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Real Field Deployment of a Smart Fiber Optic
Surveillance System for Pipeline Integrity Threat

Detection: Architectural Issues and
Blind Field Test Results

Javier Tejedor, Javier Macias-Guarasa, Member, IEEE, Hugo F. Martins, Juan Pastor-Graells, Sonia Martin-Lopez,
Pedro Corredera, Guy De Pauw, Filip De Smet, Willy Postvoll, Carl H. Ahlen, and Miguel Gonzalez-Herraez

Abstract—This paper presents an on-line augmented surveil-
lance system that aims to real time monitoring of activities
along a pipeline. The system is deployed in a fully realistic
scenario and exposed to real activities carried out in unknown
places at unknown times within a given test time interval (so-
called blind field tests). We describe the system architecture that
includes specific modules to deal with the fact that continuous
on-line monitoring needs to be carried out, while addressing
the need of limiting the false alarms at reasonable rates. To
the best or our knowledge, this is the first published work in
which a pipeline integrity threat detection system is deployed
in a realistic scenario (using a fiber optic along an active gas
pipeline) and is thoroughly and objectively evaluated in realistic
blind conditions. The system integrates two operation modes:
The machine+activity identification mode identifies the machine
that is carrying out a certain activity along the pipeline, and the
threat detection mode directly identifies if the activity along the
pipeline is a threat or not. The blind field tests are carried out
in two different pipeline sections: The first section corresponds
to the case where the sensor is close to the sensed area, while
the second one places the sensed area about 35 km far from
the sensor. Results of the machine+activity identification mode
showed an average machine+activity classification rate of 46.6%.
For the threat detection mode, 8 out of 10 threats were correctly
detected, with only 1 false alarm appearing in a 55.5-hour sensed
period.

Index Terms—Distributed fiber sensing, Acoustic sensing, Vi-
bration sensing, Pipeline integrity, phase-sensitive OTDR, Pattern
recognition

I. INTRODUCTION

Fiber optic distributed acoustic sensing (DAS) with phase-
sensitive optical time-domain reflectometer (¢-OTDR) tech-
nology has been shown good performance for long perimeter
monitorization aiming to detect intruders on the ground [1]-[5]
or vibration in general [6]-[14].

Current pipeline integrity prevention systems combine DAS
technology with a pattern recognition system (PRS) for con-
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tinuous monitoring of potential threats to the pipeline in-
tegrity [15]-[22].

However, most of the works that employ DAS+PRS have
shown significant issues with respect to the pattern classifi-
cation design and evaluation, as presented in [23]. The main
problems are related to the fact that no real classification is
conducted nor results are given (e.g., [15], [16], [24]); not
enough details on the system description or the experimental
procedure are provided (e.g., [4], [16]-[18], [20]); the data
generation process is far from being generated in a realistic
field environment (e.g., [2], [10], [18], [24]), or this is even
simulated (e.g., [7], [9], [10], [18], [25]-[29]).

Some recent works present significant improvements over
those previously reported, by adopting more realistic recording
environments (e.g., [17], [19]-[21], [30]), and more rigorous
experimental procedures (e.g., [19], [20], [30]). However, there
are still some issues related to the use of a single measurement
position [19], [21], which implies a bias to recognize the
position instead of the real event (whose effect was discussed
in [22]), or the reduced number of the testing signals, with no
additional details regarding the actual recording durations.

There are also companies that describe solutions for pipeline
surveillance monitoring [16], although they do not usually
provide enough details on their strategies, nor objective data
for a proper assessment of their contribution.

The only exceptions that, to the best of our knowledge, aim
to real field deployment of a DAS+PRS for pipeline integrity
surveillance are found in [17] and [22], [23], [31], [32],
but [17] does not provide enough details in its experimental
procedure.

To assess the validity of a DAS+PRS that continuously mon-
itors a long pipeline searching for potential threats and aims to
real field deployment, a thorough experimental and validation
procedure must be designed. This implies an approach that
considers two experimental evaluation scenarios:

e An extensive off-line evaluation (that must employ
recordings on realistic field data), which allows for an
intensive experimental work to decide on the system
design strategies and tuning.

e An (as much as possible) extensive on-line evaluation
that should be based on tests carried out in real field
scenarios, in unknown times, and unknown locations (so-
called blind field tests). These blind field tests consist
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in carrying out some activities at certain locations along
the surveillance area at certain times within a given time
interval (spanning from a few hours to days).

Regarding the extensive off-line evaluation scenario, in [22]
we presented the first published report on a pipeline integrity
threat detection system that employs DAS+PRS technology,
was evaluated on realistic field data, and whose results are
based on a rigorous experimental setup and an objective
evaluation procedure with standard and clearly defined metrics.
This work was further refined in [23], with an improved pattern
recognition strategy that led to significant performance gains.

Regarding the on-line evaluation, we presented in [32] the
first report on blind field tests of a pipeline integrity threat
detection system, which addressed the experimental and vali-
dation procedure issues with respect to real field deployment.
These field tests were carried out in realistic scenarios that
comprised different locations and soil conditions, and were
managed by Fluxys Belgium S.A., which was also responsible
for hiring the corresponding machinery and equipment to carry
out the required activities.

