
Departamento de Automática
Programa de Doctorado en Investigación Espacial

Characterizing and Evaluating
Autonomous Controllers

Dissertation written by
Pablo Muñoz Mart́ınez

Under the supervision of
Dra. Maŕıa Dolores Rodŕıguez Moreno

International advisors
Dr. Amedeo Cesta and Dr. Andrea Orlandini

Dissertation submitted to the School of Computing of the
Universidad de Alcalá, in partial fulfilment of the

requirements for the degree of
Doctor of Philosophy

Characterizing and Evaluating Autonomous Controllers

2016





“The Viking Lander is a superbly instrumented and designed ma-
chine. It extends human capabilities to other and alien land-
scapes. By some standards, it’s about as smart as a grasshopper,
by others, only as intelligent as a bacterium. There’s nothing de-
meaning in these comparisons; it took nature hundreds of millions
of years to evolve a bacterium, and billions of years to make a
grasshopper. With only a little experience in this sort of business,
we’re getting pretty good at it.”

Carl Sagan
Cosmos – episode 5, 1980.





Acknowledgements

Como en cualquier tesis, el primer agradecimiento no puede ser más que para el
director, o directora en este caso. En gran medida esta tesis es fruto de Maŕıa
Dolores. El esfuerzo y dedicación que he puesto yo en su confección posiblemente se
vea superado por el suyo. No puedo más que expresar mi más profunda admiración
por sus conocimientos, aptitudes y el entusiasmo que pone en todo lo que hace. Por
ello, muchas gracias por permitirme hacer este viaje junto a ti.

También quiero agradecer a todos mis compañeros del laboratorio E31 en el que
he pasado más tiempo que en mi propia casa durante los últimos años, con mención
especial a Yolanda y Javi. El laboratorio sin vosotros se hizo un lugar aburrido.
Por suerte he seguido contando con más gente de la que poder aprender: Alex y
Rubén primero y ahora Dani, Diego y Fernando. También agradecer a los miembros
del Intelligent Systems Group por su apoyo, sobre todo al Dr. David F. Barrero que
siempre tendrá un hueco en el laboratorio. Y por supuesto al Dr. Bonifacio Castaño;
espero que disfrutes de tu jubilación en lo más alto del mundo.

¿Y qué seŕıa de una tesis sin la familia y amigos? Tengo que dedicar esta tesis
a mis padres, Julián y Florinda y a mi hermana Flor. Siempre habéis estado ah́ı
dándome apoyo en los buenos y malos momentos. Por ello esta tesis también es
vuestra. Aunque para sobrellevar los peores momentos nada mejor que el baloncesto,
jugando en Rucker junto a Xuma, Juampa, Alberto y el resto de la plantilla que tanto
ha cambiado estos años.

During this thesis I spent some time in Rome with the PST group at ISTC-CNR.
I want to thank all the PST staff, but specially to the senior members: Amedeo,
Andrea, Riccardo and Angelo. You form an excellent group and I hope I can continue
working and learning from you; this thesis is only a first step.

Finally, I want to thank to the ESA’s technical officer Mr. Michel Van Win-
nendael for his continuous support. I really appreciate his comments during every
stage of this thesis. Also, I appreciate the help from the people of the Automation
and Robotics Section in ESA-ESTEC, with emphasis to Mart́ın Azkarate and Carlos
Crespo and their valuable knowledge about robotics.

This thesis was supported by the European Space Agency under the Networking
and Partnering Initiative titled Cooperative Systems for Autonomous Exploration
Missions, contract 4000106544/12/NL/PA in collaboration with ISTC-CNR (Italy).

I





Abstract

Autonomy in robotics by means of Artificial Intelligence (AI) Planning & Schedul-
ing (P&S) is a widely research area with great interest in applications such as ex-
ploration robots in hazardous or human unreachable areas. However, autonomous
controllers for robotics are usually not well assessed. For instance, it is not easy to
compare newer assets with previous works in the field. In this thesis we propose a
framework, called On-Ground Autonomy Test Environment (OGATE), to support
testing and assessment of autonomous controllers. It is supported on a methodology
and a set of generally applicable and domain independent metrics to generate objec-
tive evaluations, and a software tool to enable automatic benchmarking processes.
To demonstrate the effectiveness of the framework, we exploit two autonomous con-
trollers based on different P&S paradigms. First, the Goal Oriented Autonomous
Controller (GOAC) developed under an European Space Agency (ESA) contract.
Second, the Model-Based Architecture (MOBAR) developed during this PhD that
exploits a different paradigm for autonomy. Particularly, MOBAR is designed with
the objective of testing different Planning Domain Definition Language (PDDL)
based planners to achieve on-board autonomy. In this regard, we also introduce
a new planner, Unified Path Planning and Task Planning Architecture (up2ta),
that integrates a state of the art PDDL planner with path planning algorithms. The
objective of up2ta is to produce efficient plans for robotics exploration missions. Re-
garding to the path planning algorithm, in this thesis we introduce two algorithms
focused on mobile robots: S-Theta* that effectively reduces the heading changes of
the path, and the 3D Accurate Navigation Algorithm (3Dana) that deals with Digital
Terrain Models (DTMs) and traversability cost maps to produce safer and reachable
paths in realistic environments. Given both controllers, OGATE has been success-
fully exploited to evaluate them, allowing to characterize relevant aspects about the
integration between Planning & Execution (P&E) that are hardly to be assessed in
other ways. Moreover, the results are reproducible and objective, enabling compari-
son among controllers with different P&S technologies and paradigms.

III





Extended abstract

The expectations for robotic systems have evolved from the classical teleoperation
paradigm of the previous century to the current aim of fully autonomous robots in-
teracting with each other, being able to take their own decisions. However, although
progress over the past few decades has been significant, such full autonomy still re-
mains an open issue, partially due to the extensive variability and complexity of the
scenarios to operate within. Reaching high autonomy levels can be justified in scenar-
ios such as planetary and underwater exploration or natural disasters, as scenarios
in which the human presence is rather than complicated, while also teleoperation
may be infeasible.

In recent time the European Space Agency (ESA) has started to explore possibil-
ities for autonomy on board in different internal activities and studies. In particular,
they have produced the Goal Oriented Autonomous Controller (GOAC) architec-
ture, which is a prototype for robotics autonomy in space missions. GOAC can be
modified in order to test on-board Artificial Intelligence (AI) Planning & Schedul-
ing (P&S) techniques to provide goal oriented autonomy. Moreover, GOAC can be
customized exploiting different autonomy levels and P&S systems, allowing other
research groups not to start from scratch but to take advantage of the work done.
For this reason this PhD starts from ESA assets in robotics to investigate open
problems. In particular, we propose research effort to better explore the evaluation
aspects of different autonomy architectures, to study efficient reaction policies when
executing the goals and allow operators to focus on what they want the mission to
do. In this direction, a main objective is to generate a framework that deals with
autonomous controllers evaluation, assessing aspects related to the P&S system and
its integration in robotics.

With the objective of providing a wider support to verify the generated frame-
work, this PhD provides the description of a new autonomous controller called Model-
Based Architecture (MOBAR), that has similar functionalities as GOAC, but employ-
ing different technologies and paradigms for P&S. From this robotic controller, this
thesis also addresses the decisional capabilities of such controllers. Particularly, the
deliberative layer has to produce feasible and safe plans to guide the execution to
achieve the mission goals. In this extent, robotics applications in planetary surfaces
require navigation planners that take into consideration terrain constraints to safely
achieve the target locations. Then, path planning capabilities seems to be a required
component in an autonomous mobile robot when facing long term missions.

V



For the generation of safer routes two aspects have been covered. First, as some
robotics have limited turning capabilities, a new path planning algorithm, called S-
Theta*, has been produced. This algorithm effectively reduces the heading changes of
the robot respect to its former one, Theta*. From this point, classical path planning
algorithms usually exploit a loosely realistic 2D terrain discretisation, being in the
best case a traversability cost map. However, this seems not to be enough to provide
safer paths in uneven terrains. Then, a second assess produced in this thesis is
the 3D Accurate Navigation Algorithm (3Dana), a path planning algorithm that
provides support to deal with traversability cost maps as well as Digital Terrain
Models (DTMs). DTMs provide realistic 3D surfaces, so using them it is possible
to extract paths considering the terrain relief. 3Dana evolves from S-Theta*, and
provides different parametrizations that allows generation of smooth paths, while
also avoids excessive terrain slopes that cannot be reached by the robotic platform.

However, just providing a safe route between two points does not guarantee opti-
mality in large missions with several targets. For this reason, we have merged a state
of the art Planning Domain Definition Language (PDDL) planner with the proposed
path planning algorithms. This new deliberative, called Unified Path Planning and
Task Planning Architecture (up2ta), interleaves task planning and path planning
for optimal sequencing of activities taking into consideration the robot paths. up2ta
has been properly deployed as the planner for the MOBAR architecture, obtaining
good results either in simulated and real scenarios.

Taking as input the GOAC and MOBAR controllers, it is required a framework to
assess their performance. The motivation for such effort is twofold: (i) the difficulty
to generate intensive test campaign for a given plan-based controller for robotics;
and (ii) the lack of a general approach to assess and compare different Planning
& Execution (P&E) approaches for the same robotic platform. This open issue
has been clearly demonstrated during the development and testing of GOAC and
MOBAR. Performing experiments with these controllers requires considerable hand
made work, while the data generated is specific for the controller under study and
not reproducible by other researchers.

Then, we propose a framework, called On-Ground Autonomy Test Environ-
ment (OGATE), that supports the integration, testing and operationalisation of
autonomous robotic controllers. Particularly the OGATE framework is the union of
three elements: (i) a methodology that defines a set of steps to generate a testbench
for autonomous robotics; (ii) a set of general applicable metrics to characterize its
performance; and (iii) a software environment that automatically carries on with the
testbench. More in detail, the evaluation starts from the definition of the controllers
under study and the operative scenarios. Then, through run series of plan execu-
tion experiments, relevant parameters measures are gathered to enable assessment.
Such data is exploited to compute the proposed metrics values, which are domain
and application independent. This is automatically done by means of the OGATE
software that allows benchmarking in either, real and simulated robotic platforms.
At the end of the tests execution objective and reproducible results of the controller
are produced. OGATE has been successfully exploited to evaluate the GOAC and
MOBAR plan-based controllers, allowing to characterize relevant aspects about the
integration between P&E with different technologies and paradigms.

VI



Resumen extendido

Las expectativas en robótica han evolucionado desde el clásico paradigma de tele-
operación del pasado siglo al actual objetivo de completa autonomı́a, en la que los
robots son capaces de cooperar e interaccionar tomando sus propias decisiones. En
las últimas décadas se han realizado significativos progresos, pero la completa au-
tonomı́a es todav́ıa una meta inalcanzada. Esto se debe, en parte, a la gran variedad
y complejidad de escenarios en los cuales los robots pueden operar. Entre ellos la
exploración planetaria o submarina y escenarios de catástrofes naturales son poten-
ciales candidatos a beneficiarse de robots autónomos, debido a que tanto la presencia
humana como la teleoperación son complicadas, y, en algunos casos, imposibles.

Recientemente, la Agencia Espacial Europea (ESA) ha empezado a explorar la
posibilidad de usar autonomı́a a bordo en sistemas robóticos. Entre los estudios
realizados se encuentra el Goal Oriented Autonomous Controller (GOAC), un pro-
totipo de arquitectura de control autónomo para robótica espacial. GOAC permite
explotar técnicas de Inteligencia Artificial mediante Planning & Scheduling (P&S)
para dotar al sistema de autonomı́a. En este sentido, diferentes niveles de autonomı́a
y sistemas de planificación pueden ser utilizados, permitiendo desde la teleoperación
hasta la autonomı́a basada en objetivos con planificación a bordo. Esta adaptabili-
dad permite que otros investigadores puedan realizar trabajos partiendo de una base
consistente. Por ello, esta tesis se basa en de los trabajos realizados por la ESA en
robótica autónoma para investigar problemas abiertos. En particular, proponemos
una ĺınea de investigación para explorar la evaluación de arquitecturas de control
autónomo, analizando la ejecución de la misión para que los operadores se concen-
tren en las metas a conseguir y no en cómo llevarlas a cabo. En esta dirección,
un objetivo principal es la creación de un entorno de trabajo que simplifique la op-
eración de sistemas autónomos, a la par que evalúa diferentes aspectos acerca de los
componentes de P&S y su integración en plataformas robóticas.

Con el objetivo de proporcionar una comparativa relevante y verificar el entorno
de trabajo desarrollado, en esta tesis presentamos un nuevo controlador autónomo
llamado Model-Based Architecture (MOBAR), que integra capacidades similares a
GOAC, pero empleando diferentes tecnoloǵıas y paradigmas de P&S. Uno de los
aspectos más relevantes de la arquitectura es la capa deliberativa, la cual genera
los planes que gúıan la ejecución en pro de los objetivos marcados. Centrándonos
en las aplicaciones para exploración planetaria, el sistema autónomo debe integrar
planificación de rutas para alcanzar los objetivos considerando el terreno en que se
halla, tratando de minimizar la distancia recorrida para completar la misión.

