Synthesis and Reactivity of N-Alkyl-2-oxoalkanesulfonamides ${ }^{1}$

Juan A. Vega, Ramón Alajarín, Juan J. Vaquero and Julio Alvarez-Builla*
Departamento de Química Orgánica, Universidad de Alcalá. 28871-Alcalá de Henares. Spain. E-mail: jalvarez@quimor.alcala.es

Received 17 December 1997; revised 26 January 1998; accepted 29 January 1998

Abstract

A series of N -alkyl-2-oxoalkanesulfonamides have been synthesized by reacting silyl enol ethers with N -alkyl-sulfamoyl chlorides. Their reactivity towards electrophiles was investigated in order to explore the regio- and stereoselectivity of the process. 2-Oxoalkanesulfonamides were used to prepare 5 -(methylsulfamoyl)-1,4-dihydropyridines derivatives. © 1998 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The sulfonamide group forms the bioactive moiety of many compounds with therapeutical interest, such as antibacterials, diuretics, oral antidiabetics and antibiotics. ${ }^{2}$ Our interest in calcium modulators ${ }^{3}$ prompted us to explore the synthesis of 2 -oxoalkanesulfonamide derivatives for the preparation of new potential 5 -(methylsulfamoyl)-1,4-dihydropyridine derivatives as potential calcium antagonists.

The synthesis of N -alkyl-2-oxoalkanesulfonamides 1 was first reported by Hendricson and Bergeron. ${ }^{4}$ The reaction of benzoylmethylsulfonyl chloride with primary amines yielded N -benzoylmethylsulfonyl derivatives from which amines can be regenerated by reductive treatment. A different approach was carried out by Bender et al. ${ }^{5}$ The reaction of enamines with N -alkyl-sulfamoyl chlorides at low temperature led, after hydrolysis, to 2oxoalkanesulfonamides 1 . The treatment of N -aikyl-alkanesulfonamides with two equivalents of strong base and further reaction with nitriles has also led, after hydrolysis, to N -alkyl-2-oxoalkanesulfonamides $1 .{ }^{6}$ Recently, our group reported a new procedure which improves on Bender's method ${ }^{5}$ using a related strategy. ${ }^{7}$ Thus, by reacting silyl enol ethers ${ }^{8,9}$ with N -methyl-sulfamoyl imine, generated in situ from N -methyl-sulfamoyl chloride, ${ }^{10,11}$ good yields of N -methyl-2-oxoalkanesulfonamides were obtained (Scheme 1).

Scheme 1
The reactivity of 2-oxoalkanesulfonamides has been scantily investigated. To our knowledge, only two reports describe the chemistry of 2-oxoalkanesulfonamides: the above mentioned work of Hendricson et al where N -alkyl-benzoylmethylsulfonamides are C - and N - alkylated (apparently monoalkylation of the methylene always occurs faster than N -alkylation) and the report of Bender et al ${ }^{12}$ which studies their reactions with carbonyl compounds which were found to behave as monofunctional ketones, active-hydrogen compounds or sulfonamides, and often as bifunctional compounds with formation of cyclic products (Scheme 1).

We report here the synthesis of N -alkyl-2-oxoalkanesulfonamides, and their chiral derivatives, using our previously reported procedure, as well as a study of their regio- and stereoselective reactions with methyl iodide and acyl chlorides. We also report the synthesis of 5-(methylsulfamoyl)-1,4-dihydropyridine derivatives from N-methyl-2oxoalkanesulfonamides in order to test their calcium antagonist activity.

RESULTS AND DISCUSION

Synthesis of \mathbf{N}-alkyl-2-oxoalkanesulfonamides 1

We extended our previously reported procedure ${ }^{7}$ to the synthesis of a range of silyl enol ethers and sulfamoyl chlorides (Scheme 2). Thus, by reacting silyl enol ethers 2 with N -alkyl-sulfonyl imines 3, generated in situ from N -alkyl-sulfamoyl chlorides 4 , good to moderate yields of N -alkyl -2-oxoalkanesulfonamides 1 were obtained (Table 1). Silyl enol ethers 2 were prepared using the procedure reported by Walse and Woodward ${ }^{9}$ which led to better yields than the procedures reported by Chu et al ${ }^{13}$ and Dubois et al. ${ }^{14} \mathrm{~N}$-Alkyl-sulfamoyl chlorides 4 were obtained using the procedure reported by Günter and Schulze, ${ }^{15}$ which uses Lewis acid catalysts such as SbCl_{5} or PCl , to accelerate the reaction rate.

Scheme 2
Table 1. Synthesis of N -alkyl-2-oxoalkanesulfonamides 1.

Entry	Compound	R^{1}	R^{2}	R^{3}	Time (h)	Yield (\%)
1	1 a	Me	H	Me	5	81^{1}
2	1b	Et	Me	Me	20	$65^{\text {a }}$
3	1 c			Me	6	$67^{\text {a }}$
4	1d			Me	24	$85^{\prime \prime}$
5	1 e			Me	20	$61^{\text {a }}$
6	1 f			Me	26	$60^{\text {a }}$
7	1 g			Me	24	28^{*}
8	1 h	Ph	H	Me	5	$50^{\text {a }}$
9	1 i	2-Th	H	Me	2	$60^{\text {a }}$
10	1j			Me	9	$75^{\text {a }}$
11	1k	Me	H	Cyclohexyl	4	47
12	11	Ph	H	Cyclohexyl	5	54
13	1 m			Cyclohexyl	10	36
14	1 n	Me	H	Benzyl	18	50
15	10	Ph	H	Benzyl	4	57
16	1p			Benzyl	12	47
17	$1 q$	Me	H	1-phenylethyl ${ }^{\text {b }}$	6	58
18	1 r	Ph	H	1-phenylethyl ${ }^{\text {b }}$	1	60
19	1 s			1 -phenylethyl ${ }^{\text {b }}$	6	58
20	1 t			1-phenylethyl ${ }^{\text {b }}$	10	50
21	1u			1-phenylethyl ${ }^{\text {b }}$	3	40

a) Reference 7. b) Pure (R)-enantiomer.

Chiral cyclic sulfonamides $\mathbf{1 s}$-1u were obtained as a mixture of diastereomers. Although diastereomeric
excess could not be determined for 1 s by ${ }^{\text {'H-NMR, for }} 1 \mathrm{lt}$ d.e. was not observed and only 30% d.e. for compound 1 u was determined.

Alkylation of \mathbf{N}-alkyl-2-oxoalkanesulfonamides

The alkylation of N -alkyl-2-oxoalkanesulfonamides 1 with MeI, using different bases and conditions, was investigated (Scheme 3). We were interested in developing not only a regioselective procedure, but also a stereoselective one by using a chiral auxiliary fragment ((R)-1-phenylethylamine) linked to the sulfonamide group.

Scheme 3
We tested compounds $\mathbf{1 a}$ and $\mathbf{1 h}$ for regioselectivity and $\mathbf{1 q}$ for both regio- and stereoselectivity (Table 2). As expected, low temperatures and weaker bases gave better selectivities (entries 1 vs $2,4 v s 5,7 v s 9$ and $2 v s 3$, 5 vs 6 and 7 vs 9 respectively). Compound $\mathbf{1 h}\left(\mathrm{R}^{1}=\mathrm{Ph}\right)$ gave better selectivities than compound $\mathbf{1 a}\left(\mathrm{R}^{\llcorner }=\mathrm{Me}\right)$ at low temperatures (entries 4 and 1).

For the stereoselective process, using method C for compound $\mathbf{1 q}\left(\mathrm{R}^{\prime}=\mathrm{Me}\right)$ gave better regioselectivity than method B for compound $1 a\left(R^{1}=\mathrm{Me}\right)$ (entries $7 v s 3$). However, although the regiochemistry for the reaction was complete, diastereoselectivity was poor (entry 7). The diastereomeric ratio was determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ since diastereomers could not be separated. When the reaction temperature was increased regioselectivity decreased (entries 7 vs 8). For compound $\mathbf{6 q}$ diastereomeric excess could not be determined.

As previously pointed out by Hendrickson and Bergeron ${ }^{4}$, we have found that C-alkylation (compound 5) is faster than N -alkylation (compound 6), which is to say, 5 is the kinetic product and 6 is the thermodynamic one. The C - and N -alkylation compound 7 is produced only when the temperature is raised or the enolate intermediate derived from compound 6 is stabilised by a phenyl group (entries 8 and 5-6 respectively). The absence of water in the reaction media $(\operatorname{method} C)$ drives the course of the reaction exclusively towards the formation of compound 5 by shifting the intermediate equilibrium towards the more stable anion enolate intermediate 8 . In the presence of
water (method B) the enolate anion 8 is partially protonated and the sulfonamidate anion 9 dominates (Scheme 3).

Table 2. Regioselective alkylation of N -alkyl-2-oxoalkanesulfonamides 1 with MeI.

Entry	Compound	R^{1}	R^{2}	Method $^{\mathrm{a}}$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	Time	7:6:5 ratio (d.e.) $)^{\mathrm{b}}$
1	$\mathbf{1 a}$	Me	Me	A	-40	5	$0: 30: 70$
2	$\mathbf{1 a}$	Me	Me	A	20	2	$0: 50: 50$
3	$\mathbf{1 a}$	Me	Me	B	20	20	$0: 9: 91$
4	$\mathbf{1 h}$	Ph	Me	A	-40	10	$0: 1: 99$
5	$\mathbf{1 h}$	Ph	Me	A	20	18	$44: 18: 38$
6	$\mathbf{1 h}$	Ph	Me	B	20	20	$8: 1: 91$
7	$\mathbf{1 q}$	Me	1-phenylethyl ${ }^{\mathrm{c}}$	C	20	20	$0: 0: 100(60)$
$\mathbf{8}$	$\mathbf{1 q}$	Me	1-phenylethyl ${ }^{\mathrm{c}}$	B	40	20	$12(0): 13: 75(20)$
9	$\mathbf{1 q}$	Me	1-phenylethyl ${ }^{\mathrm{c}}$	A	20	14	$0: 11: 89(60)$

a) Method (base/solvent): A (LDA/THF); $\mathrm{B}\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{H}_{2} \mathrm{O}-\mathrm{DCM}\right) ; \mathrm{C}\left(\mathrm{K}_{2} \mathrm{CO} / \mathrm{DCM}\right)$. b) For compound 6 q e.d. was not determined. c) Pure (R)enantiomer.

Acylation of 2-oxoalkanesulfonamides 1

We have simultaneously investigated the regio- and stereoselective acylation of compounds $\mathbf{1 q - 1 t}$ with benzoyl and p-chlorobenzoyl chloride, using several base systems (Scheme 4). The reaction gave mixtures of Cacylated compounds 10 and C - and N -acylated compounds 11, but none of the N -acylated compound.