The pipeline integrity surveillance system consists in a
combination of hardware and software modules. The hardware
side refers to the DAS system used to record the data and the
software side refers to the pattern classification system that
classifies the acoustic data acquired by the sensing system.
Two different operation modes were set up in the pipeline
integrity surveillance system: machine+activity identification
mode, where both the machine and the activity are identified,
and threat detection mode, where just the occurrence of a
threat in the pipeline must be detected.

With respect to our previous work [32], this paper (1)
presents an augmented system with a new design that com-
pletes the baseline architecture with the required modules and
strategies to face the specific conditions of a blind field test
task operating in a fully real system deployment, and (2)
provides additional system results and a deeper result analysis.

Therefore, it can be said that, to the best or our knowledge,
this is the first published work in which a pipeline integrity
threat detection system is deployed in a realistic scenario (us-
ing a fiber optic along an active gas pipeline) and is thoroughly
and objectively evaluated in realistic blind conditions.

The rest of the paper is organized as follows: Section II
presents the pipeline integrity threat detection system. The
experimental procedure is presented in Section III. The results
and discussion are presented in Section IV, and Section V
concludes this paper.

II. PIPELINE INTEGRITY THREAT DETECTION SYSTEM

The pipeline integrity threat detection system integrates
different modules, as shown in Figure 1, being an evolution of
the architecture described in [22] to consider the modifications
required for field operation in the blind field test task (new
modules are shown in bold italic font). These modules are
explained in more detail next.

A. Distributed Acoustic Sensing System

The DAS system is a commercially available ¢-OTDR-
based sensor named FINDAS, manufactured and distributed

by FOCUS S.L. [33]. A detailed description of the sensing
principle and experimental setup used in the FINDAS sensor
was presented in [27].

The FINDAS has an (optical) spatial resolution of 5 meters
(readout resolution of one meter) and a typical sensing range
of up to 45 kms, using standard single-mode fiber (SMF). The
fiber scanning rate (pulse repetition rate) was of 1085 Hz, so
that the acoustic sampling frequency is also f; = 1085 Hz.
The optical sampling rate used in the data acquisition system
was of 100 MHz.

B. Threat Location Preselection

Due to the fact that the system is running continuously
and that the sensed positions are in the order of thousands,
it is not possible to record all the acoustic traces along the
fiber (due to restrictions in processing times, storage, and/or
communication throughput). Therefore, a preselection of the
positions which will actually be evaluated in search of possible
threats must be carried out. In this way, only preselected traces
will be processed in the PRS side.

This selection may use a threshold-based strategy from
the energy measurements of the vibrations along the fiber,
as presented in [32]: When the energy of the vibrations
occurring in a given position of the fiber is above a predefined
threshold, an acoustic trace is recorded to indicate a possible
suspicious activity occurring at that point, and the trace is
further processed by the PRS.

The simultaneous detection of multiple activities at different
positions is also possible, by setting a different threshold for
each position. The information of how this energy threshold
profile was estimated is given in Section III-C.

C. Feature Extraction + Normalization

FINDAS is configured to record 20-second length acoustic
traces that will be sent to the feature extraction module, which
adopts a standard overlapped frame analysis approach. Signal
frames to analyze are 1-second long, and the overlap is set
to 95% to achieve a smoother change of the feature vectors.
The Fast Fourier Transform (FFT) size was set to 8192 points.
All these parameters were chosen as the optimal ones in an
extensive experimentation effort carried out in our previous
work [22].

In our current implementation, the feature extraction module
calculates a feature vector composed of the energy values
corresponding to 100 frequency bands for a 100 Hz bandwidth,
using a sensitivity-based normalization (see [22] for more
details). Again, this parameter configuration was selected as it
achieved the best results in our previous work [22].

D. Pattern Classification

The pattern classification module employs a Gaussian Mix-
ture Model (GMM)-based approach to classify each feature
vector into the most likely class (machine+activity pair in
the machine+activity identification mode, and threat/non-threat
in the threat detection mode). This employs the a posteriori
maximum probability criterion to assign the given feature
vector the class with the highest probability given by the
corresponding GMM (see [22] for more details).
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Fig. 1. Architecture of the pipeline integrity threat detection system. Modules
field test task (as compared with the architecture shown in [22]).

E. Result Smoothing

Given the 20-second length acoustic traces generated by the
FINDAS, the frame length of 1 second and the frame overlap
of 950 ms, and the fact that the classification process outputs
one classification per acoustic frame, there are 415 frames (and
therefore 415 classifications) in each acoustic trace.

With this setup (no matter the large frame overlap), it
is highly probable that consecutive frames will be assigned
different decisions (due to the characteristics of the GMM-
based PRS, ‘outlier’ signal behavior, or artificial effects present
when the signal was recorded), so that we decided to apply
a process to smooth the actual result sequence output by the
classifier.

Several strategies can be employed for the smoothing pro-
cess, which are presented next.

1) Raw Smoothing: This strategy is based on substituting
each frame decision (given by the corresponding class label)
taking into account the decisions of the surrounding frames
given a certain temporal window.

