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Abstract: This paper presents a novel surveillance system aimed at the detection and classification of1

threats in the vicinity of a long gas pipeline. The sensing system is based on phase-sensitive optical2

time domain reflectometry (φ-OTDR) technology for signal acquisition and pattern recognition3

strategies for threat identification. The proposal incorporates contextual information at feature level4

and applies a system combination strategy for pattern classification. The contextual information5

at feature level is based on the tandem approach (using feature representations produced by6

discriminatively trained multi-layer perceptrons) by employing feature vectors that spread different7

temporal contexts. The system combination strategy is based on a posterior combination of8

likelihoods computed from different pattern classification processes. The system operates in two9

different modes: (1) machine+activity identification, which recognizes the activity being carried out10

by a certain machine, and (2) threat detection, aimed at detecting threats no matter what the real11

activity being conducted is. In comparison with a previous system based on the same rigorous12

experimental setup, the results show that the system combination from the contextual feature13

information improves the results for each individual class in both operational modes, as well as14

the overall classification accuracy, with statistically significant improvements.15

Keywords: Distributed Acoustic Sensing; Fiber optic systems; φ-OTDR; Pipeline integrity threat16

monitoring; Feature-level contextual information; System combination17

1. Introduction18

Fiber optic distributed acoustic sensing (DAS) with phase-sensitive optical time-domain19

reflectometer (φ-OTDR) technology has been shown good performance for long perimeter20

monitorization aiming at detecting intruders on the ground [1–5], or vibration in general [6–14].21

Current pipeline integrity prevention systems combine DAS technology and pattern recognition22

systems (PRS) for continuous monitoring of potential threats to the pipeline integrity [15–22].23

In a previous work [22], we presented the first published report on a pipeline integrity threat24

detection and identification system that employs DAS+PRS technology, was evaluated on realistic25

field data, and whose results are based on a rigorous experimental setup and an objective evaluation26
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procedure with standard and clearly defined metrics1. In [22] we did a thorough revision of all27

the previous published works in this area, showing their main limitations related to the pattern28

classification design: Classification results were not presented, there was a lack of rigorous and29

realistic experimental conditions (database building, signal acquisition in limited distances), or were30

aimed at a small number of classes (see [22] for more details).31

More recently, new works on this topic have been published: In [19], there is again a lack of32

realistic experimental conditions since all the signals corresponding to the same event are recorded33

in the same fiber position (hence biasing the system to recognize the position instead of the real34

event), the sensed area covers up to 20 kilometers (which reduces its application in realistic fiber35

deployments), and only 5 classes are employed. In [21], the sensing area spreads 24 kilometers and36

the real experiments were conducted at a fixed distance of 13 kilometers away from the sensor (which37

we demonstrated in [22] that was a major issue when facing realistic environments), dealing with only38

3 classes. In addition, the number of tested signals in both works is small, with no additional details39

regarding the actual recording durations. Therefore, we can say that, again, these new systems do40

not fully address a realistic experimental setup that can assess the suitability of their proposals for41

realistic real time monitoring of long pipelines.42

The database used for the experiments in our previous work [22], which is composed of more43

than 1700 acoustic signals (about 10 hours of recordings), addresses all these issues: Different events44

were recorded and tested in different positions (covering different soil conditions) and different days45

(covering different environmental conditions) along a 40-kilometer pipeline. This, along with the46

adoption of a rigorous experimental procedure, allow us to state that the results are realistic enough47

to consider that similar performance can be obtained in field conditions.48

In what respect to the pattern recognition systems, one of the successful strategies used49

to improve their performance rates is adding contextual information [23]. For example, speech50

recognition systems obtain significant performance gains by incorporating context-dependent51

acoustic model information [24,25], or augmented features extracted from consecutive feature vectors52

(so-called first and second-order derivatives [26]). Image recognition systems also obtain significant53

improvements by incorporating contextual information within the final classification rule from54

multiple objects that appear in the image [27].55

In the field of fiber optic sensing, contextual information has also been employed for temperature56

measurement [28,29]. Our previous work [22] addressed the contextual information in a limited57

extent, since the Short-Time Fast Fourier Transform (ST-FFT) employed in the feature extraction58

spreads only 1 second2. Wavelets have also been employed previously to detect vibrations in59

distributed acoustic sensing systems, hence addressing contextual information to some extent as60

well [30]. Both approaches show a strategy based on adding sample-level contextual information,61

which means that the original signal is processed taking into account each sample context. However,62

the contextual information is usually applied within pattern classification systems at feature level [31–63

34], once the high dimensionality present in the input signal is reduced to a more discriminative set64

of features, which is more relevant for classification.65

Another successful strategy to improve the performance of pattern recognition systems relies66

on system combination. This is based on the fact that complementary errors are provided by67

different pattern classification processes. Combination based on sum, product, average, or maximum68

rules [35–37], majority voting [35,37], or more advanced techniques such as logistic regression [38],69

Dempster-Shafer theory of evidence [37], and neural networks [36,37,39] have been applied to pattern70

1 The original system was developed under a GERG (The European Gas Research Group) supported project titled PIT-STOP
(Early Detection of Pipeline Integrity Threats using a SmarT Fiber-OPtic Surveillance System).