VII



Para enfrentarnos a la generación de rutas, hemos analizado dos aspectos. Prime-
ro, dado que ciertos robots tienen limitada capacidad de rotación, hemos desarrollado
el algoritmo S-Theta*. Este reduce los cambios de dirección en comparación con el al-
goritmo original, Theta*. No obstante, ambos algoritmos utilizan una representación
del terreno poco realista y limitada a entornos 2D, siendo en el mejor de los casos un
mapa de costes transversales. En todo caso, es insuficiente para representar terrenos
abruptos. Por ello, como segundo resultado, presentamos el 3D Accurate Navigation
Algorithm (3Dana) que permite utilizar tanto un mapa de costes transversales como
un Modelo Digital del Terreno (MDT). Este último permite representar fielmente
el entorno, permitiendo extraer rutas que consideren parámetros como la elevación
o la pendiente. 3Dana evoluciona de S-Theta* y, mediante el uso de MDTs, per-
mite generar rutas optimizadas en función de la elevación, los cambios de dirección
y limitadas por la pendiente máxima alcanzable por el robot.

Además de la ruta entre dos puntos, abordamos la optimización de los planes
cuando hay que alcanzar varios objetivos alejados entre śı. Para ello, hemos inte-
grado un planificador basado en el Planning Domain Definition Language (PDDL)
con los algoritmos de planificación de rutas desarrollados. Como resultado, hemos
implementado el planificador llamado Unified Path Planning and Task Planning
Architecture (up2ta) que entrelaza planificación de tareas y planificación de rutas
para optimizar el recorrido de robots en misiones multiobjetivo. Este planificador
ha demostrado su utilidad como capa deliberativa de la arquitectura MOBAR.

Analizando el desarrollo y las pruebas realizadas con las arquitecturas GOAC
y MOBAR, queda patente que se requiere un entorno de trabajo para analizar el
rendimiento de éstas. Esto se basa en dos frentes abiertos: (i) la dificultad de
generar pruebas intensivas para controladores basados en P&S y, (ii) la falta de una
solución general para analizar y comparar diferentes integraciones entre Planning &
Execution (P&E). En el caso de las arquitecturas presentadas, la experimentación
requiere un laborioso trabajo manual espećıfico para cada una, mientras que los
resultados generados no son (en gran parte) comparables ni reproducibles por otros
investigadores.

En esta tesis proponemos un entorno de trabajo llamado On-Ground Autonomy
Test Environment (OGATE) para llevar a cabo la ejecución, testeo y operacional-
ización de arquitecturas de control autónomo para robótica. OGATE es la conjun-
ción de tres componentes: (i) una metodoloǵıa que define los pasos para generar un
conjunto de experimentos; (ii) un grupo de métricas globalmente aplicables para car-
acterizar el rendimiento; y (iii) una herramienta que automáticamente lleva a cabo
las pruebas experimentales. Más en detalle, la evaluación empieza definiendo los
controladores a estudiar y los escenarios sobre los que operan. Después, mediante
múltiples ejecuciones de los experimentos definidos, se obtiene información relevante
sobre el desempeño de las diferentes partes del controlador. Dicha información es
usada para, mediante las métricas, obtener medidas de rendimiento que son indepen-
dientes del dominio y de la aplicación. Esto es llevado a cabo automáticamente por
la herramienta software tanto en plataformas simuladas como reales. Al final de la
fase experimental, OGATE genera resultados objetivos y reproducibles de los contro-
ladores bajo estudio. En este sentido, OGATE se ha empleado para analizar GOAC
y MOBAR, permitiendo evaluar y caracterizar diferentes aspectos de la integración
de P&E usados por estos controladores.

VIII



IX





Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the art 9

2.1 Autonomous controllers . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Reactive controllers . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.2 Cognitive systems . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 Hybrid architectures . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Multi-agent architectures . . . . . . . . . . . . . . . . . . . . . 29

2.2 Heuristic search 2D path planning algorithms . . . . . . . . . . . . . . 34

2.2.1 Grid definition and notation . . . . . . . . . . . . . . . . . . . . 35

2.2.2 A* algorithm for path planning . . . . . . . . . . . . . . . . . . 36

2.2.3 A* Post-processing: improving A* paths . . . . . . . . . . . . . 37

2.2.4 Theta* algorithm: any-angle path planning . . . . . . . . . . . 38

2.3 Path planning considering terrain properties . . . . . . . . . . . . . . . 39

2.4 Task planning and path planning integration . . . . . . . . . . . . . . 41

2.5 Evaluating autonomous controllers . . . . . . . . . . . . . . . . . . . . 43

2.5.1 Comparing architectures . . . . . . . . . . . . . . . . . . . . . . 44

2.5.2 Defining models . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5.3 Defining methodologies . . . . . . . . . . . . . . . . . . . . . . 48

2.5.4 Defining metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 Heading changes in 2D path planning algorithms 53

3.1 Measurement and formulation of heading changes . . . . . . . . . . . . 53

3.2 Heading changes as a heuristic: efficiency improvement . . . . . . . . . 55

3.3 Heading changes heuristic experimental evaluation . . . . . . . . . . . 58

3.4 Heading changes as a cost function: the S-Theta* algorithm . . . . . . 62

3.5 S-Theta* experimental evaluation . . . . . . . . . . . . . . . . . . . . . 66

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

XI



4 Extending 2D path planning algorithms to 3D surfaces 71

4.1 Linearly interpolated DTM . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 The 3Dana path planning algorithm . . . . . . . . . . . . . . . . . . . 76

4.2.1 3Dana Search Process . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Line of sight and cost calculation . . . . . . . . . . . . . . . . . 80

4.2.3 Terrain slope consideration . . . . . . . . . . . . . . . . . . . . 82

4.2.4 Heuristic and heading changes . . . . . . . . . . . . . . . . . . 82

4.3 3Dana experimental evaluation . . . . . . . . . . . . . . . . . . . . . . 84

4.3.1 Random cost maps . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3.2 Combined random cost maps and DTMs . . . . . . . . . . . . . 86

4.3.3 Real Mars DTMs . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Interleaving path and task planning for deliberative layers 95

5.1 Integration of path and task planning . . . . . . . . . . . . . . . . . . 95

5.2 PDDL models for interleaving task planning and path planning . . . . 96

5.3 Input files for up2ta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Concepts and definitions for up2ta . . . . . . . . . . . . . . . . . . . . 100

5.5 The up2ta deliberative . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6 up2ta experimental scenario description . . . . . . . . . . . . . . . . . 105

5.7 up2ta experimental results . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 A model-based autonomous controller 113

6.1 The MOBAR autonomous controller . . . . . . . . . . . . . . . . . . . 113

6.2 The deliberative layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 The executive layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 The functional layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.5 MOBAR as a black box . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 MOBAR experimental evaluation . . . . . . . . . . . . . . . . . . . . . 126

6.6.1 Experiments with the ExoMars rover simulator . . . . . . . . . 126

6.6.2 Experiments with the TurtleBot platform . . . . . . . . . . . . 129

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7 A framework for autonomous controllers assessment 139

7.1 Toward autonomous controllers assessment . . . . . . . . . . . . . . . 139

7.2 A methodology for autonomous controllers assessment . . . . . . . . . 141

7.3 General metrics for autonomous controllers assessment . . . . . . . . . 145

7.4 The planetary exploration case study . . . . . . . . . . . . . . . . . . . 148

7.5 Formalising and applying the metrics to MOBAR . . . . . . . . . . . . 150

7.5.1 Plan accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.2 Planner model adequacy . . . . . . . . . . . . . . . . . . . . . . 153

7.5.3 Planning performance . . . . . . . . . . . . . . . . . . . . . . . 155

7.5.4 P&E integration . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.5.5 MOBAR Assessment . . . . . . . . . . . . . . . . . . . . . . . . 163

7.6 Applying the metrics to GOAC . . . . . . . . . . . . . . . . . . . . . . 164

7.6.1 Plan accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

XII



7.6.2 Planner model adequacy . . . . . . . . . . . . . . . . . . . . . . 166
7.6.3 Planning performance . . . . . . . . . . . . . . . . . . . . . . . 168
7.6.4 P&E integration . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.6.5 GOAC assessment . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.7 The OGATE software tool . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.8 Experimental evaluation: MOBAR and GOAC comparison . . . . . . . 176
7.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8 Conclusions 183
8.1 Path planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2 MOBAR autonomous controller . . . . . . . . . . . . . . . . . . . . . . 184
8.3 Autonomous controllers assessment . . . . . . . . . . . . . . . . . . . . 185
8.4 Future research lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Random maps generation 189

B Path planning on Mars with 3Dana 195

XIII





List of Figures

2.1 The sense-plan-act cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 General vision of an autonomous controller and its interactions. . . . . 12

2.3 Execution of a RAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Organization of the ACT-R architecture. . . . . . . . . . . . . . . . . . 18

2.5 Conceptual view of the ROGUE architecture. . . . . . . . . . . . . . . 19

2.6 Example of TCA subtasking and state monitoring. . . . . . . . . . . . 22

2.7 Three layer general schema (left), ATLANTIS (center) and SSS (right). 24

2.8 Conceptual vision of the LAAS architecture (left) and more detailed
model (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 CLARAty architecture conceptual vision. . . . . . . . . . . . . . . . . 28

2.10 A particular instance of the GOAC architecture. . . . . . . . . . . . . 33

2.11 Possible node representations in grids: center-node (left); corner-node
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Evaluation of two controllers using the ALFUS summary model. . . . 47

3.1 Graphical representation of α(p, t, g). . . . . . . . . . . . . . . . . . . . 54

3.2 Example of βi calculation for a small path. βi expresses the heading
between three nodes in the current path. The total turn value is
β1 +β2, considering that the mobile are pointing to p2 at the beginning. 55

3.3 Example of α values for two nodes. When A* reaches the obstacle in
the center, it expands p′ before p. First one is not desirable due to the
longer unblocked path length required and the bigger α value. Also,
βi is less for p than p′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Path obtained using original A* (grey) and A* with the evaluation
function presented in eq. 3.5 (black). Nodes expanded by A* are rep-
resented as a white circle whereas the red filled are expanded by both.
With the modified heuristic, A* expands less nodes and therefore, the
runtime is lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Results for the execution of different path planning algorithms over
5000 random generated maps (each obstacle group has 1000 maps).
From top to bottom: path length, total turn in degrees, runtime in
milliseconds and number of expanded nodes. . . . . . . . . . . . . . . . 59

XV



3.6 Trade-off between αw and average values for path length/total turns
(left) and runtime/expanded nodes (right), for groups of 1000 maps
of 500x500 nodes with 20% of blocked cells (top) and 40% of blocked
cells (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Graphical representation of α(q, t, g). Actual position is p with q =
parent(p). The successor considered is t ∈ successors(p) and g is the
goal node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Representation of the evolution of α. Arrows are pointed to the parent
of the node after expansion. . . . . . . . . . . . . . . . . . . . . . . . . 64

3.9 Resultant paths for Theta* (red) and S-Theta* (blue) in a random
map. Theta* only has heading changes at vertices of blocked cells,
while S-Theta* not. Path lengths are 142.28 and 147.82, and total
turns 121.54◦ and 71.56◦ for Theta* and S-Theta* respectively. . . . . 64

3.10 Solution paths for different algorithms in random generated maps. . . 65

3.11 Results for the execution of different path planning algorithms over
5000 random generated maps (each obstacle group has 1000 maps).
From top to bottom: path length, total turn in degrees, runtime in
milliseconds and number of expanded nodes. . . . . . . . . . . . . . . . 67

3.12 Evolution of path length plus total turn respect to the percentage of
blocked cells for 5000 random generated maps. . . . . . . . . . . . . . 68

4.1 Representation of a DTM. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2 Lineal interpolation using four planes to define each cell. . . . . . . . . 73

4.3 Four normal vectors for a cell in the lineal interpolation. . . . . . . . . 76

4.4 Line of sight evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 No slope limited path versus limited slope path over a DTM. . . . . . 83

4.6 Results for the execution of different path planning algorithms over
1500 randomly generated cost maps with 0%, 5% and 10% of obstacles
(each group has 500 maps). From top to bottom: path cost, total turn
in degrees, runtime in milliseconds and number of expanded nodes
(note that we do not have such value for Field D*). The number after
3Dana identifies the αw value. . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Results for the execution of different path planning algorithms over
1500 randomly generated maps (each obstacle group has 500 maps),
considering either the cost map and the terrain altitude (DTM). From
top to bottom: path cost, total turn in degrees, runtime in milliseconds
and number of expanded nodes. The number after 3Dana identifies
the αw value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Paths obtained for the DTEEC 017147 1535 using A* and different
configurations of 3Dana. Image rotated 90◦. . . . . . . . . . . . . . . . 88

4.9 Area of the map expanded by 3Dana (with αw = 0.0) for the first
experiment, considering different slopes. From left to right: no slope
consideration, 20◦ and 10◦. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 Paths obtained for the DTEED 030808 1535 using A* and different
configurations of 3D Accurate Navigation Algorithm (3Dana). . . . . . 91

XVI



4.11 Area of the map expanded by 3Dana (with αw = 0) for the second
experiment, considering different slopes. From left to right: no slope
consideration, 20◦ and 10◦ (no path found in this case). . . . . . . . . 91

5.1 Possible solutions to merge path planning and task planning. . . . . . 97

5.2 Example PDDL domain file for the up2ta planner. . . . . . . . . . . . 100

5.3 Example PDDL problem file for the up2ta planner. . . . . . . . . . . 101

5.4 up2ta general structure. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 up2ta algorithm integration. . . . . . . . . . . . . . . . . . . . . . . . 105

5.6 Representation of the up2ta search process for a problem with three
tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Solution for the problem of fig. 5.3. . . . . . . . . . . . . . . . . . . . . 106

5.8 How the path planner affects the task ordering. Solutions of 100
problems with maps of 500 x 500 nodes with 40% of obstacles and 9
randomly placed pictures. Results are clustered by the path planning
algorithm (A*, Theta* and S-Theta*) and the F function used (from
left to right): no path planning heuristic (eq. 5.3); cost function
using classical path planning algorithms (eq. 5.4); cost function using
greedy path planning algorithms (eq. 5.5). . . . . . . . . . . . . . . . . 109