More specifically, given a temporal window of a fixed
duration, this strategy replaces the recognition class given to
every frame that falls in the current window by the majority
class found in this window.

As an example, given the recognition sequence
‘14211121111°, which corresponds to a certain temporal
window of duration equals to 11 frames, this raw smoothing
strategy will produce the new recognition sequence
‘11111111111, since the label ‘1’ is the majority class
in the given window.

2) Sliding Window Smoothing: The sliding window
smoothing strategy bases on the previous one (raw smoothing).
In this case, only the central frame (instead of all the frames)
of a certain window is replaced by the majority class in the
current window. A slide window of 1 frame is applied for this
strategy.

As an example, given the

recognition sequence

in bold italics are new additions to face the real field deployment and the blind

‘14211122222’ in a certain temporal smoothing window
of duration equals to 11 frames, the sixth frame (i.e., the one
in the middle) is replaced by the majority class in this window
to produce the new recognition sequence ‘14211222222’.

For frames that are at the beginning and end of an acoustic
trace, the temporal window size is set to a value so that all
the frames are smoothed.

3) Confusion Matrix-based Smoothing: The raw and sliding
window smoothing strategies are based on the surrounding
frame decisions to re-assign the decision for a given frame,
without any additional information on the expected accuracy
of the classification process. The rationale for the confusion
matrix-based smoothing relies in the fact that performance
improvements could be obtained by taking into account the
possible classification errors that may exist between two given
classes.

To add the information related to the classification errors, a
confusion matrix that stores the probability of confusing every
class with every other needs to be calculated.

The procedure used to build this confusion matrix is given
in Section III.

The smoothing process consists in a dynamic programming
algorithm [34] that calculates a distance of the given frame
decision segment to each of the classes from the confusion
matrix. The distance is computed from the minimum amount
of substitutions, insertions, and deletions that are necessary to
transform the input decision frames to the actual frames of
each class. The algorithm next assigns all the frames of the
given window the class whose distance to the input decision
frames is the lowest given the confusion matrix.

In all the smoothing strategies, temporal window lengths of
1, 5, 10, and 20 seconds were evaluated.

F. Acoustic Trace Decision

After the result smoothing, the system still has 415 frame
decisions for a certain acoustic trace. Therefore, to classify
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this as a machine+activity pair or threat/non-threat depending
on the system mode, a method to combine the 415 individual
frame classifications into a single class is needed. We have
adopted a majority voting scheme, where the acoustic trace is
assigned the class for which more frames are classified.

G. Temporal and Spatial Smoothing

One of the main problems to face in real field deployment of
a DAS+PRS is keeping false alarms under reasonable values.
The fact that the DAS+PRS is run continuously, the character-
istics of the sensing mechanism, and that the vibrations will
affect a given length of the optical fiber being sensed, there
may be possible threats that:

o Could be detected, but their duration across a given fiber
length is not long enough to be considered as potential
threats.

o Could be detected as independent of others, but:

— They may be geographically close enough to each
other, so that they should be considered as corre-
sponding to the same physical event.

— They may be temporally close enough to each other,
so that they should be considered as corresponding
to the same temporal event.

Specific strategies must be designed to alleviate this prob-
lem, for which our proposal contemplates two directions:

e Require the detected activities to have a minimum du-
ration along nearby positions to be actually considered
as such. Otherwise, they would be considered spurious
events.

« Consider the detected activities to be corresponding to the
same one, if they are separated less than a given distance
within a given time interval.

H. Threat Level Assignment

In the threat detection mode of the pipeline integrity threat
detection system, a method to evaluate the potential risk level
of a detected threat was added to the system in order to provide
additional details on the threat characteristics to the system
operators (in a real world deployment). To do so, we based on
the energy of the acoustic signal corresponding to the threat,
so that four different risk levels were considered !. In a real
world deployment, this could be encoded in a color scale,
for example: light blue (which represents the lowest energy
threats), light green, orange, and red (which represents the
highest energy threats (and hence the most critical threats))
levels. The energy ranges that comprise each risk level are
decided dividing the energy range of the detected threats in
homogeneous segments.

III. EXPERIMENTAL PROCEDURE
A. Blind Field Tests

Two different rounds of blind field tests were carried out to
evaluate the system performance. Table I presents information

These categories were agreed with the GERG members in the PIT-STOP
project.

on the distance from the sensor to the sensed area, the sensed
location span (i.e., the length of the sensed area where the
tests were carried out), the recording dates and times, and the
total number of activities and threat activities carried out for
each blind field test.

The first round of tests (SEC1) was carried out in a location
near the DAS system, which favors a better Signal-to-Noise
Ratio (SNR) in the signal acquisition process. On the other
hand, the second round of tests (SEC2) was carried out in
a zone that spreads from 31.5 kilometers to 36.5 kilometers
far from the sensor, for which significant signal degradation
should be observed. Therefore, better performance is expected
in SECI as compared to SEC2.

B. Database Generation and Labeling

Database generation consists in obtaining the data that will
be used for training, validation, and testing the system. The
training data will be used for system training, the validation
data will be used for system configuration and parameter
tuning, and the testing data will be used to evaluate the system
performance. In all cases, an accurate labeling (in terms of
time stamps and activity being carried out) is fundamental for
system training, system validation, and to generate the ground
truth information that will be used in the system performance
evaluation (by comparing it with the system results).

