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Resumen 

Este trabajo pretende unir el conocimiento actual sobre controladores multitasa o 
multifrecuencia (multirate) con técnicas de diseño para convertidores conectados a la 
red, en este caso concreto, a la red alterna (AC) de Media Tensión. Por tanto, se 
estudian las contribuciones multirate realizadas hasta la fecha, así como todo lo 
relacionado con la modulación de la señal de control para los convertidores. Las 
implicaciones temporales del actuador DSPWM se relacionarán con el análisis 
multitasa, así como se explicarán posibles alternativas para aplicaciones con una 
frecuencia de muestreo menor que la de modulación. Finalizando con la explicación y 
presentación de resultados de controladores trabajando entre dos frecuencias o tasas, 
mediante simulaciones del convertidor disponible en laboratorio. 

 

Palabras clave: Tiempo discreto, Modelado, Media tensión, Convertidores de 
potencia, Multitasa. 
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Abstract 

This work aims to unify the current knowledge about multirate controllers with design 
techniques for grid-tied converters, in this occasion, connected to Medium Voltage AC 
grid. Therefore, the multirate contributions, that have been given so far, are studied, as 
well as everything related to modulation techniques for power converters. The temporal 
implications of the DSPWM actuator will be correlated to multirate analysis, in 
addition to possible alternatives for applications with a lower sampling frequency than 
modulation one. Finalizing with explanations and result demonstrations of controllers 
working between two frequencies or rates, by means of the available power converter in 
laboratory. 

 

Keywords: Discrete-time, Modelling, Medium Voltage, Power converters, Multirate. 
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Extended abstract 

Multirate control is an unusual technique in power electronics, so this works aims to 
give an alternative for controller designers in power electronics when hardware or 
software constraints can be found. These limitations could be related to sampling and 
actuation rates, when hardware ADC or switching frequency, respectively, cannot be 
correctly synchronized. Even, computational burden can lead to this situation, if the 
designer wants to maximize the performance of the converter. 

These reasons lead to a detailed analysis of modulation techniques, directly related 
with control actuation, and current proposals in power electronics. The DSPWM is an 
interesting modulation technique, that is profoundly analyzed in this document to keep 
clear what are the consequences of applying multirate methods to it. Besides, its 
temporal characteristics are related with the modified Z-transform, which is also linked 
with multirate analysis. In addition, two multirate studies in power electronics are 
presented, each of them with a different point of view. One takes internal 
representation to get a single-rate equivalent that is analyzed with usual techniques of 
stability and robustness. Hence, the internal representation using Kranc methodology 
with three different situations is introduced. The other example uses the external 
representation to also get a single-rate equivalent to analyze its stability and 
robustness.  

The complex-coefficient systems are usual in power electronics due to phasor nature of 
controlled variables. For that reason, this document works with complex-valued models 
of the L-filter for each reference frame to be studied. Besides, its discretization is 
detailed, because computational delay interferes in rotating reference frame 
transformation. 

Then, some multirate applications must be presented to give context to the possibilities 
of multirate control in power electronics. Firstly, a relationship is inferred between 
DSPWM and SHE modulation techniques with a sinusoidal extrapolation technique. 
For DSPWM, the crossing between modulating and carrier signals could compromise 
the switching device, so proper gate drive signals must be generated. For SHE 
modulation, this document presents a possible alternative using polynomial 
extrapolation, but the correct extrapolation is the same taken for DSPWM. These 
situations are related to multirate current control, but there are possibilities for 
hierarchical control in power converters too. Frequently, every control level has its own 
rate, so maybe multirate techniques could be used for enhancing the overall system 
performance. To associate this later concept with an actual application, few 
explanations are given about Microgrids.  

The main goal of this document is to introduce multirate analysis in the current 
control loop. The multirate approach needs single-rate control structures on which to 
be based, so two complex-valued controllers in stationary and rotating reference frame 



Extended Abstract 

xxii 

are introduced. Then, a possible example using internal representation (space-state) is 
shown to obtain single-rate equivalents that allow the designer to use habitual stability 
and robustness analysis tools. Detailed simulation will endorse the single-rate 
equivalents. 

Nevertheless, a more sophisticated multirate technique must be used to properly 
control the system. Consequently, a model-based dual-rate controller is presented. In 
these proposals, the sampling frequency is lower than the modulation one, so the goal is 
to maximize the performance of the control system and to obtain the same response 
that could be obtained by using a fast single-rate controller. The controller gets 
extraordinary results that are endorsed by detailed simulation of the grid-tied power 
converter. 

The grid-tied power converter parameters are those from the 3L-DNPC-VSC in 
research laboratory, which works in Low Voltage. In this way, the simulation results 
that will be shown here can be compared with future experimental test. The issue is in 
MV, but tests are adapted to available resources. 

Furthermore, appendix given in this document will help to the reader to consider the 
bases that supports some concepts. Firstly, modified Z-transform is explained and 
related with multirate systems. Then, vector representation of three-phase systems is 
briefly introduced, because it is needed for controller design and plant modelling. 
Finally, two basic control structures in VSC are presented. 
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Chapter 1. Introduction 

1.1. Motivation 
Nowadays, the electric energy powers the world and its demand is growing every year, 
what is a challenge because the electric power system complexity rises with it. The 
complexity increases with the renewable energy resources added by the increasing 
demand of CO2-free energy, which is enforced by the laws. The European Union target 
is a 20% final energy consumption from renewable sources by 2020. Each EU country is 
committed to reach its own national renewable energy action plan, which includes 
sectorial targets for electricity, heating and cooling, and transport. Figure 1.1 shows the 
trend in the recent years. Besides, the Europe 2020 target is a 20% increase in energy 
efficiency. In absolute terms this means that by 2020 EU energy consumption should 
not exceed 1483 Mtoe (million tonne of oil equivalent) of primary energy or 1086 Mtoe 
of final energy.  

 
Figure 1.1. Share of renewable energy in gross final energy consumption. Source: Eurostat 

 
Figure 1.2. Primary energy consumption and final energy consumption. Source: Eurostat 
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The energy losses occurring during energy transformation (particularly electricity 
generation), transmission and distribution determine the difference between primary 
and final energy consumption. In Figure 1.2 is shown the path over the past years. 

A new target of at least 27% of final energy consumption is set for 2030 for helping the 
EU meet its energy needs beyond 2020. The European Commission wants to make the 
EU a global leader in renewable energy. These reasons lead to an active research of 
renewable energy sources and efficiency in each energy conversion.  

The distribution approach is changing in the recent years, since the spreading of 
distributed generators. The management of small distributed producers, essentially 
renewable sources, have become an important issue to get a reliable and stable 
network. There is where the power electronic systems have an important role as they 
could manage the energy exchange between grid and producers, as well as grid quality. 
Hence, the new distribution approach is a smart high-power medium-voltage (MV) 
system, where power converters are used in applications such as motor drives, flexible 
AC transmission systems (FACTS), renewable energy resources integration, or efficient 
conversion. Note that IEC 60038 defines each voltage level as it is shown in Table 1.1. 

Table 1.1. Voltage ranges. Source: IEC 60038 

IEC voltage range AC three-phase RMS voltage [V] 
Extra-low Voltage < 50 

Low Voltage 100 to 1000 
Medium Voltage 1000 to 35000 

High Voltage 35000 to 230000 
Extra-high Voltage > 245000 

On one hand, Flexible AC Transmission Systems (FACTS) technology enhances the 
controllability and increase power transfer capability of the power system. FACTS 
technology lead to new opportunities for controlling the power and improving the 
usable capability of lines. The used technology is power electronic-based and other 
static controllers, where the words “other static controllers” is referred to those which 
are not based on power electronics. The power electronic-based static controllers 
provide control of one or more AC transmission system parameters as line impedance, 
angle, or voltage. 

On the other hand, power electronic converters provide an efficient and stable power 
flow between the utility grid and renewable sources, and even among forms of 
transport. Electric vehicles need converters to charge their batteries and most trains 
are electric-based. Also, metropolitan trains need an efficiency energy consumption, so 
the regenerative brake provides an energy recovery to the own railway electric grid 
through power electronic converters.  

The power electronic converters are essential to enhance grid flexibility and to achieve 
the new efficiency requirements. Therefore, the power converter operation must be 
reliable, flexible, efficient, and economic, so must the controllers. 
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The power switching device is the essential component of each converter. The 
semiconductor switching device evolution has been always aimed to achieve an ideal 
switch. And evaluated switching device characteristics are the operating frequency, the 
blocking voltage, and the device current. Therefore, an ideal switch would have infinite 
operation frequency, infinite blocking voltage, null drop voltage when on, and null 
drive current when off and infinite when on. That is no conduction or switching losses.  

The commercial devices are not ideal, and they never will, so each kind of 
semiconductor switching device is appropriated to each application according to the 
system requirements. Besides, the switching frequency determines the control rate for 
MV converters as it is intrinsically related by the actuator. Although multilevel 
converters could improve the management of more voltage, current or higher 
equivalent switching frequency, some MV converters use more economic topologies 
where the device switching frequency still constrains the control rate. 

1.1.1. Flexible AC Transmission System (FACTS) controllers 
FACTS controllers improve the power transfer capability of existing transmission and 
distribution lines. The delivery period of FACTS technology is lower than the 
installation of new lines, which makes this technology more attractive. 

FACTS controllers could be classified into four categories[1]: 

a) Series controllers: Could be a variable impedance, or a power electronic based 
variable source of main frequency, subsynchronous and harmonic frequencies (or 
a combination) to serve the desired need. Essentially, it injects voltage in series 
with the line. 

b) Shunt controllers: May be variable impedance, variable source, or a 
combination of these. Essentially, it injects current into the system at the point 
of connection. If the injected current is in phase quadrature with the line 
voltage, this controller only supplies or consumes variable reactive power. 
Otherwise, a phase relationship involves a real power consumption. 

c) Combined series-series controllers: Could be a combination of coordinated 
series controller in a multiline transmission, or a unified controller which 
provides independent series reactive compensation and transfers real power. 

d) Combined series-shunt controllers: Could be a combination of coordinated 
series and shunt controller, or a unified controller which provides independent 
series reactive compensation and transfer real power. They inject current into 
the system with the shunt part and voltage in series in the line with the series 
part. 

The different types of FACTS Controllers are summarized in Figure 1.3. The 
application defines the type of controller, e.g. if the purpose is to control the 
current/power flow and damp oscillations, the series Controller for a given rated power 
is more powerful than the shunt Controller. The shunt Controller is more willing to 
control voltage at and around the point of connection through the injection of reactive 
current, alone or a combination of active and reactive current for a more effective 
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voltage control and damping of voltage oscillations. The combination of the series and 
shunt Controllers can provide the best of both, that is an effective power flow and line 
voltage control. Also, a Controller with storage (large DC capacitors, storage batteries, 
or superconducting magnets) is much more effective for controlling the system 
dynamics, i.e. the dynamic pumping of active power. In addition, a converter can be 
designed to generate the compensate waveform to act as an active filter. Each one has 
its benefits and attributes, and a preliminary evaluation is needed. 
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Figure 1.3. Basic types of FACTS Controllers 
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To sum up, every FACTS is a variable impedance that is focused on the needed 
application. 

Besides, for the converter-based controllers there are two types: voltage-sourced 
converters (VSC) and the current-sourced converters (CSC). CSC topology is used in 
high-power drivers, where GTO and IGCTs are the switching devices. The CSC 
operates at fixed current while the voltage is modulated. The most common topology is 
the VSC due to its controllability.  

In summary, FACTS controllers will ensure the power system stability, and they will 
be enhanced by wider area control information systems. 

1.1.2. Industrial applications 
New highly efficient power electronic technologies and suitable control strategies are 
needed to reduce energy waste and to improve power quality [2]. Energy efficiency is a 
potential field in electric motor driven systems. Therefore, the aim is to introduce 
efficient MV adjustable speed drives in industrial applications.  

In MV drives is fundamental a high-quality voltage and current at both terminals, 
input, and output. The waveforms are related to: topology used, the application, the 
control algorithm, the size of the filter, and chosen switching frequency. There are 
different approaches for the optimal solution, and each factor has a different weight in 
it. The hardware characteristics are not in the scope of this document, but some 
relation between factors must be considering. An elevated switching frequency increases 
the switching losses, what reduces the maximum output power, but a switching 
frequency reduction increases the harmonic distortion in the line and motor side 
current waveforms and it lead to solution with expensive LC filters. The goal is a 
converter that reduces harmonic distortion with low switching frequency, and this is 
accomplished with multilevel converters. 

Multilevel converters improve the voltage waveforms compared to the basic two-level 
voltage source converter (2L-VSC), as they enhance power quality, reduce switching 
losses, and obtain a high voltage capability. The 2L-VSC cannot be used in 
applications where is required high converter efficiency and low harmonic distortion, 
because the LC filter constrains the low carrier frequencies. 

The 3L neutral-point-clamped voltage source converter (3L-NPC VSC) is the most 
efficient among available solutions, and it is the preferred choice in several industrial 
MV applications [3]. For example, Table 1.2 gives some voltage and power rating of 
usual industrial MV drives. It requires high switch power, but the expense in the LC 
filter is moderate. Also, the high switching losses share causes a reduction in installed 
switch power at low switching frequency. The additional attractive features are: simple 
grid transformer, a small DC link capacitor, and modular realization of common DC-
bus configurations. This multilevel topology is usually compared to flying capacitor 
voltage source converter (3L / 4L-FLC VSC), and series-connected H-bridge voltage 
source converters (5L-SCHB VSC). The FLC VSC rises the expense in capacitors, and 
the SCHB requires a complicated grid transformer, and high DC-link capacitance. 
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Table 1.2. Market overview of industrial 3L-NPC-VSC MV Drives. Source: [2] 

Manufacturer Type 
Power 
(MVA) 

Voltage (kV) Semiconductor 

ABB 
ACS 1000 0.3 − 5 2.3; 3.3; 4.0; 4.16 IGCT 
ACS 6000 3 − 27 2.3; 3; 3.3 IGCT 

Siemens 

Sinamics 
SM120 CM 

6 − 13.7 3.3 − 7.2 MV IGBT 

Sinamics 
SM150 

5 − 28 3.3 IGCT 

Sinamics 
GM150 

0.6 − 10.1 2.3; 3.3; 4.16; 6; 6.6 MV IGBT 

Alstom VDM7000 0.3 − 8 3.3 PP-MV-GTO 

TMEIC GE 
Dura-Bilt5i 

MV 
7.5 4 − 4.2 IGBT 

Therefore, the 3L NPC VSC is characterized by a relatively small DC-link capacitor, a 
simple power circuit topology, low number of components, and straightforward 
protection and modulation schemes. These features make it a competitive solution for a 
large variety of low and medium switching frequency applications. 

The 3L-NPC VSC has positioned as an essential in more conventional high-power AC 
motor drive applications like conveyors, pumps, fans, and mills. Also, a back-to-back 
configuration is possible with this topology, which is attractive for regenerative 
applications, as in regenerative conveyors for the mining industry or grid interfacing of 
renewable energy sources. The regenerative applications are also present in transports, 
as electric trains, or vehicle applications. 

As it is mentioned before, the control algorithm is one of the factors related to the 
waveform quality and converter response, and it is the taken power converter approach 
in this document. 

 
Figure 1.4. SINAMICS SM120 CM Medium Voltage drive. Source: Siemens web 
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1.1.3. Power semiconductor devices 
Every power converter is composed of semiconductor devices and the characteristics of 
each one determines its applications. The desirable characteristics on any of them are: 

1. On-state characteristics: High-current rating, and low forward voltage drop. 
2. Off-state characteristics: High forward and reverse voltage blocking 

capability, and low leakage current. 
3. Switching characteristics: Low power and controllable turn-on and turn-off, 

high dv/dt and di/dt transitions ratings, and low switching power losses. 
4. Gate characteristics: Low gate-drive voltage and low gate-drive current, and 

low gate drive power. 
5. Fault withstanding capability: Withstand fault current for a long time. 
6. Thermal stability: Low thermal impedance coefficient from the internal 

junction to ambient. 

Hence, among other characteristics, the ideal device features high handling current, 
high blocking voltage and high switching frequency. However, there is no ideal device, 
and an equilibrium between these characteristics is obtained in each power 
semiconductor device. 

Before start with an overview in the technologies and trends in power semiconductor 
devices, a first classification might be shown to differentiate them as a function of its 
controllability [4]: 

a) Uncontrolled turn-on and turn-off: Commonly known diodes. 
b) Controlled turn-on and uncontrolled turn off: A category that includes 

SCR (Silicon Controlled Rectifier), and TRIAC (Triode for alternating current). 
c) Controlled turn-on and controlled turn-off: This category can be divided 

into two distinct groups: 
1. Current-controlled devices: A positive or negative current pulse is 

needed to open or block them, respectively. In this category can be 
found: BJT (Bipolar Junction Transistors), GTO (Gate Turn-Off 
Thyristors) and IGCT (Integrated Gate-Conmutated Thyristor). 

2. Voltage-controlled devices: Also known as MOS (Metal-Oxide-
Semiconductor) gate or isolated gate. Since their low control power or 
high switching frequency, the power semiconductor research and the 
technological efforts involved in manufacturing have been focused on 
evolving these devices. 

i. MOSFET power transistors (MOS Field Effect 
Transistors): They have high switching frequencies (tens or 
hundreds of kHz) with low power losses. Their limitation is an 
increase in the on-state resistance along with the rise of the 
maximum blocking voltage rating, which lead to important 
power losses during conduction. Therefore, they are not used in 
high power applications. 
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ii. Insulated Gate Bipolar Transistor (IGBT): It is a mixture 
with the low on-state power losses of BJT, and the high 
switching frequency (low power losses) of MOSFET. It is a 
transistor that can be used with high-medium switching 
frequencies (units or tens of kHz) and megawatts power. It is the 
most widely used in power electronics. 

As it was mentioned before, the characteristics of each semiconductor device determine 
what is the suitable application, as is shown in Figure 1.5. 

 
Figure 1.5. Classification of power devices according to their rated power and switching 

frequency, and their applications. Source: Yole Développement web 

Silicon technology is the preferred choice in semiconductors, but in recent years there is 
an increasing penetration of wide-bandgap (WBG) semiconductors technology [5]. 
Silicon carbide (SiC) and gallium nitrite (GaN) devices are reaching different levels of 
maturity, with several manufacturers offering packaging solutions. In Figure 1.6 is 
shown the perspective on WBG technologies. 

 
Figure 1.6. Perspective on WBG technologies in terms of frequency and power. Source: [6] 
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Silicon IGBT is used in high power applications, but the switching frequency is 
constrained to 2-5kHz due to high switching losses, so the Total Harmonic Distortion 
(THD) increases. The SiC based MOSFETs and IGBTs for high voltage devices are 
developed to mitigate these issues. The reduction in the specific on-state resistance in 
SiC-based devices compared to Si devices results in lower conduction loss. 

The SiC MOSFETs feature very low on-state resistance and excellent switching 
performance, translating into more efficient and compact systems. These devices 
combine the excellent switching performance of Si MOSFETs and low on-state 
resistance of Si IGBT.  

Hence, the rising in the switching frequency capabilities in high voltage applications 
around a boundary of 10kHz can change control concepts. Many applications have high 
computational burden, what constrains the switching frequency if a digital control is 
designe following conventional structures of modulation. New perspective frame is 
obtained with different sampling/control rate and modulation/switching rate. 

1.1.4. Multirate approach 
The multirate system is a structure where two or more variables are updated with 
different rates or frequencies. Usually, the sampling is considered synchronous and 
periodic, which is known as conventional sampling, but the samplers might be not 
synchronized, or they can be variable in time.  

Some practical applications have economic and technological constraints that implies 
the use of control schemes where sensor sampling and control calculation of the 
actuation is updated with different rates or frequencies. One possible situation could be 
found when a MV power converter has a low frequency switching device, but the 
sampling and control frequency could be faster to get a better response. It is known as 
down-sampling (decimation), and its detailed modelling could improve the system 
performance, and get the better resources exploitation of the system. However, the 
inverse situation can be found when the actuation is faster than sampling and control. 
It is known as up-sampling. The later concept will be explained in this work with few 
examples as a different digital implementation of SPWM or SHE modulation 
techniques, or applications where the computational burden of additional control 
algorithms (e.g. impedance calculation) requires a stability analysis of the control loop. 
In addition, all hierarchical control with different rates (higher control level, lower 
bandwidth) can maximize its response with a correct multirate analysis of the system. 

Besides, in multivariable systems might be advantageous to get different sampling 
frequencies for each different loop, so the system performance is improved, and the 
computational burden is reduced. This is related to what was previously mentioned as 
additional control algorithms. 

In power electronics field, the multirate analysis has a wide niche, because there are 
few applications in literature correctly modelling or using the multirate approach. Most 
power electronics applications have their scope in grid synchronization part, but each 
one of them search for a signal processing to improve the signal acquisition with a 
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digital antialiasing filter, consequently a fast synchronization is obtained [7][8]. Also, a 
harmonic estimation can be reached with a multirate digital signal processing [9]. On 
the other hand, there are some multirate applications in DC/DC that are not in the 
scope of this work, but they are willing to use some techniques shown here. Thus, this 
document will only analyze a DC/AC converter in the following chapters. 
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Figure 1.7. Simplified block diagram of single-rate and multirate example of current-

controlled systems 

 

 
Figure 1.8. Comparison of slow and fast single-rate responses with the multirate approach 

of a current-controlled system. 
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For example, Figure 1.7 depicts a possible application where the power converter 
switching frequency is faster than sampling one. How can the designer obtain an 
optimum response from the current controller? If the controller works at the slowest 
rate, that is the sampling rate, the switching frequency will not be optimally used. 
Hence, the answer is a multirate controller with an input at slow rate and an output at 
fast rate.  

Figure 1.8 shows the response of VSC to step change for a current control loop with a 
slow single-rate controller (constrained by sampling) and its multi-rate equivalent. The 
multi-rate controller is based on the possible fast single-rate equivalent, which is 
designed to reach the steady state in the same discrete steps, so this fast single-rate 
controller will be faster. Note that N is the multiplier that relates sampling and 
actuation rates. Detailed information will be given in this work. 

1.2. Power converter topology 

1.2.1. Classification 
This document is based on the controlling of AC/DC topologies, where a few different 
types can be found, so the topology used in this document should be located into the 
MV power converter topologies. In MV, the topologies can be split in two categories 
depending on the imposed variable (source) regardless to the other one:  

- Current-Source Converter (CSC): They operate at fixed current (inductor 
at DC side) while the voltage is modulated. They are suitable to high-power 
drives, and the dynamic response is relatively slow [10]. This group can be 
divided into Pulse Width Modulation (PWM) CSC and Load-Commutated 
Converters (LCC). The difference resides on the switching device, the former 
uses GTO or IGCT, whereas the latter uses SCR. These topologies are not in 
the scope of this document. 

- Voltage-Source Converter (VSC): These converters operate at fixed 
voltage (capacitor at DC side). They are the typical topology due to its 
controllability. The voltage levels obtained at the AC side define the type of 
VSC, and all are known as multilevel converters. This term includes all the 
topologies that can supply an output voltage signal with more than two voltage 
levels, so a classification is shown based on the type of DC supply [11]. 

The scope of this document is in the 3-Level Neutral Point Clamped (NPC) VSC. It 
has the highest converter efficiency among the available solutions and is widely used in 
many industrial MV applications [3]. The most common 3L NPC VSC use a diode to 
connect each phase to the neutral point and is known as Diode NPC (DNPC). 
However, the Active Neutral Point Clamped (ANPC) solution is taking interest in MV 
applications due to the additional controllability of losses, because the diodes are 
substituted by voltage-controlled switching devices (e.g. IGBT). 
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1.2.2.  Diode Neutral Point Clamped VSC 
The 3L-DNPC-VSC was firstly described in [12] and published in [13], and Figure 1.9 
shows electronic configuration of this converter with IGBTs and their corresponding 
free-wheeling diodes. The DC voltage is split into two capacitors, and a neutral point 
between them is formed. Therefore, each phase generates three voltage levels: +𝑉𝐷𝐶/2, 
0, −𝑉𝐷𝐶/2. Usually an unbalance is generated on the voltage at this point, but the 
control and analysis are not on the scope of this document, so equal capacitor voltage 
is considered. 

Table 1.3. Switching states on the 3L DNPC VSC 

Switching 
state 

Switch Phase 
voltage S1 S2 S3 S4 

P 1 1 0 0 +VDC/2 
0 0 1 1 0 0 
N 0 0 1 1 -VDC/2 

The clamping diodes are conducting when the switching devices S2 or S3 are activated, 
so the phase line is connected to the neutral point. The DNPC operating point is 
represented by the switching states on Table 1.3. 
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S2
D01

iA

 
Figure 1.9. Phase structure of a 3L DNPC VSC 

The phase current direction determines what device (diode) conducts in the zero (0) 
switching state. Two equivalent zero states are possible, at the positive or negative half 
cycle of the phase voltage signal. The devices D02 and S3 conduct with incoming 
current, whereas D01 and S2 conduct with outgoing current. This is depicted in Figure 
1.10. 

During the voltage positive half cycle, S2 is always active and output voltage is 
controlled with the half-bridge formed by S1 and S3, which are complementarily 
activated. On the other hand, during the voltage negative half cycle, S3 is always active 
and output voltage is controlled with the half-bridge formed by S1 and S3, which are 
complementarily activated. 
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Figure 1.10. Phase current path in 3L-DNP-VSC: (a)Positive (outgoing); (b)Negative 

(incoming) 

A modulation strategy must be followed to convert the reference signal to activation 
signals. The following chapter will analyze this issue in detail. The main disadvantage 
of this three-level topology are the non-homogeneous losses in each branch. This is one 
of the reasons why the maximum switching frequency is limited to the device with 
more losses, whereas the others are underutilized.  

The number of devices could be variable depending on their characteristics. With MV 
or HV applications, the switching devices must be connected in series to secure the 
voltage blocking capability of each device. 

1.3. Practical objectives  
The scope of this work is to obtain the state of the art of the multirate analysis and 
implement some of its conclusion to the power electronics field, specifically in MV 
power converters. It is a hard issue due to the lack of literature in this specific branch 
of power electronics control applications. To achieve the general aim, the following 
objectives will be met: 

1. Researching of current knowledge about multirate control. Multirate bases will 
be defined. 

2. Review of power converter modulation strategies. Special emphasis will be 
shown in the sinusoidal pulse-width modulation (SPWM) and selective-
harmonic elimination (SHE). 

3. Temporal analysis of SPWM digital application, that is, delay and amplitude 
error. Besides, modelling techniques will be introduced, as modified Z-transform, 
which is related to multirate analysis. 

4. Correct modelling of multirate systems, particularly the power converter 
applications with up-sampling processes. 
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5. Control possibilities considering the multirate design techniques found in the 
literature. 

6. Validate the multirate modelling and control design with simulations. 

1.4. Structure of this work 
The organization of this document has been done as follows: 

- Chapter 2 presents a knowledge review of multirate situations in power 
electronics. First, the multirate basis are shown to get the correct approach of 
these techniques inside control theory, being Kranc’s methodology one of the 
most useful. The studied three-phase power converter leads to a profound 
analysis of the actuator, and its correct modelling. Two modulation techniques 
are studied, SPWM and SHE, but the first one is profoundly detailed for its use 
in this document. Hence, the modified Z-transform is presented and linked with 
multirate approaches Later, two multirate applications examples are briefly 
introduced to enforce the possibilities of this approach in power electronics. 
Finally, two multirate modelling techniques are presented for its future use in 
the controller design and analysis. These techniques are also related to each 
multirate example presented in this chapter. 

- Chapter 3 introduces the plant modelling as a function of connected filter. The 
usual alternatives (L, LC, LCL, and LLCL-filter) are presented, and its 
corresponding discretization, which can lead to different situation depending on 
the utilized reference frame (stationary or rotating). Then few possible 
multirate applications are presented to obtain a framework for the following 
chapter and future multirate setups. 

- Chapter 4 contains the main goal of this work, which is the study and design 
of multirate controllers for the current control loop. First the proposed single-
rate controllers for each reference frame are presented. Then the situation where 
the control and actuation rate are fastest than the current sampling rate 
without changing the controller structure is studied, that is, the controller 
makes the extrapolation operation through its integral part. Finally, the model-
based multirate controller is presented (MRIC) with great results. All 
conclusions are based on simulation results for either mathematical model and 
detailed model of the grid-tied power converter. 

- Chapter 5 finalizes with some conclusions about the present work and its 
future possibilities inside power electronics. 

- Appendix A, B and C give the background for several terms presented along 
the document. Must stand out the modified Z-transform in Appendix A. 
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Chapter 2. Theoretical 

study 

2.1. Introduction 
This chapter summarizes the current knowledge of multirate design of discrete/digital 
control systems in power electronics field. First, an overview of multirate analysis 
evolution through the last decades is displayed. The multirate approach is needed on 
several fields of control engineering, mainly in robotics and computer engineering 
branch. In power electronics a few applications have been found, but some concepts 
related to the actuation block have been studied that are directly related to the 
multirate design and modelling. The actuation block induces a certain delay that has 
been modeled and compensated in several ways in the literature, and mostly all of 
them are studied in this chapter. A critic point of view is taken in this chapter with 
every approach, and some conclusions will be obtained about the correct treatment of 
this delay. Related to this delay, there is a new concept in literature known as 
multisampling, that has some characteristics that must be evaluated to determine the 
accuracy of this approach. Also, a detailed overview of other multirate approaches in 
power electronics literature is shown. The most usual multirate research in power 
electronics is related to the digital signal processing, that is studied in this chapter, but 
other control strategies have also been proposed in the literature that must be 
considered. Two examples are presented, and each one is related to one way of 
obtaining a single-rate equivalent to be analyzed. 

Later in the chapter, two multirate techniques are presented and they will be used in 
the following as a basis for this control approach. The technique has evolved over the 
last decades, but some initial concepts are useful to get the correct tactic in this issue. 
The multirate modelling is a key matter to get the best performance of multirate 
controllers. Besides, the up-sampling and down-sampling operations need a correct 
digital signal processing to avoid aliasing or imaging, but they will not be essential in 
this work because the controller will only work with one frequency, the grid frequency. 

Finally, some conclusions are found around the introduced terms and thoughts in this 
chapter that will be useful for the following ones and further research in this knowledge 
field of control engineering. It is a specific field that will be defined by the practical 
limits, because it is an unusual processing of control signals. The mentioned literature 
in this chapter allows a further and interesting research in multirate approach inside 
power electronics. 
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2.2. State of the art 

2.2.1. Multirate bases 

2.2.1.1. Definitions 
Before the multirate overview, some terms should be defined to get a better 
understanding of following explanations [14]. The sampling options for discrete-data 
(digital) systems are the following: 

- Conventional sampling: Systems with different variables (inputs, outputs, 
and states) that are sampled each periodic T time units. It is shown in Figure 
2.1(a). The conventional sampling is synchronous when all the samplers are 
synchronized, and nonsynchronous when a delay ∆ is at the beginning of one 
variable sampling.  The last definition is shown in Figure 2.1 (b). 

- Non-conventional sampling: Systems that does not match the previous 
definition. This term comprises three different definitions of sampling: 

 Multirate sampled systems: Sampled systems with two or more 
variables updated in two different rates. Usually, a synchronous and 
periodic sampling is considered. If the samplers are not synchronized, 
the system is known as asynchronous multirate system. The multirate 
control systems arises from this definition. Schematic is shown in Figure 
2.1 (c). 

 Cyclic-Rate sampled systems: It is also known as periodically 
variable in time (PVT) or multiple order. It is a sampling type where 
the samplers operate with a periodically variable rate, or cyclic rate, 
with the presence of a global period T, occasionally known as 
metaperiod. It is shown in Figure 2.1(d). 

 Random sampled systems: Those where the sampling is applied in a 
certain variable amount of time, without the restriction of a repeated 
sampling pattern each global period T. It is depicted in Figure 2.1 (e). 

The non-conventional sampling can be proposed in the known basic schemes: SISO 
(Single Input Single Output) and MIMO (Multiple Input Multiple Output).  

The SISO structure is composed of two independent samplers, one at the controller 
output and other at the plant output. Figure 2.2 depicts this situation, where the 
controller output is sampled with a T/m period, and a T/n period the plant output. 
The regular multirate approach is the one that will be taken in this document, but, as 
it was said before, other sampling schemes might be chosen. Two regular multirate 
sampling strategies can be selected from the SISO structure: 

- MRIC (Multi-Rate Input Controller): The control signal is updated every 
T time units, whereas the plant output signal is sampled every NT time units. 
Therefore, following the previous definition, the resulting 𝑚 = 1 and 𝑛 = 1/𝑁  
are obtained. This structure is highly recommended when there is no access to 
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the controlled variable at high rates, and a conventional control rate might 
degrade the system performance. 

- MROC (Multi-Rate Output Controller): The control signal is updated 
every NT time units, whereas the plant output signal is sampled every T time 
units. This structure is highly recommended when the environment is disturbed, 
and the controlled variable must count with high number of samples to reject 
those degraded due to disturbance. 

In this document, the MRIC scheme will be considered with different approaches, and 
the signal processing in each one might include up-sampling (expand) or down-
sampling (skip) operations. However, the overall MRIC works as extrapolator, whereas 
MROC works as decimator. 
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Figure 2.1. Schematics of sampling processes 



Chapter 2. Theoretical study 

18 

Plant
(Continuous 

time)T/m T/n

S1 S2

ZOH
(Zero Order 

Hold)

Digital 
controller

+

‐

r(k) y(k)u(t)u(k’)

 
Figure 2.2. SISO structure with non-conventional sampling 

MIMO structure is composed of two or more samplers at plant input and the 
corresponding ones at its output for controlling two or more variables. Figure 2.3 
depicts the structure with N samplers at the input and output. It is interesting to 
remark this kind of analysis, because it is useful, if the different variables come from 
the time decomposing of a signal to finally obtain a close SISO expression from the 
analyzed multirate system. 
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Figure 2.3. MIMO structure with non-conventional sampling 

2.2.1.2. Background 
The digital multirate control has been a research matter for more than 63 years, and 
there are a lot of contributions in modelling, design, analysis, and applications. The 
contributions could be distributed in two domains: frequency and time. To follow the 
evolution of multirate contributions, Figure 2.6 rebuild the one in [14]. 

1) Frequency domain 

This domain is composed of two research branches: Frequency Decomposition; 
Vectorial Switch Decomposition.  

G(s)
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Figure 2.4. Frequency Decomposition scheme 

The Frequency Decomposition research began in 1955 with Sklansky and Ragazzini 
[15], they proposed this approach with the location of fictitious samplers that, 
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operating in multiple frequencies of the original sampling frequency, allow the study of 
intersampling behavior. Figure 2.4 depicts the proposed analysis basis, where N 
samples could be placed in a T period. Later, Friedland (1961) applied this technique 
to the study of control structures in systems with periodically varying members, 
followed by Coffey and Williams (1966) and Boykin and Frazier (1975) [16] with the 
analysis of multivariable and multirate control systems. These approaches followed an 
external representation, i.e. discrete-time transfer function expression. Aracil and Feliu 
(1984) [17], and later Salt and Albertos (2000) [18], modeled the intersampling behavior 
to apply it to the dual-rate controllers design that reject the undesirable oscillations. 

The Vectorial Switch Decomposition (VSD) is related to the beginnings of the 
frequency decomposition, and it was introduced by Kranc in 1957 [19]. This method 
represents the multirate sampler as a superposition of several conventional samplers 
working with the highest sampling rate considered in the system, along with the 
corresponding advance and delay for each branch. The method allows to analyze the 
multirate system using the usual single-rate discrete techniques, always keeping 
sampling rates related by an integer. Figure 2.5 represents this explanation, and it is 
remembered that the asterisk (*) represents the pulse expression of the signal.  
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Figure 2.5. Vectorial Switch Decomposition of a control system with multirate sampling 
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The VSD allowed to put the basis in multirate analysis, as it will be shown later in this 
chapter, because it is very useful tool for internal representation (space-state modelling) 
and external representation (transfer function modelling). 

The relation between both techniques is analyzed and argued by Ragazzini and 
Franklin (1958)[20] and Jury (1958)[21]. Before that, Jury presented the modified Z-
transform as study tool for the proposed multirate modelling problem. The modified Z-
transform is a powerful tool to model no unitary delays in a discrete-time system with 
period T, and a multirate system is composed of several of them as it is shown in 
Figure 2.5. This tool will be presented in Appendix A. Later, Whitbeck and Didaleusky 
(1980)[22] developed a program that use this tool to simulate discrete-time flight 
control systems. 

The relationship between the frequency domain and the state-space had not been 
stablished until the contributions of Araki and Yamamoto (1986)[23]. They analyzed a 
multirate control structure where the different sampling rates related with an integral 
ratio N are associated with an input-output pair that divides the major period T in N 
different signals. Also, they developed the Multirate Impulse Modulation (MIM) from 
the pulse-transfer matrix of the discrete-time realization by multiplying shift operators. 
And they derived a Nyquist-type stability condition for closed-loop systems, that 
obtained a relation of the Kalman-Bertram[24] realization with the frequency response. 
The contribution approach is clearly based on the Kranc’s Vector Switch 
Decomposition. As a logic consequence, a contribution series on controllers is 
developed, the authors named them MRIC (Multi-Rate Input Controller)[25] and 
MROC (Multi-Rate Output Controller)[26], as function of the input and output 
sampling of the plant, like it was presented before. 

Few years later, Godbout, Jordan and Apostolakis (1990)[27] developed a model for a 
closed-loop digital control system that incorporated multirate sampling with dynamic 
compensation. The model represented the system behavior at the base sampling rate, 
that is an integer multiple of those presented in the system. The dimension of the 
proposed model was high, so they removed the unobservable states and outputs leading 
to minimum dimension matrices (1992)[28]. 

Thompson (1986)[29], independently to Araki and Yamamoto, introduced the Kranc’s 
Operators that automated the VSD and allowed to apply model tools similar to the 
classic control approaches.  

From other point of view, Albertos (1990)[30] proposed the modelling with BMIO 
(Block Multirate Input Output), which linked the external and internal representations 
and set an analogy design to state-feedback.  

Contributions from Salt (2005)[31] might be considering in the MRIC field, where the 
controller was split into two parts acting at different sampling rates and its control 
target was to reach similar performance to the faster single-rate  controller would have 
achieved. The latest contributions are focused in the application of multirate design 
approaches into networked control systems[32]. 
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2) Time domain 

The first relevant contribution came from Kalman and Bertram [24], where was shown 
the space-state flexibility to describe the evolution of non-conventional sampling 
systems  and mainly in multirate systems. This first contribution was unnoticed. Years 
later, Barry (1975)[33] designed a state-space based multirate controller and showed 
that its performance was comparable to the one obtained with a single-rate controller 
with the base rate. Later, Amit and Powell (1981) [34] and Glasson and Dowd [35] 
developed a multirate control design technique based on the optimal control 
formulation. 

Parallelly to the Araki, Goodbout and Thompson modelling in the frequency domain as 
space-state realization, some internal representation model from mathematical 
equivalent transformations were developed. Meyer and Burrus (1975) [36] presented a 
model with the splitting of the transition state matrix, that allowed the conversion of a 
linear periodic system to the LTI (Linear Time-Invariant) equivalent one. 

Other relevant technique is the discrete lifting presented by Khargonekar (1985) [37], 
which showed the isometric isomorphism (both algebraic and analytic properties of 
systems are preserved) between the linear periodic system and the LTI equivalent one 
(lifted system). An illustrative comparison among discrete lifting options are presented 
in [38]. 

Tornero (1986)[39] took a different approach, the model supposed a multirate model 
generator and built a powerful simulation tool. To reach the solution the multirate 
system was characterized by a set of physical elements and events (sampling and 
holdings), so the event sequence caused a transformation sequence upon the state 
vector described by a single transition matrix. 

In the 90’s the discrete lifting was generalized to the continuous case [40]. The 
continuous lifting technique is a discretization that considers the continuous system as 
a periodic one and transform it to the equivalent LTI with finite dimension. 
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Figure 2.6. Historical background 
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2.2.2. Modulation techniques 

2.2.2.1. Background 
The controller actuation is modulated in the power converter through the 
corresponding system, and this might define the different provided control techniques 
by the multirate approach because it influences the actuation signal characteristics. 
There are several modulation techniques, so the application and converter topology 
must be considered. 

The modulation techniques are divided between those based in carrier signal and those 
that do not. The most popular techniques in 3L-NPC-VSC topology are carrier-based. 
Figure 2.7 depicts a classification of the most used techniques. 

Modulation techniques

Carrier-based (SPWM) Non Carier-based

Phase-shift 
carrier signal

Level-shift carrier signal

In-Phase 
Disposition

Alternative Phase 
Opposite 

Disposition

Phase Opposite 
Disposition

Space Vector Modulation 
(SVM)

Selective Harmonic Elimination 
(SHE)

Nearest-Level Modulation 
(NLM)

 
Figure 2.7. Main modulation techniques in power converters 

The carrier-based are known as Sinusoidal Pulse-Width Modulation (SPWM), and they 
are based on the comparison of a modulating reference signal with a set of carrier 
signals that usually have triangular shape [41]. The differences between the techniques 
in this group come from the disposition of the carrier signals. The level-shift carrier 
signals are the preferred to NPC topologies [42], whereas the phase-shift signals are the 
best option for modular topologies [43]. In addition, the level-shift carrier signals are 
classified in three options depending on how the phases are interleaved: in-phase 
disposition (IPD), alternate phase opposite disposition (APOD), or phase opposite 
disposition (POD). 

The Space Vector Modulation (SVM) is the modulation technique that uses the voltage 
reference as a rotary vector in a hexagonal space composed by all the possible switching 
states of the converter [44]. The modulation method become more complex as the 
number of voltage levels of the converter increases. 

Other popular modulation technique is the Selective Harmonic Elimination (SHE) 
which is based on the offline calculation of the optimal switching angles to eliminate 
certain output voltage harmonics. It was originally implemented on a two level 
topology [45] but it is easily interpolated to higher level converters as 3L-NPC-VSC 
[46].  
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Finally, the Nearest Level Modulation (NLM) applies voltage level that is closest to the 
reference voltage in each period of time [47]. It is very useful for modular multilevel 
converters with a high number of modules, because with other techniques the 
complexity increases with the number of modules. 

This document is focused on the SPWM and SHE modulation techniques because some 
interests can be found on them at multirate applications as it will be shown later. In 
the following, a detailed explanation of each modulation technique is given for a better 
understanding of the multirate application. A detailed analysis is shown in the digital 
implementation of the SPWM, as well as a correct modelling of this system. 

2.2.2.2. Sinusoidal Pulse-Width Modulation 
This modulation technique is one of the most used due to its simplicity and easy 
implementation. In three-phase power converters, this modulation scheme is based on 
the comparison between three sinusoidal signals (required phase voltage) known as 
modulating signals, with triangular signals with higher frequency called carriers signals. 
Detailed information can be found in [41], where the evaluation of PWM schemes has 
been examined through analytical solutions to compare the magnitude of the harmonic 
components. The SPWM depends on the studied converter, in this document the 
explanation will be based on the 3L-DNPC-VSC introduced before. Therefore, there are 
three modulating signals (one per phase) shifted 120 degrees one from each other, and 
they are compared with two level-shifted and in phase carrier signals. The activation 
PWM signals follow the switching rule from Table 2.1, being x the phase A, B and C. 
The modulating signals per x phase are called vmx, and vcr1 and vcr2 are the carrier 
signals for all phases. 

Table 2.1. Switching rule on a 3L-DNPC-VSC 

Signal 
Comparison 

Switch device 
Sx1 Sx2 Sx3 Sx4 

𝒗𝒎𝒙  > 𝒗𝒄𝒓𝟏 1 - 0 - 
𝒗𝒎𝒙  > 𝒗𝒄𝒓𝟐 - 1 - 0 

The modulation process defined in Table 2.1 is shown in Figure 2.8 for phase A. The 
signals are depicted in per unit (p.u.) to get a better comparison and understanding of 
the operating zone. The maximum amplitude is defined by the DC-bus voltage and it is 
VDC/2. 