5.9 How the task planner heuristic affects the solutions. Results for 100
sample and deliver problems with maps of 500 x 500 nodes with 40%
of obstacles. Parameters clustered by the number of tasks (6 and 9)
and the F function used (from left to right): cost function using greedy
path planning algorithm (eq. 5.5) and; no task planning heuristic (eq.
5.6). In all cases employing S-Theta* as path planning algorithm. . . . 110

6.1 Conceptual vision of MOBAR and its connections between adjacent
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 PDDL actions definition for the rover example. . . . . . . . . . . . . . 117

6.3 PDDL problem for the ExoMars rover. . . . . . . . . . . . . . . . . . . 119

6.4 Representation of the PE modules and possible interfaces. . . . . . . . 121

6.5 Definition of fault tolerant behaviours. . . . . . . . . . . . . . . . . . . 122

6.6 Graphical visualization of a PLEXIL plan during execution. . . . . . . 123

6.7 Model-Based Architecture (MOBAR) as a black box. . . . . . . . . . . 125

6.8 ExoMars artistic representation (left) and rover model in the 3DROV
simulator (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.9 ExoMars MOBAR models and execution under the 3DROV simulator. 128

6.10 Example of solutions for a problem with 6 tasks (left) and 12 tasks
(right) solved with up2ta using 3Dana for path planning. We do
not show paths for SGplan3D or OPTIC3D as the paths have several
intersections that make hard to follow the route. . . . . . . . . . . . . 130

6.11 TurtleBot robot in our lab facilities. The dock station is visible at
left-bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.12 Panoramic view of the test area and its map representation. . . . . . . 131

6.13 Initial configurations for the TurtleBot test scenarios. . . . . . . . . . 132

XVII



6.14 Planned path for 6 pictures acquisition scenario. From left to right:
SGPlanSθ, OPTICSθ and up2ta. #P identifies the order in which
pictures are taken. S denotes the start position. . . . . . . . . . . . . . 135

6.15 Planned path for 3 pictures and 3 samples delivering scenario. From
left to right: SGPlanSθ, OPTICSθ and up2ta. Actions in sequential
order: P=picture; T=take sample; D=deliver sample. . . . . . . . . . 136

7.1 Controller assessment graphical report. . . . . . . . . . . . . . . . . . . 144

7.2 Clustering of the proposed metrics into four areas. . . . . . . . . . . . 145

7.3 Execution for MOBAR, remarking the idle time waiting for the com-
munication opportunity. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4 Temporal profile of CTDub
i for MOBAR. . . . . . . . . . . . . . . . . . 154

7.5 Temporal profile of the planner updates in MOBAR. . . . . . . . . . . 155

7.6 Temporal profile of the deliberation time in MOBAR. . . . . . . . . . . 156

7.7 Temporal profile of the memory usage in MOBAR. . . . . . . . . . . . 157

7.8 Temporal profile of the processor usage (CPUi) in MOBAR. . . . . . . 160

7.9 Temporal profile for the dispatching time in MOBAR. . . . . . . . . . . 161

7.10 Temporal profile of the sensing time in MOBAR. . . . . . . . . . . . . 162

7.11 Summary report for the MOBAR example. . . . . . . . . . . . . . . . . 164

7.12 GOAC instance used. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7.13 Plan generated by GOAC for the two initial goals. Considering mini-
mum duration (top) and maximum duration (bottom) for all actions. . 165

7.14 Goal Oriented Autonomous Controller (GOAC) execution showing the
idle time of the robotic platform due to the planning slot and delays
in actions execution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.15 Times difference for an action planned time (lower and upper bounds)
and execution time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.16 Temporal profile of the CTDlb
i for GOAC. . . . . . . . . . . . . . . . . 167

7.17 Temporal profile of the CTDub
i for GOAC. . . . . . . . . . . . . . . . . 168

7.18 Temporal profile of the planner updates for GOAC. . . . . . . . . . . . 168

7.19 Temporal profile of the deliberation time for GOAC. . . . . . . . . . . 169

7.20 Temporal profile for the memory usage in GOAC. . . . . . . . . . . . . 169

7.21 Temporal profile for the CPUi in GOAC. . . . . . . . . . . . . . . . . 170

7.22 Temporal profile for the dispatching time in GOAC. . . . . . . . . . . 171

7.23 Temporal profile of the sensing time for GOAC. . . . . . . . . . . . . . 171

7.24 Temporal profile of the monitoring time for GOAC. . . . . . . . . . . . 172

7.25 Summary report for the GOAC example. . . . . . . . . . . . . . . . . 173

7.26 Tests execution through OGATE. . . . . . . . . . . . . . . . . . . . . . 174

7.27 OGATE concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.28 Average values for 30 executions of MOBAR (left) and GOAC (right). 178

7.29 Evaluations for the different execution scenarios (10 runs each) of the
controllers under study. . . . . . . . . . . . . . . . . . . . . . . . . . . 181

B.1 DTMs available in the HiRISE web as August 2016. The labels iden-
tify the figure with the paths obtained by 3Dana for the maps of sec.
4.3.3 and this appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . 195

XVIII



B.2 Paths obtained for the DTEED 020492 1830 using A* and different
configurations of 3Dana. . . . . . . . . . . . . . . . . . . . . . . . . . . 197

B.3 Paths obtained for the DTEED 029815 1530 using A* and different
configurations of 3Dana. . . . . . . . . . . . . . . . . . . . . . . . . . . 199

B.4 Paths obtained for the DTEED 029964 1510 using A* and different
configurations of 3Dana. . . . . . . . . . . . . . . . . . . . . . . . . . . 201

XIX





List of Tables

2.1 Mission execution autonomy levels (extracted from [47]). . . . . . . . . 11

2.2 Sheridan’s model (extracted from [144]). . . . . . . . . . . . . . . . . . 46

3.1 Solutions with better β value over 5000 maps of 500x500 nodes clus-
tered by the number of obstacles (each obstacle group has 1000 maps).
For each obstacle group we present the number of maps in which the
original algorithm (A*PS or Theta*) obtains better β values than the
modified algorithm (for different αw values in each column), or equals
when both algorithm obtain the same β value. . . . . . . . . . . . . . 61

4.1 Paths data for DTEED 017147 1535. In bold: best path length plus
total turns for each maximum slope. . . . . . . . . . . . . . . . . . . . 89

4.2 Paths data for DTEED 030808 1535. In bold: best path length plus
total turns for each maximum slope. . . . . . . . . . . . . . . . . . . . 92

5.1 Results for the execution of different maps (with a dimension of 100 x
100 m) with up2ta and two different PDDL-based planners. All use
S-Theta* as the path planner. In bold, best values. . . . . . . . . . . . 98

6.1 Results for the execution of different problems with the up2ta system
and two different PDDL planners combined with 3Dana using the
ExoMars simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Parameters measured for the TurtleBot test scenarios. . . . . . . . . . 134

6.3 Parameters measured for 6 pictures acquisition scenario. . . . . . . . . 135

6.4 Parameters measured for 3 pictures acquisition and 3 samples deliv-
ering scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.1 Execution time (seconds) for each scenario (average for 10 runs each). 177

7.2 GS for 30 executions (10 runs each scenario). . . . . . . . . . . . . . . 177

A.1 Map generation parameters. . . . . . . . . . . . . . . . . . . . . . . . . 190

B.1 Paths data for DTEED 020492 1830. In bold: best path length plus
total turns for each maximum slope. . . . . . . . . . . . . . . . . . . . 196

B.2 Paths data for DTEED 029815 1530. In bold: best path length plus
total turns for each maximum slope. . . . . . . . . . . . . . . . . . . . 198

XXI



B.3 Paths data for DTEED 029964 1510. In bold: best path length plus
total turns for each maximum slope. . . . . . . . . . . . . . . . . . . . 200

XXII



List of Acronyms

3Dana 3D Accurate Navigation Algorithm
3T Three Tiers/Layers
A*PS A* Post Smoothed
ACT-R Adaptive Control of Thought-Rational
AI Artificial Intelligence
ALFA A Language For Action
ALFUS Autonomy Levels For Unmanned Systems
APSI Advanced Planning & Scheduling Initiative
ARMADiCo Autonomous Robot Multi-agent Architecture with Dis-

tributed Coordination
ATLANTIS A Three-Layered Architecture for Navigating Through

Intricate Situations
AuRA Autonomous Robot Architecture
BIP Behaviour Interaction Priority
CDT Controller Dispatching Time
CLARAty Coupled Layer Architecture for Robotic Autonomy
CMT Controller Monitoring Time
CMU Controller Memory Usage
CPU Controller Processor Usage
CRT Controller Reaction Time
CSP Constraint Satisfaction Problem
CST Controller Sensing Time
CSV Comma Separated Values
CTDlb Command Time Discrepancy Lower-Bound
CTDub Command Time Discrepancy Upper-Bound
DDL Domain Definition Language
DTM Digital Terrain Model
ECSS European Cooperation for Space Standardization
ESA European Space Agency
ESL Execution Support Language
EUROPA Extensible Universal Remote Operations Architecture
GAPPS Goals As Parallel Program Specifications
GCS Ground Control Station
GenoM Generator Of Modules
GOAC Goal Oriented Autonomous Controller

XXIII



GS Global Score
GUI Graphical User Interface
HiRISE High Resolution Imaging Science Experiment
HMI Human Machine Interface
HSTS Heuristic Scheduling Testbed System
HTN Hierarchical Task Network
IDEA Intelligent Distributed Execution Architecture
IPC International Planning Competition
ISS International Space Station
JPL Jet Propulsion Laboratory
KE Knowledge Engineering
LAAS Laboratory of Analysis and Architecture of Systems
MER Mars Exploration Rovers
MOBAR Model-Based Architecture
MRO Mars Reconnaissance Observer
NASA National Aeronautics and Space Administration
OBDD Ordered Binary Decision Diagrams
OCRD Ordered Constrained Rules Diagram
OGATE On-Ground Autonomy Test Environment
OpenPRS Open Procedural Reasoning System
P&E Planning & Execution
P&S Planning & Scheduling
PDDL Planning Domain Definition Language
PDE Planner Deliberation Efficiency
PDL Problem Definition Language
PDM Planner Deliberation Memory
PDT Planner Deliberation Time
PE PLEXIL Executive
PerMFUS Performance Measures For Unmanned Systems
PET Plan Effective Time
PLEXIL Plan Execution Interchange Language
PMA Planner Model Analogy
POCL Partial Order Casual Link
PRM Probabilistic Road Maps
PRS Procedural Reasoning System
PSF Planner Synchronization Frequency
PSR Planner Synchronization Ratio
PTAlb Plan Time Accuracy Lower-Bound
PTAub Plan Time Accuracy Upper-Bound
PTU Pan-Tilt Unit
R2C Request and Reports Checker
RA Remote Agent
RAP Reactive Action Package
ROS Robot Operating System
RPC Remote Procedure Call
RRT Rapidly-exploring Random Trees

XXIV



S-Theta* Smooth Theta*
SARA Science Assessment and Response Agent
SLAM Sample Localization And Mapping
SRI Stanford Research Institute
SSS Servo, Subsumption, Symbolic
STN Simple Temporal Network
STRIPS Stanford Research Institute Problem Solver
T-REX Teleo-Reactive Executive
TCA Task Control Architecture
TDL Task Description Language
TRF Timelines Representation Framework
TVCR Time-line Validation and Control and Repair
UAV Unmanned Aerial Vehicle
up2ta Unified Path Planning and Task Planning Architecture
XML eXtensible Markup Language

XXV



XXVI



Chapter 1

Introduction

In this chapter we present a frame of reference to the work done in this PhD. First,
we describe the motivation. Then, we define the objectives and the structure of this
dissertation. Finally, we list the publications generated in this thesis.

1.1 Motivation

Robotics have evolved from teleoperated systems to autonomous platforms that are
able to safely operate in industrial applications or exploration missions. While the
first case can be typically supervised by humans operators, planetary or underwater
exploration scenarios requires autonomous capabilities such as on-board planning to
survive and to achieve the mission goals with low human interaction. Then, several
approaches have been followed to make autonomous and reliable control architectures
for robotics. These systems are typically conformed by various software components
hierarchically structured in levels or layers to provide autonomous capabilities. The
most representative schema is the Three Tiers/Layers (3T) architecture [63]. In such
schema, the higher layer corresponds to the Artificial Intelligence (AI) Planning &
Scheduling (P&S) system, while the lower one provides the platform functionality,
i.e., access to the robot sensors/actuators. Then, between both layers, there is an
executive that enables Planning & Execution (P&E) integration.

In recent time, the European Space Agency (ESA) has started to explore possibil-
ities for on-board autonomy in different internal activities and studies. For instance,
a recent outcome on the robotics and automation field is the plan-based controller
called Goal Oriented Autonomous Controller (GOAC) [28], which is a prototype for
robotics autonomy in space missions. However, such system is technically complex
to operate and to deploy, requiring a deep understanding of the different layers to
safely operate it. Then, it is interesting to explore possibilities to create a more
general autonomous controller that enables exploiting different P&S systems, but
also abstracted models for the execution modelling. Exploiting high level abstrac-
tions not only for the deliberative layer, but also for lower layers could lead to more
adaptable robotics controllers, while the models can be easier reusable for different
applications/platforms.