The database comprises the signal recordings carried out
along a 45-kilometer length active gas pipeline operated by
Fluxys Belgium S.A. Table II presents relevant information of
the database acquisition related to the locations, environmental
conditions, and recording period.

Training data comprise 22.5 hours of acoustic signals
corresponding to different machines and activities that
are potentially identifiable (e.g., excavators that are mov-
ing/hitting/scrapping/removing trees, drilling machines, pneu-
matic hammer, plate compactor, hammer, people walking,
etc.). These training data were used to generate 45 models,
each of which represents a certain machine+activity pair for
the machine+activity identification mode of the system, and
were next labeled with threat/non-threat labels to build the 2
models (that represent the threat/non-threat classes) employed
in the threat detection mode of the system.

Validation data comprise a subset of 10 hours of the training
data (those recorded in all the locations in Table II except
LOC1) and correspond to 8 machine+activity pairs, which
were employed for system configuration and tuning. More
information of these validation data can be found in [22].

Table III shows the machine+activity pairs recorded along
with their duration and the corresponding threat/non-threat
labels for the training and validation data.

The test data comprise the continuous recordings that were
done during the two rounds of blind field tests carried out
in three different days. Table IV shows the machine+activity
pairs recorded along with the timestamps, the location, and
the corresponding threat/non-threat labels for the test data. Of
course, the ground truth information was not known when the
system was operating in field, and this was only used in the
performance evaluation process. SEC1 tests ran for around 8
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ENVIRONMENTAL, DATE, AND DISTANCE DETAILS ON LOCATIONS WHERE TRAINING AND VALIDATION DATA RECORDINGS TOOK PLACE. ‘KMS’ STANDS

TABLE I
GENERAL INFORMATION REGARDING TO THE BLIND FIELD TESTS. ‘KMS’ STANDS FOR KILOMETERS.
Blind field Distance from Recording dav/s | Recording time Number of | Number of
test ID the sensor (kms) ing day 8 activities threats
SEC1 0.3 1 day 8 hours 14 6
SEC2 31.5-36.5 2 days 2 X 24 hours 13 4
TABLE II

FOR KILOMETERS.

\ LOC1 [ LOC2 LOC3 [ LOC4 [ LOCS [ LOC6 [ LOC7 |
0 Distance 020 224 2249 23.75 27.43 27.53 3427
rom sensor (kms)
Concrete,
Soil condition Concrete,A wooden Gra}ss & clay in AGrass in grass & cla){. Wel clay in . Clay in Gl:ass in
& grass in forest agricultural field | agricultural field Next to public agricultural field | agricultural field forest
street & private house
‘Weather condition | Sunny/cloudy/rainy Sunny/cloudy Sunny Sunny Rainy Cloudy Sunny
Recording day/s 24-27 March 2015 15 October 2014 15 October 2014 14 October 2014 16 October 2014 | 16 October 2014 | 17 October 2014

TRAINING+VALIDATION DATA: MACHINE+ACTIVITY PAIRS WITH THEIR CORRESPONDING DURATION IN MINUTES AND THREAT/NON-THREAT LABELS

TABLE III

(BETWEEN BRACKETS). ALL THE MACHINE+ACTIVITY PAIRS WERE EMPLOYED FOR SYSTEM TRAINING. THE MACHINE+ACTIVITY PAIRS EMPLOYED

FOR VALIDATION ARE MARKED WITH ‘*’. ALL THE PAIRS EXCEPT THOSE MARKED WITH ‘*’ WERE RECORDED IN LOC1, AND THE PAIRS MARKED WITH

‘*” WERE RECORDED IN THE REST OF THE LOCATIONS. ‘(T/NT)’ STANDS FOR (THREAT/NON-THREAT). ‘BIG EXCAVATOR’ IS A 5 TON KUBOTA.
‘MIDDLE EXCAVATOR’ IS A 4 TON KUBOTA. ‘SMALL EXCAVATOR’ IS A 1.5 TON KUBOTA.

[ Machine+activity pair (duration) (T/NT) [ Machine+activity pair (duration) (T/NT) [

Machine+activity pair (duration) (T/NT)

|

Big excavator
+unloading (4.3) (T)

Rocket drilling
+small hitting (23.3) (T)

Hammer
+big hitting (5.3) (T)

Big excavator
+install wooden plates (47.3) (NT)

Rocket drilling
+big drilling (31.0) (T)

Big excavator
+metal sheet damming soil (20.7) (T)

Big excavator
+movement (36.0) (NT)

Rocket drilling
+big scrapping (12.7) (T)

Big excavator
+metal sheet damming touching dummy (8.7) (T)

Big excavator
+removing trees (11.7) (T)

Rocket drilling
+big hitting (28.0) (T)

Big excavator
+metal sheet damming hitting dummy (10.0) (T)

Big excavator Directional drilling People
+digging pit (30.3) (T) +unloading (2.0) (NT) +walking (15.3) (NT)
Big excavator Directional drilling People