2 This was the optimal window size, after an intensive experimentation with shorter and longer window sizes for the ST-FFT,
all of them leading to lower system performance.
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recognition systems in different fields such as image recognition, speaker verification, handwritten71

recognition, and speech recognition, showing significant performance gains.72

1.1. Motivation and Organization of the Paper73

The pipeline integrity threat detection and identification system presented in previous74

works [15–22,40,41] did not make use of feature-level contextual information, nor exploited the75

possibility of combining results from different pattern recognition systems. Given the potential of76

both strategies, we propose to apply them on DAS+PRS technology for pipeline integrity threat77

detection and identification from two different perspectives:78

• Incorporating feature-level contextual information in an intelligent way, adapting the so-called79

tandem approach widely used in speech recognition [42] to enhance the feature vector of the80

baseline system.81

• Combining the outputs of different pattern classification processes, each of them using a82

combination of frequency-based and tandem features, exploiting different temporal ranges of83

contextual information.84

In this paper, we present (to the best of our knowledge) the first published report that85

incorporates contextual information at feature level and system combination in a DAS+PRS-based86

pipeline integrity threat detection and identification system, and is rigorously evaluated on realistic87

field data, showing significant and consistent improvements over our previous work [22].88

The rest of the paper is organized as follows: The baseline system is briefly reviewed in Section 2,89

and Section 3 describes the novel pipeline integrity threat detection system. The experimental90

procedure is presented in Section 4 and the experimental results are discussed in Section 5. Finally,91

the conclusions are drawn in Section 6 along with some lines for future work.92

Figure 1. Baseline version of the system architecture [22].

2. Baseline System93

2.1. Sensing System94

The DAS system we used is a commercially available φ-OTDR-based sensor (named FINDAS)95

manufactured and distributed by FOCUS S.L. [43].96

For interested readers, a full theoretical revision of the sensing principle, and a detailed97

description of the experimental setup used in the FINDAS sensor can be found in [44], but we provide98

here a short summary of the sensing strategy used. The φ-OTDR makes use of Rayleigh scattering99

— an elastic scattering (with no frequency shift) of light which originates from density fluctuations100
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in the medium — to measure changes in the state of a fiber. In the FINDAS sensor employed, highly101

coherent optical pulses with a central wavelength near 1550 nm are injected into the optical fiber. The102

back-reflected signal from the fiber is then recorded, so that the interference pattern resultant from103

Rayleigh backscattering (φ-OTDR signal) is monitored at the same fiber input. By mapping the flight104

time of the light in the fiber, the φ-OTDR signal received at a certain time is associated with a fiber105

position. If vibrations occur at a certain position of the fiber, the relative positions of the Rayleigh106

scattering centers will be altered, and the φ-OTDR signal will be locally changed, thus allowing for107

distributed acoustic sensing [44].108

The FINDAS has an (optical) spatial resolution of 5 meters (readout resolution of 1 meter) and109

a typical sensing range of up to 45 kilometers, using standard Single-Mode Fiber (SMF). A sampling110

frequency of fs = 1085 Hz was used for signal acquisition. A detailed description of the FINDAS111

technology can be found in [44].112

2.2. Pattern Recognition System113

The baseline PRS was based on Gaussian Mixture Models (GMMs), and conducted classification114

in two different modes:115

1. The machine+activity identification mode identifies the machine and the activity that the machine116

is conducting along the pipeline.117

2. The threat detection mode directly identifies if the activity is an actual threat for the pipeline or118

not.119

The whole system integrated three main stages, as shown in Fig. 1:120

• Feature extraction, which reduces the high-dimensionality of the signals acquired with the DAS121

system to a more informative and discriminative set of features.122

• Feature vector normalization, which compensates for variabilities in the signal acquisition process123

and the sensed locations.124

• Pattern classification, which classifies the acoustic signal into a set of predefined NC classes (using125

a set of signal models, GMMs, previously trained from a labeled signal database).126

This system obtained promising results taking into account the ambitious experimental setup127

(i.e., recordings in a real industrial deployment). However, the absolute performance rate in128

machine+activity classification (45.15%, far better than the 12.5% chance rate for NC = 8 classes)129

is not still high enough for a practical system in field operations. Even though the threat/non-threat130

classification rates were much better (80% of threat detection and 40% of false alarms), strategies to131

improve both rates are necessary.132

The initial performance target that the GERG partners fixed to consider the system deployment133

in field was over 80% for the threat detection rate, and below 50% for the false alarm rate, so that these134

targets are actually achieved by the current proposal. In what respect to the performance target for the135

machine+activity identification rates, the GERG partners did not impose any specific requirements,136

as the crucial aspect for real world deployment is accurate threat-detection. Considering the difficulty137

of the task (with 8 different classes), identification rates in the range of 70%− 80% are reasonable to138

start with.139

3. Novel Pipeline Integrity Threat Detection System140

The proposal of the novel pipeline integrity threat detection system is presented in Fig. 2. First,141

the input acoustic signal is sent to a feature extraction module, where the energy corresponding to142

P frequency bands is calculated for the considered bandwidth f ∈ [ f0, fBW ], with f0 and fBW being143

the initial and final frequencies respectively, and fBW ≤ fs
2 . This builds NP-dimensional feature144

vectors (NP = 100). The feature normalization employed in this work is the sensitivity-based145

normalization described in Section III.B.2 of [22], where each coefficient of those feature vectors is146
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Figure 2. Novel pipeline integrity threat detection system architecture. Modules in bold typeface are
the new ones with respect to [22].