The modulating signal and the carrier signals amplitude and frequency are related 
through two well-known indexes: amplitude modulation index (𝑚𝑎) and frequency 
modulation index (𝑚𝑓). The indexes are the defined as: 

𝑚𝑎 =
𝑉�̂�

𝑉�̂�𝑟
𝑚𝑓 =

𝑓𝑐𝑟
𝑓𝑚

          (2. 1) 

These are the general terms, but some differences might be found depending on the 
converter topology. For a 3L-DNPC-VSC, the carrier signals amplitude (peak-to-peak) 
is the half, but the relation is with the peak amplitude of one carrier signal. 
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Figure 2.8. SPWM example with 𝒎𝒂 = 𝟎. 𝟖𝟓 and 𝒎𝒇 = 𝟏𝟓 

There are three different operating zones depending on the value of the modulation 
index 𝑚𝑎: lineal, overmodulation and square wave. The lineal zone is the desirable in 
every application and it is got with 𝑚𝑎 < 1. The overmodulation region is obtained 
with greater 𝑚𝑎, which produces higher line voltages, but they are not proportional to 
the modulation index. The square wave operation is obtained with very high 
modulation index. 

Figure 2.8 depicts an example where the carriers are phase-shifted equally regarding 
modulating signal, what is known as In-Phase Disposition (IPD). If one carrier is 
opposite to the other one, the situation is known as Phase Opposite Disposition (POD). 
Both dispositions can be used for 3L-DNPC-VSC with similar results. The main 
harmonic band appears around the multiple integers of 𝑚𝑓 , but in IPD case the first 
band is composed by odd harmonics and in POD case by even harmonics. The second 
band is composed by odd harmonics in both cases. Figure 2.9 and Figure 2.10 depict 
the harmonic content in each case. 

The different carrier phase disposition determines the resultant voltage wave va0. Figure 
2.8 depicts a half-wave symmetry because the carrier signals are not shifted regarding 
the modulating signal. If the carrier signals are phase-shifted 𝜋/2 radians, the resultant 
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voltage wave will have a quarter-wave symmetry. The differences are in the second 
band, with no phase shift it is only composed by even harmonics, and with phase shift 
it is composed by odd harmonics. 

 
Figure 2.9. Harmonic content of phase-to-neutral voltage for 𝒎𝒂 = 𝟎. 𝟖𝟓 and 𝒎𝒇 = 𝟓𝟎 with 

IPD carrier signals. 

 
Figure 2.10. Harmonic content of phase-to-neutral voltage for 𝒎𝒂 = 𝟎. 𝟖𝟓 and 𝒎𝒇 = 𝟓𝟎 with 

POD carrier signals. 

In three-phase systems, as those studied in this document, the Third Harmonic SPWM 
(THSPWM) technique is used for maximizing the lineal zone until 𝑚𝑎 = 1.15 (2/

√
3). 

The maximum value for the phase-to-phase signal is equal to the one with SVM 
technique. The third harmonic injection is obtained through the expression (2.2) that is 
summed at each phase modulating signal. 

𝑣0𝑠 = −
1
2

· [max{𝑣𝑚𝑎, 𝑣𝑚𝑏, 𝑣𝑚𝑐} + min{𝑣𝑚𝑎, 𝑣𝑚𝑏, 𝑣𝑚𝑐}] (2. 2) 

2.2.2.3. Digital SPWM 
The previous modulation technique is usually implemented in digital platforms, so the 
comparison changes. The modulating signal is updated in a discrete period, because the 
sampled signals are digitally processed to obtain the actuation signal, i.e. the 
modulating signal. In [41] two terms are defined to differentiate the SPWM 
modulation, based on the modulating signal: 

- Naturally sampled PWM: The modulating signal is continuous, and it is 
compared with carriers to obtain the respective switching patterns. It is 
commonly found on analog electronic PWM generation circuits. It is the case 
depicted in Figure 2.8. 

- Regular sampled PWM: The modulating signal is discrete, and each sample 
is compared with the carriers to obtain the respective switching patterns. It is 
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the usual practice in software PWM generation, and it is the used one in this 
document. 

Besides, the regular sampled PWM strategies are classified depending on the switching 
signals symmetry [48]: 

- Symmetrical regular sampled PWM (s-PWM): The generated switching 
patterns are symmetrical regarding carrier signal. 

- Asymmetrical regular sampled PWM (a-PWM): The generated 
switching patterns are asymmetrical regarding carrier signal. 

The main regular sampled PWM strategies depend on the modulation update and 
current sampling instants regarding the carrier. Figure 2.11 summarizes these 
strategies, where each time instant corresponds to 𝑡 = 𝑘 · 𝑇 . 

- S-PWM-start: Symmetrical PWM with regular sampling in the start of each 
carrier period. The modulation function update instant is also synchronized 
with the beginning of each carrier period. It is shown in Figure 2.11(a). There is 
a dead-time 𝑇𝑑 between the phase current sampling instant and the modulation 
function update instant. In this case, the carrier period 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 is equal to the 
sampling period 𝑇 . Therefore, the overall dead-time introduced by the 
sampling, calculation and PWM update routine is: 

𝑇𝑑|𝑠−𝑃𝑊𝑀−𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 𝑇 (2. 3) 

- S-PWM-middle: Symmetrical PWM with regular sampling in the middle of 
each carrier period. The modulation function update instant is synchronized 
with the beginning of each carrier period. It is shown in Figure 2.11(b). The 
carrier period 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 is equal to the sampling period T. For this occasion, the 
overall dead-time introduced by the sampling, calculation and PWM update 
routine is: 

𝑇𝑑|𝑠−𝑃𝑊𝑀−𝑚𝑖𝑑𝑑𝑙𝑒 =
1
2

· 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 =
1
2

· 𝑇 (2. 4) 

- A-PWM-double: Asymmetrical PWM with regular sampling in the start and 
middle of each carrier period. The modulation function update instants are 
synchronized in the same sampling instants. It is shown in Figure 2.11(c). Here, 
the sampling period time T is half carrier period time. The overall dead-time 
introduced by sampling, calculation and PWM update routine is: 

𝑇𝑑|𝑎−𝑃𝑊𝑀−𝑑𝑜𝑢𝑏𝑙𝑒 =
1
2

· 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 = 𝑇 (2. 5) 

In all these strategies the zero-state switching vectors are placed symmetrically around 
the carrier signals minima and maxima, so the AC current signals are sampled in their 
mean value, avoiding anti-aliasing filters. In other words, the measured current is 
sampled exactly at the transition of each half-carrier interval to avoid sampling the 
switching ripple current as well as the underlying fundamental current. As it is 
correctly indicated on [49], if the current is not synchronously sampled in this way, in 
most cases the measurement errors introduced will usually compromise the performance 
of the system. Hence, the samplings are constrained to both points each carrier period.  
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Figure 2.11. Schematic of regular sampled PWM strategies with equivalent carrier signal: 
(a) Symmetrical PWM with sampling at start; (b) Symmetrical PWM with regular sampling 

at middle; (c) Asymmetrical PWM with sampling at start and middle. 

It must be said that the carrier signals depicted at Figure 2.11 are not continuous 
“ramps”. The modulating signal references are compared against a triangular carrier 
“ramp” using a digital counter/comparator circuit that toggles the switch as the ramp 
crosses the sampled command voltage reference. Figure 2.12 depicts the strategy. 
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Figure 2.12. Simplified structure of a digital SPWM 

The counter is incremented at every clock pulse, and, when the binary counter value is 
equal to the modulation function value (also known as programmed duty-cycle value), 
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that is match condition, the binary comparator triggers an interrupt to the 
microprocessor and, at the same time, sets the gate signal low. For double-update-
mode, at each modulation period, the match condition is given two times, at the 
beginning with the run up and run-down phase. The counter and comparator have a 
given number of bits, 𝑛, and depending on the ratio between the durations of the 
modulation period and the counter block period, a lower number of bits, 𝑁𝑒, could be 
available to represent the duty-cycle. The parameter 𝑁𝑒 is necessary to determine the 
quantization step. Detailed information about digital implementation of PWM can be 
found in [50]. 

In the previous analysis is not mentioned the one-half 𝑇  phase delay introduced by the 
Zero-Order Hold (ZOH) operation at the modulating signal update, which is inherent 
to the regular sampled PWM comparison processes. Therefore, the overall dead-time or 
delay introduced into the control loop depends on the PWM strategy and the inherent 
one-half 𝑇  phase delay from the ZOH process. For example, at a-PWM-double the 
overall delay is 1.5 · 𝑇 . In [41], the one-half delay is compensated by phase advancing 
the modulating waveform using the reference frame transformation. However, the 
delays can be incorporated into the system model either using a modified Z-transform 
approach, or by simply including an 𝑒−𝑠𝑇𝑑 time delay operation in series with forward 
path controller. The temporal issues will be detailed in the following sections, because 
the scope of this section is to show the most usual ways of SPWM digital 
implementation. 

2.2.2.4. Selective Harmonic Elimination 
The Selective Harmonic Elimination (SHE) is a modulation technique originally 
proposed in [51] for two and three levels inverters. The technique is based on the off-
line calculation of the angles in which the switching events occur to eliminate a chosen 
number of harmonics close to the fundamental one.  
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Figure 2.13. Generic three-level waveform with quarter-wave symmetry 

The angles are placed in a lookup table and depending on the modulation index a 
switching angle is obtained every period T. The following description is based on the 
one presented in [11]. 

The generic waveform of a three-level signal with quarter-wave symmetry is shown in 
Figure 2.13, where 𝜃1, 𝜃2, … , 𝜃𝑁  represent the switching event angles during a quarter 
period. Therefore, there are a total of 4N commutations each signal period. 

The calculation of each commutation angle is done with the Fourier series transform to 
decompose the three-level signal: 
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𝑣𝑜𝑢𝑡(𝜔𝑡) = ∑  [𝑎𝑛 · sin(𝑛 · 𝜔𝑡) + 𝑏𝑛 · cos(𝑛 · 𝜔𝑡)]
∞

𝑛=1
(2. 6) 

Where the coefficients are: 

𝑎𝑛 =
1
𝜋

∫ 𝑣𝑜𝑢𝑡(𝜔𝑡) · sin(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
2𝜋

0

𝑏𝑛 =
1
𝜋

∫ 𝑣𝑜𝑢𝑡(𝜔𝑡) · cos(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
2𝜋

0

(2. 7) 

Supposed the quarter-wave symmetry, it is deduced: 

- For even harmonics (even n): 𝑎𝑛 = 0 
- For all harmonics (odd and even n): 𝑏𝑛 = 0 

The symmetry (half-wave and quarter-wave) produces the even harmonics cancellation, 
so these harmonics are not considered in the following process. 

If the expression of 𝑎𝑛 (2.6) is developed in the intervals between the switching events 
in the first quarter of the output signal, the following is obtained for an odd number of 
events (odd N): 

𝑎𝑛 =
4𝑉𝑑𝑐
𝜋

[∫ sin(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
𝜃2

𝜃1

+ ···  + ∫ sin(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
𝜋/2

𝜃𝑁−1

]

=
4

𝑛𝜋
· ∑(−1)𝑘+1 · cos (𝑛𝜃𝑘)

𝑁

𝑘=1

(2. 8) 

And for an even number of switching events (even N) at first quarter, it is obtained: 

𝑎𝑛 =
4𝑉𝑑𝑐
𝜋

[∫ sin(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
𝜃2

𝜃1

+ ···  + ∫ sin(𝑛 · 𝜔𝑡)   𝑑(𝜔𝑡)
𝜃𝑁

𝜃𝑁−1

]

=
4

𝑛𝜋
· ∑(−1)𝑘+1 · cos (𝑛𝜃𝑘)

𝑁

𝑘=1

(2. 9) 

From (2.8) and (2.9), it can be deduced that for any N: 

𝑎𝑛 =
4

𝑛𝜋
· ∑(−1)𝑘+1 · cos (𝑛𝜃𝑘)

𝑁

𝑘=1
(2. 10) 

Hence, the harmonic amplitude, , of the output signal can be expressed as a function 
of the N switching angles: 

ℎ𝑛 =
4

𝑛𝜋
· [cos(𝑛𝜃1) − cos(𝑛𝜃2) + ···  +(−1)𝑁+1 · cos(𝑛𝜃𝑁)] (2. 11) 

The first N harmonics equations are: 

𝑓1(𝜃) = cos(𝜃1) − cos(𝜃2) +··· +(−1)𝑁+1 · cos(𝜃𝑁) =
𝜋ℎ1
4𝑉𝑑𝑐

=
𝜋
4

· 𝑚𝑎

𝑓2(𝜃) = cos(3𝜃1) − cos(3𝜃2) +··· +(−1)𝑁+1 · cos(3𝜃𝑁) =
3𝜋

4𝑉𝑑𝑐
· ℎ3

⋮

𝑓𝑁(𝜃) = cos((2𝑁 − 1)𝜃1) −··· +(−1)𝑁+1 · cos((2𝑁 − 1)𝜃𝑁) =
(2𝑁 − 1)𝜋

4𝑉𝑑𝑐
· ℎ2𝑁−1

(2. 12) 
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Using the set of equations (2.12), it is possible to eliminate the N-1 harmonics following 
the fundamental one, and to control the first harmonic amplitude. The goal is achieved 
by setting 0 the N-1 last equations and giving to the modulation index, 𝑚𝑎, a desired 
value. If the SHE is applied to three-phase system, the triple harmonics are cancelled, 
so there is no need to calculate these harmonics. In such case the set of equations does 
not contain equations of any triple harmonic, and the last harmonic eliminated is  

- Even N: 𝑋 = 3𝑁 − 1 
- Odd N: 𝑋 = 3𝑁 − 2 

𝑓1(𝜃) = cos(𝜃1) − cos(𝜃2) +··· +(−1)𝑁+1 · cos(𝜃𝑁) =
𝜋
4

· 𝑚𝑎

𝑓2(𝜃) = cos(5𝜃1) − cos(5𝜃2) +··· +(−1)𝑁+1 · cos(5𝜃𝑁) = 0
𝑓3(𝜃) = cos(7𝜃1) − cos(7𝜃2) +··· +(−1)𝑁+1 · cos(7𝜃𝑁) = 0

⋮
𝑓𝑁(𝜃) = cos(𝑋𝜃1) − cos(𝑋𝜃2) ··· +(−1)𝑁+1 · cos(𝑋𝜃𝑁) = 0

(2. 13) 

Solving these equations with the desired value for 𝑚𝑎 the first harmonic is eliminated, 
and the following N-1 odd, non-triple harmonics are eliminated. The problem is that 
equations are non-linear and transcendental, what means that they cannot be solved 
through conventional methods. Usually, approximation methods are used, like Newton-
Raphson [51] or genetic algorithms.  

 
Figure 2.14. Switching angles versus amplitude modulation index for a three-phase three-

level converter when N is 7 and 11 

Figure 2.14 shows the angles sets obtained with Newton-Raphson method for a three-
phase three level converter, with different number of events in a switching period.  

These switching angles are calculated for all passible modulation indexes for each N 
commutation event. The N commutations value is related to the equivalent switching 
frequency of the devices through the fundamental harmonic: 

𝑓𝑆𝑊 = 𝑁 · 2 · 𝑓ℎ1 (2. 14) 

The implementation of the SHE is interesting for its application in MV converters with 
differences between sampling and switching period. Also, this technique might be 
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combined with high order grid filters that include a notch-type branch as LLCL and it 
gives the optimal solution to optimize the harmonic content of the currents that are 
supplied to the grid in this kind of applications. 

2.2.3. Modelling of the digital SPWM 
There are some issues related to the digital implementation of SPWM (DSPWM) that 
has been studied in the literature. The correct modelling of this system is discussed in 
the following with an optimal comparison of modelling and control design strategies, as 
well as new approaches found in the literature. 

2.2.3.1. Small signal modelling of regular sampled PWM 
In [52], the non-linear modulation effects of the regular sampled PWM were studied. 
The dynamic behavior of digital PWM in the feedback chain is inherently different 
from those with analog PWM, as it was previously said and specified in [41].  
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Figure 2.15. Sawtooth carrier modulators 
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Figure 2.16. Triangular carrier modulators 
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The author in [52] provides a small-signal Laplace-domain analysis to obtain a model 
that confirms the earlier statements about the delay. The models are obtained with a 
sawtooth carrier modulator and with triangular carrier modulators. They are 
summarized in Table 2.2 and based on the update instant of the modulating signal 
regarding the carrier, without the consideration of the sampling instant as it was 
presented in 2.2.2.3. The symmetric-off-time is the followed update strategy on s-
PWM-start and s-PWM-middle, this means an update at the carrier minimum, whereas 
the double-update-mode is the one taken on a-PWM-double. The symmetric-off-time 
modulator updates the modulating signal at the triangular carrier peaks. They are 
depicted in Figure 2.15 and Figure 2.16. The sampling rate is T, that means a ZOH of 
period T to the modulating signal. 

Table 2.2. The frequency and Laplace domain models for regular sampled PWM. Source:[52] 

Carrier 
Regular 
sampled 

GPWM (s) GPWM (𝒋𝝎) 

Sa
w

to
ot

h End-of-on-
time 

𝑒−𝑠𝐷𝑇  1∠(−𝑗𝜔𝐷𝑇) 

Begin-of-on-
time 

𝑒−𝑠(1−𝐷)𝑇  1∠(−𝑗𝜔(1 − 𝐷)𝑇 ) 

T
ri

an
gu

la
r 

Symmetric-on-
time 

1
2

(𝑒− 𝑠(1−𝐷)𝑇
2 + 𝑒− 𝑠(1+𝐷)𝑇

2 ) cos(
𝜔𝐷𝑇

2
) ∠ (−

𝜔𝑇
2

) 

Symmetric-
off-time 

1
2

(𝑒− 𝑠𝐷𝑇
2 + 𝑒− 𝑠(2−𝐷)𝑇

2 ) cos (
𝜔(1 − 𝐷)𝑇

2
) ∠ (−

𝜔𝑇
2

) 

Double-
update-mode 

1
2

(𝑒−𝑠(1−𝐷)𝑇 + 𝑒−𝑠𝐷𝑇 ) cos (𝜔 (𝐷 −
1
2
) 𝑇) ∠ (−

𝜔𝑇
2

) 

The frequency-domain models for sawtooth-carrier modulators show that these 
modulators behave as a pure delay that is depending on the average duty-cycle D. The 
delay is caused by the time instant between the sample is taken and the response of the 
modulator to this sample. 

On one hand, the single-update-mode triangular carrier modulators (symmetric-on-
time, symmetric-off-time) have a gain that is depending on frequency 𝜔 and average 
duty-cycle D, while the phase-shift represents a delay of one-half sampling period T. 
The 𝑇/2 delay can be understood as the response to a sample occurs, on average, at 
half of the switching period. On the other hand, the frequency domain model for the 
double-update-mode shows a dependency of the gain with average duty-cycle D and 
frequency of the input signal 𝜔. The delay is fixed at one-half sampling period, T/2.  

The previous analysis is focused on DC/DC converters, but they are useful for PWM 
on DC/AC converters. For sinusoidal modulating signals the duty-cycle varies along 
each semicycle, but it might be related to modulation index 𝑚𝑎. The duty-cycle varies 
in time, and its relationship with the modulation index, for a half-wave of a 3L DNPC 
VSC where two carrier signals are used and arranged as IPD, (there is a half-wave 
symmetry) is (2.15), where k is the time instant and 𝑇 · 𝑘 < 1/(2 · 𝑓0). 
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𝑑(𝑘 · 𝑇 ) = 𝑚𝑎 · |sin(𝜔0 · 𝑇 · 𝑘)| (2. 15) 

Therefore, for a given frequency 𝜔0, the duty-cycle varies in time, so the small signal 
models presented before are not Linear Time-Invariant (LTI) and only an 
approximation around a given working point D is possible. That is an inherent 
assumption for proposed analysis in [52] to obtain the small signal modelling. For 
didactic proposes, the average duty-cycle is obtained as the root-mean-square (RMS) 
value for a given 𝑚𝑎 and 𝜔0, that is 𝑚𝑎/

√
2. 

In Figure 2.17 and Figure 2.18 is shown the gain dependence regarding 𝑚𝑎 and 
frequency, 𝑓0, of the modulating signal with single-update and double-update modes, 
respectively. From the figures, it is deduced that for higher modulating signal 
frequencies, the output signal of the PWM block has an amplitude error due to the 
falling gain. 

 
Figure 2.17. Dependence of the single-update-mode gain regarding modulating frequency 𝒇𝟎 

and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟐𝟎𝟎 𝝁𝒔 and 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟐𝟎𝟎 𝝁𝒔 

 
Figure 2.18. Dependence of the double-update-mode gain regarding modulating frequency 𝒇𝟎 

and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟐𝟎𝟎 𝝁𝒔 and 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

Note that the Nyquist frequency for both singe-update-mode and double-update-mode 
modulators is equal to half the sampling frequency, i.e., T/2 (for double-update-mode 
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modulators 𝑇 = 𝑇𝑆𝑊 /2 = 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟/2). Therefore, if these models are used to predict the 
closed-loop stability of a digitally controlled converter, their validity is limited to 
frequencies below half the sampling frequency. 

 
Figure 2.19. Parametric DSPWM simulation of double-update-mode gain regarding 
modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟐𝟎𝟎 𝝁𝒔 and 

𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

 
Figure 2.20. Parametric DSPWM simulation of double-update mode delay regarding 
modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟐𝟎𝟎 𝝁𝒔 and 

𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

From Figure 2.17 and Figure 2.18, it is deduced that, for modulating frequencies among 
the hundreds of Hz, the gain is the unity, whatever is the amplitude modulation index. 
In Figure 2.19 a parametric DSPWM simulation is carried out, where the previous 
conclusion is validated for the double-update-mode case. The gain falls with higher 
frequencies and this falling is greater at low amplitude modulation index 𝑚𝑎. However, 
a difference is found at high frequencies, where there is not 𝑚𝑎 to get a unitary gain. 
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Besides, Figure 2.20 confirms the constant delay T/2 independently from 𝑚𝑎 and 
modulating frequency 𝑓0. 

Hence, for 𝑓0 ≪ 𝑓𝑆𝑊 , the digital PWM block can be considered as a transfer function 
with unitary gain and constant delay of T/2. This shows that the introduced delay 
only depends on the sampling rate T of the application. This model is required to 
design the controller, and both continuous s-domain and discrete z-domain have been 
studied in the literature. 

2.2.3.2. Multisampling 
The modulator system delay plays a key role in limiting the achievable control 
bandwidth. The contributions at [50] and [53] suggested a different approach, which 
exploits the possibility of sampling control variables several times within the 
modulation period 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 (𝑇𝑆𝑊 ). Hence, the PWM response delay is reduced and it 
increases the system phase margin, which is demonstrated in the previous analysis with 
the differences between the single-update and double-update modes where the delay 
only depends on the sampling rate T. 
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Figure 2.21. Multi-sampled PWM 

Figure 2.21 shows the multisampling approach, where modulating signal is sampled 4 
times during a switching period. Therefore, the control algorithm updates control signal 
or modulating signal at each sampling event. If the signal is sampled N times during 
the switching period, the hold time of the ZOH is now 𝑇 = 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟/𝑁 . Following the 
statements from the later subsection, the digital PWM behavior is again that of a pure 
delay, and its equivalent delay time is a decreasing function of the multisampling factor 
N. The corresponding small-signal model for a multi-sampled digital PWM in the 
frequency domain is presented in (2.16) as deduced in [53], where D is the average 
duty-cycle. 

𝐺𝑃𝑊𝑀(𝑗𝜔) = cos (𝜔 (𝑁𝐷 − 2 · 𝑓𝑙𝑜𝑜𝑟 (
𝑁𝐷
2

) − 1) ·
𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟

2𝑁
) · 𝑒−𝑗𝜔 · 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟

2𝑁

= cos (𝜔 (𝑁𝐷 − 2 · 𝑓𝑙𝑜𝑜𝑟 (
𝑁𝐷
2

) − 1) ·
𝑇
2
) · 𝑒−𝑗𝜔 · 𝑇2

(2. 16) 

Where 𝑓𝑙𝑜𝑜𝑟(𝑁𝐷) denotes the greatest integer that does not exceed 𝑁 · 𝐷. The unitary 
gain is maintained for higher frequencies as is shown in Figure 2.22, where 𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 is 
400 μs and N is 4, so T is 100 μs. In any case, the PWM block is always considered as 
a unitary gain transfer function. Again, a validation is done through a parametric 
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simulation of digital SPWM. Figure 2.23 depicts how the gain is maintained for higher 
frequencies, contrary to Figure 2.19, and Figure 2.24 shows the constant T/2 delay for 
the multi-sampled PWM. It is not appreciated in Figure 2.23, but the surface shape is 
almost like the one obtained in Figure 2.22, because there are two drops at high 
modulating frequencies when 𝑚𝑎 is around 0 and 0.7. The second drop is smaller, but 
from the later parametric simulation is deduced that, for higher 𝑓0 and 𝑚𝑎, the gain 
drops more than it is theoretically expected on the model. This is one consequence of 
linearization around a determined average duty-cycle and ZOH operation. 

 
Figure 2.22. Multi-sampled (𝑵 = 𝟒) mode gain regarding modulating frequency 𝒇𝟎 and 

amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟏𝟎𝟎 𝝁𝒔 and 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

From the previous, it can be inferred that, as N tends to infinity, the equivalent delay 
time tends to zero. The deduction is obvious because the multi-sampled PWM 
approaches the naturally sampled modulator, where the phase lag is known to be zero. 
Also, the half sampling period delay is an inherent result from the ZOH operation, 
which is always in digital control systems. 

This approach requires a different hardware organization in comparison to the single-
update and double-update modes. The main technologies required are: 

- Large bandwidth AD converters, capable of operating at several mega sample 
per second (MSample/s) speeds. 

- Programmable digital hardware, i.e., FPGA chips, that allows to minimize the 
computation time of the control algorithm, thus keeping pace with the ADC. 

The multisampling approach is focused in the current control loop, and its performance 
maximizing might positively impact on other external control loops, increasing their 
stability margins and robustness [50]. The outer control loops are closed around the 
current control loop and their design is directly and heavily affected by the phase lag 
introduced by the current controller. It determines the phase margin of the outer loop 
at its desired cross-over frequency and, consequently, its achievable bandwidth and 
overall stability margin. The design goal is to minimize the phase lag introduced by the 
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current controller, and it is highly achieved with the multisampling approach presented 
here. 

 
Figure 2.23. Parametric DSPWM simulation of Multi-sampled (𝑵 = 𝟒) mode gain regarding 

modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟏𝟎𝟎 𝝁𝒔 and 
𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

 
Figure 2.24. Parametric DSPWM simulation of Multi-sampled (𝑵 = 𝟒) mode delay time 
regarding modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂, being 𝑻 = 𝟏𝟎𝟎 𝝁𝒔 

and 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 

The main drawback of this approach comes from the need of a proper filtering of the 
switching noise from controlled signals. In the single or double-update modes the 
current signal is sampled at the carrier signal minima and maxima to avoid the 
switching noise, but the multisampling approach samples the current in different 
instants, which include the noise. This is clearly shown in Figure 2.25. The system 
phase margin might be reduced due to filtering the control signals, reducing the 
advantage of the multi-sampled strategy. 
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Figure 2.25. Multi-sampled PWM strategy with sampling of current noise 

Switching-frequency ripple removal is recommended for practical multisampling 
implementation. The author in [53] showed some possible approaches. The first comes 
from a low-pass filter or moving average filters, but they significantly deteriorate the 
phase margin, consequently losing the advantages of the multisampling solution. The 
final solution is a low phase lag selective filter defined in [54] and shown in (2.17). 

𝐹(𝑧) =
(1 + 𝐾) · (1 − (𝑧−𝑁 − 1

𝑁 · ∑ 𝑧−𝑁𝑁
𝑛=1 ))

1 − (𝑧−𝑁 − 1
𝑁 · ∑ 𝑧−𝑛𝑁

𝑛=1 ) + 𝐾
(2. 17) 

The filter 𝐹(𝑧) is defined by the constant K and relation N between the carrier period 
𝑇𝑐𝑎𝑟𝑟𝑖𝑒𝑟 and modulating signal sampling period T. The higher is K, the faster is the 
filter dynamics. Figure 2.26 depicts the Bode diagram, where the integer multiples of 
the switching frequency are removed without significant phase lag at low frequencies.  

However, this filter is excessively selective, and the generated switching noise is not at 
determined frequency 𝑓𝑐𝑎𝑟𝑟𝑖𝑒𝑟 (𝑓𝑆𝑊 ). The switching harmonics are sideband harmonics 
group around the switching frequency multiples (carrier harmonic) that are not 
removed with this filter due to its selectivity. In Figure 2.9 and Figure 2.10, it is shown 
how the sideband harmonics are distributed around the switching frequency multiples 
in the phase leg voltage for different carrier disposition in a 3L-DNPC-VSC. The 
sampled current takes the harmonics from the resulting phase-to-phase voltage that 
changes its harmonic content from the phase leg voltage one. The phase leg harmonic 
components that will not appear in the phase-to-phase output voltage are: 

- Carrier harmonics. They are the same for all phase legs. 
- Sideband harmonics with even combinations of 𝑚𝑓 ± 𝑛, being n the harmonic 

order. 
- Triplen sideband harmonics, where n is a multiple of 3. The phase angles of 

these harmonics rotate by multiples of 2𝜋 for all phase legs and hence they are 
the same for all phase legs. 
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Figure 2.26. Bode diagram of 𝑭(𝒛) with 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟒𝟎𝟎 𝝁𝒔 and 𝑵 = 𝟒 

Usually, a sampling process have an antialiasing filter (cutoff frequency of (1/𝑇 )/2 
established by Nyquist criterion) to avoid the alias in the sampling signal, but in this 
case is not enough because the first sideband harmonics group is always in the 
remained signal. In this document an alternative is shown in Chapter 3 to accomplish 
the delay reduction without changing the sampling frequency, so the current is sampled 
at its mean value by sampling at carrier maxima and minima. 

Besides, there is an important issue to analyze the digital comparison between 
modulating signal and carrier signal. The modulating signal changes N/2 times each 
half carrier period 𝑇𝑆𝑊 /2, and the discrete values of modulating signal can lead to 
more carrier intersections than the allowed ones. Figure 2.27 depicts the situation 
where the discrete signal intersects the carrier signal more than one time per half 
carrier period.  
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Figure 2.27. Multi-sampled PWM with multiple crossing per half carrier period 

It might be solved with an algorithm that ensures one gate drive signal change per half 
carrier period, what drastically changes PWM signal of the corresponding modulating 
signal. On previous multi-sampled parametric DSPWM simulations, this algorithm is 
not applied and the PWM response is like the one obtained through the theoretical 
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model for some 𝑓0 and 𝑚𝑎. However, if the algorithm is applied, the parametric 
simulations changes as it will be shown in Chapter 3. 

2.2.3.3. ZOH model for DSPWM 
From Figure 2.19 is deduced that the gain falls more than is expected for high 
modulating frequencies when the amplitude modulation index is high. The ZOH 
describes more accurately this behavior with high 𝑚𝑎 but fails with the low ones. It is 
necessary to indicate that the ZOH is on the DSPWM process by the discretization of 
modulating signal. However, it is interesting to analyze the small-signal response due to 
the special treatment of the signal by this actuation system. 

The transfer function of the Zero Order Hold is (2.18) and its frequency response is 
(2.19), obtained by the substitution of s by 𝑗𝜔. 

𝐺ℎ0(𝑠) =
1 − 𝑒−𝑠𝑇

𝑠
(2. 18) 

𝐺ℎ0 = 𝑇 ·
sin(𝜔𝑇/2)

𝜔𝑇/2
· 𝑒−𝑗𝜔·𝑇2 (2. 19) 

The magnitude is zero at multiplies of the sampling frequency, 1/𝑇 . Also, whatever is 
the frequency, the delay time is maintained in 𝑇/2. Figure 2.28 shows the frequency 
response of the ZOH module normalized to T and frequencies below the corresponding 
Nyquist frequency. This curve represents what the small signal models do not 
characterize at high frequencies, as it is shown in parametric DSPWM simulation in 
Figure 2.19 and Figure 2.23. However, the ZOH does not characterize the gain falling 
at low 𝑚𝑎 due to its independence from the duty-cycle D. Therefore, for high 
frequencies the two gain characteristics must be considered. 

 

 
Figure 2.28. Frequency response of the ZOH operation 
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2.2.3.4. Continuous-time modelling of DSPWM 
The previous analysis gives a Laplace-domain expression to the DSPWM operation, but 
the delay has some modelling problems in this domain because the exponential function 
that represents this delay is non-linear. Besides, the application of discretization 
techniques involves the obtaining of equivalent continuous-time model of the sampled 
data system. To use that in the design of a continuous-time controller stabilizing the 
feedback loop, and to turn the continuous-time controller into an equivalent discrete 
time one. It must be emphasized that the interpolation operation is inherent to the 
DSPWM, because it is the system where conversion from the digital to analog domain 
takes place. This is what equals the DSPWM to typical ZOH operation in discrete-time 
control systems. Once the hold effect is modeled in the DSPWM, the conversion of the 
sampled data system into an equivalent continuous time one will be completed. Two 
approximations have been found modeling the PWM block delay effect to design the 
controller at this domain. 

1) Padé approximation 

The first approach is detailed on [50], and a brief explanation is given here. From what 
was presented before, the model for the DSPWM is considered as one-half modulation 
period delay, 𝑇/2, cascaded to a frequency-dependent gain. The typical current 
controller bandwidth is limited well below the modulating frequency, 1/𝑇 , so the gain 
term is approximated by unity. The simplified model is shown in (2.20). Again, it must 
be noted that this exactly coincides with the continuous-time model of the ZOH. 

𝐷𝑆𝑃𝑊𝑀(𝑠) ≅ 𝑒−𝑠 · 𝑇2 (2. 20) 

The continuous rational transfer function of the DSPWM can be obtained considering a 
Padé approximation of (2.20), obtaining the first-order expression as (2.21) or the 
second-order expression as (2.22), where T is the sampling period. The first-order 
approximation is enough to model the delay. 

𝑒−𝑠·𝑇2 ≅
1 − 𝑠 · 𝑇

4 

1 + 𝑠 · 𝑇4
(2. 21) 

𝑒−𝑠·𝑇2 ≅
1 − 𝑠 · 𝑇4  + 𝑠2 · 𝑇

2

24
1 + 𝑠 · 𝑇

4 + 𝑠2 · 𝑇 2

24
(2. 22) 

The differences on the approximation are obtained at the beginning, corresponding to 
the first period delay, later the solution is equivalent. 

The discrete-time controllers have a second, independent source of delay: the control 
algorithm computation delay. As it was previously indicated, this is the time required 
by the processor to compute a new 𝑚𝑎 value, given the input variable sample. The 
input cannot be computed to the modulator during the same modulation period when 
it is applied as was depicted in Figure 2.11. This means that the control algorithm 
implies an additional modulation period delay that must be modeled. It can be done 
increasing the delay effect represented by the Padé approximation with T, i.e., a total 
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delay of 3𝑇/2. Therefore, the continuous-time controller design must consider the 
calculation and PWM delay effects to get a satisfactory performance from the 
equivalent digital controller. The block diagram of the continuous-time equivalent of 
the digital current PI control loop is depicted in Figure 2.29, as an example. The 
discretization methods of the designed continuous-time controller could be: Backward 
Euler; Forward Euler or Trapezoidal (Tustin). 
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Figure 2.29. Block diagram of the continuous-time equivalent of the digital current control 

loop 

Please note, that the computational delay T is valid for what was defined as s-PWM-
start (single-update mode with symmetric-off-time) and a-PWM-double (double-update 
mode). The computational delay for the s-PWM-middle (single-update mode with 
symmetric-on-time) is 𝑇/2. Besides, the computational delay can be reduced with the 
approach that will be shown in Chapter 3. 

2) Compensation method for ZOH deviation 

The second approach is detailed in [55], and it is based on the analysis of the ZOH 
accuracy that also models the DSPWM in continuous-time domain. Please note that, in 
the DSPWM, there is a ZOH operation to obtain the modulating signal. The author 
enforces the continuous s-domain model for power converters, instead of the discrete z-
domain model, because the electric power grids have a continuous dynamic behavior. 
This means that the digital controller, that can be exactly modeled in the z-domain, is 
most accurately design in continuous-time domain due to the s-domain model of the 
controlled plant. Besides, the author indicates that the analysis of the control system in 
the z-domain requires a uniform sampling/duty-cycle update frequency, but this is not 
true, a multirate approach is possible. 

The ZOH model improves the accuracy of the DSPWM model better than the small-
signal analysis presented with Padé approximation, but it is still an approximation of 
the DSPWM. Compensation of the ZOH model deviation is necessary. 

The analysis is obtained with the overall open-loop transfer function, which means that 
a plant model and the controller must be known to obtain the deviation of the s-
domain transfer function with the ZOH equivalent model. The modulating signal 
update (duty-cycle update) mode, regarding the sampling instant, changes the 
computational delay, which it is denoted as 𝑇𝑑. The time delay can be reduced by 
shifting the sampling instant towards the modulating signal update, as it will be shown 
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later. This improves the phase margin, which is useful in power converters with low 
switching frequency, 𝑓𝑆𝑊 . The followed strategy in this contribution is the comparison 
between the frequency response of the open-loop transfer functions in s-domain and z-
domain, so the frequency-domain deviation transfer function is obtained. 

KP
+

‐

IO,ref IO

P Controller Delay effect

m d

Continuous-time 
plant modelZOH

𝟏 − 𝒆−𝒔·𝑻

𝒔
 𝒆−𝒔·𝑻𝒅  𝟏

𝒔 · 𝑳
 

 
Figure 2.30. Block diagram of the continuous-time equivalent of digital current control loop 

for a L-filter. 

The given example by the author is a single-phase inverter connected to a L-filter with 
a proportional controller, as presented in Figure 2.30, but the taken guide here is valid 
to other systems. On one hand, the s-domain open-loop transfer function including the 
computational delay is (2.23). On the other hand, the z-domain open loop transfer 
function including the fractional order delay (𝑇𝑑 might be fractional depending on the 
modulating signal update) is (2.24). The z-domain fractional order delay expression is a 
taken approximation from the author in [55], but also others like [56], and is only 
correct for a converter connected to the grid through a L-filter. The expression is 
obtained with the techniques in Appendix A with modified Z-transform. Therefore, the 
author from this contribution is supposing that the z-domain model is the most 
accurate. 

𝐺𝑜𝑠(𝑠) = 𝐾𝑝 · 𝑒−𝑠·𝑇𝑑 ·
1 − 𝑒−𝑠·𝑇

𝑇 · 𝑠
·

1
𝑠𝐿

(2. 23) 

𝐺𝑜𝑧(𝑧) = [1 −
𝑇𝑑
𝑇

+
𝑇𝑑
𝑇

· 𝑧−1] ·
𝑇 · 𝐾𝑝

(𝑧 − 1) · 𝐿
(2. 24) 

The respective frequency response of the open loop transfer functions in s-domain and 
z-domain are the following: 

𝐺𝑜𝑠(𝑗𝜔) =
𝐾𝑝

𝜔𝐿
· ∣

sin(𝜔 · 𝑇 /2)
𝜔 · 𝑇/2

∣ · 𝑒−𝑗(𝜋
2+𝜔·𝑇2+𝜔·𝑇𝑑) (2. 25) 

𝐺𝑜𝑧(𝑗𝜔) = [(1 −
𝑇𝑑
𝑇

) +
𝑇𝑑
𝑇

· 𝑒−𝑗𝜔𝑇 ] ·
𝑇
2𝐿

·
𝐾𝑝

|sin(𝜔 · 𝑇/2)|
· 𝑒−𝑗(𝜋

2+𝜔·𝑇2) (2. 26) 

Therefore, the deviation expression is (2.27). The magnitude and phase deviation are 
depicted in Figure 2.31 and Figure 2.32, respectively, as a function of the normalized 
computation delay and normalized frequency. Several conclusions can be found at these 
representations, mainly on computation delay singular points as 0, 𝑇/2 and T. 

𝐷(𝑗𝜔) =
𝐺𝑜𝑧(𝑗𝜔)
𝐺𝑜𝑠(𝑗𝜔)

= [
𝜔 · 𝑇/2

sin(𝜔 · 𝑇/2)
]

2

· [(1 −
𝑇𝑑
𝑇

) · 𝑒𝑗𝜔·𝑇𝑑 +
𝑇𝑑
𝑇

· 𝑒𝑗𝜔(𝑇𝑑−𝑇)] (2. 27) 



Chapter 2. Theoretical study 

44 

 
Figure 2.31. DSPWM deviation magnitude regarding normalized frequency 𝝎 and 

normalized computation delay 𝑻𝒅 

 
Figure 2.32. DSPWM deviation delay regarding normalized frequency 𝝎 and normalized 

computation delay 𝑻𝒅 

The deviation magnitude increases as the modulating signal frequency increases and 
the computational delay is null or equal to the sampling period, T, but it falls when the 
computational delay is half the sampling period. The computational delay will never be 
null, because digital controllers have a finite calculation time, but it is interesting to 
visualize the deviation when the computational delay approaches the zero value. Also, 
a singular point is found at half the sampling period, because the exponential terms 
become zero when the modulating signal frequency is one-half the sampling period. 
Finally, the deviation magnitude is near to unity at low frequencies, but it is not 
exactly this value, so this deviation must be considered. 

The deviation delay is almost null at all frequencies excepting singular point at 𝑇𝑑 =
𝑇/2 around high frequency, where an advance is found below and a delay above this 
value. Therefore, gain compensation must be considered when the digital controller is 
designed in the continuous-time domain. 
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2.2.3.5. Discrete-time modelling of DSPWM 
The usual option to obtain an accurate model of the digital controlled system is 
modelling the discrete-time system in z-domain, that considers the exact duration of 
the computation delay. Besides, tools, as the modified Z-transform, exactly model the 
duty-cycle update instant within the modulation period. Therefore, the sampled data 
system is transformed into a discrete-time equivalent, that can be used to directly 
design the controller in the discrete-time domain. 

DSPWM(s) G(s)
m(k) x(k)

Delay effect
Continuous-time 

plant model

𝒆−𝒔·𝑻𝒅  

DSPWM Model

Go(z)

ZOH G(s)
m(k) x(k)

Delay effect
(Td = T) 

Continuous-time 
plant model

z-1

DSPWM Model

Go(z)

 
Figure 2.33. Equivalence between discrete-time plant transfer function of the converter 

including the computation delay and DSPWM 

1) Modelling equivalences 

The discrete-time transfer function 𝐺𝑜(𝑧), which models the computation delay, the 
PWM transfer function, the converter, and the sampler, is given by (2.28). As it is 
indicated in [50], a correct relationship between the DSPWM modelling and the 
standard digital control theory must be considered. As it was mentioned along this 
section, the ZOH function is internal to the PWM model, but usually appears cascaded 
to an ideal sampler, modelling the conversion from sampled time variables into 
continuous-time variables. Therefore, to correctly model the transfer function between 
the sampled time input variable and the continuous-time output variable of the 
modulator, a gain equal to T has to be added to the modulator transfer function 
𝐷𝑆𝑃𝑊𝑀(𝑠). 

𝐺𝑜(𝑧) = 𝒵[𝑒−𝑠·𝑇𝑑 · 𝑇 · 𝐷𝑆𝑃𝑊𝑀(𝑠) · 𝐺(𝑠)] (2. 28) 

The PWM transfer function 𝑇 · 𝐷𝑆𝑃𝑊𝑀(𝑠) is like a ZOH, so the ZOH discretization 
method can be used to obtain the discrete-time plant transfer function. Figure 2.33 
depicts the equivalence. This is the intuitive and usual discretization of the continuous-
time plant model. For example, if the computational delay is T, the transfer function 
𝐺𝑜(𝑧),  is now described as (2.29) 

𝐺𝑜(𝑧) = 𝑧−1 · [𝐺ℎ0(𝑠) · 𝐺(𝑠)] (2. 29) 
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If the plant model G(s) is (2.30), corresponding to a single-phase inverter with L-filter, 
and assuming 𝑇𝑑 = 𝑇 , then there is no difference between (2.28) and (2.29), derived in 
(2.31) and (2.32), respectively. The modified Z-transform bases are defined in Appendix 
A. 

𝐺(𝑠) =
1
𝑠𝐿

(2. 30) 

𝐺𝑜(𝑧) = 𝑧−1 · [𝑇 · 𝑒 	 	2 ·
1
𝑠𝐿

] = 𝑧−1 ·
𝑇
𝐿

· [
1
𝑠
]

|𝑚=1/2
=

𝑇
𝐿

·
1

𝑧(𝑧 − 1)
(2. 31) 

𝐺𝑜(𝑧) = 𝑧−1 · [
1 − 𝑒−𝑠𝑇

𝑠
·

1
𝑠𝐿

] =
𝑇
𝐿

·
1

𝑧(𝑧 − 1)
(2. 32) 

The authors in [50] suggest that the equivalence between the two approaches is 
justified, if it is considered that the current variation only depends on the average 
voltage value generated by the PWM. The multi-sampled system in z-domain is 
described as (2.33), where the Z-transform is done with a sampling period equal to  
𝑇/𝑁 . 