Scheme 4

As shown in Table 3, the steric hindrance of the base significantly affects the regioselectivity of the reaction. The bulkier the base, the higher is the regioselectivity ratio 10:11. The base does not play such as important role in the diastereomeric excess of compounds 10 since switching TEA with Hünig base ($\mathrm{EtPr}_{2}{ }_{2} \mathrm{~N}$) did not lead to high diastereomeric excess differences. However, a bulkier base led to slightly better diastereomeric excess. By using $\mathrm{K}_{2} \mathrm{CO}_{3}$ instead of TEA or Hünig base we observed lower regio- and stereoselectivities for the reaction (entries 3 and
6) excepting when the sulfonamide is a cyclic one (entry 9).

Table 3. Acylation of chiral N -alkyl-2-oxoalkanesulfonamides 1q-t.

Entry	Compound	R^{1}	R^{2}	Ar	Method ${ }^{\text {a }}$	Time (h)	10:11 ratio (d.e.)
1	19	Me	H	p-Cl- $\mathrm{C}_{6} \mathrm{H}_{4}$	A	6	23(60):1(0)
2	$1 q$	Me	H	p-Cl- $\mathrm{C}_{6} \mathrm{H}_{4}$	B	96	60(78):1(0)
3	$1 q$	Me	H	p-Cl- $\mathrm{C}_{6} \mathrm{H}_{4}$	C	16	2(10):1(0)
4	$1 \mathbf{r}$	Ph	H	p-Cl-C6 H_{4}	A	1	7(50):1(0)
5	1 r	Ph	H	p-Cl-C6 H_{4}	B	14	12(62):1(0)
6	1 r	Ph	H	p-Cl-C6 H_{4}	C	23	$5(20): 1(0)$
7	1s			p-Cl-C6 H_{4}	A	2	2(60):1(0)
8	1s			p-Cl-C6 H_{4}	B	10	27(68):1(0)
9	1 s			p-Cl-C6 H_{4}	C	20	9(60):1(0)
10	$1 t$			$\mathrm{C}_{6} \mathrm{H}_{4}$	A	2	4(24):1(0)
11	$1 t$			$\mathrm{C}_{6} \mathrm{H}_{4}$	B	10	24(50):1(0)

a) Method (base/solvent): $\mathrm{A}\left(\mathrm{Et}_{3} \mathrm{~N} / \mathrm{DCM}\right) ; \mathrm{B}\left(\mathrm{EtPr}_{2}^{\mathrm{i}} \mathrm{N} / \mathrm{DCM}\right) ; \mathrm{C}\left(\mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{MeCN}\right)$.

Synthesis of 5-(methylsulfamoyl)-1,4-dihydropyridine derivatives $\mathbf{1 2}$

Our target dihydropyridine structures were asymmetrically substituted 1,4-dihydropyridine derivatives 12 since this structure retains all the features required for calcium antagonist activity, ${ }^{16}$ and bears a sulfonamide group which could be an interesting isostere for the usual carboxylic ester group.

The synthesis of these derivatives was carried out using the traditional Hantzsch strategy (Scheme 2). Arylidenesulfonamides 13 were obtained in moderate yields using the same procedure reported for the preparation of arylideneacetoacetates. ${ }^{17}$ These compounds were further reacted with methyl 2 -aminocrotonate 14 to give a mixture of dihydropyridines 12 and 15 . These symmetrically substituted Hantzsch dihydropyridines 15 are produced as a consecuence of a retro-Michael process on the adduct intermediate 16, which gives the imine 17 which then reacts with the aminocrotonate 14 to give Hantzsch dihydropyridines 15. A side-product from this retro-Michael reaction, 2-oxoalkanesulfonamide 1a, was also isolated from the reaction mixture. This undesirable pathway has been detected when unsymmetrical Hantzsch dihydropyridines are prepared, although only traces of the symmetrically substituted dihydropyridines are normally produced in such cases. ${ }^{3}$ However, in our case this is the main reaction pathway probably because of the enhanced acidity of the hydrogen α to the sulfonamide group in the intermediate 16 over that of an acetate group.

Scheme 2
Dihydropyridines 12 were tested for calcium antagonist activity, ${ }^{3}$ but no activity was detected. This result could be because of the acidity of the hydrogen in the sulfonamide group which resembles that of a carboxyl group in dihydropyridine carboxylic acids which have not shown activity. ${ }^{16}$

An alternative strategy ${ }^{3}$ in which it was hoped to obtain the enamine 18 from la by reacting with $\mathrm{NH}_{4} \mathrm{OAc}$, which could then be used to synthesize compounds 12 was examined. Unfortunately, the reaction did not yield 18 but rather compound 19 which arose through a self-condensation and subsequent cyclization. A similar compound to 19 have been reported when not N -methylated 1 a was treated with $\mathrm{KOH} / \mathrm{EtOH} .{ }^{12}$

EXPERIMENTAL

Instruments and Materials. Melting points were determined on a Buchi SMP-20 apparatus and are
uncorrected. 'H-NMR spectra were recorded on a Varian Unity FT-80 or Varian Unity 300 spectrometer with TMS as internal standard. ${ }^{13} \mathrm{C}$-NMR spectra were recorded on a Varian Unity 300 spectrometer. IR spectra were obtained on a Perkin-Elmer 1310 spectrophotometer. Microanalyses were performed on a Heraeus CHN Rapid analyzer. MS were obtained on a Hewlett-Packard 5988 A spectrometer.

All reagents were purchased from Aldrich Co. or Janssen Co. Flash chromatography was carried out on silica gel 60 ($400-630$ mesh). Reagents and solvents were purified and dried prior to use when neccesary according to stablished procedures. ${ }^{18} \mathrm{NaI}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ were dried by irradiation in a domestic microwave oven for 15 min at 300 watt.

Synthesis of \mathbf{N}-alkyl-2-oxoalkanesulfonamides 1. General procedure. To a mixture of silyl enol ether 2 and triethylamine dissolved in MeCN was added a solution of sulfamoyl chloride 3 at room temperature under an argon atmosphere. After the addition was complete the mixture was heated at reflux. The solvent was evaporated and the residual oil chromatographed on silica gel.

1a. Reaction of a solution of $2 \mathrm{a}(0.43 \mathrm{~g} ; 3.3 \mathrm{mmol})$ and TEA $(0.41 \mathrm{~g} ; 4.1 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.51 \mathrm{~g} ; 4.0 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 5 h yields $0.40 \mathrm{~g}(81 \%)$ of 1 a after chromatography using n-hexane/ethyl acetate $1: 1$; bp 203-205 ${ }^{\circ} \mathrm{C} / 0.8 \mathrm{~mm} \mathrm{Hg} ; \mathrm{IR}\left(\mathrm{CHBr}_{3}\right) 3370,3021,2476,2258,1725,1467,1317$, $1248,1137,1041,876,808,692,641 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.69(\mathrm{bs}, 1 \mathrm{H}) ; 4.07(\mathrm{~s}, 2 \mathrm{H}) ; 2.81(\mathrm{~d}, 3 \mathrm{H}$, $J=4.9 \mathrm{~Hz}) ; 2.39(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 152(\mathrm{M}+1)$.

1b. Reaction of a solution of $2 \mathrm{~b}(0.94 \mathrm{~g} ; 5.96 \mathrm{mmol})$ and TEA ($0.72 \mathrm{~g} ; 7.4 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(1.30 \mathrm{~g} ; 10 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 24 h yields $0.69 \mathrm{~g}(65 \%)$ of 2 a after chromatography using toluene/ethanol 9:1; bp $128-130^{\circ} \mathrm{C} / 0.2 \mathrm{~mm} \mathrm{Hg}$; $\operatorname{IR}\left(\mathrm{CHBr}_{3}\right) 3610,3316,2981,2943,1718,1626,1538,1452$, $1404,1355,1078,996,845,699 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 4,58(\mathrm{~s}, 1 \mathrm{H}) ; 4.12(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 2.82$ (d, $3 \mathrm{H}, J=5.1 \mathrm{~Hz}) ; 2.72(\mathrm{c}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 1.55(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 1.07(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z}$ $179(\mathrm{M}+1)$.

1c. Reaction of a solution of $3 \mathrm{a}(0.25 \mathrm{~g} ; 1.9 \mathrm{mmol})$ and TEA $(0.23 \mathrm{~g} ; 2.3 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.29 \mathrm{~g} ; 2.2 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 4 h yields $0.22 \mathrm{~g}(67 \%)$ of $\mathbf{1 c}$ after chromatography using n-hexane/ethyl acetate $8: 2$; bp $146-150^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$; $\mathrm{IR}\left(\mathrm{CHBr}_{3}\right) 3344,3021,2974,1738,1403,1327,1247$, $1140,1074,1044,812,692,663 \mathrm{~cm}^{-1} ;{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 4.7(\mathrm{bs}, 1 \mathrm{H}) ; 3.7-3.65(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 2.83$ (d, $3 \mathrm{H}, J=5.4 \mathrm{~Hz}) ; 2.6-2.4(\mathrm{~m}, 4 \mathrm{H}) ; 2.3-2.2(\mathrm{~m}, 1 \mathrm{H}) ; 2.0-1.0(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 178(\mathrm{M}+1)$.

1 d Reaction of a solution of $2 \mathrm{~d}(0.51 \mathrm{~g} ; 3.0 \mathrm{mmol})$ and TEA ($0.66 \mathrm{~g} ; 6.6 \mathrm{mmol})$ in $\mathrm{MeCN}(18 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.77 \mathrm{~g} ; 6 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 24 h yields $0.50 \mathrm{~g}(87 \%)$ of 1 d after chromatography using n-hexane/ethyl acetate 8:2; bp 170-175 ${ }^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$; $\mathrm{IR}\left(\mathrm{CHBr}_{3}\right) 3362,3020,2948,2658,248,2278,2257,1706$, $1603,1444,1393,1355,1321,1137,1077,812,691,693 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 5.26(\mathrm{~m}, 1 \mathrm{H}) ; 3.9-3.8$
$(\mathrm{t}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 3.49-3.31(\mathrm{t}, 2 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 2.88-2.79(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}) ; 2.61-1.72(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI})$ m/z 191 (M+1).