+install dummy (5.7) (NT)

+movement (10.3) (NT)

+knocking fence door (7.0) (T)

Big excavator
+insert sand in compact soil (20.0) (NT)

Directional drilling
+small scrapping (27.3) (T)

Plate compactor
+calibration (21.3) (NT)

Big excavator
+install concrete plate (1.0) (NT)

Directional drilling
+big drilling (14.0) (T)

Big excavator
+movement (1315.3) * (NT)

Big excavator
+scrapping dummy (16.0) (T)

Directional drilling
+big scrapping (11.7) (T)

Big excavator
+hitting (106) * (T)

Big excavator
+knocking dummy (3.0) (T)

Directional drilling
+small hitting (34.7) (T)

Big excavator
+scrapping (324) * (T)

Directional drilling
+preparations (10.3) (T)

Directional drilling
+small drilling (87.7) (T)

Small excavator
+movement (610) * (NT)

Middle excavator
+movement (29.7) (NT)

Shelter pin
+knocking (40.0) (T)

Small excavator
+hitting (114) * (T)

Middle excavator
+digging pit (30.3) (T)

Middle excavator
+unloading (0.7) (NT)

Small excavator
+scrapping (260) * (T)

Rocket drilling
+small drilling (47.0) (T)

Middle excavator
+hitting (22.0) (T)

Pneumatic hammer
+working (388) * (NT)

Rocket drilling
+small scrapping (21.0) (T)

Hammer
+small hitting (5.3) (T)

Plate compactor
+working (440) * (NT)

hours in the selected day, and SEC2 tests spread continuously

during two consecutive days.

C. System Configuration

There are several parameters that are needed to be set along
the different modules of the DAS and pipeline integrity threat

detection systems.

First of all, the energy threshold profile that allows FINDAS
to select which acoustic traces will be processed by the
PRS had to be estimated. The energy threshold values were
estimated for each single fiber location (as described in
Section II-B). To do so, FINDAS was set to continuously
record the energy profile of the fiber segment where the blind
field tests were going to be performed. The energy profile
recordings were done during 3 consecutive days for the SEC1
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TABLE IV
TESTING DATA: MACHINE+ACTIVITY PAIRS WITH THEIR CORRESPONDING DURATION IN MINUTES AND THREAT/NON-THREAT LABELS (BETWEEN
BRACKETS). SEC1 REFERS TO THE FIRST ROUND OF BLIND FIELD TEST LOCATION, AND SEC2 REFERS TO THE SECOND ONE. ‘(T/NT)’ STANDS FOR
(THREAT/NON-THREAT). ‘BIG EXCAVATOR’ 1S AN 18 TON KUBOTA. ‘MIDDLE EXCAVATOR’ IS A 4 TON KUBOTA. ‘SMALL EXCAVATOR’ IS A 1.5 TON
KUBOTA. ‘DAMPLANKEN’ IS A BIG EXCAVATOR.

[ Blind field test ID |

Machine+activity pair (duration) (T/NT) [

Machine+activity pair (duration) (T/NT) ]

People+unloading rocket tools (20) (NT)

People+detect pipeline with hand shovels (20) (NT)

Big excavator+movement (7) (NT)

People+unloading of excavator and tools (21) (NT)

Big excavator+digging pit (5) (T)

Big excavator+hitting (1) (T)

SEC1 Rocket drilling+small drilling (24) (T) Rocket drilling+big drilling (14) (T)
Plate compactor+working (1) (NT) Big excavator+filling pit (19) (NT)
Prepare damplanken (21) (NT) Damplanken+working (12) (T)
Small excavator+movement (5) (NT) Small excavator+digging and closing pit (8) (T)
Middle excavator+movement (10) (NT) Truck+movement (5) (NT)
People+digging with shovels (11) (NT) Middle excavator+digging pit (7) (T)
Middle excavator+hitting (1) (T) Drilling+preparations (6) (NT)
SEC2 Rocket drilling+small drilling (15) (T) Rocket drilling+big drilling (17) (T)

Small excavator+closing pit (9) (NT)

Small excavator+movement (2) (NT)

Plate compactor+working and damming (10) (NT)

Drill compactor+drilling on soil and steel (6) (NT)

Middle excavator and truck+movement (2) (NT)

tests and 5 consecutive days for the SEC2 tests. From these
recordings, the average energy was calculated for each fiber
position, and this was established as the background noise
level profile.

To establish the actual energy threshold profile, the energy
range at the selected position must be taken into account,
considering the background noise level, and also the expected
energy levels for activities at the corresponding positions
(that heavily depend on the distance to the interrogator). For
example, in the SEC1 tests, which took place at an average
of 300 meters far from the FINDAS, the threshold energy
was set to 10 times the average background noise energy
level measured for each fiber location point. For the SEC2
tests, which took place at an average of 34 kms far from
the FINDAS, the threshold energy was simply set to the
average noise energy level. These threshold energy values were
selected by varying the multiplicative factor with respect to the
average background noise energy level from 1 to 40 times in
the corresponding location, and choosing the factor so that all
the acoustic traces of the training data have an energy above
the energy threshold (no testing data were used in the threshold
estimation procedures).