𝐺𝑜(𝑧) = [𝑒−𝑠·𝑇𝑑 ·
𝑇
𝑁

· 𝐷𝑆𝑃𝑊𝑀(𝑠) · 𝐺(𝑠)] (2. 33) 

2) Minimization of the computational delay 

The computational delay can be minimized, as it was previously indicated, and detailed 
information about this topic is found in [57]. The increase of computational power of 
DSPs, microcontrollers, and FPGAs makes possible the control delay reduction. This is 
obtained shifting the current sampling instant towards the update instant of the 
modulating signal, leaving just enough time for the ADC to generate the new input 
sample and for the processor to control algorithm calculation. From the standpoint of 
controller, this implies a reduction of the feedback loop delay. The analyzed situation 
for the single-update (s-PWM-start) case is depicted in Figure 2.34, the double-update 
is easily interpolated from it. 
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Figure 2.34. Sampling of current shifted towards the modulating signal update 
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In Figure 2.34, the sampled variable is the output current of the converter, but it could 
be another variable. The computation time is 𝑇𝑑, that is the time required by ADC and 
calculations, whereas the time 𝑇𝑐 is the available time for other non-critical functions 
or external control loops. 

An accurate discrete-time model of this approach is necessary, and it is obtained 
considering a ZOH for the PWM block and the modified Z-transform. The delay 𝑇𝑑 is a 
fraction of the sampling period T, so the modified Z-transform must be used to 
correctly model the system. The modified Z-transform bases are completely defined in 
Appendix A, but, in the following, a brief recall is presented. 

The fractional delay is defined as (1 − 𝑚) · 𝑇 , where 0 ≤ 𝑚 ≤ 1, so the m factor is: 

𝑚 = 1 −
𝑇𝑑
𝑇

(2. 34) 

The discrete-time model of a continuous system composed of ZOH, 𝐺ℎ0(𝑠), and the 
plant model, 𝐺(𝑠), can be expressed as (2.35). The impulse response of 𝐺𝑜(𝑠) is 𝑔𝑜(𝑡), 
and 𝐺𝑜(𝑧,𝑚) is the modified Z-transform of 𝐺𝑜(𝑠). 

𝒵
⎣
⎢
⎡𝐺ℎ0(𝑠) · 𝐺(𝑠)⏟⏟⏟⏟⏟

𝐺0(𝑠)

· 𝑒−𝑠·𝑚·𝑇

⎦
⎥
⎤ = ∑ 𝑧−𝑘 · 𝑔0(𝑘 · 𝑇 − 𝑇𝑑)

∞

𝑘=0
= 𝒵𝑚[𝐺0(𝑠)] = 𝐺0(𝑧,𝑚) (2. 35) 

Therefore, substituting the ZOH transfer function expression, the delayed model plant 
is (2.36). 

𝐺𝑜(𝑧,𝑚) = 𝒵 [
1 − 𝑒−𝑠·𝑇

𝑠
· 𝐺(𝑠) · 𝑒−𝑠·𝑚·𝑇 ] =

𝑧 − 1
𝑧

· 𝒵𝑚 [
𝐺(𝑠)

𝑠
] (2. 36) 

The modified Z-transform maintains the properties of the conventional Z-transform, 
since it is simply defined as the Z-transform of a delayed signal. Following the previous 
example plant model 𝐺(𝑠), corresponding to a single-phase inverter with L-filter, the 
discrete-time transfer function between the modulating signal and the delayed output 
current is (2.37). This expression was presented before in (2.24), but, this time, the 
proportional controller is not included. 

𝐺𝑜(𝑧) =
𝑇
𝐿

·
𝑧 · 𝑚 − (𝑚 − 1)

𝑧(𝑧 − 1)
(2. 37) 

In [57] is explored the achievable current loop bandwidth and voltage bandwidth on 
different m values. All of them increase as the m value increases, so simply by shifting 
the sampling instant towards the modulating signal update instant, a significant 
improvement in the achievable bandwidth can be obtained. Please note, with single-
update mode, if m is null, the s-PWM-start situation is obtained, whereas m is 0.5, the 
s-PWM-middle is found. For other values of m, a filter is needed to reject the current 
ripple. This leads to the application of the concept to control other system variables, 
instead of the current control. The example of the output voltage control in an 
Uninterruptible Power Supply (UPS) is given in [57]. 

The previous analysis can be easily obtained for a three-phase converter as it is 
detailed in [48]. Considering the rotating dq reference frame model of current dynamics 
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in a L-filter with resistive effects as is shown in (2.38), a complex-valued transfer 
function is obtained. There is a complex-valued coefficient which correspond to the 
cross-coupling effects. The angular frequency of the rotating reference frame, 𝜔𝑘, is 
time-variant for variable frequency applications, whereas for constant frequency 
applications is time-invariant. 

𝐺�⃗�𝑞(𝑠) =
𝐼�⃗�𝑞(𝑠)
𝑈�⃗�𝑞(𝑠)

=
1
𝑅

·
1

1 + 𝑠 · 𝐿
𝑅 + 𝑗𝜔𝑘 · 𝐿

𝑅
(2. 38) 

If the computational time and DSPWM is also considered, the overall complex-valued 
open-loop transfer function is (2.39). Hence, the modified Z-transform is applied to this 
transfer function to obtain the expression for different computational delay, 𝑇𝑑, as it is 
expressed in (2.41).  

𝐺𝑑𝑞
𝑂𝐿(𝑠) =

𝐼𝑑𝑞(𝑠)
𝑈𝑑𝑞

𝑟𝑒𝑓(𝑠)
=

1 − 𝑒−𝑠·𝑇

𝑠
· 𝑒−𝑠·𝑇𝑑 · 𝑒−𝑗𝜔𝑘·𝑇𝑑 ·

1
𝑅

·
1

1 + 𝑠 · 𝐿
𝑅 + 𝑗𝜔𝑘 · 𝐿

𝑅
(2. 39) 

𝐺𝑑𝑞
𝑂𝐿(𝑧,𝑚) =

𝐼𝑑𝑞(𝑧)
𝑈𝑑𝑞

𝑟𝑒𝑓(𝑧)
=

𝑧 − 1
𝑧

·
⎣
⎢⎡𝑒−𝑗𝜔𝑘·𝑇𝑑 ·

1
𝑅

·
1

1 + 𝑠 · 𝐿
𝑅 + 𝑗𝜔𝑘 · 𝐿

𝑅
 
⎦
⎥⎤

| 𝑚 = 1− 𝑇𝑑
𝑇  

 (2. 40) 

𝐺𝑑𝑞
𝑂𝐿(𝑧,𝑚)

| 𝑚 = 1− 𝑇𝑑
𝑇

=
1

𝑅 + 𝑗𝜔𝑘 · 𝐿
· [

1
𝑧

−
𝛼2 · (𝑧 − 1)
𝑧 · (𝑧 − 𝛼1)

] · 𝑒−𝑗𝜔𝑘·(1−𝑚)·𝑇

𝛼0 = 𝑒−𝑇·𝑅/𝐿

𝛼1 = 𝛼0 · 𝑒−𝑗𝜔𝑘·𝑇

𝛼2 = 𝑒−𝑚·𝑇 ·𝑅/𝐿 · 𝑒−𝑗𝜔𝑘·𝑚·𝑇

(2. 41) 

The Table 2.3 is taken from the one presented in [48] for the resultant complex-valued 
transfer function of the three PWM strategies presented in Figure 2.11. 

Table 2.3. Grid-tied converter with L-filter transfer functions for each strategy. Source: [48] 

s-PWM-start (single-update mode) 
𝑻𝒅 = 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝑻   |  𝒎 = 𝟎  

𝑮𝒅𝒒
𝑶𝑳(𝒛) = 𝟏

𝑹 + 𝒋𝝎𝒌 · 𝑳
· 𝟏 − 𝜶𝟏
𝒛 · (𝒛 − 𝜶𝟏)

· 𝒆−𝒋𝝎𝒌·𝑻

𝜶𝟎 = 𝒆−𝑻 ·𝑹/𝑳        𝜶𝟏 = 𝜶𝟎 · 𝒆−𝒋𝝎𝒌·𝑻       𝜶𝟐 = 𝟏
(2. 42) 

s-PWM-middle (single-update mode) 
𝑻𝒅 = 𝟏/𝟐 · 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝟏/𝟐 · 𝑻   |  𝒎 = 𝟏/𝟐 

𝑮𝒅𝒒
𝑶𝑳(𝒛) = 𝟏

𝑹 + 𝒋𝝎𝒌 · 𝑳
· (𝟏 − 𝜶𝟐) · (𝒛 + 𝜶𝟐)

𝒛 · (𝒛 − 𝜶𝟏)
· 𝒆−𝒋𝝎𝒌·𝟏𝟐·𝑻

𝜶𝟎 = 𝒆−𝑻 ·𝑹/𝑳        𝜶𝟏 = 𝜶𝟎 · 𝒆−𝒋𝝎𝒌·𝑻       𝜶𝟐 = 𝒆−𝟏
𝟐·𝑻 ·𝑹/𝑳 · 𝒆−𝒋𝝎𝒌·𝟏𝟐·𝑻

(2. 43) 

a-PWM-double (double-update mode) 
𝑻𝒅 = 𝟏/𝟐 · 𝑻𝒄𝒂𝒓𝒓𝒊𝒆𝒓 = 𝑻  | 𝒎 = 𝟎 

𝑮𝒅𝒒
𝑶𝑳(𝒛) = 𝟏

𝑹 + 𝒋𝝎𝒌 · 𝑳
· 𝟏 − 𝜶𝟏
𝒛 · (𝒛 − 𝜶𝟏)

· 𝒆−𝒋𝝎𝒌·𝑻

𝜶𝟎 = 𝒆−𝑻 ·𝑹/𝑳        𝜶𝟏 = 𝜶𝟎 · 𝒆−𝒋𝝎𝒌·𝑻       𝜶𝟐 = 𝟏
(2. 44) 
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2.2.4. Examples of multirate applications in power electronics 
The previous analysis is focused in some usual power electronics applications where 
multirate concepts can be found. They are related to the sampling and actuation 
instants with certain fractional delays, but there is not a rate change along the control 
loop or algorithm. In the following, some contributions are studied where multirate 
concepts are introduced. Each reference provides a different point of view of multirate 
analysis, that will be explained later. 

2.2.4.1. Multirate PLL 
In [7] a multirate PLL (Phase-Locked Loop) is presented, and a schematic of its 
structure is shown in Figure 2.35. The multirate PLL is a variable sampling rate 
system with some features similar to the single-rate zero-crossing sampling PLL, but it 
operates at two different sample rates. One sample rate is much higher than the input 
signal (carrier) frequency and the other sample rate is equal to the carrier frequency. 
Multirate PLL can provide accurate phase synchronization to severely disturbed 
signals, and it is an all-digital approach. The disturbance rejection is mainly 
determined by the frequency response of a high-order band-pass anti-aliasing filter. The 
anti-aliasing filter automatically adapts to the input-signal-frequency variations 
through the variable sample-rate operation of the system, which is achieved by 
modifying the processor timer and applying the over-sampling technique to the input 
signal. 

ADC B ↓ N K

NCO

Anti-aliasing 
filter

Downsampler Controller

Numerically 
controlled 
oscillator

s(t)
s sf e y

clock
  υ = N·f

 
Figure 2.35. Multirate zero-crossing sampling digital PLL 

The multirate PLL error signal, based on which the controller modifies the NCO 
frequency and, ultimately, sampling instants of the ADC, is derived from the input-
signal samples. When the feedback action achieves zero error, the input signal is 
sampled exactly at zero crossings, and the PLL is locked. The relationship between the 
fast sample rate (frequency), 𝜐, and the slow sample rate, f, is an integer N.  

The main advantage of having the anti-aliasing filter in the digital part of the system 
comes from the fact that, in some applications, it would be very difficult to implement 
a practical analog anti-aliasing filter. In this case, the anti-aliasing filter is a bandpass 
filter, and its center frequency automatically tracks the carrier signal frequency. 
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The multirate PLL is a nonlinear system, so a linearization is needed to obtain a 
transfer-function model of the PLL and, then, to design the controller. In that 
document, the complex variable in the Z-transform of the fast sampling rate signals is 
denoted by p. The relationship between the two complex variable is 𝑝𝑁 = 𝑧. As the 
system is linearized, the z-domain block is depicted in Figure 2.36, so a single-rate 
block diagram can be obtained. There is a time-varying block M since the input 
sinusoidal signal is sampled at the fast sampling frequency. The down sampler is 
represented by D. The PLL nominal frequency is denoted as Ω𝑞 = 2𝜋 · 𝑓𝑞 and the phase 
shift as 𝜙. 

M D K(z)

Ωq

U(p) Sf(p) E(z) Y(z)
+

+

ϕ(p)

θ(p)

‐
B(p)
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X(p) τ(p)
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+

‐

𝑵𝑱𝛀𝒒

𝒛 − 𝟏
 

A(z)

Single-rate transformation

 
Figure 2.36. Block diagram of the multirate PLL 

The time-varying block M and D are represented in the form of a complex mapping, 
because they cannot be represented in the form of a transfer function. Mapping M and 
D, it is obtained (2.45) and (2.46), respectively. 

𝑠(𝑝) =
𝑆
2

· [Θ(𝑝 · 𝑒𝑗·2𝜋
𝑁 ) +Θ(𝑝 · 𝑒−𝑗·2𝜋

𝑁 )] (2. 45) 

𝐸(𝑧) =
1
𝑁

· ∑ 𝑠𝑓 (𝑝 · 𝑒𝑗·2𝜋·𝑙
𝑁 )

𝑙=𝑁−1

𝑙=0
(2. 46) 

The NCO generates N equal output samples, so the transfer function 𝐺(𝑝) is (2.47), 
where 𝐽 = 𝑄/𝜐𝑞

2, being Q the slope of the NCO transfer characteristic. 

𝐺(𝑝) = 𝐽 · ∑ 𝑝−𝑖
𝑖=𝑁−1

𝑖=0
(2. 47) 

Assuming 𝜙(𝑝) = 0, the signal phase is given by the expression (2.48), having in mind 
𝑝𝑁 = 𝑧 and using 𝑌 (𝑧) = 𝐾(𝑧) · 𝐸(𝑧). 

Θ(𝑝) = 𝑈(𝑝) −
Ω𝑞 · 𝐺(𝑝)

𝑝 − 1
· 𝐾(𝑧) ·𝐸(𝑧) (2. 48) 



Chapter 2. Theoretical study 

51 

By applying the previous expression, as well as the bandpass filter 𝐵(𝑝), (2.49) is 
obtained. Therefore, substituting Θ(𝑝) and solving by 𝐸(𝑧), the single-rate expression 
(2.50) is obtained. 

𝐸(𝑧) =
𝑆

2𝑁
· ∑ 𝐵 (𝑝 · 𝑒𝑗·2𝜋·𝑙

𝑁 ) · [Θ(𝑝 · 𝑒𝑗·2𝜋
𝑁 (𝑙+1)) +Θ(𝑝 · 𝑒−𝑗·2𝜋

𝑁 ·(𝑙−1))]
𝑙=𝑁−1

𝑙=0
(2. 49) 

𝐸(𝑧) =
(𝑧)

1 + 𝐿(𝑧)
(2. 50) 

Where: 

(𝑧) =
𝑆

2𝑁
· ∑ 𝐵 (𝑝 · 𝑒𝑗·2𝜋·𝑙

𝑁 ) [U(𝑝 · 𝑒𝑗·2𝜋
𝑁 (𝑙+1)) +U(𝑝 · 𝑒−𝑗·2𝜋

𝑁 ·(𝑙−1))]
𝑙=𝑁−1

𝑙=0
(2. 51) 

𝐿(𝑧) = 𝐾(𝑧) ·
𝑆Ω𝑞

2𝑁
· ∑ 𝐵 (𝑝 · 𝑒𝑗·2𝜋·𝑙

𝑁 )
⎣
⎢
⎡G(𝑝 · 𝑒𝑗·2𝜋

𝑁 (𝑙+1))

𝑝 · 𝑒𝑗·2𝜋
𝑁 (𝑙+1) − 1

+
G(𝑝 · 𝑒−𝑗·2𝜋

𝑁 ·(𝑙−1))

𝑝 · 𝑒−𝑗·2𝜋
𝑁 ·(𝑙−1) − 1 ⎦

⎥
⎤𝑙=𝑁−1

𝑙=0
(2. 52) 

When the frequency perturbation has the form of a step function, it is possible to 
express (𝑧) as (2.53), where 𝐴(𝑧) is deduced from the previous and 𝑈(𝑧) has the form 
(2.54). The obtaining of 𝐴(𝑧) is an essential step that is not shown in this contribution, 
what makes difficult to get a better understanding of how the system is transformed to 
single-rate. Similarly, 𝐿(𝑧) can be expressed as is shown in (2.55). 

(𝑧) = 𝐴(𝑧) · 𝑈(𝑧) (2. 53) 

𝑈(𝑧) =
𝑧 · 𝜔0 · 𝑇𝑞

(𝑧 − 1)2 (2. 54) 

𝐿(𝑧) = 𝐾(𝑧) · 𝐴(𝑧) ·
𝑁 · 𝐽 · Ω𝑞

𝑧 − 1
(2. 55) 

The approach taken by the author is interesting, but a different path can be followed 
to obtain a better understanding of multirate analysis. 

2.2.4.2. Multirate repetitive control 
The multirate control is not a usual control implementation in DC/AC converters, but 
some contributions can be found in the literature, mainly in repetitive control area. It 
is well-known that repetitive control is a simple learning control method which was 
specially designed for this purpose. Distinguished by its high precision, simple 
implementation and little performance dependency on system parameters, repetitive 
control has been a major approach in cases where periodic exogeneous signal is dealt 
with. Repetitive control is based on the internal model principle, which states that a 
control system with a periodic signal generator of known period inside the closed loop 
can exactly track any reference signal with the same period. 

In [58] a multirate repetitive controller is studied for DC/AC power converters because 
the periodic nature of the output voltage makes repetitive control (RC) an effective 
way to achieve low total harmonic distortion (THD). The multirate RC is depicted in 
Figure 2.37, where the plug-in repetitive controller 𝐺𝑟(𝑧𝑁) has an RC rate with a 
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sampling period of 𝑇𝑠 = 𝑁 · 𝑇 . The ratio between the feedback rate T and RC rate is 
N, and its relationship is: 

𝑧 = 𝑒𝑠·𝑇       𝑧𝑁 = 𝑒𝑠·𝑇𝑠 (2. 56) 

Fa,a(z)

Yd(z)+

‐

Q(zN)

ZOH

kr 𝒛−𝑵·𝑵𝒔 
+ +

Fa,i(z)

Gf(zN)

+
+

Plug-in Multirate Repetitive Controller
Gr(zN)

Gc(z) Gs(z)

PlantController

+ + Y(z)
D(z)

DisturbanceAnti-imaging 
filter

Anti-aliasing 
filter

U(z)Ur(z)

Ur(zN)E(zN)

Ts

Ts  = N·T 

 
Figure 2.37. Multirate RC system 

The RC block is formed by: anti-aliasing filter 𝐹𝑎,𝑎(𝑧) and a downsampling process; RC 
gain 𝑘𝑟; 𝐺𝑓(𝑧𝑁) is designed to obtain a linear phase compensation or it is often 
designed as the inverse of the closed-loop feedback system; 𝑄(𝑧𝑁) is a low-pass filter 
introduced to enhance robustness; ZOH for the interpolation and anti-imaging filter 
𝐹𝑎,𝑖(𝑧). The transfer function of the repetitive controller is (2.57). 

𝐺𝑟(𝑧𝑁) = 𝑘𝑟 ·
𝑧−𝑁·𝑁𝑠 ·𝑄(𝑧𝑁)

1 − 𝑧−𝑁·𝑁𝑠 ·𝑄(𝑧𝑁)
· 𝐺𝑓(𝑧𝑁) (2. 57) 

Where 𝑁𝑠 = (𝑓𝑐/𝑓)/𝑁  with 𝑓 being the reference signal frequency and 𝑓𝑐 being the 
sampling frequency. There is periodic signal generator of period 𝑁𝑠, so according to the 
internal model principle, this RC can achieve zero-error tracking of the periodic 
reference signal with that period. 

To analyze and design the multirate RC, the closed-loop system is transformed to an 
equivalent system with a single sampling rate. In this contribution the internal 
representation (IR), that will be detailed later, is used to obtain such an equivalent. 
Hence, the open-loop system 𝐺(𝑧) without the plug-in RC (closed-loop with 𝐺𝑐(𝑧) and 
𝐺𝑠(𝑧)) in state-space form is (2.58), and its slow-rate state function is (2.59), where K 
is the slow-rate instant. 

{
𝑥𝑓(𝑘 + 1) = 𝐴𝑓 · 𝑥𝑓(𝑘) +𝐵𝑓 · 𝑢𝑓(𝑘)

𝑦𝑓(𝑘) = 𝐶𝑓 · 𝑥𝑓(𝑘) + 𝜐𝑓(𝑘) (2. 58) 

{
𝑥𝑠(𝐾 + 1) = 𝐴𝑓

𝑁 · 𝑥𝑠(𝐾) + [𝐴𝑓
𝑁−1 ·𝐵𝑓 + ··· +𝐴𝑓 ·𝐵𝑓 +𝐵𝑓 ] · 𝑢𝑠(𝑘)

𝑦𝑠(𝐾) = 𝐶𝑓 · 𝑥𝑠 + 𝜐𝑠(𝐾)
(2. 59) 

The equivalent RC transfer function is (2.60). The overall transfer function from 
𝑌𝑑(𝑧𝑁) to 𝑌 (𝑧𝑁) are derived as (2.61). Therefore, the stability of the system requires 
(2.62), so  and the lead step  (it is introduced by 𝐺𝑓(𝑧𝑁)) are designed. 
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𝐺(̅𝑧𝑁) = 𝐶𝑠(𝑧𝑁𝐼 − 𝐴𝑠)−1 (2. 60) 

𝑌 (𝑧𝑁)
𝑌𝑑(𝑧𝑁)

=
[1 −𝑄(𝑧𝑁) · 𝑧−𝑁·𝑁𝑠 · (1 − 𝑘𝑟 · 𝐺𝑓(𝑧𝑁))] · 𝐺(̅𝑧𝑁)

1 −𝑄(𝑧𝑁) · 𝑧−𝑁·𝑁𝑠 · (1 − 𝑘𝑟 · 𝐺𝑓(𝑧𝑁) · 𝐺(̅𝑧𝑁))
(2. 61) 

∣𝑄(𝑧𝑁) · 𝑧−𝑁·𝑁𝑠 · (1 − 𝑘𝑟 · 𝐺𝑓(𝑧𝑁) · 𝐺(̅𝑧𝑁))∣ < 1

𝑧𝑁 = 𝑒𝑗𝜔𝑁        ∀ 0 < 𝜔𝑁 <
𝜋
𝑇𝑠

(2. 62) 
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‐

Q(zN)kr 𝒛−𝑵·𝑵𝒔 
+ +

+
+

Plug-in Multirate Repetitive Controller
Gr(zN)
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+ + Y(zN)
D(zN)
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U(zN)
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G̅c(𝑧𝑁 ) G̅𝑠 (𝑧𝑁 )

𝑮𝐟 (𝒛𝑵 )

 
Figure 2.38. Equivalent single-rate RC 

The anti-aliasing, anti-imaging, and low-pass filter Q are designed as a zero-phase 
window filter (2.63), but it has not practical implementation because it is a non-causal 
structure. This kind of filter is only used after all the data is known. However, in 
practice, q is usually small (such as 𝑞 = 1 or 𝑞 = 2). 

𝐹(𝑧) = ∑ 𝑎𝑖 · 𝑧−𝑖
𝑞

𝑖=1
+ 𝑎0 + ∑ 𝑎𝑖 · 𝑧𝑖

𝑞

𝑖=1

𝑎0 + 2 · ∑ 𝑎𝑖

𝑞

𝑖=1
= 0

(2. 63) 

Now, the multirate system is defined, and a controller 𝐺𝑐(𝑧) is implemented after the 
system is modeled as 𝐺𝑠(𝑧). In [58], a state feedback controller is designed. In that case 
the author concludes that this scheme reduces the computation load and keeps the 
convergence speed and generates very low THD, but its limitation is that the peak 
tracking error might become large with nonlinear load. It shows that a higher N gets 
worst performances, so the RC rate multiplier, N, should be as close as possible to 1. 

Recent contributions as [59] follow the lead about repetitive controllers, but, in this 
case, it is applied to a three-phase shunt active power filter (APF). The APF control 
scheme includes an inner PI control loop with a sampling rate identical to switching 
frequency and an external plug-in RC loop with a reduced sampling rate. They 
introduce the multirate fractional-order repetitive control (MRFORC), because it can 
provide high tracking accuracy for harmonic reference even in the presence of wide grid 
frequency variations. 
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2.3. Used multirate techniques 
In this section, the most useful multirate tools are presented. Firstly, a general 
description of the Internal Representation (IR) modelling technique of multirate 
systems will be given, that is, the space-state approach, so a single-rate model is 
obtained to do the control design. Then, the External Representation (ER), that is, the 
transfer function approach, modelling technique of multirate systems is studied in 
detail, and a single-rate model is obtained to design the controller. These techniques 
will be applied in Chapter 4 for controller analysis and design in the power electronics 
field. Most information is taken from [14], which deeply details multirate systems. 

2.3.1. Internal representation modelling 
This section is meant to be a brief explanation about recurrence laws, based on Kranc 
methods to model non-conventional sampled systems, what is known as Internal 
Representation. The recurrence laws are successive substitutions in the space-state 
equations defined at base period T (greatest common divisor, GCD, of the input and 
output samplers of the system) with [G H;  C D]. Therefore, a space-state system 
equivalent [G̅ H̅̅̅̅̅; C ̅D̅] is modeled in metaperiod 𝑇0.  

2.3.1.1. Definitions 
The main approach is based on the Vectorial Switch Decomposition introduced by 
Kranc, that was previously depicted in Figure 2.5. This approach is based on the idea 
that inside a metaperiod 𝑇0 there are N time intervals, and the non-conventional 
sampling sequence is expressed as the superposition of N sequences uniformly sampled 
inside a global metaperiod 𝑇0. 
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Figure 2.39. Compact representation of a multirate system 
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GT0(z) EN-

Y(zN)𝐑𝐢(𝐳𝐍𝐍) 𝐘𝐢(𝐳𝐍𝐍 )

 
Figure 2.40. Single-rate equivalent system 

The advancements and delays from the Vectorial Switch Decomposition can be 
arranged as vectors (2.64), and the multirate system is reorganized as it is depicted in 
Figure 2.39. The Kranc operator is defined as the embedded digital system defined in 
the metaperiod 𝑇0, and it is composed of the delay block of the input sampler, the 
advancement block of the output sampler, and the state-space representation of the 
system (2.65). The Kranc operator obtains a single-rate equivalent system as it is 
depicted in Figure 2.40, where 𝑧𝑁 = 𝑒𝑠·𝑇0/𝑁  

𝐸𝑁+ =

⎣
⎢⎢
⎢
⎡

 

1
𝑒𝑠·𝑡1

𝑒𝑠·𝑡2

⋮
𝑒𝑠·𝑡𝑁−1

 

⎦
⎥⎥
⎥
⎤

        𝐸𝑁− = [1 𝑒−𝑠𝑡1 𝑒−𝑠𝑡2 ⋯ 𝑒−𝑠𝑡𝑁−1] (2. 64) 

𝐺𝑇0(𝑧) = (𝐸𝑁+ · 𝐺(𝑠) · 𝐸𝑁−)𝑇0 (2. 65) 

The Kranc operator leads to different cases, that depends on the nature of the sampled 
system. There are two samplers, one at the input and other at the output, so different 
sampling instants can be found at each one. Therefore, considering T as the minimum 
time between sampling instants (𝑇 = 𝑇0/𝑁), the operators are classified as: 

- Regular Kranc: Continuous-time nature of processes. The equivalent Z-
transform of 𝐺(𝑠) at period T must be obtained in the space-state 
representation. Then, the recurrence laws get a space-state representation at 
period 𝑇0. 

- ZOH Kranc: Continuous-time nature of processes with ZOH at the input. The 
Z-transform of the overall system, 𝐺ℎ0

𝑇 · 𝐺(𝑠), at period T must be obtained in 
the space-state representation, where 𝐺ℎ0

𝑇  is the transfer function of the ZOH at 
period T. Hence, there is a holding process at the input sampling. The 
successive substitution gets an equivalent space-state representation at period 
𝑇0. 

- Digital Kranc: Discrete-time nature of processes. It is defined for a space-state 
representation of the discrete system at period T, 𝐺𝑇 (𝑧), surrounded by 
samplers, and there are not ZOH discretization of a continuous-time system. 
Again, with successive substitutions, an equivalent space-state representation at 
period 𝑇0 is found. Its main interest resides in controllers directly designed in 
discrete-time or those which, despite of being designed in continuous-time, are 
not discretized by a ZOH (these must use the ZOH-Kranc operator) 

In the following, the recurrence laws allow the definition of any system depending on 
its nature and the sampling instants. 



Chapter 2. Theoretical study 

56 

2.3.1.2. Recurrence Laws 
The recurrence laws are deduced in [14] and the author analyzes the most general case: 
any number and any instant of input and output samplings. From them, an automatic 
Kranc-operator space-state representation, that internally represents the sampled 
system at metaperiod 𝑇0, is obtained. Please note that the recurrence laws have one 
inherent restriction: the first sampling at the input and the output must be in the 
instant 0 of the metaperiod. Remember that the state-space representation of any 
system is: 

𝑥(𝑘 + 1) = 𝐺 · 𝑥(𝑘) +𝐻 · 𝑢(𝑘)
𝑦(𝑘) = 𝐶 · 𝑥(𝑘) + 𝐷 · 𝑢(𝑘) (2. 66) 

The final models are defined at metaperiod 𝑇0, but they all internally work at period T, 
because they must rearrange correctly the sampling at the input and output. Kranc 
operators share the same parameters for their definition, graphically depicted in Figure 
2.41, and those are: 

- Space-state representation of the system at period T: [𝐺 𝐻;  𝐶 𝐷] 
- Number of samplings at the output of the system: n. 
- Number of sampling at the input of the system: m. 
- Number of T samplings in a metaperiod 𝑇0: N. 
- Vector with instant (T) differences between successive input samplings: dif(·) 
- Vector with instants (T) with sampling at the output (instant j): out(·) 
- Vector with instants (T) with sampling at the input (instant i): in(·) 

Input

t
Output

0

T0

t

t/T1 2 3 4 N-1 N

Ti,1 Ti,2 Ti,4 Ti,m

Tj,1 Tj,2 Tj,n

In1xm = [0 1 4 ··· N-1]

Out1xn = [0 2 ··· N-1]

Dif1xm = [1 3 (N-1)-4 ··· 1]

 
Figure 2.41. Graphical representation of the parameters for internal representation 

1) Regular Kranc 

The space-state system at metaperiod with non-conventional sampling is (2.67). 

𝐺𝑇0(𝑧) = ∣𝐺
̅ �̅̅̅̅�
𝐶 ̅ �̅̅̅̅̅�

∣

𝐺 ̅= 𝐺𝑁

�̅̅̅̅� = [𝐺11𝐻 ⋯ 𝐺1𝑚𝐻 ]     𝐺1𝑗 = 𝐺𝑁−1−∑ 𝑑𝑖𝑓(𝑥)𝑗−1
𝑥=1  

𝐶 ̅= [
𝐶1
⋮
𝐶𝑛

]     𝐶𝑖 = 𝐶𝐺𝑜𝑢𝑡(𝑖)

�̅̅̅̅̅� = [
𝐷11 ⋯ 𝐷1𝑚
⋮ ⋱ ⋮

𝐷𝑛1 ⋯ 𝐷𝑛𝑚

]     𝐷𝑖𝑗 = 𝐶Ψ𝑖𝑗𝐻 + Ω𝑖𝑗

(2. 67) 
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Considering the following coefficients of matrix D: 

 

Ψ𝑖𝑗 =

⎩
{{
⎨
{{
⎧

𝐺𝑜𝑢𝑡(𝑖)−1−∑ 𝑑𝑖𝑓(𝑥)𝑗−1
𝑥=1      , 𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)

𝑗−1

𝑥=1
≥ 0

0                                 , 𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)
𝑗−1

𝑥=1
< 0 

Ω𝑖𝑗 =
⎩{
⎨
{⎧𝐷 ,(𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)

𝑗−1

𝑥=1
< 0)𝐴𝑁𝐷(𝑖 ≥ 𝑗)𝐴𝑁𝐷 𝑁𝑂𝑇 (𝑜𝑢𝑡(𝑖) < 𝑖𝑛(𝑗))

0,   𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

(2. 68) 

 

2) ZOH Kranc 

The space-state system at metaperiod with non-conventional sampling is (2.69). 

 

𝐺𝑇0(𝑧) = ∣𝐺
̅ �̅̅̅̅�
𝐶 ̅ �̅̅̅̅̅�

∣

𝐺 ̅= 𝐺𝑁

�̅̅̅̅� = [𝐺11𝐻 ⋯ 𝐺1𝑚𝐻 ]     𝐺1𝑗 = ∑ 𝐺𝑁−𝑥−∑ 𝑑𝑖𝑓(𝑤)𝑗−1
𝑤=1

𝑑𝑖𝑓(𝑗)

𝑥=1
 

𝐶 ̅= [
𝐶1
⋮
𝐶𝑛

]     𝐶𝑖 = 𝐶𝐺𝑜𝑢𝑡(𝑖)

�̅̅̅̅̅� = [
𝐷11 ⋯ 𝐷1𝑚
⋮ ⋱ ⋮

𝐷𝑛1 ⋯ 𝐷𝑛𝑚

]     𝐷𝑖𝑗 = 𝐶Ψ𝑖𝑗𝐻 + Ω𝑖𝑗

(2. 69) 

 

Considering the following coefficients of D matrix: 

Ψ𝑖𝑗 =

⎩
{{
⎨
{{
⎧

∑ 𝐺𝑜𝑢𝑡(𝑖)−𝑥−∑ 𝑑𝑖𝑓(𝑤)𝑗−1
𝑤=1

𝑑𝑖𝑓(𝑗)

𝑥=1
     , 𝑜𝑢𝑡(𝑖) − 𝑥− ∑ 𝑑𝑖𝑓(𝑤)

𝑗−1

𝑤=1
≥ 0

0                                 , 𝑜𝑢𝑡(𝑖) − 𝑥− ∑ 𝑑𝑖𝑓(𝑤)
𝑗−1

𝑤=1
< 0 

Ω𝑖𝑗 =

⎩
{{
⎨
{{
⎧

𝐷 ,(𝑜𝑢𝑡(𝑖) − 𝑑𝑖𝑓(𝑗) − ∑ 𝑑𝑖𝑓(𝑤)
𝑗−1

𝑤=1
< 0)  𝐴𝑁𝐷  

(((𝑖 ≥ 𝑗)𝐴𝑁𝐷 𝑁𝑂𝑇 (𝑜𝑢𝑡(𝑖) < 𝑖𝑛(𝑗)))  𝑂𝑅 ((𝑖 < 𝑗)𝐴𝑁𝐷(𝑖+ 𝑗 = 𝑁)))
0,   𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

(2. 70) 

 

3) Digital Kranc 

It is like the Regular Kranc operator, but its difference is on the nature of that system. 
In both techniques, the operator is applied to space-state representation at period T. 
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Therefore, the space-state system at metaperiod with non-conventional sampling is 
(2.71). 

𝐺𝑇0(𝑧) = ∣𝐺
̅ �̅̅̅̅�
𝐶 ̅ �̅̅̅̅̅�

∣

𝐺 ̅= 𝐺𝑁

�̅̅̅̅� = [𝐺11𝐻 ⋯ 𝐺1𝑚𝐻 ]     𝐺1𝑗 = 𝐺𝑁−1−∑ 𝑑𝑖𝑓(𝑥)𝑗−1
𝑥=1  

𝐶 ̅= [
𝐶1
⋮
𝐶𝑛

]     𝐶𝑖 = 𝐶𝐺𝑜𝑢𝑡(𝑖)

�̅̅̅̅̅� = [
𝐷11 ⋯ 𝐷1𝑚
⋮ ⋱ ⋮

𝐷𝑛1 ⋯ 𝐷𝑛𝑚

]     𝐷𝑖𝑗 = 𝐶Ψ𝑖𝑗𝐻 + Ω𝑖𝑗

(2. 71) 

 

Considering the following coefficients of D matrix: 

 

Ψ𝑖𝑗 =

⎩
{{
⎨
{{
⎧

𝐺𝑜𝑢𝑡(𝑖)−1−∑ 𝑑𝑖𝑓(𝑥)𝑗−1
𝑥=1      , 𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)

𝑗−1

𝑥=1
≥ 0

0                                 , 𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)
𝑗−1

𝑥=1
< 0 

Ω𝑖𝑗 =
⎩{
⎨
{⎧𝐷 ,(𝑜𝑢𝑡(𝑖) − 1 − ∑ 𝑑𝑖𝑓(𝑥)

𝑗−1

𝑥=1
< 0)𝐴𝑁𝐷(𝑖 ≥ 𝑗)𝐴𝑁𝐷 𝑁𝑂𝑇 (𝑜𝑢𝑡(𝑖) < 𝑖𝑛(𝑗))

0,   𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒𝑠

(2. 72) 

 

2.3.2. External representation modelling 
This section is meant to be a brief explanation about a different approach based on the 
same theorical concept, that is, the Vectorial Switch Decomposition. This approach is 
known as External Representation because a single-rate transfer function is obtained to 
model multirate systems. The obtained values are exactly those obtained in the IR 
when the input samplings are regularly distributed in the metaperiod 𝑇0. If the 
samplings are irregularly distributed, the values do not correspond to those in the IR 
because it is expressed with a regular discrete variable. The irregularly distributed 
samplings are not in the scope of this document, but in [14] some adjustments are done 
in the discretization period and the gain to correctly model these systems. 

𝐆𝐡𝟎 (𝐬) G(s)

T = T0/N

R(s) Y(s)

T0
 

Figure 2.42. Analyzed regular case for external representation modelling 
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2.3.2.1. Definitions 
The ER uses the previous notation where appears the discrete variable 𝑧𝑁 = 𝑒𝑠·𝑇0/𝑁 . 
This variable considers that there are N samplings inside the metaperiod 𝑇0. Therefore, 
the expression 𝑧𝑁

−𝑖 is interpreted as a delay of i consecutive samplings. The distribution 
in time inside the metaperiod can be equidistant in time or not, that is, uniformly 
(regular) distributed or not (irregular).  

Following Figure 2.39, 𝐺(𝑠) is preceded by ZOH operation at period T, and, from the 
point of view of ER, considering the contribution to the output of every input 
sequence, the p output sequence is (2.73). 

𝑌𝑝(𝑧𝑁
𝑁) = ∑ 𝑅𝑖(𝑧𝑁

𝑁) · 𝐺𝑝−1(𝑧𝑁
𝑁)

𝑁−1

𝑖=0
(2. 73) 

Where: 

- Z-transform of the input sequence at 𝑇0 advanced  time instants: 𝑅𝑖(𝑧𝑁
𝑁) 

- Z-transform of the impulse response at 𝑇0 delayed  time instants: 𝐺𝑝−1(𝑧𝑁
𝑁) 

The overall output sequence is (2.74), where each 𝑌𝑝(𝑧𝑁
𝑁) is multiplied by 𝑧𝑁

−𝑝 to 
correctly distribute it in the global sequence. 

𝑌 (𝑧𝑁) = ∑ 𝑧𝑁
−𝑝 · 𝑌𝑝(𝑧𝑁

𝑁)
𝑁−1

𝑝=0
(2. 74) 

However, the usual way to obtain the ER is through a polynomic expression that lead 
to close transfer function expression. Being 𝐺(𝑧𝑁) = 𝐵(𝑧𝑁)/𝐴(𝑧𝑁), it must be found a 
polynomial 𝑊(𝑧𝑁) which is multiplied to 𝐴(𝑧𝑁) to obtain a denominator with only 
terms as 𝑧𝑁

0 , 𝑧𝑁
−𝑁, 𝑧𝑁

−2𝑁, 𝑒𝑡𝑐. Therefore, if the numerator is divided by the denominator, 
the modified numerator coefficients are those in 𝑧𝑁

0 , 𝑧𝑁
−𝑁, 𝑧𝑁

−2𝑁, 𝑒𝑡𝑐. So: 

𝐺(𝑧𝑁) =
𝐵(𝑧𝑁)
𝐴(𝑧𝑁)

=
𝐵(𝑧𝑁) · 𝑊(𝑧𝑁)
𝐴(𝑧𝑁) · 𝑊(𝑧𝑁)

=
𝐵(𝑧𝑁) · 𝑊(𝑧𝑁)

𝐴′(𝑧𝑁)
(2. 75) 

Where: 

𝑊(𝑧𝑁) = ∏ 𝐴(𝑧𝑁 · 𝑒−𝑗·2𝜋·𝑘
𝑁 )

𝑁−1

𝑘=1
=
𝐴′(𝑧𝑁

𝑁)
𝐴(𝑧𝑁)

(2. 76) 

The polynomial 𝑊(𝑧𝑁) relates the poles when the transfer function is defined at 
metaperiod 𝑇0 (it is represented with the variable 𝑧𝑁

𝑁) with the poles when it is defined 
at period T (it is represented with the variable 𝑧𝑁). 

Please note that, after operating with (2.75), only the advanced functions, 𝐺𝑖(𝑧𝑁
𝑁), are 

interesting because the delayed functions, 𝐺−𝑖(𝑧𝑁
𝑁), can be easily obtained through the 

relation 𝐺−𝑖(𝑧𝑁
𝑁) = 𝑧𝑁

−𝑁 · 𝐺𝑁−𝑖(𝑧𝑁
𝑁). Besides, the expression (2.75) is defined in two 

frequencies or rates (𝑧𝑁
𝑁, 𝑧𝑁). Therefore, some authors have defined it as dual-rate 

operator 𝐺(̃𝑧,𝑁). Thus, the following is deduced from it: 

- The denominator coefficients correspond to those of the transfer function 
expressed at metaperiod 𝑇0 (slow rate). 
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- If the numerator coefficients (at fast rate) are summarized in groups of N 
coefficients (being N the multiplicity of the sampling), the n coefficients (being 
n the order of that polynomial) correspond to the same transfer function at 𝑇0 
(slow rate). 

2.3.2.2. Polynomial 𝑊(𝑧𝑁) and operator 𝑧𝑁
−𝑖 

The most interesting tool to design the controllers for non-conventional sampling 
systems is the polynomial 𝑊(𝑧𝑁). For a given discretized system at period T (fast 
rate), a transfer function, 𝐺(𝑧𝑁), is obtained where the denominator is at slow rate and 
the numerator at fast rate. This is shown with a simple example where 𝑁 = 2, so there 
is a sampling at half of each metaperiod: 

𝐺(𝑧2) =
1 − 𝑧2

−1

1 − 𝑎 · 𝑧2
−1 (2. 77) 

Using (2.75): 

𝐺(𝑧2) =
𝐵(𝑧2) · 𝑊(𝑧2)
𝐴(𝑧2) · 𝑊(𝑧2)

=
(1 − 𝑧2

−1) · (1 − 𝑎 · 𝑧2
−1 · 𝑒𝑗𝜋)

(1 − 𝑎 · 𝑧2
−1) · (1 − 𝑎 · 𝑧2

−1 · 𝑒𝑗𝜋)

𝐺(𝑧2) =
1 + (𝑎 − 1) · 𝑧2

−1 − 𝑎 · 𝑧2
−2

(1 − 𝑎2 · 𝑧2
−2)

(2. 78) 

It is verified the dual-rate nature of this transfer function, without forgetting that it is 
defined at fast rate. Besides, the variable 𝑧2

−1 from the numerator determines the 
middle sampling inside the metaperiod, and it helps to express the desired pattern 
(regular or irregular). In that example, the regular pattern is shown. 