1 e Reaction of a solution of $2 \mathrm{e}(0.69 \mathrm{~g} ; 3.8 \mathrm{mmol})$ and TEA $(0.61 \mathrm{~g} ; 6.0 \mathrm{mmol})$ in $\mathrm{MeCN}(15 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.53 \mathrm{~g} ; 4.1 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 20 h yields $0.48 \mathrm{~g}(61 \%)$ of 1 e after chromatography using n-hexane/ethyl acetate 4:6; bp 195-197 ${ }^{\circ} \mathrm{C} / 0.4 \mathrm{~mm} \mathrm{Hg}$; IR $\left(\mathrm{CHBr}_{3}\right) 3549,3308,2934,2860,1704,1452,1316$, $1237,1148,997,970,940,907,839,675 \mathrm{~cm}-1 ;{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.52(\mathrm{~d}, 1 \mathrm{H}, J=4.8 \mathrm{~Hz}) ; 3.89-3.83$ (dd, $1 \mathrm{H}, J=4.6$ and 11.7 Hz); 2.83-2.82 (d, $3 \mathrm{H}, J=5.3 \mathrm{~Hz}$); 2.62-2.40 (m, 2 H); 2.2-1.18 (m, 4H); $1.55-1.25(\mathrm{~m}$, $4 \mathrm{H}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 46.81 ; \mathrm{H}, 7.36 ; \mathrm{N}, 6.82$. Found: C, 46.73; H, 7.39; N, 7.20.

1f. Reaction of a solution of $2 \mathrm{f}(0.61 \mathrm{~g} ; 3.1 \mathrm{mmol})$ and TEA $(0.47 \mathrm{~g} ; 4.7 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.53 \mathrm{~g} ; 4.1 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 12 h yields $0.40 \mathrm{~g}(60 \%)$ of $\mathbf{1 f}$ after chromatography using toluene/ethanol $9: 1 ;$ bp $220^{\circ} \mathrm{C} / 0.1 \mathrm{~mm} \mathrm{Hg}$; $\operatorname{IR}\left(\mathrm{CHBr}_{3}\right) 3550,3300,2910,1703,1460,1304,1220,1150,990,840$, $675 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.56(\mathrm{bs}, 1 \mathrm{H}) ; 4.04-4.0(\mathrm{dd}, 1 \mathrm{H}, J=2.9$ and 12.0 Hz$) ; 2.85(\mathrm{~d}, 3 \mathrm{H}, J=$ $5.3 \mathrm{~Hz}) ; 2.56-2.54(\mathrm{~m}, 1 \mathrm{H}) ; 2.51-2.49(\mathrm{~m}, 1 \mathrm{H}) ; 2.41-2.35(\mathrm{~m}, 2 \mathrm{H}) ; 1.19-1.1(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{El}) \mathrm{m} / \mathrm{z} 219(\mathrm{M}+1)$.

1 g . Reaction of a solution of $2 \mathrm{~g}(1.00 \mathrm{~g} ; 4.3 \mathrm{mmol})$ and TEA $(0.64 \mathrm{~g} ; 6.3 \mathrm{mmol})$ in $\mathrm{MeCN}(15 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.73 \mathrm{~g} ; 5.6 \mathrm{mmol})$ in $\mathrm{MeCN}(3 \mathrm{~mL})$ for 24 h yields $0.33 \mathrm{~g}(28 \%)$ of 1 g after chomatography using n-hexane/ethyl acetate 8:2; mp 129-131 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr) 2932, 2862, 1712, 1472, 1414, 1300, 1156, 1086, 864 $\mathrm{cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.37(\mathrm{dd}, 1 \mathrm{H}, J=11.8$ and 3.3 Hz$) ; 3.30(\mathrm{~d}, 3 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 2.8(\mathrm{~m}, 1 \mathrm{H}) ; 2.5$ (m, 4H); $6.21(\mathrm{~m}, 1 \mathrm{H}) ; 1.78(\mathrm{~m}, 2 \mathrm{H}) ; 1.50(\mathrm{~m}, 1 \mathrm{H}) ; 1.20(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;$ Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 56.69 ; \mathrm{H}$, 9.15; N, 5.08. Found: C, 56.94; H, 9.23; N, 5.46.
$\mathbf{1 h}$. Reaction of a solution of $\mathbf{2 h}(0.33 \mathrm{~g} ; 1.7 \mathrm{mmol})$ and TEA $(0.38 \mathrm{~g} ; 3.8 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.39 \mathrm{~g} ; 3.0 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 5 h yields $0.18 \mathrm{~g}(50 \%)$ of 1 h after chromatography using n-hexane/ethyl acetate 7:3; mp $146-147^{\circ} \mathrm{C}$ (EtOH); IR (KBr) 3330, 3018, 2961, 2595, 1680, 1595, 1471, 1451, $1399,1369,1330,1213,1141,1062,898,859,754,650 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 300 \mathrm{Mhz}\right) \delta 7.89(\mathrm{~d}, 2 \mathrm{H}, J$ $=8.3 \mathrm{~Hz}) ; 7.53(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 7.41(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 7.07(\mathrm{~s}, 1 \mathrm{H}) ; 4.71(\mathrm{~s}, 2 \mathrm{H}) ; 2.35(\mathrm{~d}, 3 \mathrm{H}, J=5.3 \mathrm{~Hz})$ ppm; Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{1} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 50.69 ; \mathrm{H}, 5.20 ; \mathrm{N}, 6.57$. Found: C, $50.47 ; \mathrm{H}, 5.40 ; \mathrm{N}, 6.63$.

1i. Reaction of a solution of $2 \mathbf{i}(0.33 \mathrm{~g} ; 1.7 \mathrm{mmol})$ and TEA ($0.38 \mathrm{~g} ; 3.8 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.39 \mathrm{~g} ; 3 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 2 h yields $0.48 \mathrm{~g}(60 \%)$ of 1 i after chromatography using n hexane/ethyl acetate $7: 3 ; \mathrm{mp} 119-120^{\circ} \mathrm{C}(\mathrm{EtOH}) ; \mathrm{IR}(\mathrm{KBr}) 3310,2972,1641,1517,1423,1246,1132,856,731$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d}, 300 \mathrm{MHz}) \delta 8.10(\mathrm{~m}, 2 \mathrm{H}) ; 7.30(\mathrm{dd}, 1 \mathrm{H}, J=4.9$ and 4.0 Hz$) ; 7.20(\mathrm{~d}, 1 \mathrm{H}, J=5.3 \mathrm{~Hz})$; $4.57(\mathrm{~s}, 2 \mathrm{H}) ; 2.56(\mathrm{~d}, 3 \mathrm{H}, J=5.3 \mathrm{~Hz}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 38.84 ; \mathrm{H}, 4.14 ; \mathrm{N}, 6.39$. Found: C, 39.11; H, 4.40; N, 6.77.

1 j . Reaction of a solution of $2 \mathrm{j}(0.74 \mathrm{~g} ; 3.4 \mathrm{mmol})$ and TEA ($0.51 \mathrm{~g} ; 5.1 \mathrm{mmol})$ in $\mathrm{MeCN}(12 \mathrm{~mL})$ with a solution of $4 \mathrm{a}(0.60 \mathrm{~g} ; 4.6 \mathrm{mmol})$ in $\mathrm{MeCN}(4 \mathrm{~mL})$ for 9 h yields $0.61 \mathrm{~g}(75 \%)$ of $\mathbf{1 j}$ after chromatography using
n-hexane/ethyl acetate 7:3; mp 141-143 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr) 3311, 2974, 2944, 1964, 1670,1597, 1452, 1404, $1321,1236,1147,1055,938,835,720,678,642 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 300 \mathrm{MHz}\right) \delta 8.02(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$; $7.53(\mathrm{t}, 1 \mathrm{H}, J=7.52 \mathrm{~Hz}) ; 7.37-7.25(\mathrm{~m}, 2 \mathrm{H}) ; 4.96(\mathrm{~d}, 1 \mathrm{H}, J=4.6 \mathrm{~Hz}) ; 4.05-4.02(\mathrm{t}, 1 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 3.36-3.26(\mathrm{~m}$, $1 \mathrm{H}) ; 3.07-2.94(\mathrm{~m}, \mathrm{lH}) ; 2.89(\mathrm{~d}, 3 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 2.73-2.64(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 239(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 55.21 ; \mathrm{H}, 5.47 ; \mathrm{N}, 5.85$. Found: C, $54.99 ; \mathrm{H}, 5.60 ; \mathrm{N}, 5.99$.

1 k . Reaction of a solution of $2 \mathrm{a}(0.33 \mathrm{~g} ; 2.5 \mathrm{mmol})$ and TEA $(0.26 \mathrm{~g} ; 2.6 \mathrm{mmol})$ in $\mathrm{MeCN}(6 \mathrm{~mL})$ with a solution of $\mathbf{4 b}(0.50 \mathrm{~g} ; 2.6 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 4 h yields $0.26 \mathrm{~g}(47 \%)$ of 1 k after chromatography using n-hexane/ethyl acetate $8: 2$; bp $140-145^{\circ} \mathrm{C} / 0.5 \mathrm{~mm} \mathrm{Hg}$; $\operatorname{IR}\left(\mathrm{CHBr}_{3}\right) 3278,2933,1710,1446,1333,1158,1076,733$ cm^{-1}; 'H-NMR (DMSO-d, $\left.300 \mathrm{MHz}\right) \delta 4.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}) ; 3.25(\mathrm{bs}, 1 \mathrm{H}) ; 2.38(\mathrm{~s}, 3 \mathrm{H}) ; 2.0(\mathrm{~m}, 2 \mathrm{H}) ; 1.57(\mathrm{~m}$, $2 \mathrm{H}) ; 1.60(\mathrm{~m}, 1 \mathrm{H}) ; 1.30(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 219(\mathrm{M}+1)$.
11.Reaction of a solution of $\mathbf{2 h}(0.25 \mathrm{~g} ; 1.2 \mathrm{mmol})$ and TEA ($0.30 \mathrm{~g} ; 2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{~b}(0.34 \mathrm{~g} ; 1.7 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 5 h yields $0.18 \mathrm{~g}(54 \%)$ of 11 after chromatography using n-hexane/ethyl acetate $7: 3$; mp 137-138 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr) 3281, 3199, 2932, 1669, 1324, 1281, 1141, $741 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.63(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 7.5(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 4.84(\mathrm{~d}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 4.63(\mathrm{~s}, 2 \mathrm{H}) ; 3.35(\mathrm{bs}, 1 \mathrm{H}) ; 2.0(\mathrm{~m}, 2 \mathrm{H}) ; 1.70(\mathrm{~m}, 2 \mathrm{H}) ; 1.55(\mathrm{~m}, 1 \mathrm{H}) ; 1.4-1.05(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} ;$ Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 59.76 ; \mathrm{H}, 6.81 ; \mathrm{N}, 4.98$. Found: $\mathrm{C}, 59.50 ; \mathrm{H}, 7.12 ; \mathrm{N}, 4.81$.

