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Implementation and calibration of a new irregular 

cellular automata-based model for local urban growth 

simulation: the MUGICA model. 

ABSTRACT: 

Cellular automata (CA) based models have traditionally employed regular grids to 

represent the geographical environment when simulating urban growth or land use change. 

Over the last two decades, the scientific community has introduced the use of other spatial 

structures in an attempt to represent the processes simulated by these models more 

realistically. Cadastre parcels are a good choice when simulating urban growth at local 

scales, where pixels or regular cells do not represent the geographic space properly. 

Furthermore, the implementation and calibration of key factors such as accessibility and 

suitability has not been sufficiently explored in models employing irregular structures. 

This paper presents a fully calibrated model to simulate urban growth: MUGICA (Model 

for Urban Growth simulation using Irregular Cellular Automata). The model uses the 

irregular structure of the cadastre and its smallest unit: the cadastral parcel. The factors 

included are based on the traditional NASZ (Neighbourhood, Accessibility, Suitability and 

Zoning Status) modelling schema, frequently employed in other models. Each factor was 

implemented and calibrated for the irregular structure employed by the model, and a new 

approach was explored to introduce a random component that would reproduce illegal 

growth. Several versions of MUGICA were produced to calibrate the model within the 

period 2000-2010. The results obtained from the simulations were compared against 

observed growth for 2010, adapting the traditional confusion matrix to irregular space. A 

new metric is proposed, called growth simulation accuracy (GSA), which measures how 

well the model locates urban growth. 

Keywords: Irregular, Cellular Automata, Model Calibration, Urban Simulation, Urban 

Growth 

Introduction 

Urban growth has become one of the main concerns in today’s world. Some 54% of the 

world population currently lives in urban areas, and this figure is predicted to rise to 66% 

in 2050 (United Nations, 2014). In recent decades, several authors have highlighted the 

need to prepare for urban growth in terms of planning policies (Bengston et al., 2004; 

Sakieh et al., 2015). In order to achieve this, more research is required to understand how 

cities work, determine the driving factors of growth (Herold et al., 2003), elucidate the 

consequences of different types of urban growth (Aguilera, 2010) and identify better 

alternatives to achieve sustainable futures (Herold et al., 2005). 

One of the approaches that have successfully shed light on urban growth processes is the 

use of exploration tools such as simulation models. Of these, CA models have 

demonstrated their capacity to effectively reproduce city characteristics such as emergence, 

self-similarity, self-organisation and non-linear behaviour (Barredo et al., 2003). From the 

early applications to geographic phenomena (Tobler, 1970), through models with more 

developed factors (White and Engelen, 1993), to more complex models (Stevens and 



Dragicevic, 2007), the success of this kind of model in urban environments has been 

undeniable. CA models still maintain their essence, the Game of Life proposed by John 

Conway (Gardner, 1970), but currently present various modifications that have been added 

to the original structure over time in order to reproduce urban growth processes more 

precisely (Couclelis, 1997). These changes have brought with them the new term of CA-

based models. From the possible set of modifications that a model can incorporate, the 

change in how space is represented and the smallest unit (cell) that a model could employ 

are still under discussion (Barreira-González et al., 2015a; Pinto and Antunes, 2010). 

In this regard, CA-based models can be divided into two groups, according to how they 

represent space: (1) regular or raster CA-based models, and (2) irregular CA-based models. 

The first group encompasses all models that employ regular grids to represent space, in 

which the cells, as well as pixels in satellite imagery, all present the same resolution and 

topology. These models, which are derived from the Cellular Geography proposed by 

Tobler (1979), have demonstrated their capacity to effectively describe and study urban 

processes at global scales (Santé et al., 2010). Nevertheless, the pixel/cell unit is not the 

best way to reproduce reality at local scales (Moreno et al., 2009). Changes at these scales 

are located at management units, such as plots, parcels or other structures related to 

administrative purposes. Hence, although pixels in remote sensing images are linked to 

units of observation, they are not necessarily the appropriate unit for analysis of urban 

growth (Zelaya et al., 2016). In addition, CA-based models have not been incorporated into 

planning processes, partly due to the lack of communication between modellers and 

planners (Triantakonstantis and Mountrakis, 2012). The use of the same unit as that 

employed in urban development plans would improve dialogue between modellers and 

planners, enabling the incorporation of these models into planning processes (Martín-

Varés, 2009). 

