12)

where vn, in, vfn and ifn are the spectral density of white series, white parallel, 1/f series noise and 1/f110

parallel noise, respectively. Ci is the equivalent capacitance at the input of the amplifier.111

3.1.2. SNR112

In a real benchmark experiment, the spectral densities of each noise type are not available unless they

are calculated. However, a pulse sample S[n] and a noise sample N [n], that is, the value at the output of

the shaper when no events are produced, can be easily captured. Using this pair of samples, SNR can be

estimated by the following expression

SNR2 =

∑
S2[n]∑
N2[n]

(13)

In Section 4.2 the values for S[n] and N [n] are defined.113

4. Experiments114

To validate the robustness of the proposed algorithm, two different types of experiment have been carried115

out. The first attempts to reach a known target shaper for applying this algorithm. The second one validates116

the entire design using real data.117

Results of the first group of tests shows that the GA works properly. Results of the second group of tests118

check that the algorithm also works properly with real data obtained from a scintillator.119
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4.1. Simulation experiments120

The aim of the first experiment is to get the optimal shaper for different noise types, also obtained in121

[15] to check that the algorithm works properly.122
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Figure 1: Algorithm results for (a) vn > 0, others= 0. (b) in > 0, others= 0. (c) vfn > 0, others= 0. (d) vn = in > 0,

others= 0. (e) ifn > 0, others= 0. In all of them Ts = 0.5 s.
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Fig. 1 shows the result of the application of the algorithm. The left column shows the resulting shaper123

for each generation (lighter lines imply low G). The central column shows the final shaper. The right124

column represents the evolution of the function cost (in this case, Eq. (12)). As a result of this test, it can125

be observed the optimal shapers for each type of noise: (a) series noise, (b) parallel noise, (c) equal influence126

of series and parallel noise (cusp-like shaping) [16], (d) shaper for 1/f series noise [15], (e) shaper for 1/f127

parallel noise [17].128

The test was carried out with G = 20, P = 300, pm = 0.2 and Sm = 0.2. In all cases, it can be observed129

that noise indexes are decreased as G increases. A special case is the shaper for 1/f parallel noise. According130

to Eq. (1), xn cannot be higher than xn+1. Moreover, xn cannot be lower than 0. However, the effect of131

mutations forces the individuals to ignore Eq. (1) in order to find the optimal shaper. If there were no132

mutation (i.e. pm = 0), the optimal shaper for (e) would not have been found.133

The execution time of the algorithm is directly proportional to N · G · P . The addition of mutations134

implies an increase of 12% in the total time. The execution time in a Intel Core i7 at 2.2 GHz has been135

0.37 seconds for each shaper. Thus, the execution time is negligible compared to the time needed to capture136

pulses and to generate a histogram, even with a much slower processor.137

In the second test, the result of the GA for several values of G and P have been compared. In Fig. 2138

can be seen that the algorithm needs a different value of P and G to get noise indexes close to those of139

optimal noise shapers depending on the type of noise present. Moreover, above a certain value of P and G140

the algorithm provides acceptable results in all cases. In the left column of Fig. 2, it can be observed the141

effect of including mutations, that in all cases provides better results. However, an increase in the value of142

Sm above 0.2 makes the solutions of the shapers oscillate too much making them unfeasible.143

4.2. Experimental results using a scintillator144

Lastly, a group of tests to check the proposed GA in a real environment was performed. The main145

objective of these tests is to check that the GA works and try to improve the results obtained with a fixed146

shaper.147

This test was performed in the Radiation Physics Laboratory located in Santiago de Compostela Univer-148

sity, Spain using a scintillator. A diagram of the detection chain used in the experimental test is shown in149

Fig. 3. The scintillator model of NaI is Bricon 1M1/1.5 working at +475 V, with an integrated preamplifier150

Bricon PA-12. The amplifier N968 (with a shaping of 2 µs and gain ×14 was connected to a Digital Phosphor151

Oscilloscope Tektronix TDS 3014B. An amount of 500 points were taken for each pulse (each pulse duration152

was 0.4 µs). The resolution of the vertical scale was 128 bits for 5 V. This oscilloscope performs the function153

of DAQ, receiving the raw data from the amplifier and storing it in a PC. The scintillator receives radiation154

sources of 137Cs, 22Na or 60Co whose features are listed in Table 1.155

Raw data reuse, stored in the PC, allows using the same data multiple times without recapturing new156
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Figure 2: Effect of P , G and mutations for several noise types.

Table 1: Radiation sources used for the experimental tests.