1 m .Reaction of a solution of $2 \mathrm{c}(0.20 \mathrm{~g} ; 1.28 \mathrm{mmol})$ and TEA ($0.30 \mathrm{~g} ; 2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $\mathbf{4 b}(0.33 \mathrm{~g} ; 1.7 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 10 h yields $0.11 \mathrm{~g}(36 \%)$ of 1 m after chromatography using n-hexane/ethyl acetate 8:2; mp 120-122 ${ }^{\circ} \mathrm{C}$ (EtOH); IR (KBr) 3259, 2857, 1742, 1323, 1158, 1083, 1000, 923, 694 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.70(\mathrm{~d}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 3.63(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 3.3(\mathrm{~m}, 1 \mathrm{H}) ; 2.6-2.3(\mathrm{~m}, 4 \mathrm{H}) ;$ 2.25-2.15 (m, 1H); 2.1-1.95 (m, 2H); 1.9-1.85 (m, 1H); 1.8-1.65 (m, 2H); 1.6-1.15 (m, 1H); 0.9-0.1 (m, 5H) ppm; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 53.85 ; \mathrm{H}, 7.80 ; \mathrm{N}, 5.71$. Found: C, $53.85 ; \mathrm{H}, 8.01 ; \mathrm{N}, 5.86$.

1 n Reaction of a solution of $2 \mathrm{a}(0.86 \mathrm{~g} ; 6.6 \mathrm{mmol})$ and TEA $(0.70 \mathrm{~g} ; 7.1 \mathrm{mmol})$ in $\mathrm{MeCN}(20 \mathrm{~mL})$ with a solution of $4 \mathrm{c}(1.43 \mathrm{~g} ; 7.0 \mathrm{mmol})$ in $\mathrm{MeCN}(7 \mathrm{~mL})$ for 18 h yields $0.75 \mathrm{~g}(50 \%)$ of 1 n after chromatography using n-hexane/ethyl acetate 7:3; mp $140^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (KBr) 3293, 2972, 1679, 1450, 1325, 1143, 840, $695 \mathrm{~cm}^{-1}$; ' H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.9(\mathrm{~s}, 1 \mathrm{H}) ; 7.3(\mathrm{~m}, 5 \mathrm{H}) ; 4.2(\mathrm{~s}, 2 \mathrm{H}) ; 4.16(\mathrm{~d}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}) ; 2.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ Anal. Caled for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$: C, $52.85 ; \mathrm{H}, 5.77 ; \mathrm{N}, 6.16$. Found: C, $52.57 ; \mathrm{H}, 5.64 ; \mathrm{N}, 6.10$.
10.Reaction of a solution of $2 \mathrm{~h}(0.25 \mathrm{~g} ; 2.4 \mathrm{mmol})$ and TEA ($0.30 \mathrm{~g} ; 2.9 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{c}(0.35 \mathrm{~g} ; 1.7 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 4 h yields $0.40 \mathrm{~g}(57 \%)$ of 1 o after chromatography using n-hexane/ethyl acetate $7: 3 ; \mathrm{mp} 128-129^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (KBr) 3291, 2921, 1678, 1450, 1332, 1143, 928, $693 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.88(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.62(\mathrm{t}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.49(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 5.25(\mathrm{bs}$, $1 \mathrm{H}) ; 4.49(\mathrm{~s}, 2 \mathrm{H}) ; 4.36(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 62.26 ; \mathrm{H}, 5.22 ; \mathrm{N}, 4.84$. Found: C, 62.18; H, 5.27; N, 4.61.

1p.Reaction of a solution of $2 \mathrm{c}(0.20 \mathrm{~g} ; 1.3 \mathrm{mmol})$ and TEA $(0.30 \mathrm{~g} ; 2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{c}(0.35 \mathrm{~g} ; 1.7 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 12 h yields $0.15 \mathrm{~g}(47 \%)$ of 1 p after chromatography using n-hexane/ethyl acetate $8: 2 ; \mathrm{mp} 114-117^{\circ} \mathrm{C}(\mathrm{EtOH})$; $\mathrm{IR}(\mathrm{KBr}) 3275,2930,1746,1455,1314,1143,908,697 \mathrm{~cm}^{-1}$; ${ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) 87,40-7,20(\mathrm{~m}, 5 \mathrm{H}) ; 5,10(\mathrm{bs}, 1 \mathrm{H}) ; 4,60(\mathrm{~d}, 2 \mathrm{H}, J=6,1 \mathrm{~Hz}) ; 3,55-3,50(\mathrm{~m}, 1 \mathrm{H}) ;$ $2,60-2,40(\mathrm{~m}, 4 \mathrm{H}) ; 1,30-1,22(\mathrm{~m}, 2 \mathrm{H})$; Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 56.90 ; \mathrm{H}, 5.97 ; \mathrm{N}, 5.53$. Found: C, 56.40; H, 6.10; N, 5.90.

1q.Reaction of a solution of $2 \mathbf{2 a}(0.30 \mathrm{~g} ; 1.2 \mathrm{mmol})$ and TEA $(0.30 \mathrm{~g} ; 2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{~d}(0.33 \mathrm{~g} ; 2.9 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 6 h yields $0.17 \mathrm{~g}(58 \%)$ of $1 \mathbf{q}$ after chromatography using n-hexane/ethyl acetate $7: 3 ; \mathrm{mp} 63-65^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ;[\alpha]^{25}{ }_{\mathrm{D}}=+27.7$ (c 0.27, MeOH); IR (KBr) 3293, 2935, 1728, 1428, $1329,1156,1085,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{Mhz}\right) \delta 7.3(\mathrm{~m}, 5 \mathrm{H}) ; 5.2(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 4.63(\mathrm{~m}, 1 \mathrm{H}) ; 3.82$ (d, $1 \mathrm{H}, J=15.4 \mathrm{~Hz}$); $3.35(\mathrm{~d}, 1 \mathrm{H}, J=15.4 \mathrm{~Hz}$); $2.1(\mathrm{~s}, 3 \mathrm{H}) ; 1.55(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm}$;. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 54.75 ; \mathrm{H}, 6.26 ; \mathrm{N}, 5.80$. Found: C, $54.50 ; \mathrm{H}, 5.91 ; \mathrm{N}, 5.73$.
$\mathbf{1 r}$.Reaction of a solution of $2 \mathrm{~h}(0.61 \mathrm{~g} ; 3.2 \mathrm{mmol})$ and TEA ($0.80 \mathrm{~g} ; 7.7 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ with a solution of $\mathbf{4 d}(0.60 \mathrm{~g} ; 2.7 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 1 h yields $0.58 \mathrm{~g}(60 \%)$ of 1 r after chromatography using n-hexane/ethyl acetate 7:3. M. p. 99-100 ${ }^{\circ} \mathrm{C}(\mathrm{EtOH}) \cdot[\alpha]_{\mathrm{D}}=+44.2(\mathrm{c}=0.29, \mathrm{MeOH}) . \mathrm{IR}(\mathrm{KBr}) 3307,2978,1672$, $1448,1327,1153,1083,963 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.72(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) ; 7.61(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}) ; 7.45(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=7.9 \mathrm{~Hz}$); $7.3-7.11(\mathrm{~m}, 5 \mathrm{H}) ; 5.45(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}) ; 4.7(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 4.4(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}) ; 3.82(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{J}=16 \mathrm{~Hz}) ; 1.58(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 189.8,141.4,135.1,134.0,128.5,128.4,128.0,127.6$, 127.5, 127.0, 126.1, 125.8, 58.1, 54.0, 23.2 ppm. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.35 ; \mathrm{H}, 5.65 ; \mathrm{N}, 4.62$. Found: C, 63.15; H, 5.75; N, 4.70.

1s.Reaction of a solution of $2 \mathrm{c}(0.35 \mathrm{~g} ; 2.3 \mathrm{mmol})$ and TEA $(0.58 \mathrm{~g} ; 5.6 \mathrm{mmol})$ in $\mathrm{MeCN}(10 \mathrm{~mL})$ with a solution of $4 \mathrm{~d}(0.50 \mathrm{~g} ; 237 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 6 h yields $0.36 \mathrm{~g}(58 \%)$ of 1 s after chromatography using n-hexane/ethyl acetate 7:3; $\mathrm{mp} 136-137^{\circ} \mathrm{C}(\mathrm{EtOH}) ;[\alpha]^{25}{ }_{\mathrm{D}}=+29.9$ (c $\left.0.55, \mathrm{MeOH}\right) ; \operatorname{IR}(\mathrm{KBr}) 3352,2974,1742$, 1452, 1398, 1142, 1044, $696 \mathrm{~cm}-1$; 'H-NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}) ; 5.29(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 4.7(\mathrm{~m}$, $1 \mathrm{H}) ; 2.82(\mathrm{t}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}) ; 2.44-2.24(\mathrm{~m}, 4 \mathrm{H}) ; 2.1(\mathrm{~m}, 1 \mathrm{H}) ; 1.7(\mathrm{~m}, 1 \mathrm{H}) ; 1.6(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$ ppm; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 58.41 ; \mathrm{H}, 6.41 ; \mathrm{N}, 5.24$. Found: C, $58.28 ; \mathrm{H}, 6.19 ; \mathrm{N}, 4.98$.

1 t Reaction of a solution of $2 \mathrm{~d}(0.66 \mathrm{~g} ; 3.9 \mathrm{mmol})$ and TEA ($0.98 \mathrm{~g} ; 9.4 \mathrm{mmol})$ in $\mathrm{MeCN}(5 \mathrm{~mL})$ with a solution of $4 \mathrm{~d}(0.60 \mathrm{~g} ; 2.6 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 10 h yields $0.55 \mathrm{~g}(50 \%)$ of $\mathbf{1 t}$ after chromatography using n-hexane/ethyl acetate $7: 3$; bp $190^{\circ} \mathrm{C} / 0.4 \mathrm{~mm} \mathrm{Hg} ;[\alpha]_{\mathrm{D}}^{25}=+20.0(\mathrm{c} 0.24, \mathrm{MeOH}) ; \operatorname{IR}\left(\mathrm{CHBr}_{3}\right) 3305,1711,1449$, $1325,1142,869,694,651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.34-7.2(\mathrm{~m}, 5 \mathrm{H}) ; 5.34(\mathrm{~d}, 0.5 \mathrm{H}, J=9.8 \mathrm{~Hz}) ; 5.08$ $(\mathrm{d}, 0.5 \mathrm{H}, J=7.7 \mathrm{~Hz}) ; 4.7-4.6(\mathrm{~m}, 1 \mathrm{H}) ; 3.78-3.65(\mathrm{~m}, 0.5 \mathrm{H}) ; 2.8-2.55(\mathrm{~m}, 0.5 \mathrm{H}) ; 2.48-2.3(\mathrm{~m}, 3 \mathrm{H}) ; 2.0-1.85(\mathrm{~m}$, $4 \mathrm{H}) ; 1.53(\mathrm{~d}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 282(\mathrm{M}+1)$.