Although a few models have now successfully incorporated the irregular structure of the 

territory (Dahal and Chow, 2014; Moreno et al., 2008; Pinto and Antunes, 2010; Stevens 

et al., 2007), this remains a subject of research (Barreira-González et al., 2015a) and poses 

several challenges. The question of how to model typical CA-based model factors of urban 

growth, such as neighbourhood, suitability, accessibility and zoning status (based on the 

NASZ modelling schema proposed by White et al., 1997) in an irregular environment 

remains unexplored (Barreira-González et al., 2015a). The definition and effect of 

neighbourhood has been recently documented by several authors (Barreira-González and 

Barros, 2016; Dahal and Chow, 2015). Nevertheless, suitability, accessibility, zoning status 

and the random factor (often added to models to reproduce the uncertainty that social 

processes entail) have not been explored in irregular CA-based models. 

The objective of the present study was to produce a fully functional irregular CA-based 

model capable of reproducing past urban growth and using the spatial unit employed in 

urban planning: the cadastral parcel. The model, named the MUGICA (Model for Urban 

Growth simulation using irregular cellular automata), uses the NASZ schema with all 

factors fully developed for the irregular structure employed by the model. As part of model 

implementation, it was necessary to evaluate and calibrate each factor, testing their 

sensitivity. Thus, several versions of the model were produced using different factor 

implementation combinations. A total of 224 versions were run over the calibration period 

(2000-2010) and compared against observed urban growth for 2010. The version that 



presented the best fit was selected and the random factor was added to reproduce the 

uncertainty that social processes entail. Again, multiple versions of this version of the 

model (10) were obtained with different values for randomness, and these were run 100 

times each for 2010. 

This paper is organised as follows; study materials and methods are detailed in the section 

The MUGICA: materials and methodology, including study area, dataset, factor adaptation 

to the irregular structure of the cadastre and model implementation. The Results section 

gives the simulation results for the calibration period and their agreement with observed 

growth, and finally Discussion and conclusions concludes the work. 

The MUGICA: materials and methodology 

Study area and datasets 

The Region of Madrid has been one of the most dynamic areas in Spain, and more generally 

in Europe, in terms of urban growth over the last two decades (Hewitt and Escobar, 2011; 

Plata Rocha et al., 2009). The Metropolitan Area of Madrid has grown beyond the limits 

of its own boundaries, merging with other cities or towns without any vacant space in 

between. This may indicate the need for urban plans involving several municipalities in a 

common planning process. In order to test the model presented here, three municipalities 

were selected (Meco, Los Santos de la Humosa and Azuqueca de Henares) in the east of 

the current functional Region of Madrid, which exceeds the official Region of Madrid and 

extends into the province of Guadalajara (Figure 1). 

 

Figure 1. Study area. 

 



The study area is interesting due to the wide variety of differences between the three 

municipalities. Los Santos de la Humosa is located on a hill and still retains a very 

important rural component, while the other two are almost flat and have a motorway 

boundary that limits their growth. Their population, urban areas and socio-economic 

conditions are also dissimilar. What renders them even more interesting is that they form 

part of an important industrial corridor along the A-2 motorway (the Henares Corridor), 

reinforcing still further the need for common urban development planning policies. 

The structure employed by MUGICA is the cadastre dataset (General Directorate for 

Cadastre, 2013). In Spain, the cadastre represents the spatial structure of land ownership. 

The smallest unit is the cadastre parcel, and it thus seemed appropriate that this element 

should be the smallest unit employed by a model aimed at stimulating urban growth. Land 

use for the years 2000 and 2010 were mapped by combining the cadastral dataset and the 

historical satellite imagery available for most parts of the province of Madrid (Nomecalles, 

2016). 

The core of MUGICA: parameter and factor definition in irregular spaces 

MUGICA has been fully developed in Python (Van Rossum, 2007), combining open 

source libraries for geospatial data such as GDAL (Fundation, 2008) with commercial 

libraries such as ArcPy from ArcGIS. Although several irregular CA-based models have 

been proposed to date, few studies have conducted an in-depth exploration of factor 

definition for irregular spaces (Barreira-González et al., 2015a; Barreira-González and 

Barros 2016; Dahal and Chow, 2015). As mentioned previously, MUGICA follows the 

NASZ schema proposed by White et al. (1997). This modelling schema includes several 

key factors that determine changes and growth: neighbourhood, suitability, accessibility 

and zoning status. Furthermore, many models add another random component so as to 

reproduce the uncertainty that these processes may entail: the random factor (García et al., 

2011). 