normalized by the energy above the considered bandwidth. This was necessary due to the strong147

differences in the signals acquired in different sensing positions, which relate to the different soil148

conditions, the mechanical coupling of the fiber to the pipe enclosure, the machinery distance, the149

non-linear transduction function of a φ-OTDR-based sensor, the exponential decay of the amplitude150

of the measured signals along the fiber, etc. (see [22] for more details). The pattern classification151

module employs a GMM-based approach to classify each feature vector into the most likely class152

(machine+activity pair in the machine+activity identification mode that deals with NC = 8 classes, and153

threat/non-threat in the threat detection mode that deals with NC = 2 classes). This employs the a154

posteriori maximum probability criterion to assign the given feature vector the class with the highest155

probability given by the corresponding GMM. The additional blocks, the contextual feature extraction156

(that also needs a new previous training stage) and the decision combination are new with respect to our157

previous work [22], and are explained in more detail next.158

3.1. Contextual Feature Extraction159

The contextual feature extraction is based on the tandem approach used to compute the160

so-called tandem features in speech recognition tasks [45–47]. This module takes the normalized161

frequency-based feature vectors as input and produces tandem feature vectors as output.162

A multi-layer perceptron (MLP) is employed to integrate the feature-level contextual163

information. This MLP has three layers, as shown in Fig. 3: An input layer that consists of NP ·Wsize164

feature vector values, where Wsize is the number of feature vectors used as contextual information165

(for an acoustic frame being analyzed at time t, the MLP will use the Wsize/2 feature vectors before t166

and the Wsize/2 feature vectors after t, along with the feature vector generated for time t), a hidden167

layer, whose number of units is selected based on preliminary experiments, and an output layer,168

with the number of units equals to the number of classes involved in the system modes (8 in the169

machine+activity identification mode and 2 in the threat detection mode).170

Specifically, three MLPs will be used to model the behavior of short, medium, and long171

temporal contexts, using Wshort, Wmedium, and Wlong feature temporal window sizes, respectively.172

The objective is effectively dealing with different signal behaviors that cope with short, medium,173

and long temporal contexts, so that a wider range of activities can be better learned by the system.174

In our implementation, the time lengths of each temporal context are 5 seconds, 12.5 seconds, and 20175

seconds, corresponding to the short, medium, and long temporal contexts, respectively. These lengths176

were chosen based on the length of a single behavior within different activities. For example, for177

stable activities such as moving, long temporal windows are more suitable to model a single behavior.178

However, for more difficult activities (hitting or scrapping that include several behaviors), shorter179
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Figure 3. Architecture of the 3-layer MLP employed in the contextual feature extraction module.

temporal windows are preferable so that the temporal windows used for modeling better cope with180

generating a robust model for a single behavior.181

Fig. 4 shows the detailed architecture of the contextual feature extraction module and its182

connection to the GMM-based pattern classification modules.183

The MLP models required for each temporal context (referred to as MLPS, MLPM, and MLPL in184

Fig. 4) are trained by the MLP training module in Fig. 2. The standard back-propagation algorithm [48]185

is employed to learn the MLP weights (i.e., connections between all the units of the input and hidden186

layers and connections between all the units of the hidden and output layers, as shown in Fig. 3).187

Therefore, three different sets of weights are learn (one for each temporal context), which are used188

next to obtain the posterior probability vectors.189

The contextual feature extraction involves two different stages, which are applied to each of the190

different temporal contexts:191

3.1.1. Posterior probability vector computation192

For each set of normalized feature vectors, and using the weights computed during MLP193

training, the MLP is employed to calculate a posterior probability for each class to be identified. This194

process is similar to use the MLP for classification. However, instead of assigning a raw class label to195

each normalized feature vector, the MLP outputs (consisting of one posterior probability per class, as196

shown in Fig. 3) are used as new features. This builds a set of NC-dimensional posterior probability197

vectors per MLP (i.e., per temporal context), as shown in Fig. 4.198

3.1.2. Tandem feature vector building199

This stage concatenates the original NP-dimensional feature vectors (those generated by the200

feature normalization module), and the NC-dimensional posterior probability vectors computed201

by the MLPs. Therefore, (NP + NC)-dimensional tandem feature vectors are built (in our202

implementation, NP + NC = 108 for the machine+activity identification mode, and NP + NC = 102203

for the threat detection mode). These are fed into three different pattern classification processes (one204

for each temporal context), which generate a likelihood value for each of the NC classes, as shown in205

Fig. 4. It must be noted that the GMM training is also carried out from these tandem feature vectors.206

For MLP training, posterior probability vector computation, and tandem feature vector building,207

the ICSI QuickNet toolkit [49] has been employed.208
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Figure 4. Detailed architecture of the contextual feature extraction module and its connection to the
GMM-based pattern classification modules.
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3.2. Decision Combination209

Given the three pattern classification processes conducted on the tandem feature vectors that210

cover different temporal contexts, and in order to exploit their complementarity when dealing with211

different activities, a way to combine their outputs is necessary. In this work, we have evaluated212

three methods to carry out a likelihood-based combination: Sum, Product, and Maximum, which are213

presented next:214

3.2.1. Sum method215

For any frame (i.e., feature vector), the likelihood assigned to each class ci is given by:216

l(ci) =
N

∑
j=1

lj(ci), (1)

where N is the number of classification processes, and lj(ci) is the likelihood assigned to class ci in217

the classification process j.218

This sum method is typically better adapted for cases in which each classifier performs219

different [50].220

3.2.2. Product method221

For any frame, the likelihood assigned to each class ci is given by:222

l(ci) =
N

∏
j=1

lj(ci). (2)

