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A method to generate an all-optical flip-flop is proposed 
and experimentally demonstrated based on dynamic 
Brillouin gratings in polarization maintaining fibers. In a 
fiber with sufficiently uniform birefringence, this flip-flop 
can provide extremely long storage times and ultra-wide 
bandwidth. Experimental results demonstrate all-optical 
flip-flop operation using phase-modulated pulses of 
300 ps and a 1 m-long dynamic Brillouin grating. This has 
led to a time-bandwidth product of ~30, being in this 
proof-of-concept setup mainly limited by the relatively 
low bandwidth of the used pulses and the short fiber 
length. © 2017 Optical Society of America 

OCIS codes: (200.4560) Optical data processing; (290.5900) Scattering, 
stimulated Brillouin; (210.4680) Optical memories; (190.1450) Bistability.  
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Flip-flops are an essential building block in modern electronics. A 
flip-flop operates bi-stably between two states, depending on some 
input control signals. In one of the most usual configurations, a flip-
flop has two inputs (“set” and “reset”) and either one output or more 
usually two complementary outputs. The output is set to a high level 
with a positive “set” signal and back to a low level with a positive 
“reset” signal. Different variants of this structure can be found. 
However, in broad terms, the explained paradigm is preserved in 
the vast majority of systems performing this operation: the flip-flop 
circuit remains in a particular output state indefinitely until some 
variation in the inputs changes its output state [1-5]. 

For many years, photonics has attempted to build all-optical flip-
flops using active optical elements and hysteresis processes [1-5]. 
However, the success of these approaches has been rather limited 
so far, mainly because the conditions for bi-stable operation remain 
highly dependent on the bit-rate and the required optical powers. 
Typical operation bandwidths have been in the <10-20 GHz range, 
normally limited by the transition times of the processes used in the 
lasers/active elements. Additionally, being active, these devices 
inevitably introduce noise, and turn out to be input power-

dependent, which makes them less adaptable to a large variety of 
scenarios. Although all these approaches attract strong scientific 
interest, they remain unexplored in terms of real deployment. 

Passive approaches have also been proposed in the literature [6-
9]. The advantage of passive systems over active ones is that, in 
principle, they do not add optical noise to the signal and are power-
independent. In these approaches, the main idea is to realize 
extremely long-response-time integrators [7]. An integrator is an 
optical device whose transfer function is a Heaviside step function. 
Upon arrival of a short pulse, the output switches to a high-state for 
a long time (ideally indefinite). Over an arbitrary signal, such a 
device performs the integral of the electric field of the input signal. 
Interestingly, such field integrator can also be operated as a flip-flop: 
once the output has switched to a high state (with a suitable input 
pulse), one can easily “reset” its state by launching another short 
pulse of the same amplitude as the “set” pulse, but with opposite 
phase. In that case, the response switches back to zero and remains 
indefinitely at low level. Hence, a photonic electric field integrator 
with a suitably long response time can be easily turned into a flip-
flop by using proper control signals. Approaches using a resonator 
[6] and fiber Bragg gratings (FBGs) [7-9] have been reported in the 
literature. Hybrid (active-passive) approaches incorporating Bragg 
gratings and active fiber have also been validated [10]. 

Among the passive approaches, the key performance parameters 
are obtained from the impulse response of the device. These key 
parameters are the rise time and the integration time. The rise time 
is simply the time taken to establish the output response above a 
certain level. The inverse of this value defines the bandwidth of the 
pulses that the flip-flop can accommodate. The integration time can 
be defined as the duration of the Heaviside response function of the 
integrator, i.e. the time lapse between the onset of the Heaviside 
impulse response and the decay of the output signal below a certain 
level. The integration time should be ideally infinite. In a flip-flop, 
this value reflects the time over which the output state is preserved 
with no change in the input. In resonators [6], this parameter is 
limited by the cavity lifetime of the device, which is related to the 
losses. In Bragg gratings, this parameter is more related to the FBG 
length (typically limited to a few tens of cm). To achieve a long  
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Fig. 1. Generation and reading of a DBG in a PM fiber. (a) Direction of 
propagation and polarization axes of the 4 interacting optical waves. (b) 
Frequency distribution of the optical waves. 

integration time in FBGs, a very long grating with weak reflectivity 
is preferred. To make all these approaches easily comparable, the 
time-bandwidth product is a common figure-of-merit, defined as 
the storage time multiplied by the bandwidth. State-of-the-art 
values are ~100 for resonators [6] and >550 for uniform FBGs [7].   