To relate the variable 𝑧2
−1 with a change in the desired pattern, some mathematical 

deducing is needed in the frequency domain. Considering a sinusoidal input 𝑟(𝑡) = 𝑒𝑗𝜔𝑡 
and considering (2.73): 

𝑌𝑝(𝑧𝑁
𝑁) = ∑ 𝑅𝑖(𝑧𝑁

𝑁)
𝑁−1

𝑖=0
· 𝐺𝑝−𝑖(𝑧𝑁

𝑁) =
1

1 − 𝑒𝑗𝜔·𝑇0 · 𝑧𝑁
−𝑁 · ∑ 𝑒𝑗𝜔·𝑡𝑖 · 𝐺𝑝−𝑖(𝑧𝑁

𝑁)
𝑁−1

𝑖=0

𝑅𝑖(𝑧𝑁
𝑁) =

𝑒𝑗𝜔·𝑡𝑖

1 − 𝑒𝑗𝜔𝑇0 · 𝑧𝑁
−𝑁

(2. 79) 

Now, doing the Laplace transform and considering the delay 𝑒−𝑠𝑡𝑝 to properly locate 
each periodic sequence of the output in time like in (2.74): 

𝑌𝑝(𝑠) =
1
𝑇0
[∑ 𝑒𝑗𝜔·𝑡𝑖 · 𝐺𝑝−𝑖(𝑒𝑗𝜔·𝑇0) · 𝑒−𝑠·𝑡𝑝

𝑁−1

𝑖=0
] · ∑

1
𝑠 − 𝑗 · (𝜔 + 𝑘𝜔0)

∞

𝑘=−∞
(2. 80) 

Where 𝜔0 = 2𝜋/𝑇0. Summarizing the other p-1 periodic sequences of the output to 
obtain the overall output sequence: 

𝑌 (𝑠) =
1
𝑇0

· [∑ ∑ 𝑒𝑗𝜔·𝑡𝑖 · 𝐺𝑝−𝑖(𝑒𝑗𝜔·𝑇0) · 𝑒−𝑠·𝑡𝑝
𝑁−1

𝑖=0

𝑁−1

𝑝=0
] · ∑

1
𝑠 − 𝑗 · (𝜔 + 𝑘𝜔0)

∞

𝑘=−∞
(2. 81) 

Then, doing 𝑘 = 0 to remove the repeated periodic copies that come from the sampling 
of the input signal, the expression of the system is: 
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𝐺(𝑗𝜔) =
1
𝑇0

· ∑ ∑ 𝐺𝑝−𝑖(𝑒𝑗𝜔·𝑇0) · 𝑒−𝑗𝜔·(𝑡𝑝−𝑡𝑖)
𝑁−1

𝑖=0

𝑁−1

𝑝=0
(2. 82) 

If expressions 𝐺𝑝−𝑖(𝑒𝑗𝜔·𝑇0) of negative subscript are eliminated [60]: 

𝐺(𝑗𝜔) =
1
𝑇0

· ∑ 𝐺𝑖(𝑒𝑗𝜔·𝑇0) · ∑ exp(−𝑗𝜔 · ∑ 𝜏𝑙
𝑖−1+𝑘

𝑙=𝑘
)

𝑁

𝑘=1

𝑁−1

𝑖=0
(2. 83) 

Where 𝜏𝑙 is the time between samplings, and if 𝑙 > 𝑁 , 𝜏𝑙 = 𝜏𝑙−𝑁 . The first terms of 
(2.83) are: 

𝑁
𝑇0

· [𝐺0(𝑒𝑗𝜔·𝑇0) + 𝐺1(𝑒𝑗𝜔·𝑇0) · (
𝑒−𝑗𝜔·𝜏1 + 𝑒−𝑗𝜔·𝜏2 +⋯+ 𝑒−𝑗𝜔·𝜏𝑁

𝑁
) +

+𝐺2(𝑒𝑗𝜔·𝑇0) · (
𝑒−𝑗𝜔·(𝜏1+𝜏2) + 𝑒−𝑗𝜔·(𝜏2+𝜏3) +⋯+ 𝑒−𝑗𝜔·(𝜏𝑁+𝜏1)

𝑁
)

(2. 84) 

Recalling the definition of each 𝐺−𝑖(𝑧𝑁
𝑁), the overall expression of such system, 𝐺(𝑧𝑁), 

can also be written as (2.85). This is because of the Z-transform at metaperiod 𝑇0 of 
the advanced expression 𝐺𝑖(𝑧𝑁

𝑁) = 𝒵𝑇0[𝑒𝑠·𝑡𝑖 · 𝐺ℎ0
𝑇 · 𝐺(𝑠)], that must be correctly located 

in time with the delay 𝑧𝑁
−𝑖. 

𝐺(𝑧𝑁) = 𝐺0(𝑧𝑁
𝑁) + 𝐺1(𝑧𝑁

𝑁) · 𝑧𝑁
−1 + 𝐺2(𝑧𝑁

𝑁) · 𝑧𝑁
−2 +⋯+ 𝐺𝑁−1(𝑧𝑁

𝑁) · 𝑧𝑁
−(𝑁−1) (2. 85) 

Finally, comparing (2.84) and (2.85), it is shown that the transfer function can be 
obtained through 𝐺(𝑧𝑁) with the numerator and denominator modified by 𝑊(𝑧𝑁). The 
steps are the following: 

1) Replace each 𝑧𝑁
−𝑁  by 𝑒−𝑗𝜔·𝑇0 . 

2) Replace each 𝑧𝑁
−1 by (𝑒−𝑗𝜔·𝜏1 + 𝑒−𝑗𝜔·𝜏2 +⋯+ 𝑒−𝑗𝜔·𝜏𝑁)/𝑁 . This is kind of a mean 

value of all possible values that the operator 𝑧𝑁
−1 can take. 

3) Replace each 𝑧𝑁
−2 by (𝑒−𝑗𝜔·(𝜏1+𝜏2) + 𝑒−𝑗𝜔·(𝜏2+𝜏3) +⋯+ 𝑒−𝑗𝜔·(𝜏𝑁+𝜏1))/𝑁 . 

4) Repeat the replacing procedure until 𝑧𝑁
−(𝑁−1). 

5) Multiply by a global factor 𝑁/𝑇0 

If the previous deduction is applied to the example in (2.78) the frequency-domain 
expression of the transfer function 𝐺(𝑧2)  is (2.86). 

𝐺(𝑗𝜔) =
2
𝑇0

·
⎣
⎢
⎡1 + (𝑒−𝑗𝜔·𝜏1 + 𝑒−𝑗𝜔·𝜏2

2 ) · (𝑎 − 1) − 𝑎 · 𝑒−𝑗𝜔·𝑇0

(1 − 𝑎2 · 𝑒−𝑗𝜔·𝑇0)
⎦
⎥
⎤ (2. 86) 

The considered sampling scheme depends on the values of 𝜏1 and 𝜏2. If 𝜏1 = 𝜏2, it is a 
regular scheme, whereas 𝜏1 𝜏2, it is an irregular one. Therefore, the gain of 𝐺(𝑗𝜔) 
changes for a given 𝜔 and 𝑇0, if the 𝜏1 and 𝜏2 values vary. 

2.3.2.3. Pole and zero map at fast rate 
On one hand, it is proven from the previous sections that the poles are set in the same 
locations, whatever the sampling scheme is. On the other hand, the zeros change its 
position depending on the sampling scheme.  
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The incorporation of 𝑊(𝑧𝑁) do that the poles are those from the transfer function at 
fast rate (defined as 𝑎𝑖) plus the ones from 𝑊(𝑧𝑁) that are in 𝑎𝑖 · 𝑒𝑗2𝜋·𝑘/𝑁 , being 𝑘 =
1, 2,… , 𝑁 − 1.  

The zeros are obtained with the previous analysis, but it is done in s-domain: 

1) Replace each 𝑧𝑁
−𝑁  by 𝑒−𝑠·𝑇0 . 

2) Replace each 𝑧𝑁
−𝑖 by ∑ exp(−𝑠 · ∑ 𝜏𝑙

𝑖−1+𝑘
𝑙=𝑘 )𝑁

𝑘=1 /𝑁  

Then, the numerator is equalized to 0, but there are some implications that must be 
considered because it is in complex domain. To solve the equation, it is usually valid 
the Maximum Modulus Principle. If the numerator polynomial is called 𝑔(𝑠), and it is 
taken the function 𝑓(𝑠) = 𝑎𝑏𝑠(𝑔(𝑠)), where 𝑎𝑏𝑠(·) is the absolute function, the function 
𝑓(𝑠) allows the obtention of the values of s where 𝑔(𝑠) is null. Please note that 𝑓(𝑠) is 
defined as 𝑓 : 𝐶 → ℜ+ ∪ {0}, so the zeros of this function are relative minimum. 
Besides, it is demonstrated that all relative extrema of 𝑓(𝑠) are zeros of that function. 
Therefore, a minimum of 𝑓(𝑠) matches a zero of 𝑔(𝑠). 

Following the example (2.86), the zeros are obtained equalizing the s-domain 
numerator to 0: 

1 + (
𝑒−𝑠𝜏1 + 𝑒−𝑠·𝜏2

2
) · (𝑎 − 1) − 𝑎 · 𝑒−𝑠·𝑇0 = 0 (2. 87) 

For the regular case, 𝜏1 = 𝜏2 = 𝑇0/2, and the following equation is obtained: 

1 + (
𝑒−𝑠·𝑇0/2 + 𝑒−𝑠·𝑇0/2

2
) · (𝑎 − 1) − 𝑎 · 𝑒−𝑠·𝑇0 = 1 + 𝑒−𝑠·𝑇0

2 · (𝑎 − 1) − 𝑎 · 𝑒−𝑠·𝑇0 = 0 (2. 88) 

The solutions are the zeros from the original transfer function 𝐺(𝑧𝑁) and the zero 
introduced by 𝑊(𝑧𝑁), which in regular sampling is canceled with the pole of 𝑊(𝑧𝑁). 
Therefore, the closest way to express a multirate regular sampling system in ER is 
through the expression at fast rate 𝐺(𝑧𝑁), but these deductions are useful for the 
irregular scheme in ER and better understanding of Chapter 4. 

For example, if it is taken an irregular case where 𝜏1 = 𝑇0/3 and 𝜏1 = 2 · 𝑇0/3, the zero 
from 𝑊(𝑧𝑁) changes its position, and it is not cancelled by the pole of 𝑊(𝑧𝑁). The 
equation that must be solved is: 

1 + (
𝑒−𝑠·𝑇0/3 + 𝑒−𝑠·2·𝑇0/3

2
) · (𝑎 − 1) − 𝑎 · 𝑒−𝑠·𝑇0 = 0 (2. 89) 

This results in a zero that lead to an approximation of a transfer function at fast rate 
𝑧𝑁  of the irregular case. Hence, some corrections must be done due to this 
approximation in the discretization period and gain. In [14] the adjustments of the 
discretization period and static gain are shown. 

2.4. Conclusions 
This chapter has summarized many concepts that will be useful in the following ones. 
Basically, it has been divided into: state of the art, and multirate modelling techniques 
and notations. 



Chapter 2. Theoretical study 

63 

The state of the art defines every notion that will be useful in the following chapters, 
where multirate examples in power electronics are analyzed. Then, because of the 
particularities of the actuation block, a brief explanation of the modulation techniques, 
that are in the scope of this document, is given. Principally, the DSPWM is one of the 
most interesting strategies in power electronics due to its simplicity of implementation, 
so the limitations and characteristics of this actuator are analyzed. Besides, a new 
approach was taken to reduce the actuation delay known as multisampling that has 
some particularities related to the filters, which has not been correctly studied in the 
literature. A correct modelling of this actuator is also important to maximize the 
response of the system.  

This chapter briefly introduces the SHE modulation technique because it could be used 
with multirate methods, which involve extrapolation to get better responses. Besides, in 
the following chapter, a polynomial extrapolation technique is presented to compare its 
extrapolation of sinusoidal signals to the one obtained by multirate techniques and 
reference frame transformation technique. 

The actuation block has been profoundly analyzed, so a few multirate possibilities will 
be introduced in this work making sure that the DSPWM modulation technique does 
not negatively affect. Therefore, focusing on DSPWM, there are two possibilities: 

- Follow the modulation update strategy presented here. That could be done: by 
adapting switching frequency to a possible constrained sampling frequency; or 
by optimizing the maximum switching frequency with multirate approaches. 

- Follow a multirate approach to update the modulation function more than two 
times per carrier period (similar to multisampling technique). 

Finally, two examples of multirate application in power electronics are presented, each 
of them with a different approach in the approximation of their multirate system to a 
single-rate model. The first one is related to external representation, although it does 
not use exactly that notation. The second is related to internal representation, as it 
was mentioned. Therefore, a first contact of multirate techniques in power electronics 
was found. 

Later, two modelling techniques are presented. The internal representation models a 
multirate system with any case of sampling at the input and output, whereas the 
external representation models multirate system where the fast rate only is at the 
input. On one hand, the IR has the problem that deals with inputs that are in the 
future to model a multirate system at the defined metaperiod, or slow rate. On the 
other hand, the ER deals with transfer functions defined at fast rate. However, the last 
one allows the design of controllers known as MRIC, using the notation presented 
before. 
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Chapter 3. Modelling and 

multirate 

applications  

3.1. Introduction 
In this chapter is analyzed the power converter model and how the multirate 
techniques can be applied to them based on the possibilities that can be found in 
practical applications. 

First, the studied system, which is an AC/DC converter, is correctly model in the 
stationary and rotatory reference frames. Then a set of possible applications are 
presented where the multirate design can be applied, most of them related to the 
actuation, and it is essentially focused on extrapolation. The decimation of the 
actuation is an unusual situation, so it is not analyzed here, but there is a possibility 
when the switching frequency is very low due to the characteristics of the application.  

This chapter gives context to Chapter 4, which have the aim of explaining multirate 
controllers for current control loop on extrapolation cases. 

3.2. Voltage Source Converter modelling 

3.2.1. Definitions of the current dynamics model 
The studied power converter is the VSC, which is a three-phase AC/DC converter 
previously detailed in subsection 1.2.2as a 3L-DNPC-VSC. However, it can be 
described as a switching network where input and output (in bidirectional converters 
they are only defined by the energy flow direction) have a filter to correctly connect 
with a load or the electrical grid. The switching network must be controlled, so the 
mathematical model of the system is needed to obtain the model-based controller. 

In the literature, different techniques can be found to correctly model AC/DC 
converters. Firstly, a switched model can be obtained, where the inputs are the control 
signals (defined by their duty-cycle), but it is a non-linear model. Then, the previously 
obtained switching functions are averaged along a switching period, 𝑇𝑆𝑊 , so a linear 
relationship is obtained between the duty-cycle and DC-bus voltage with the output 
sinusoidal signals. This model is defined in a stationary reference frame. Finally, if the 
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reference axes rotate with an angular speed equivalent to the fundamental frequency of 
the grid (2𝜋 · 50 rad/s), the signals can be transformed to a synchronous reference 
frame, and they get a constant value. In three-phase systems, transformations are 
carried out to simplify the controller design and implementation. This is explained in 
Appendix B, but it will be briefly introduced in the following modelling. The previous 
averaged model is simplified, so converter and PWM modulator are approximated to 
the PWM gain (commonly unitary) and delay (one-half sampling period, 𝑇/2) as it was 
previously detailed in subsection 2.2.3 with the SPWM technique. Therefore, the 
converter topology does not impact on the system modelling and the subsequent 
analysis can be applied to 2L-VSC or multi-level topologies. The system is reduced to 
the modelling of grid filter as it will be shown in following subsections. 
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Figure 3.1. Schematic block diagram of the system under study 

The system under study is depicted in Figure 3.1. The 3L-DNPC-VSC is connected to 
a three-phase three-wire symmetrical voltage system. The symmetrical voltage system 
is a three-phase inductive-resistive impedance with a voltage source. A constant and/or 
variable frequency converter operation can feed the inductive-resistive load. For motor-
tied applications (commonly variable frequency operation), the power converter 
operates as a motor drive inverter and for grid-tied applications (usually constant 
frequency operation) the power converter operates as power (active and/or reactive) 
exchanger with the grid. 
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In motor-tied applications, the inductance represents motor stator leakage inductance 
and the resistance characterizes motor stator winding resistance. The three-phase 
voltage source is interpreted as the motor counter-electromotive force (back EMF), 
which depends on the motor type and operating point. In grid-tied applications, the 
inductive-resistive impedance model is related to the line-side harmonic-filter. For a L-
filter, the inductance represents filter inductance and the resistance represents 
associated winding resistance. For a LCL-filter, the inductive-resistive model represents 
the low frequency model (equivalent L-filter) of the filter. The three-phase voltage-
source specifies the power network supply grid voltage. Therefore, the following 
subsections are focused on the modelling of these popular filters. The transfer function, 
that will be found, relates the converter output voltage with the current towards the 
grid, because there is an inner current control loop in every VSC. 

Special mention for LLCL-filter, that has recently emerged into grid-tied converters due 
to the improved filtering capability which ensuring a smaller physical size [61]. A small 
inductor is inserted in the branch loop of the capacitor for this filter, composing a LC 
series resonant circuit. The LLCL-filter has almost the same frequency-response 
characteristic as LCL-filter within half of the switching frequency range, so it can also 
be approximated to a L-filter, as it will be shown in the following.  

3.2.2. L-filter model 
Considering the schematic from Figure 3.2, the differential equations in time-domain 
that describe the circuit behavior are (3.1). The grid inductance determines whether 
the grid is weak (large value of 𝐿𝑔) or stiff (low value of 𝐿𝑔). Usually, the grid is stiff 
enough to neglect the grid impedance for modelling purposes. For machines, the 
inductance is always considered, so the inductive-resistive effects are modeled together 
in the differential equations. 

𝑢𝑎(𝑡) = 𝑅 · 𝑖𝑎(𝑡) + 𝐿 ·
𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑒𝑔,𝑎(𝑡)

𝑢𝑏(𝑡) = 𝑅 · 𝑖𝑏(𝑡) + 𝐿 ·
𝑑𝑖𝑏(𝑡)

𝑑𝑡
+ 𝑒𝑔,𝑏(𝑡)

𝑢𝑐(𝑡) = 𝑅 · 𝑖𝑐(𝑡) + 𝐿 ·
𝑑𝑖𝑐(𝑡)

𝑑𝑡
+ 𝑒𝑔,𝑐(𝑡)

(3. 1) 
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Figure 3.2. Schematic circuit of an L-filter  
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3.2.2.1. Stationary reference frame 
If the variables are considered as vectors, and developing the transformation to the 
stationary 𝛼𝛽 reference frame, the expression (3.2) is obtained. The transformation 
matrix [𝑇𝑎𝑏𝑐→𝛼𝛽] is detailed in Appendix B. 

𝑢 ⃗𝛼𝛽(𝑡) = 𝑇𝑎𝑏𝑐→𝛼𝛽 · 𝑢�⃗�𝑏𝑐(𝑡) = 𝑅 · 𝚤�⃗�𝛽(𝑡) + 𝐿 ·
𝑑𝚤�⃗�𝛽(𝑡)

𝑑𝑡
+ 𝑒�⃗�,𝛼𝛽(𝑡) (3. 2) 

Where the 𝛼𝛽 representation is defined in the complex domain for each variable as 
𝑥�⃗�𝛽(𝑡) = 𝑥𝛼(𝑡) + 𝑗𝑥𝛽(𝑡). The resultant complex-valued transfer function from the 
converter output voltage to the converter output current is (3.3). The transfer function 
describes a first-order time-delay element characteristics. 

𝐺�⃗�𝛽
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠)|𝑒�⃗�,𝛼𝛽(𝑠)=0 =

𝐼�⃗�𝛽(𝑠)
𝑈⃗
𝛼𝛽(𝑠)

=
1

𝐿 · 𝑠 + 𝑅
(3. 3) 

3.2.2.2. Rotating reference frame 
By applying the Park transformation (3.4) to (3.2), that is, to transform each complex-
valued vector 𝑥�⃗�𝛽 from the stationary 𝛼𝛽 reference frame into the rotating dq reference 
frame, the linear differential equation (3.5) is obtained. 

𝑥�⃗�𝑞(𝑡) = 𝑥�⃗�𝛽(𝑡) · 𝑒−𝑗𝜔𝑘·𝑡 (3. 4) 

𝑢�⃗�𝑞(𝑡) = 𝑢 ⃗𝑎𝑏𝑐(𝑡) · 𝑒−𝑗𝜔𝑘·𝑡 = 𝑅 · 𝚤�⃗�𝑞(𝑡) + 𝐿 ·
𝑑𝚤�⃗�𝑞(𝑡)

𝑑𝑡
+ 𝑗𝜔𝑘 · 𝐿 · 𝚤�⃗�𝑞(𝑡)⏟⏟⏟⏟⏟⏟⏟

𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

+ 𝑒�⃗�,𝑑𝑞(𝑡) (3. 5) 

Where the dq representation is defined in the complex domain for each variable as 
𝑥�⃗�𝑞(𝑡) = 𝑥𝑑(𝑡) + 𝑗𝑥𝑞(𝑡). The angular frequency of the rotating reference 𝜔𝑘 is time 
variant for variable frequency applications (machines) and time-invariant for constant 
frequency applications (grid at 50 Hz). A cross-coupling effect appears in the linear 
differential equation, which results in a complex-valued transfer function (3.6) with a 
new summand at the denominator. 

𝐺�⃗�𝑞
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠)𝑒�⃗�,𝑑𝑞(𝑠)=0 =

𝐼�⃗�𝑞(𝑠)
𝑈�⃗�𝑞(𝑠)

=
1

𝐿 · 𝑠 + 𝑅 + 𝑗𝜔𝑘 · 𝐿
(3. 6) 

The cross-coupling effects are usually canceled by the corresponding feedforward 
expression in each axis, so the transfer function is no longer complex-valued. Then, the 
transfer function for each axis is like the one presented in (3.3) for the stationary 𝛼𝛽 
reference frame. However, for complex-valued controller designs, the cross-coupling 
effects must be considered, and one way to quantify it is by means of the quotient of 
the imaginary-part divided by the real-part of  𝐺�⃗�𝑞

𝐿−𝑓𝑖𝑙𝑡𝑒𝑟: 

𝐹𝑑𝑞
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑗𝜔) =

𝐼𝑚{𝐺�⃗�𝑞
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑗𝜔)}

𝑅𝑒{𝐺�⃗�𝑞
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑗𝜔)}

= −
𝜔𝑘 · 𝐿

𝑅 + 𝑗𝜔 · 𝐿
(3. 7) 

This cross-coupling function is a low-pass filter with the corner frequency 𝜔𝑐 = 𝑅/𝐿. 
Hence, the cross-coupling effects become significantly high for systems with large 
output angular frequencies 𝜔𝑘 and low resistance and/or high inductance. 
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Finally, the system in rotating dq reference frame can also be modeled in the 
continuous-domain space-state as (3.8). This will be useful because the IR multirate 
modelling needs this representation. 

{𝑥 ⃗(̇𝑡) = 𝐴 · 𝑥(⃗𝑡) +𝐵 · �⃗⃗⃗⃗⃗⃗�(𝑡)
𝑦(⃗𝑡) = 𝐶 · 𝑥(⃗𝑡) + 𝐷 · �⃗⃗⃗⃗⃗⃗�(𝑡)

(3. 8) 

Where: 

𝑥(⃗𝑡) = 𝑦(⃗𝑡) = [𝑖𝑑(𝑡) 𝑖𝑞(𝑡)]𝑇

�⃗⃗⃗⃗⃗⃗�(𝑡) = [𝑢𝑑(𝑡) 𝑢𝑞(𝑡) 𝑒𝑔,𝑑(𝑡) 𝑒𝑔,𝑞(𝑡)]𝑇
(3. 9) 

 

𝐴 = [−𝑅/𝐿 𝜔𝑘
−𝜔𝑘 −𝑅/𝐿

] 𝐵 = [1/𝐿 0 −1/𝐿 0
0 1/𝐿 0 −1/𝐿

]

𝐶 = [1 0
0 1] 𝐷 =⊘2𝑥4

(3. 10) 

The terms in B related to the voltage 𝑒�⃗�,𝑑𝑞 are neglected because it is not a controllable 
variable, and it is considered as an external disturbance. In the case of this system, 
which operates with complex-valued signals, and for the sake of better understanding of 
the IR model technique presented before in subsection 2.3.1.2. , (3.11) shows the 
corresponding complex-valued state-space system. 

{𝑥 ⃗(̇𝑡) = 𝐴 · 𝑥(⃗𝑡) +𝐵 · �⃗⃗⃗⃗⃗⃗�(𝑡)
𝑦(⃗𝑡) = 𝐶 · 𝑥(⃗𝑡) + 𝐷 · �⃗⃗⃗⃗⃗⃗�(𝑡)

(3. 11) 

Where: 

𝑥(⃗𝑡) = 𝑦(⃗𝑡) = [𝚤�⃗�𝑞(𝑡)]
�⃗⃗⃗⃗⃗⃗�(𝑡) = [𝑢�⃗�𝑞(𝑡) 𝑒�⃗�,𝑑𝑞(𝑡)]𝑇

(3. 12) 

𝐴 = [−
𝑅
𝐿

− 𝑗𝜔𝑘] 𝐵 = [1/𝐿 −1/𝐿]

𝐶 = [1] 𝐷 =⊘1𝑥2

(3. 13) 

3.2.3. LC-filter model 
The LC filter is another usual interface between a voltage source and the power 
converter. It is usually used for grid-tied applications. The differential equations that 
define the schematic circuit in Figure 3.3 are (3.14). 
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Figure 3.3. Schematic circuit of an LC-filter 
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𝑢 ⃗(𝑡) = 𝑅𝑓 · 𝚤1⃗(𝑡) + 𝐿𝑓 ·
𝑑𝚤1⃗(𝑡)

𝑑𝑡
+ 𝑢�⃗�(𝑡)

𝚤1⃗(𝑡) = 𝐶𝑓 ·
𝑑𝑢�⃗�(𝑡)

𝑑𝑡
+ 𝚤2⃗(𝑡)

𝑢�⃗�(𝑡) = 𝑅𝑔 · 𝚤2⃗(𝑡) + 𝐿𝑔 ·
𝑑𝚤2⃗(𝑡)

𝑑𝑡
+ 𝑒�⃗�(𝑡)

(3. 14) 

Where: 

𝑥(⃗𝑡) = [𝑥𝑎(𝑡) 𝑥𝑏(𝑡) 𝑥𝑐(𝑡)]𝑇 (3. 15) 

3.2.3.1. Stationary reference frame 
As it was deduced in the previous model, developing the transformation to the 
stationary 𝛼𝛽 reference frame, the expression (3.16) is obtained. 

𝑢�⃗�𝛽(𝑡) = 𝑅𝑓 · 𝚤1⃗,𝛼𝛽(𝑡) + 𝐿𝑓 ·
𝑑𝚤1⃗,𝛼𝛽(𝑡)

𝑑𝑡
+ 𝑢�⃗�,𝛼𝛽(𝑡)

𝚤1⃗,𝛼𝛽(𝑡) = 𝐶𝑓 ·
𝑑𝑢�⃗�,𝛼𝛽(𝑡)

𝑑𝑡
+ 𝚤2⃗,𝛼𝛽(𝑡)

𝑢�⃗�,𝛼𝛽(𝑡) = 𝑅𝑔 · 𝚤2⃗,𝛼𝛽(𝑡) + 𝐿𝑔 ·
𝑑𝚤2⃗,𝛼𝛽(𝑡)

𝑑𝑡
+ 𝑒�⃗�𝛽(𝑡)

(3. 16) 

Where the 𝛼𝛽 representation is defined in the complex domain for each variable as 
𝑥�⃗�𝛽(𝑡) = 𝑥𝛼(𝑡) + 𝑗𝑥𝛽(𝑡).  

The complex-valued transfer function in the stationary 𝛼𝛽 reference frame that relates 
the converter output voltage, 𝑢�⃗�𝛽, with the grid current, 𝚤2⃗,𝛼𝛽, is (3.17). The voltage 
𝑒�⃗�,𝛼𝛽 is considered as a disturbance. 

𝐺�⃗�𝛽
𝐿𝐶−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =

𝐼2⃗,𝛼𝛽(𝑠)
𝑈�⃗�𝛽(𝑠) |𝑒�⃗�,𝛼𝛽(𝑠)=0

=

=
1

𝐶𝑓𝐿𝑔𝐿𝑓 · 𝑠3 + 𝐶𝑓(𝐿𝑔𝑅𝑓 + 𝐿𝑓𝑅𝑔) · 𝑠2 + (𝐶𝑓𝑅𝑔𝑅𝑓 + 𝐿𝑓 + 𝐿𝑔) · 𝑠 + 𝑅𝑔 + 𝑅𝑓

(3. 17) 

The main objective of the LCL filter is to reduce the high-order current harmonics at 
the used switching frequency. For the n-harmonic, neglecting resistors effect, the 
transfer function between the grid current 𝚤�⃗�2,𝛼𝛽 and the converter output voltage 𝑢�⃗�

𝛼𝛽 
is (3.18). According to this transfer function, the LC filter resonance frequency (that 
corresponds to zero impedance) is given by (3.19). 

𝐻𝛼𝛽𝑛 =
𝐼�⃗�

2,𝛼𝛽(𝑠)
𝑈⃗𝑛

𝛼𝛽(𝑠)
=

1
𝐶𝑓𝐿𝑔𝐿𝑓 · 𝑠3 + (𝐿𝑓 + 𝐿𝑔) · 𝑠

(3. 18) 

𝜔𝑟𝑒𝑠
2 = (2𝜋𝑓𝑟𝑒𝑠)2 =

𝐿𝑔 + 𝐿𝑓

𝐿𝑔 · 𝐿𝑓 · 𝐶𝑓
(3. 19) 

To avoid resonance problems, the resonance frequency must be higher than 10 times 
the operating frequency (grid-tied applications, so grid frequency is 𝑓𝑔 = 𝑓𝑘) and less 
than one-half of the switching frequency 𝑓𝑆𝑊 . Therefore, the equation (3.20) must be 
verified to avoid resonance problems due to large grid impedance variations, and 
possible capacitor values error.  



Chapter 3. Modelling and multirate applications 

71 

10 · 𝑓𝑔 < 𝑓𝑟𝑒𝑠 < 𝑓𝑆𝑊 /2 (3. 20) 

Since the LC filter resonance frequency is in the middle of that boundary region, it is 
common to consider the capacitor impedance negligible for high and low frequencies. In 
this case, the converter will only see the impedance of the inductor. So, the transfer 
function (3.17) is approximated as (3.21). 

𝐺�⃗�𝛽
𝐿𝐶−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =

𝐼2⃗,𝛼𝛽(𝑠)
𝑈�⃗�𝛽(𝑠) |𝑒�⃗�,𝛼𝛽(𝑠)=0

≈
1

(𝐿𝑓 + 𝐿𝑔) · 𝑠 + 𝑅𝑔 + 𝑅𝑓
(3. 21) 

3.2.3.2. Rotating reference frame 
By applying the Park transformation, the linear differential equations (3.22) in the 
rotating dq reference frame are obtained. 

𝑢�⃗�𝑞(𝑡) = 𝑅𝑓 · 𝚤1⃗,𝑑𝑞(𝑡) + 𝐿𝑓 ·
𝑑𝚤1⃗,𝑑𝑞(𝑡)

𝑑𝑡
+ 𝑗𝜔𝑘 · 𝐿𝑓 · 𝚤1⃗,𝑑𝑞(𝑡)⏟⏟⏟⏟⏟⏟⏟

𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

+ 𝑢�⃗�,𝑑𝑞(𝑡)

𝚤1⃗,𝑑𝑞(𝑡) = 𝐶𝑓 ·
𝑑𝑢�⃗�,𝑑𝑞(𝑡)

𝑑𝑡
+ 𝑗𝜔𝑘 · 𝐶𝑓 · 𝑢 ⃗𝑐,𝑑𝑞(𝑡) + 𝚤2⃗,𝑑𝑞(𝑡)

𝑢�⃗�,𝑑𝑞(𝑡) = 𝑅𝑔 · 𝚤2⃗,𝑑𝑞(𝑡) + 𝐿𝑔 ·
𝑑𝚤2⃗,𝑑𝑞(𝑡)

𝑑𝑡
+ 𝑗𝜔𝑘 · 𝐿𝑔 · 𝚤2⃗,𝑑𝑞(𝑡)⏟⏟⏟⏟⏟⏟⏟

𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

+ 𝑒𝑔,𝑑𝑞(𝑡)

(3. 22) 

Where the dq representation is defined in the complex domain for each variable as 
𝑥�⃗�𝑞(𝑡) = 𝑥𝑑(𝑡) + 𝑗𝑥𝑞(𝑡) and  𝜔𝑘 is the angular frequency of the rotating reference.  

Again, a cross-coupling summand appears in the equations, so there is a new summand 
in the denominator of the complex-valued transfer function (3.23). It is a difficult 
transfer function to work with, but an approximation can be done if the capacitor is 
neglected, as in the stationary reference frame. Then, the approximated model is (3.25). 

𝐺�⃗�𝑞
𝐿𝐶−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =

𝐼2⃗,𝑑𝑞(𝑠)
𝑈⃗

𝑑𝑞(𝑠) |𝑒�⃗�𝑞(𝑠)=0

=
1

𝑑𝑒𝑛(𝑠)
(3. 23) 

𝑑𝑒𝑛(𝑠) = 𝐶𝑓𝐿𝑔𝐿𝑓 · 𝑠3 + 𝐶𝑓 ((𝐿𝑔𝑅𝑓 + 𝐿𝑓𝑅𝑔) + 𝑗3𝜔𝑘𝐿𝑓𝐿𝑔) · 𝑠2 +

+ (𝐶𝑓(𝑅𝑔𝑅𝑓 − 3𝐿𝑓𝐿𝑔𝜔𝑘
2) + 𝐿𝑓 + 𝐿𝑔 + 𝑗2𝜔𝑘𝐶𝑓(𝐿𝑓𝑅𝑔 + 𝐿𝑔𝑅𝑓)) · 𝑠 +

+𝑅𝑔 + 𝑅𝑓 + 𝑗𝜔𝑘 (𝐿𝑓 + 𝐿𝑔 + 𝐶𝑓(𝑅𝑓𝑅𝑔 − 𝐿𝑓𝐿𝑔𝜔𝑘
2)) − 𝐶𝑓𝜔𝑘

2(𝐿𝑓𝑅𝑔 + 𝐿𝑔𝑅𝑓)

(3. 24) 

𝐺�⃗�𝑞
𝐿𝐶−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =

𝐼2⃗,𝑑𝑞(𝑠)
𝑈⃗

𝑑𝑞(𝑠) |𝑒�⃗�,𝑑𝑞(𝑠)=0

≈
1

(𝐿𝑓 + 𝐿𝑔) · 𝑠 + 𝑅𝑔 + 𝑅𝑓 + 𝑗𝜔𝑘 · (𝐿𝑓 + 𝐿𝑔)
(3. 25) 

The system in rotating dq reference frame can also be modeled in the continuous-
domain space-state with scalar variables as (3.26). A complex-valued space-state is 
shown in (3.29), which operates with complex-valued signals for a better understanding 
of IR modelling. For controller design purposes, the voltage 𝑒�⃗�,𝑑𝑞 is considered as a 
disturbance. 

{𝑥 ⃗(̇𝑡) = 𝐴 · 𝑥(⃗𝑡) +𝐵 · �⃗⃗⃗⃗⃗⃗�(𝑡)
𝑦(⃗𝑡) = 𝐶 · 𝑥(⃗𝑡) + 𝐷 · �⃗⃗⃗⃗⃗⃗�(𝑡)

(3. 26) 
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Where: 

𝑥(⃗𝑡) = [𝑖1,𝑑(𝑡) 𝑖1,𝑞(𝑡) 𝑖2,𝑑(𝑡) 𝑖2,𝑞(𝑡) 𝑢𝑐,𝑑(𝑡) 𝑢𝑐,𝑞(𝑡)]𝑇

�⃗⃗⃗⃗⃗⃗�(𝑡) = [𝑢𝑑(𝑡) 𝑢𝑞(𝑡) 𝑒𝑔,𝑑(𝑡) 𝑒𝑔,𝑞(𝑡)]𝑇

𝑦(⃗𝑡) = [𝑖2,𝑑(𝑡) 𝑖2,𝑞(𝑡)]𝑇
(3. 27) 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

−𝑅𝑓/𝐿𝑓 𝜔𝑘 0 0 −1/𝐿𝑓 0
−𝜔𝑘 −𝑅𝑓/𝐿𝑓 0 0 0 −1/𝐿𝑓

0 0 −𝑅𝑔/𝐿𝑔 𝜔𝑘 1/𝐿𝑔 0
0 0 −𝜔𝑘 −𝑅𝑔/𝐿𝑔 0 1/𝐿𝑔

1/𝐶𝑓 0 −1/𝐶𝑓 0 0 𝜔𝑘

0 1/𝐶𝑓 0 −1/𝐶𝑓 −𝜔𝑘 0 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1/𝐿𝑓 0 0 0
0 1/𝐿𝑓 0 0
0 0 −1/𝐿𝑔 0
0 0 0 −1/𝐿𝑔
0 0 0 0
0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝐶 = [0 0 0 1 0 0
0 0 1 0 0 0] 𝐷 =⊘2𝑥4

(3. 28) 

{𝑥 ⃗(̇𝑡) = 𝐴 · 𝑥(⃗𝑡) +𝐵 · �⃗⃗⃗⃗⃗⃗�(𝑡)
𝑦(⃗𝑡) = 𝐶 · 𝑥(⃗𝑡) + 𝐷 · �⃗⃗⃗⃗⃗⃗�(𝑡)

(3. 29) 

Where: 

𝑥(⃗𝑡) = [𝚤1⃗,𝑑𝑞(𝑡) 𝚤2⃗,𝑑𝑞(𝑡) 𝑢 ⃗𝑐,𝑑𝑞(𝑡)]𝑇

�⃗⃗⃗⃗⃗⃗�(𝑡) = [𝑢�⃗�𝑞(𝑡) 𝑒�⃗�,𝑑𝑞(𝑡)]𝑇

𝑦(⃗𝑡) = [𝚤2⃗,𝑑𝑞(𝑡)]
(3. 30) 

𝐴 =
⎣
⎢
⎡

−𝑅𝑓/𝐿𝑓 − 𝑗𝜔𝑘 0 −1/𝐿𝑓

0 −𝑅𝑔/𝐿𝑔 − 𝑗𝜔𝑘 1/𝐿𝑔
1/𝐶𝑓 −1/𝐶𝑓 −𝑗𝜔𝑘 ⎦

⎥
⎤

𝐵 =
⎣
⎢⎡

1/𝐿𝑓 0
0 −1/𝐿𝑔
0 0 ⎦

⎥⎤ 𝐶 = [0 1 0] 𝐷 =⊘1𝑥2

(3. 31) 

3.2.4. LCL-filter model 
The proceedings with LCL filter are like the ones shown in LC-filter modelling. The 
differential equations that define the schematic circuit in Figure 3.4 are (3.32).  

𝑢 ⃗(𝑡) = 𝑅1 · 𝚤1⃗(𝑡) + 𝐿1 ·
𝑑𝚤1⃗(𝑡)

𝑑𝑡
+ 𝑢 ⃗𝑐(𝑡)

𝚤1⃗(𝑡) = 𝐶𝑓 ·
𝑑𝑢�⃗�(𝑡)

𝑑𝑡
+ 𝚤2⃗(𝑡)

𝑢 ⃗𝑐(𝑡) = 𝑅2
𝑔 · 𝚤2⃗(𝑡) + 𝐿2

𝑔 ·
𝑑𝚤2⃗(𝑡)

𝑑𝑡
+ 𝑒(𝑡)

(3. 32) 

Now the grid-side impedance is 𝑍2
𝑔 = 𝑍2 + 𝑍𝑔, so all previous models are also valid 

changing 𝑅𝑔 and 𝐿𝑔 by 𝑅2
𝑔 and 𝐿2

𝑔, respectively. Besides, 𝑍𝑓  is called 𝑍1 now. 
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Figure 3.4. Schematic circuit of an LCL-filter 

3.2.5. Discretization 
The discretization method for the previous continuous-time system models is by means 
of ZOH operation. In the case of the complex-valued transfer function, the discrete-
time model will be obtained as (3.33), where T is the discretization period, and 𝐺(𝑠) is 
the plant model in stationary 𝛼𝛽 or rotating dq reference frame, depending on the 
reference frame where the controller will be designed. If the system has a fractional 
delay, the modified Z-transform will be used as it is detailed in Appendix A. 

𝐺𝑇 (𝑧) = 𝒵𝑇 [
1 − 𝑒−𝑠𝑇

𝑠
· 𝐺(𝑠)] (3. 33) 

The discrete-time space-state model with ZOH discretization at period T is defined by 
(3.34). This model will be useful for the multirate closed-loop system that will be 
detailed in the following chapter. 

{𝑥(⃗𝑘 + 1) = 𝐺 · 𝑥(⃗𝑘) +𝐻 · �⃗⃗⃗⃗⃗⃗�(𝑘)
𝑦(⃗𝑘) = 𝐶 · 𝑥(⃗𝑘) + 𝐷 · �⃗⃗⃗⃗⃗⃗�(𝑘) (3. 34) 

Where: 

𝐺 = 𝑒𝐴·𝑇

𝐻 = [𝑒𝐴·𝑇 − 𝐼] ·𝐴−1 ·𝐵 (3. 35) 

Every digital implementation of control algorithm has an inherent unit delay T, usually 
known as computational delay, which lead to a new state. The computational delay has 
also to be considered for a correct choice of the transformation angle to get the rotating 
dq reference frame. Since the transformation angle is delayed by the computational 
time, the transformation law (3.36) between the stationary and rotating frame is 
applied. The formulation distinguishes between applied voltage by the VSC, 𝑢�⃗�𝑆𝐶(𝑡), 
and the calculated variable that is based on the samples taken T seconds before, 
𝑢�⃗�𝑒𝑓(𝑡). Thus, the new state is 𝑢�⃗�𝑆𝐶(𝑘)(3.37). 

𝑢�⃗�𝑞
𝑟𝑒𝑓(𝑡 − 𝑇 ) = 𝑢�⃗�𝛽

𝑟𝑒𝑓(𝑡 − 𝑇 ) · 𝑒−𝑗𝜔𝑘·(𝑡−𝑇) (3. 36) 

Applying transformation law (3.37), the complex-valued transfer function of the 
computational delay in dq-frame is obtained (3.38). 
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𝑢 ⃗𝑑𝑞
𝑉𝑆𝐶(𝑡) = 𝑢�⃗�𝑞

𝑟𝑒𝑓(𝑡 − 𝑇 ) · 𝑒−𝑗𝜔𝑘·𝑇 (3. 37) 

𝐺�⃗�𝑞
𝑠𝑎𝑚𝑝𝑙𝑒→𝑢𝑝𝑑𝑎𝑡𝑒(𝑠) =

𝑈�⃗�𝑞
𝑉𝑆𝐶(𝑠)

𝑈�⃗�𝑞
𝑟𝑒𝑓(𝑠)

= 𝑒−𝑠·𝑇 · 𝑒−𝑗𝜔𝑘·𝑇⏟
𝑐𝑟𝑜𝑠𝑠−𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

(3. 38) 

This cross-coupling term must be added to each model in dq-frame, whereas in the 𝛼𝛽-
frame is only considered the unit delay. Therefore, the corresponding discrete space-
state L-filter model in 𝛼𝛽-frame and dq-frame are (3.39) and (3.40), respectively.  