2 Introduction

In this direction, providing a controller that can use different P&S system can
also be useful as a platform to test different technologies, so we can evaluate various
approaches to choose the best one for our particular application. Notwithstanding,
assessing the integration of different P&S system in an autonomous controller is cur-
rently an open issue in the autonomous robotics field. While evaluating P&S systems
in standalone tests is a well established practice for Planning Domain Definition Lan-
guage (PDDL) based planners, dealing with other paradigms (e.g., timelines based
planners) and/or its integration in robotics requires to analyse the P&E integration.
Currently, there is not a common framework for such purpose, making hard such
assessments. In fact, experimental evaluations of autonomous controllers reported
in the literature rely on rather specific evaluation criteria and experimental config-
urations that are hardly reproducible and/or exportable to different systems [56].
Also, it is hard to extract conclusions about how the integration between P&E be-
haves, as it is not easy to analyse the performance of each layer of the autonomous
controller during execution. For instance, there is no data about the performance
of the P&S system used for deliberation, or how the model employed fits the robot
behaviours. Then, if we want not only to evaluate different P&S systems over an
autonomous controller but also to compare different controllers (e.g., Model-Based
Architecture (MOBAR) and GOAC), we need to define a framework generally appli-
cable, regardless the technologies used.

From the state of the art we can find different approaches that theoretically cover
this problematic, but they do not provide any suitable method to perform tests in
a general system. Other researchers are able to identify particular problems and
correctly analyse them in a standalone manner. However, they are not enough to
provide feasible assessments for the whole controller. These advances are in the good
direction, but we need to deal with a complete autonomous controller, not only with
separate layers, while also providing sufficient details for assessing the P&S system
and its integration in a robotic platform. How the different layers are connected and
how they interact have a great impact in the overall system performance. As well,
the implicit uncertainty of the real world has to be properly captured in the P&S
model, so the controller can safely operate autonomously.

Thus, it is required a research effort to better investigate the key points that
affect the performance of plan-based controllers. In particular, investigating this
issue could lead to an improvement in the autonomous robotics field by providing a
general approach for performance assessment based on reproducible and quantitative
testbenchs. Looking at other fields, e.g., automated planners [103], it is quite clear
that a well defined testing methodology supported on metrics is highly desirable.

1.2 Objectives

This PhD has a twofold objective. First, generate an adaptable autonomous con-
troller based on high level descriptions of the robot behaviours, and to deploy it in
a surface exploration scenario to demonstrate its effectiveness. Second, as the new
controller cannot be compared with other state of the art controllers, we want to
create a common framework that enables evaluation and comparison of autonomous
controllers, regardless the technologies employed or the application domain.



1.2. Objectives 3

The MOBAR controller presented in this dissertation is the evolution of a previous
work [130]. For this thesis, the objective is to include new AI technologies to improve
the autonomous capabilities, focusing on surface exploration missions. In this regard,
we isolate the following specific objectives:

1. Improving the path planning capabilities by considering the heading changes
during the path search. In particular, the objective is to reduce the heading
changes that the robot has to make to reach its destination.

2. Creating a path planning algorithm that allows the robot to plan its route
having in mind the terrain features (rocks, hazardous areas, etc.) in order to
extract safer paths, but also, to avoid those areas that overcome its operational
constraints (e.g., high slopes).

3. Proposing a method to interleave path planning and task planning that can
be generally applicable in plan-based deliberative layers. The key point is to
create a deliberative that effectively optimize the path between multiple tasks
to minimize the solution cost.

4. Deploying new models for MOBAR to enable the operationalisation of the dif-
ferent P&S systems, in particular, the proposed above.

The work presented in this dissertation is also motivated by the lack of a general
framework to deal with autonomous controllers performance in order to characterize
and evaluate them. To do this, we need to focus the research in the key points that
affects the integration of P&S systems in robotics. In this direction, this dissertation
aims at contributing according to the following points:

5. Defining a methodology for evaluating autonomous controllers that can be
generally applicable, independently of the application domain or the technology
of the assessed controller.

6. Analysing the key aspects that affect P&S and its integration in robotics, cre-
ating a set of metrics that allows us to characterize and evaluate autonomous
controllers in a general way. Such metrics shall be formally defined, so, follow-
ing the methodology and exploiting the metrics we can produce quantitative
and reproducible testbenchs.

7. Creating a software tool that, implementing the proposed methodology and
metrics, enables the assessment of autonomous controllers in an automated
manner. This software has to evaluate actual robotic platforms with simulators
or real platforms under controlled and reproducible experimental conditions.

8. Performing large experimental campaigns to compare GOAC and MOBAR in
order to test the correctness of the proposed framework.



4 Introduction

1.3 Structure

This section provides an outline of the chapters that compose this dissertation.

• Chapter 1: describes the motivation, objectives, contents and publications
produced in this thesis.

• Chapter 2: presents the state of the art for the different fields that have
been covered in this thesis. First, this chapter provides an introduction to
autonomous controllers and a survey of the most representative ones in the
literature. The chapter continues presenting the path planning problem over
flat surfaces and the most relevant heuristics search algorithms applied to it.
Following, some approaches that perform path planning over 3D terrains are
introduced. Then, we summarize different techniques that integrate task plan-
ning and path planning for autonomous controllers. Finally, the description of
several works that attempt to provide performance evaluation and characteri-
zation of autonomous controllers is provided.

• Chapter 3: faces the problem of considering the heading changes of the robot
in heuristic search path planning algorithms over flat surfaces. The heading
changes has been considered as part of the heuristic function (generating greedy
algorithms) and for the cost function (obtaining the S-Theta* algorithm). The
algorithms produced have been evaluated using randomly generated maps.

• Chapter 4: defines a DTM that allows being exploited by path planning algo-
rithms in order to extract paths in realistic surfaces. Using such representation,
this chapter presents a new path planning algorithm, 3Dana, that aims to gen-
erate safer and smoother paths considering the terrain relief. This algorithm
has been tested in either randomly generated and real Mars maps.

• Chapter 5: proposes a deliberative schema that interleaves task planning
and path planning for efficient mission planning in autonomous exploration
applications. Such schema is implemented in the up2ta deliberative employing
a PDDL planner and the path planning algorithms introduced in the previous
chapters. This new planner has been tested under a planetary exploration
domain.

• Chapter 6: describes the MOBAR autonomous controller, its layers and the
models used for an exploration domain. This chapter also provides the exper-
imental results of the controller in either real and simulated scenarios, taking
advantage of the up2ta planner presented in the previous chapter.

• Chapter 7: defines the OGATE framework for evaluating and characteriz-
ing autonomous controllers. First, a methodology for generating objective
and reproducible experimental campaigns is provided. Then, a set of gener-
ally applicable metrics for P&S assessment in robotics are formally presented.
Such methodology and metrics are operationalised in a software tool that au-
tomatically carries on with the testbench. Using it, an extensive experimental
campaign has been performed to test different configurations of GOAC over



1.4. Publications 5

a planetary exploration domain with different problems hardness, allowing a
characterization of the controller over that domain. Finally, a comparison be-
tween MOBAR and GOAC using the proposed framework has been made.

• Chapter 8: presents the conclusions of this thesis and some future research
directions.

• Appendix A: defines the algorithms and parameters used for the random
map generation in the different path planning experiments performed in this
dissertation.

• Appendix B: presents three extra Mars maps and the solutions provided by
the 3Dana path planning algorithm presented in chapter 4.

1.4 Publications

The results of this monograph have produced several publications in the field of AI
in path planning and autonomous controllers. Following, the list of publications is
presented, clustered by field.

Path planning:

� Muñoz, P. and R-Moreno, M. D. Improving efficiency in any-angle path plan-
ning algorithms. In Procs. of the 6th IEEE International Conference on
Intelligent Systems (Sofia, Bulgaria, September 2012).

� Muñoz, P., R-Moreno, M. D., Mart́ınez, A. and Castaño, B. Fast path planning
algorithms for future Mars exploration. In Procs. of the International Sym-
posium on Artificial Intelligence, Robotics and Automation in Space (Turin,
Italy, September 2012).

� Muñoz, P. and R-Moreno, M. D. S-Theta*: low steering path planning al-
gorithm. In Procs. of the 32nd SGAI International Conference on Artificial
Intelligence (Cambridge, UK, December 2012).

� Muñoz, P., Barrero, D. F. and R-Moreno, M. D. Run-time analysis of clas-
sical path planning algorithms. In Procs. of the 32nd SGAI International
Conference on Artificial Intelligence (Cambridge, UK, December 2012).

� Muñoz, P., Barrero, D. F. and R-Moreno, M. D. Statistic methods for path
planning algorithms comparison. Künstliche Intelligenz, 27 (3), 201–211 (2013).

� Muñoz, P., Barrero, D. F. and R-Moreno, M. D. A statistically rigorous analysis
of 2D path planning algorithms. The Computer Journal , 58 (11), 2876–2891
(2014).

� Muñoz, P. and R-Moreno, M. D. On heading change measurement: improve-
ments for any-angle path planning. Novel Applications of Intelligent Systems,
ch. 6 (2015).



6 Introduction

� Muñoz, P. and R-Moreno, M. D. 3Dana: Path Planning on 3D surfaces. In
Procs. of the 36th SGAI International Conference on Artificial Intelligence
(Cambridge, UK, December 2016).

Autonomous controllers:

� Muñoz, P., R-Moreno, M. D. and Castaño, B. Integrating a PDDL-based
planner and a PLEXIL-executor into the PTinto robot. In Procs. of the 23rd
International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems: Next-Generation Applied Intelligence (Córdoba,
Spain, June 2010).

� R-Moreno, M. D., Castaño, B., Carbajo, M., Moreno, A., Barrero, D. F. and
Muñoz, P. Multi-agent intelligent planning architecture for people location and
orientation using RFID. Cybernetics and Systems, 42, 16–32, (2011).

� Muñoz, P., R-Moreno, M. D. and Mart́ınez, A. A first approach for the auton-
omy of the ExoMars rover using a 3-Tier architecture. In Procs. of the the 11th
ESA Workshop on Advanced Space Technologies for Robotics and Automation
(Noordwijk, The Netherlands, April 2011).

� Muñoz, P. and R-Moreno, M. D. Cooperative systems in mission planning. In
Procs. of the 12th ESA Workshop on Advanced Space Technologies for Robotics
and Automation (Noordwijk, The Netherlands, May 2013).

� Muñoz, P. and R-Moreno, M. D. Deliberative systems for autonomous robotics:
a brief comparison between action-oriented and timelines-based approaches. In
Procs. of the 1st Workshop on Planning and Robotics (Rome, Italy, June 2013).

� Muñoz, P. and R-Moreno, M. D. Model-Based Architecture on the ESA
3DROV simulator. In Procs. of the 23rd International Conference on Au-
tomated Planning and Scheduling Application Showcase (Rome, Italy, June
2013).

� Muñoz, P., Cesta, A., Orlandini, A. and R-Moreno, M. D. Toward a test
environment for autonomous controllers. In Procs. of the 5th Italian Workshop
on Planning and Scheduling (Turin, Italy, December 2013).

� Muñoz, P., Cesta, A., Orlandini, A. and R-Moreno, M. D. First steps on an
on-ground autonomy test environment. In Procs. of the 5th International
IEEE Conference on Space Mission Challenges for Information Technology
(Maryland, USA, September 2014).

� Muñoz, P., Castaño, B. and R-Moreno, M. D. Simulation of the hexapod robot
PTinto walking on irregular surfaces. International Journal of Simulation
Modelling , 14, 1–12 (2015).

� Muñoz, P., Cesta, A., Orlandini, A. and R-Moreno, M. D. The On-Ground
Autonomy Test Environment: OGATE. In Procs. of the 13th ESA Workshop
on Advanced Space Technologies for Robotics and Automation (Noordwijk, The
Netherlands, May 2015).



1.4. Publications 7

� Muñoz, P., Cesta, A., Orlandini, A. and R-Moreno, M. D. A framework for
performance assessment of autonomous robotic controllers. In Procs. of the
the 3rd Workshop on Planning and Robotics (Jerusalem, Israel, June 2015).

� Muñoz, P., Cesta, A., Orlandini, A. and R-Moreno, M. D. Evaluating au-
tonomous controllers: an initial assessment. In Procs. of the 6th Italian
Workshop on Planning and Scheduling (Ferrara, Italy, September 2015).

� Muñoz, P., R-Moreno, M. D. and Barrero, D. F. Unified framework for path
planning and task planning for autonomous robots. Robotics and Autonomous
Systems, 82, 1–14 (2016).





Chapter 2

State of the art

In this chapter, first, we introduce the state of the art in autonomous or plan-based
controllers. Next section introduces the terminology associated to such systems and
a review of the most representative ones. Following, a review of different approaches
that aim to evaluate autonomous controllers is provided. Then, in sec. 2.2, we
focus on the path planning problem, which is a required capability for autonomous
controllers when dealing with mobile robots. Particularly, we first analyse heuristic
search algorithms for path planning over flat surfaces. Following, we introduce those
path planning algorithms that work over more realistic terrains, i.e., considering
the terrain relief and other characteristics. Next, we present different techniques
to integrate task planning and path planning, which aim to improve the solutions
provided by the P&S system of an autonomous controller. Finally, we introduce
approaches for autonomous controllers evaluation.

2.1 Autonomous controllers

The advances during the last decades in AI and robotics systems have resulted in
an exponential growth of the number of robotics products involved in our lives. Not
only in the industrial environment, but also in medical, home and recreational tasks.
The list of applications is increasing each day and robots are conquering places
unreachable for humans.