This product method is typically better adapted for systems where the feature sets are223

independent [51].224

3.2.3. Maximum method225

For any frame, the likelihood assigned to each class ci is given by:226

l(ci) =
N

max
j=1

lj(ci). (3)

This maximum method is typically better adapted for systems where the performance of each227

individual classifier is similar [50].228

For all the combination methods, the class that is finally assigned to each frame as the recognized229

one is given by the maximum a posteriori criterion:230

ĉ = argmax
i
{l(ci)}. (4)

The combination approach can be applied to all the classification processes, or to a selection of231

them, so that a fruitful experimentation can be carried out.232

4. Experimental Procedure233

Our experimental setup is basically the same than that described in Section IV of [22]. We provide234

here the fundamental details, referring the reader to the original paper for further details.235

4.1. Database Description236

For comparison purposes, we employed the same database as in our previous work [22], whose237

content is summarized in Table 1.238
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As described in [22], an active gas transmission pipeline operated by Fluxys Belgium S.A. was239

used for the database acquisition, thus operating in a real scenario. The pipeline is made from240

steel, has a diameter of 1 meter, and is 1 inch thick. Activities nearby the pipeline were sensed by241

monitoring an optical fiber cable installed about 0.5 meters from the pipeline and parallel to it (the242

fiber cable installation was done at the same time of the pipeline construction). The pipeline and243

the associated optical fiber are buried, and the pipeline is pressurized at 100 bars (being an active244

one, operating in normal conditions). The fiber depth varies between 0.3 and 2 meters, and since it245

does not follow a tight parallel path along the pipeline, and in some points there are fiber rolls for246

maintenance purposes, a calibration procedure between fiber distance and geographical location was247

carried out for precise location labeling.248

The selected activities cover realistic situations (involving possible threats and harmless ones)249

that could typically occur nearby pipeline locations. All of them were carefully selected by the250

GERG partners within the PIT-STOP project, and represented those activities that could provide251

the best assessment of the system capabilities for real world deployment. In particular, the staff at252

Fluxys Belgium S.A. (the gas carrier company in this country) was responsible for the proposal of the253

activities to be carried out for evaluation.254

On the one hand, the dangerous activities (hitting and scrapping by small and big excavators),255

allowed the system to be tested when a real threat for the pipeline occurs (as it is the usual situation256

before a critical pipeline “touch” happens).257

On the other hand, the non-threat activities were chosen based on their high-occurrence rate near258

pipelines (movements of different machinery, and non-dangerous activities performed by pneumatic259

hammer and plate compactor machines).260

The FINDAS sensor is connected at one end of the fiber that runs in parallel to the inspected261

pipeline. The different locations (LOC1, LOC2, LOC3, LOC4, LOC5, and LOC6) cover different262

pipeline “reference positions” selected at high distances from the sensing equipment (being at 22.24,263

22.49, 23.75, 27.43, 27.53, and 34.27 kilometers far from the FINDAS box respectively) to evaluate the264

system in conditions close to the actual sensing limits and to ensure feature variabilities in terms of265

soil characteristics and weather conditions (see [22] for more details).266

The machines used for the recordings of the different machine+activity pairs started their activity267

at the center of the so-called “Machine operation area” (see Fig. 5 for a visual reference). This268

area was located at distances between 0 meters (on top of the fiber), and up to 50 meters from the269

so-called “Reference position” right above the pipeline3. The “hitting” and “scrapping” activities270

were recorded five times in different positions within the machine operation area (the first position271

was located in the center of the area, and the other four were located at ±25 meters and ±50 meters272

from this center, with direction depending on the available space around the operation area). The273

“movement” and “compacting” activities spread around ±25 meters from the center of the operation274

area. These two activities were recorded in two different ways: the first one comprises both movement275

and compacting actions when the machine is carrying out the activity parallel to the pipeline, being276

the second one with the activity carried out perpendicular to the pipeline. This allowed us to generate277

different acoustic patterns corresponding to both ways, hence obtaining a more varied database.278

From this “Reference position”, the signals were captured from the optical fiber in a ±200 meter279

interval (see Fig. 5), with 1 meter spacing, thus generating 400 acoustic traces for each recorded280

activity. This 400-meter interval was selected to ensure that we had a wide enough range of fiber281

responses to be used in the training and evaluation procedures.282

Although the distance of the acoustic source (the machine performing the given activity) to the283

optical fiber has an impact on the signal-to-noise ratio (SNR), the high sensitivity of the sensing system284

3 As described in [22] in the recording protocol for each location, the reference position was chosen manually as the closest
to the center of the operation area with good sensitivity, by real time monitoring of the fiber response.
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Table 1. Experimental database. ‘Big excavator’ is a 5 ton Kubota KX161-3. ‘Small excavator’ is a 1.5
ton Kubota KX41-3V. From [22].