Regarding the pattern classification module, a single-
component GMM was trained for each class.?

In the confusion matrix-based smoothing (described in
Section II-E3), the confusion matrix was built using a leave-
one-out cross-validation (CV) approach from all the locations
except LOC1 in Table II. To do so, four locations were used for
system training, one location was used to build the confusion
matrix, and the other location was used for system evaluation.

In the temporal and spatial smoothing module (see Sec-
tion II-G), the acoustic traces corresponding to activities that
spread less than 80 seconds along 40 meters were considered
spurious. In the same way, consecutive threat decisions that are
separated less than 80 seconds and 40 meters from the previous
threat were grouped as corresponding to the same threat. These

2Training multi-dimensional GMMs was also tested, but the system perfor-
mance was lower, probably due to data scarcity for certain machine+activity
pairs.

values were tuned on validation data across different time-
space configurations. To do so, the time values were swept
from 10 to 130 seconds, and the space values were swept
from O to 60 meters. Again, no testing data were used in the
parameter tuning procedures.

For the threat detection mode of the system, the class (threat
or non-threat) with the highest probability (generated by the
GMM-based pattern classification module) is selected as the
corresponding to the evaluated acoustic trace, so that there is
no need to establish a threshold value to compare with.

D. Evaluation Metrics

Classification accuracy has been the main metric to eval-
uate the system performance both for the machine+activity
identification and threat detection modes. This is computed as
the ratio between the number of correctly classified testing
machines or activities, and the total number of evaluated
activities. A machine+activity pair is considered to be correctly
detected in case the machine or the activity output by the
system coincides with that of the ground truth and is within
the temporal limits of the activity ground-truth time span. In
the same way, a threat is correctly detected in case the system
generates a threat decision within the ground truth temporal
limits.

Additionally, for the threat detection mode, the Threat
Detection Rate (TDR), which corresponds to the percentage
of threat testing activities that are classified as threat, usually
referred to as true positives, and the False Alarm Rate (FAR),
which corresponds to the percentage of non-threat testing
activities that are classified as threats, usually referred to as
false positives, were also calculated.

1V. EXPERIMENTAL RESULTS
A. Performance of the Result Smoothing Module

As described in Section II-E, three different strategies were
examined to improve the system performance at frame level.
However, during the blind field tests, one of these strategies
must be chosen in the system pipeline.
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Validation data were employed to select the optimal strategy.
To do so, and since these data were recorded in 6 different
locations (all except LOC1 in Table II), we applied a CV
approach in a location basis (more details can be found in
Section IV.D of [22]). This CV slightly varies depending on
the smoothing strategy. For the raw smoothing and sliding
window smoothing strategies, 5 locations were used for GMM
training and the other location was employed as test to form
6 different folds. The different window sizes were examined
for each fold, and the average performance from the results
obtained in each fold and window size was computed. For the
confusion matrix-based smoothing strategy, 4 locations were
used for GMM training, one location was used to build the
confusion matrix, and the other for testing. This derives in 30
folds. As in the other strategies, the average performance is
obtained by averaging the performance for each fold.

The smoothing results are presented in Table V for the
machine+activity identification and threat detection modes,
compared with the ones obtained without smoothing. These
results show that longer window sizes are better than shorter
window sizes. Since more information (decisions of more
frames) is considered for the decision, and all the frames that
comprise an acoustic trace belong to a same activity, better
performance is expected.

The best result is obtained by the raw smoothing strategy
with the 20-second length window for almost all the metrics.
For the machine+activity classification accuracy (MAC ac-
curacy in Table V), the raw smoothing and sliding window
smoothing strategies obtain similar performance, being the
former slightly better than the latter. On the other hand, the
confusion matrix-based smoothing strategy obtains the worst
results, probably due to data scarcity issues.

For the threat classification accuracy (TC accuracy in Ta-
ble V), the confusion matrix-based smoothing strategy obtains
a slightly better overall performance. However, in this system
mode, the TDR and the FAR are more adequate to decide
which strategy is better, so that we can see that the raw
smoothing strategy obtains better TDR. Since detecting as
many threats as possible is crucial when building this kind
of systems, we have selected the raw smoothing strategy with
window size equals to 20 seconds for the real field deployment
tests.

B. Time-Location Based Analysis

Preliminary analysis was carried out to get an initial idea on
the feasibility of the pipeline integrity surveillance system for
detecting suspicious activities in the surveillance zones corre-
sponding to the two rounds of blind field tests. This analysis
consists in a time-location sensed energy representation of the
surveilled zone that aims to be monitored in each blind field
test. Figure 2 shows the time-location energy representation
for the SEC1 blind field tests, where the horizontal axis shows
the time, and the vertical axis shows the distance at which a
given energy value (in a thermal color scale from blue to red)
was measured. We do not show the full time-location energy
representation for the SEC2 blind field tests, as it was mostly
empty, given that the test was only done during 4 hours of

the day 2 of the tests. Instead, we show Figure 3, which is a
zoomed in version of the time-location energy representation
of the SEC2 blind field tests, centered in the time-location area
where the test activities were carried out (around 34.4 km from
the sensor and between 9:00 and 13:00 of the second recording
day).