The model simulates urban growth for two land uses: residential and productive. The 

amount of area developed in each model iteration (one calendar year), commonly known 

as demand, is previously defined by the user for each land use. In the present study, demand 

was defined as the amount of residential and productive area developed over the period 

2000-2010. 

Neighbourhood. Neighbourhood is defined by proximity between spatial elements (parcels 

in irregular space), which depends on their spatial location and functional relationship 

(effects that one land use exerts on the others) (Couclelis, 1997; Dahal and Chow, 2015; 

O’Sullivan, 2001). This intrinsic CA factor can be divided into two elements: definition 

and effect (Barreira-González and Barros, 2016). 

CA-based models that use regular grids to represent geographical space usually employ the 

same size or shape of neighbourhood to identify those cells that would constitute the 

neighbourhood of a given cell. In the case of irregular CAs, neighbourhood definition is 

especially critical: the intrinsic irregularity of parcel size and shape renders the 

neighbourhood different for each parcel. The definition of neighbourhood in irregular CAs 

has been sufficiently well documented (Dahal and Chow 2015; Moreno et al., 2009; 

Stevens and Dragicevic, 2007). Most irregular CAs implement buffers around parcels and 

identify which parcels fall within these. Nevertheless, calibration of the distance at which 



the buffer should be generated is still the subject of debate due to the sensitivity of the 

model to this parameter. As can be seen, this is similar to the problem of neighbourhood 

size in regular CA-based models, indicating that results obtained from the model may be 

sensitive to changes in neighbourhood size (Kocabas and Dragicevic, 2006). In line with 

the methodology proposed by Barreira-González and Barros (2016), the neighbourhood of 

a parcel is defined in MUGICA as the region covered by the buffer generated around it, 

including parcels either fully or partially covered by the buffer. The model employs graph 

theory to represent parcels and neighbourhood. 

Meanwhile, neighbourhood effect represents the effect, also known as the push-and-pull 

effect (Lau and Kam, 2005), that the land use in a cell exerts on the others according to the 

distance between them. In terms of mathematical representation, this effect is usually 

expressed as a distance-decay function for each pair of land uses. The greater the distance, 

the less the effect exerted. In regular CA-based models, these functions can be obtained 

using spatial metrics such as the Neighbourhood Index (Hansen, 2012) or Enrichment 

Factor (Verburg et al., 2004) and applying them at several distances. In the case of irregular 

spaces, these metrics can be adapted to this environment, as demonstrated by Barreira-

González and Barros (2016), then derived and implemented within the models. 

In MUGICA, the neighbourhood effect is modelled through distance-decay functions 

obtained from a previous study of the neighbourhood at different distances, quantifying the 

amount of area of the buffer that is covered by each land use. As the model simulates two 

classes of urban land uses, there would be four kinds of function per set of functions: 

functions that represent the effect that residential use exerts on other locations to develop 

a residential (R to R) or productive (R to P) land use, and functions that represent the effect 

that productive use exerts on other locations to develop a residential (P to R) or productive 

(P to P) land use. The effect exerted by rural land is not included in these functions, since 

the amount of rural land is greater in comparison to urban land. It was tested, but the results 

showed function which was not affected by neighbourhood distance. Nevertheless, the 

effect of rural land is reproduced in the suitability map, where this kind of land is taken 

into account. 

Spatial metrics such as the Vector Enrichment Factor (vEF) and Vector Neighbourhood 

Index (vNI) were employed to obtain a total of four sets of distance-decay functions (A, B, 

C and D). Figure 2 shows the four sets of neighbourhood effect functions obtained for the 

study area. The set of functions A was obtained using the vNI and considering those parcels 

where urban land was developed between 2000 and 2010. Set B encompassed vNI values 

considering all urban parcels in 2000. Set C was obtained using the vEF in its logarithmic 

form, considering those parcels where urban land was developed between 2000 and 2010. 

Set D encompassed vEF values in its logarithmic form considering all urban parcels in 

2000. The model is capable of using one of these sets of functions in each simulation. Set 

A and C try to study if there was difference with the rest of parcels by employing only 

those that experienced change. 



 
Figure 2. Sets of neighbourhood effect functions. 