Machine Activity Duration (in seconds) Threat
Non-threatLOC1 LOC2 LOC3 LOC4 LOC5 LOC6 Total

Big
excavator

Moving along the ground 1100 1100 3540 1740 1620 4160 13260 Non-threat
Hitting the ground 120 140 240 220 80 260 1060 Threat

Scrapping the ground 460 460 920 620 200 580 3240 Threat

Small
excavator

Moving along the ground 600 500 1700 820 820 1660 6100 Non-threat
Hitting the ground 200 180 220 220 80 240 1140 Threat

Scrapping the ground 420 340 780 360 180 520 2600 Threat
Pneumatic
hammer Compacting ground 660 0 580 1320 0 1320 3880 Non-threat

Plate
compactor Compacting ground 740 0 740 1240 0 1680 4400 Non-threat

within the limits of the selected “Machine operation area” for each location makes the SNR to be good285

enough to cover realistic and practical situations. Moreover, the trained signal models are also able286

to cope with this variability due to the acoustic source distance to the pipeline.287

4.2. System Configuration288

Regarding the feature extraction, the relevant parameters are as follows: The acoustic frame size289

was set to 1 second, the acoustic frame shift was set to 5 milliseconds, the number of FFT points was290

set to 8192, the number of frequency bands (i.e., the original feature vector size) was set to 100, and291

the initial and final frequencies corresponding to the analyzed bandwidth were set to 1 Hz and 100292

Hz respectively.293

The highest energy meter selection in our previous work has been selected for signal294

representation, due to its better performance over the reference position (see Fig. 5) [22]. Therefore,295

each acoustic frame used either for training or evaluation (MLP in the contextual feature extraction296

and GMM in the pattern classification) corresponds to the highest energy meter between those297

acquired by FINDAS.298

LOC6

Machinery
operation area

Reference 
position (RP)

200 m
eters recorded

from
 RP at this side 

200 m
eters recorded

from
 RP at this side 

Recorded fiber segment 

Fiber

Pipeline

Figure 5. Recording scenario: Real example at LOC6, taken from [22].

For the contextual feature extraction, 100 units have been used in the hidden layer for MLP299

training and posterior probability vector computation for the machine+activity identification mode,300

and 3 units for the threat detection mode. These values were chosen based on their best performance301

in preliminary experiments.302
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For pattern classification, a single GMM component has been used to model each class in both303

modes.304

The use of the sensitivity-based normalization and the bandwidth limited to 100 Hz is explicitly305

designed to also help in dealing with the noise in the raw data. The normalization aids in equalizing306

noise effects compensating for variabilities in the signal acquisition process and the sensed location307

(as background noise can vary for different locations due to the proximity of road, factories, etc.),308

and the bandwidth limitation avoids considering noisy signals where no relevant information is to309

be found. Also, while variations in the fiber temperature could introduce noise in the measurements,310

these typically occur at much lower frequencies than the processed acoustic signals so that they do311

not constitute a relevant issue in our proposal. Nevertheless, even though the raw signals have312

a high level of noise (as shown in the sample signal spectrograms shown in Fig. 2 of [22]), each313

machine+activity pair exhibits, in general, a reasonably consistent spectral behavior, hence allowing314

for the use of pattern classification strategies that can efficiently extract this consistent behavior. A315

full experimental and theoretical description of the optical noise characteristic of the DAS technology316

using a similar setup, which defines the background noise of the raw data, can be found in [44].317

4.3. Evaluation Strategy318

The evaluation strategy was carefully and rigorously designed to maximize the statistical319

significance of the results and to provide a wide variety in the design of the training and evaluation320

subsets.321

With this objective, the robust and widely adopted leave-one-out cross-validation (CV)322

strategy [52] was selected to carry out the experiments. The criteria to split the full database in323

training and evaluation subsets match with the recorded data location criteria. Since data were324

recorded in 6 different locations, the CV strategy comprises 6 folds, where the data recorded in all the325

locations except one were used for training (including MLP training and posterior probability vector326

computation for the contextual feature extraction and GMM training for the pattern classification),327

and the evaluation was done on data of the unused location (thus ensuring full independence328

between the training and evaluation subsets). Classification is again conducted on a frame-by-frame329

basis.330

Using the data from the same locations for MLP training and posterior probability vector331

computation in the contextual feature extraction could lead to overfitting problems, since a subset332

of the data employed for MLP training is also used to compute the posterior probability values of333

the tandem feature vectors employed for training the pattern classification module. To evaluate334

this drawback, we ran a full set of experiments in which different locations for MLP training and335

posterior probability vector computation were employed, and similar results are obtained, which336

clearly indicates that no overfitting occurs.337

4.4. Evaluation Metrics338

As in our previous work [22], and for comparison purposes, the classification accuracy has been339

the main metric to evaluate the system performance both for the machine+activity identification340

and threat detection modes. In addition, we will also show the class classification accuracy for the341

machine+activity identification mode, and the threat detection rate and false alarm rate for the threat342

detection mode. Finally, to provide a full picture of the classification performance we will also show343

the confusion matrix (i.e., a table that shows the percentage of evaluation frames of a given class that344

are classified as any of the considered classes) for the machine+activity identification mode. Statistical345

validation of the results will be provided to assess the statistical significance of the results.346
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Table 2. MLP classification accuracy for the machine+activity identification mode for every class with
various window sizes with the best result for each class in bold font. ‘Acc.’ is the overall classification
accuracy, with the best result in bold font. ‘Mov.’ stands for moving, ‘Hit.’ stands for hitting, ‘Scrap.’
stands for scrapping, and ‘Compact.’ stands for compacting.