These figures show that all activities were detected by
the FINDAS in both rounds of blind field tests, and they
turned out to be at the correct times when the activities were
being carried out. This means that the energy-based threshold
estimation procedure was highly accurate. In the blind field
test location near the FINDAS (Figure 2), the time-location
energy representation reveals clearer information, due to the
higher SNR in the data acquisition. In the case of the SEC2
test, where the sensed location is 34 kms far from the sensor,
much lower energy values are reported, which derives in a
much more difficult activity detection. However, the figure
shows that the system was able to detect all the activities.

C. Blind Field Test System Results

After verifying that all the activities were correctly detected
by the FINDAS, the system performance for the blind field
tests in terms of quantitative rates regarding to the classifica-
tion itself are presented in Table VI.

These results show that, as expected, SEC1 obtains better
performance than SEC2, due to the favorable acoustic signal
conditions. It can also be seen that almost all the threats are
correctly detected, which suggests that the system is suitable
for real field deployment.

With respect to the identification of the machine+activity
pair, the performance drops. On the one hand, this is due
to the very high number of classes involved in the system
(45 in our case). Nevertheless, the average MAC accuracy is
46.6%, much higher than the pure chance rate (11% given that
there are 10 different machines and 31 different activities),
which is promising given the extreme difficulty of the task.
This performance for the machine+activity classification task
is comparable with the 54.92% presented in our previous
study for offline tests described in [23], in which a much
simpler experimental setup was used (4 different machines
and 8 different activities, with a 12.5% pure chance rate).

On the other hand, a detailed analysis of the errors in
the machine+activity identification mode reveals interesting
findings: For SECI, a performance loss of 26.7% is due to the
fact that there was no trained model for the performed activity.
The other 20% drop corresponds to machine+activity pairs that
have been incorrectly classified by the system. For SEC2, a
performance loss of 30.7% is again due to the unavailability
of a trained model for the performed activity, being the other
30.7% performance drop due to actual classification errors.
The reason why there are some activities carried out in the
blind field tests that do not have a corresponding model
trained, is that the GERG members wanted to evaluate what
would be the system response in such cases (i.e., facing
an unknown activity). The training and validation data sets
(used for system training and building) were recorded before
the blind field tests were carried out. Therefore, the non-
previously trained activities used in the blind tests could
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TABLE V
RESULTS OF THE DIFFERENT SMOOTHING STRATEGIES FOR MACHINE+ACTIVITY IDENTIFICATION AND THREAT DETECTION MODES WITH THE BEST
RESULT IN BOLD FONT. ‘MAC’ STANDS FOR MACHINE+ACTIVITY CLASSIFICATION, ‘TC’ FOR THREAT CLASSIFICATION, ‘TDR’ FOR THREAT

DETECTION RATE, AND ‘FAR’ FOR FALSE ALARM RATE.

TC accuracy

TDR

FAR

64.3% £ 0.11%

80.7% £ 0.09%

40.3% £ 0.11%

65.3% + 0.11%

84.5% + 0.08%

40.3% £ 0.11%

67.1% +0.11%

88.9% + 0.07%

39.2% +0.11%

68.2% + 0.11%

91.0% + 0.07%

38.4% +0.11%

69.2% + 0.11%

92.0% + 0.06%

37.5% £ 0.11%

65.4% £ 0.11%

84.4% £ 0.08%

40.2% £ 0.11%

67.2% £ 0.11%

88.9% £ 0.07%

39.1% £ 0.11%

67.9% £ 0.11%

90.5% £ 0.07%

38.7% £ 0.11%

68.8% £ 0.11%

91.3% £ 0.06%

37.7% £ 0.11%

65.9% £ 0.11%

83.2% £ 0.09%

39.1% + 0.11%

68.0% + 0.11%

87.2% £ 0.08%

37.7% +0.11%

68.7% £ 0.10%

89.1% £ 0.07%

37.3% £ 0.11%

Smoothing type | Window length (seconds) MAC accuracy
None - 45.2% £ 0.11%
Raw 1 50.6% £ 0.11%
Raw 5 56.9% £ 0.11%
Raw 10 59.6% = 0.11%
Raw 20 61.9% +0.11%
Sliding window 1 50.4% £ 0.11%
Sliding window 5 56.8% £ 0.11%
Sliding window 10 59.1% £ 0.11%
Sliding window 20 61.3% +£0.11%
Confusion matrix 1 49.9% +0.11%
Confusion matrix 5 55.4% +0.11%
Confusion matrix 10 57.7% + 0.11%
Confusion matrix 20 59.6% + 0.11%

69.7% £ 0.10%

90.4% £ 0.07%

36.3% £ 0.11%

Fig. 2. Time-Location energy representation for the SEC1 blind field tests. x-axis is in format HH:MM:SS where HH denotes hours, MM denotes minutes,
and SS denotes seconds. For clarity, when the hour only contains one digit, there is only one number representing HH. y-axis is given in meters, where the
meter value grows with the distance to the FINDAS (i.e., 350 represents 350 meters far from the sensor). Colorbar scale is in dBs.