𝑥(⃗𝑘) = [𝑢 ⃗𝛼𝛽𝑉𝑆𝐶(𝑘) 𝚤�⃗�𝛽(𝑘)]𝑇 𝑦(⃗𝑘) = [𝚤�⃗�𝛽(𝑘)]

�⃗⃗⃗⃗⃗⃗�(𝑘) = [𝑢�⃗�𝛽
𝑟𝑒𝑓(𝑘) 𝑒�⃗�,𝛼𝛽(𝑘)]

𝑇

𝐺 =
⎣
⎢⎡

0 0
1 − 𝑒−𝑅

𝐿·𝑇

𝑅
𝑒−𝑅

𝐿·𝑇
⎦
⎥⎤ 𝐻 =

⎣
⎢⎡

1 0

0 −
1 − 𝑒−𝑅

𝐿·𝑇

𝑅 ⎦
⎥⎤

𝐶 = [0 1] 𝐷 =⊘1𝑥2

(3. 39) 

𝑥(⃗𝑘) = [𝑢 ⃗𝑑𝑞
𝑉𝑆𝐶(𝑘) 𝚤�⃗�𝑞(𝑘)]𝑇 𝑦(⃗𝑘) = [𝚤�⃗�𝑞(𝑘)]

�⃗⃗⃗⃗⃗⃗�(𝑘) = [𝑢 ⃗𝑑𝑞
𝑟𝑒𝑓(𝑘) 𝑒�⃗�,𝑑𝑞(𝑘)]

𝑇

𝐺 =
⎣
⎢
⎡

0 0
1 − 𝑒−(𝑅

𝐿+𝑗𝜔𝑘)·𝑇

𝑅 + 𝑗𝜔𝑘 · 𝐿
𝑒−(𝑅

𝐿+𝑗𝜔𝑘)·𝑇

⎦
⎥
⎤ 𝐻 =

⎣
⎢
⎡

𝑒−𝑗𝜔𝑘·𝑇 0

0 −
1 − 𝑒−(𝑅

𝐿+𝑗𝜔𝑘)·𝑇

𝑅 + 𝑗𝜔𝑘 · 𝐿 ⎦
⎥
⎤

𝐶 = [0 1] 𝐷 =⊘1𝑥2

(3. 40) 

𝑥(⃗𝑘) = [𝑢�⃗�𝛽𝑉𝑆𝐶(𝑘) 𝚤1⃗,𝛼𝛽(𝑘) 𝚤2⃗,𝛼𝛽(𝑘) 𝑢�⃗�,𝛼𝛽(𝑘)]𝑇 𝑦(⃗𝑘) = [𝚤2⃗,𝛼𝛽(𝑘)]

�⃗⃗⃗⃗⃗⃗�(𝑘) = [𝑢�⃗�𝛽
𝑟𝑒𝑓(𝑘) 𝑒�⃗�,𝛼𝛽(𝑘)]

𝑇

𝐺 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0 0

−
e
−

(𝑅𝑓+1)·𝑇
𝐿𝑓 ·(𝑒𝑇/𝐿𝑓 + 𝑅𝑔 · 𝑒

𝑅𝑓
𝐿𝑓

·𝑇
)

𝑅𝑓 + 𝑅𝑔
𝑒

−
𝑅𝑓
𝐿𝑓

·𝑇
1 𝑒−𝑇/𝐿𝑓

−
𝑒

−
𝑅𝑔
𝐿𝑔

·𝑇
·(𝑅𝑔 · 𝑒

(𝑅𝑔+1)·𝑇
𝐿𝑔 + 1)

𝑅𝑓 + 𝑅𝑔
1 𝑒

−
𝑅𝑔
𝐿𝑔

·𝑇
𝑒𝑇/𝐿𝑔

−
cosh( 𝑇

𝐶𝑓
) · 2

𝑅𝑓 + 𝑅𝑔
𝑒𝑇/𝐶𝑓 𝑒−𝑇/𝐶𝑓 1

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
e
−

(𝑅𝑓+1)·𝑇
𝐿𝑓 ·(𝑒𝑇/𝐿𝑓 − 𝑅𝑓 · 𝑒

𝑅𝑓
𝐿𝑓

·𝑇
)

𝑅𝑓 + 𝑅𝑔

0 −
𝑒

−
𝑅𝑔
𝐿𝑔

·𝑇
·(𝑅𝑓 · 𝑒

(𝑅𝑔+1)·𝑇
𝐿𝑔 − 1)

𝑅𝑓 + 𝑅𝑔

0
cosh( 𝑇

𝐶𝑓
) · 2

𝑅𝑓 + 𝑅𝑔 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐶 = [0 0 1 0] 𝐷 =⊘1𝑥2

(3. 41) 
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The discrete space-state LC-filter model in 𝛼𝛽-frame is (3.41). The dq-frame discrete-
time equivalent is not represented here due to its unworkable large symbolic 
expression, but it is easily obtained following the correct steps of discretization and 
application of the unit delay with cross-coupling effect.  

The LCL-filter case is effortlessly extrapolated from the LC-filter, as it was previously 
indicated. From the previous deduction is clear that LC and LCL-filters have a large 
expression model, but they could be approximated to an L-filter at low frequencies. 
Therefore, the L-filter model will be used to design controllers and to analyze multirate 
control techniques in Chapter 4. 

3.3. Multirate applications 

3.3.1. Purpose 
This subsection exposes a few possible applications where the multirate cases can be 
found in VSC controllers. The scope of this document will be in MRIC or extrapolation 
cases, where there is a sampling at low rate, but the actuation can be updated with a 
fast rate. There are MROC or decimation cases where the signal is sampled at fast 
rate, but there is a limitation in the actuation with slow rate, so an optimum controller 
must be found to get the best possible response. However, this last proposal is not 
analyzed in this work, and future research will be carried out. 

3.3.2. Reduction of the DSPWM delay 
In subsection 2.2.3.2. there is a proposal of a different actuation for the DSPWM 
modulator. As it was previously said, there is a problem with multisampling and it is 
that the current is sampled at instants that are not carrier signal minima and maxima, 
which leads to the sampling of switching noise. The target of multisampling is to 
reduce the 𝑇/2 delay in the DSPWM process, which is inherent to ZOH operations, by 
updating the modulating signal more than two times each carrier period. This can be 
achieved with two techniques: compensation by advancing the modulating signal phase; 
extrapolation of the sinusoidal signal. 

3.3.2.1. Phase advancing compensation 
As authors in [41] suggest, the 𝑇/2  delay can be compensated by phase advancing the 
modulating signal waveform. The usual phase compensation also includes T delay, 
characteristic to the digital processing of the signal. If it is not included in the 
controller design loop, the overall temporal phase compensation is 3𝑇/2. That is, the 
overall delay can be contained within the plant model, or it can be compensated. 

The phase advancing, which is in radians, must be the corresponding to the controlled 
frequency of the sinusoidal modulating signal. The VSC is usually connected to three-
wire grid, so the controlled frequencies are the fundamental 50 Hz and its harmonics 
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(typically -5, 7, -11 and 13 with positive or negative sequence), which must have their 
corresponding phase advancing.  

The phase advancing of 𝑇/2  can be applied in either stationary 𝛼𝛽 reference frame or 
rotating dq reference frame. In the stationary reference frame, the phase advancing is 
obtained by multiplying output signal of the controller 𝑢ℎ𝑛,𝛼𝛽 by the corresponding 
complex number as it is denoted by (3.42), where n is the harmonic order, that might 
be negative. Hence, at each current controller output, there is a phase advancing 
algorithm as it is depicted in Figure 3.5. 

𝑢 ⃗ℎ𝑛,𝛼𝛽
∗ = 𝑢ℎ⃗𝑛,𝛼𝛽 · 𝑒𝑗𝜔𝑛·𝑇/2 (3. 42) 
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𝑒𝑗𝜔1 ·𝑇 /2 
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DSPWM Gate drive 
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Figure 3.5. Block diagram of phase delay compensation in stationary reference frame 

In the rotating reference frame, the phase advancing is applied through the reference 
frame transformation to 𝛼𝛽-frame, that is sum of phase from PLL 𝜃1 and phase 
advancing of 𝜔𝑛 · 𝑇/2 radians, as it is shown in (3.43). Hence, at each current 
controller output there is a phase advancing block as it is depicted in Figure 3.6. Please 
note that in the dq-frame the frequency of each harmonic changes to the referenced one 
to the fundamental frequency. 

𝑢ℎ⃗𝑛,𝛼𝛽
∗ = 𝑢ℎ⃗(𝑛−1),𝑑𝑞 · 𝑒𝑗(𝜃1+𝜔𝑛·𝑇/2) (3. 43) 
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Figure 3.6. Block diagram of phase delay compensation in rotating reference frame 
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Figure 3.7 illustrates the effect of phase advancing, so the delayed signal in double-
update mode approximately matches the same point in carrier signal as naturally-
sampled signal. The approximation is better with higher modulation index 𝑚𝑎, in the 
given example, modulation index is exactly the unity, but the crossing fails with low 
duty-cycle. However, it obtains a good approximation. 

 
Figure 3.7. Regular sampling with phase advanced modulating signal (double-update mode). 

Parameters: 𝒇𝑺𝑾 = 𝟐. 𝟓 𝒌𝑯𝒛, 𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻 = 𝟐𝟎𝟎 𝝁𝒔, 𝒎𝒂 = 𝟏 

Therefore, the model must consider this compensation to correctly design the controller 
because Z-transform by means of ZOH operation already considers this 𝑇/2 delay. 
Besides, this alternative does not fit well the amplitude at higher frequencies. The next 
subsection proposes a new approach on the modulating signal update where the last 
deduction is correctly treated.  

3.3.2.2. Extrapolation of the modulating signal 
The multisampling approach lead to the possibility of a new alternative where the 
modulating signal is updated a N number of times greater than one within a half 
carrier period (considering double-update mode). The basic principle is exactly the 
same that was explained in subsection 2.2.3.2. , but, now, the sampling instants take 
place in the carrier maxima and minima. Hence, switching noise is not sampled, and 
the modulating signal is extrapolated with multirate techniques that will be presented 
in Chapter 4 or using the sinusoidal extrapolation presented here with single-rate 
controllers. The proposed method is depicted in Figure 3.8. 

There are some polynomial extrapolation methods that will be shown later in this 
chapter that extrapolate the sinusoidal signal, but it is not the most accurate way. The 
best extrapolation method is deduced by taking advantage of the rotating dq reference 
frame transformation. Basically, the extrapolated signal in discrete-time follows the 
expression (3.44), where N is a number that relates the fast rate T and the slow rate 
𝑇0. 

𝑢ℎ⃗𝑛,𝛼𝛽
𝐸 [𝑘 · 𝑇0 + 𝑝 · 𝑇 ] = 𝑢ℎ⃗(𝑛−1),𝑑𝑞[𝑘 · 𝑇0] · 𝑒𝑗·𝜃1[𝑘·𝑇0+𝑝·𝑇 ]

𝑘 ∈ ℕ
𝑝 = 0, 1, 2,… , 𝑁 − 1

(3. 44) 
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Figure 3.8. Proposed extrapolation method for DSPWM for 𝑵 = 𝟐 (double-update mode) 

This approach requires future values of phase 𝜃1, which are easily extrapolated because 
the grid frequency does not change a lot (usually 50 Hz), and due to its integration, the 
phase 𝜃1 is a ramp signal. The extrapolation in (3.44) fits right the sinusoidal signal of 
50 Hz, because the given phase is the corresponding to the fundamental frequency, but 
it is incorrect for other harmonics. The correct treatment of every harmonic is (3.45). 
However, the PLL only gives the fundamental voltage phase, so other proposal must be 
carried out. If the harmonics match their zero-crossings (equivalent initial phase), each 
harmonic phase can be found as (3.46). Also, each harmonic must have its own dq-
frame which lead to additional computational burden due to the transformation to each 
reference frame. 

𝑢ℎ⃗𝑛,𝛼𝛽
𝐸 [𝑘 · 𝑇0 + 𝑝 · 𝑇 ] = 𝑢ℎ⃗(𝑛−1),𝑑𝑞[𝑘 · 𝑇0] · 𝑒𝑗·𝜃𝑛[𝑘·𝑇0+𝑝·𝑇 ]

𝑘 ∈ ℕ
𝑝 = 0, 1, 2,… , 𝑁 − 1

(3. 45) 

𝜃𝑛(𝑘) = 𝑛 · 𝜃1(𝑘) (3. 46) 
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Figure 3.9. Block diagram of the current control loop with extrapolation of modulating 

signal 
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This document will be only focused on the grid fundamental frequency (50 Hz) for 
simplicity. As an example, a simple approach is given, the modulating signal is 
extrapolated with this technique, without considering the effects of extrapolation in the 
controller design, and its scope is the minimization of the 𝑇/2 delay. The block 
diagram of this structure is presented in Figure 3.9. For greater precision, the phase 
advancing can also be applied to this technique, being T the fast rate. 

The extrapolated modulating signal is compared at different situations in Figure 3.11. 
On one hand, the modulating signal at fast rate without phase advancing is compared 
with the one at slow rate without (a) and with (b) phase advancing. On the other 
hand, the modulating signal at fast rate with phase advancing is compared with the 
one at slow rate without (c) and with (d) phase advancing. It is shown that the 
extrapolation obtains better approximations of carrier crossings of the naturally-
sampled modulating signal. Mainly, it gets correct crossings at low duty-cycle values. 

There is an issue with this approach that was previously presented in Figure 2.27. The 
modulating signal must not cross the carrier more than one time per one-half carrier 
period 𝑇𝑆𝑊 , and this could occur due to discrete values of the modulating signal. 
Therefore, to ensure only one carrier crossing per 𝑇𝑆𝑊/2, the first crossing is 
considered as the correct, and the switching device is forced to only switch that time. 
This approach allows real-time operation of the DSPWM actuator. Figure 3.10 and 
Figure 3.12 depict the parametric simulation of the case where there is no phase 
advancing in the extrapolated signal. Please note that the anomalous values are 
consequence of the time step resolution of the parametric simulation. 

From the parametric simulation, it is seen that the amplitude error is reduced at high 
frequencies, but the delay almost matches 𝑇/2 at low frequencies. At high frequencies 
the delay takes values around 𝑇0/2, and it is inevitable to ensure one crossing per 
𝑇𝑆𝑊 /2.  

 
Figure 3.10. Parametric DSPWM simulation of extrapolated modulating signal regarding 
modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂. Parameters: 𝒇𝑺𝑾 = 𝟐. 𝟓 𝒌𝑯𝒛, 

𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔, 𝑵 = 𝟒 
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Figure 3.11. Carrier crossing comparison of modulating signals: (a) non-advanced  𝒎𝒆𝒙𝒕 
and non-advanced 𝒎𝒅𝒐𝒖𝒃𝒍𝒆; (b) non-advanced  𝒎𝒆𝒙𝒕 and advanced 𝒎𝒅𝒐𝒖𝒃𝒍𝒆; (c) advanced 
 𝒎𝒆𝒙𝒕 and non-advanced 𝒎𝒅𝒐𝒖𝒃𝒍𝒆; (d) advanced  𝒎𝒆𝒙𝒕 and advanced 𝒎𝒅𝒐𝒖𝒃𝒍𝒆. Parameters: 

𝒇𝑺𝑾 = 𝟐. 𝟓 𝒌𝑯𝒛, 𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔, 𝒎𝒂 = 𝟏, 𝑵 = 𝟒 
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Figure 3.12. Parametric DSPWM simulation of extrapolated modulating signal regarding 
modulating frequency 𝒇𝟎 and amplitude modulation index 𝒎𝒂. Parameters: 𝒇𝑺𝑾 = 𝟐. 𝟓 𝒌𝑯𝒛, 

𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔, 𝑵 = 𝟒 

Besides, the simulation presented here takes a relationship between rates of N = 4, 
which is a low value. Higher N will get right carrier crossing. Other variables are 
involved in this case as DWPM clock or computational burden to obtain the 
extrapolated values, which are not in the scope of this work, but they will be analyzed 
in the future. To obtain right gate drive signals for the semiconductor devices some 
considerations are also involved as dead-times. This is an interesting proposal to use 
multirate controllers, although it could be only used for control action of single-rate 
controllers. 

3.3.3. Extrapolation for SHE modulation 

3.3.3.1. Definitions 
Modulation techniques as SHE (subsection 2.2.2.4. ) requires high sampling rates of the 
modulating signal, which will be the highest in the control loop and will be known as 
T. A reasonably magnitude of T is theoretically located at the range of little of tens or 
units of 𝜇𝑠. The simplicity of a voltage regulator for linear load does not suppose a 
barrier for working with equivalent control and modulating rate, 𝑇 = 𝑇0. However, 
there are applications with additional functionalities (regulation of DC-bus voltage, DC 
midpoint NPC balance, apparent power and line current, among others), so executing 
the associated routine with that rate T is not feasible. Instead, the high temporal 
resolution of the modulating signal 𝑢 ⃗𝐸 can be obtained by extrapolating the control 
action 𝑢 ⃗. Hence, the situation is 𝑇 < 𝑇0. Figure 3.13 depicts a schematic of the open 
loop controller with extrapolation of the modulating signal, where is easily 
differentiated between the low rate instants 𝑘 · 𝑇0 and the high rate instants 𝑘 · 𝑇0 + 𝑝 ·
𝑇 . In the schematic is also presented a filter after the extrapolation or up-sampling 
process, which is an anti-imaging filter needed in such processes. However, this block it 
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is not in the scope of this document, but it will be analyzed in the future for practical 
applications. 

Plant
G(s) 
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PWM
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Filter ZOH ı(⃗𝒔) 
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Figure 3.13. Block diagram of the proposed open loop controller for SHE 

Please note, as in the previous subsection, that the extrapolation is the process of 
estimating, beyond the original observation range, the value of a variable based on its 
relationship with the previous observed values until that instant. It is like the 
interpolation, which produces estimates between known observations, but extrapolation 
is subject to greater uncertainty and higher risk of producing meaningless results. 
Usually, the tendency of the variable is estimated with the most recent consecutive 
samples of the modulating signal 𝑢 ⃗, they are known as polynomial extrapolators. This 
polynomial extrapolation will be briefly introduced in this section, but there is a more 
accurate technique to extrapolate a sinusoidal variable, as it was detailed in 3.3.2.2.  
Therefore, this approach supposes a sampling rate adaptation with an evident 
computational burden reduction for the microprocessor. 

3.3.3.2. Polynomial extrapolation 
This subsection is focused on the polynomial extrapolation proposal for the previous 
approach, that has been studied in the literature by few authors. 

The up-sampling process is linear but time variant, so no function can be defined to 
express it. The closest mathematically formulation of the polynomial up-sampler in the 
time domain is given by (3.47), which means that the N samples of the extrapolated 
vector 𝑥�⃗� are expressed in function of the M last samples of input vector 𝑥.⃗ This 
formulation is based on the Taylor power series with M terms. The parameter M 
matches up with the number of power series to calculate the new samples and M-1 
with the order of the polynomial employed, except when 𝑀 = 0. The number of 
extrapolated samples is 𝑁 − 1. 

𝑥�⃗�[𝑁 · 𝑘 + 𝑝] = 𝑥�⃗�[𝑘, 𝑝] 
𝐸𝑀×𝑁
⇔⇔⇔⇔⇔⇔

⎩
{{
{
⎨
{{
{
⎧
𝑖𝑓 𝑀 = 0 &{

𝑝 = 0
 

𝑝 ≠ 0

𝑥[⃗𝑘]
 
0  

𝑖𝑓 𝑀 > 0 ∑ 1
𝑟!
(∑(𝑟

𝑖)
𝑟

𝑖=0
(−1)𝑖𝑥[⃗𝑘 − 𝑖])( 𝑝

𝑁
)

𝑟𝑀−1

𝑟=0

 

𝑝 = 0,… 𝑁 − 1;

(3. 47) 
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Where: 

- Number of used input samples to estimate the signal tendency: 𝑀 ≥ 0 
- Sampling rate multiplier: 𝑁 ≥ 1 
- The samples of 𝑥�⃗� can be linearly indexed 𝑥�⃗�[𝑁 · 𝑘 + 𝑝] or in matrix way 
𝑥�⃗�[𝑘, 𝑝]. This is useful for a better understanding of the following explanation. 

The corresponding transfer function of the extrapolation process between a vector that 
has been up-sampled �⃗⃗⃗⃗�𝑝(𝑧𝑁) (expand process of 𝑀 = 0 and 𝑁 > 1, that is 𝐸0×𝑁) with 
the original signal �⃗⃗⃗⃗�(𝑧𝑁

𝑁) is (3.48).  

�⃗⃗⃗⃗�𝑀×𝑁
𝑝 (𝑧𝑁

𝑁) =
�⃗⃗⃗⃗�𝑝(𝑧𝑁

𝑁)
�⃗⃗⃗⃗�(𝑧𝑁

𝑁)
= ∑

(1 − 𝑧𝑁
−𝑁)𝑟

𝑟!
(

𝑝
𝑁

)
𝑟𝑀−1

𝑟=0
𝑀 > 0 (3. 48) 

This is the partial transfer function �⃗⃗⃗⃗�𝑀×𝑁
𝑝 (𝑧𝑁

𝑁) that relates every p sample at each 
N·k sample. The signal �⃗⃗⃗⃗�𝑝

𝐸(𝑧𝑁) is obtained by correctly positioning each p sample 
calculated every N·k instant. 

�⃗⃗⃗⃗�𝑝
𝐸(𝑧𝑁) = 𝑧𝑁

−𝑝 · �⃗⃗⃗⃗�𝑝(𝑧𝑁
𝑁) (3. 49) 

The extrapolated signal at high rate �⃗⃗⃗⃗�𝐸(𝑧𝑁) can be expressed as (3.50), to finally 
obtain the transfer function that relates the output with the extrapolated input, by 
means of 𝐸0×𝑁 , as (3.51). 

�⃗⃗⃗⃗�𝐸(𝑧𝑁) = ∑ �⃗⃗⃗⃗�𝑝
𝐸(𝑧𝑁)

𝑁−1

𝑝=0
= ∑ 𝑧𝑁

−𝑝 · �⃗⃗⃗⃗�𝑝(𝑧𝑁
𝑁)

𝑁−1

𝑝=0
= �⃗⃗⃗⃗�(𝑧𝑁

𝑁) · ∑ 𝑧𝑁
−𝑝 ·𝐻𝑀×𝑁

𝑝 (𝑧𝑁
𝑁)

𝑁−1

𝑝=0
(3. 50) 

�⃗⃗⃗⃗�𝑀×𝑁
𝐶 (𝑧𝑁) =

�⃗⃗⃗⃗�𝐸(𝑧𝑁)
�⃗⃗⃗⃗�(𝑧𝑁

𝑁)
= ∑ (𝑧𝑁

−𝑝 · ∑
(1 − 𝑧𝑁

−𝑁)𝑟

𝑟!
(

𝑝
𝑁

)
𝑟𝑀−1

𝑟=0
)

𝑁−1

𝑝=0
(3. 51) 

In Figure 3.14 are depicted up-sampling examples where a 50 Hz normalized vector is 
extrapolated with four different combination of M and N. Only real parts of the vectors 
𝑥�⃗� and 𝑥 ⃗have been exhibited. Besides, the ideally extrapolated version of 𝑥 ⃗has been 
plotted with a dashed black line. It is shown how the extrapolation fails during the first 
M-1 sampling instants of 𝑥 ⃗because the initial conditions (there are M-1 delay terms, 
𝑧𝑁

−𝑁) of the filter are null. For example, in (d) the extrapolator does not work right 
until eighth sample of the input. 

It can be recognized that there is an extrapolation error associated to all techniques. 
The obtained error in the M-1 order Taylor polynomial is defined as the extrapolation 
error 𝑒�⃗�[𝑘]. 

𝑒�⃗�[𝑘] = 𝑥[⃗𝑘] − 𝑥�⃗�[𝑘] (3. 52) 

As it is well-known in digital signal processing, the up-sampling process has an inherent 
effect where high frequency components are added. The effect is known as imaging and 
the new components are images. Hence, the extrapolation error is composed by the 
fundamental component error 𝑒0⃗

𝐸[𝑘] and its images 𝑒�⃗�
𝐸[𝑘].  

𝑒�⃗�[𝑘] = 𝑒0⃗
𝐸[𝑘] + ∑ 𝑒�⃗�

𝐸[𝑘]
⌈𝑁/2⌉−1

𝑖=−⌊𝑁/2⌋
𝑖≠0

(3. 53) 
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Figure 3.14. Time domain characterization of up-sampling. Parameters: 𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻𝟎 =

𝟏 𝒎𝒔 

Although the input only contains the fundamental component, the output will be 
composed of fundamental and N-1 images. They come from the repeated components 
out of the Nyquist band (limited by ΩNyq = ±π, being 𝛺 = 𝜔 · 𝑇0), that is repeated 
every 2𝜋. At the new high rate, they are inside the new Nyquist band. Figure 3.15 
depicts the previous explanation. The images must be eliminated by means of low pass 
filter. 

 

 
Figure 3.15. Frequency spectrum of vectors. Parameters: 𝒇𝟏 = 𝟓𝟎 𝑯𝒛, 𝑻𝟎 = 𝟏 𝒎𝒔 
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3.3.3.3. Sinusoidal extrapolation 
As it was presented in the latter discussion, the better method of approximating a 
sinusoidal variable is by means of rotating reference frame transformation and 
multirate control techniques that will be presented in the following chapter. The 
polynomial extrapolation has error in its estimations. The basis of sinusoidal 
extrapolation has already been explained in the subsection 3.3.2.2. In this case, there is 
not such a transfer function as the polynomial extrapolation because this process is 
non-linear and time variant, but there is an interesting line of research to obtain such 
an expression. 

3.3.4. Hierarchical control structures 

3.3.4.1. Possibilities 
The hierarchical control structures are a good example of control applications in power 
electronics where there are different control rates in each level, but in every level the 
actuation variables could be extrapolated to obtain suitable reference variables to the 
control loop below. 

Microgrids with power converter units are great examples of hierarchical control in 
power electronics, although there are hierarchical structures with control loops at 
different rates in every power electronics application. 

3.3.4.2. Microgrids 
The rising interest about Microgrids (MG) comes from the diffusion need of renewable 
energy resources because it is an attractive way to integrate Distributed Generators 
(DG), Energy Storage Systems (EES) and loads (L) in small power systems. It is 
related with the distribution electric grid where medium voltage converters have great 
presence. Hence, MG could be connected or isolated from the utility grid. When they 
are connected to the grid they are singular and flexible entities, which can provide 
supporting for power electric systems. 

Great advances have been done in real-time operation and control of MG, as well as 
the elimination of parallel connection of power converters without the use of dedicated 
communication structure. The solution was the local control droop but has some 
limitations due to voltage/frequency deviations.  

The usual solution to avoid deviation problems and to ensure correct operation is to 
use a centralized communication system with low bandwidth. This is the solution that 
could be improved by using multirate techniques. However, the actual tendency is 
focused is DGs directly connected to the MG, which are classified as: grid-forming, 
grid-feeding, and grid-supporting. The communications, in this case, are achieved by 
means of PLC (Power Line Communication) and DBS (Distributed Bus Signaling), and 
instead of a centralized bulk data, a MAS (Multi-Agent System) is used. More detailed 
information can be found in [62]. 
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Figure 3.16. Regulation pyramid of MG 

The conventional control structure in MG follows a hierarchical path, as Figure 3.16 
depicts, which has been inherited from large power systems: 

- Primary control: It is responsible of the power, voltage and frequency control 
of each individual power converter. The droop control and virtual impedance 
are used upon the voltage and current control loops. There are centralized [63], 
[64] and decentralized [62] architectures. The main goal of this level is to 
administrate the renewable resource and an uncertainty load. Parallelized 
converters are usually configurated as grid-supporting with droop techniques. 
The controller of each element is known as Local Controller (LC). 

- Secondary control:  It regulates the power quality to control 
voltage/frequency deviations, unbalance and harmonics. Optionally, it performs 
the synchronization between MG and utility grid. The voltage and frequency 
deviations from their nominal values are inevitable in steady state. Besides, the 
accurate active/reactive power delivery cannot be achievable by most usual 
droop mechanisms. Using digital communications, this control level can enhance 
the performance and controllability of the global MG. There are centralized and 
decentralized implementations, being the centralized case the most usual. There 
is only one controller known as MicroGrid Central Controller (MGCC). The 
MGCC takes voltage and frequency variables that have been remotely measured 
and transferred through a low bandwidth communication bus. Those variables 
are compared with their references to calculate the needed compensation, so 
these are sent through the communication channel to every primary control 
unit. In the distributed case, the primary and secondary control merge into a 
new local controller that uses less communication tasks.  

- Tertiary control: It oversees power exchange regulation with the utility grid 
or/and other MG. This level also includes efficiency and economic 
improvements that is referred as Energy Management System (EMS). The 
temporal scale is the slowest. 
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3.3.4.3. Multirate application 
From the previous discussion, there are two possibilities where the multirate approach 
is possible to enhance the dynamic performance: 

- Centralized primary voltage control: The remote controller of grid-forming 
power converter needs a communication bus which restricts the updating rate of 
that controller. It is an unusual possibility because the tendency is on droop 
techniques for grid-supporting DG. 

- Centralized secondary control: In Figure 3.17 is shown how the secondary 
control works at different rate due to communication buses. This is inherent to 
every hierarchical control. Therefore, the system dynamics could be improved 
with the incorporation of multirate techniques. The measurement and references 
are taken at slow rate and the actuation could take place at fast rate to get 
suitable references for primary control. MRIC structures as the ones shown in 
the following chapter could improve the system performance. The controlled 
plant is not obtained in this document, but the analysis in this document could 
be extrapolated to this case, if the controlled plant is correctly modeled.  

These proposals can be used with other hierarchical control structures like the usual 
inner current control loop which works at fast rate and an outer voltage and/or power 
control loop at slow rate. The outer control loop receives samples at slow rate and 
could provide references at fast rate to the inner control loop. These cases are not in 
the scope of this document, but it is proven that the analysis for the current controller 
in Chapter 4 can be easily carried out for the outer control loops, if the controlled plant 
is known. Please note that in the scope of this document is analysis of multirate control 
techniques for the inner current control loop. 
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Figure 3.17. Control structure of secondary and tertiary control levels 
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Basically, the simplified outer and inner control loop could be arranged as it is depicted 
in Figure 3.18. Notice that it has been generalized for every control level. For example, 
the inner control loop takes care of current, whereas the outer controls P/Q and the 
DC-bus voltage (Appendix C). The figure also depicts an alternative representation, 
where the actuation block for the outer loop represents the equivalent inner control 
phase delay and rate change. This application has possible multirate techniques to be 
applied, that have been neglected nowadays. 

3.3.5. Other multirate possibilities 

3.3.5.1. Fast power semiconductor devices 
As it was presented in Chapter 1, there is new power semiconductor devices that 
provide fastest switching frequencies 𝑓𝑆𝑊 . Some applications may require an additional 
computational burden for their algorithms, so the sampling period is maintained equal 
to the needed control period 𝑇0, but the actuation can be followed by means of double-
update mode. Hence, the modulating signal is at fast rate T as in subsection 3.3.2, but 
now the switching rate, that is the carrier period 𝑇𝑆𝑊 , satisfy the equivalence 𝑇𝑆𝑊 =
2 · 𝑇  to get the double-update mode. The relationship between rates involved in the 
system is (3.54), being N the sampling rate multiplier. 

𝑇𝑆𝑊 = 2 · 𝑇 = 2 · 𝑇/𝑁 (3. 54) 
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This is an interesting application for future applications where the economic or 
technical constraints require different control rates. However, in recent years, the 
processing times have been reduced, so this application is only suitable for application 
where the economical constraints lead to slower digital signal processors. 

This application was explained in Figure 1.7, where it is compared with the constrained 
sampling possibility (slow single-rate controller) and the optimum situation (fast single-
rate controller). 

3.3.5.2. Computational burden of extra algorithms 
There are some applications that requires extra algorithms which are not essential for 
the converter control such as repetitive controller. This kind of algorithms follow other 
rate due to their computational burden, and calculated values are applied one time 
each N control periods. They need a correct modelling of their control branch, and 
multirate techniques could be useful in that cases. 

For example, in subsection 2.2.4.2. a multirate repetitive controller that works at 
slower rate is introduced. It must be correctly designed because they have effect on 
actuation signal. 

3.4. Conclusions 
This chapter has detailed the modelling of the inner plant model of the VSC, which is 
needed for the current controller. The most usual three filters have been studied in 
stationary and rotating reference frames to get the transfer function expression as well 
the space-state version. The most detailed one for multirate applications will be the L-
filter due to its importance in MV applications. Also, the LC and LCL filters can be 
approximated to an L-filter, because the low frequencies response is very similar to the 
L-filter one. Models have been shown in continuous-time, but in the next chapter 
correct rates will be applied. The unique characteristics of multirate techniques requires 
this expression in continuous-time to later obtain correct single-rate equivalents or 
MRIC design. 

Later, new multirate applications for power electronics have been presented to obtain 
the right context for the next chapter. Firstly, the reduction of the DSPWM delay has 
been analyzed through two paths: phase advancing and extrapolation. Comparison 
reflected that extrapolation is a useful approach. The DPSWM was detailed without 
changing 𝑇𝑆𝑊 , what led to some issues with the carrier crossings, but they are useful 
for low modulating signal frequencies. The sinusoidal extrapolation approach must 
stand out, because it is a useful tool for multirate applications in AC systems. Next, 
the multirate ideas (extrapolations) were related to SHE modulation technique. Two 
extrapolation techniques were proposed for this case: polynomial extrapolation and 
non-linear sinusoidal extrapolation. The second one might have got better responses, 
but it is interesting to know the polynomial extrapolation technique for further 
applications. 
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Then, the hierarchical control structures were studied, specifically the Microgrid case 
what is a representative new division in power electronics, but every power converter 
control has more than one control loop. The outer control loop on simpler cases are the 
DC-bus voltage and P/Q regulators, but they are not in the scope of this document, 
although Appendix C gives some insight on DC-bus regulator. 

This document is focused in the inner current control loop that uses the detailed 
models presented at the beginning of this chapter. However, the conclusions and 
methodology in Chapter 4 are easily extrapolated to hierarchical cases. There is 
detailed information of the outer control loop in Appendix C, although they are not 
strictly necessary for the case under study because the DC-bus voltage regulation can 
be carried out by other system, and the current reference could be directly given to get 
the correct power exchange. Still, it is not the most realistic application, but this 
research is focused in multirate applications for current control loop. 

Finally, two last applications are given, and fast switching is the taken approach for 
Chapter 4. It will be focused in explanations about DSPWM situation with or without 
changing 𝑇𝑆𝑊 , but the actuation will be always faster than sampling. SHE modulation 
technique is not analyzed with simulations because this work does not want to get the 
reader in confusion. However, the conclusions can be easily extrapolated for SHE 
modulation or even other modulation techniques. On the other hand, the additional 
algorithm at different rate are possibilities that are being a matter of research, so a few 
points and example were only given. 
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Chapter 4. Multirate 

controllers 

4.1. Introduction 
This chapter details how concepts from previous chapters merge in multirate control 
design techniques for VSCs. The chapter is split in three sections: proposed single-rate 
controllers, time-domain multirate analysis and model-based multirate controllers. Each 
one of them will study complex-valued controllers in stationary and rotating reference 
frame for an VSC with L-filter. Therefore, there is a first section to define the complex-
valued controllers that will be used for the multirate case. Note that those controllers 
are some of many possibilities, so other single-rate controllers for each reference frame 
are possible. 

The analyzed system and multirate approach have been already described, so a 
simplified block diagram is depicted in Figure 4.1. This figure shows that the double-
update mode is chosen because its delay is known (overall delay of 3𝑇/2) and each 
modulating signal update has its own crossing. 
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Figure 4.1. Simplified block diagram of the controlled system 
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Initially, the time-domain multirate analysis will be carried out. This analysis takes the 
proposed single-rate controllers and transforms them into multirate cases. The 
methodology is based on correctly model the system and open loop transfer function at 
metaperiod 𝑇0, that is the slowest rate in the closed-loop system. The used technique is 
the internal representation by means of recurrence laws based on Kranc methodology. 
Finally, a closed-loop transfer function at single-rate metaperiod is obtained. Hence, 
this technique examines when the actuation and control rate get faster than the 
sampling rate, without changing the designed controller. 

Later, an alternative multirate technique will be presented to design what is known as 
MRIC. It is a model-based multirate controller, of which design depends on the input 
to be tracked. In this document, there are sinusoidal and continuous variables, 
depending on the reference frame. The controller is split in two parts acting at different 
sampling rates and its design is approached regarding characteristics of each available 
sampling rate. The control target is to reach similar performances to those the faster 
single rate controller would achieve. 

There are other design alternatives that will be studied in future research, but these 
two techniques are a good beginning in power electronics. 

Notice that the parameters and voltage level of the system under study are 
corresponding to Low Voltage. The reason is that these are the parameters of the 
experimental setup 3L-DNP-VSC in laboratory. Hence, future experimental test could 
be compared with the following results. Still, the controller problematics are MV 
applications, so this document treats that point of view. However, the test is easily 
extrapolated to MV setup. 

4.2. Proposed single-rate controllers 

4.2.1. Stationary reference frame 
The present subsection will define the bases of the current controller in 𝛼𝛽-frame for 
multirate analysis. This current controller is based on a stationary reference frame 
implementation of an integrator in the synchronous reference frame, which was firstly 
proposed by [56]. The proposed controller is known as Reduced Order Generalized 
Integrator (ROGI) and is suitable for three-phase VSC. It is a resonant controller for 
each harmonic sequence that is controlled. In this document, the fundamental harmonic 
is controlled following the depicted structure in Figure 4.2. Please note, as it was 
previously followed with the complex-valued models, in the following, the complex 
space vector notation will be used. In complex space vector notation, transfer functions 
have complex coefficients, poles do not necessarily appear in conjugate pairs, and 
frequency responses are not necessarily symmetrical around zero. 

Following the strategy in [56], the controller design is deduced in the discrete-time 
domain, that is based on the state variable technique because it allows easy tuning of 
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controller and takes into account the digital signal processor (DSP) delay as a part of 
the system to stabilize. The delay is considered equal to sample time. 

The digital ROGI implementation is shown in (4.1), which is the discrete-time version 
of a continuous time system with a pole at 𝑗ℎ𝜔1, being h the harmonic order. This 
document is focused in the positive fundamental sequence, but this controller usually 
includes -1, -5 and +7 sequences. The goal in this document is to prove that this 
controller could be implemented and correctly analyzed in multirate cases. 

𝐺�⃗�𝛽ℎ (𝑧) =
�⃗⃗⃗⃗�𝛼𝛽

ℎ (𝑧)
𝐸�⃗�𝛽(𝑧)

=
1

𝑧 − 𝑒𝑗ℎ𝜔1·𝑇 (4. 1) 
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Figure 4.2. Block diagram of ROGI-based current control system 

To perform full state feedback, the signal 𝑥 ⃗ , which is the calculated voltage vector to 
apply at the previous instant, is included in the controller because it is an additional 
state of the system to stabilize. The plant model, which will be analyzed in the 
following, is the complex-valued version of the L-filter as it is shown in (4.2). 

𝐺�⃗�𝛽
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(4. 2) 

Considering 𝚤�⃗�𝛽
𝑟𝑒𝑓  and 𝑒�⃗�𝛽 as two external perturbations that do not affect the closed-

loop stability, then the open-loop system can be described as (4.3). 
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The signal 𝑢�⃗�𝛽 is calculated as a linear combination of the different states 𝑥�⃗�𝛽𝑏 , 𝑥�⃗�𝛽𝑎 , 
𝑥�⃗�𝛽

+1 and employing appropriate feedback gain vector 𝐿 = [𝐾𝑏 𝐾𝑝 𝐾1𝑝]𝑇 . The closed-
loop system results in (4.5) by imposing the feed-back law (4.4). 

𝑢�⃗�𝛽(𝑘) = −𝐿 · 𝑥(𝑘) (4. 4) 

𝑥(𝑘 + 1) = (𝐺 −𝐻 · 𝐿) · 𝑥(𝑘) = 𝐺𝐶𝐿 · 𝑥(𝑘) (4. 5) 

Any tool from control theory of linear systems could be used to obtain the gain vector 
to achieve the desired closed-loop behavior of the system. Here, the linear quadratic 
regulator (LQR) theory is used. This strategy frees the designer from choosing the 
location of the closed-loop poles and generally produces a robust closed-loop system. As 
the LQR theory says, L must be chosen to minimize the cost function (4.6). 

𝐽 = ∑𝑥𝐻(𝑘) ·𝑄 · 𝑥(𝑘) + 𝑅 · ∣𝑢 ⃗𝛼𝛽(𝑘)∣2
∞

𝑘=0
(4. 6) 

Where (·)𝐻 denotes transpose conjugate, 𝑄 ∈ ℂ(2+𝑟)×(2+𝑟) is a Hermitian matrix (with 
𝑟 = 1), and 𝑅 ∈  denotes weighting factors. The solution is obtained by solving 
Riccati’s algebraic equation. 

The parameters from the analyzed VSC are presented in Table 4.1. Please note that 
the VSC output voltage amplitude must accomplish the following limit ∣𝑢�⃗�𝛽∣ <
𝑈𝐷𝐶/

√
2, if the power invariance transformation is carried out (Appendix B) and 

THSPWM is the modulation technique.  

Table 4.1. 3l-DNPC-VSC parameters 

Name Symbol Value 
Filter resistor 𝑅 9.1 𝑚Ω 
Filter inductor 𝐿 750 𝜇𝐻 
Fundamental frequency 𝑓1 50 Hz 
Switching frequency 𝑓𝑆𝑊  2.5 kHz 
Sampling period 𝑇  200 μs 
Grid line-to-line voltage 𝑒𝑔𝑟𝑚𝑠 400 Vrms 
DC-bus voltage 𝑈𝐷𝐶 700 𝑉  

The correct DC-bus voltage is chosen as a function of the grid voltage 𝑒𝑔𝑟𝑚𝑠, because 
there must be enough voltage gap between them, that is, 𝑈𝐷𝐶 > 1.2 ·

√
2 · 𝑒𝑔𝑟𝑚𝑠. This is 

important to get a correct power flow and transitory actuation VSC voltage. 

By applying the LQR method, with 𝑅 = 10 and 𝑄 = 𝑑𝑖𝑎𝑔([10 10 1]), the following 
gain vector is obtained. The R and Q values are deduced by trial and error method. 

𝐿 = [0.3700 +  𝑗 · 0.0094 1.5637 +  𝑗 · 0.0816 0.1748 +  𝑗 · 0.0576]𝑇 (4. 7) 

The resultant closed-loop pole/zero map is depicted in Figure 4.3. The poles are not 
conjugate complex because the model is complex-valued. The time response to step 
change in magnitude is shown in Figure 4.4. It has an over-shoot of 27 % due to the 
position of complex poles and the settling time is 5 ms, which could be deduced from 
pole modulus, around 0.814, as (4.8).  



Chapter 4. Multirate controllers 

95 

𝑡𝑠 = 𝑇 ·
ln 0.01
ln∣𝑧𝑝∣

(4. 8) 

 
Figure 4.3. Pole-zero map of ROGI-controlled closed-loop transfer function 

 
Figure 4.4. Time response of ROGI-based current control system. (a) Output current; (b) 

VSC voltage 

Note that the actuation voltage ∣𝑢 ⃗𝛼𝛽∣ is normalized to its maximum value 𝑈𝐷𝐶/
√

2, as 
it was imposed before. The voltage is close to its maximum value, so smother voltage 
signals could be obtained by choosing new weight for R and Q. 
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The reference current is set to 50 Arms (active power) to test controller characteristics, 
but a detailed example should be carried out with active and reactive power reference 
to obtain the corresponding current (current reference calculation from Appendix B). 

In the following, this controller will be extrapolated to multirate cases to analyze its 
response with different rates multipliers N. 

4.2.2. Rotating reference frame 
The rotating reference frame discrete time-domain model for the L-filter was deduced 
in subsection 3.2.5, but it is remembered here as a transfer function (4.9). 

𝐺�⃗�𝑞
𝑃𝑙𝑎𝑛𝑡(𝑧) =

1
𝑅 + 𝑗𝜔1 · 𝐿

·
1 − 𝛼1

𝑧 · (𝑧 − 𝛼1)
· 𝑒−𝑗𝜔1·𝑇

𝛼0 = 𝑒− 𝑅𝐿·𝑇 𝛼1 = 𝛼0 · 𝑒−𝑗𝜔1·𝑇

𝐾𝑆 = 𝐺𝑑𝑞
𝑃𝑙𝑎𝑛𝑡(𝑧 = 1) =

1
𝑅 + 𝑗𝜔1 · 𝐿

· 𝑒−𝑗𝜔1·𝑇

(4. 9) 

The gain of the system under steady-state plant conditions (𝐺𝑑𝑞
𝑃𝑙𝑎𝑛𝑡(𝑧 = 1)) is time 

invariant (the angular frequency of the rotating reference frame can change, but it is 
considered constant, 𝜔1, for this case) and complex-valued. Also, the location of one 
pole depends on the rotating reference frame frequency. 

The chosen dq-frame controller is the one shown in [48]. Like conventional PI-based 
control approaches, the discrete-time domain current controller should provide a 
proportional and an integral control path. Besides, the controller must compensate the 
cross-coupling effects due to computational (unitary) delay. The proposed controller is 
(4.10), where can be seen that the zero 𝑧0 is used to compensate the frequency 
depended system pole at 𝛼1. This zero-pole cancellation allows a theoretically ideal 
decoupling of the inductive-resistive cross-coupling dynamics.  