Isotope Activity (kBq) Main energies (keV)

22Na 105 511; 1274

137Cs 8.71 32; 661.6

60Co 28.5 1173.2; 1332.5

data and it ensures that changes in the results obtained during the test are exclusively due to the digital157

signal processing.158

Using Matlab code, the raw data are filtered using a digital shaper generated by the GA. Finally, the159
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height of each pulse of the filtered raw data are extracted to generate a histogram to compare results.160
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Figure 3: Diagram of the detection chain used for the experimental test.
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Figure 4: Histograms and result of GA for 137Cs.

For these tests, P = 30, G = 20 and N = 17. The raw data length were 1121 kSamples for 137Cs,161

2973 kSamples for 22Na and 1812 kSamples for 60Co. Besides, a signal with a length of 603 kSamples was162

captured when no radiation sample was in front of the scintillator to measure the environmental noise.163

From these signals, the height of each pulse was extracted using the Matlab software. The sum of the164

heights of the pulses for each radiation source was S[n] whereas the sum of the signals height when no165

radiation source was present was N [n]. Both S[n] and N [n] allows to calculate the cost function presented166
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Figure 5: Histograms and result of GA for 22Na.

in Section 3.1.2.167

In these experiments, the resolution using the Full Width at Half Maximum (FWHM) was calculated to168

compare the data captured (a) without shaping, (b) with a fixed triangular shaper and (c) with the shaper169

obtained using the GA proposed.170

The results of the experiment are shown in Fig. 4, 5 and 6.171

In all these figures, (a) histogram is generated without shaping, (b) is the one generated with N = 20172

triangular shaping, and (c) is the histogram generated with the optimal shaper obtained using the proposed173

GA. Finally, at the bottom of each figure, the optimal shaper and the evolution of the function cost are174

depicted.175

The FWHM expressed as a percentage is defined as the width of the distribution at a level that is just half176

the maximum ordinate of the peak divided by the location of the peak maximum. For all the histograms, the177

width at a half the maximum ordinate of the peak is depicted in grey numbers whereas the peak maximum178
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Figure 6: Histograms and result of GA for 60Co.

is depicted in bold grey numbers. In all the histograms is also depicted the FWHM.179

As it can be observed, the FWHM improves when shapers are used. In addition, the improvement is180

even greater when the GA is used. In the case of 137Cs, the peak at 32 keV could not be captured because181

the present noise at that spectrum area. In the first generations, the SNR decreases but then is increased.182

This behavior is produced when the optimal result is difficult to get as a consequence of the solution space.183

However, it is normal because the latter generation may contain worse chromosomes than the previous one.184

Once the optimal shaper is found, this shaper is linear and time-invariant because, as stated in Section 3,185

it works as a FIR filter. Thus, the maximum event rate of this shaper depends on the shaping time and on186

the pile-up management selected in the same way than other non-adaptive, linear, time-invariant shapers.187
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4.3. Comparison with simulated annealing188

The purpose of this section is to compare the GA proposed in this paper with the simulated annealing189

algorithm proposed in [8].190

In both algorithms the number of software instructions performed are directly proportional to the popu-191

lation P and the number of iterations (generations in the case of GA and temperature in the case of annealing192

algorithm). The number of operations performed during each phase of the algorithm is each phase of the193

algorithm is similar, and therefore, the computing time is also similar. However, both algorithms have194

advantages and disadvantages when compared.195

Thanks to the inclusion of mutations, an advantage that the GA presented is that equation of individuals196

(1) can stop being effective and thus the value of xn of shapers can decrease before reaching its maximum197

value and even reach values below zero. This implies an increase of the search space that can be useful for198

better noise mitigation. In fact, the shaping obtained in Fig. 1(e) for 1/f parallel noise is impossible to get199

with annealing algorithm of [8].200

However, an advantage of annealing algorithm is that only requires memory to store the last generated201

shaper and the current optimal shaper. In contrast, to allow the GA make the crossings, is necessary to202

store in memory two complete generations: the original and the new one. Thus, the amount of memory used203

is equal to 2 · size of the number format used · N · P . Thus, for instance, using P = 400, and considering204

the size of the format number equal to 4 bytes, the amount of memory used is equal to 124800 bytes.205

5. Conclusions and future work206

In this study, an algorithm which uses GA for calculating optimal filters in presence of arbitrary noise207

type was designed and implemented. In order to test the efficiency of this algorithm, simulation examples208

were evaluated and one setup was measured in real radiation facilities. Additional constraints such as shaping209

time or even the peak time can be added modifying the parameters of this algorithm. It can be concluded210

that this algorithm is a promising method to be taking into account in successive digital spectroscopy systems211

due to its efficiency and simplicity.212
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