Deep sea, space or planetary surfaces are often too expensive (or even impossible
with actual technology) to be explored in-situ by humans. However, robots have
proven good skills in this topic. Within the growing complexity of the components
to control, the tasks to perform and the environmental conditions, a robotic controller
must deal with an important set of constraints and requires a high level of autonomy
and decision making capabilities to safely operate. Combining hardware designs with
AI controllers enables to deploy autonomous robots in those extreme environments.

One of the best known robots in the AI field is Shakey [138], that was built in
the AI Center at the Stanford Research Institute (SRI) in 1966–1972. Its objective
was to provide a platform to test new ideas, in order to design a real-time controller
for a robot able to interact with a complex environment [136]. During their work,
the researchers identified three important abilities that are required for autonomous
controllers:



10 State of the art

• Problem solving: this is usually an off-line task (in the sense that this task
is performed prior to act) until recent studios in which appears the concept
of reactive planning. The problem solving is commonly called planning, and
represents the ability to generate a sequence of actions (plan) to reach a specific
goal(s). In order to generate a plan, the robot must know how to apply the
actions and what are their effects.

• Modelling: a model of the world defines both the environment in which the
robot is and how it interacts with the world by means of actions. In this re-
gard, the robot can change the environment as a consequence of its actions,
but also, others agents can modify the environment as well. Then, the model
has to be dynamic to reflect the environment status and must be properly up-
dated to be accessed by the planning system. Moreover, if the control software
includes learning processes (e.g., from past actions), it is possible to include
new information in the model that is acquired during the execution.

• Perception: to retrieve information from the environment, a robot requires a
set of sensors. The capabilities of the sensors depend on the environment and
functionality of the robot. Typically, the sensors required are those that enable
to capture the execution results of the actions performed, so it is possible to
track the plan execution.

Camarinha-Matos [25] includes a fourth ability: communication, defined as a
high level interaction using natural language or graphics between the robot and other
agents in the environment, such as humans or other robots. This is an important
functionality for those systems in which the Human Machine Interface (HMI) is
relevant: autonomous controllers have enough power to keep the integrity of the
robot in most of the unexpected situations. However, there are still some challenges
for these systems that actually require human intervention, e.g., the opportunistic
science detection or recovery from non-nominal states.

These capabilities entail different requirements to achieve full autonomy. Never-
theless, autonomy can be met in different levels: from safe execution of pre-planned
commands to autonomous on-board planning. In this sense, the European Cooper-
ation for Space Standardization (ECSS) [47] defines four autonomy levels as stated
in table 2.1. In this dissertation we are focused on the goal-oriented autonomy, i.e.,
level E4.

On E4 controllers, commonly called plan-based or autonomous controllers, there
is an entity on top of the control hierarchy called deliberative or planner. For delib-
erating it uses two inputs: the domain and problem. The domain provides a high
level abstraction model of the environment, the robot capabilities and their inter-
actions. The robot capabilities are enclosed into actions that have to be temporary
bounded, so it will be possible to estimate the temporal behaviour during execution.
The problem includes initial information about the environment status and the goals,
which are set by the user.

Given a domain and a problem, the deliberative can generate a plan by means of
AI P&S techniques. The plan provides a sequence of actions that, from the current
state and maintaining the constraints defined in the domain, guides the platform to



2.1. Autonomous controllers 11

Table 2.1: Mission execution autonomy levels (extracted from [47]).

Level Description Functions

E1 Mission execution under ground
control; limited on-board capa-
bility for safety issues.

Real-time control from ground for
nominal operations. Execution of
time-tagged commands for safety
issues.

E2 Execution of pre-planned, gro-
und-defined, mission operations
on-board.

Capability to store time-based com-
mands in an on-board scheduler.

E3 Execution of adaptive mission
operations on-board.

Event-based autonomous operati-
ons. Execution on-board operati-
ons control procedures.

E4 Execution of goal-oriented mis-
sion operations on-board.

Goal-oriented mission re-planning.

achieve the goals defined in the problem. In this regard, the plan represents how the
platform must behave to achieve the goals. This entails the actions to be carried out
by the platform and the temporal scope. Thus, the deliberative provides a planning
horizon, i.e., an estimation of the time in which the plan will finish.

The execution cycle usually follows the sense-plan-act cycle (see fig. 2.1). Before
generating the plan, the system must capture the current status of the environmen-
t/platform. Then, the plan is generated and executed. To do this, the deliberative
is integrated with the lower layers by means of an executive layer. This level de-
composes the actions of the plan into executable commands for the functional level.
Notwithstanding, other approaches interleaves the two upper layers (deliberative and
executive) into a decisional layer, in which planning and execution are highly cou-
pled, sharing a knowledge base. Independently of the P&E schema, it is required to
synchronize information between layers. For instance, each command planned shall
be dispatched to the functional layer. This may imply to translate the data between
high level abstractions (deliberative) and raw data (platform). In any case, how the
different layers are connected has a great impact in the architecture design.

Figure 2.1: The sense-plan-act cycle.



12 State of the art

Figure 2.2: General vision of an autonomous controller and its interactions.

Figure 2.2 summarizes the previous discussed topics. Notice that, in some en-
vironments (such as industrial ones), the human can modify the environment (or
even other robots). In this way, the autonomous controller provides planning via
a deliberative or planning system using a model, the domain, that represents the
environment and platform, and a problem, that includes the robot goals. By its
side, perception is given by the robotic platform that is controlled by the execution
system. Then, the human can remotely operate the system or include goals by means
of HMI and different autonomy levels. In order to evaluate the performance of the
architecture, it is required to take into account the layers hierarchy and how they
are connected, but also the model and the P&S techniques employed.

Focused on the deliberative capabilities, we can follow two approaches as dis-
cussed by Agre and Chapman [2]:

• Plan as program: plans are built from a set of parametrized primitives,
using a set of composition operators. Typically this paradigm is followed by
classical planning; there is a large number of planners that, given a domain
and problem, provide a set of actions that modify the environment in order to
reach one or more desired objectives. This implies that another component of
the architecture must be able to read the actions and the parameters in order
to complete the task imposed by the planner.

• Plan as communication: in this paradigm the planner does not provide a
solution to the problem, it gives a set of guides about which activities could be
required to reach the goals. So, this requires another entity with interpretation
and improvisation capabilities that uses these guidelines in the correct manner.
The only requirement for a planner that uses this paradigm is that the output
must contain some information that is useful for the other components.

Also, it is possible to differentiate two common designs to model the environment
for the planning as program approach (since this is the most used approach, we simply
refer to it as planning) as R-Moreno et al. [152] differentiate:



2.1. Autonomous controllers 13

• Action-oriented: it uses predicates logic and the world is modelled as an
entity that can be in different states. The domain specifies actions that can
be performed to change the state of the world and when they are applicable.
The objective is to find a sequence of actions that, from an initial world state,
through applying successive actions, the system achieves a desired goal state.
This approach is followed by a large number of planners such as Stanford
Research Institute Problem Solver (STRIPS) [51] or those who use the PDDL
[57,107], among others.

• Timelines-based: it is based on the first order logic. It represents the world
in terms of functions that describes the behaviour of the system from a time
perspective: a timeline is a logical structure used to represent and reason
about the evolution of an attribute over a period of time. Rules must be
defined to specify how the timelines can change, in order to obtain a sequence
of decisions from the planner that bring the set of temporal functions to a final
state in which a set of constraints are satisfied. There is a growing number of
planners based on this approach, and we can mention the Domain Definition
Language (DDL) and Problem Definition Language (PDL) [30] as a modelling
formalism for this kind of planners.

However, the deliberative layer itself is not enough to control a robotic platform.
Integrating the P&S system with other layers to deal with the sensors and actuators
requires to define the behaviour of the autonomous controller from a global per-
spective. In this regard, the global behaviour can be inspired by the nature to find
solutions. A first way is to emulate the behaviour of simple organisms such as in-
sects. They are behaviour-based and demonstrate intelligence into a reactive schema
in which the current state of the environment guides the next action to execute,
following a sense-act cycle (i.e., there is no P&S system). Controllers for robotic
systems using these ideas are modelled as finite state machines since the behaviour
is deterministic. There is a program based on rules that reacts to the current state of
the world and defines the behaviour to follow, discarding models of the environment
or predictions about future states. These systems are called reactive controllers and
will be discussed in sec. 2.1.1.

More recently, systems have appeared that try to emulate the swarm intelligence
that some kinds of insects exhibit: combining a group of agents with simple reactive
behaviours, the whole system could demonstrate intelligent conducts and achieve
more complex goals that the attainable by only one agent. A successful example
of this system is the Swarm-bots [43]. In this dissertation we are focused on single
robotics platforms, and thus, this approach is out of our scope.

Another approach to define the behaviour of autonomous controllers is to take
the human as the main source of inspiration for, or even try to model human cog-
nition. These systems have become known as cognitive systems. As described by
Vernon [170], a cognitive system is that who “exhibits effective behaviour through
perception, action, deliberation, communication, and through either individual or so-
cial interaction with the environment”. This implies, in general, that a cognitive
system must be able to operate under unknown circumstances or events for which
the system was not implicitly designed. There are two main cognitive paradigms:



14 State of the art

(i) cognitivism based on the representation and processing of symbolic information,
which is capable of handling complex representations of the environment, and (ii)
emergent systems, focused primarily on principles of self-organization.

Langley [96] identifies what are the capabilities that a cognitive architecture
should support. These are basically (i) a long-term memory to store relevant infor-
mation about beliefs, knowledge and goals of the system; (ii) well-organized mental
structures that are representation of the contents of the memory (often related to the
HMI); and (iii) functional and learning processes which operate on the mental struc-
tures. However, depending on the system purpose, a cognitive system must support
abilities such as recognizing and classifying elements in its environment, predicting
its actions effects or reasoning about how to solve unexpected situations. Different
cognitive approaches will be presented in sec. 2.1.2.

However, there is an important gap between these two approaches: reactive sys-
tems live in the present and act fast without taking into consideration what could
happen in the future. Instead, the cognitive systems manage and deliberate over
complex models of the world, so it is possible to consider past actions to learn and
to make predictions about future states, which allows these systems to perform more
complex tasks. Nevertheless, deliberation is a time consuming task: in a dynamic en-
vironment using much time to generate a plan can invalidate it due to changes during
the process, which is related to the problem of keeping the world model updated.

An intermediate proposal between reactive and cognitive systems that try to
keep the goodness of both approaches are the hybrid or layered architectures. The
idea behind is to define a set of layers, each one with a different level of abstraction
and scope. They are interconnected and combine different levels of deliberation and
reactive capabilities, aiming to obtain an intelligent behaviour following the sense-
plan-act cycle. The most common schema is the 3T architecture [137] in which the
higher layer corresponds to the deliberative system, the middle layer is an execution
system and the low layer corresponds to the hardware abstraction of the platform to
control. Each layer uses a different model so there is a lack of integration between
components and a clear separation between deliberation and reaction. Various ar-
chitectures based on this approach will be described in sec. 2.1.3.

Some layered architectures have evolved into multi-agent systems based on the
engineering approach divide and conquer. The idea is to split the problem into
sub-problems that are interconnected. The architecture is described at a high level,
defining the agents that will be part of the system, their roles, the interactions be-
tween them and the resources they need under the temporal restrictions imposed
by the domain. Each agent could be reactive, deliberative or both, appearing the
concept of reactive planning: deliberation systems that are closely coupled with re-
active behaviours. Usually those planners work over a small part of the domain,
using replanning schemes to deliberate with small latency and with different tem-
poral horizons in function of the controlled system requirements. Examples of these
architectures will be presented in sec. 2.1.4.

In the following subsections we present a survey on these kinds of controllers for
autonomous robotics. We are going to focus on the intelligent behaviour that these
systems exhibit, remarking the deliberative process that they implement to reach
the goal for which they are designed.



2.1. Autonomous controllers 15

2.1.1 Reactive controllers

Reactive controllers are those whose intentions are predefined actions to perform
when some conditions occur in the environment, without maintaining a model of the
world, i.e., they are reflexive systems. The most cited approaches, discussed next,
are Subsumption and RAP.

Subsumption [21,22] is designed using a pure reactive schema based on different
levels of confidence, being the base level the most reflexive (when the actuators are
close to the sensors), and including each one more complex behaviours. The idea
behind that comes from two sides. First is the scalability of the system. It is possible
to implement the base level with a basic behaviour and add consecutively more levels
with complex behaviours, without changing the lower ones. Second, and related to
the last issue, higher levels can take the control of the system, reading and modifying
the data flow of the underlying level. This implies that the behaviour of the system
is subsumed to the orders of the higher levels.

Internally, a level is implemented as a finite state machine with the ability to
perform simple functions, direct access to the sensors data and interaction capabil-
ities (in an asynchronous way) with other levels in order to modify their internal
state and outputs. Also, each layer has its own goals (for example, avoid obstacles
or grasp an element), and the combination of the behaviours of all levels guide the
system to reach the objectives specified for every level.

The concept of Reactive Action Package (RAP) [52] is proposed to act in an
efficient manner in dynamic environments. This system uses a reactive execution
schema in which actions selection depends only on the actual context (that is, the
actual state of the world, the state of the controlled system and its goals) at execution
time, which implies that the system does not have any prediction about future states.
Thus, the system contains a world model that requires to be permanently updated
in order to allow the reactive executor to choose properly the actions to execute.

A RAP is a former autonomous unit of the system. The behaviour of each one is
described by three rules: (i) it decides the next action to execute based only on the
current state of the world and does not predict following states, (ii) prior to confirm
that it has achieved its goal, it must check all related sensors required to confirm
the objective, and (iii) if the package is unable to achieve its goal, it implies that it
tries every possibility without success, and thus, it does not know how to reach the
goal in the current context. Each package has only one goal, so if multiple goals are
required, different packages must be defined to accomplish them, and the packages
pursue their goals competitively which each other. To select the package to execute,
the system performs a search to find packages that can accomplish the specified
goals within the current world state. When a package is executing, it could send
commands to the hardware interface and updates the model with the data acquired
from the sensors.