𝐺�⃗�𝑞
𝑐 (𝑧) =

𝑈�⃗�𝑞
𝑟𝑒𝑓(𝑧)

𝐸�⃗�𝑞
𝑒𝑟𝑟𝑜𝑟(𝑧)

= 𝐾𝑟𝑧 ·

⎣
⎢⎢
⎡ 𝑧

𝑧 − 1⏟
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑣𝑒

−
𝑧0

𝑧 − 1⏟
𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙⎦

⎥⎥
⎤

· 𝑒𝑗𝜔1·𝑇⏟
𝐷𝑒𝑙𝑎𝑦 

𝑑𝑒𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔

=

= 𝐾𝑟𝑧 ·
𝑧 − 𝑧0
𝑧 − 1

· 𝑒𝑗𝜔1·𝑇

𝑧0 = 𝛼1

(4. 10) 

The complex-valued controller proportional gain 𝐾𝑟𝑧 is used to compensate the system 
gain for steady-state plant conditions. Considering the open-loop transfer function, the 
gain is calculated as (4.11). The additional real-valued factor 𝛾 > 0 is introduced to 
shape the command response. 

𝐾𝑟𝑧 = 𝐾0 · (𝑅 + 𝑗𝜔1 · 𝐿) · (𝐾1 + 𝑗 · 𝐾2)

𝐾0 = 𝛾 ·
1

𝛼0
2 − 2 · 𝛼0 · cos(𝜔1 · 𝑇 ) + 1

𝐾1 = 1 − 𝛼0 · cos(𝜔1 · 𝑇 )
𝐾2 = −𝛼0 · sin(𝜔1 · 𝑇 )

(4. 11) 
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The block diagram of the current controller is shown in Figure 4.5. The open-loop 
transfer function is obtained as (4.12), so the closed-loop control transfer function is 
deduced as (4.13). The example given is based on the VSC parameters from Table 4.1. 
Figure 4.6 depicts the pole-zero map for open and closed-loop transfer functions for 𝛾 =
0.26. From the analysis, it is deduced that the closed-loop poles are complex-conjugate. 

𝐺𝑑𝑞
𝑂𝐿(𝑧) =

𝛾
𝑧2 − 𝑧

(4. 12) 

𝐺𝑑𝑞
𝐶𝐿(𝑧) =

𝛾
𝑧2 − 𝑧 + 𝛾

(4. 13) 
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Figure 4.5. Block diagram of dq-frame complex-valued current control system 

 
Figure 4.6. Pole-zero map of open and closed-loop transfer functions in dq-frame 
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Figure 4.7 represents the time response to step of 50 Arms (exchange of active power, 
being 𝑒𝑞 = 0) with 𝛾 = 0.26, so with lower values more damped response is obtained, 
and with greater values, more over-shoot. The over-shoot is almost zero, and the 
settling time is 2 ms, which could be deduced from pole modulus, around 0.51, from 
(4.8). The cross-coupling effect can be seen in this figure due to the value of q 
component on the actuation signal. Please note, that only active power is involved in 
this example and the actuation signal is normalized to 𝑈𝐷𝐶/

√
2. 

A pole-zero cancellation controller will not be so accurate in experimental setups due to 
the drift in value of filter parameters. This design and models assume symmetrical 
distribution of inductive-resistive system parameters for d- and q-current control paths, 
which is usual in grid-tied applications, but they are not in salient pole synchronous 
machines. 

 
Figure 4.7. Time response of complex-valued dq-frame current control system. (a) Output 

current; (b) VSC voltage 

4.3. Time-domain multirate analysis 

4.3.1. Definitions 
To analyze a multirate control system with time-domain technique there are a few 
steps that must be considered: 

1) Modelling regulator and plant with Kranc operators. The usual Kranc operator 
is the ZOH-Kranc. 

2) Obtaining the open-loop transfer function of regulator and plant at metaperiod 
𝑇0. 

3) Obtaining the discrete pole-zero map from closed-loop transfer function. 

The controller and plant internal model are obtained by means of ZOH-Kranc with the 
recurrence laws from 2.3.1.2. Hence, the internal representation of the plant is shown in 
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(4.14) and controller one in (4.15). In Figure 4.8 is shown how the controller and plant 
are arranged. A ZOH operation at period T is before controller and plant, and the 
measurement is taken every 𝑇0 time units, so the controller input is sampled at period 
T but the signal changes every 𝑇0. From the internal representations, and Kranc 
methodology, is deduced that the controller has one input but N outputs, whereas the 
plant has N inputs and one output. Please note, that the introduced situation here is 
the regular one, but similar deducing path might be taken for irregular cases. 

Note that the vector notation is not used here to better understanding of the reader, 
but all variables are vectors. 

C(s)
+

- T
G(s)

T0

ZOHT ZOHT

�⃗⃗⃗⃗⃗�[𝒌, 𝒑]

T

𝒆[⃗𝒌] 
𝒀 ⃗ (𝒔) 

T0

�⃗⃗⃗⃗⃗⃗�(𝒔) 

C1xN GNx1
+

-

𝒀 ⃗ 𝑻𝟎 (𝒛)�⃗⃗⃗⃗⃗⃗�𝑻𝟎 (𝒛)

(a)

(b)

 
Figure 4.8. Block diagram of proposed multirate system. (a)Distribution of signals on the 

closed-loop; (b) Equivalent discrete closed loop at metaperiod 𝑻𝟎 

𝑥𝐺[(𝑘 + 1) · 𝑇0] = 𝐺�̅� · 𝑥𝐺[𝑘 · 𝑇0] + �̅̅̅̅�𝐺 ·

⎣
⎢⎢
⎡

𝑢[𝑘 · 𝑇0]
𝑢[𝑘 · 𝑇0 + 𝑇 ]

⋮
𝑢[𝑘 · 𝑇0 + (𝑁 − 1) · 𝑇 ]⎦

⎥⎥
⎤

𝑦𝐺[𝑘 · 𝑇0] = 𝐶�̅� · 𝑥𝐺[𝑘 · 𝑇0] + �̅̅̅̅̅�𝐺 ·

⎣
⎢⎢
⎡

𝑢[𝑘 · 𝑇0]
𝑢[𝑘 · 𝑇0 + 𝑇 ]

⋮
𝑢[𝑘 · 𝑇0 + (𝑁 − 1) · 𝑇 ]⎦

⎥⎥
⎤

(4. 14) 

𝑥𝐶[(𝑘 + 1) · 𝑇0] = 𝐺�̅� · 𝑥𝐶[𝑘 · 𝑇0] + �̅̅̅̅�𝐶 · 𝑒[𝑘 · 𝑇0]

⎣
⎢⎢
⎡

𝑢[𝑘 · 𝑇0]
𝑢[𝑘 · 𝑇0 + 𝑇 ]

⋮
𝑢[𝑘 · 𝑇0 + (𝑁 − 1) · 𝑇 ]⎦

⎥⎥
⎤

= 𝐶�̅� · 𝑥𝐶[𝑘 · 𝑇0] + �̅̅̅̅̅�𝐶 · 𝑒[𝑘 · 𝑇0]
(4. 15) 

From these equations is deduced that the model is defined at metaperiod 𝑇0, but it 
internally works at period T, their relationship is the multiplier N. Finally, a single-rate 
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system is obtained as (4.16). The pole-zero map is easily obtained from the quadruple 
[𝐺�̅�𝐿, �̅̅̅̅�𝑂𝐿,𝐶�̅�𝐿, �̅̅̅̅̅�𝑂𝐿], as well as the transfer function at metapeiod 𝑇0. 

[
𝑥𝐶[(𝑘 + 1) · 𝑇0]
𝑥𝐺[(𝑘 + 1) · 𝑇0]

] = [
𝐺�̅� 0

�̅̅̅̅�𝐺 · 𝐶�̅� 𝐺�̅�
]

⏟⏟⏟⏟⏟⏟⏟
𝐺�̅�𝐿

· [
𝑥𝐶[𝑘 · 𝑇0]
𝑥𝐺[𝑘 · 𝑇0]

] + [
�̅̅̅̅�𝐶

�̅̅̅̅�𝐺 · �̅̅̅̅̅�𝐶
]

⏟⏟⏟⏟⏟
�̅̅̅̅�𝑂𝐿

· 𝑒[𝑘 · 𝑇0]

𝑦𝐺[𝑘 · 𝑇0] = [�̅̅̅̅̅�𝐺 · 𝐶�̅� 𝐶�̅�]⏟⏟⏟⏟⏟⏟⏟
𝐶�̅�𝐿

· [
𝑥𝐶[𝑘 · 𝑇0]
𝑥𝐺[𝑘 · 𝑇0]

] + [�̅̅̅̅̅�𝐺 · �̅̅̅̅̅�𝐶]⏟⏟⏟⏟⏟
�̅̅̅̅̅̅�𝑂𝐿

· 𝑒[𝑘 · 𝑇0]

(4. 16) 

The transfer function is the Z-transform of the impulse response of the system. It can 
be expressed in terms of the state-space matrices as (4.17). 

𝐺𝑂𝐿
𝑇0 (𝑧) =

𝑌 𝑇0(𝑧)
𝑅𝑇0(𝑧)

= 𝐶�̅�𝐿 · (𝑧 · 𝐼 − 𝐺�̅�𝐿)
−1 · �̅̅̅̅�𝑂𝐿 + �̅̅̅̅̅�𝑂𝐿 (4. 17) 

The following sections will analyze the proposed controllers applying this multirate 
technique to predict the closed-loop response with constant metaperiod 𝑇0 and different 
rate multipliers N. 

This strategy could be followed with other control structures to obtain the single-rate 
equivalent at given metaperiod. It must be highlighted that the input and output of 
the analyzed signal path must be sampled at metaperiod to get such an equivalent.  

4.3.2. Stationary reference frame 
The proportional resonator ROGI-based controller presented in subsection 4.2.1 is 
analyzed here with this time-domain technique. The parameters for the given example 
VSC are in Table 4.1, but, in here, the sampling period becomes the metaperiod 𝑇0 =
200 𝜇𝑠, and the controller rate is 𝑇0/𝑁 . Hence, the equivalent single-rate system is 
always at metaperiod. This gives a look on how the closed-loop poles change, if the 
control/actuation rate is changed to get faster, whereas the sampling rate is kept 
constant.  

In this example, the chosen gain vector is the same as it was presented in (4.7), but 
other R and Q values can be taken to improve the response of the system. 

Figure 4.9 depicts the pole-zero map of the closed-loop transfer function at metaperiod 
𝑇0 with every value of rate multiplier N. It is clearly seen how an extra zero appears 
with negative real part with 𝑁 = 2 and it changes its location with higher N values. 
Besides, the pole in the origin changes its value with higher N, but it is always around 
it. These two changes are related to the extrapolation operation in this control 
structure, because with high N, the delay between closed-loop output (𝚤�⃗�𝛽) and input 
(𝚤�⃗�𝛽

+1(𝑟𝑒𝑓)) is no longer 𝑇0, is 𝑇0/𝑁 , and these zero-pole changes are modelling that 
fractional delay. 

On the other hand, the original two poles and zero near to 𝑧 = 1 change its location 
towards unstable regions, so the settling time and over-shoot are worst 
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In Figure 4.10 is represented the bode diagram of each open-loop transfer function. The 
frequency responses are similar, and all of them keep the resonance in 50 Hz.  

 
Figure 4.9. Pole-zero map of 𝜶𝜷-frame closed-loop transfer function at 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔 

 

 
Figure 4.10. Bode diagram of 𝜶𝜷-frame complex-valued open-loop transfer function at 𝑻𝟎 =

𝟐𝟎𝟎 𝝁𝒔 
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Figure 4.11. Time response of complex-valued 𝜶𝜷-frame current control system: (a) Output 

current; (b) VSC voltage 

 
Figure 4.12. Zoom on time response of complex-valued 𝜶𝜷-frame current control system: 

(a) Output current; (b) VSC voltage 

Finally, the time-response is depicted in Figure 4.11 and Figure 4.12. It is clear how the 
time-response gets worse with higher N. It could be consequence of the extrapolation 
operation that the controller carries out. In Figure 4.12(b), the actuation signal takes 
some incoherent values, because the error is kept constant during a 𝑇0 period. 
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4.3.3. Rotating reference frame 
Following the same steps as previous subsection, the dq-frame complex-valued 
controller from subsection 4.2.2 is analyzed here with this time-domain technique to get 
an equivalent single-rate open-loop transfer function. The VSC parameters for these 
results are presented in Table 4.1. The real-valued parameter 𝛾 is set to 0.26, but it 
could be changed to get better results. 

Figure 4.13 shows how the closed-loop poles and zero change with different rate 
multipliers N. Again, a negative real zero appears due to multirate operation. The 
conjugate complex poles follow a clear pattern with higher N values.  

 
Figure 4.13. P Pole-zero map of dq-frame closed-loop transfer function at 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔 

 
Figure 4.14. Bode diagram of dq-frame open-loop transfer function at 𝑻𝟎 = 𝟐𝟎𝟎 𝝁𝒔 
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Because of pole-zero cancelation, the obtained open-loop transfer function always has 
real-valued coefficients, so the Bode diagram is symmetrical, so is depicted in Figure 
4.14 with positive frequencies. It can be seen how the gain margin is practically 
constant, but the phase margin is reduced with higher N values. 

Finally, the step response is shown in Figure 4.15. As can be foreseen from the pole-
zero map, with that 𝛾, the conjugate poles change their position towards locations 
where the over-shoot is greater, but the settling time is nearly 2 ms in all cases. 
Smoother responses could be found with lower values for 𝛾 in each case, which will lead 
to slower systems. Besides, the actuation signal does not practically change during a 
metaperiod for different rate multipliers. The block that will extrapolate the sinusoidal 
values will be the dq-frame to 𝛼𝛽-frame (or directly to abc-frame) transformation that 
is always after the controller. Note that the actuation signal goes into overmodulation 
region for 𝑁 > 2. 

 
Figure 4.15. Time response of dq-frame current control system: (a) Output current; (b) 

VSC voltage 

4.3.4. Detailed model  
This section compares the previous mathematical model-based responses with the one 
obtained by a detailed model simulation of the VSC. That is, the simulation is carried 
out by Matlab Simulink using the detailed model of 3L-DNPC-VSC along with its L-
filter, which is connected to the grid. To focus the analysis on the current controller 
response, the DC-bus is already controlled by a DC voltage source. Besides, the VSC is 
synchronized with the grid by means of SRF-PLL presented in Appendix C.2.3. The 
SRF-PLL input voltage is measured every 𝑇0, but the phase is extrapolated for every 
fast rate 𝑇0/𝑁 . The system parameters are reminded in Table 4.2, the used controllers 
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in Table 4.3, and the SRF-PLL controller in Table 4.4. Note that the dq-frame 
controller only needs the parameter 𝛾, because the complex-valued static gain and the 
zero depend on the rate 𝑇0/𝑁 . The power invariance transformation is the one used 
here for change from abc reference frame to 𝛼𝛽 and dq. 

The studied responses are analyzed for a step change in active power of 20 kW, so the 
corresponding current is 50 ARMS. The change is taken place when the VSC is already 
synchronized (forcing 𝑒𝑑 = 0). 

The responses, in the stationary 𝛼𝛽 reference frame, are presented in Figure 4.16(a), 
whereas the correspondent actuation signals are in Figure 4.16(b). Note that the 
responses are almost identical, as it is shown in Figure 4.12.  

Table 4.2. VSC parameters for multirate time-domain analysis in detailed model 

Name Symbol Value 
Filter resistor 𝑅 9.1 𝑚Ω 
Filter inductor 𝐿 750 𝜇𝐻 
Fundamental frequency 𝑓1 50 Hz 
Switching frequency 𝑓𝑆𝑊  1/(T0/𝑁 · 2)  
Sampling period 𝑇0 200 μs 
Grid line-to-line voltage 𝑒𝑔𝑟𝑚𝑠 400 Vrms 
DC-bus voltage 𝑈𝐷𝐶 700 𝑉  

Table 4.3. Controllers parameters for multirate time-domain analysis in detailed model 

Name Symbol Value 
Full-state feedback controller in 𝜶𝜷-frame 

Delay state constant 𝐾𝑏 0.3705 + 𝑗0.0094 
Proportional constant 𝐾𝑝 1.5661 + 𝑗0.819 
Integral constant 1st harmonic 𝐾1𝑝 0.1748 + 𝑗0.0575 

Complex-valued PI in dq-frame 
Real-valued factor 𝛾 0.26  

Table 4.4. SRF-PLL parameters  

Name Symbol Value 
Proportional constant 𝐾𝑝 918.5474 
Integral constant 𝐾𝐼 3.8683 · 105 

 

Figure 4.17 shows the responses for the rotating dq reference frame. The over-shoot is 
lower than expected in Figure 4.15, but the actuation signal is very similar. This results 
from the overmodulation region where the actuation signal transitorily enters. The 
settling time is 2 ms, as expected. 

These results correlate the mathematical expression with the detailed model in 
simulation. Hence, the performance of that system is not affected by parasitic 
perturbances. 
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Figure 4.16. Time response of detailed system in 𝜶𝜷-frame: (a) Output current; (b) VSC 

voltage 

 
Figure 4.17. Time response of detailed system in -frame: (a) Output current; (b) VSC 

voltage 

4.3.5. Discussion 
From the previous analysis, it can be realized that this is not the correct way to 
operate with multirate applications, but it gives the right analysis tool when this path 
is taken due to hardware or software constraints. The feedback signal is sampled at 
slow rate, but the controller operates at fast rate, so the extrapolation is carried out by 
the controller, which structure is related to its design at single-rate situation. On one 
hand, the LQR design does not fit well to redesign this multirate case in 𝛼𝛽-frame. On 
the other hand, the real-valued parameter 𝛾 allows the redesign of the multirate case, if 
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it is reduced to get more damped responses. Therefore, advanced techniques must be 
considered to correctly calculate the extrapolated values of the actuation signal. 

However, the use of the IR representation gives a powerful tool to analyze several 
control structures, and this control loops can extrapolate de actuation signal, although 
it does not get better transitory responses. 

4.4. Model-based multirate controller 

4.4.1. Definitions 
From the previous analysis is deduced that other approach must be taken to analyze 
VSCs where the data acquisition is more constrained in time than the PWM actuator. 
Hence, the multirate controller must be correctly designed and, to do so, the steps 
given in [14] and [31] are followed here. Basically, the controller design is model-based 
and depends on the input that is tracked, so two alternatives are given for the L-filter 
model: 𝛼𝛽-frame (sinusoidal inputs); and dq-frame (continuous inputs). The controller 
is composed of two parts, each one at different rate, and the control target is to reach 
similar performances to those the faster single-rate controller would achieve. This 
design strategy is based on the ER presented in 2.3.2. 

+

-
Gp(s)ZOHT

TNT = T0

�⃗⃗⃗⃗⃗⃗�𝑵𝑻  

NT = T0𝒀 ⃗ 𝑵𝑻  

�⃗⃗⃗⃗�𝑵𝑻  
𝑮𝑹

𝑵𝑻 ,𝑻

 
Figure 4.18. Block diagram of model-based multirate control approach 

In the following, NT will be the slow rate (metaperiod 𝑇0) and T will be the fast rate, 
where N is the rate multiplier, which is assumed to be an integer. The considered 
control loop is presented in Figure 4.18. The plant is the corresponding to each 
reference frame transformation of an L-filter, so it is a complex-valued SISO (Single-
Input Single-Output) and LTI system. Its input is regularly sampled at fast rate T, and 
its output is sampled at slow rate NT to be fed back. The multirate controller, 𝐺𝑅

𝑁𝑇 ,𝑇 , 
is designed to get error signal at slow rate NT and to obtain N control actions upon the 
plant in each metaperiod NT.  

In the following, to better understanding in notation, the signals are not represented 
with vector form, but all of them are vectors and the transfer functions might be 
complex-valued. It is consequence from the reference frame that it is used for 
representing three-phase VSC controlled system. All conclusions are valid for vector 
signals. Also, for clear representation of z variable at each rate, the fastest rate (T) Z-
transform will take directly 𝑧 = 𝑧𝑁 , whereas the slow rate (NT) will take 𝑧𝑁 = 𝑧𝑁

𝑁 . 
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4.4.1.1. Basic multirate operations 
The ‘skip’ (down-sampling) and ‘expand’ (up-sampling) operations must be considered 
for transformations between periods. If the Z-transform referred to period NT is defined 
as: 

𝑌 𝑁𝑇 ≜ 𝒵𝑁𝑇 {𝑦[𝑘]} = ∑ 𝑦[𝑘 · 𝑁𝑇 ] · 𝑧−𝑘·𝑁
∞

𝑘=0
(4. 18) 

it can be expressed that: 

- Expand operator creates a T-sequence from a NT-sequence, introducing (N-1) 
zero-valued samples, as follows: 

[𝑌 𝑁𝑇 (𝑧𝑁)]𝑇 ≜ 𝑌̅𝑇 (𝑧) ≜∑ 𝑦[̅𝑘 · 𝑇 ] · 𝑧−𝑘
∞

𝑘=0

{
𝑦[̅𝑘 · 𝑇 ] = 𝑦[𝑘 · 𝑇 ] ∀𝑘 = 𝜆𝑁
𝑦[̅𝑘 · 𝑇 ] = 0 ∀𝑘 ≠ 𝜆𝑁 𝜆 ∈ 𝑍+

 (4. 19) 

- Skip operator creates a NT-sequence from a T-sequence, as follows: 

[𝑌 𝑇 (𝑧)]𝑁𝑇 ≜ 𝑌̅𝑁𝑇 (𝑧𝑁) ≜∑ 𝑦[̅𝑘 · 𝑁𝑇 ] · 𝑧−𝑘·𝑁
∞

𝑘=0
= 𝑌 𝑁𝑇 (𝑧𝑁) (4. 20) 

Some known skip-expand properties used here are the following: 

1) The skip operation does not commutate. 

[𝑋𝑇 (𝑧)𝑌 𝑇 (𝑧)]𝑁𝑇 ≠ [𝑋𝑇 ]𝑁𝑇 [𝑌 𝑇 ]𝑁𝑇 (𝑧𝑁) (4. 21) 

2) The expand commutes. 

[𝑋𝑁𝑇 (𝑧𝑁)𝑌 𝑁𝑇 (𝑧𝑁)]𝑇 = [𝑋𝑁𝑇 ]𝑇 [𝑌 𝑁𝑇 ]𝑇 (𝑧𝑁) (4. 22) 

3) Skip operation to different original rate signals. 

[𝑋𝑇 (𝑧)[𝑌 𝑁𝑇 ]𝑇 (𝑧)]𝑁𝑇 = [𝑋𝑇 ]𝑁𝑇 · 𝑌 𝑁𝑇 (𝑧𝑁) (4. 23) 

The operator [·]𝑇  (applied to a system) is defined as the Z-transform of the T-period 
discretized impulse response of that system. 

4.4.1.2. Plant 
The continuous-time domain plant 𝐺𝑝(𝑠), discretized at slow rate, is defined as 𝐺𝑝

𝑁𝑇  
(discretized with ZOH at period NT, so the numerator and denominator are 𝑧−𝑖·𝑁), 
whereas at fast rate is 𝐺𝑝

𝑇  (discretized with ZOH at period T, so the numerator and 
denominator are polynomials in 𝑧−𝑖).  

𝐺𝑝
𝑁𝑇 (𝑧𝑁) =

𝐵𝑝
𝑁𝑇 (𝑧𝑁)
𝐴𝑝

𝑁𝑇 (𝑧𝑁)
=
𝑌 𝑁𝑇 (𝑧𝑁)
𝑈𝑁𝑇 (𝑧𝑁)

𝐺𝑝
𝑇 (𝑧) =

𝐵𝑝
𝑇 (𝑧)
𝐴𝑝

𝑇 (𝑧)
=
𝑌 𝑇 (𝑧)
𝑈𝑇 (𝑧)

(4. 24) 

When a system is regularly sampled with a fast rate at the input, but slow rate at the 
output, the polynomial 𝑊(𝑧𝑁) is used to obtain a dual-rate expression of the plant. 
The polynomial is remembered here as (4.25), being n the plant order. 
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𝑊𝐴
𝑇 (𝑧) =

∏ (𝑧𝑁 − 𝛼𝑖,𝑁𝑇 )𝑛
𝑖=1
∏ (𝑧 − 𝛼𝑖,𝑇 )𝑛

𝑖=1
=

[𝐴𝑁𝑇 (𝑧𝑁)]𝑇

𝐴𝑇 (𝑧)
=
𝐴(̅𝑧𝑁)
𝐴𝑇 (𝑧)

=

=∏(𝑧𝑁−1 + 𝛼𝑖,𝑇 · 𝑧𝑁−2 + ··· 𝛼𝑖,𝑇
𝑁−1)

𝑛

𝑖=1

(4. 25) 

The transfer function pole at slow rate and fast rate are 𝛼𝑖,𝑁𝑇  and 𝛼𝑖,𝑇 , respectively. 
Besides, it is seen that: 

[𝐴𝑁𝑇 (𝑧𝑁)]𝑇 = 𝑊𝐴
𝑇 (𝑧) ·𝐴𝑇 (𝑧) (4. 26) 

From the previous, the fast sampling discrete time model can be expressed as (4.27). 

𝐺𝑝
𝑇 (𝑧) =

𝐵𝑝
𝑇 (𝑧)
𝐴𝑝

𝑇 (𝑧)
=
𝐵𝑝

𝑇 (𝑧) · 𝑊𝐴
𝑇 (𝑧)

𝐴𝑝
𝑇 (𝑧) · 𝑊𝐴

𝑇 (𝑧)
=

�̃�𝑝
𝑇 (𝑧)

[𝐴𝑝
𝑁𝑇 (𝑧𝑁)]𝑇

=
𝑌 𝑇 (𝑧)
𝑈𝑇 (𝑧)

(4. 27) 

Therefore, from (4.27), it can be deduced the relationship (4.28), and making a skip 
operation to the T-sequences, that is resampling at NT, the result is (4.29). 

�̃�𝑝
𝑇 · 𝑈𝑇 = [𝐴𝑝

𝑁𝑇 ]𝑇 · 𝑌 𝑇 (4. 28) 

[�̃�𝑝
𝑇 · 𝑈𝑇 ]

𝑁𝑇
= [[𝐴𝑝

𝑁𝑇 ]𝑇 · 𝑌 𝑇 ]𝑁𝑇 → [�̃�𝑝
𝑇 · 𝑈𝑇 ]

𝑁𝑇
= 𝐴𝑝

𝑁𝑇 · [𝑌 𝑇 ]𝑁𝑇 (4. 29) 

The [�̃�𝑝
𝑇 · 𝑈𝑇 ]

𝑁𝑇
 is indivisible because the skip operation does not commutate. The 

opposite situation is feasible, that is, the transformation of a slow rate discrete time 
sequence into a fast rate sequence. The dual rate operator that carries out this 
situation depends on the input signal. For example, for step signals is used the dual-
rate ZOH (DRZOH) that is shown in (4.30). 

[𝐻𝑁𝑇 (𝑠)]𝑇 =
𝑈𝐻𝑇

[𝑈𝑁𝑇 ]𝑇
= [

1 − 𝑒−𝑁𝑇·𝑠

𝑠
]

𝑇

=
1 − 𝑧𝑁

−𝑁

1 − 𝑧𝑁
−1 = (1 + 𝑧𝑁

−1 +··· +𝑧𝑁
−(𝑁−1))

[𝐻𝑁𝑇 (𝑠)]𝑇 = 𝑊𝑅
𝑇

(4. 30) 

Therefore, it is likely to get the following transfer function of the plant with DRZOH 
(4.31). 

𝑌 𝑇 = [𝑈𝑁𝑇𝐻𝑁𝑇 𝐺𝑝(𝑠)]𝑇 = [𝑈𝑁𝑇 ]𝑇 [𝐻𝑁𝑇 𝐺𝑝(𝑠)]𝑇 (4. 31) 

If (4.30) is known, it is found the relationship (4.32). Then, the dual-rate discrete time 
operator is defined as (4.33), where 𝐺𝑝

𝑁𝑇 ,𝑇  is a transfer function from an expanded slow 
input (NT) to a fast output (T). 

[𝐻𝑁𝑇 𝐺𝑝(𝑠)]𝑇 = 𝑊𝑅
𝑇 [𝐻𝑇 𝐺𝑝(𝑠)]𝑇 (4. 32) 

𝐺(̃𝑧,𝑁) = 𝐺𝑝
𝑁𝑇 ,𝑇 =

𝑌 𝑇

[𝑈𝑁𝑇 ]𝑇
= 𝑊𝑅

𝑇 𝐺𝑝
𝑇 = 𝑊𝑅

𝑇 ·
𝐵𝑝

𝑇

𝐴𝑝
𝑇 = 𝑊𝑅

𝑇 ·
𝐵𝑝

𝑇 𝑊𝐴
𝑇

𝐴𝑝
𝑇 𝑊𝐴

𝑇 = 𝑊𝑅
𝑇 ·

�̃�𝑝
𝑇

[𝐴𝑝
𝑁𝑇 ]𝑇

(4. 33) 

Thus, the sampled output with period NT is obtained from the previous as (4.34), 
which is the slow sampled discrete time model.  

[
𝑌 𝑇

[𝑈𝑁𝑇 ]𝑇
]

𝑁𝑇

=
[𝑌 𝑇 ]𝑁𝑇

[[𝑈𝑁𝑇 ]𝑇 ]𝑁𝑇 =
[𝑌 𝑇 ]𝑁𝑇

𝑈𝑁𝑇 =
[𝑊𝑅

𝑇 �̃�𝑝
𝑇 ]

𝑁𝑇

[[𝐴𝑝
𝑁𝑇 ]𝑇 ]𝑁𝑇 =

𝐵𝑝
𝑁𝑇

𝐴𝑝
𝑁𝑇 (4. 34) 

This relationship helps to understand expand and skip operations on model-based 
multirate controller design. 
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4.4.1.3. Closed-loop multirate control 
The block diagram depicted in Figure 4.18 lead to the detailed version in Figure 4.19. 
This multirate control scheme, or dual-rate controller, is composed by slow and fast 
parts, that are connected by an expand or up-sampling operation and a rate converter. 

+

-
Gp(s)HT(s)

�⃗⃗⃗⃗⃗⃗�𝑵𝑻  

[𝒀�⃗�𝑹
𝑻 ]

𝑵𝑻

�⃗⃗⃗⃗�𝑵𝑻  
𝑮𝑹

𝑵𝑻 ,𝑻 �⃗⃗⃗⃗⃗�𝑻  

𝑮𝟏
𝑵𝑻 𝑮𝟐

𝑻  HNT,TN ↑ 

�⃗⃗⃗⃗�𝑵𝑻  

ZOHT

Expand
Rate 

converter

�⃗⃗⃗⃗⃗�𝟏
𝑵𝑻  [�⃗⃗⃗⃗⃗�𝟏

𝑵𝑻 ]
𝑻

�⃗⃗⃗⃗⃗�𝑻  �⃗⃗⃗⃗⃗�𝟐
𝑻  

N ↓  

Skip
𝒀�⃗�𝑹

𝑻  

T  
Figure 4.19. Block diagram of the MRIC 

The output of multirate controlled system is (4.35), which is proven by combining 
(4.36) and (4.37). 

𝑌𝐷𝑅
𝑇 = 𝐺𝑝

𝑇 𝐺𝑅
𝑁𝑇 ,𝑇 [𝑅𝑁𝑇 − [𝑌𝐷𝑅

𝑇 ]𝑁𝑇 ]𝑇 = 𝐺𝑝
𝑇 𝐺2

𝑇𝐻𝑁𝑇 ,𝑇 [𝐺1
𝑁𝑇 ]𝑇⏟⏟⏟⏟⏟⏟⏟

𝐺𝑅
𝑁𝑇,𝑇

[𝑅𝑁𝑇 − [𝑌𝐷𝑅
𝑇 ]𝑁𝑇 ]𝑇 (4. 35)

 

𝑌𝐷𝑅
𝑇 = 𝐺𝑝

𝑇 𝑈𝑇 𝑈𝑇 = 𝐺𝑅
𝑇 ,𝑁𝑇 [𝐸𝑁𝑇 ]𝑇 (4. 36) 

[𝑈1
𝑁𝑇 ]𝑇 = [𝐺1

𝑁𝑇𝐸𝑁𝑇 ]𝑇 = [𝐺1
𝑁𝑇 ]𝑇 [𝐸𝑁𝑇 ]𝑇

𝑈𝑇 = 𝐺2
𝑇𝐻𝑁𝑇 ,𝑇 [𝑈1

𝑁𝑇 ]𝑇 = 𝐺2
𝑇𝐻𝑁𝑇 ,𝑇 [𝐺1

𝑁𝑇 ]𝑇 [𝐸𝑁𝑇 ]𝑇

𝐸𝑁𝑇 = 𝑅𝑁𝑇 − [𝑌𝐷𝑅
𝑇 ]𝑁𝑇

(4. 37) 

4.4.1.4. Controller design 
For a given continuous time plant, 𝐺𝑝(𝑠), a continuous-time controller is designed (it is 
directly designed in discrete time, then transformed to continuous domain), 𝐺𝑅(𝑠), to 
obtain the closed-loop transfer function 𝑀(𝑠). If the discrete time closed-loop transfer 
function at each rate are 𝑀𝑇  and 𝑀𝑁𝑇  with their respective controller, the design goal 
is to obtain a multirate controller with similar response to that at fast rate, T, from a 
slow sampling, NT, of system output. 

Considering (4.35) and the equivalence 𝑌𝐷𝑅
𝑇 ≡𝑀𝑇 𝑅𝑇 , the dual-rate controller 𝐺𝑅

𝑁𝑇 ,𝑇  is 
obtained as (4.39), where a fast and slow part can be identified. 

𝑌𝐷𝑅
𝑇 = 𝐺𝑝

𝑇 𝐺𝑅
𝑁𝑇 ,𝑇 [𝑅𝑁𝑇 − [𝑀𝑇 𝑅𝑇 ]𝑁𝑇 ]𝑇 ≡𝑀𝑇 𝑅𝑇 (4. 38) 
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𝐺𝑅
𝑁𝑇 ,𝑇 =

𝑀𝑇 𝑅𝑇

𝐺𝑇⏟
𝐹𝑎𝑠𝑡 𝑝𝑎𝑟𝑡

·
1

[𝑅𝑁𝑇 − [𝑀𝑇 𝑅𝑇 ]𝑁𝑇 ]𝑇⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑠𝑙𝑜𝑤 𝑝𝑎𝑟𝑡

(4. 39) 

If the fast-skipped output response and the slow single-rate loop output should match 
(4.40), then (4.42) is found. 

[𝑌𝐷𝑅
𝑇 ]𝑁𝑇 = [𝑌 𝑇 ]𝑁𝑇 = 𝑌 𝑁𝑇 = 𝑀𝑁𝑇 𝑅𝑁𝑇 (4. 40) 

𝑌𝐷𝑅
𝑇 = 𝐺𝑝

𝑇 𝐺𝑅
𝑁𝑇 ,𝑇 [𝑅𝑁𝑇 − 𝑌 𝑁𝑇 ]𝑇 = 𝐺𝑝

𝑇 𝐺𝑅
𝑁𝑇 ,𝑇 ([𝑅𝑁𝑇 ]𝑇 − [𝑌 𝑁𝑇 ]𝑇 ) =

= 𝐺𝑝
𝑇 𝐺𝑅

𝑁𝑇 ,𝑇 ([𝑅𝑁𝑇 ]𝑇 − [𝑀𝑁𝑇 𝑅𝑁𝑇 ]𝑇 ) =  𝐺𝑝
𝑇 𝐺𝑅

𝑁𝑇 ,𝑇 [𝑅𝑁𝑇 ]𝑇 (1 − [𝑀𝑁𝑇 ]𝑇 ) = 𝑀𝑇 𝑅𝑇
(4. 41) 

𝐺𝑅
𝑁𝑇 ,𝑇 =

𝑀𝑇

𝐺𝑝
𝑇
⏟
𝐺2
𝑇

·
𝑅𝑇

[𝑅𝑁𝑇 ]𝑇⏟
𝐻𝑁𝑇,𝑇

·
1

1 − [𝑀𝑁𝑇 ]𝑇⏟⏟⏟⏟⏟
[𝐺1

𝑁𝑇 ]𝑇

(4. 42)
 

Then the controller is composed of: 

- Fast part: 

𝐺2
𝑇 (𝑧) =

𝑀𝑇 (𝑧)
𝐺𝑝

𝑇 (𝑧)
(4. 43) 

- Slow part: 

𝐺1
𝑁𝑇 (𝑧𝑁) =

1
1 − 𝑀𝑁𝑇 (𝑧𝑁)

(4. 44) 

- Rate converter: 

𝐻𝑁𝑇 ,𝑇 (𝑧) =
𝑅𝑇 (𝑧)

[𝑅𝑁𝑇 ]𝑇 (𝑧)
(4. 45) 

The following statements about these results must stand out: 

1) For steps changes in reference, it achieves the same discrete-time response as 
fast single-rate controller, 𝐺𝑅

𝑇 (𝑧), does, but some ripple could eventually appear. 
This ripple is avoided, if the fast part 𝐺2

𝑇 (𝑧) is changed by taking 𝑀𝑅
𝑇 (𝑧) as 

given by (4.46) instead of 𝑀𝑇 (𝑧), but the response does not match the fast 
single-rate controlled plant response. The intersampling ripple could appear 
depending on 𝐺𝑝

𝑇 (𝑧) numerator roots. If the fast controller is taken as (4.47) the 
dual-rate controller 𝐺𝑅

𝑁𝑇 ,𝑇 (𝑧) does not cancel the numerator of the process 
transfer function, avoiding the ripple, but the matching 𝑌𝐷𝑅

𝑇 = 𝑌 𝑇  does not 
hold. 

𝑀𝑅
𝑇 (𝑧) =

𝑌𝑅
𝑇 (𝑧)

𝑅𝑇 (𝑧)
=

𝐺𝑝
𝑇 (𝑧)𝐺𝑅

𝑇 (𝑧)
1 + 𝐺𝑝

𝑇 (𝑧)𝐺𝑅
𝑇 (𝑧)

(4. 46) 

𝐺2
𝑇 (𝑧) =

𝑀𝑅
𝑇 (𝑧)

𝐺𝑝
𝑇 (𝑧)

=
𝐺𝑅

𝑇 (𝑧)
1 + 𝐺𝑝

𝑇 (𝑧)𝐺𝑅
𝑇 (𝑧)

(4. 47) 

2) The reference input defines the rate converter 𝐻𝑁𝑇 ,𝑇 (𝑧), which is basically 
defined as an extrapolator block. For step reference inputs, the DRZOH (4.48) 
is enough, because it replies the sample N-1 times at fast rate. Although for 
sinusoidal signals, there is not such a transfer function, but the reference frame 
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transformation in (4.49) can be used. This sinusoidal extrapolation takes the 
vector amplitude and signal phase 𝜃1 is extrapolated. First the signal in 
stationary reference frame is transformed into rotating reference frame at slow 
rate, NT, then it is transformed back to the stationary reference frame at fast 
rate, T. Due to its unique implementation, the expand operation is only 
involved to correctly implement the DRZOH in the rate change on the rotating 
reference frame (4.50). Please note that the vector notation is expressed here to 
connect with the mission of this document, without losing generality of all 
previous analysis. 

𝐻𝑁𝑇 ,𝑇 (𝑧) =
𝑅𝑇 (𝑧)

[𝑅𝑁𝑇 ]𝑇 (𝑧)
=

1 − 𝑧−𝑁

1 − 𝑧−1 (4. 48) 

�⃗⃗⃗⃗⃗�𝛼𝛽𝑇 [𝑘 · 𝑁𝑇 + 𝑝 · 𝑇 ] = �⃗⃗⃗⃗⃗�𝛼𝛽𝑁𝑇 [𝑘 · 𝑁𝑇 ] · 𝑒−𝑗·𝜃1[𝑘·𝑁𝑇 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅𝑜𝑡𝑎𝑡𝑖𝑛𝑔−𝑓𝑟𝑎𝑚𝑒 ([�⃗⃗⃗⃗⃗⃗�𝑑𝑞
𝑁𝑇]

𝑇
·�⃗⃗⃗⃗⃗�𝑁𝑇,𝑇 )

· 𝑒𝑗·𝜃1[𝑘·𝑁𝑇+𝑝·𝑇 ]⏟⏟⏟⏟⏟
𝑆𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦−𝑓𝑟𝑎𝑚𝑒

𝑘 ∈ ℕ
𝑝 = 0, 1, 2,… ,𝑁 − 1

(4. 49) 

�⃗⃗⃗⃗�𝑁𝑇 ,𝑇 (𝑧) =
�⃗⃗⃗⃗⃗�𝑑𝑞

𝑇 (𝑧)

[�⃗⃗⃗⃗⃗�𝑑𝑞
𝑁𝑇 ]

𝑇
(𝑧)

=
1 − 𝑧−𝑁

1 − 𝑧−1 (4. 50) 

3) In general, the stability margins of the dual-rate (DR) controlled system are 
between those of the slow and fast single-rate discrete-time schemes [31].  

4) If the plant is non-minimum phase, the cancelation of unstable pole-zero pairs 
must be avoided. If that is done, 𝐺2

𝑇 (𝑧) is computed as (4.47). If 𝐺1
𝑁𝑇 (𝑧𝑁) is 

maintained, the output does not match the output predicted by the closed loop 
transfer function. However, if 𝑀𝑅

𝑁𝑇  is computed by using (4.51), the response 
will follow the fixed one by 𝑀𝑅

𝑇 . 

[𝑀𝑇 𝑅𝑇 ]𝑁𝑇 = 𝑀𝑁𝑇 𝑅𝑁𝑇 (4. 51) 

5) This approach works for unstable plants, as far there is not pole cancellation in 
(4.43), which is avoided by using (4.47) instead. 

6) The controller is usually designed in discrete-time and its equivalent in 
continuous-time is found to apply this technique. For sinusoidal signals there is 
an inherent 𝑇/2 (or 𝑁𝑇/2) delay on the transfer function Z-transform due to 
ZOH operator, as it was analyzed in Chapter 2. Instead applying ZOH method, 
the bilinear transform (Tustin’s method) can be used to convert a s-domain 
transfer function to z-domain. The transform preserves stability and maps every 
point of the frequency response of the continuous-time transfer function to a 
corresponding point in the frequency response of the discrete-time transfer 
function, although to a somewhat different frequency, and this is called 
frequency warping. When designing a digital filter as an approximation of a 
continuous-time filter, the frequency response (both amplitude and phase) of 
the digital filter can be designed to match the frequency response of the 
continuous filter at a specified frequency 𝜔0 (resonant frequency, or in this case, 
the fundamental frequency that is controlled, 𝜔1). The Tustin’s transform with 
pre-warping is (4.52). 
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𝑠←
𝜔0

tan (𝜔0𝑇
2 )

·
𝑧 − 1
𝑧 + 1

(4. 52) 

7) The input-output stability is ensured because controller is designed to match 
some given responses and possible ripple is avoided. However, the robustness of 
the result should be analyzed, as any other control design approach based on 
(partial) model cancellation. The system internal stability requires that none of 
the four functions (4.53) should have unstable poles. In the multirate setting, 
this is achieved by implementing (4.47). 

(1 + 𝐺𝑝(𝑠)𝐺𝑅(𝑠))
−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆)

𝑆(𝑠)𝐺𝑅(𝑠) 𝑆(𝑠)𝐺𝑝(𝑠) 𝐺𝑅(𝑠)𝑆(𝑠)𝐺𝑝(𝑠) (4. 53) 

4.4.2. Stationary reference frame 
This subsection takes the parameters in Table 4.1, and obtains the corresponding 𝛼𝛽-
frame MRIC with a specified rate multiplier N. In this occasion, the chosen gain vector 
(4.54) is obtained with 𝑅 = 1 and 𝑄 = 𝑑𝑖𝑎𝑔([2.8 2.8 0.3] · 10−3) for the fast single-
rate system with parameters in Table 4.1. 