Machine+activity identification

Big excavator Small excavator
Pneumatic
Hammer

Plate
Compactor

Acc.
Window size Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.
Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.2%

Short 63.3% 13.0% 31.5% 54.8% 10.7% 26.5% 73.9% 57.3% 53.5%
Medium 72.9% 12.1% 35.4% 63.8% 8.8% 28.3% 76.9% 51.3% 58.6%

Long 82.5% 12.3% 34.5% 62.5% 7.0% 28.1% 82.2% 46.2% 61.8%

5. Experimental Results347

5.1. Preliminary Experiments348

A preliminary set of experiments was run to show the potential effectiveness of (1) using349

contextual information, and (2) combining different contextual information sources in the whole350

system.351

This set of experiments takes the 100-dimensional normalized feature vectors as input for the352

MLP and conducts classification. For MLP-based classification, we simply assign the class with353

the highest posterior probability as the recognized class with which we can evaluate the system354

performance. The different temporal contexts (short, medium, and long) are employed for MLP355

training and classification, and the obtained results are presented in Table 2.356

From Table 2, it is clearly seen that, even though the overall accuracy improves when increasing357

the temporal context, the optimal temporal context (short, medium, or long) is different for each358

machine+activity pair (best rates are shown in bold). For example, for the big excavator moving,359

the baseline performance is 49.1%, and this increases to 63.3%, 72.9%, and 82.5% when using360

progressively longer temporal contexts (short, medium, and long, respectively). On the other hand,361

for the small excavator hitting, increasing the temporal context leads to systematic performance362

degradation from the 13.8% obtained in the baseline to 10.7%, 8.8%, and 7.0% for progressively longer363

temporal contexts.364

These results indicate that different temporal contexts model the feature space in a different way,365

so that employing and combining different window sizes could bring further improvements to the366

whole system performance (thus motivating our combination approach). In addition, the MLP does367

not seem to be suitable to replace the GMM for classification. Despite the best overall performance368

obtained with the long-length window size, there are some classes whose performance is worse than369

that of the baseline (hitting and scrapping activities with the small excavator, and hitting activity370

with the big excavator, which include multiple behaviors and have the less amount of training data).371

Therefore, this motivates the use of the MLP to produce a tandem feature vector and to maintain the372

GMM-based pattern classification system.373

5.2. Contextual Feature Extraction374

We analyze the performance of the contextual feature extraction module from the tandem feature375

vectors that are built from different window sizes. To do so, a GMM-based pattern classification376

process is carried out for each of the proposed temporal contexts (short, medium, and long), as shown377

in Fig. 4, and results are presented in Table 3.378

At first sight, for the machine+activity identification mode, the average system performance379

compared with the baseline (column Acc. in Table 3) seems to improve to a great extent (57.8% −380

45.2% = 12.6% absolute improvement). Paired t-tests [53] show that this improvement is statistically381
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Table 3. Contextual feature extraction module results. Class classification accuracy and overall
classification accuracy for the machine+activity identification mode, and threat detection rate (TDR),
false alarm rate (FAR), and overall classification accuracy for the threat detection mode, with the best
results in bold font. ‘Acc.’, ‘Mov.’, ‘Hit.’, ‘Scrap.’, and ‘Compact.’ denote the same as in Table 2.

Machine+activity identification Threat detection

Big excavator Small excavator
Pneumatic
Hammer

Plate
Compactor

Acc. TDR FAR Acc.
Window size Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.
Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.2% 80.7% 40.3% 64.3%

Short 60.6% 17.0% 32.0% 55.9% 11.6% 27.8% 75.6% 54.0% 52.8% 78.9% 36.3% 67.1%
Medium 66.1% 19.0% 36.9% 62.0% 10.8% 30.3% 75.9% 49.7% 56.0% 76.6% 32.3% 69.7%

Long 74.4% 21.5% 30.2% 59.2% 13.4% 28.5% 81.1% 43.4% 57.8% 71.6% 31.2% 69.4%

significant for any window size over the baseline (p < 10−32). However, looking at the individual382

class performance, this improvement is not that clear. There are classes for which very similar or even383

slightly worse performance is obtained with the tandem feature vectors (e.g., small excavator doing384

hitting (13.8% for the baseline system and 13.4% for the tandem system) and scrapping (30.2% for the385

baseline system and 30.3% for the tandem system)), and the best performance for each class largely386

depends on the window size.387

The large improvement obtained with the tandem feature vectors is for the classes for which388

more data are available. For example, the moving activity from the big excavator improves the389

49.1% baseline performance to 74.4% for the tandem system, and from the small excavator the390

improvement goes from the 50.5% baseline performance to 62.0%. Also, large improvements are391

observed for the plate compactor (from 39.5% to 54.0%) and the pneumatic hammer (from 71.8% to392

81.1%). The fact that more data are available for these classes is biasing the performance calculation,393

but we also have to consider the effect on the classes with lower performance. The high performance394

classes, which tend to have a more stable behavior, get much more benefit from the feature-level395

contextual information than classes that represent different acoustic behaviors (i.e., hitting and396

scrapping activities). The greater amount of training data of those classes also contributes to this,397

since a more robust GMM is trained.398

On the contrary, for classes with different acoustic behaviors during its execution (hitting and399

scrapping), integrating these multiple behaviors could lead to less robust GMMs, so that the final400

performance for these classes is similar or even worse than that of the baseline. For example, for401

the small excavator hitting, there is a performance degradation from the baseline 13.8% to 13.4%.402