 

Accessibility. Accessibility influences the organisation and dynamics of a region, and 

consequently the location of people and activities (Bavoux et al., 2005). This concept may 

have its origins in the earliest land use transport models (Wegener, 2004). It can be defined 

as the ease with which people can access given amenities or locations via the transport 

network (Gutiérrez, 2009). Thus, the combination of two elements defines the accessibility 

of a region: the location of destinations and transport network characteristics (Vickerman, 

1974). 

In order to measure ease of accessibility, Handy and Niemeier (1997) classified 

accessibility metrics into three categories: gravity-based metrics (accessibility decreases 

when travel time or distance increases), utility-based metrics and isochrones. Gravity-

based metrics are the most suitable of these three groups for CA-based models, due to their 

ease of implementation in the models. Most CA-based models have often employed an 

approach similar to that proposed by White et al. (1997), whereby the accessibility value 

for a given cell is inversely proportional to the distance to the road network. In the case of 

irregular CAs, accessibility metrics can be easily computed through the road network as 

the travel time or distance to access given locations. Consequently, the model results may 

be affected by the target locations selected to calculate accessibility. Nevertheless, there is 

currently no optimum way to calculate or measure this factor (Vandenbulcke et al., 2009). 

In the present study, four accessibility metrics were compared in order to select the one 

that best reproduced observed urban growth in the MUGICA calibration period: 2000-2010 

(Figure 3). The first two metrics (1 and 2) were based on the travel distance from a parcel 



(in metres) along the road network to reach target locations: (1) was measured from the 

nearest node on the road network and (2) was measured from the nearest section of the 

road network. The second two metrics (3 and 4) were based on the travel time (in seconds) 

to access target locations using the road network: (3) was measured from the nearest node 

and (4) from the nearest section. Time can be computed from the speed limit on each road. 

Target locations were selected using principal nodes within the road network and main 

connections to motorways. 

 

Figure 3. Accessibility maps: each legend shows the accessibility metric that is being 

represented (1,2,3,4). Hot spots are the target locations to compute the metrics. 

Suitability. The suitability of a cell to develop a land use is usually related to location 

factors and site properties (Li and Yeh, 2000). Mathematically, it can be understood as a 

deterministic linear function of several factors which contribute to the evaluation of each 

location in the territory (Barredo et al., 2004). There is no consensus in the scientific 

community regarding the variables to include in this parameter (Barredo et al., 2003; Dahal 

and Chow, 2014; García et al., 2012), since they are dependent on the study area selected 

(Li and Yeh, 2000). 



One of the most extended approaches to determine the variables that should be considered 

for the suitability factor is logistic regression (Arsanjani et al., 2013). The regression is 

normally expressed in its logarithmic form (Equation 1), expressing the probability of 

occurrence of an event (in this case, urban growth) compared to the probability of non-

occurrence in relation to a weighted sum of independent variables. This iterative method 

determines the weights that adjust the equation and identifies whether some of these 

independent variables are not significant, removing them from the study if this is the case. 

A more detailed explanation of this method can be found in Arsanjani et al. (2013). 

𝑙𝑛 (
𝑃

1 − 𝑃
) = 

0
+  

1
 𝑥1 +  

2
 𝑥2 + ⋯ +  

𝑛
 𝑥𝑛 

Equation 1. Logistic regression. P is the probability of urban growth,  𝑥 are the 

independent variables and  are the coefficients or weights that adjust the equation. 

In the case of MUGICA, logistic regression was performed in R programming language (R 

Core Team, 2013). The results enabled identification of relevant variables that explained 

urban growth in the study area. These included physical variables such as slope or height, 

social variables such as rate of population growth, land uses and geological composition of 

land. Table 1 shows the values for variables that were significant in explaining urban 

growth in the study area. The p value was used to determine whether they were significant 

or not. Suitability values derived from logistic regression were normalised from 0 to 1 

(Figure 4). 