TABLE VI
BLIND FIELD TEST SYSTEM RESULTS. ‘MAC’ STANDS FOR
MACHINE+ACTIVITY CLASSIFICATION, ‘ACC.” FOR ACCURACY, ‘TC’ FOR
THREAT CLASSIFICATION, ‘TDR’ FOR THREAT DETECTION RATE, AND
‘FAR’ FOR FALSE ALARM RATE.

[ Blind field test ID | MAC acc. [ TC acc. | TDR | FAR |
SEC1 53.3% 100.0% 100.0% 0.0%
SEC2 38.5% 76.9% 50.0% 25.0%

[ Average [ 466% [ 889% | 80.0% [ 10.0% |

not (and must not) be included in the system training. The
activities for which there is no trained model were: Peo-
ple+unloading rocket tools, People+detect pipeline with hand
shovels, People+unloading of excavator and tools, Big excava-
tor+filling pit, Prepare damplanken, Small excavator+digging
and closing pit, Truck+movement, People+digging with shov-
els, Drilling+preparations, Small excavator+closing pit, and
Drill compactor+drilling on soil and steel. The performance
drop observed for activities with unseen data in the training
stage is obviously expected, and proves the need of addressing
a data acquisition effort as wide as possible, as stated in [35].

In both SEC1 and SEC2 blind field tests, the classifica-
tion errors come from different sources: (1) the machines
carried out the activities during certain times that did not

fulfill the temporal restriction in the temporal and spatial
smooth module, (2) confusions due to similarity in activities
such as hitting or scrapping (scrapping sometimes includes
some hitting), and (3) overlapping of different activities in
a single one. In addition, the different (unknown) testing
locations along the pipeline imply different acoustic conditions
(soil, weather, etc.) in the acquired acoustic traces, and this
variability affects to a great extent the system performance,
as was already discussed in our previous publications (c.f.
Section IV.C of [22]). Our strategy partially alleviates the issue
related to acoustic variability in unknown environments, by
first obtaining training data from as many different locations,
days, and times as possible (so that the acoustic models
can learn and generalize such variability); then, by applying
specific normalization approaches to the acoustic traces; and
finally, by employing smoothing procedures to the obtained
results.

Since this is an on-line system that continuously monitors
potential threats for the pipeline, real time response is crucial.
All the system modules except the Pattern Classification
module have a computational cost that does not depend on
the number of models. For the latter module, more models
increase the response time as the acoustic trace has to be
compared with all the trained models. Experiments were run
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Fig. 3. Zoomed in version of the Time-Location energy representation of the SEC2 blind field tests, centered in the time-location area where the test activities
were carried out (around 34.4 km from the sensor and between 9:00 and 13:00 of the second recording day). x-axis, y-axis, and colorbar are in the same

format as in Figure 2.

on an Intel Quad Q9550 2.83GHz processor and 4GB RAM.
Table VII shows the computational time of the system mod-
ules. It can be seen that the system is able to run on real-time,
since the time response is less than a second in any mode. The
table also shows that each model added to the system increases
the computational time in 10 ms. This means that, after the
20-second length acoustic trace has been recorded by the
FINDAS, the decision assigned to the suspicious acoustic trace
is given in 0.69 seconds in the machine+activity identification
mode, and 0.26 seconds in the threat detection mode.

The information about the threat level assignment discussed
in Section II-H was not used in the system result evaluation
(as we were only interested in assessing the threat detection
accuracy). The threat level calculation is meant to be exploited
in future research.

As a final comment, the blind field test evaluation proce-
dures will face, in most cases, the problem of the statistical
significance of the results. In cases such as the one described in
this paper, the number of blind field tests that can be performed
will be much lower than the tests conducted during the off-line
database evaluation process. Therefore, the reported results in
the off-line evaluation will have a higher statistical significance
than those from the blind field tests. This must be taken
into account to put the blind field test results in an adequate
context, and also to drive the design of a broad enough blind
field test campaign.

V. CONCLUSIONS AND FUTURE WORK

We have presented an evolution of the systems presented
in [22] and [32] that is able to continuously monitor potential
threats to the pipeline integrity in real field blind conditions.
On-line pipeline integrity monitorization systems have to
resort to a series of blind field tests to clearly assess their
performance when facing at real field deployment. For this,
two different rounds of blind field tests were conducted in
different days and locations, which convey different acoustic
signal properties each. The blind field test locations are placed
near the sensing system (300 meters far) and far the sensing
system (35 kilometers far).

Results show good performance in terms of threat detection,
since 8 out of 10 threats were correctly detected, and just
1 false alarm in 55.5 hours was generated. In terms of
machine+activity classification, the average performance is
46.6%, which is still well above chance (11%, given the 10
potential machines and 31 potential activities the system is
able to detect). Results also show degradation as long as the
distance to the sensing system increases, both in terms of
machine+activity classification and threat detection rates.

Future work should address the signal degradation issue
when the distance to the sensor grows. In addition, other
feature extraction techniques (e.g., those based on wavelet
transforms that take advantage of time and frequency domains
simultaneously) and pattern classification techniques (e.g.,
combination of GMM and neural networks) must also be
examined.
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