In this Letter, a method to develop all-optical flip-flops based on 
dynamic Brillouin gratings (DBGs) [11] is proposed and 
experimentally demonstrated in polarization maintaining (PM) 
fibers. Contrarily to existing approaches, this method enables the 
generation of a very long grating with weak reflectivity using 
stimulated Brillouin scattering. This way, extremely long storage 
times can be achieved with an arbitrarily high bandwidth response.  

The proposed method relies on creating a very long, weak DBG 
along a PM fiber. The grating is dynamically produced by launching 
two continuous-wave counter-propagating pumps (pump1 and 
pump2) through the opposite sides of a PM fiber [11], as shown in 
Fig. 1(a). Both pumps must be aligned to the same polarization axis 
of the fiber. Making the arbitrary choice to align them to the fast axis, 
their optical frequencies fulfil the condition: fPump2 = fPump1 – B, where 
B is the Brillouin frequency along the fast axis of the fiber (typically 
in the order of 10.8 GHz). These two pumps create a DBG, which acts 
as an all-optical equivalent of an integrator [12].  

The flip-flop output is here set or reset by launching short pulses 
with controlled phase into the PM fiber, co-propagating with 
Pump1, as shown in Fig. 1(a). For proper operation these pulses 
must be launched along the orthogonal slow axis of the PM fiber at 
the probe frequency fprobe = (nfast/nslow)fPump1 to fulfil the Bragg 
condition, where nfast and nslow are the fast and slow refractive 
indices of the PM fiber, respectively. By changing the phase of these 
pulses, the output of the flip-flop can be set or reset. The flip-flop 
response can be observed at a frequency fR = fprobe – B, as shown in 
Fig. 1(b). Note that the system can operate in the same manner if the 
polarization axes of the pumps and the probe signal are swapped. 
In such a case, the DBG response appears upshifted in frequency 
(with respect to the pumps) rather than down-shifted.  

Figure 2 schematically shows the response of the device when a 
weak and completely uniform Brillouin grating is generated. When 
the grating is probed with a single pulse (Fig. 2(a)), the response 
corresponds to a truncated Heaviside function (the output is set to 
a high level from the arrival of the pulse onwards), where the length 
of the response is limited by the PM fiber length L to a storage time 
tst < 2 nslowL/c0 (c0 is the speed of light in vacuum). To reset the 
device before the storage time limit (Fig. 2(b)), a second pulse has to 
be sent into the fiber, with equal amplitude and duration, but 
opposite phase compared to the first pulse. The main requirement 
for the laser source is that its coherence time has to be larger than 
the time difference between reading pulses. Thus, as a result of the 
destructive interference between the two out-of-phase reflections, 
the flip-flop output is set to low level.   

 

Fig. 2. Working principle of the proposed all-optical flip-flop using DBGs. 
(a) The flip-flop output is set with an incoming pulse. This causes a step 
response at the output of a long, weak DBG tuned at the working 
wavelength. The storage time limit is given by the fiber length. (b) The 
output can be switched back to a low level before the storage time limit 
by using a second probe pulse with opposite phase. The high level at the 
output is kept along the time lapse between the two pulses. 