𝐾 = [0.0832 +  𝑗 · 0.0026 0.3235 +  𝑗 · 0.0204 0.0112 +  𝑗 · 0.0113] (4. 54) 

Following the steps on previous section, the MRIC controller could be obtained for 
whatever N multiplier. This technique is based on comparing the single-rate fast 
controlled system response with the one obtained with MRIC controller, which slowest 
rate part has a period NT. Firstly, a numerical example is given to describe each step. 
This example keeps constant 𝑇 = 200 𝜇𝑠 and the output current is sampled with NT 
period, where 𝑁 = 2. The controller has the gains K described by (4.54). The controller 
with rate T is (4.55) and the plant at the same rate is (4.56). Please note that the 
delay, that is its feedback state, is included in the plant model. 

𝐺𝑅
𝑇 (𝑧) =

(0.3235 + 𝑗 · 0.02041) · 𝑧 − (0.3104 + 𝑗 · 0.02936)
𝑧 − (0.998 + 𝑗 · 0.06279)

(4. 55) 

𝐺𝑝
𝑇 (𝑧) =

0.2663
𝑧2 − (0.9144 − 𝑗 · 0.002619) · 𝑧 − (0.08299 + 𝑗 · 0.002613)

(4. 56) 

Therefore, to obtain the slow part of the controller, (4.55) and (4.56) are converted to 
the s-domain, separately. Applying the feedback law, the closed-loop transfer function 
is found as (4.57). 

𝑀(𝑠) =
−(449.4 + 𝑗1174)𝑠2 + (4.3 + 𝑗6.34) · 106𝑠 + (18.82 + 𝑗5.12) · 108

𝑠3 + (1.19 + 𝑗1.40) · 104 𝑠2 + (9.34 + 𝑗2.62) · 106 𝑠 + (19.41 + 𝑗4.65) · 108
(4. 57) 

The poles (p) and zero (z) of 𝑀(𝑠) are (4.58), where it is clearly seen that the system is 
stable, and it has a non-minimum phase zero. Notice that due to the complex-valued 
definition of transfer function in this system, the complex poles are not conjugate. 

𝑝1 = −(1.15 + 𝑗1.43) · 104
𝑝2 = −210.21 + 𝑗399.25
𝑝3 = −218.16 − 𝑗99.68

𝑧1 = (6.12 − 𝑗1.55) · 103

𝑧2 = −189.14 + 𝑗156.47 (4. 58) 
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Then, the closed-loop transfer function with NT period is (4.59). 

𝑀𝑁𝑇 (𝑧𝑁) =
𝑛𝑢𝑚

𝑧6 − (1.17 − 𝑗0.18)𝑧4 − (0.32 + 𝑗0.51)𝑧2 + (0.52 + 𝑗0.32)
𝑛𝑢𝑚 = (19.16 − 𝑗8.61) · 10−3𝑧6 + (11.49 + 𝑗4.37) · 10−2 𝑧4 −

(7.06 − 𝑗3.63) · 10−3𝑧2 − (10.28 + 𝑗4.86) · 10−2

(4. 59) 

Thus, taking (4.44), the slow part of the controller is (4.60), whereas the fast part is 
obtained as (4.61) taking (4.47) to ensure stable response, although it will not match 
the designed one at fast rate. 

𝐺1
𝑁𝑇 (𝑧𝑁) =

𝑛𝑢𝑚
𝑧6 − (1.31 − 𝑗0.16)𝑧4 − (0.33 + 𝑗0.52)𝑧2 + (0.64 + 𝑗0.37)

𝑛𝑢𝑚 = (1.02 − 𝑗0.009)𝑧6 − (1.19 − 𝑗0.203)𝑧4 −
(0.337 + 𝑗0.522)𝑧2 + (0.53 + 𝑗0.317)

(4. 60) 

𝐺2
𝑇 (𝑧) =

𝑛𝑢𝑚
𝑧3 − (1.912 + 𝑗0.0602)𝑧2 + (0.9159 + 𝑗0.0576)𝑧

𝑛𝑢𝑚 = (0.324 + 𝑗0.0204)𝑧3 − (0.606 + 𝑗0.047)𝑧2 +
+(0.257 − 𝑗0.0235) 𝑧 + (0.0257 + 𝑗0.0032)

(4. 61) 

The rate converter is implemented as explained in (4.49). Responses are depicted in 
Figure 4.20, and detailed one in Figure 4.21, with a reference step of 50 Arms (active 
power, forcing 𝑒𝑞 = 0). The actuation signal and the output response practically follow 
the response imposed by the fast single-rate controller, which is the design goal. 

 
Figure 4.20. MRIC response (N=2) compared to the single-rate (SR) fast controlled system 

for 𝜶𝜷-frame 

The responses differ due to the application of (4.47) to ensure stability. However, the 
differences are minimum, because the over-shoot is approximately equivalent, and the 
settling time is a few ms lower. 

Figure 4.22 depicts the responses with high N values. From this figure is deduced that 
the response gets worse, but it has a clear explanation: the output is sampled in a very 
low rate NT, and extrapolation is carried out by the controller. Nevertheless, the 
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actuation signal is not excessively high, the over-shoot is approximately increased by 
4%, and the settling time is almost equal. 

 
Figure 4.21. Detailed MRIC response (N=2) compared to the single-rate (SR) fast 

controlled system for 𝜶𝜷-frame 

 
Figure 4.22. MRIC response with different values of N compared to the single-rate fast 

controlled system for 𝜶𝜷-frame 

The stability margins of the MRIC controlled system are between those of the slow and 
fast single-rate discrete-time schemes. The fast single-rate discrete-time stability is 
ensured, but the one corresponding to the slow single-rate discrete-time system depends 
on N. If the NT period for that controller is excessively slow, the system could be 
unstable. To analyze this situation, pole-zero map of 𝑀𝑅

𝑁𝑇 (𝑧𝑁) is examined for 
different values of N in Figure 4.23. In this case 𝑀𝑅

𝑁𝑇 (𝑧𝑁) is taken as (4.62), where 
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𝐺𝑅
𝑁𝑇 (𝑧𝑁) has the same gain vector (4.54) that was obtained for 𝐺𝑅

𝑇 (𝑧). Besides, the 
pole-zero map is only shown for comparison purposes, but note that the 𝑧 variable is 
𝑧𝑁  for every N. From this representation, the system is unstable for 𝑁 > 12.  

𝑀𝑅
𝑁𝑇 (𝑧𝑁) =

𝑌𝑅
𝑁𝑇 (𝑧𝑁)

𝑅𝑅
𝑁𝑇 (𝑧𝑁)

=
𝐺𝑝

𝑁𝑇 (𝑧𝑁)𝐺𝑅
𝑁𝑇 (𝑧𝑁)

1 + 𝐺𝑝
𝑁𝑇 (𝑧𝑁)𝐺𝑅

𝑁𝑇 (𝑧𝑁)
(4. 62) 

 
Figure 4.23. Pole-zero map of 𝑴𝑹

𝑵𝑻 (𝒛𝑵 ) for 𝜶𝜷-frame 

 
Figure 4.24. MRIC response with high N values for 𝜶𝜷-frame 

However, the MRIC has stable response for 𝑁 = 14 as depicted in Figure 4.24, but it 
has large oscillations. Although the MRIC becomes unstable for 𝑁 = 16, the stability is 
only ensured for 𝑁 < 12. Also, that rate multiplier means that the 50 Hz signal is 
sampled every 𝑁 · 𝑇 = 2.4 𝑚𝑠, so there are only 8 samples per signal period, which is 
highly dangerous, because every sinusoidal signal is usually sampled at least 10 times 
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every signal period (the theoretical limit is set by Nyquist criterion on 2 samples per 
signal period). Hence, the rate multiplier, N, limit is on 𝑁 ≤ 10. 

4.4.3. Rotating reference frame 
This subsection presents the MRIC in dq-frame, using the single-rate controller 
presented in 4.2.2. The parameters are in Table 4.1, where the actuation signal 𝑇 =
200 𝜇𝑠 is the fastest rate in the system, and the sampling rate of the output current is 
changed by rate multiplier N, so the sampling period is NT. The tuning parameter to 
shape the system response is chosen as 𝛾 = 0.2868.  

First, a numerical example is given to analyze its transfer functions and response. This 
example set 𝑁 = 2, and the controller with period T is (4.63) and plant with same 
period is (4.64). Please note that the delay is included in the plant model. 

𝐺𝑅
𝑇 (𝑧) =

(1.072 + 𝑗0.1013)𝑧 − (1.074 + 𝑗0.3373)
𝑧 − 1

(4. 63) 

𝐺𝑝
𝑇 (𝑧) =

(0.2651 − 𝑗0.02506)
𝑧2 − (0.9956 − 𝑗0.06264)𝑧

(4. 64) 

Therefore, to obtain the slow part of the controller, 𝑀𝑅
𝑇 (𝑧) (obtained though (4.63) and 

(4.64)) is converted to the s-domain, so the closed-loop transfer function is found as 
(4.65). The transfer function only has real value coefficients, so the pole-zero 
cancellation is already applied (non-conjugate complex pole cancellation). Two different 
paths have been taken here and previous subsection to prove that 𝑀(𝑠) can be 
obtained by either of them. 

𝑀(𝑠) =
−1652𝑠 + 1.31 · 107

𝑠2 + 6245𝑠 + 1.31 · 107
(4. 65) 

The poles (p) and zero (z) of 𝑀(𝑠) are (4.66), where it is clearly seen that the system is 
stable, and it has a non-minimum phase zero.  

𝑝1 = (−3.1224 + 𝑗1.8317) · 103

𝑝2 = (−3.1224 − 𝑗1.8317) · 103 𝑧1 = 7.933 · 103 (4. 66) 

Then, the closed-loop transfer function with NT period is (4.67). 

𝑀𝑁𝑇 (𝑧𝑁) =
0.2868𝑧2 + 0.3691

𝑧4 − 0.4264𝑧2 + 0.08225
(4. 67) 

The slow part of the controller is (4.68) from (4.44), whereas the fast part is obtained 
as (4.68) taking (4.47) to ensure stable response, although it will not match the 
designed one at fast rate. 

𝐺1
𝑁𝑇 (𝑧𝑁) =

𝑧4 − 0.4264𝑧2 + 0.08225
𝑧4 − 0.7132𝑧2 − 0.2868

(4. 68) 

𝐺2
𝑇 (𝑧) =

(1.072 + 𝑗0.1013)𝑧2 − (1.074 + 𝑗0.03373)𝑧
𝑧2 − 𝑧 + 0.2868

(4. 69) 

The rate converter is implemented as (4.70), or also by an equivalent obtained from 
(3.51) with 𝐻1×𝑁

𝐶 (𝑧). 
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𝐻𝑁𝑇 ,𝑇 (𝑧) =
𝑧2 − 1
𝑧2 − 𝑧

(4. 70) 

Responses are depicted in Figure 4.25 with a reference step of 50 Arms (active power, 
forcing 𝑒𝑞 = 0). The actuation signal and the output response exactly follow the 
imposed response by the fast single-rate controller, which is the design goal despite of 
applying expression (4.47). Regardless of the feedback signal is sampled every NT, the 
actuation signal is like the one obtained with fast SR controlled system. Hence, this 
MRIC system gets extraordinary results. 

 
Figure 4.25. MRIC response (N=2) compared to the single-rate (SR) fast controlled system 

for -frame 

 
Figure 4.26. MRIC response with different values of N for dq-frame 

Figure 4.26 shows the responses with higher N values. For 𝑁 = 3 and 𝑁 = 4 the 
output response seems to be delayed. If the step is given in an instant between NT 
sampling periods, the reference will be delayed. Hence, if the step instant is at the 
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beginning of the simulation, that is, instant 0, the response is exactly equivalent, as is 
shown in Figure 4.27. 

 
Figure 4.27. MRIC controlled -frame system response with different values of N and step 

instant placed in 0 ms 

The stability could be analyzed again by taking 𝑀𝑅
𝑁𝑇 (𝑧𝑁). If the pole-zero cancellation 

controller is correctly implemented, the closed-loop transfer function always has the 
expression (4.71). Therefore, the system will be stable as long the parameter 𝛾 is 
correctly selected. 

𝑀𝑅
𝑁𝑇 (𝑧𝑁) =

𝛾
𝑧2𝑁 − 𝑧𝑁 + 𝛾

(4. 71) 

 
Figure 4.28. Comparison of slow single-rate (SR) response to the one with MRIC controlled 

-frame system  

However, the signal converted to dq-frame has a frequency of 50 Hz, so, as it was 
previously indicated, the signal must have at least 10 samples at each signal period. 
Then the limit rate multiplier is 𝑁 ≤ 10. 
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From Figure 4.27 is deduced that MRIC controllers has a great potential in quick 
responses. For example, with 𝑁 = 5 the current matches the reference in 3 samples. In 
Figure 4.28, the MRIC controlled system response is compared to the one obtained 
with 𝑀𝑅

𝑁𝑇 , being 𝑁 = 5 and 𝛾 = 0.2868. To get such quick responses, the system needs 
great actuation signals, so MRIC controller provides better actuation values. 

Finally, to transform the actuation signal from dq-frame to 𝛼𝛽-frame, the algorithm 
requires that the phase would be also extrapolated, or obtained through a PLL working 
at fast rate T. The second approach is taken on this analysis, although this MRIC 
approach can also be followed in the PLL system, but it will be analyzed in the future. 

4.4.4. Detailed model 
This section compares the previous mathematical model-based responses with the one 
obtained by a detailed model simulation of the VSC. That is, the simulation is carried 
out by Matlab Simulink using the detailed model of 3L-DNPC-VSC along with its L-
filter, which is connected to the grid. To focus the analysis on the current controller 
response, the DC-bus is already controlled by a DC voltage source. Besides, the VSC is 
synchronized with the grid by means of SRF-PLL presented in Appendix C.2.3. The 
SRF-PLL input voltage is measured every 𝑇  seconds. The system parameters are 
reminded in Table 4.5, the used controllers in Table 4.7, and the SRF-PLL controller in 
Table 4.6. Note that the dq-frame controller only needs the parameter 𝛾, because the 
complex-valued static gain and zero depend on the rate 𝑇 , that is, the designed fast-
rate controller. The power invariance transformation is the used one here for change 
from abc reference frame to 𝛼𝛽 and dq. 

The studied responses are analyzed for a step change in active power of 20 kW, so the 
corresponding current is 50 ARMS. The change is taken place when the VSC is already 
synchronized (forcing 𝑒𝑑 = 0). 

Table 4.5. VSC parameters for multirate time-domain analysis in detailed model 

Name Symbol Value 
Filter resistor 𝑅 9.1 𝑚Ω 
Filter inductor 𝐿 750 𝜇𝐻 
Fundamental frequency 𝑓1 50 Hz 
Fast rate 𝑇  200 𝜇𝑠 
Switching frequency 𝑓𝑆𝑊  2.5 kHz  
Sampling period 𝑁𝑇  
Grid line-to-line voltage 𝑒𝑔𝑟𝑚𝑠 400 Vrms 
DC-bus voltage 𝑈𝐷𝐶 700 𝑉  

Table 4.6. SRF-PLL parameters  

Name Symbol Value 
Proportional constant 𝐾𝑝 918.5474 
Integral constant 𝐾𝐼 3.8683 · 105 
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Table 4.7. Controllers parameters for multirate time-domain analysis in detailed model 

Name Symbol Value 
Full-state feedback controller in 𝜶𝜷-frame 

Delay state constant 𝐾𝑏 0.0837 +  𝑗0.0026 
Proportional constant 𝐾𝑝 0.3235 +  𝑗 · 0.0204 
Integral constant 1st harmonic 𝐾1𝑝 0.0112 +  𝑗 · 0.0113 

Complex-valued PI in dq-frame 
Real-valued factor 𝛾 0.2868  

 
Figure 4.29. Time response of detailed MRIC system in 𝜶𝜷-frame: (a) Output current; (b) 

VSC voltage 

 
Figure 4.30. Time response of detailed MRIC system in -frame: (a) Output current; (b) 

VSC voltage 
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The responses, in the stationary 𝛼𝛽 reference frame, are presented in Figure 4.29(a), 
whereas the corresponding actuation signal is in Figure 4.29(b). Note that the responses 
are almost identical to those calculated in Figure 4.22. 

Figure 4.30 shows the responses for the rotating dq reference frame. The responses and 
actuation signal are as expected in Figure 4.27. 

Hence the detailed simulation exactly follows the mathematical model and this 
multirate technique could be easily applied to experimental tests. 

4.4.5. Discussion 
The model-based MRIC controller provides great responses, if it is considered that the 
current is being sampled every NT seconds. On one hand, for the 𝛼𝛽-frame, the MRIC-
controlled system can get similar responses to the obtained one with single-rate fast 
controlled system, although it does not exactly match them. On the other hand, for the 
dq-frame, the MRIC-controlled system obtains exactly the same time responses, which 
is great considering that error is being tracked every NT seconds instead of T. 

This model-based approach obtains excellent results, but the stability and robustness 
analysis are subordinated to those for the single-rate slow and fast systems. Better tools 
must be found to ensure the performance of the system. Besides, the designer should be 
able to get the best possible response for a given plant, and sampling periods or rates 
(T and NT). For example, in [31] and [14] is detailed another model-based controller 
design to achieve model reference tracking with minimum time response, whereas the 
control magnitude is being bounded, and a cancellation controller is used. 

Notice that the rate multiplier is bounded to 10, if T is 200 𝜇𝑠, because the sinusoidal 
signal that it is being followed has a frequency of 50 Hz and the systems need at least 
10 samples at each signal period of 20 𝑚𝑠.  

The controller implementation is straightforward, and it allows for a reduction in the 
measurement processing. It is also convenient in the case of slower sampling due to 
technical limitations and for distributed control systems, by splitting the control into a 
slow rate part to be sent through the communication channel and a fast part to be 
locally computed. The presented simulations here studied the case where the sampling 
frequency has been reduced and the switching frequency was preserved to typical 
values for medium voltage application around 2.5-10 kHz. Other situations could be 
found as the ones presented in section 3.3, but other controllers are implemented to 
each case. The scope of this document is on demonstrate the model-based multirate 
approach to current control loop, which is usual in VSC applications. 

4.5. Conclusions 
This chapter has analyzed multirate controllers in the VSC current control loop in each 
reference frame. First, single-rate controllers for dq and 𝛼𝛽-frame were presented, and 
it should be emphasized that complex-valued model and controllers were used. The 
vector approach gives a simpler analysis of those multirate examples, and it also 
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provides the most suitable approach for three-phase systems. Usually, each axis is 
independently analyzed, and cross-coupling effects are compensated by feed-forward 
paths. There are some applications where the passive resistive-inductive effects are 
different in each axis (three-phase machines), and there is no choice but to apply the 
decoupled approach. Nevertheless, this is not that situation, because it is a grid-tied 
converter. 

Each controller is correctly defined because they are needed to obtain the multirate 
method. Firstly, the time-domain analysis of the multirate situation is carried out. In 
this occasion the sampling is kept constant, whereas the actuation frequency is 
increased. The structure of the controllers is equivalent, and it is only adapted to each 
new actuation frequency. This approach only analyzed each new equivalent system, but 
it did not get better with each new rate multiplier. From results for each reference 
frame, it can be deduced that if the actuation and control rate are fastest, the system 
could get into unstable regions and should be corrected. Besides, the controller is not 
designed for such situation and does not correctly adapt sampling rates. Therefore, the 
model-based MRIC controller was introduced to get better responses and to take 
advantage of the multirate situation. On one hand, this controller design in 𝛼𝛽-frame 
did not get exactly the same response, but very close ones. These results could be 
related to the extrapolation technique in the rate converter or maybe this control 
design approach is not mean to be applied to systems where sinusoidal (vector) signals 
are controlled. On the other hand, the controller design in dq-frame achieved the same 
responses, which is great considering that the current is being sampled at N times 
lower rate than the actuation is being applied. 

However, this document is only focused in the current control loop, but other control 
loop in VSC could be involved. For example, the DC-bus voltage control loop is usually 
at slower rate than the inner current control, which is the one that applies the 
actuation signal obtained by this controller, so the model-based MRIC tactic could be 
followed. 

Finally, it must be considered that anti-aliasing and anti-imaging filters are not 
involved in these examples, because only one frequency is being analyzed. Besides, the 
anti-aliasing filters for current sampling could be avoided, if sampling instants are 
correctly synchronized with minima and maxima of the carrier signal, as it was 
presented in subsection 2.2.2.3. Anti-imaging filters are not needed because the rate 
converter performance is always subordinated to the fundamental frequency in this 
application. However, these filters must be considered to provide robustness and 
stability to the system. Using this method, the controller will not be pending on other 
high frequencies harmonics that could get through the samplers. 
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Chapter 5. Conclusions and 

future works 

5.1. Conclusions 
The multirate approach for power converters is a very promising alternative for 
sampling frequency limited MV applications due to actuation signal optimization. This 
is a relatively new multirate method in power electronics field, so it can lead to better 
alternatives and applications. 

This work firstly presented the multirate bases and definitions that have been useful 
for understanding what is the actual situation of this control theory branch. The 
multirate analysis has been studied for a long time, because, in all cases, it must work 
with equivalents single-rate discrete-time analysis, that has already matured. The most 
useful contribution, what supports all following studies, was given by Kranc. The 
problem with this method is that the samplers cannot be placed wherever wants the 
designer, because it requires future values that are obviously unknown.  

Then, the state of the art analyzed what are the possible modulation techniques. 
Although this work has been focused in DSPWM, the SHE is a great alternative where 
the multirate approach could be useful. A profound and detailed analysis have been 
shown for DSPWM and its modelling alternatives. That section gave solid reasons for 
modelling this actuation system as a unitary gain system with a one-half T delay. 
Then, it provided a relationship with a possible alternative, that is the multisampling. 
However, this technique has some troubles with switching noise that could be solved 
with a multirate approach, what lead to solutions where the actuation signal is 
extrapolated, but the one-half delay is reduced, and so it does the overall phase delay 
of the closed-loop current control. That is the reason why the DSPWM system has 
been profoundly inspected. Besides, this fractional delay is related to multirate 
situation, as it was seen by modelling equivalence between ZOH operation and modified 
Z-transform application to that one-half delay. 

To prove that there are multirate possibilities in power electronics, two alternatives 
were presented. Each one of them took a different path to design the control system. 
On one hand, the author with RC used IR to get a single-rate equivalent for the 
system and to analyze its stability. On the other hand, the PLL design was obtained 
by means of ER, although it had not used exactly the same notation of this document. 
Therefore, there are two conceivable tactics to analyze multirate system: Internal 
Representation and External Representation. These terms are multirate analogous to 
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single-rate usual ones, known as space-state and traditional SISO representations. From 
those multirate techniques could be concluded that the most intuitive approach is the 
IR, but what gives powerful tools for multirate controller modelling is the ER, as it has 
been shown afterwards with the model-based MRIC controller. 

Obviously, the following chapter must have provided the system model for what has 
been designed the controllers. Given that two possible control reference frames are 
possible in power electronics, the two options have been evaluated. Besides, for analysis 
convenient, better understanding of multirate techniques from Chapter 4 and accurate 
modelling, the complex-valued transfer function and space-state models were presented. 
Hence, all signals were vector with their real and imaginary parts, and they were no 
longer scalar variables. This is not the usual method, but in recent years it is getting 
higher importance. 

This system must have been placed at correct multirate context, so few possible 
applications were presented. First, the reduction of DSPWM delay was studied by 
means of actuation signal extrapolation, and it was compared to usual phase advancing 
technique. It was confirmed that they get similar carrier crossings, but the signal 
extrapolation got more accurate results. The problem with extrapolation has been 
already mentioned, it supposed future values and get into uncertainties. Besides, it does 
not reduce the delay for some modulating signal frequencies because only one switch 
per half carrier period is allowed. This technique is used to replace the multisampling, 
because it does not sample switching noise, and delay reduction is also achieved. Note 
that it is possible to use a usual single-rate controller and extrapolate its modulating 
sinusoidal signal or design a MRIC. Second multirate alternative has been also related 
to the actuation system, that is the SHE modulation. In this occasion, it was also 
presented the polynomial extrapolation, which must be known, but it is less useful for 
sinusoidal extrapolation than the one presented using reference frame transformation 
from rotating to stationary. The sinusoidal extrapolation presented here extrapolates 
module and phase values separately. However, it is not possible to get a transfer 
function from this technique, so the possible inferences are unknown. What it is safe to 
say is that, it will not affect, if only one frequency is extrapolated. Then, although it 
has not been tested in this document, it must be noticed that there is one possible 
niche for multirate applications in every hierarchical control structure. These control 
loops use different sampling rates for each level, so correct analysis must be followed. 
Finally, the possibility of fastest power semiconductor devices will be opened in near 
future, and the possibility of high computational burden might require extrapolation or 
MRIC techniques. 

The last chapter represents the major contribution of this work. Using complex-valued 
controllers for each reference frame, a grid-tied VSC was analyzed. Firstly, using IR 
technique, a technique for analyze systems with different rates along the loop was 
examined. The designer can see how the equivalent single-rate transfer function 
changes its pole-zero map with each different rate multiplier. However, this is not the 
best way to design a multirate controller. Hence, based on the literature, the model-
based MRIC controller was presented. It is a dual-rate controller, being its sampling 
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frequency slower than the actuation. With this technique, the designer can get similar 
temporal responses to those obtained by the fast single-rate designed controller. The 
dual-rate controller is composed by a slow part, rate converter and fast part, and it 
must stand out that the rate converter is what makes the difference in this controller, 
because it is the part that extrapolates the variable. Each reference frame has its own 
rate converter. In this occasion, stability and robustness tools are missed to analyze its 
frequency response. For the moment, the time-domain responses are enough, 
considering complexity of multirate systems.  

Along this work, it has been mentioned that rate changes in digital signal processing 
requires anti-aliasing and anti-imaging filters to avoid alias frequencies when down-
sampling or image frequencies when up-sampling, respectively. For given examples in 
this document, these filters have not been needed for two reasons that are explained 
subsequently. First, the anti-aliasing filter would have been needed for sampling 
feedback signal, but sampling at carrier maxima and minima, high frequency harmonics 
are avoided. Second, the anti-imaging would have been needed for every rate converter 
that has generated an extrapolation, but these extrapolations are straightforward for 
one frequency and there is no reason to introduce such a low pass filter that could have 
generated phase delay. 

Note that MRIC controller design has considered the continuous-time model of plant 
and controller. The reason is that to obtain the slow and fast parts of the controller the 
designer must have a basis to apply the discrete-time transformation to each discrete-
time period.  

This work has been hard because, at the beginning, it was difficult to find multirate 
contributions in power electronics or control theory in general. When Kranc 
methodology was found, the following contributions were easily noticeable because all 
authors had begun its research with that methodology. Other alternatives, as MROC, 
can be also applied in power electronics, but the fresh topic of multirate in power 
electronics requires calm and clear presentation of adapted notation in this field. The 
gates are open for future implementation of other multirate control techniques in power 
electronics. 

5.2. Future works 
This document leaves several new topics for experimental tests and other applications 
of multirate techniques. In the subsequent, some future works are enumerated: 

1) Experimental results 

If something important has been left in this document is experimental result from 
MRIC controller. The DNPC converter software platform is not ready for applications 
with several sampling rates in its routine. Hence, the alternatives are: intelligent 
strategy to achieve slower rates by neglecting some samples or changing the digital 
platform for another new alternative. Due to timing issues on writing this work, these 
alternatives have not been applied, but its implementation will be made in near future. 
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Besides, the document introduces the MV power converter issue, but the simulation 
results were given for the LV 3L-DNPC-VSC that the research group has in its 
laboratory. Therefore, the results obtained in this work can be compared soon with 
experimental results. Nevertheless, the methodology of this work makes easy the 
implementation of MV simulations or experimental results, if such voltage levels are 
available. 

Also, more sophisticated grid-tied filters have been used in MV converters as LLCL-
filters, so delay implications and stability of such systems must be analyzed in the 
future for multirate applications. 

In conclusion, several experimental setups must be planned soon to validate simulation 
results. 

2) Digital filters 

In the future would be needed to implement anti-aliasing and anti-imaging filters into 
the control loop due to rate changes. Therefore, the best low-pass filter solution must 
be taken to have the lowest possible phase delay. Although it could be multirate 
algorithms that do not need such filters. A deeply insight on multirate digital signal 
processing must be shown. 

3) Multirate controllers 

This work has introduced only one MRIC option, but there are new design strategies to 
increase the performance of the controller. Besides, this controller could be 
implemented in networked controllers, that is, controllers that work online and they 
could lose some information packages and/or have delay troubles. 

Future research on multirate controllers will be also focused on finding frequency 
analysis tools or possible approximations.  

Besides, this work has only analyzed MRIC situations, that is slow sampling, fast 
actuation. However, there is also the opposite solution, i.e., fast sampling, slow 
actuation. The controller for this situation is known as MROC. This solution is 
interesting for situations where the controller needs fast sampling rate to provide the 
best possible sample for its control action, which will be applied at slowest rate. It is 
possible to find this case in applications where the power converter is constrained by 
switching frequency. Lower switching frequency means lower power losses. However, an 
important concern in this approach is the noise sensibility increasing due to high 
sampling frequency of the controlled variable. Hence, additional techniques as 
optimization or state estimation are needed. Besides, MROC design is inferred in 
internal representation, instead of external representation as MRIC. 

Table 5.1 summarizes several applications where multirate techniques could be useful in 
power electronics. This table gives an overall look of the future possibilities of this 
control theory on optimizing power converter operation. The most exotic application is 
variable sampling rate applications where the fast sampling is only needed in transient-
state, but, in steady-state, it only needs a few samples. Hence, the computational 
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burden can be reduced for other algorithms (e.g. impedance estimation). On the other 
hand, the additional control algorithms could be implementing a calculation faster or 
slower than the inner control where they apply their control action. Hence, MRIC or 
MROC (extrapolation or decimation) multirate analysis techniques (single-rate 
equivalents) are needed to ensure stability. 

Table 5.1. Multirate application identification in power electronics 

Application Multirate controller 

High switching 
frequency 

Delay reduction of 
inner control loop 

MRIC - Extrapolation 
SHE modulation 
optimization 
Fast power 
semiconductor devices 

Low switching frequency MROC - Decimation 
Cascaded control 
structures 

Networked control 
systems (divided sole 
controller) MRIC - Extrapolation 
Hierarchical control 
structures 

Variable sampling on control loops MRIC -Extrapolation 
Fast synchronization MRIC -Extrapolation 
Additional control algorithms (e.g. 
Repetitive controller) 

MRIC /MROC 
- Extrapolation/Decimation 

4) Sinusoidal extrapolation 

An interesting research for future applications in power electronics is the sinusoidal 
extrapolation. The future goal will be to find a closed expression for sinusoidal 
extrapolation, that is, a SISO transfer function. In this way, the designer will be able to 
study frequency interference of this algorithm. 
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Chapter 6. Budget 

This chapter will describe the theoretical cost of the whole project.  

6.1. Material cost 
In this section, the cost of the different materials (hardware and software) are detailed 
and the VAT (21%) is included. 

Table 6.1. Material Costs (VAT included) 

Item Unit Price (€) Units Total cost (€) 
Hardware Windows PC i7 3.6 GHz 1000 1 1000 

Hardware total cost 1000 

Software 
MATLAB 0 1 0 

Microsoft Office 365 0 1 0 
Software total cost 0 
Material total cost 1000 

6.2. Professional fees 
In this section the different Professional fees are calculated. These fees are calculated as 
gross incomes. It includes all the professional activities related with the project. 

Table 6.2. Professional fees (gross salary) 

Activity Salary (€/month) Time (months) Total cost (€) 
Engineering 1200 5 6000 

Typing 1000 1 1000 
Material total cost 7000 

6.3. Total cost 
Table 6.3. Additional costs and total 

Material cost (€) 1000 
Professional fees (€) 7000 

Printing (€) 90 
Transport (€) 250 

Material total cost (€) 8340 
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Appendix A. Multirate modelling 
techniques bases 

A.1. Signals between sampling instants 
When the inherent sampling rate of a given system is too low relative to the frequency 
contained in the signals, additional effort may be needed in gaining knowledge of the 
signals between the sampling instants. These methods are useful as analytical tools for 
study of digital control systems with nonuniform or multirate sampling. This analysis 
has been adapted from [65]. 

A.1.1. The delayed Z-transform 
One way of representing the details of a signal between the sampling instants with 
sampling period T is to delay the analog signal by Δ𝑇 , where 0 < 𝛥 < 1; then the 
delayed signal is sampled by a conventional sampler at 𝑡 = 𝑘𝑇 , 𝑘 = 0, 1, 2,… By 
changing the amount of the time delay Δ𝑇 , the signal information between sampling 
instants might be recovered. Figure A.1 shows a system with a fictitious time delay Δ𝑇  
at the output, and the delayed signal is sampled by a sampler with period T.  

G(s) e-ΔT·s

System Fictitious 
time Delay

T

T T
r(t) r*(t) y(t)

y*(t) y*(t-ΔT)

y(t-ΔT)

 
Figure A.1. A sampled-data system with fictitious time delay and sampler 

The sampled output of the fictitious time delay is expressed as (𝐴. 1). 

𝑦∗(𝑡 −Δ𝑇 ) = ∑ 𝑦(𝑘𝑡 −Δ𝑇 ) · 𝛿(𝑡 − 𝑘𝑇 )
∞

𝑘=0
(𝐴. 1) 

The Z-transform of the last equation is defined as the delayed Z-transform and is 
written (𝐴. 2). 

𝑌 (𝑧,Δ) = ∑ 𝑦(𝑘𝑇 −Δ𝑇 )𝑧−𝑘
∞

𝑘=0
(𝐴. 2) 
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In Figure A.2 is illustrated the step of first shifting the signal 𝑦(𝑡) by Δ𝑇  and then 
sampling the shifted signal 𝑦(𝑡 −Δ𝑇 ) by the ideal sampler starting from 𝑡 = 0. Please 
note that, since Δ < 1, the shifting theorem (𝐴. 3) cannot be used. 

[𝑓(𝑡 − 𝑛𝑇 )𝑢𝑠(𝑡 − 𝑛𝑇 )] = 𝑧−𝑛 · 𝐹 (𝑧) (𝐴. 3) 

0

y(t-ΔT) y(T-ΔT)

y(2T-ΔT)

y(3T-ΔT) y(4T-ΔT)

t
ΔT T 2T 3T 4T

 
Figure A.2. Waveforms depicting the operations of the delayed Z-transform 

Although the application of the delayed Z-transform seems straightforward, the fact 
that, when Δ 0, the first sample is always zero may cause some analytical problems. 

A.1.2. The modified Z-transform 
To overcome the difficulty with the delayed Z-transform, a new factor m is introduced, 
such that (𝐴. 4). Since Δ lies between zero and one, m also lies in the same range. 

𝑚 = 1 −Δ (𝐴. 4) 

Substituting (𝐴. 4) in (𝐴. 2) yields (𝐴. 5). 

𝑌 (𝑧, m) = 𝑌 (𝑧,Δ)|Δ=1−𝑚 = ∑ 𝑦(𝑘𝑇 − 𝑇 + 𝑚𝑇)𝑧−𝑘
∞

𝑘=0
(𝐴. 5) 

Then, by means of the shifting theorem in (𝐴. 3), the last equation is written as (𝐴. 6), 
where 0 < 𝑚 < 1.  

𝑌 (𝑧, m) = 𝑧−1 ∑ 𝑦(𝑘𝑇 + 𝑚𝑇)𝑧−𝑘
∞

𝑘=0
(𝐴. 6) 

The equation (𝐴. 6) is defined as the modified Z-transform of 𝑦(𝑡) and it is denoted as 
(𝐴. 7) or (𝐴. 8). 

𝑚[𝑦(𝑡)] = 𝑌 (𝑧, 𝑚) (𝐴. 7) 

𝑚[𝑦(𝑡)] = 𝑌 (𝑧,Δ)|Δ=1−𝑚 (𝐴. 8) 

Note that, when Δ = 0, the delayed Z-transform reverts to the Z-transform. 
Nevertheless, when Δ = 0, m = 1, and (𝐴. 6) gives (𝐴. 9). 

𝑌 (𝑧, 𝑚)|𝑚=1 = 𝑧−1 ∑ 𝑦[(𝑘 + 1)𝑇 ]𝑧−𝑘
∞

𝑘=0
= 𝑌 (𝑧) − 𝑦(0) (𝐴. 9) 
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Then, when 𝑚 = 1, the modified Z-transform is not equal to 𝑌 (𝑧) unless 𝑦(𝑡 = 0) = 0. 
On the other hand, when 𝑚 = 0 (𝛥 = 1), the function 𝑦(𝑡) is first delayed by one 
sampling period before taking the Z-transform (𝐴. 10). 

𝑌 (𝑧, 𝑚)|𝑚=0 = 𝑌 (𝑧, 0) = 𝑧−1 · 𝑌 (𝑧) (𝐴. 10) 

Figure A.3 depicts the following steps of taking the modified Z-transform. 

1) The time function 𝑦(𝑡) is first shifted to the left (time advance) by 𝑚𝑇 , where 
0 < 𝑚 < 1. This gives 𝑦(𝑡 + 𝑚𝑇). 

2) The shifted time function 𝑦(𝑡 + 𝑚𝑇) is sampled by an ideal sampler starting 
from 𝑡 = 0. 

3) The sampled sequence is shifted to the right by one sampling instant T. 

0

y(t)

t

0

y(t+mT)

t

(a)

(b)
-mT

0

y(t+mT)

t

(c)
-mT

0
t

(d)

T 2T 3T 4T 5T 6T 7T 8T

T 2T 3T 4T 5T 6T 7T 8T

y*(t+mT)

y*(t+mT-T)

 
Figure A.3. Steps illustrating the modified Z-transform: (a) Time function 𝒚(𝒕); (b) 𝒚(𝒕) is 
shifted left by 𝒎𝑻 , 𝟎 < 𝒎 < 𝟏; (c) 𝒚(𝒕 + 𝒎𝑻) is sampled starting at 𝒕 = 𝟎; (d) The sampled 

sequence is shifted to the right by T 



Appendix A. Multirate modelling techniques bases 

136 

Two alternative expressions for the modified Z-transforms of (𝐴. 6) are shown here. 
These expressions are derived using the complex convolution of the Laplace transform. 
The first approach is (𝐴. 11). 

𝑌 (𝑧,𝑚) = 𝑧−1 ∑ [𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑜𝑓 𝑌 (𝑠)
𝑒𝑚·𝑇 ·𝑠 · 𝑧
𝑧 − 𝑒𝑇·𝑠  𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑙𝑒𝑠 𝑜𝑓 𝑌 (𝑠) ] (𝐴. 11) 

Where the residues of 𝑌 (𝑠) are deduced as (𝐴. 12), being: 

- Number of multiple poles: ℎ 
- Multiple pole order in 𝑠 = 𝑠𝑖: 𝑛𝑖 
- Number of simple poles: 𝑙 

𝑌 (𝑧, 𝑚) = ∑
1

(𝑛𝑖 − 1)!
· lim

𝑠 →𝑠𝑖

𝑑𝑛𝑖−1

𝑑𝑠𝑛𝑖−1 [(𝑠 − 𝑠𝑖)𝑛𝑖 ·
𝑌 (𝑠) · 𝑒𝑚·𝑇 ·𝑠 · 𝑧

𝑧 − 𝑒𝑇·𝑠 ]
ℎ

𝑖=1

+ ∑ lim
𝑠 →𝑠𝑗

[(𝑠 − 𝑠𝑗) ·
𝑌 (𝑠) · 𝑒𝑚·𝑇 ·𝑠 · 𝑧

𝑧 − 𝑒𝑇·𝑠 ]
𝑙

𝑗=ℎ+1

(𝐴. 12) 

The second approach is (𝐴. 13), being 𝜔𝑠 the sampling frequency. 

𝑌 (𝑧,𝑚) =
1
𝑇

∑ 𝑌 (𝑠 + 𝑗𝑛𝜔𝑠)𝑒−(1−𝑚)(𝑠+𝑗𝑛𝜔𝑠)𝑇
∞

𝑛=−∞
|𝑧=𝑒𝑇 ·𝑠 (𝐴. 13) 

Setting 𝑚 = 1 in (𝐴. 14), it is obtained that 

𝑌 (𝑧,𝑚)|𝑚=1 =
1
𝑇

∑ 𝑌 (𝑠 + 𝑗𝑛𝜔𝑠)
∞

𝑛=−∞
|𝑧=𝑒𝑇 ·𝑠 = 𝑌 (𝑧) (𝐴. 14) 

In this case, since 𝑦(0) = 0 is implied in that expression, 𝑌 (𝑧,𝑚) = 𝑌 (𝑧) when 𝑚 = 1. 

These equations are subject to different conditions of validity and are useful for various 
purposes. Equation (𝐴. 6) is the most general and it is valid for any function 𝑦(𝑡). 
Equation (𝐴. 11) is valid for any 𝑦(𝑡) that has a Laplace transform 𝑌 (𝑠). Equation 
(𝐴. 13) is valid only if 𝑦(0) = 0, and thus, it is not valid for functions that have a jump 
discontinuity at 𝑡 = 0. 

A.1.3. The inverse Modified Z-transform 
The inverse Z-transform of 𝐹(𝑧,𝑚) gives the values of 𝑓(𝑡) in between the sampling 
instants for a given value of 𝑚. The inverse modified Z-transform operation is denoted 
by  and may be carried out by either the power-series method or the inversion 
formula. 

In the power-series method, just as in the ordinary Z-transform, the function 𝐹(𝑧, 𝑚) is 
expanded into a power series in 𝑧−1 by long division (𝐴. 15). The coefficient 𝑓(𝑘𝑇 −
𝑇 + 𝑚𝑇) corresponds to a value of 𝑓(𝑡) between 𝑡 = (𝑘 − 1)𝑇  and 𝑡 = 𝑘𝑇  for any value 
of 𝑚 between 0 and 1, and 𝑘 = 1,2,… 

𝐹(𝑧, 𝑚) = 𝑓(𝑚𝑇)𝑧−1 + 𝑓(𝑇 + 𝑚𝑇)𝑧−2 +⋯+ 𝑓(𝑘𝑇 − 𝑇 + 𝑚𝑇)𝑧−𝑘 +⋯ (𝐴. 15) 

Just as in the Z-transform method, the inverse modified Z-transform can be carried out 
by means of the inversion integral (𝐴. 16). 
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1[𝐹 (𝑧,𝑚)] = 𝑓(𝑘𝑇 , 𝑚) =
1

2𝜋𝑗
∮ 𝐹(𝑧,𝑚)𝑧𝑘−1𝑑𝑧

 

Γ

(𝐴. 16) 

Where Γ is a closed path in the z-plane that encloses all the singularities of 
𝐹(𝑧,𝑚)𝑧𝑘−1.  

A.1.4. The modified Z-transfer function 
The modified Z-transform method can also be applied to discrete-data systems and it 
defines the modified Z-transfer function.  

G(s) e-ΔT·s

System Fictitious 
time Delay

T

T T
e*(t) y(t)

y*(t) y*(t-ΔT)

y(t-ΔT)

Y(s)E*(s)E(s)
e(t)

Y(z) Y(z, m)

 
Figure A.4. Discrete-data system with a fictitious time delay 

Considering Figure A.4, the modified Z-transform of the output 𝑦(𝑡) is defined as 
(𝐴. 17). 

[𝑦(𝑡)] = 𝑌 (𝑧,𝑚) = 𝑧−1 ∑ 𝑦(𝑘𝑇 + 𝑚𝑇)𝑧−𝑘
∞

𝑘=0
(𝐴. 17) 

The modified Z-transform in the last expression can be used for the determination of 
the input-output transfer relation of the system. Substituting 𝑌 (𝑠) = 𝐺(𝑠)𝐸∗(𝑠) in 
(𝐴. 13), it is obtained (𝐴. 18). 

𝑌 (𝑧, 𝑚) =
1
𝑇

∑ 𝐺(𝑠 + 𝑗𝑛𝜔𝑠)𝐸∗(𝑠 + 𝑗𝑛𝜔𝑠)𝑒−(1−𝑚)(𝑠+𝑗𝑛𝜔𝑠)𝑇
∞

𝑛=−∞
|𝑧=𝑒𝑇 ·𝑠 (𝐴. 18) 

Since 𝐸∗(𝑠 + 𝑗𝑛𝜔𝑠) = 𝐸∗, the last equation becomes (𝐴. 19). 