1uReaction of a solution of $2 \mathrm{e}(1.34 \mathrm{~g} ; 7.3 \mathrm{mmol})$ and TEA ($1.80 \mathrm{~g} ; 17.6 \mathrm{mmol}$) in $\mathrm{MeCN}(10 \mathrm{~mL})$ with
a solution of $4 \mathrm{~d}(0.80 \mathrm{~g} ; 3.6 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ for 3 h yields $0.86 \mathrm{~g}(40 \%)$ of 1 u after chromatography using n-hexane/ethyl acetate $7: 3 ; \mathrm{mp} 68-69^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{Hexanes}$); $[\alpha]^{25}{ }_{\mathrm{D}}=+83.6$ (c 0.27, MeOH); IR (CHBr_{3}) 3296, 3022, $2859,1703,1453,1318,1142,968,694 \mathrm{~cm}-1$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.2(\mathrm{~m}, 5 \mathrm{H}) ; 5.16(\mathrm{~d}, 0.66 \mathrm{H}, J=8.9$ $\mathrm{Hz}) ; 4.9(\mathrm{~d}, 0.33 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 4.65(\mathrm{q}, 1 \mathrm{H}, J=6.2 \mathrm{~Hz}) ; 3.9-3.75(\mathrm{dd}, 0.66 \mathrm{H}, J=4.2$ and 11.5 Hz); 3.3-3.1 (dd, $0.33 \mathrm{H}, J=7.7$ and 5.9 Hz , $)$ 2.8-2.4 (m, 1 H$) ; 2.4-2.2(\mathrm{~m}, 1 \mathrm{H}) ; 2.0-17(\mathrm{~m}, 4 \mathrm{H}) ; 1.6(\mathrm{~m}, 3 \mathrm{H}) ; 1.5-1.2(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} ;$ $\mathrm{ms}(\mathrm{El}) \mathrm{m} / \mathrm{z} 296(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 60.78 ; \mathrm{H}, 7.14 ; \mathrm{N}, 4.72$. Found: C, 60.76; $\mathrm{H}, 6.97 ; \mathrm{N}, 5.20$.

Alkylation of 2-oxoalkanesulfonamides 1. Method A. A solution of $\mathbf{1}$ in THF was added over a 2 M solution of LDA (2.2 equiv) in THF/hexanes at $-78^{\circ} \mathrm{C}$ and the mixture stirred for 1 h . Then MeI (5 equiv) was added and the mixture was stirred for 1 h . The temperature was raised and the reaction performed as indicated for each case. The reaction mixture was then quenched with 50% ammonium chloride solution and extracted with DCM. The organic extracts were dried and the solvent was removed under reduced pressure. The residue was cromatographed on silica gel using hexanes/ethyl acetate. Method B. A solution of compound 1 in DCM was treated with 50% potassium carbonate for 15 minutes and then MeI was added. The temperature and reaction time were kept as indicated for each case. Then the reaction mixture was extracted with DCM. The organic extracts were dried and the solvent removed under reduced pressure. The residue was cromatographed on silica gel using hexanes/ethyl acetate. Method C. To a solution of $\mathbf{1}$ in DCM solid potassium carbonate was added, the mixture stirred for 15 minutes and then MeI added. After the mixture was stirred at room temperature for the time indicated for each case the solid was filtered off and washed with DCM. The filtrate was evaporated and the residue chromatographed on silica gel using hexanes/ethyl acetate.

Methylation of $1 \mathbf{a}$. Method A. The reaction of $1 \mathrm{a}(0.10 \mathrm{~g} ; 0.66 \mathrm{mmol})$ in THF for 5 h at $-40^{\circ} \mathrm{C}$ yields $\mathbf{5 a}$ $(46 \mathrm{mg}, 42 \%)$ and $6 \mathrm{a}(20 \mathrm{mg}, 18 \%)$ after chromatography using hexanes/ethyl acetate $8: 2$. Method \mathbf{B}. The reaction of $1 \mathrm{a}(0.10 \mathrm{~g} ; 0.66 \mathrm{mmol}$) for 20 h at room temperature yields $5 \mathrm{a}(33 \mathrm{mg}, 30 \%)$ and $\mathbf{6 a}(10 \mathrm{mg}, 9 \%)$ after chromatography using hexanes/ethyl acetate 8:2. 5a: $\mathrm{mp} 50-51^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-Hexanes); IR (CHBr_{3}) $3314,1716,1358$, $1324,1144,842 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.32(\mathrm{bs}, 1 \mathrm{H}) ; 4.11(\mathrm{q}, 1 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 2.84(\mathrm{~d}, 3 \mathrm{H}, J=5.3$ $\mathrm{Hz}) ; 2.4(\mathrm{~s}, 3 \mathrm{H}) ; 1.58(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 36.35 ; \mathrm{H}, 6.71 ; \mathrm{N}, 8.48$. Found: C , 36.40; H, 6.89; N, 8.33. 6a: mp 49-50 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR $\left(\mathrm{CHBr}_{3}\right) 3306,3026,1716,1418,1142,654 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.99(\mathrm{~s}, 2 \mathrm{H}) ; 2.9(\mathrm{~s}, 6 \mathrm{H}) ; 2.44(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 36.35 ; \mathrm{H}, 6.71$; N, 8.48. Found: C, 36.80; H, 6.95; N, 8.10.

Methylation of 1 h . Method A. The reaction of $1 \mathrm{~h}(0.10 \mathrm{~g} ; 0.50 \mathrm{mmol})$ in THF (10 mL) for 20 h at room temperature yields 5 h ($43 \mathrm{mg}, 38 \%$), $\mathbf{6 h}(11 \mathrm{mg}, 18 \%$) and $7 \mathrm{~h}(51 \mathrm{mg}, 42 \%)$ after chromatography using hexanes/ethyl acetate 8:2. The reaction of $1 \mathrm{~h}(0.10 \mathrm{~g} ; 0.50 \mathrm{mmol})$ in THF (10 mL) for 10 h at $-40^{\circ} \mathrm{C}$ yields 5 h (94 $\mathrm{mg}, 83 \%$) and $\mathbf{6 h}(1 \mathrm{mg}, 1 \%)$ after chromatography using hexanes/ethyl acetate 8:2. Method B. The reaction of $1 \mathrm{~h}(0.10 \mathrm{~g} ; 0.50 \mathrm{mmol})$ in DCM (5 mL) for 20 h at room temperature yields $\mathbf{5 h}(87 \mathrm{mg}, 77 \%), 6 \mathrm{~h}(1 \mathrm{mg}, 1 \%)$ and

7h ($8 \mathrm{mg}, 7 \%$) after chromatography using hexanes/ethyl acetate $8: 2.5 \mathrm{~h}: \mathrm{mp} 73-74{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $\mathrm{IR}(\mathrm{KBr}) 3294$, $2975,1678,1449,1307,1150,750 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.01(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 7.63(\mathrm{~m}, 1 \mathrm{H})$; $7.5(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 5.2-5.1(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 4.5(\mathrm{~m}, 1 \mathrm{H}) ; 2.85(\mathrm{~d}, 3 \mathrm{H}, J=4.8 \mathrm{~Hz}) ; 1.7(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$ ppm; Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 52.84 ; \mathrm{H}, 5.76 ; \mathrm{N}, 6.16$. Found: C, $52.79 ; \mathrm{H}, 5.41 ; \mathrm{N}, 6.49 .6 \mathrm{~h}: \mathrm{mp} 71-72$ ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; $\mathrm{IR}\left(\mathrm{CHBr}_{3}\right) 2952,1680,1596,1276,1152,964,762 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{Mhz}\right) \delta 7.95(\mathrm{~d}, 2 \mathrm{H}$, $J=7.1 \mathrm{~Hz}) ; 7.55(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 7.46(\mathrm{t}, 2 \mathrm{H}, J=7.9) \mathrm{Hz} ; 4.5(\mathrm{~s}, 2 \mathrm{H}) ; 2.9(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;$ Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 52.84 ; \mathrm{H}, 5.76$; N, 6.16. Found: C, 52.53 ; $\mathrm{H}, 5.79$; $\mathrm{N}, 5.92 .7 \mathrm{~h}: \mathrm{mp} 74-75{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR (CHBr_{3}) $3024,1678,1595,1448,1333,1143,971,750 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.03(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 7.59$ $(\mathrm{t}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 7.51(\mathrm{t}, 2 \mathrm{H}, J=6.3 \mathrm{~Hz}) ; 5.13(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 2.87(\mathrm{~s}, 3 \mathrm{H}) ; 1.06(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) \mathrm{ppm} ;$ Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}$: C, 54.75; H, 6.26; N, 5.80. Found: C, $54.83 ; \mathrm{H}, 6.21 ; \mathrm{N}, 5.48$.