In order to describe mathematically the operation of the 
proposed flip-flop, the theory of DBG [12] has to consider the 
interactions between the 4 involved optical waves and 1 acoustic 
wave. In particular the writing and reading of a DBG can be 
described by the following system of coupled equations:  
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where APump1, APump2, AProbe and AR are the amplitudes of the optical 
field of Pump1, Pump2, probe and reflection, respectively; ρ is the 
acoustic wave amplitude; g1 and g2 are the electrostrictive and 
elasto-optic coupling coefficients; k is the phase mismatch among 
pumps and probe pulses; and A = i(2B – 2 – iB) / 2 is the 
complex frequency detuning factor (B and B are the Brillouin 
angular frequency and spectral linewidth). Equations (1.d) and (1.e) 
represent the DBG reading process and can be mathematically 
simplified under the following conditions: i) negligible depletion or 
amplification of Pump1 and Pump2, ii) steady-state conditions for 
the DBG writing (i.e. neglecting the transit time for acoustic wave 
activation), iii) negligible optical losses along the fiber and iv) AR << 
AProbe. These conditions can be easily satisfied by any well-designed 
DBG system, so that the DBG reading can be safely described as: 
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where the coupling coefficient (z) is limited in the range z = [0,L], L 
being the DBG length, so that 
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After integrating Eqs. (2), the transfer function of the dynamic 
Brillouin grating reflection can be written as: 
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Considering k  –2n[(Probe –Pump1) – DBG]/c0  and z = ct/2n, 
and defining the average refractive index as n = (nslow + nfast)/2 and 
the angular frequency of the DBG as DBG = Pump1(nslow – nfast)/n, 
Eq. (4) can be written as: 
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Considering that the local frequency of the DBG DBG(z) can be 
expressed as the sum of a constant mean value DBG and local 
changes DBG(z), so as DBG(z) = DBG + DBG(z), and that the 
DBG is read at its peak frequency, so that the frequency relation 
satisfies the condition Probe = (Probe –Pump1) – DBG, we can write: 
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which can be seen as the Fourier transform of the impulse response 
of the DBG. Therefore, the impulse response of the DBG can be 
obtained by applying the inverse Fourier transform, so that:  
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In case there are no birefringence fluctuations (i.e. DBG = 0), the 
impulse response of the DBG can be written as: 
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where C is a constant. Then, hR(t) is real, constant and maximum 
when DBG = B = 0 over a temporal length (0 < t < 2nL/c0). In 
essence, this is a step function time-limited to 2nL/c0, i.e. the storage 
time limit tst of the flip-flop. Considering typical lengths of PM fibers 
used in DBGs, 2nL/c0 might reach microseconds, which is extremely 
long for an optical flip-flop. If the setting and resetting pulses are 
very short (so that they can be approximated as delta functions), 
then the response of the flip-flop can be written as 
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where   is the time difference between pulses.  
It must be noted that the subtraction of the rectangular functions 

in Eq. (9) leads to a response given by two components, as depicted 
in Fig. 2b: a first response from the arrival of the first pulse until the 
arrival of the second one (i.e. from t = 0 until t = ), corresponding 
to the signal of interest, and a second component occurring from t = 
2nL/c0 until t = 2nL/c0 + . This second echo can be electrically 
suppressed, so that it can be discarded from the flip-flop operation.  
Note than (z) defines the local reflectivity of the grating, which has 
a maximum (at the peak frequency) equal to [13]: 

      
1 22

max tanh
2

B Pump Pump

eff

g P P l
r

A

 
 
 
 

,              (10) 

where gB is the Brillouin coefficient, PPump1,2 are the powers of Pump1 
and Pump2, Aeff is the effective area and l is the probe pulse length. 

Figure 3 shows the experimental setup used to demonstrate the 
DBG-based flip-flop operation. The light from a distributed feedback 
(DFB) laser, at 1551 nm, is split into distinct branches using a PM 
splitter to produce the two counter-propagating pumps for the DBG  

 

Fig. 3. Proof-of-concept setup for the generation of an all-optical flip flop 
based on a dynamic Brillouin grating.  

generation. The light in the upper branch is used to generate Pump2 
at the laser nominal wavelength, which is amplified by an Erbium-
doped optical amplifier (EDFA) to ~25 dBm. This pump is launched 
into the fast polarization axis of a 1 m-long Panda PM fiber. In the 
lower branch, Pump1 is obtained by intensity modulating the light 
using an electro-optic modulator (EOM) in carrier-suppression 
mode and driven by a microwave frequency, which allows a precise 
control of the frequency offset between pumps. Using a polarization 
beam combiner (PBC) after an EDFA, Pump1 is also launched into 
the fast axis of the PM fiber with a power of ~25 dBm. Note that the 
two modulation sidebands in Pump1 generate two DBGs 
propagating in opposite directions. Either grating can be selectively 
used since satisfying a distinct Bragg condition.  

In order to change the state of the flip-flop, short pulses with 
opposite phases are used. Those pulses are generated using another 
DFB laser, whose optical frequency is tuned to match the resonant 
frequency of one of the generated DBGs but along the slow axis of 
the PM fiber. Gaussian-like shaped pulses of 300 ps full-width at 
half-maximum are obtained using intensity and phase modulators, 
thus producing the set and reset pulses for the flip-flop with a 
relative π-phase shift. These pulses are amplified by an EDFA, and 
sent into the slow axis of the PM fiber through the PBC. The signal 
reflected from the DBG (also in the slow axis) is selected by a 10 GHz 
FBG filter (operating in reflection) and sent into a photodetector 
connected to a fast oscilloscope (4 GHz bandwidth). Considering the 
experimental conditions, Eq. (10) indicates that the created DBG 

has a maximum reflectivity 5.6310-6 (for 300 ps pulses, l = 6 cm). 