VARIABLE Coef Std error Z value Pr(>|z|) SIGNIFICANCE 

(intercept) 8.024 0.260  30.813  < 2e-16 ** YES 

HEIGHT -0.021 < 0.001 -66.054  < 2e-16 ** YES 

POPULATION 

GROWTH 

0.508 0.026  19.768  < 2e-16 ** YES 

LU_AGRICULTURE -0.267 0.054  -4.930 8.22e-07 ** YES 

LU_BULDING 1.692 0.021  79.431  < 2e-16 ** YES 

LU_SCRUB -0.885 0.163  -5.439 5.36e-08 ** YES 

LU_IRRIGATED -0.430 0.012 -37.114  < 2e-16 ** YES 

LU_NON-IRRIGATED 0.282 < 0.001 28.885  < 2e-16 ** YES 

PROTECTED_LAND -0.319 0.018 -18.140  < 2e-16 ** YES 

GEO_CLAY -4.839 0.088 -54.678  < 2e-16 ** YES 

GEO_DETRITUS -0.975 0.174  -5.601 2.13e-08 ** YES 

GEO_DETRITUS_VAR -4.953 0.085 -58.187 < 2e-16 ** YES 

HYDROGRAPHY 0.667 0.047  14.322  < 2e-16 ** YES 



SLOPE -0.010 0.002 -46.918 < 2e-16 ** YES 

BUILDING LAND 8.687 0.097  89.151  < 2e-16 ** YES 

FLOOD LAND -0.298 0.022 -13.757  < 2e-16 ** YES 

* - - - - NO 

*LU_PASTURE, LU_URBAN and GEO_LIMESTONE were not significant. 

** Variables with significant p values. 

Table 1. Results derived from logistic regression. 

 

 
Figure 4. Suitability map. 

Zoning status. The land use zoning proposed in the urban plans of the three selected 

municipalities was used as the zoning status parameter. MUGICA assigned their real 

zoning status to all parcels included in the study area without the need to rasterise the map. 

Parcels were included or excluded as vacant land in each model run depending on their 

zoning status. 

 



 

Figure 5. Zoning status map 

Random factor. Urban processes at very detailed scales do not always correspond to 

deterministic causes and present a certain degree of randomness (García et al., 2011). 

Consequently, CA-based models usually incorporate a component of randomness. CA-

based models commonly calculate the potential value to develop an urban land use by 

combining neighbourhood, accessibility, suitability and zoning status values for each cell 

or parcel. Then, this potential value is modified by using a random component which 

introduces a perturbation of the value (White and Engelen, 1993), or by using the Monte 

Carlo method, whereby the potential value is compared with a random number to decide 

development (De Almeida et al., 2003; Wu, 2002). This kind of perturbation is commonly 

known in the literature as the stochastic disturbance and it was incorporated into the 

MUGICA model using Equation 2: 

𝑅 = 1 + (− ln 𝑟𝑎𝑛𝑑)𝛼 

Equation 2. Stochastic disturbance applied to the potential development for each parcel. 

where R is the stochastic disturbance, rand is a random number between 0 and 1 and α is 

a number that controls the size of the disturbance. This exponent was tested for values 

between 0.1 and 1 in steps of 0.1. 

A second component was added to the random factor in MUGICA, to reflect the Spanish 

context. During the housing bubble in Spain (1997-2008), certain parcels developed a 

residential or productive land use even though they were zoned as protected or non-

building land (Burriel, 2011). This fact has been as well explored by other authors in other 

countries (e.g. White et al., 2015; Alfasi et al., 2012). Hence, the aim of the second 

component, named Random Protected Land Development (RPLD), was to add parcels with 

‘protected land’ zoning status to the set of candidates to develop a new urban area, in order 

to simulate possible illegal growth. The amount of area added was based on the percentage 

of the detected area illegally developed in the region between 2000 and 2010 (14% for 

residential use and 25% for productive use). 

Implementation of MUGICA 



MUGICA is based on a previous prototype (Barreira-González et al., 2015a). The model 

uses a series of concatenated Python functions, enabling correct performance. The 

flowchart (as shown in Figure 6) can be divided into three independent but interconnected 

blocks. 

 
Figure 6. Model flowchart. 

 



The first block prepares the data required during model operation. In this step, all the 

geospatial information is integrated: the suitability map is calculated, neighbourhood is 

defined, accessibility is measured and zoning status is added at parcel level. 

The second block covers model operation, in which the information is abstracted onto a 

graph in order to reduce computational time (Barreira-González et al., 2015a). In this case, 

the graph nodes are the cadastre parcels, storing all the information relative to the parcel, 

and the connections between them are defined through the neighbourhood as described in 

section Neighbourhood. 

Once the graph is fully completed, the model starts iterating, calculating the vacant land 

which is available to develop a new urban land use. Here, the RPLD component adds areas 

with protected land zoning status to vacant land. Two land uses are simulated: residential 

and productive (commercial and industrial). With the available land identified, the model 

calculates the neighbourhood effect for the first year, and then the equation of potential is 

applied (Equation 3). 