In order to achieve complex goals, the system requires cooperation between pack-
ages. The solution comes from using partially ordered networks of subtasks called
task nets. This implies the sequential execution of different RAPs and every package
can contain one or more predefined task nets to achieve its goal. To accomplish the



16 State of the art

Figure 2.3: Execution of a RAP.

objectives there is a coordinated interleaving schema: when a package is executing,
the packages of the task net are added to the queue (see fig. 2.3). Notwithstanding,
the problems come with the interactions between task nets when they are executing
in parallel and they modify the same state. The RAP execution deals with interac-
tions checking the goals of a task net in the next way: if all the states attached to
it still unchanged, then there is no interaction with other task nets. Otherwise, an
interaction is detected and the task net is removed from the execution queue.

Due to the manner how a RAP is selected to be executed, it is possible to define
opportunistic behaviours. This is done by defining packages that never meet their
objective condition, so they are permanently in the queue, executing, and thus,
checking the world state. When an opportunity is detected, that package will include
a task net to achieve a new goal.

These systems have reactivity and performance. Rejecting complex models of the
world and deliberation capabilities, allows them to select the next action to perform
in a fast sense-act cycle. Also, it is easier for these systems to deal with opportunistic
science; there is no plan to modify when new opportunities appears so the system
simply tries to take advantage of them. However, it has important lacks: without
a model of the world there is no possibility for deliberative and learning processes.
As a consequence, it is not possible to reason about the future; goals are achieved
by action rather than deliberation, being proactive systems, which have difficulties
to solve complex tasks that usually require prediction to be safely and efficiently
performed.

Moreover, the coordination in reactive controllers is problematic. For instance,
in the Subsumption architecture sometimes it is not clear when a behaviour must be
in a higher level than other. Also, there are side-effects on the level interconnections,
every level increments the complexity and is dependent on the lower ones: when lower
levels are modified, a complete redesign of all the architecture could be required. For
RAP, the problem comes from the coordination between competitive packages in
execution. When they modify the same state, only one package can continue its
execution, without considering which one is closest to achieve her goal. This turns
into some inefficiencies during the execution.



2.1. Autonomous controllers 17

2.1.2 Cognitive systems

Cognitive systems are those who try to imitate the mental human processes that
defines the intelligent behaviour. This implies problem solving and learning skills.
In these systems the model of the world could be in continuous change, having
special importance past events and future predictions to try to anticipate the world
state. One of the ways to learn new knowledge about the world is to analyse the
decision taken in the past and their results. But there are other ways to learn such as
incorporate new information from external agents (such as humans) or by inference
from the information contained in the domain. In this section we present four of the
most relevant cognitive systems: Soar, ACT-R, ROGUE and ICARUS.

The Soar architecture [111] is an attempt to couple a minimal group of functional
modules with a purely symbolic reasoning system. During years this architecture has
received some improvements, being the latest version introduced in 2008 [93]. The
basic of Soar is the symbolic planning over a long term knowledge represented as
production rules, with a short term memory using a graph structure to represent
properties and relations between objects. At this level, Soar provides a context de-
pendent representation, updated via monitoring the environment or from the knowl-
edge of the long term memory. So, the actions are produced by rule matching based
on operators preference and utility in the current context, and thus, the action selec-
tion is dynamic and the rules definition can change over time, not only as function
of the context, also for the learning processes in the long term memory.

The long term memory is responsible of the problem solving, which implies a
translation between long term memory and short term memory. Soar decomposes
plan sub-goals obtained by procedural reasoning into rules to fire the actions which
achieve the desired objectives, and, also, it could represent reactive behaviours. The
learning is made through a chunking mechanism, learning new rules when exists
impasses. An impasse is arisen when there is not enough knowledge to select an
action in the current context. In that case, the long term memory produces a new
state in which the goal is to resolve the impasse.

Soar extensions rely on the long term memory and its associated processes for
learning. One of these enhancements is the reinforcement learning that adds the pos-
sibility of including numeric preferences for the rules produced based on the context.
Thus, in order to select an action, an epsilon-greedy search algorithm could be em-
ployed to select the next one to apply in order to maximize a reward function. This
reward is intrinsic to other modules based on emotions, as a computational imple-
mentation of a specific appraisal theory [155]. Emotions and feelings are combined
to modify the reward value, which affects directly to the reinforcement learning,
increasing the learning speed. Also there are included two new memory modules:
semantic and episodic. First one provides support to store and learn declarative
facts about the environment that tries to improve the chunking learning mechanism.
Second one takes snapshots of previous contexts in order to reason and learn from
previous experiences.

Some of the enhancements of Soar are inspired in elements or functionalities
provided by the Adaptive Control of Thought-Rational (ACT-R) architecture [5].



18 State of the art

As Soar, this architecture has also evolved from its first version [99]. ACT-R is
inspired in the human brain and has two main modules (see fig. 2.4) in charge of the
cognitive and deliberative process (such as the human brain and its two hemispheres).
These two modules are connected with a core production system that coordinates the
system with other modules into the lower layer, in charge of actuators control and
perception. The modules are only connected with the coordination core and they use
buffers with only the required amount of information that the core can manage. This
information could be modified by the core to make requests or include new knowledge,
being the changes triggered by patterns recognition into the buffers. The cycle of
execution in ACT-R is managed by these changes in the buffers: the buffers hold
representations of the external world (low level modules) or knowledge and intentions
in the high level (deliberation and learning modules). When the modules detect
changes in the buffers, they perform the required actions or deliberative processes.

While visual and manual modules (those in charge of perception and action re-
spectively) are coupled with the external world, the intentional and declarative mod-
ules are responsible of the internal state and procedural problem solving and the long
term declarative memory. The declarative memory defines elements called chunks
(a kind of associative memory) and the procedural memory define production rules
and a schema for learning new rules. The cognition of the system is determined
by the way of how these memories are connected. The central module or core is
the one that, taking elements from the buffers of both memories, matching a set of
rules by pattern recognition, discarding from these sets those who are not free of
conflicts and, then, executing the actions making the necessary changes in the low
level modules buffers.

Previous systems relies on specific algorithms and representations. However,
the ROGUE architecture [68] (see fig. 2.5) is focused on interleaving planning and
execution, with a replanning schema when actions fail or to generate new plans to
attend user requests or opportunistic changes in the environment. As the architecture

Figure 2.4: Organization of the ACT-R architecture.



2.1. Autonomous controllers 19

Figure 2.5: Conceptual view of the ROGUE architecture.

is intended to deal with asynchronous requests, the planner must manage priorities
in order to be efficient. This implies that a current plan could be suspended in order
to attend new priority tasks using a modifiable metric for the plan search. To do
this, ROGUE uses the PRODIGY planner [27]. It is a general problem solver focused
on learning process and based on a extended version of the STRIPS [51] language.
Using a set of operators, the search engine of PRODIGY is able to obtain (if it
exists) a sequence of operators to reach a desired set of goals from an initial state, by
growing the plan incrementally, trying not to modify the previous plans if possible.
To decide which operators to use, PRODIGY exploits a set of rules to choose the
most preferred candidates. Using these rules the system improves both, the search
performance and the goodness of the solution, while also it is possible to learn new
control rules. This is possible in two ways: (i) learning planning domain knowledge
to improve search efficiency and, (ii) learning control knowledge to improve plan
quality. PRODIGY was expanded during years and the latest version [167] employs
a non-linear planner which enables the system to fully interleave plans, exploiting
common sub-goals and addressing issues of resource contention.

For action execution ROGUE follows the action-oriented approach. When the
plan is generated, it takes every action of the solution and decomposes it in low
level commands. During the execution, the system monitors the preconditions, the
current state of execution and postconditions in order to keep updated the planner
knowledge, and thus, allowing learning from the action monitoring. It is also valuable
for replanning in the case of failures: the planning cycle is interleaved with the
execution of actions, so, the time spent in replanning is reduced, increasing the
efficiency of the system. To control the action execution and monitoring, ROGUE has
two possibilities: controlling directly the robot, or using Task Control Architecture
(TCA) [159] as the functional layer to support more complex processes.

These architectures are mainly focused on complex symbolic representation and
management of knowledge, rather than the perception and execution. Trying to solve
that, the ICARUS architecture [95,97] was developed with more emphasis on percep-
tion and reaction to the environment changes, while keeping learning and knowledge
management to include new skills learned from the experience in an incremental
manner as a human does. Following common human cognition theories, ICARUS



20 State of the art

employs two memories: long term memory and short term memory. First one, as
previous approaches, changes as a function of the learning processes, while second
one is modified by the system beliefs and current goals to achieve.

The long term memory provides a general situation of the environment based on
hierarchical concept decomposition, from complex concepts at high level, to simpler
concepts in the lower levels. A concept could involve objects or relations between
objects. Also, there exists knowledge about skills, being those similar to actions in
first logic and presenting a structure that defines the conditions to apply the skill
and the expected effects. These elements are expressed as concepts, and, like those,
the skills can follow a hierarchical organization: a primitive skill could define an ex-
ecutable action or a decomposition into more skills. These elements are instantiated
into the short term memory, in which we can found the perception buffer coupled
with the status of the sensors and actuators, and memory associated to the current
skills in execution, which are generated by inference from the long term memory and
represents the goals, intended actions to perform and expected future states.

The execution in ICARUS follows a typical cycle that starts reading the state of
the sensors, which produce perceptual elements that are associated by matching with
long term concepts, that is, a bottom-up schema. Then, the architecture selects by
searching the desired goals and decides which skills to execute based on the current
context. During this selection process, ICARUS performs a balance between reac-
tivity and persistence. When different skills are eligible, the system tries to execute
high level skills that are currently executing and also, those which have a similar
context in terms of required conditions to be executed and their effects. ICARUS
performs means-end problem solving to select the skills to execute in function of the
current goals, but, it does not give a complete plan. This could lead to suboptimal
plans, however, it requires less effort to obtain a plan, and thus, the deliberative pro-
cess requires less time. This relies positively in the reactive behaviour and a better
solution than replan everything when an impasse is detected.

When these partial plans lead the system to undesirable states, ICARUS includes
new knowledge learned from the impasse in order to avoid selecting the same skill
in a similar context in the future. Also, it is possible to infer skills from the long
term memory, constructing new skills to achieve goals that could be decomposed into
sub-goals solvable with known low level skills.

Cognitive architectures put the focus on complex symbolic processes to generate
actions which guide the system to achieve a desired set of goals. Within these
symbolic processes, there is an important effort in learning through different schema
to improve the plan quality or to deal with situations not predicted in the design of
the system. Despite this represents a desirable quality to deal in uncertainty, the time
required to work with these symbolism may imply that these systems became static
in term that the environment could change faster than the speed of producing a new
plan adapted to the new context. Although some work is performed to make these
architectures more reactive, unexpected situations trigger learning and replaning
processes, so, it is not usual to see these systems controlling robots which must deal
with environments where the reaction time is fundamental to keep the integrity of
the robot.



2.1. Autonomous controllers 21

2.1.3 Hybrid architectures

The most common decomposition of hybrid architectures corresponds to a 3T schema
in which each layer has a designed functionality. Coupled to the hardware is the
functional layer, providing access to the sensors and actuators. At the top of the
architecture there is a planner, capable to manage complex abstractions of the world.
Between both, there is an execution system that takes the plan generated by the
deliberator and executes the actions that it prescribes [137]. The idea is to take
the goodness of deliberative capabilities (such as cognitive systems) to model the
world, learn and generate high levels plans, while the lower level contains reactive
behaviours and sensing capabilities to provide primitive functions and data to the
upper layers.

Although it seems clear what are the capabilities that the functional layer must
provide (safe access to the hardware actuators and sensors), the division between
the deliberative and the executive functionality is not clear at all. The frontier
depends on various design challenges, such as how to solve the different granularity
an increasing intelligence of the layers (from reflexive, to procedural, to deliberative)
or the inconsistencies that could appear on the separate models that the system
manages (some information is duplicated with different levels of abstraction). Trying
to solve those issues, some systems evolved into a two layered architectures in which
deliberator and executor are coupled. In this section we present eight of the most
cited in the literature hybrid architectures: TCA, AuRA, ATLANTIS, SSS, the
Bonasso 3T architecture, the LAAS architecture, RA and CLARAty.

One of the first efforts to make a general framework for robotics control using
a layered schema is TCA [159, 161]. It is designed to provide autonomous capabil-
ities using deliberative components which act during the normal execution, while
reactive components are in charge of responding to unexpected situations using a
distributed architecture. To do this, the TCA provides a framework that does not
implement particular behaviours, it gives to the designers a set of mechanisms to
support particular implementations of the system.

TCA is based on a central module in charge of the coordination of the other
concurrent processes, called modules, which are specific for every application. The
communication between modules occurs via message passing (routing through the
central module) allowing synchronous and asynchronous communication. There are
different kinds of messages to provide the support to allow data transfer, monitoring,
commands and goal interchange between modules. Using the last one, it is possible to
define and send sub-goals for different modules in order to achieve task decomposition
(in a similar manner to the RAP system). Also, the messages system could be used
for resource management: a resource has a defined capacity in terms of the number
of messages that the resource can manage simultaneously.