The only exception for this observation is the improvement obtained for the big excavator doing403

scrapping (36.9% versus 26.0% of the baseline), which may be due to the greater amount of training404

data available, so that a more robust GMM is built.405

This suggests that using feature-level contextual information in isolation is not enough to obtain406

the best performance in the whole system for classes for which different acoustic behaviors are407

observed and the amount of data used to train the GMM is limited.408

For the threat detection mode, it can be seen that incorporating feature-level contextual409

information also provides an improvement in the overall classification accuracy over the baseline410

(69.7% − 64.3% = 5.4% absolute improvement). Paired t-tests show that this improvement is411

statistically significant for any window size (p < 10−24) over the baseline. However, by inspecting412

the threat detection rate and the false alarm rate, it can be seen that both figures decrease compared413

with those of the baseline, which makes more difficult derive a clear conclusion.414

From these results, we can state that decision combination is necessary to take advantage of the415

complementary classification errors obtained for each temporal context.416
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Table 4. Decision combination results. Class classification accuracy and overall classification accuracy
for the machine+activity identification mode, and threat detection rate (TDR), false alarm rate (FAR),
and overall classification accuracy for the threat detection mode with the best results in bold font.
For combination, ‘Prod’ is the Product method and ‘Max’ is the Maximum method. ‘S’ denotes short
window size, ‘M’ denotes medium window size, and ‘L’ denotes long window size. ‘Acc.’, ‘Mov.’,
‘Hit.’, ‘Scrap.’, and ‘Compact.’ denote the same as in Table 2.

Machine+activity identification Threat detection

Big excavator Small excavator
Pneumatic
Hammer

Plate
Compactor

Acc. TDR FAR Acc.
Method Mov. Hit. Scrap. Mov. Hit. Scrap. Compact. Compact.

Baseline [22] 49.1% 20.1% 26.0% 50.5% 13.8% 30.2% 71.8% 39.5% 45.15% 80.7% 40.3% 64.26%

Prod

S-M 59.9% 19.4% 36.3% 60.4% 13.0% 33.8% 75.8% 44.4% 53.06% 76.8% 33.2% 69.10%
S-L 64.3% 23.7% 32.1% 57.7% 18.0% 31.1% 80.4% 40.1% 53.91% 74.9% 33.7% 68.25%
M-L 66.1% 22.2% 33.7% 57.9% 14.3% 36.6% 78.4% 41.3% 54.92% 73.9% 32.0% 69.32%

S-M-L 61.5% 24.0% 34.0% 57.6% 15.0% 36.9% 78.2% 39.8% 53.09% 75.0% 33.2% 68.68%

Max

S-M 67.3% 17.3% 36.9% 64.2% 9.7% 27.2% 79.5% 56.6% 57.75% 81.0% 36.2% 67.66%
S-L 76.8% 17.2% 32.1% 62.9% 10.9% 29.4% 81.1% 50.0% 60.20% 79.7% 35.0% 68.29%
M-L 76.6% 14.8% 34.2% 64.1% 11.5% 29.2% 80.1% 49.9% 60.33% 78.4% 33.4% 69.24%

S-M-L 77.0% 14.5% 34.0% 65.0% 10.0% 27.8% 81.7% 51.4% 60.82% 81.1% 35.4% 68.34%

5.3. Decision Combination417

Decision combination employs different combinations of temporal contexts (in pairs, or all of418

them) to make the final decision for each frame. Results are shown in Table 4 for the machine+activity419

identification mode and the threat detection mode. To ease the analysis, the results for the Sum420

method are not shown as they are almost identical to those obtained with the Product method.421

Additionally, the cells with worse results than the baseline have an orange background, and the green422

background cells indicate the selected systems for the machine+activity identification and threat423

detection modes. As it can be seen, almost all the results obtained with the decision combination424

improve those of the baseline.425

5.3.1. Machine+activity identification mode426

For the machine+activity identification mode, the combination of any window size with any427

combination method outperforms the overall classification accuracy of the baseline in a great428

extent (52.91% − 45.15% = 7.76% minimum absolute improvement, which means a 17% relative429

improvement). Paired t-tests show that this improvement is statistically significant for all the cases430

(p < 10−30).431

For Sum and Product methods, consistent performance gains are obtained for all the classes432

in general. Sum method is expected to work well when each individual classifier performs quite433

different [50], as is our case (see Table 3). Product method is also expected to derive a robust434

combination when the feature sets are independent [51]. Different temporal contexts model the435

feature space in a different way so that the feature set for every class can be considered as436

independent.437

For hitting and scrapping activities, which possess multiple behaviors and have the less amount438

of training data, the performance obtained with the Maximum method is much worse than that of the439

baseline (for example, for the small excavator hitting, the 13.8% baseline gets as low as 9.7%). This440

can be due to two reasons: (1) The Maximum method does not integrate information of different441

classification processes (only the best likelihood is selected), which for multi-class classification442

problems is important, and (2) this method provides gains when the performance of the individual443

classifiers is close, which is not our case (see Table 3). The only exception is again for the big excavator444

doing scrapping, for which performance gains are obtained for each combination method (from the445

26.0% baseline performance up to 36.3% with the Product Method and 36.9% with the Maximum446
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Table 5. Confusion matrix of the Product combination method from medium and long window sizes
for the machine+activity identification mode. Classification Accuracy is shown in each cell. The
values between brackets represent the number of frames that are classified as the recognized class, or
that belong to the real class.