𝑌 (𝑧, 𝑚) = 𝐸(𝑧)
1
𝑇

∑ 𝐺(𝑠 + 𝑗𝑛𝜔𝑠)𝑒−(1−𝑚)(𝑠+𝑗𝑛𝜔𝑠)𝑇
∞

𝑛=−∞
|𝑧=𝑒𝑇 ·𝑠 = 𝐸(𝑧)𝐺(𝑧, 𝑚) (𝐴. 19) 

In the last equation 𝐺(𝑧,𝑚) denotes the modified Z-transform of 𝐺(𝑠) and is expressed 
as (𝐴. 20). Hence, the modified Z-transform of a system with the transfer function 𝐺(𝑠) 
is defined in exactly the same way as that of a signal, so (𝐴. 11) is also applicable. 

𝐺(𝑧,𝑚) =
1
𝑇

∑ 𝐺(𝑠 + 𝑗𝑛𝜔𝑠)𝑒−(1−𝑚)(𝑠+𝑗𝑛𝜔𝑠)𝑇
∞

𝑛=−∞
|𝑧=𝑒𝑇 ·𝑠 (𝐴. 20) 

Note that the modified Z-transform of a sampled signal 𝑒∗(𝑡) is just the Z-transform of 
the signal. 

[𝐸∗(𝑠)] = 𝐸(𝑧) (𝐴. 21) 

In Table A.1 are presented a few examples of usual transfer functions, but more 
examples can be found in [65].  
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Table A.1. Modified z-transforms examples 

Laplace 
Transform 

𝐹(𝑠) 

Time 
Function 

𝑓(𝑡), 𝑡 > 0 

z-transform 

 𝐹(𝑧) 

Modified z-transform 

 𝐹(𝑧,𝑚) 

1 𝛿(𝑡) 1 0 

1
𝑠
 𝑢𝑠(𝑡) 𝑧

𝑧 − 1
 1

𝑧 − 1
 

1
𝑠2 

𝑡 𝑇𝑧
(𝑧 − 1)2 

𝑚𝑇
𝑧 − 1

+
𝑇

(𝑧 − 1)2 

1
𝑠 + 𝑎

 𝑒−𝑎𝑡 𝑧
𝑧 − 𝑒−𝑎𝑇  𝑒−𝑎𝑚𝑇

𝑧 − 𝑒−𝑎𝑇  

𝑎
𝑠(𝑠 + 𝑎)

 1 − 𝑒−𝑎𝑡 𝑧(1 − 𝑒−𝑎𝑇 )
(𝑧 − 1)(𝑧 − 𝑒−𝑎𝑇 )

 
𝑧(1 − 𝑒−𝑎𝑚𝑇 ) + (𝑒−𝑎𝑚𝑇 − 𝑒−𝑎𝑇 )

(𝑧 − 1)(𝑧 − 𝑒−𝑎𝑇 )
 

𝜔
𝑠2 + 𝜔2 sin 𝜔𝑡 𝑧 sin 𝜔𝑇

𝑧2 − 2𝑧 cos 𝜔𝑇 + 1
 sin 𝑚𝜔𝑇 + sin(1 − 𝑚)𝜔𝑇

𝑧2 − 2𝑧 cos 𝜔𝑇 + 1
 

𝑠
𝑠2 + 𝜔2 cos 𝜔𝑡 𝑧(𝑧 − cos 𝜔𝑇 )

𝑧2 − 2𝑧 cos 𝜔𝑇 + 1
 

cos𝑚𝜔𝑇 − cos(1 − 𝑚)𝜔𝑇
𝑧2 − 2𝑧 cos 𝜔𝑇 + 1

 

A.1.5. Example 
Here, an example using (𝐴. 12) is given for the L-filter model with its corresponding 
ZOH operation as (𝐴. 22). 

𝐺ℎ0(𝑠) · 𝐺𝛼𝛽
𝐿−𝑓𝑖𝑙𝑡𝑒𝑟(𝑠) =

1 − 𝑒−𝑠𝑇

𝑠
·

1
𝐿 · 𝑠 + 𝑅

(𝐴. 22) 

Applying the modified Z-transform, it is obtained (𝐴. 24). 

𝐺𝛼𝛽𝐿 (𝑧,𝑚) = 𝑧−1 ·
(1 − 𝑧−1)

𝐿
·
⎣
⎢⎡
⎩{
⎨
{⎧𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑓

⎝
⎜⎛

1
𝑠 (𝑠 + 𝑅

𝐿)
·
𝑒𝑚𝑇·𝑠 · 𝑧
𝑧 − 𝑒𝑇·𝑠

⎠
⎟⎞𝑖𝑛 𝑠 = 0

⎭}
⎬
}⎫+

+
⎩{
⎨
{⎧𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑜𝑓

⎝
⎜⎛

1
𝑠 (𝑠 + 𝑅

𝐿)
·
𝑒𝑚𝑇·𝑠 · 𝑧
𝑧 − 𝑒𝑇·𝑠

⎠
⎟⎞𝑖𝑛 𝑠 = −

𝑅
𝐿⎭}
⎬
}⎫

⎦
⎥⎤

(𝐴. 23) 

𝐺𝛼𝛽𝐿 (𝑧,𝑚) = 𝑧−1 ·
(1 − 𝑧−1)

𝐿
·
⎣
⎢⎡lim𝑠→0 ⎣

⎢⎡ 𝑠 ·
1

𝑠 (𝑠 + 𝑅
𝐿)

·
𝑒𝑚𝑇·𝑠 · 𝑧
𝑧 − 𝑒𝑇·𝑠  

⎦
⎥⎤ +

+ lim
𝑠→− 𝑅𝐿 ⎣

⎢⎡ (𝑠 +
𝑅
𝐿

) ·
1

𝑠 (𝑠 + 𝑅
𝐿)

·
𝑒𝑚𝑇·𝑠 · 𝑧
𝑧 − 𝑒𝑇·𝑠  

⎦
⎥⎤

⎦
⎥⎤

(𝐴. 24) 

Operating, the expression becomes (𝐴. 25), and finally (𝐴. 26). 
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𝐺𝛼𝛽𝐿 (𝑧, 𝑚) = 𝑧−1 ·
(1 − 𝑧−1)

𝐿
[

𝐿
𝑅

·
𝑧

𝑧 − 1
−

𝐿
𝑅

·
𝑒− 𝑅𝐿·𝑚𝑇 · 𝑧

𝑧 − 𝑒− 𝑅𝐿𝑇
] (𝐴. 25) 

𝐺𝛼𝛽𝐿 (𝑧,𝑚) =
𝑧 · (1 − 𝑒− 𝑅𝐿·𝑚𝑇 ) − 𝑒− 𝑅𝐿·𝑇 + 𝑒− 𝑅𝐿·𝑚𝑇

𝑧 · 𝑅 · (𝑧 − 𝑒− 𝑅𝐿·𝑇 )
(𝐴. 26) 

If (𝐴. 10) is also considered for modified Z-transfer function, the final expression is 
(𝐴. 27). It is clear that the pole location does not change, whereas the numerator 
performance the delay effect on the transfer function with the location of a new zero. 

𝑧 · 𝐺𝛼𝛽𝐿 (𝑧,𝑚) =
𝑧 · (1 − 𝑒− 𝑅𝐿·𝑚𝑇 ) − 𝑒− 𝑅𝐿·𝑇 + 𝑒− 𝑅𝐿·𝑚𝑇

𝑅 · (𝑧 − 𝑒− 𝑅𝐿·𝑇 )
(𝐴. 27) 

In Figure A.5 is shown a pole-zero map of this example for different m values, being 
the parameter values those form Table A.2 and using expression (𝐴. 26). 

Table A.2. Example parameters for modified z-transfer function 

Name Symbol Value 
Filter resistor 𝑅 9.1 𝑚Ω 
Filter inductor 𝐿 750 𝜇𝐻 
Sampling period 𝑇  200 μs 

From Figure A.5 can be seen that the zero is moving towards the origin with higher 
values of m (Δ = 1 − 𝑚), that is, less delay. Although the zeros with 𝑚 < 0.5 fall 
outside the unit circle, the system stability is ensured. 

 
Figure A.5. Pole-zero map of modified Z-transfer function 𝑮𝜶𝜷
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In Figure A.6 is represented the phase difference between two modified Z-transfer 
function. It is checked that the phase difference is exactly 𝑚 · 𝑇 = 0.1 · 200 𝜇𝑠 at low 
frequencies, but it varies when the signal frequency is 𝜔 > 0.1 · 𝜔𝑠. Hence, it must be 
considered at the controlled frequencies. 

 
Figure A.6. Phase difference between two modified Z-transfer function 𝑮𝜶𝜷

𝑳 (𝒛,𝒎) 

Finally, this fractional delay is shown in Figure A.7 with the time-domain response of 
the transfer function. The output signal at period T is compared to the output signal 
with period 𝑇/𝑁 = 200 𝜇𝑠/10 (the input of this system is updated every T seconds). 
Note that the time delay is (1 − 𝑚) · 𝑇 .  

 
Figure A.7. Time-domain response of the modified Z-transfer function 𝑮𝜶𝜷

𝑳 (𝒛,𝒎) 

Therefore, this approach allows to the designer to accurately model fractional delays in 
discrete-time domain. Besides, this approach can be applied to multirate systems as it 
will be shown in the following section. 
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A.2. Multirate Sampler-Decomposition method 
A versatile method of analyzing multirate system is to decompose the fast-rate sampler 
into N parallel-connected slow-rate samplers with time-delay and time-advances units, 
as shown in Figure A.8. Since now the samplers are all at the same sampling rate, the 
ordinary Z-transform method analysis may be applied.  

R(z) 𝑒𝑠·𝑇𝑁  

𝑒2𝑠·𝑇𝑁  

𝑒(𝑁 −1)𝑠·𝑇𝑁  

T

T

T

T

𝑒−𝑠·𝑇𝑁  

𝑒−2𝑠·𝑇𝑁  

𝑒−(𝑁 −1)𝑠·𝑇𝑁  

+

G(s)H(s)
T T

C(z)N C’(z)

T/N  
Figure A.8. Sampler-Decomposition or Vectorial Switch Decomposition method 

The Z-transform of 𝑒𝑘𝑇
𝑁 ·𝑠 · 𝐺(𝑠) or 𝑒−𝑘𝑇

𝑁 ·𝑠 · 𝐺(𝑠) can be determined from the modified Z-
transform of 𝐺(𝑠) as (𝐴. 28) or (𝐴. 29). 

[𝑒
𝑘𝑇
𝑁 ·𝑠 · 𝐺(𝑠)] = [𝑧 · 𝐺(𝑧, 𝑚)]|𝑚=𝑘/𝑁 (𝐴. 28) 

[𝑒−𝑘𝑇
𝑁 ·𝑠 · 𝐺(𝑠)] = 𝐺(𝑧,𝑚)|𝑚=1−𝑘/𝑁 (𝐴. 29) 

A simple example, with an arbitrary closed-loop system, is analyzed here to better 
understanding of this procedure. The system is based on a PI controller in the dq-frame 
plant L-filter (cross-coupling effects already compensated) is shown in Figure A.9. The 
rate multiplier in this case is 𝑁 = 2. The PI controller use the constants (𝐴. 30) and 
system parameters are those from Table A.2. 

𝐾𝑝 = 1.654 𝐾𝐼 = 1.28 · 103 (𝐴. 30) 

Iref(s) +

‐ T
1 − 𝑒−𝑠·𝑇 /2

𝑠
1
𝐿𝑠

 
1 − 𝑒−𝑠·𝑇

𝑠
 𝐾𝑝 · 𝑠 + 𝐾𝐼

𝑠

𝑒𝑠·𝑇2  𝑒−𝑠·𝑇2

T

+
T

E(s)

X0*(s) I(s)

Gh0(s) Gh02(s)GPI(s) Gp(s)

X0(s)

X1(s) X1*(s)

E*(s)

T/2

 
Figure A.9. Closed-loop multirate digital system 

Therefore, the closed-loop transfer function equivalent is (𝐴. 31). Note that expression 
(𝐴. 32) represents the slow single-rate equivalent open-loop transfer function. 
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𝐺𝑑𝑞
𝐶𝐿(𝑧) =

𝒵[𝐺ℎ02𝐺𝑝(𝑠)]𝒵[𝐺ℎ0𝐺𝑃𝐼(𝑠)] + 𝒵[𝐺ℎ02𝐺𝑝(𝑠)𝑒−𝑠·𝑇2 ]𝒵 [𝐺ℎ0𝐺𝑃𝐼(𝑠)𝑒𝑠·𝑇2 ]

1 + 𝒵[𝐺ℎ02𝐺𝑝(𝑠)]𝒵[𝐺ℎ0𝐺𝑃𝐼(𝑠)] + 𝒵[𝐺ℎ02𝐺𝑝(𝑠)𝑒−𝑠·𝑇2 ]𝒵 [𝐺ℎ0𝐺𝑃𝐼(𝑠)𝑒𝑠·𝑇2 ]
(𝐴. 31) 

𝐺𝑑𝑞
𝑂𝐿(𝑧) = 𝒵[𝐺ℎ02𝐺𝑝(𝑠)]𝒵[𝐺ℎ0𝐺𝑃𝐼(𝑠)] + 𝒵 [𝐺ℎ02𝐺𝑝(𝑠)𝑒−𝑠·𝑇2 ]𝒵 [𝐺ℎ0𝐺𝑃𝐼(𝑠)𝑒𝑠·𝑇2 ] (𝐴. 32) 

Where each term is defined as follows: 

𝒵[𝐺ℎ02𝐺𝑝(𝑠)] = 𝒵 [
1 − 𝑒−𝑠·𝑇2

𝑠
·

1
𝐿𝑠

] = 𝒵 [
1

𝐿𝑠2] − 𝒵𝑚 [
1

𝐿𝑠2]
𝑚=1−1

2

=

=
𝑇
𝐿

·
𝑧

(𝑧 − 1)2 −
𝑇
𝐿

·(
1
2

𝑧 − 1
+

1
(𝑧 − 1)2) =

𝑇/2
𝐿

1
𝑧 − 1

(𝐴. 33) 

𝒵 [𝐺ℎ02𝐺𝑝(𝑠)𝑒−𝑠·𝑇2 ] = 𝒵𝑚 [
1

𝐿𝑠2]
𝑚=1−1

2

−
1
𝑧

· 𝒵 [
1

𝐿𝑠2] =

=
𝑇
𝐿

·(
1
2

𝑧 − 1
+

1
(𝑧 − 1)2)−

𝑇
𝐿

·
1

(𝑧 − 1)2 =
𝑇/2
𝐿

·
1

𝑧 − 1

(𝐴. 34) 

𝒵[𝐺ℎ0𝐺𝑃𝐼(𝑠)] = (1 − 𝑧−1) · 𝒵 [
𝐾𝑃 𝑠 + 𝐾𝐼

𝑠2 ] = 𝐾𝑝 +
𝐾𝐼𝑇
𝑧 − 1

(𝐴. 35) 

𝒵 [𝐺ℎ0𝐺𝑃𝐼(𝑠)𝑒𝑠·𝑇2 ] = (1 − 𝑧−1) · 𝑧 · 𝒵𝑚 [
𝐾𝑃 𝑠 + 𝐾𝐼

𝑠2 ]
𝑚=1

2

=

= 𝐾𝑃 + 𝐾𝐼 ·
𝑇
2

+
𝐾𝐼𝑇
𝑧 − 1

(𝐴. 36) 

The numerical equivalent closed-loop expression is (𝐴. 37). 

𝐺𝑑𝑞
𝐶𝐿(𝑧) =

0.4582𝑧 − 0.3897
𝑧2 − 1.542𝑧 + 0.6103

(𝐴. 37) 

The time-domain responses of the multirate and single-rate equivalent closed-loop are 
compared in Figure A.10.  

 
Figure A.10. Time-domain response of multirate and single-rate equivalent closed-loop 

system. 

Although there is a ZOH operation with period T before the controller, it is only 
referred to the input signal, while the controller operates at high rate 𝑇/2. 
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The results are the same that could be obtained by using the time-domain multirate 
method of section 4.3. The approach is different, but this two methodologies are based 
in the Vectorial Switch Decomposition that was introduced by Kranc in 1957 [19]. If 
these two approaches are compared, the most simple and intuitive is the presented one 
in section 4.3. 
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Appendix B. Vector representation of 
three-phase variables 

B.1. Spatial vector 
Every three-phase variable (voltage, current, flux, etc.) might be represented in a 
tridimensional space with three orthogonal axes, known as a, b, and c, like follows. 

𝑠(⃗𝑡) = [𝑠𝑎(𝑡) + 𝑠𝑏(𝑡) · 𝑒𝑗2𝜋
3  + 𝑠𝑐(𝑡) · 𝑒𝑗4𝜋3  ] (𝐵. 1) 

Where 𝑠𝑎(𝑡), 𝑠𝑏(𝑡), and 𝑠𝑐(𝑡) represent the instantaneous values of 𝑠�⃗�, 𝑠�⃗�, and 𝑠�⃗�, 
respectively. 

For balanced three-phase systems, the instantaneous sum of currents results zero, so 
the current vector moves in a plane defined by (𝐵. 2). 

𝑖𝑎(𝑡) + 𝑖𝑏(𝑡) + 𝑖𝑐(𝑡) = 0 (𝐵. 2) 

This equation defines a plane 𝒳 that is perpendicular to the vector [1 1 1]𝑇  in the 
space abc, as it is depicted in Figure B.1(a). The space 𝛼𝛽𝛾 is defined by: 

- The 𝛼 axis is the a axis projection on the plane 𝒳. 
- The 𝛽 axis, that is perpendicular to the 𝛼 axis, is defined by the right-hand 

rule. 
- The 𝛾 axis, that is co-lineal with the vector [1 1 1]𝑇 , and it is the result of 

vector product 𝛼× 𝛽. The component upon the 𝛾 axis is known as zero 
component, and it is the instantaneous sum of a, b, and c. 

Figure B.1 (b) represents the location of the abc axes when they are projected upon the 
𝛼𝛽 plane. Hence, the components 𝛼 and 𝛽 from the vector 𝑠 ⃗are expressed as (𝐵. 3). 

𝑠�⃗�𝛽(𝑡) = 𝑠𝛼(𝑡) + 𝑗𝑠𝛽(𝑡) = 𝑘 · [𝑠𝑎(𝑡) + 𝑠𝑏(𝑡) · 𝑒𝑗2𝜋
3  + 𝑠𝑐(𝑡) · 𝑒𝑗4𝜋3  ] (𝐵. 3) 

Where k is constant that defines the transformation type (invariance power or 
amplitude). The third component, known as 𝛾, is zero and normal to the abc axes and 
it is deduced as (𝐵. 4). 

𝑠𝛾(𝑡) = 𝑘 · [𝑠𝑎(𝑡) · cos (
𝜋
4
) + 𝑠𝑏(𝑡) · cos (

𝜋
4
) + 𝑠𝑐(𝑡) · cos (

𝜋
4
)] (𝐵. 4) 

This component is null for balanced systems, and in real systems characterizes the 
current through the neutral line in a star connection. Usually, the 𝛼𝛽𝛾 is referred as 𝛼𝛽 
due to omitting of 𝛾. 
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(a)

	 a

b

c

[1 1 1]T

	

ab

c
α 

β 

γ  

β 

α 

a

b

c

(b)  
Figure B.1. (a) Cartesian coordinate system for variables abc, and 𝜶𝜷 plane representation; 

(b) Location of abc axes when they are projected in the 𝜶𝜷 plane 

The transformation of three-phase variables to spatial vectors is divided in two 
alternatives: 

- Stationary abc reference frame to stationary 𝛼𝛽𝛾 reference frame: It transforms 
three-phase variables into a vector with real and imaginary parts. The vector is 
moving with a rotating speed 𝜔. 

- Stationary 𝛼𝛽𝛾 reference frame to rotating dq0 reference frame. The vector is 
transformed to time-invariant values. This is achieved by using a rotating 
reference frame that is moving at the same speed than the signals. The vector 
become a constant value signal. 

B.2. Stationary 𝛼𝛽 reference frame 
There are two possible transformations that define the value of k, the constant that is 
multiplying the transformation matrix. 



Appendix B. Vector representation of three-phase variables 

147 

- Power invariance transformation: The goal is to equalize the power in 𝛼𝛽-
frame and abc-frame, that is (𝐵. 5). Operating, the constant must have the 
value 𝑘 =√2/3 to achieve the equivalence. Therefore, the equation (𝐵. 3) is 
rewritten as (𝐵. 6). 

𝑝(𝑡) = 𝑢𝛼(𝑡) · 𝑖𝛼(𝑡) + 𝑢𝛽(𝑡) · 𝑖𝛽(𝑡) = 𝑢𝑎(𝑡) · 𝑖𝑎(𝑡) + 𝑢𝑏(𝑡) · 𝑖𝑏(𝑡) + 𝑢𝑐(𝑡) · 𝑖𝑐(𝑡) (𝐵. 5) 

𝑠�⃗�𝛽(𝑡) = 𝑠𝛼(𝑡) + 𝑗𝑠𝛽(𝑡) =√
2
3

· [𝑠𝑎(𝑡) + 𝑠𝑏(𝑡) · 𝑒𝑗2𝜋
3  + 𝑠𝑐(𝑡) · 𝑒𝑗4𝜋3  ]

=√
2
3

· [𝑠𝑎(𝑡) −
1
2

· 𝑠𝑏(𝑡) −
1
2

· 𝑠𝑐(𝑡) + 𝑗
√

3
2

· (𝑠𝑏(𝑡) − 𝑠𝑐(𝑡))]
(𝐵. 6) 

Using the direct transformation (𝑎𝑏𝑐 → 𝛼𝛽𝛾) in matrix form is (𝐵. 7), and its 
inverse (𝛼𝛽𝛾 → 𝑎𝑏𝑐) is (𝐵. 8). 

𝑠�⃗�𝛽(𝑡) = 𝑘 · 𝑇𝑎𝑏𝑐→𝛼𝛽𝛾 · 𝑠�⃗�𝑏𝑐(𝑡) =
⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ =√

2
3

·

⎣
⎢
⎢
⎢
⎢
⎡ 1 −

1
2

−
1
2

0
√

3
2

−
√

3
2

1√
2

1√
2

1√
2 ⎦

⎥
⎥
⎥
⎥
⎤

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇𝑎𝑏𝑐→𝛼𝛽𝛾

·
⎣
⎢⎡

𝑠𝑎(𝑡)
𝑠𝑏(𝑡)
𝑠𝑐(𝑡)⎦

⎥⎤ (𝐵. 7)
 

𝑠�⃗�𝑏𝑐(𝑡) = 𝑘 · 𝑇𝛼𝛽𝛾→𝑎𝑏𝑐 · 𝑠�⃗�𝛽(𝑡) =
⎣
⎢⎡

𝑠𝑎(𝑡)
𝑠𝑏(𝑡)
𝑠𝑐(𝑡)⎦

⎥⎤ =√
2
3

·

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 1 0

1√
2

−
1
2

√
3

2
1√
2

−
1
2

−
√

3
2

1√
2⎦
⎥
⎥
⎥
⎥
⎥
⎤

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑇𝛼𝛽𝛾→𝑎𝑏𝑐

·
⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ (𝐵. 8)

 

- Amplitude invariance transformation: In this transformation the abc 
vector amplitude is equalized with the 𝛼𝛽 vector amplitude. Operating, the 
constant must have the value 𝑘 = 2/3 to achieve the equivalence. Hence, the 
equation (𝐵. 3) is rewritten as (𝐵. 9). 

𝑠�⃗�𝛽(𝑡) = 𝑠𝛼(𝑡) + 𝑗𝑠𝛽(𝑡) =
2
3

· [𝑠𝑎(𝑡) + 𝑠𝑏(𝑡) · 𝑒𝑗2𝜋
3  + 𝑠𝑐(𝑡) · 𝑒𝑗4𝜋3  ]

=
2
3

· [𝑠𝑎(𝑡) −
1
2

· 𝑠𝑏(𝑡) −
1
2

· 𝑠𝑐(𝑡) + 𝑗
√

3
2

· (𝑠𝑏(𝑡) − 𝑠𝑐(𝑡))]
(𝐵. 9) 

Using the direct transformation (𝑎𝑏𝑐 → 𝛼𝛽𝛾) in matrix form is (𝐵. 10), and its 
inverse (𝛼𝛽𝛾 → 𝑎𝑏𝑐) is (𝐵. 11). 

𝑠�⃗�𝛽(𝑡) = 𝑘 · 𝑇𝑎𝑏𝑐→𝛼𝛽𝛾 · 𝑠�⃗�𝑏𝑐(𝑡) =
⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ =

2
3

· 𝑇𝑎𝑏𝑐→𝛼𝛽𝛾 ·
⎣
⎢⎡

𝑠𝑎(𝑡)
𝑠𝑏(𝑡)
𝑠𝑐(𝑡)⎦

⎥⎤ (𝐵. 10) 

𝑠�⃗�𝑏𝑐(𝑡) = 𝑇𝛼𝛽𝛾→𝑎𝑏𝑐 · 𝑠�⃗�𝛽(𝑡) =
⎣
⎢⎡

𝑠𝑎(𝑡)
𝑠𝑏(𝑡)
𝑠𝑐(𝑡)⎦

⎥⎤ = 𝑇𝛼𝛽𝛾→𝑎𝑏𝑐 ·
⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ (𝐵. 11) 
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On one hand, for the power invariance transformation, the amplitude of each vector is 
equal to the line-to-line root-mean-square (RMS) vale of the original three-phase signal. 
On the other hand, for the amplitude invariance transformation, the instantaneous 
power is (𝐵. 12). 

𝑝(𝑡) =
3
2

· [𝑢𝛼(𝑡) · 𝑖𝛼(𝑡) + 𝑢𝛽(𝑡) · 𝑖𝛽(𝑡)] = 𝑢𝑎(𝑡) · 𝑖𝑎(𝑡) + 𝑢𝑏(𝑡) · 𝑖𝑏(𝑡) + 𝑢𝑐(𝑡) · 𝑖𝑐(𝑡) (𝐵. 12) 

B.3. Rotating dq reference frame 
To perform this transformation, the vector 𝑠�⃗�𝛽, that is moving with a rotating speed of 
𝜔, is multiplied by the operator 𝑒−𝑗𝜃 = 𝑒−𝑗𝜔𝑡, so the new components dq are constant 
(balanced system and a sole harmonic). The mathematical expression is (𝐵. 13) and a 
graphical representation is depicted in Figure B.2. 

β 

α 

dq
𝒔 ⃗sβ 

sα 

sd

sq θ = ωt  

 
Figure B.2. Graphical representation of 𝜶𝜷𝜸 → 𝒅𝒒𝟎 transformation 

𝑠�⃗�𝑞(𝑡) = 𝑠𝑑(𝑡) + 𝑗𝑠𝑞(𝑡) = 𝑠�⃗�𝛽(𝑡) · 𝑒−𝑗𝜃 = (𝑠𝛼(𝑡) + 𝑗𝑠𝛽(𝑡)) · (cos 𝜃 − 𝑗 sin 𝜃) =
= 𝑠𝛼(𝑡) · cos 𝜃 + 𝑠𝛽(𝑡) · sin 𝜃 + 𝑗(−𝑠𝛼(𝑡) · sin 𝜃 + 𝑠𝛽(𝑡) · cos 𝜃)

(𝐵. 13) 

Where 𝜃 is: 

𝜃(𝑡) = ∫ 𝜔(𝜏)𝑑𝜏
𝑡

0
+ 𝜃(0) (𝐵. 14) 

Note that 𝑒−𝑗𝜃 is valid for three-phase signal with positive sequence, so, for negative 
sequence, the operator must be 𝑒𝑗𝜃. 

The matrix expression of the transformation and its inverse are (𝐵. 15) and (𝐵. 16), 
respectively. 

𝑠�⃗�𝑞0(𝑡) = 𝑇𝛼𝛽𝛾→𝑑𝑞0 · 𝑠�⃗�𝛽𝛾(𝑡) =
⎣
⎢
⎡

𝑠𝑑(𝑡)
𝑠𝑞(𝑡)
𝑠0(𝑡)⎦

⎥
⎤ = [

cos 𝜃 sin 𝜃 0
−sin 𝜃 cos 𝜃 0

0 0 1
] ·

⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ (𝐵. 15) 

𝑠�⃗�𝛽𝛾(𝑡) = 𝑇𝑑𝑞0→𝛼𝛽𝛾 · 𝑠�⃗�𝑞0(𝑡) =
⎣
⎢
⎡

𝑠𝛼(𝑡)
𝑠𝛽(𝑡)
𝑠𝛾(𝑡)⎦

⎥
⎤ = [

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1
] ·

⎣
⎢
⎡

𝑠𝑑(𝑡)
𝑠𝑞(𝑡)
𝑠0(𝑡)⎦

⎥
⎤ (𝐵. 16) 
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For balanced systems, the component 𝛾 could be avoided, and third column and row 
are not necessary. 

In the following, an example of grid voltage vector location is deduced in dq-frame. The 
three-phase grid voltage is expressed in 𝛼𝛽-frame as (𝐵. 17) by means of power 
invariance transformation, the RMS value of line-to-line voltage is E and its frequency 
𝜔1. 

𝑒�⃗�𝛽(𝑡) =√
2
3

· 𝑒𝑚 · (cos(𝜔1𝑡) + 𝑗 sin(𝜔1𝑡)) = 𝐸 · 𝑒𝑗𝜔1𝑡 (𝐵. 17) 

Usually, the grid flux vector Ψ⃗⃗⃗⃗⃗⃗𝛼𝛽, that is obtained through (𝐵. 18), is oriented to 
coincide with the d axis (grid control like synchronous machine control), so the grid 
voltage vector 𝑒�⃗�𝛽 is placed in the q axis. This is depicted in Figure B.3. 

Ψ⃗⃗⃗⃗⃗⃗𝛼𝛽(𝑡) = ∫ 𝐸 ·
𝑡

0
𝑒𝑗𝜔1𝑡 𝑑𝑡 =

𝑒�⃗�𝛽(𝑡)
𝑗𝜔1

=
𝐸
𝜔1

· 𝑒𝑗(𝜔1𝑡−𝜋
2) (𝐵. 18) 

β 

α 

dq 𝐢�⃗�  

ω1t – π/2  
ω1t  

φ𝐞�⃗�  �⃗⃗⃗⃗⃗⃗⃗�𝒈  

Ψd = E/ω1
Ψq = 0

ed = 0
eq = E

 
Figure B.3. Grid voltage and flux vectors location in dq reference frame 

However, the grid voltage could be also oriented to the d axis, and in some simulations 
of this work, where only active power is carried out, the taken approach is this for the 
rotating reference frame. Therefore, the real part of current vector takes the reference 
value. 

The apparent power is defined in dq-frame with power invariance transformation as 
(𝐵. 19). 

𝑆�⃗� = 𝑃𝑔 + 𝑗𝑄𝑔 = 𝑒�⃗� · 𝚤�⃗�∗ = (𝑒𝑑 + 𝑗𝑒𝑞) · (𝑖𝑑 + 𝑗𝑖𝑞) = (𝑒𝑑𝑖𝑑 + 𝑒𝑞𝑖𝑞) − 𝑗(𝑒𝑑𝑖𝑞 − 𝑒𝑞𝑖𝑑) (𝐵. 19) 

Hence, there are two alternatives to provide a current reference based on the desired 
power exchange: 

- If 𝑒𝑑 = 0, 𝑃𝑔 is controlled by 𝑖𝑞 and 𝑄𝑔 by 𝑖𝑑 

𝑃𝑔 = 𝑒𝑞𝑖𝑞 𝑄𝑔 = 𝑒𝑞𝑖𝑑 (𝐵. 20) 

- If 𝑒𝑞 = 0, 𝑃𝑔 is controlled by 𝑖𝑑 and 𝑄𝑔 by 𝑖𝑞 

𝑃𝑔 = 𝑒𝑑𝑖𝑑 𝑄𝑔 = 𝑒𝑑𝑖𝑞 (𝐵. 21) 
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Appendix C. VSC basic control loops 

The current control loop is the most inner controller in a VSC, and it is the one 
studied for the multirate cases in this document. However, to get the full controllability 
of the VSC, there are two other basic control structures for grid-tied purposes: DC-bus 
voltage control; and grid synchronization. The DC-bus voltage control provides the 
active power exchange to keep constant voltage in the capacitor banks. Hence, the 
exchanged active power is subordinated to the connected DC source (Back-to-Back 
disposition, batteries, etc.) or simply the VSC works as STATCOM (static synchronous 
compensator) and it only provides reactive power to the grid. On the other hand, the 
grid synchronization is necessary for every grid-tied application. 

This appendix provides a general view for the possible application of the DC-bus 
voltage control loop, but it is possible to make first multirate approaches with a DC-
bus already controlled by other VSC or DC voltage source. 

These control loops could be designed with multirate purposes. The DC-bus voltage 
control is usually performed at slower sampling rate because it is supposed to be slower 
than the inner current control loop. And multirate PLL allows fast synchronization, 
despite of voltage sampling rate However, they are not in the scope of this work and 
they will be analyzed in future works. 

C.1. DC-bus voltage control 

C.1.1. DC-bus Modelling 
There are two options to model the DC-bus voltage plant. The first option is based on 
the power flow between AC and DC sides. The second one is based on the stored 
energy in the DC-bus capacitors bank, i.e. the energy balance. The choice for this 
explanation is the second approach. 

CDC

PDC/vDCPG/vDC vDC

 
Figure C.1. Power flow in the DC-bus 

The power flow in the DC-bus is described by equation (𝐶. 1), and the equivalent 
circuit is depicted in Figure C.1. 
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𝑣𝐷𝐶(𝑡) · 𝐶𝐷𝐶 ·
𝑑𝑣𝐷𝐶(𝑡)

𝑑𝑡
= 𝑃𝐺 − 𝑃𝐷𝐶 (𝐶. 1) 

Being 𝐶𝐷𝐶 is the DC-bus total capacitor, 𝑃𝑔 is the grid active power, and 𝑃𝐷𝐶 the 
DC-bus active power. 

The equation (𝐶. 1) can be rewritten as a function of the stored energy in the capacitor 
(𝐶. 2). Besides, to linearize the expression, it is defined 𝑢𝐷𝐶 = 𝑣𝐷𝐶

2 , so the reference 
and feedback signal values must be squared. 

1
2

· 𝐶𝐷𝐶 ·
𝑑𝑣𝐷𝐶

2 (𝑡)
𝑑𝑡

= 𝑃𝐺 − 𝑃𝐷𝐶 →
1
2

· 𝐶𝐷𝐶 ·
𝑑𝑢𝐷𝐶(𝑡)

𝑑𝑡
= 𝑃𝐺 − 𝑃𝐷𝐶 (𝐶. 2) 

Therefore, the DC-bus voltage model is (𝐶. 3). The DC-bus active power can be 
supposed as a disturbance or can be used as a feedforward for the controller. Note that 
the VSC losses have been neglected. 

𝐺𝐷𝐶(𝑠) =
𝑈𝐷𝐶(𝑠)
𝑃𝐺(𝑠)

=
2

𝑠 · 𝐶𝐷𝐶
(𝐶. 3) 

Finally, the model is discretized by means of ZOH (𝐶. 4) and the final closed-loop 
scheme is shown in Figure C.2. Note that DC-bus controller provides an active power 
exchange with the grid to keep constant the DC-bus voltage. The actuation signal is 
given to the current reference calculator, so this controller must provide the reference 
with the sampling rate that was defined for the current reference and current feedback 
signals. Besides, to obtain better performances the current controller phase delay 
should be considered before the plant model, but this document has worked with 
multirate current controllers that are not easily analyzed. 

𝐺𝐷𝐶(𝑧) = [𝐺ℎ0𝐺𝐷𝐶(𝑠)] =
2
𝐶𝐷𝐶

·
𝑇

𝑧 − 1
(𝐶. 4) 
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Figure C.2. DC-bus voltage closed-loop control 

C.1.2. DC-bus Controller 
The proposed controller is a PI as it is shown in equation (𝐶. 5), so the closed-loop 
transfer function is (𝐶. 6). 

𝐶𝐷𝐶(𝑧) = 𝑘𝑃 ·
𝑧 − 𝛼
𝑧 − 1

(𝐶. 5) 

𝑀𝐷𝐶(𝑧) =
2𝑘𝑃 𝑇
𝐶𝐷𝐶

·
𝑧 − 𝛼

𝑧2 − (2 − 2𝑘𝑃 𝑇
𝐶𝐷𝐶

) · 𝑧 + 1 − 2𝑘𝑃 𝑇
𝐶𝐷𝐶

· 𝛼
(𝐶. 6) 
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For pole-placement design, the denominator of 𝑀𝐷𝐶(𝑧) is compared with (𝐶. 7).  

𝐷(𝑧) = (𝑧 − 𝜌 · 𝑒𝑗𝜗) · (𝑧 − 𝜌 · 𝑒−𝑗𝜗) = 𝑧2 − (2𝜌 cos𝜗) · 𝑧 + 𝜌2

𝜌 = 𝑒−(𝜉𝜔𝑛𝑇) 𝜗 = 𝜔𝑛𝑇√1 − 𝜉2
(𝐶. 7) 

Finally, the PI controller constants are. 

𝑘𝑃 =
𝐶𝐷𝐶
𝑇

· (1 − 𝜌 cos𝜗)

𝛼 =
1 − 𝜌2

2 · (1 − 𝜌 cos𝜗)

𝑘𝐼 =
𝑘𝑃
𝑇

· (1 − 𝛼)

(𝐶. 8) 

The controller dynamics are obtained by means of damping factor 𝜉 = 1/
√

2 (it usually 
obtains the most damped and fastest response) and defining a settling time as (𝐶. 9), to 
obtain 𝜔𝑛, and, finally, the PI constants. 

𝑡𝑠 = 𝑇 ·
ln 0.01
ln 𝜌

(𝐶. 9) 

This outer control loop must provide a response slower than the inner current 
controller. Regularly, the settling time of this DC-bus voltage controller is set 10 times 
higher than the current controller settling time. 

For possible saturations due to the maximum power that can provide the VSC, an 
anti-windup control is included. The anti-windup constant is (𝐶. 10). 

𝑘𝑎𝑤 =
1

𝑘𝑃
(𝐶. 10) 

As a conclusion, the sampling period T must be adapted to that is defined for the inner 
current controller. 

C.2. Grid synchronization 

C.2.1. Objectives 
To correctly control a VSC is essential to be synchronized with the grid phase. Good 
synchronizing systems can maximize the power factor, so its aims are: 

- For a given grid voltage measurements, that are contaminated with noise, the 
module and phase of the fundamental harmonic must be recovered. 

- Fast synchronization. If there is not synchronization, the controllers cannot 
operate. 

- The phase signal must be noise-free. 

Some usual options are: 

- Zero-crossing detection. It is very sensitive to noise. 
- Phase-Locked Loop (PLL). It is the chosen option due to its reliability. 
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C.2.2. Phase-Locked Loop (PLL) 
The PLL is a feedback system which generates a signal with constant amplitude and 
equivalent phase to the input signal. The basic structure is presented in Figure C.3 and 
is composed of: 

- Phase Detector: It is a non-linear system that provides a signal proportional 
to the phase difference of the input signals.  

- Loop filter: It is a low-pass filter that rejects noise and harmonics other than 
fundamental. Besides, it defines the PLL dynamics (stable and locked speed), so 
a PI is usually used.  

- Voltage Controller Oscillator (VCO): It is a non-linear dispositive that 
generates an oscillation of which frequency is proportional to the input voltage.  

Phase 
Detector

Low-Pass 
filter

VCO
𝑥𝑖(𝑡) 𝑥𝑜(𝑡) �̂� 𝜃 

 

Figure C.3. Usual structure of monophasic PLL 

The previous explanation is useful to describe the three-phase PLL. There are some 
options, but the Synchronous Reference Frame PLL (SFR-PLL) is the most used in 
three-phase systems. Figure C.4 shows the SRF-PLL scheme, where the phase 𝜃 is 
detected by means of the rotating dq reference frame transformation to grid voltage. 
Considering normal operation of SRF-PLL, the voltage components 𝑒𝛼 and 𝑒𝛽 are in 
quadrature, so the following equations express how the phase is detected. 

[
𝑒𝛼
𝑒𝛽] = 𝑘 · [

𝑒𝑚 · sin(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
−𝑒𝑚 · cos(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

] (𝐶. 11) 

Applying the rotating dq transformation with an estimated phase 𝜃 ̂ the following 
deduction is obtained: 

[
𝑒𝑑
𝑒𝑞

] = 𝑘 · [
cos(𝜃)̂ sin(𝜃)̂

−sin(𝜃)̂ cos(𝜃)̂
] · [

𝑒𝑚 · sin(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙)
−𝑒𝑚 · cos(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙)

]

[
𝑒𝑑
𝑒𝑞

] = 𝑘 · [
𝑒𝑚 · sin(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜃)̂

−𝑒𝑚 · cos(𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜃)̂
]

(𝐶. 12) 

𝑒𝑑 = 𝑘 · 𝑒𝑚 · sin 𝛿 ≈  𝑘 · 𝑒𝑚 · (𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜃)̂ (𝐶. 13) 

Where 𝑒𝑚 is the signal amplitude and k the transformation constant (power or 
amplitude invariance). 
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Figure C.4. Block diagram of the SRF-PLL 

The PI controller makes zero the direct (𝑒𝑑) or quadrature (𝑒𝑞) component of the grid 
voltage (as it is explained in Appendix B.3, the direct component is usually set to 
zero). With ideal conditions (free-distortion or disbalance) an SRF-PLL with great 
bandwidth can accurately and quickly detect the phase and amplitude. For the sake of 
the PI dynamics, the input signal is always normalized (𝐶. 14), so it is not sensitive to 
amplitude changes. 

𝑒𝑑(𝑝.𝑢. ) = sin 𝛿 ≈ (𝜃 + 𝜃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝜃)̂ (𝐶. 14) 

To get fastest responses, an initial frequency is given 𝜔𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to the integrator of the PI 
controller. 

To get only the positive sequence of the grid and avoid all other harmonics from the 
SRF-PLL input signal, there are some adaptative pass-band filters. The most usual is 
the DSOGI (Dual Second Order General Integrator), that algorithm estimates positive 
and negative sequence of the grid voltage. 

C.2.3. SRF-PLL controller 
The plant to be controlled is an integrator, so the discrete-domain plant is (𝐶. 15) by 
means of ZOH.  

𝐺𝑃𝐿𝐿(𝑧) =
𝑇

𝑧 − 1
(𝐶. 15) 

The PI controller is (𝐶. 16), thus the closed-loop transfer function is (𝐶. 17). Figure C.5 
represents the closed-loop block diagram. 

+

-
𝐶𝑃𝐿𝐿 (𝑧)

Δ�̂� 𝑇𝑠
𝑧 − 1

 

Filter VCO
𝜃 𝜃 ̂

 
Figure C.5. Block diagram of closed-loop SRF-PLL control system 

𝐶𝑃𝐿𝐿(𝑧) = 𝑘𝑃 ·
𝑧 − 𝛼
𝑧 − 1

(𝐶. 16) 

𝑀𝑃𝐿𝐿(𝑧) = 𝑘𝑃 · 𝑇 ·
𝑧 − 𝛼

𝑧2 − (2 − 𝑘𝑃 𝛼) · 𝑧 + 1 − 𝑘𝑃 𝑇𝛼
(𝐶. 17) 

Using the pole-placement technique the denominator of 𝑀𝑃𝐿𝐿(𝑧) is compared with 
(𝐶. 18). 
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𝐷(𝑧) = (𝑧 − 𝜌 · 𝑒𝑗𝜗) · (𝑧 − 𝜌 · 𝑒−𝑗𝜗) = 𝑧2 − (2𝜌 cos𝜗) · 𝑧 + 𝜌2

𝜌 = 𝑒−(𝜉𝜔𝑛𝑇) 𝜗 = 𝜔𝑛𝑇√1 − 𝜉2
(𝐶. 18) 

Finally, the constants are: 

𝑘𝑃 =
2
𝑇

· (1 − 𝜌 cos𝜗)

𝛼 =
1 − 𝜌2

2 · (1 − 𝜌 cos𝜗)

𝑘𝐼 =
𝑘𝑃
𝑇

· (1 − 𝛼)

(𝐶. 19) 

The system dynamics are defined by damping factor of 𝜉 = 1/
√

2 and a natural 
frequency 𝜔𝑛 that is obtained through the expression (𝐶. 20) for the desired settling 
time.  

𝑡𝑠 = 𝑇 ·
ln 0.01
ln 𝜌

(𝐶. 20) 

The settling time is set to 10 ms in this work, and the sampling rate T for the PLL is 
defined as the fastest one in every multirate test, so it is related to the actuation 
sampling rate. Note that the controllers will not be initiated until the VSC is totally 
synchronized. 
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