To deal with the subtask hierarchy, the central module of TCA constructs trees
to manage the executable commands and monitor messages, as shown in fig. 2.6.
Also, it is possible to define temporal relationships (such as sequential activities)
or constraints (expressed as temporal intervals) to determine when to dispatch the
messages. Instead, the TCA does not provide any deliberative or reactive system,
the modules and their interconnections guide the execution of the architecture. In



22 State of the art

Figure 2.6: Example of TCA subtasking and state monitoring.

order to provide deliberative capabilities, an external planner must be included in
a module, and other modules must be implemented to provide reactive capabilities.
The TCA provides common control constructs, including distributed communica-
tions, hierarchical task decomposition, temporal constraints to coordinate subtasks,
resource management, monitoring, and exception handling.

There are some implementations of TCA for multiple robots using different tech-
nologies. For instance, the Ambler six-legged planetary exploration robot [162] is
implemented using six modules with the Gait planner [173] as the deliberator. It
uses the terrain and kinematic constraints to plan the movements for each leg and
the body in order to decide safe movements. The other modules are in charge
of the perception and map generation, and to provide specific information about
slopes and obstacles to the other modules. Other remarkable work is the continuous
miner [158], which uses a path planner and a task planner. First one implements the
A* algorithm [69] to decide the route and the second takes advantage of the subtask
decomposition of TCA to determine the tasks required to advance to the coal face.

TCA highlights one important question about the layered architectures. Each
layer can be implemented using different technologies and abstraction models. The
interactions between layers and their coordination are an important and not trivial
aspect. The importance of the design resides in different questions: how to exchange
data between layers, synchronize their operations or select which layer of the archi-
tecture is in charge of determining the tasks. TCA chooses a distributed schema with
centralized control and standard messages. This enables the architecture to include
new modules without modifying other parts, but the central control is a potential
bottleneck. Complex systems could require a high bandwidth, especially in order to
deal with optical sensors such as video cameras.

On the early 90s appeared the Autonomous Robot Architecture (AuRA) [7].
Its objective was to provide autonomous mobility with reactive capabilities and a
modular design. This architecture has evolved [8] following a 3T schema with two
components to provide the deliberative capabilities (the mission planner and the spa-
tial reasoner), a schema controller for the hardware abstraction and a plan sequencer



2.1. Autonomous controllers 23

between both layers. The deliberative is divided into two elements being the mission
planner focused on providing the HMI in order to establish the high level goals of
the system, while the spatial reasoner is in charge of the navigation, employing the
A* algorithm over a meadow map [6] to generate the routes to follow, or the Router
planner in newer versions [66]. In order to translate these paths into executable
commands by the functional layer, the plan sequencer translate it using a finite state
machine with temporal behaviours triggered by events [9]. In that point, the delib-
eration process ceases and the behaviours specified by the plan sequencer are sent
to the robot to be executed. The functional layer is responsible of executing and
monitoring the commands, which can operate asynchronously, and triggers reactive
behaviours which are rule based and included machine learning capabilities for the
adaptation of the motor behaviours [33].

The progress monitoring of the commands in execution are essential to guarantee
the success of the current plan; if the system detects that there is no progression in
the execution, it follows a bottom-up schema to try to solve the situation. First, the
spatial reasoner is invoked to try to re-route the robot, using the last data acquired
of the environment. If no solution is found, it tries to obtain a new route for the
whole mission. When the problem is not solved, the mission planner is informed and
it must provide a new plan or abandon the mission.

The 90s continues with the A Three-Layered Architecture for Navigating Through
Intricate Situations (ATLANTIS) [61] (fig. 2.7 center). It is focused on providing
an asynchronous and heterogeneous system guided by a deliberative based on the
plan as communication paradigm. For constructing the architecture, the functional
layer provides a network of interconnected functional modules. These modules are
described using A Language For Action (ALFA) [60] and are formed by two elements:
(i) channels used to communicate data between modules, with high-level systems,
to acquire sensor data and to send output commands to the actuators, and (ii) the
associated transfer function which computes a set of outputs from a set of inputs,
using a data flow function or a state machine.

The executive is a modified version of the RAP system that includes support
to resource protection using semaphores. This allows ensuring that two packages
which interfere with each other are not enabled simultaneously. The control of the
architecture resides in the RAP system, which is able to interrupt activities in a
controlled manner that is especially useful to stop the deliberator. This one is in
charge of maintaining a database accessible to the executor with guidelines about
how to reach the goals of the system. The deliberative computations are requested by
the executor, and consists of a set of Lisp programs that implements traditional AI
algorithms. This set is not fixed, and can be modified to include different planners,
for example, the work of Miller [109] that supports the use of resources, deadlines and
travel time for path planning using a Lisp planner designed to search over totally-
ordered plans in order to detect ordering dependent interactions. Also, as the control
of the system resides in the RAP system, it is possible to remove the deliberative
layer.



24 State of the art

Figure 2.7: Three layer general schema (left), ATLANTIS (center) and SSS (right).

Close in time appeared the Servo, Subsumption, Symbolic (SSS) architecture [34]
(fig. 2.7 right), which is very similar to ATLANTIS. It follows a 3T schema with
an important difference respect to ATLANTIS: in the SSS the deliberator is on the
control loop. The architecture works guided by the symbolic representation of the
deliberator, which generates sequence of actions connected through basic temporal
relationships. These actions switch on or off different behaviours in the execution
layer, which is implemented using the Subsumption system. To correctly decouple
the deliberator and executor (first works over discrete time and space, and second
uses discrete space, but continuous time), the architecture employs a contingency
table to keep the efficiency of the system. The entries of this table reflect possible
future situations and a one-step plan to maintain the coherence with the current
status. To do this, the system permanently monitors the defined situations, and
when one occurs, the event is propagated to the Subsumption system modifying the
current execution, and also, the deliberator generates a new updated table. Finally,
the functional layer is responsible of controlling servo-like robots.

Also, the 3T architecture of Bonasso is presented in that period [17, 18]. This
work aims to obtain a synchronous architecture based on competence levels that are
similar to the Subsumption levels. However, Subsumption evolves in an asynchronous
manner in function of the environmental changes, while the Bonasso architecture
works in continuous cycles that guarantees that there is synchronization between the
input from sensors and output in the actuators one time per cycle. The organization
is structured over three layers, being the lower one attached to the hardware and
with a fast cycle time to read sensors and to perform the actions required by the
upper layers. The middle one has more latency execution, and it is in charge of
more complex behaviours and the translation between the symbolic representation
of the environment of the upper layer and the lower one. Finally, the upper layer
or deliberator is the one that gives the sequence of actions to reach the goals of the
system.

To implement the architecture, the Goals As Parallel Program Specifications
(GAPPS) [88] language is employed. This provides a framework to define reaction
plans at different levels of competence which are task-driven with sub-goaling decom-
position using goal regression to generate plans. In fact, GAPPS generates layered
circuits which are similar to the Subsumption schema, but providing more complex



2.1. Autonomous controllers 25

representation to deal with deliberation and to take advantage of prediction about
the action effects. The plan selects the competences to execute as actions in the
classical meaning: when a current context matches with the specified preconditions
(by continuously monitoring the environment), the competence could be instantiated
into an action to execute over a particular set of objects. To define the three layers
of the architecture, the code is arranged into groups of circuits with different levels of
competence, which could define reaction plans (the competence selected is a function
of the current context and goals to achieve) or different behaviours with priorities
that are valuable for reactive components. Last case is similar to Subsumption: high
priority competences could inhibit other with lower priority, using constraint passing
between layers and combination algorithms.

At the end of the 90s appeared the first version of the autonomous controller de-
veloped at the Laboratory of Analysis and Architecture of Systems (LAAS) [4, 80].
They use a classical three layers approach to allow planning and reactive behaviours
for rovers-like robots, using the sense-plan-act with different levels of granularity and
symbolic representations (see fig. 2.8). But, in this architecture, the layer compe-
tences are quite different from the classical decomposition: the executive is a purely
reactive system, while the deliberator (also called decisional level in this architec-
ture) is composed on a procedural executive coupled with a temporal reasoner. As
other architectures, this one has some evolution, especially focused on the executive
and deliberative layers.

The functional level is composed of a set of modules that contains the hardware
functionality (for sensing and acting) and the number and organization depends on
the underlying hardware, being a network of modules with different responsibilities.
The modules are implemented using Generator Of Modules (GenoM) [104] a frame-
work to generate reliable and distributed control modules. This framework appears
in the first deploys of the architecture and remains into newer ones, being updated
with newer functionality [105]. In the architecture, several modules are produced to
provide different navigation modes (with specialized algorithms) and access to the
scientific load, such as cameras.

Figure 2.8: Conceptual vision of the LAAS architecture (left) and more detailed
model (right).



26 State of the art

The executive level in this architecture is purely reactive and fills the gap between
the symbolic representation and computationally costly requirements of the deliber-
ator, and the lower level that manages raw data. Initially, the executive employed
was Kheops [4], which using a formal language produces automatically an automa-
ton. It receives sequences of actions to execute from the deliberative and, depending
on the current state and a set of rules, it is able to decide when to send appropriate
commands to the functional level. To avoid conflicts between different modules the
executor uses a priority schema to delay command execution or to interrupt a mod-
ule, while conflicts in the same module are managed locally. In newer versions [80]
the execution control level employs Request and Reports Checker (R2C) which is
intended to provide a safe control to avoid entering into unsafe states. In a general
case, the upper layers will not produce actions that leaves the system to dangerous
states, at the expense of increasing the complexity of the system (especially when
dealing with parallelism), and requiring a mechanism to ensure the task refinement
and controllability of the system. To provide these functions R2C captures all events
between the deliberator and the functional layers to update its system representation
and to check if there exist any inconsistency, and, if any, the R2C will act, reject-
ing requests or suspending processes, for instance. Otherwise it allows the system
to continue in the normal way. To define the constraints of the system (i.e., safe
and unsafe states) there is a language formalism called ExOGen [147]. Internally,
the system works with Ordered Constrained Rules Diagram (OCRD) [81] which is
similar to Ordered Binary Decision Diagrams (OBDD) [23] (to express first order
logic formulas) adding the constraints. The R2C creates structures from these for-
mulas which define what states of the system are controllable, and, also, they can
be validated using formal techniques.

The decisional level is in charge of generating the plan and supervise its execution,
and, as difference of others architectures, the planning is concurrent with reactive
execution, that is, this level is remaining to incoming events from lower layers. This
is a complex task in terms of synchronization and balance between the two different
behaviours. To do this, the decisional layer is composed of two elements: a procedural
reasoner and a temporal planner. These elements are the Procedural Reasoning
System (PRS) [78,79] (or its open source version, Open Procedural Reasoning System
(OpenPRS)), in charge of the procedural reasoning, and the IxTeT planner [92],
which produces a plan to achieve a set of goals defined by the user.

The IxTeT planner uses a temporal representation based on state variables and
a Partial Order Casual Link (POCL) planning process to generate flexible plans,
based on Constraint Satisfaction Problem (CSP) (to deal with numeric and atempo-
ral constraint variables) and the time relies on a Simple Temporal Network (STN)
representation [37] (to handle the time points and their constraints). The represen-
tation of the world describes a set of attributes which are multi-valued functions
with time and resources. The evolution of the attributes is guided by a set of propo-
sitions which allows the changes of the values. In this representation, similar to the
timelines approach, an action is a set of events that describes the evolution induced
by the action in the different attributes. Using a POCL framework, the search is
guided generating a tree of partial plans which could have flaws (inconsistencies,
pending sub-goals or resource conflicts). The planning process consists of detecting



2.1. Autonomous controllers 27

the flaws and resolving them, selecting one, then inserting a resolution for the flaw
into the partial plan, and repeating the process until there are no flaws in the plan.
The temporal executive of IxTeT [100] introduced in the latest version of the archi-
tecture performs a control on how the plan produced will be executed, acting as a
coordinator between the planner and the procedural reasoner. Also, it includes a
HMI to allow the user to introduce new goals. So, in general, the temporal execu-
tive provides a reactive component that can analyse events and, if necessary, try to
perform plan adaptation (taking advantage of the temporal flexibility of the plan)
and, when it is not possible, abort the execution and replans from scratch.

The procedural executive is attached to the temporal executive and to the func-
tional layer. PRS is designed to deal with parallel activities and to react in a bounded
time to events. The role of the procedural executive is to decompose the actions from
the high level plan into lower level commands which, in that case, are accepted by
the GenoM modules, and, in some cases, to perform recovery routines, in an asyn-
chronously way. PRS maintains the current state of the robot and some facts about
the world by performing a permanent monitoring, and, also, a library of procedures
which describe a particular sequence of sub-goals, actions and test required to com-
plete a goal. In fact, the execution is goal driven in function of the objectives imposed
by the upper layer. The decomposition of the goal into a set of commands is specified
into procedures that are selected dynamically in function of the current context.

Nearly in time, with the objective of reducing costs and generating a reliable
control system for space operations, the National Aeronautics and Space Adminis-
tration (NASA) created the Remote Agent (RA) [113]. This system is formed by
a set of components that provide reliable deliberative and executive capabilities in
a closed loop. The higher component, the P&S system, generates plans based on
resource constraints and hard deadlines to ensure achieve the science targets. These
plans are executed by an intermediate layer that provides robust and parallel plan
execution through a real time control system that enables the operation of the hard-
ware. The executive system is coupled with a model-based system that integrates
reconfiguration schemes to overcome unexpected situations and to keep safety con-
figurations of the platform.

The planner used in the RA is the Heuristic Scheduling Testbed System (HSTS)
[112], which is also used for the ground operations of the Hubble Space Telescope.
It is a timelines-based planner and employs DDL for the domain representation. For
deliberation, HSTS uses a heuristic guided backtrack search, producing temporary
flexible and concurrent plans. Such flexibility allows the executive to rearrange the
plan execution inside a temporal bound. In fact, the planning process is periodic,
generating plans for a given plan horizon. Moreover, the plans are not completely
specified, i.e., the plan specifies behaviour envelopes, which are a set of possible
behaviours. Then, the executive selects the best behaviour accordingly to the current
status at the execution time.