𝑃𝑖,𝑘 = 𝑁𝑖,𝑘  𝐴𝑖  𝑆𝑖  𝑍𝑖 + 𝑅 

Equation 3. Potential to develop land use k for a parcel i. N is the neighbourhood effect to 

develop land use k, A is accessibility, S is suitability, Z is the zoning status and R is the 

stochastic disturbance. 

For each parcel classified as vacant land, two values of potential are obtained: one to 

develop a residential land use and another to develop a productive land use. The model 

determines which is the highest and develops parcels until demand for each land use is 

fulfilled. Parcels that have developed new land uses during this iteration are updated in the 

graph and the new situation is introduced as the starting data for the next iteration. The 

model works iteratively until the final year of simulation is reached (1 iteration corresponds 

to one calendar year). 

The last block transfers the results stored in the graph to the cadastre dataset in order to 

obtain spatial results. Using the same flowchart proposed in Figure 6, and in order to test 

model performance, a total of 224 versions of the MUGICA were produced under different 

combinations of different factor implementations: the four neighbourhood effect functions 

(A, B, C and D), the suitability map obtained through logistic regression, the four 

accessibility metrics (1, 2, 3 and 4) and the zoning status obtained for each parcel produced 

a total of 16 versions (Table 2), each of which in turn produced 14 more versions (224 in 

total) using of 14 different neighbourhood distances, from 25m to 500m. 

 Neighbourhood Effect Functions 

Accessibility Metrics A B C D 

1 A1 B1 C1 D1 

2 A2 B2 C2 D2 

3 A3 B3 C3 D3 

4 A4 B4 C4 D4 



Table 2. Notation for MUGICA versions. 

Calibration: Simulation for 2000-2010 and accuracy assessment method. 

To test the MUGICA model, it was necessary to study the random factor in isolation in 

order to understand how the rest of the factors contributed to the results (Barreira-González 

et al., 2015b). Thus, the model was first tested without randomness, running each of the 

224 versions of MUGICA from 2000 to 2010 and comparing the results against observed 

growth for 2010. Then, the version that best reproduced urban growth for 2010 was 

selected and the random factor was introduced into that version of MUGICA to test its 

performance. The results for the versions of MUGICA without randomness are given in 

section Simulation for 2010 and selection of the optimum version of MUGICA. 

Once the version of MUGICA with the best fit had been selected, another 10 versions of 

the model were produced, which included the RPLD and different stochastic disturbance 

sizes (R) using 10 different values for α, from 0.1 to 1.0 in steps of 0.1. These 10 versions 

were each run 100 times (1,000 in total) in order to measure the variability of the results 

due to each stochastic disturbance size. The results for the versions of MUGICA that 

include randomness are given in section Incorporation of the random factor into the 

MUGICA version with the best fit. 

A recurrent question when comparing model simulation results with observed changes or 

growth is how well the model performed (Pontius et al., 2008), or in other words, which is 

the best metric to determine agreement. In this study, we adapted the cross tabulation 

matrix usually employed in remote sensing to compare classified images against reality 

(Congalton and Green, 2008). As shown in Figure 7, the values in the matrix are not pixels, 

but parcel area. Producer accuracy (PA) was employed to determine the proportion of the 

simulation per land use that had been located correctly according to observed growth. A 

new metric called growth simulation accuracy (GSA) was developed to determine how 

well the model located growth. 

Figure 7. Metrics derived from cross tabulation matrix between simulated and observed 

growth. 

Results 

Simulation for 2010 and selection of the optimum version of MUGICA 

All versions of MUGICA (224) were run from 2000 to 2010 and then compared against 

observed growth for 2010. Figure 8 shows the results obtained for each comparison metric 

selected. The model version can be identified according to the notation shown in Table 2 

and the neighbourhood definition distance shown in the x-axis. 



 



Figure 8. (a) Producer accuracy for residential land use. Values lower than 40% are not 

represented (accessibility metric 4). (b) Producer accuracy for productive land use. (c) 

Growth simulation accuracy. 

Figure 8 (a) shows that when using the same accessibility metric, the results for residential 

land use presented similar PA values to the values grouped by colour. This may mean that 

the results obtained from MUGICA are highly sensitive to the selected set of functions that 

reproduce the neighbourhood effect. Thus, the results obtained with metric 1 (in blue) 

presented the highest PA values, which means that the version of MUGICA that employed 

this metric reproduced observed growth better than the other versions. In the case of the 

different neighbourhood effect functions, set D presented better results than the other sets 

when using the same neighbourhood distance and accessibility metric. The best simulated-

observed residential agreement corresponded to D1, and this rose as neighbourhood 

distance increased. 