Methylation of $1 \mathbf{q}$. Method A. The reaction of $1 \mathbf{q}(76 \mathrm{mg} ; 0.363 \mathrm{mmol})$ in THF (5.5 mL) for 14 h at room temperature yields $\mathbf{5 q}(19.4 \mathrm{mg}, 29 \%)$ and $\mathbf{6 q}(2.3 \mathrm{mg}, 3.5 \%)$ as yellowish oils after chromatography using hexanes/ethyl acetate 8:2. Method B. The reaction of $1 \mathbf{q}(0.20 \mathrm{~g} ; 0.83 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ for 19 h at reflux yields $\mathbf{5 q}(59 \mathrm{mg} ; \mathbf{2 8 \%}$), $\mathbf{6 q}(17 \mathrm{mg}, \mathbf{8 \%}$) and $7 \mathbf{q}(19 \%)$ as yellowish oils after chromatography using hexanes/ethyl acetate 8:2. Method C. The reaction of $1 \mathrm{q}(0.20 \mathrm{~g} ; 0.83 \mathrm{mmol})$ in $\mathrm{DCM}(56 \mathrm{~mL})$ for 19 h at reoom temperature yields $\mathbf{5 q}(\mathbf{3 3} \mathbf{~ m g}, \mathbf{1 6 \%}) .5 q$ mixture of diastereomers (method C): IR ($\mathbf{C H B r}_{3}$) 3290, 1720, 1430, 1329, 1157. $780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.33-7.22(\mathrm{~m}, 10 \mathrm{H}) ; 4.80(\mathrm{~d}, 0.4 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 4.74(\mathrm{~d}, 1.6 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;$ $4.64-4.55(\mathrm{~m}, 2 \mathrm{H}) ; 3.76(\mathrm{q}, 0.4 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 3.74(\mathrm{q}, 1.6 \mathrm{H}, J=7 \mathrm{~Hz}) ; 2.43(\mathrm{~s}, 1.2 \mathrm{H}) ; 2.32(\mathrm{~s}, 4.8 \mathrm{H}) ; 1.60-1.55$ $(\mathrm{m}, 6 \mathrm{H}) ; 1.52(\mathrm{~d}, 1.2 \mathrm{H}, J=7 \mathrm{~Hz}) ; 1.36(\mathrm{~d}, 4.8 \mathrm{H}, J=7 \mathrm{~Hz}) ; \mathrm{ms}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 256(\mathrm{M}-1) .6 q:$ IR $\left(\mathrm{CHBr}_{3}\right) 3290,1720$, $1430,1329,1157,780 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.37-7.25(\mathrm{~m}, 5 \mathrm{H}) ; 5.24(\mathrm{q}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 4.00-$ $3.70(\mathrm{dd}, 2 \mathrm{H}, J=13,4.2 \mathrm{~Hz}) ; 2.68(\mathrm{~s}, 3 \mathrm{H}) ; 2.17(\mathrm{~s}, 3 \mathrm{H}) ; 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; \mathrm{ms}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 256(\mathrm{M}-1)$. 7 q mixture of diastereomers (method B): IR (CHBr_{3}) $3180,1730,1328,1114,793 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{RMN}(\mathrm{CDCl}$, $300 \mathrm{MHz}) \delta 7.37-7.31(\mathrm{~m}, 5 \mathrm{H}) ; 5.24(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 4.10-4.05(\mathrm{~m}, 1 \mathrm{H}) ; 2.61(\mathrm{~s}, 1.5 \mathrm{H}) ; 2.59(\mathrm{~s}, 1.5 \mathrm{H}) ;$ $2.38(\mathrm{~s}, 3 \mathrm{H}) ; 1.60(\mathrm{~d}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}) ; 1.55(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; \mathrm{ms}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 270(\mathrm{M}-1)$.

Acylation of 2-oxoalkanesulfonamides 1. General procedure. Method A and B. To a solution of 2oxoalkanesulfonamide 1 in DCM, base (1.1 equiv) was added. After 5 minutes stirring, a solution of acylating reagent in DCM was added. The reaction time were kept as indicated in each case. The solvent was removed under reduced pressure and the residue chromatographed on silica gel with hexanes/ethyl acetate. Method C. To a solution of 2-oxoalkanesulfonamide 1 in MeCN , base (1.1 equiv) was added. After 1 minute stirring, a solution of acylating reagent in MeCN was added, and then the mixture heated at $50^{\circ} \mathrm{C}$. The reaction time were kept as indicated in each case. The solvent was removed under reduced pressure and the residue chromatographed on silica gel using hexanes/ethyl acetate

Acylation of $1 \mathbf{q}$. Method A The reaction of $1 \mathbf{q}(0.10 \mathrm{~g} ; 0.41 \mathrm{mmol})$ and TEA $(60 \mu \mathrm{~L} ; 0.45 \mathrm{mmol})$ in DCM
(10 mL) and 4-chlorobenzoyl chloride ($72 \mathrm{mg} ; 0.41 \mathrm{mmol}$) dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ for 5 h at room temperature yields $10 \mathbf{q}(70 \mathrm{mg}, 45 \%$) and $11 \mathrm{q}(5 \mathrm{mg}, 2 \%)$ after chromatography using hexanes/ethyl acetate $8: 2$. Method \mathbf{B}. The reaction of $1 \mathbf{q}(0.10 \mathrm{~g} ; 0.41 \mathrm{mmol})$ and Hünig base $(0.057 \mathrm{~g} ; 77 \mu \mathrm{~L} ; 0.442 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ and 4chlorobenzoyl chloride ($72 \mathrm{mg} ; 0.41 \mathrm{mmol}$) dissolved in DCM (2 mL) for 96 h at room temperature yields $\mathbf{1 0 q}$ (84 $\mathrm{mg}, 40 \%$) and $11 \mathrm{q}(1.4 \mathrm{mg} ; 0.7 \%)$ after chromatography using hexanes/ethyl acetate $8: 2$. Method C. The reaction of $1 \mathbf{q}(0.10 \mathrm{~g} ; 0.41 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.041 \mathrm{~g} ; 0.42 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ and 4-chlorobenzoyl chloride (72 $\mathrm{mg} ; 0.41 \mathrm{mmol}$) dissolved in acetonitrile (2 mL) for 16 h at $50^{\circ} \mathrm{C}$ yields $10 \mathrm{q}(46.5 \mathrm{mg}, 31 \%)$ and $11 \mathrm{q}(31 \mathrm{mg} ; 16 \%)$ after chromatography using hexanes/ethyl acetate $8: 2.10 \mathrm{q}$ mixture of diastereomers (method B): mp $62-63{ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}-\mathrm{hex}$); $\mathrm{IR}(\mathrm{KBr}) 3298,2978,2676,1724,1689,1591,1423,1281,1091 \mathrm{~cm}^{-1} ;{ }^{\prime} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 8.03-8.00 (m, 2H); 7.97-7.95 (m, 2 H); 7.46-7.27 (m, 5H); $5.71(\mathrm{~s}, 0.12 \mathrm{H}) ; 5.66(\mathrm{~s}, 0.88 \mathrm{H}) ; 4.92(\mathrm{~d}, 1 \mathrm{H}, J=7.3$ Hz) ; 4.89-4.57 (q, $1 \mathrm{H}, J=6.9 \mathrm{~Hz}$); $2.03(\mathrm{~s}, 0.36 \mathrm{H}) ; 1.98(\mathrm{~s}, 2.64 \mathrm{H}) ; 1.54(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz})$. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClO}_{4} \mathrm{NS}: \mathrm{C}, 56.92 ; \mathrm{H}, 4.78 ; \mathrm{N}, 3.69$; Found: $\mathrm{C}, 56.98 ; \mathrm{H}, 4.92 ; \mathrm{N}, 3.78$. 11q mixture of diastereomers (method B): mp 64-65 ${ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-h e x\right) ;$ IR $\left(\mathrm{CHBr}_{3}\right) 2976,2555,1739,1687,1591,1423,1281,1091,851 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.95(\mathrm{~m}, 2 \mathrm{H}) ; 7.42(\mathrm{~m}, 2 \mathrm{H}) ; 7.42-7.39(\mathrm{~m}, 9 \mathrm{H}) ; 6.09(\mathrm{~s}, 0.5 \mathrm{H}) ; 6.06(\mathrm{~s}, 0.5 \mathrm{H}) ; 5.35$ (q, $0.5 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 5.3(\mathrm{q}, 0.5 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 2,18(\mathrm{~s}, 1.5 \mathrm{H}) ; 2.16(\mathrm{~s}, 1.5 \mathrm{H}) ; 1.86(\mathrm{~d}, 1.5 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 1.84$ $\left(\mathrm{d}, 1.5 \mathrm{H}, J=6.6 \mathrm{~Hz}\right.$); Calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 57.92 ; \mathrm{H}, 4.08 ; \mathrm{N}, 2.70$; Found: C, $58.11 ; \mathrm{H}, 4.05$; N , 2.25 .

Acylation of $1 \mathbf{r}$. Method A. The reaction of $1 \mathbf{r}(0.10 \mathrm{~g} ; 0.33 \mathrm{mmol})$ and TEA ($47 \mu \mathrm{~L} ; 0.34 \mathrm{mmol})$ dissolved in DCM (10 mL) and 4-chlorobenzoyl chloride ($58 \mathrm{mg} ; 0.41 \mathrm{mmol}$) dissolved in DCM (2 mL) for 1 h at room temperature yields $10 \mathrm{r}(100 \mathrm{mg}, 69 \%)$ and $11 \mathrm{r}(19 \mathrm{mg}, 10 \%)$ after chromatography using hexanes/ethyl acetate 8:2. Method B. The reaction of $\operatorname{1r}(0.10 \mathrm{~g} ; 0.33 \mathrm{mmol})$ and Hünig base $(0.043 \mathrm{~g} ; 58 \mu \mathrm{~L} ; 0.34 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ and 4-chlorobenzoyl chloride ($58 \mathrm{mg} ; 0.33 \mathrm{mmol}$) dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ for 14 h at room temperature yields 10 r ($52 \mathrm{mg}, 34 \%$) and $11 \mathrm{r}(6.1 \mathrm{mg} ; 3 \%)$ after chromatography using hexanes/ethyl acetate $8: 2$. Method C. The reaction of $1 \mathbf{r}(0.10 \mathrm{~g} ; 0.33 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0323 \mathrm{~g} ; 0.33 \mathrm{mmol})$ in acetonitrile $(10 \mathrm{~mL})$ and 4-chlorobenzoyl chloride (58 $\mathrm{mg} ; 0.33 \mathrm{mmol}$) dissolved in acetonitrile (2 mL) for 23 h at $50^{\circ} \mathrm{C}$ yields $10 \mathrm{r}(72.5 \mathrm{mg}, 50 \%)$ and $11 \mathrm{r}(19 \mathrm{mg} ; 10 \%)$ after chromatography using hexanes/ethyl acetate $8: 2.10 \mathrm{r}$ mixture of diastereomers (method B): $\mathbf{m p} 65-80^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hex). IR $\left(\mathrm{CHBr}_{3}\right) 3290,3024,1740,1698,1450,1144,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{RMN}(\mathrm{CDCl}, 500 \mathrm{MHz}) \delta 8.11$ $(\mathrm{d}, 1.5 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 8.10(\mathrm{~d}, 0.5 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}) ; 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}) ; 6.20(\mathrm{~s}$, 0.75 H); $6.19(\mathrm{~s}, 0.25 \mathrm{H}) ; 5.36(\mathrm{~d}, 0.25 \mathrm{H}, J=8.2 \mathrm{~Hz}) ; 4.75-4.70(\mathrm{~m}, 0.25 \mathrm{H} ;) 4.57(\mathrm{~d}, 0.75 \mathrm{H}, J=6.2 \mathrm{~Hz})$; $4.43(\mathrm{q}, 0.75 \mathrm{H}, J=6.7 \mathrm{~Hz}) ; 1.59(\mathrm{~d}, 0.75 \mathrm{H}, J=6.9 \mathrm{~Hz}) 1.49(\mathrm{~d}, 2.25 \mathrm{H}, J=6.7 \mathrm{~Hz})$; Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{~S}: \mathrm{C}, 62.51 ; \mathrm{H}, 4.56 ; \mathrm{N}, 3.17$. Found: $\mathrm{C}, 62.10 ; \mathrm{H}, 4.93 ; \mathrm{N}, 3.50 .11 \mathrm{r}$ mixture of diastereomers (method B): $\mathrm{mp} 65-80^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{hex}\right) ; \mathrm{IR}\left(\mathrm{CHBr}_{3}\right) 2980,1746,1688,1620,1446,1376,1158,1068,754 \mathrm{cmit}^{-1}$; ${ }^{\prime} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 7.99(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}) ; 7.49-7.28(\mathrm{~m}, 16 \mathrm{H}) ; 6.58(\mathrm{~s}, 0.5 \mathrm{H}) ; 6.54(\mathrm{~s}, 0.5 \mathrm{H}) ; 5.50-$
$5.37(\mathrm{~m}, 1 \mathrm{H}) ; 1.90(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 62.07 ; \mathrm{H}, 3.99 ; \mathrm{N}, 2.41$. Found: C, 61.89; H, 4.25; N, 2.25.