Measurements have been obtained varying the pulse separation 
between 3.5 ns up to 6.5 ns, with and without the phase modulation 
of the second pulse. Figure 4 shows the experimental results 
obtained with pulse separations of 3.5 ns (Fig. 4a), 5 ns (Fig. 4b) and 
6.5 ns (Fig. 4c). The first section of the measured time-domain 
signals corresponds to the reflection of the first pulse, while the 
second section shows the destructive (red curves) or constructive 
(grey curves) interference of the two reflections. Results indicate 
that when the phase modulation is turned off, the two reflections 
sum up in phase, leading to a constructive interference, and giving 
an amplitude proportional to the integral of the two pulses (i.e. 4 
times the intensity response of a single pulse). However, applying a 
π-phase shift to the second pulse (i.e. for resetting the flip-flop), the  



 

Fig. 4. Experimental demonstration of an all-optical flip-flop using a 1 m-long DBG. The flip-flop operation (red lines) resulting from out-of-phase pulses 
is compared with the integration (grey) resulting from two in-phase pulses. The pulse separation is: (a) 3.5 ns, (b) 5 ns, and (c) 6.5 ns. 

reflections mix on the photo-detection with opposite phases, thus 
mutually cancelling out and showing the expected flip-flop 
operation (red curves). Results show a time-bandwidth product of 
~30, being in this case mainly limited by the short PM fiber and low 
bandwidth of the pulses used in this proof-of-concept experiment.  

Finally, Fig. 5 shows the amplitude response of the system as a 
function of the spectral detuning between probe pulses and the DBG 
Bragg resonance (using 300 ps pulses separated by 5 ns). It shows 
that when the two pulses are perfectly centered at the DBG peak, the 
out-of-phase reflections fully mutually cancel out, resulting in a 
complete reset of the flip-flop. This behavior is independent of the 
pulse duration and pulse separation. However, when probe pulses 
are detuned from the DBG peak by , a phase mismatch equal to 
 is added between the two reflections, resulting in a non-
perfect cancellation of the two reflections. This means that the 
system behaves as a flip-flop only for  = 0. Interestingly, for the 
case of using two out-of-phase pulses detuned at  = π/ (and all 
odd multiples), reflections turn out to be in phase, so that the output 
signal becomes the integral of the field amplitude of the pulses.  

This spectral behavior implies that, to achieve a perfect flip-flop 
operation, a fiber with uniform birefringence profile is required. 
Longitudinal variations of the birefringence unavoidably induce 
local spectral detuning of the DBG (  0), introducing a phase-
mismatch that could impair the flip-flop operation. To secure a 
storage time tst, a uniform birefringence along a length L > tstc0/2n is 
ideally required, while the impact of enviromental conditions (e.g. 
strain or temperature) on the fiber birefringence must be reduced.  

In conclusion, a method to achieve all-optical flip-flop operation 
has been proposed and experimentally demonstrated using a DBG. 
The proposed flip-flop scheme could ideally provide extremely long 
storage times when compared to reported passive schemes, being 
fundamentally limited only by the fiber length and its birefringence 
uniformity. No physical limitations can be envisaged in the rise time 
of the system, which in principle is similar to those passive flip-flops 
based on FBGs (i.e. as fast as 6 ps [8]). However, practical limitations 
could exist due to polarization coupling effects and non-ideal 
filtering of Pump2. In that case overlapping between reflection and 
Pump2 must be avoided, so that the real bandwidth of the flip-flop 
turns out to be limited by the fiber birefringence to 2πDBG, being 
43.6 GHz in this experiment and defining a rise time of ~23 ps. 
Another limitation is imposed by real variations of the birefringence 
along long PM fibers. According to today’s technology, usual 
birefringence non-uniformities along PM fibers limit the storage 
time to ~10 ns (~1 m of fiber). To achieve microsecond storage 
times (~100 m of fiber), ~2 orders of magnitude improvement in 
the uniformity of the fiber birefringence would be required.  

 

Fig. 5. Output intensity of the device for two 300 ps pulses separated by 
5 ns, as a function of the frequency detuning from the DBG peak. The 
expected flip-flop operation occurs at zero detuning only, while the 
system integrates the field amplitude of the pulses at  = π/.  
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