In the case of productive land use (Figure 8 (b)), the PA results were not analogous to those 

for residential land use. C1 best reproduced the observed productive growth, independently 

of the neighbourhood distance selected. The results seem to be similar in the case of 

accessibility metric 3 (A3, B3, C3 and D3), with small differences between them. The least 

homogeneous results were given by metric 2, which did not present a clearly recognisable 

pattern. Neighbourhood distance did not appear to generate higher or lower PA values 

when this parameter was modified in MUGICA for this land use, whereas the choice of 

accessibility metric in combination with the neighbourhood effect functions exerted a clear 

effect on the results. 

An analysis of the results obtained from the different versions of MUGICA taking into 

account the location of the simulated growth, independently of the land use simulated 

(GSA), revealed a combination of factors that clearly obtained the best fit (Figure 8c). This 

was the C1 version of MUGICA, where neighbourhood distance was defined as 250m, and 

this was used to test the random factor in the model. 

Incorporation of the random factor into the MUGICA version with the best fit. 

RPLD and R were incorporated into the MUGICA version with the best fit, and this was 

run 1,000 times: 100 times per different stochastic disturbance value (from 0.1 to 1). Bean 

plots in Figure 9 show the GSA metric results obtained for the simulations. Only GSA was 

used since the aim was to determine which combination best reproduced urban growth, 

without considering land use. 

 



Figure 9. Growth simulation accuracy for MUGICA version C1, 250m. 

The x-axis shows all values for α. The black line in each bean represents the mean GSA 

for the 100 simulations of each version, and the width of the bean represents the frequency 

of the results. The highest GSA was obtained for α=0.4, although the adjacent values of 

0.3 and 0.5 presented similar results. The shape of the bean, close to the shape of a rhombus, 

suggests that the results presented a normal distribution, which was the case of 0.4. Thinner 

beans indicate that the results were more dispersed, with high variability due to the size of 

stochastic disturbance selected. In the case of 0.4, GSA values ranged from 65% to 50%. 

Thus, the implemented random factor modified the model results by ±7.5%. 

Spatial results 

The spatial results obtained from the simulations performed with the C1 MUGICA model 

are shown in Figure 10. Figure 10 (a) represents the 100 simulations of the version with 

the best fit and using α=0.4, providing the cartography of the parcels most repeatedly 

simulated by the model (Barreira-González et al., 2015b; Brown et al., 2005). As can be 

seen, parcels with deep red represent locations that were selected by the model in over 80% 

of the simulations. 

Figure 10 (b) represents the agreement with observed growth for the best of the 100 

simulations carried out. Parcels in green represent those areas where the model correctly 

simulated the observed growth between 2000 and 2010, which also appear in the numerator 

of GSA equation. These parcels are mainly located along the motorway corridor or in 

certain locations close to the urban centres of the three municipalities. Parcels in blue 

represent model errors of omission: parcels where urban growth occurred but the model 

did not simulate it. Parcels in red represent errors of commission: parcels where urban 

growth did not occur but where this was simulated by the model. 

 



 

Figure 10. (a) Frequency map of parcels developed after running 100 simulations of 

MUGICA C1 with α=0.4. (b) Best-fit simulation compared to observed growth. 

Discussion and conclusions 

MUGICA has demonstrated the capacity to reproduce the principles of classical CA-based 

models but in an irregular environment, using cadastral parcels. The use of this structure 

required a redefinition of the different factors included in typical CA-based models that 

simulate urban growth. Calibration of these factors has been assessed through a sensitivity 

analysis, testing the extent to which the results obtained from the model are sensitive to 

changes in each of the factors implemented (Barreira-González et al., 2015b). 

In line with the methodology proposed by Barreira-González and Barros (2016), several 

neighbourhood definition distances were used to obtain a function of effect for each land 

use and spatial metric. The GSA results show that selecting a different neighbourhood 

distance did not influence the results, with differences of less than 4% when using the same 

neighbourhood effect function and accessibility metric. Nevertheless, the global results 

obtained over 55% for GSA for most versions of MUGICA. This finding contrasts with 

the results obtained in other studies that have analysed variation in results in relation to 

neighbourhood distances in regular CA-based models (Jantz and Goetz, 2005; Kocabas and 

Dragicevic, 2006) or irregular ones (Barreira-González and Barros, 2016). The inclusion 

of more land uses might lead to an increase in the differences, but further research is 

required in order to assess this issue. 