Recognized class

Big excavator Small excavator Pneumatic
Hammer

Plate
Compactor

[236845]
Moving

[40432]
Hitting

[81899]
Scrapping

[94597]
Moving

[61857]
Hitting

[91389]
Scrapping

[77049]
Compacting

[56292]
Compacting

R
ea

lc
la

ss

Big
excavator

[275145] Moving 66.09
[21995] Hitting 30.60 22.15 19.21
[67230] Scrapping 24.64 33.74 18.39

Small
excavator

[126575] Moving 57.91 16.92
[23655] Hitting 17.03 14.01 14.32 29.55
[53950] Scrapping 15.55 12.62 36.57

Pneumatic hammer [80510] Compacting 78.38
Plate Compactor [91300] Compacting 14.24 16.29 41.28

Table 6. Machine+activity identification mode rate comparison between the baseline and novel

systems. Relative improvement is calculated as 100 · (novelaccuracy−baselineaccuracy)
baselineaccuracy

.

Big excavator Small excavator Pneumatic
Hammer

Plate
Compactor Averages

Moving Hitting Scrapping Moving Hitting Scrapping Compacting Compacting
Baseline 49.05% 20.11% 26.03% 50.50% 13.78% 30.22% 71.84% 39.51% 45.15%
Novel 66.09% 22.15% 33.74% 57.9% 14.32% 36.57% 78.38% 41.28% 54.92%

Relative improvement 34.74% 10.14% 29.62% 12.89% 3.92% 21.01% 9.10% 4.48% 21.30%

method). This may be again due to the availability of more training data, which results in a more447

robust GMM.448

Our selection proposal is the Product-based combination from medium and long temporal449

window sizes, since this presents the best overall accuracy with consistent improvements for each450

individual class.451

Table 5 shows the corresponding confusion matrix of this combination, where we have removed452

the values below chance (1/8 = 12.5%) to ease the visualization and analysis, and where we have453

used color information as a visual aid. In general, it is clearly seen that the diagonal contains the454

greatest figures for each class (with at least 9% absolute better accuracy compared to the second455

most recognized one, i.e., 33.74%-24.64%=9.10% in the big excavator doing scrapping), except for456

the hitting activity. For the big excavator, this is confused with the moving and scrapping activities.457

On the one hand, the big excavator doing hitting has the less amount of training data, which can458

cause that the classification process prefers the GMM for which more training data are available. On459

the other hand, scrapping also includes hitting when the shovel contacts the ground, which is also460

causing confusion in the small excavator. The classes with the lowest performances correspond to461

the hitting and scrapping activities, which are also confused between each other. On the one hand,462

these are the classes with the less amount of training data, which derives in a less robust GMM. In463

addition, hitting and scrapping activities present different acoustic behaviors (moving up the shovel,464

moving it down, hitting, scrapping, moving, etc.), which may degrade the GMM, since just a single465

GMM component is used for modeling.4466

It is also important to note the significant improvements in the identification rates with respect467

to the baseline system, as shown in Table 6. The relative performance improvement between the468

baseline and novel systems range from 4.48% up to 37.74%, with an average value of 21.30%, which469

clearly validates the strategy used towards improving the overall performance.470

4 Increasing the number of GMM components does not provide any gain, probably due to the small amount of training data
for these classes.
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5.3.2. Threat detection mode471

For the threat detection mode, the overall classification accuracy shows a similar trend. All the472

method combinations for any window size significantly outperform the baseline (p < 10−26 for a473

paired t-test).474

Combining all the temporal window sizes with the Maximum method outperforms the baseline475

both for the threat detection rate (from the 80.7% baseline performance up to 81.1%, which implies476

a relative improvement of 0.5%), and false alarm rate (from the 40.3% baseline performance down477

to 35.4%, which implies a relative improvement of 12%). These improvements are significant for the478

threat detection rate (p < 10−5) and for the false alarm rate (p < 10−28). By integrating all the window479

sizes in a small classification task (two classes: threat/non-threat) the feature space is modeled in such480

a different way that the pattern classification makes different and complementary errors, so that the481

final performance gets improved in the Maximum method, for which the classifier with the highest482

likelihood takes the final decision.483

6. Conclusions and Future Work484

This paper has presented a novel approach for a pipeline integrity threat detection system that485

employs a φ-OTDR fiber optic-based sensing system for data acquisition by adding feature-level486

contextual information and system combination in the pattern recognition stage. The proposal487

achieves consistent and significant improvements that were verified in a machine+activity488

identification task, where the machine and the activity carried out must be known, and in a threat489

detection task, where just the occurrence of a threat for the pipeline has to be known.490

Feature-level contextual information in isolation has been shown to perform well for491

machine+activity pairs that possess a stable behavior and for which enough training data are492

available. Adding the decision combination from different pattern recognition processes that493

run on different contextual information window sizes has been shown to outperform the overall494

classification accuracy and the class classification accuracy for both tasks.495

Although the results presented in this paper have improved those of the baseline in a great extent496

(about 21% relative in the machine+activity identification mode, and 12% relative in the false alarm497

rate with a slight improvement of 0.5% relative in the threat detection rate for the threat detection498

mode), there is still much work to do. For classes for which different behaviors exist and the amount499

of training data is low, the improvements obtained are not as high as for the rest of the classes.500

Therefore, future work should focus on these low-performance classes by, for example, developing501

new strategies that will also extend our system to make use of contextual information in the spatial502

domain (that is by using the acoustic traces from nearby sensed positions, which should experience503

similar disturbances simultaneously).504
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