Acylation of 1 s . Method A. The reaction of $1 \mathrm{~s}(0.05 \mathrm{~g} ; 0.19 \mathrm{mmol})$ and TEA ($30 \mu \mathrm{~L} ; 0.20 \mathrm{mmol}$) dissolved in DCM (5 mL) and 4-chlorobenzoyl chloride ($33 \mathrm{mg} ; 0.19 \mathrm{mmol}$) dissolved in DCM (2 mL) for 2 h at room temperature yields $10 \mathrm{~s}(45 \mathrm{mg}, 59 \%)$ and $11 \mathrm{~s}(27 \mathrm{mg}, 26 \%)$ after chromatography M. P. 138-148 ${ }^{\circ} \mathrm{C}$ using hexanes/ethyl acetate $8: 2$. Method B. The reaction of $1 \mathrm{~s}(0.10 \mathrm{~g} ; 0.37 \mathrm{mmol})$ and Hünig base $(0.048 \mathrm{~g} ; 65 \mu \mathrm{~L} ; 0.376$ $\mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ and 4-chlorobenzoyl chloride ($64 \mathrm{mg} ; 0.37 \mathrm{mmol}$) dissolved in DCM (2 mL) for 10 h at room temperature yields $10 \mathrm{~s}(80 \mathrm{mg}, 53 \%)$ and $11 \mathrm{~s}(4 \mathrm{mg} ; 2 \%)$ after chromatography using hexanes/ethyl acetate 8:2. Method C. The reaction of $1 \mathrm{~s}(0.10 \mathrm{~g} ; 0.37 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.0372 \mathrm{~g} ; 0.38 \mathrm{mmol})$ in acetonitrile (10 mL) and 4-chlorobenzoyl chloride ($64 \mathrm{mg} ; 0.37 \mathrm{mmol}$) dissolved in acetonitrile (2 mL) for 23 h at $50^{\circ} \mathrm{C}$ yields $10 \mathrm{~s}(60$ $\mathrm{mg}, 40.5 \%$) and $11 \mathrm{~s}(9 \mathrm{mg} ; 4.5 \%)$ after chromatography using hexanes/ethyl acetate $8: 2.10 \mathrm{~s}$ mixture of diastereomers (method B): mp 138-148 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hex); IR (KBr) 3278, 1738, 1659, 1594, 1428, 1334, 1148, 1066, $980,706 \mathrm{~cm}-1 ;{ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.00(\mathrm{~m}, 2 \mathrm{H}) ; 7.46(\mathrm{~m}, 2 \mathrm{H}) ; 7.32-7.28(\mathrm{~m}, 5 \mathrm{H}) ; 4.98(\mathrm{~d}, 0.2 \mathrm{H}, J=$ $5.5 \mathrm{~Hz}) ; 4.94(\mathrm{~d}, 0.8 \mathrm{H}, J=5.5 \mathrm{~Hz}) ; 4.64-4.56(\mathrm{~m}, 1 \mathrm{H}) ; 2.75-2.70(\mathrm{~m}, 2 \mathrm{H}) ; 2.44-2.40(\mathrm{~m}, 2 \mathrm{H}) ; 2.38-2.33(\mathrm{~m}$, $2 \mathrm{H}) ; 1.50(\mathrm{~d}, 2.4 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 1.50(\mathrm{~d}, 0.6 \mathrm{H}, J=6.8 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{~S}: \mathrm{C}, 59.18 ; \mathrm{H}$, 4.96; N, 3.45. Found: $\mathrm{C}, 59.55 ; \mathrm{H}, 4.83 ; \mathrm{N}, 3.10 .11 \mathrm{~s}$ mixture of diastereomers (method B): $\mathrm{mp} 60-80^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hex). IR $\left(\mathrm{CHBr}_{3}\right) 2978,1730,1656,1590,1428,1331,1022,704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ 8.00-7.98 (m, 2H); 7.50-7.23 (m, 11H); 5.49-5.90(m, 1H); 2.92-2.89 (m, 2H); 2.66-2.63(m, 2H); 2.01-1.99 $(\mathrm{m}, 2 \mathrm{H}) ; 1.90(\mathrm{~d}, 1.5 \mathrm{H}, J=7.0 \mathrm{~Hz}) ; 1.84(\mathrm{~d}, 1.5 \mathrm{H}, J=7.0 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{NS}: \mathrm{C}, 59.56$; H, 4.26; N, 2.57. Found: C, 59.80; H, 3.40; N, 2.90.

Acylation of $1 \mathrm{t} . \mathrm{Method} \mathrm{A}$. The reaction of $1 \mathrm{t}(0.05 \mathrm{~g} ; 0.19 \mathrm{mmol})$ and TEA $(27 \mu \mathrm{~L} ; 0.19 \mathrm{mmol})$ dissolved in DCM (10 mL) and 4-chlorobenzoyl chloride ($26 \mathrm{mg} ; 0.19 \mathrm{mmol}$) dissolved in DCM (2 mL) for 2 h at room temperature yields $18 \mathrm{t}(41 \mathrm{mg}, 56 \%)$ and $19 \mathrm{t}(13 \mathrm{mg}, 14 \%)$ after chromatography using hexanes/ethyl acetate 8:2. Method B. The reaction of $1 \mathbf{t}(0.10 \mathrm{~g} ; 0.356 \mathrm{mmol})$ and Hünig base $(0.047 \mathrm{~g} ; 63 \mu \mathrm{~L} ; 0.36 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ and 4-chlorobenzoyl chloride ($61 \mathrm{mg} ; 0.35 \mathrm{mmol}$) dissolved in $\mathrm{DCM}(2 \mathrm{~mL})$ for 10 h at room temperature yields $10 t$ ($53 \mathrm{mg}, 36 \%$) and 11 t (3 mg ; 1.5%) after chromatography using hexanes/ethyl acetate $8: 2.10 \mathrm{t}$ mixture of diastereomers (method B): bp 205-203 ${ }^{\circ} \mathrm{C} / 0,4 \mathrm{mmHg}$; IR (CHBr_{3}) 3372, 3278, 1736, 1660, 1450, 1142, 1022, $960,698 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8,06(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 7.93-7.91(\mathrm{~m}, 1 \mathrm{H}) ; 7,5(\mathrm{~d}, 2 \mathrm{H}, J=$ 8.1 Hz); 7.36-7.29 (m, 5 H); $4.82(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}) ; 4.57-4.45(\mathrm{~m}, 1 \mathrm{H}) ; 2.30-2.20(\mathrm{~m}, 4 \mathrm{H}) ; 1.70-1.55(\mathrm{~m}$, $4 \mathrm{H}) ; 1.51(\mathrm{~d}, 2.25 \mathrm{H}, J=6.9 \mathrm{~Hz}) ; 147(\mathrm{~d}, 0.75 \mathrm{H}, J=6.9 \mathrm{~Hz}) . \mathrm{ms}(\mathrm{CI}) \mathrm{m} / \mathrm{z} 386(\mathrm{M}-1) .11 \mathrm{t}$ mixture of diastereomers (method B): mp 70-80 ${ }^{\circ} \mathrm{C}$ ($\mathrm{Et}_{2} \mathrm{O}$-hex); $\mathrm{IR}\left(\mathrm{CHBr}_{3}\right)$ 2980, 1730, 1662, 1140, 1009, $980 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{RMN}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 8.00-7.98(\mathrm{~m}, 2 \mathrm{H}) ; 7.92-7.22(\mathrm{~m}, 13 \mathrm{H}) ; 5.40-5.35(\mathrm{~m}, 1 \mathrm{H}) ; 2.40-2.30(\mathrm{~m}, 4 \mathrm{H}) ; 1.66-$ $1.50(\mathrm{~m}, 4 \mathrm{H}) ; 1.54(\mathrm{~d}, 1.5 \mathrm{H}, J=7.1 \mathrm{~Hz}) ; 1.53(\mathrm{~d}, 1.5 \mathrm{H}, J=7.1 \mathrm{~Hz})$. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 68.69 ; \mathrm{H}, 5.56$;

N, 2.86. Found: C, 68.42; H, 5.22; N, 2.77.
Synthesis of arylidenesulfonamides 13. General Procedure. A solution of 1a, benzaldehyde derivative, piperidine and acetic acid in isopropanol was heated at $70^{\circ} \mathrm{C}$ for 24 h . The solvent was removed under reduced pressure and the residue chromatographed on silica gel with toluene/ethyl acetate 9:1.

13a. Reaction of $1 \mathrm{a}(0.20 \mathrm{~g} ; 1.3 \mathrm{mmol})$, 2-chlorobenzaldehyde ($0.36 \mathrm{~g} ; 1.3 \mathrm{mmol}$), piperidine ($0.7 \mu \mathrm{~L}$), acetic acid ($1.6 \mu \mathrm{~L}$) and isopropanol (1 mL) yields $0.18 \mathrm{~g}\left(50 \%\right.$) of $13 \mathrm{a} ; \mathrm{mp} 63-64^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right.$-Hexanes); IR (CHBr_{3}) 3301, 2921, 1695, 1417, 1328, 1188, $768 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 80 \mathrm{MHz}\right) \delta 7.92(\mathrm{~s}, 1 \mathrm{H}) ; 7.5-7.2(\mathrm{~m}, 4 \mathrm{H}) ; 4.79(\mathrm{~m}, 1 \mathrm{H})$; $2.72(\mathrm{~d}, 3 \mathrm{H}, J=5.4 \mathrm{~Hz}) ; 2.15(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm}$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{ClNO}_{3} \mathrm{~S}: \mathrm{C}, 48.35 ; \mathrm{H}, 4.43$; $\mathrm{N}, 5.13$. Found: C , 48.00; H, 4.74; N, 5.08.