The accessibility metrics proposed here, which constitute a new approach to the concept of 

accessibility with respect to traditional CAs, have demonstrated their capacity to 

characterise ease of access from a parcel to given elements. The metrics (1 and 2) that 

employ distances to measure accessibility seem to be more effective, obtaining higher PA 

and GSA values than those that employ time (3 and 4). These results are evidently sensitive 

to changes in the target locations selected (Handy and Niemeier, 1997), and therefore an 

assay using several sets of locations would complement the study and calibration of this 

factor in an irregular model. 



Regarding the random factor, a new alternative has been proposed to address the 

uncertainty that complex processes such as urban growth entail (García et al., 2011). The 

RPLD component more realistically represents the dynamic experienced in the Spanish 

context, where there has been illegal growth in recent decades. In this sense, there is a need 

to evaluate how the development potential of each parcel evolves during model operation 

to test the extent of the influence of stochastic disturbance and RPLD. Other methods which 

have been explored in this field, such as the Monte Carlo method (Wu, 2002), may 

contribute to improving the R component. 

Urban plans depict the zoning status of every area using the smallest spatial unit in 

planning: parcels. Thus, zoning is defined at the parcel level. Implementation of this factor 

enables the future inclusion of planning modifications to simulate scenarios within 

MUGICA. The model has the capacity to integrate all the information for each factor at 

parcel level for later on, transferring the information to a graph. The simple structure of 

graphs consistently reduces the computational time required to run the model and preserves 

the spatial structure as well as maintaining the neighbourhood definition. These advantages 

render this structure more promising for inclusion in irregular CA-based modelling. 

MUGICA accurately locates past urban growth, with over 60% agreement. Some authors 

have tended to include stable areas in their calculation of agreement, increasing their values 

of coincidence from 70% to over 90% (Barredo et al., 2004; Moreno et al., 2009, Pinto and 

Antunes, 2010). In the case of MUGICA, stable areas were not included in the calculation 

of GSA or PA, in order to highlight the correct performance of the model. 

The final product obtained from this study is the MUGICA model, which has demonstrated 

its capacity to reproduce past urban growth at the municipal scale. Starting from the NASZ 

modelling schema (White et al., 1997) as the framework of most urban growth models, 

each factor implemented has been developed to fit the irregular structure employed by 

MUGICA: cadastre parcels. This has required considerable effort, in terms of time and 

programming, to build the model from scratch and to adapt traditional implementation of 

the factors and calibrate these for the irregular structure of the cadastre. 

The irregular structure employed here presents several advantages, such as using a more 

realistic spatial unit rather than regular grids or pixels (Zelaya et al., 2016). In this regard, 

the cadastral parcel is the smallest unit employed in planning, and as indicated by 

Triantakonstantis and Mountrakis (2012), the use of the same spatial structure as that 

employed by planners may be necessary in order to include models in the planning process. 

We believe that the use of this structure renders models more comprehensible and more 

likely to be used by planners. In addition, the results obtained from simulations could be 

employed in workshops with agents to move planning processes forwards based on 

participatory scenarios. As shown in Figure 10 (a), identification of the parcels that are 

most repeatedly simulated by the model could be useful to planners using this kind of 

model (Barreira-González et al., 2015b), and would contribute to better-founded 

discussion. 

However, the use of cadastre parcels also presents some drawbacks. The main one is related 

to large parcels. Traditionally, parcels in rural areas have tended to be much larger than 

those located in urban areas. When these large parcels are developed, they are not usually 

developed as a whole, but rather tend to be subdivided. The current MUGICA version does 



not have the capacity to divide them into several smaller units. A subdivision algorithm is 

thus required to complement the other elements used in the model, as well as testing more 

land uses in the urban environment. 

A map comparison of simulated and observed growth is a key question in calibration and 

validation processes. Here, we have proposed an adaptation of the traditional cross 

tabulation or confusion matrix with PA and GSA metrics to provide an accurate indication 

of how well the model is performing. Although the above-mentioned metrics considered 

the spatial location of the results, there is also a need to explore spatial metrics (Herold et 

al, 2003) in order to analyse the results in terms of fragmentation and dispersion (Barreira-

González et al 2015b). Another approach could be to adapt moving window metrics (Soria-

Lara et al, 2016) to irregular environments. 
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