13b. Reaction of $1 \mathrm{a}(0.50 \mathrm{~g} ; 3.3 \mathrm{mmol})$, 2-nitrobenzaldehyde ($0.94 \mathrm{~g} ; 3.3 \mathrm{mmol}$), piperidine ($1.8 \mu \mathrm{~L}$), acetic acid ($4.4 \mu \mathrm{~L}$) and isopropanol (2 mL) yields $0.47 \mathrm{~g}(49 \%)$ of $\mathbf{1 3 b}$; $\mathrm{mp} 90-92^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right)$; IR (KBr) 3105, 2943, 1673, 1523, 1339, 1153, 1074, 867, $707 \mathrm{~cm}^{-1}$; 'H-NMR (DMSO-d, 300 MHz) $\delta 8.30(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$); $7.93(\mathrm{~s}, 1 \mathrm{H})$; $7.78(\mathrm{t}, 1 \mathrm{H}, J=6.8 \mathrm{~Hz}) ; 7.72(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 7.39(\mathrm{~d}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}) ; 2.62(\mathrm{~s}, 3 \mathrm{H}) ; 2.20(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI})$ m/z 289 (M+1).

13c.Reaction of $1 \mathrm{a}(0.50 \mathrm{~g} ; 3.3 \mathrm{mmol})$, 2,3-dichlorobenzaldehyde ($1.02 \mathrm{~g} ; 3.3 \mathrm{mmol}$), piperidine ($1.8 \mu \mathrm{~L}$), acetic acid $(4.4 \mu \mathrm{~L})$ and isopropanol (2 mL) yields $0.41 \mathrm{~g}(40 \%)$ of 13 c ; $\mathrm{mp} 164-166^{\circ} \mathrm{C}(\mathrm{EtOH})$; IR (KBr) 3302, 2980, 2825, 1695, 1412, 1328, 1168, 877, $653 \mathrm{~cm}^{-1}$; ' $\mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$) $\delta 7.80(\mathrm{~s}, 1 \mathrm{H}) ; 7.50(\mathrm{~m}, 1 \mathrm{H}) ; 7.10$ $(\mathrm{m}, 2 \mathrm{H}) ; 4.70(\mathrm{~m}, 1 \mathrm{H}) ; 2.70(\mathrm{~d}, 3 \mathrm{H}, J=5.4 \mathrm{~Hz}) ; 2.10(\mathrm{~s}, 3 \mathrm{H})$; Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 42.87 ; \mathrm{H}, 3.60$; N, 4.54. Found: C, 43.00; H, 3.99; N, 4.13.

Synthesis of dihydropyridines 12. General procedure. A mixture of compounds 13 and 14 (1 equiv each) in ethanol (for 13a) or isopropanol (for 13b) was refluxed for 24 h . The solvent was removed under reduced pressure and the residue was chromatographed on silica gel with hexanes/ethyl acetate (13a) or toluene/ethanol (13b).

12a. A mixture of compounds $13 \mathrm{a}(0.15 \mathrm{~g} ; 0.6 \mathrm{mmol})$ and 14 ($0.06 \mathrm{~g} ; 0.6 \mathrm{mmol}$) was dissolved in ethanol $(0.6 \mathrm{~mL})$ and refluxed for 24 h . The solvent was removed under reduced pressure and the residue was chromatographed on silica gel with toluene/ethanol $9: 1$ yielding $12 \mathrm{a}(40 \mathrm{mg} ; 18 \%$) and $\mathbf{1 5 a}$ (32%) as yellowish oils. Spectroscopic data for 12a: IR (CHBr_{3}) $3341,1699,1607,1434,1305,1094,755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl}, 300$ $\mathrm{MHz}) \delta 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}) ; 7.23(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ; 7.13(\mathrm{t}, 1 \mathrm{H}, J=7.6 \mathrm{~Hz}) ; 7.03(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}) ; 5.6$ (bs, 1H); $5.39(\mathrm{~s}, 1 \mathrm{H}) ; 4.35(\mathrm{bs}, 1 \mathrm{H}) ; 3.6(\mathrm{~s}, 3 \mathrm{H}) ; 2.81(\mathrm{~d}, 3 \mathrm{H}, J=5.3 \mathrm{~Hz}) ; 2.31(\mathrm{~s}, 3 \mathrm{H}) ; 1.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} . \mathrm{ms}$ (EI) $\mathrm{m} / \mathrm{z} 370(\mathrm{M}+1)$. For compound 15 a the spectroscopic data are identical to those of an authentical sample. ${ }^{19}$

12b. A mixture of compounds $13 \mathrm{~b}(0.17 \mathrm{~g} ; 0.6 \mathrm{mmol})$ and $14(0.06 \mathrm{~g} ; 0.6 \mathrm{mmol})$ was dissolved in isopropanol (0.5 mL) and refluxed for 24 h . The solvent was removed under reduced pressure and the residue was chromatographed on silica gel with n-hexane/ethyl acetate $1: 1$ yielding $\mathbf{1 2 b}$ ($37 \mathrm{mg} ; 16 \%$) and $\mathbf{1 5 b}$ ($\mathbf{3 5 \%}$) as yellowish oils. Spectroscopic data for 12b: IR $\left(\mathrm{CHBr}_{3}\right) 3343,1700,1646,1526,1355,1157,148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$
$\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.8-7.2(\mathrm{~m}, 4 \mathrm{H}) ; 5.9(\mathrm{~s}, 1 \mathrm{H}) ; 5.45(\mathrm{~s}, 1 \mathrm{H}) ; 5.05(\mathrm{~s}, 1 \mathrm{H}) ; 3.53(\mathrm{~s}, 3 \mathrm{H}) ; 2.31(\mathrm{~s}, 3 \mathrm{H}) ; 2.27(\mathrm{~d}$, $3 \mathrm{H}, J=5.1 \mathrm{~Hz}$); $1.24(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ; \mathrm{ms}(\mathrm{EI}) \mathrm{m} / \mathrm{z} 381(\mathrm{M}+1)$. For compound $\mathbf{1 5 b}$ the spectroscopic data are identical to those of an authentical sample. ${ }^{19}$

Preparation of 19. A mixture of compound $1 \mathrm{a}(0.5 \mathrm{~g} ; 3.3 \mathrm{mmol})$ and ammonium acetate ($\mathbf{3 . 5 \mathrm { g } ; 4 5 . 5 \mathrm { mmol } \text {) }) ~ (2)}$ dissolved in absolute ethanol (2.5 ml) was heated at reflux for 24 h . The solvent was evaporated and the residue chromatographed with hexanes/ethyl acetate 1:1. After the solvent was removed the residual oil was crystallised ($0.45 \mathrm{~g}, 51 \%$); mp $136-137^{\circ} \mathrm{C}$ (EtOH); IR (KBr) $3070,1620,1320,1128,844 \mathrm{~cm}-1 ;{ }^{\prime} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right.$) $\delta 6.30(\mathrm{~s}, 1 \mathrm{H}) ; 5.30(\mathrm{~s}, 1 \mathrm{H}) ; 4.65(\mathrm{~m}, 1 \mathrm{H}) ; 4.10(\mathrm{~s}, 2 \mathrm{H}) ; 3.38(\mathrm{~s}, 3 \mathrm{H}) ; 2.82(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=\mathrm{Hz}, \mathrm{J}=\mathrm{Hz}) ; 2.10(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 143.7,135.4,116.5,115.0,54.5,30.3,28.6,20.2 \mathrm{ppm}$; ms (EI) m/z $266(\mathrm{M}+1)$; Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}: \mathrm{C}, 30.08 ; \mathrm{H}, 5.30 ; \mathrm{N}, 10.51$. Found: C, 29.88; H, 5.23; N, 10.13 .

ACKNOWLEDGMENTS

We thank ALTER S. A. (Madrid, Spain) for financial support. J. A. V. also thanks ALTER S. A. for a fellowship.

REFERENCES AND NOTES

1. Communication presented as a poster at The 6th Belgian Organic Synthesis Symposium (BOSS-6, Gent, Belgium) on July 1996.
2. Lednicer, D.; Mitscher, L. A.; The Organic Chemistry of Drug Synthesis, Vol. 1, pp. 120, 1977; Vol. 2, pp 112, 1980; Vol. 3, pp. 61, 1984, Wiley, New York.
3. Alajarín, R.; Vaquero, J. J.; Alvarez-Builla, J.; Pastor, M.; Sunkel, C.; Fau de Casa-Juana, M.; Priego, J.; Statkov, P. R.; Sanz-Aparicio, J.; Fonseca, I. J. Med Chem. 1995, 38, 2830.
4. Hendrickson, J. B.; Bergeron, R. Tetrahedron Lett. 1970, 5, 345.
5. Bender, A.; Günther, D.; Willms, L.; Wingen, R. Synthesis, 1985, 66.
6. Thompson, M. E. Synth. Comm. 1988, 733.
7. Vega, J. A.; Molina, A.; Alajarin, R.; Vaquero, J. J.; García-Navío, J. L.; Alvarez-Builla, J. Tetrahedron Lett. 1992, 33, 3677.
8. Poirier, J. M. Org. Prep. Proc. Int. 1988, 20.317.
9. Walshe, N. D. A.; Goodmin, G. B. T.; Smith, G. C.; Woodward, F. E. Org. Synth. 1979, 44, 305.
10. Weiss, G.; Schulze, G. Liebigs. Ann. Chem. 1969, 729, 40.
11. Klock, J. A.; Leschinsky, K. L. J. Org. Chem. 1979, 44, 305.
12. Bender, A.; Günther, D.; Wigen, R. Liebigs Ann Chem. 1985, 579.
13. Chu, D. T. W.; Huckin, S. N. Can. J. Chem. 1980, 58, 138.
14. Dubios, J. E.; Lion, C.; Dugast, J. Y. Tetrahedron Lett. 1983, 24, 4207.
15. Von Günther, W.; Schulze, G. Liebigs Ann. Chem. 1969, 40, 729.
16. Rodenkirchen, R.; Möller, E.; Mannhold, R.; Bossert, F.; Meyer, H. Naunyn-Schmiedeberg's Arch. Pharmacol. 1978, 302, R36.
17. Sunkel, C.; Fau de Casa-Juana, M.; Statkov, P.; Straumann, D.; PCT Int. Appl. WO 84/02 132; Chem. Abstr. 1984, 101, 191700q.
18. Perrin, D. D.; Armarego, W. L. F., Eds. Purification of Laboratory Chemicals, Pergamon Press, New York. 19. We thank Dr. M. Fau de Casa-Juana for the generous gift of compounds 15a and 15b.