The executive uses the Execution Support Language (ESL) [62] and exploit the
plan flexibility by means of a hybrid procedural and deductive execution. In this
regard, the execution is context-based, allowing the selection of actions to carry out
analysing the current state of the environment/platform. The executive is coupled



28 State of the art

with a reconfiguration component provided by the Livingstone system [174]. It uses
a discrete model-based that defines the operational configurations of the platform. In
this regard, multiple configurations could enable the consecution of a particular goal.
As well, it provides reactive capabilities and reconfiguration scheme to overcome
hardware failures.

The RA was exploited to control the Deep Space One in 1999 [16], being the first
AI controller to assume the control of a spacecraft. The RA demonstrated that is able
to operate the spacecraft not only in nominal operations, but also providing failure
tolerant behaviours (using both reconfiguration scheme and on-board replanning)
and event-driven events.

Following a similar concept of the LAAS architecture, Coupled Layer Archi-
tecture for Robotic Autonomy (CLARAty) [171, 172] goes further and presents an
architecture based on two layers: the functional layer and the decisional layer, which
couples the planner and the executive. The proposal runs along two axes as fig. 2.9
shows: as typical architectures from bottom to up increasing the intelligence (from
reflexive, to procedural, to deliberative), while the other dimension represents the
granularity of the system at each level. This tries to avoid the gap between layers,
giving an architecture that contains different competences levels in the same layer.
So, these two layers interact at different granularity levels: sometimes the functional
layer provides only a basic service, and, other times, the decisional layer relies the
responsibility on high level commands provided by the upper abstraction levels of
the functional layer.

The functional layer is implemented as an object oriented hierarchy that encap-
sulates the system functionality, acting as a black box for the decision layer. The
modular design gives different accessible behaviours, from primitive commands to
local planners which perform operations such as trajectory planning or arm place-
ment. These elements are instantiated in function of the system to control, and, the
decision layer has access to all capabilities using a generic interface.

The decision layer is in charge of decomposing high level goals into smaller ob-
jectives and to decide how to execute them. The goals are represented as constraints
states over time (using the timelines approach). The temporal planning specifies the
task tree to achieve the goals, while the executive part of the decisional layer de-
composes each task into a sequence of commands which interact with the functional
layer, using the Task Description Language (TDL) [160] to guide the conditional

Figure 2.9: CLARAty architecture conceptual vision.



2.1. Autonomous controllers 29

execution of the commands. The planning is done over two temporal horizons, using
the resource usage prediction of the functional layer: one is for the immediate future
in which the executive part is dominant, and following, the planner dominant for
long term planning.

The design philosophy makes the difference about the hybrid architecture capa-
bilities. Depending on the division and specialization of the different layers, the
system could be reactive dominant or deliberative dominant, that is, the execution
is mainly guided by the context or by the planner, respectively. Also, the scope of
different layers and the interfaces which connect them is a complex topic: different
abstraction models and granularity requires effort for translating the information
that typically flows from the functional layer to the planner (sensor data) and in the
opposite direction, from the deliberator to the robot (actions). This is function of
the technologies employed and some approaches take advantages of different systems
designed with interfaces and functionality to support these issues. However, there is
also the synchronization of the system; planners are usually slow in reaction time,
while functional layers could implement fast reaction routines, even reflexive in some
cases. In general, the executor must deal with all of these questions, including trans-
lation support, reactive routines, and, sometimes, plan adaptation capabilities. So,
these architectures require an important engineering effort, while keeping the focus
on the deliberative capabilities to improve both, the performance of the system and
the reaction time.

2.1.4 Multi-agent architectures

The multi-agent systems designed for robotic control have evolved from hybrid ap-
proaches. The architectural decomposition into different agents that could involve re-
active, deliberative or both capabilities, follows a divide and conquer approach. Com-
bining the capabilities of each agent it is possible to solve complex tasks by means
of agents cooperation. In this section we present four systems: IDEA, ARMADiCo,
the work of Woods et al. and GOAC. We provide a deeper description of GOAC as
it will be used in the evaluation framework presented in ch. 7.

Probably, the most representative multi-agent architecture is the Intelligent Dis-
tributed Execution Architecture (IDEA) [10, 40]. The basis of IDEA is the unifica-
tion of the planning and execution functionalities into the same framework, sharing
a common knowledge base. In this regard, a controller based in IDEA is a collection
of agents, each one with a particular purpose to achieve the mission goals. Then,
the deliberation is distributed among agents. Using a single model for the environ-
ment/platform each agent deliberates over a subset of the model. Then, merging
the solutions provided by the different agents, the full system achieves a solution.
To do this, the agents are synchronized using a common language, exploiting the
timelines-based approach. Each agent is responsible of a set of timelines over which
it can deliberate. For the deliberation process, IDEA allows using different plan-
ners when some technical requirements are met. Notwithstanding, the most referred
is the Extensible Universal Remote Operations Architecture (EUROPA) constraint
propagation package [87], which is descended from HSTS.



30 State of the art

The plans generated by the agents are stored into a plan database. This includes
the current execution status, the generated plan for a specified temporal horizon
and an immediate past state. There are a special agent that reads such database
in order to dispatch the plan actions to the functional support. As well, it updates
the current status of the database to reflect the execution progress. Then, during
execution, the different agents can supervise the plan execution, so it is possible to
exploit reactive planning scheme when the current status does not met the planned
one. This enables fast response to unexpected events and very specialized agents in
charge of potentially dangerous situations.

Focused on mobile robotics is the Autonomous Robot Multi-agent Architecture
with Distributed Coordination (ARMADiCo) [82,83]. It is based on the principle of
decentralized coordination, i.e., there is not a central coordination module. Then, the
different agents have to coordinate their objectives among the others, while also pur-
suing the resources usage. For this reason, a key point in ARMADiCo is the division
between individual and social intelligence. First one entails the required capability
of the agent to achieve its own goals. Second one is required to enable proactive
interaction with other agents, or even humans. Combining both intelligences, an
agent is able to autonomously decide how to act and when, which includes decisional
capabilities on other agents requests.

From a high level perspective, ARMADiCo behaves similarly to a 3T architecture.
Notwithstanding, the deliberative, executive and functional levels are formed by one
or more agents each. In this sense, the lower level corresponds to the perception and
actuators agents, in charge of the access to the sensors and actuators. For instance,
each sensor can be encapsulated into an agent. The executive level is formed by a set
of behavioural agents, which defines the basic behaviours and reactive capabilities
of the system. In this way, it is possible to include agents such as GoTo or Avoid
agents to define mobility behaviours. The deliberation level is defined by cognitive
agents. They provide the different AI methods to generate the solutions for the given
goals. In this regard, task planning and path planning agents can be deployed. For
instance, agents for task planning based on a procedural language (similar to PRS)
or path planning agents employing A* and Dijkstra algorithms for path planning
have been deployed. Finally, there are back agents to provide support for the overall
multi-agent system.

A relevant aspect in ARMADiCo is how the decentralized coordination is carried
out. First, depending on the situation, an agent could use a resource or could be
a resource. Second, to share resources without a central agent that decides on the
resource usage, each agent defines an utility function over each required resource.
Then, conflicts in the resource usage are solved by means of peer-to-peer coordination
between the agents that pursue such resource. The one with a higher utility function
obtains the control of the resource. As well, the agent that is currently using a shared
resource periodically informs others agents about its utility function, so it is possible
that another agent takes control of the resource if the current owner utility decays.

One of the benefits of the multi-agent architectures is the possibility of imple-
menting and deploying highly specialized agents in charge of particular tasks. In this
direction is focused the work of Woods et al. [176]. They propose an autonomous



2.1. Autonomous controllers 31

system that could be able to detect new science opportunities during the execution of
the normal plan execution (called open-loop) in a rover-like mission. The open-loop
execution implies high delays between the ground station and the rover to send the
science schedule and to retrieve the previous acquire data. Accordingly, is possible
that some interesting target that could be found during the traverse was missing.
In this way this is not only required to identify the target, but to autonomous pri-
oritize targets (both, detected and selected by ground team) and replanning taking
into consideration time and power available, and to autonomously place the required
instrument to analyse new targets.

To deal with the required deliberation capabilities, the autonomous system they
proposed is based on the Time-line Validation and Control and Repair (TVCR) [177],
a planning and scheduling system based on time-lines approach developed to support
goal prioritization and plan adaptation for opportunistic science. Also there are
other two agents: one in charge of the detection of opportunistic science, Science
Assessment and Response Agent (SARA), and another to perform the instrument
placement (mounted on a robotic arm). The three agents are coordinated by and
executive system that is a purpose-built implementation.

The TVCR works over a time-line representation, but in a different manner
than other approaches: while typical time-line planning represents the evolution
of a state over time, here is only one time-line that is composed by fragments.
A fragment is a partial ordered plan constructed using action-oriented approach
with PDDL [57]. They specify the state goals and a set of actions based on their
preconditions and effects to traverse, approach targets or to perform different science
operations. The fragments to accomplish the different goals could be constructed on-
board (for opportunistic science) or sent by the ground station. The fragments arrive
to the TVCR and it inserts them into the time-line considering constraints such as
energy consumption, data storage, time dependence and, also, an associated priority
value to each fragment, which is an estimated relative science value in comparison
with the other fragments. To link them, TVCR uses a similar to a single layer
Hierarchical Task Network (HTN) [45] in which the fragments are included in the
plan together with constraints on their relative positions. To avoid flaws in the plan
(specially for replanning process when a new science target is detected), TVCR has
different strategies: it is possible that low priority tasks are removed from the time-
line, delaying actions that compete for unitary resources or adding support action
to ensure the coherence of the time-line. When these resolutions procedures fail to
generate a valid time-line, TVCR can use a fail-safe strategy or set the time-line to
the last valid one. This ensures that always exists a coherent plan to execute.

The opportunistic science agent, SARA, is composed of a context based system
that defines the attributes to classify geological features. Using 2D pictures and
different image analysis, the agent provides a score for each potential science objective
(computed giving values for each designed group of attributes and performing an
weighted function to obtain a final score). The attributes selected and scores are
fixed and learned from the lessons of geologist and results obtained from previous
missions such as the Mars Exploration Rovers (MER). Finally, there is another agent
that implements some specific vision and motion planning algorithms in charge of
the robotic arm control.



32 State of the art

Finally, one of the latest developments in the multi-agent architectures is GOAC
[28] (see fig. 2.10) an effort from ESA to create a reference robotic software platform
for different space missions. It has two differentiated layers: a functional layer and a
decisional layer composed of agents (called reactors). These reactors are implemented
using the Teleo-Reactive Executive (T-REX) [148] for planning and execution dis-
patching using a timeline-based representation and an interleaving schema (which is
similar to IDEA). More in detail, GOAC is the integration of several components:
(i) a timeline-based deliberative layer which integrates a planner, called OMPS [58],
built on top of Advanced Planning & Scheduling Initiative (APSI) – Timelines Rep-
resentation Framework (TRF) [29] to synthesize flexible temporal action plans and
revise them according to execution needs; (ii) a T-REX to synchronize the different
components under the same timeline representation; and (iii) a functional layer which
combines GenoM with a component based framework for implementing embedded
real-time systems, Behaviour Interaction Priority (BIP) [13].

GOAC is not an autonomous controller: is a template to create specific controllers
for different missions/platforms. In that sense, a GOAC instance is a functional
configuration to successfully accomplish an objective. The aspect that determines the
capabilities of the architecture is the number and hierarchy of the T-REX reactors.
A reactor is an entity that operates over one or more timelines by (i) deliberating
over their required status to achieve the mission goals and/or (ii) modifying the
status of the timelines as a result of an operation or for an environment/platform
change. A timeline represents the temporal behaviour of a particular element of
the environment/platform that can be observed and/or modified to accomplish the
mission goals while maintaining the operative constraints defined in the domain.

The decisional layer of GOAC can contain different kind of reactors. First are
the deliberative reactors, that is, the couple of a T-REX reactor and an APSI plan-
ner. Each one follows a sense-plan-act paradigm for goal oriented autonomy over
a particular part of the model and its own look-ahead window over which to de-
liberate. The world is modelled using the DDL language [30, 58], which enables to
specify the allowed state transitions as well as the causal and temporal relationships
between state variables. So, the model represents a set of relevant features whose
temporal evolution need to be controlled to obtain a desired behaviour. Therefore,
the result of a deliberative process is a sequence of state transitions for each timeline
that achieves a specified condition as a planning goal.

The coordination between reactors is done sending goals and receiving observa-
tions. Due to each deliberative reactor reasons about a specific part of the whole
domain, appears a hierarchy in the set of reactors, being one the high level reactor,
which has the more abstract states, and whenever we go down in the hierarchy, the
reactors are more specific. In this way, a high level goal state could be decomposed
into lower level goals states that must be reached by their respective timelines before
the completion of the goal state in the higher level. To do this, the reactors have two
types of timelines: internal and external. The first ones are the timelines that the
reactor can directly control: the reactor can change its value, but usually the value
is dependent on one or more external timelines. These are not controllable from the
reactor, but it can produce goal states in those timelines required to reach the goal
state of its internal timelines.



2.1. Autonomous controllers 33

Figure 2.10: A particular instance of the GOAC architecture.

In order to ensure the correct execution of the required commands to achieve the
goals, it is possible to have one or more reactors in charge of the command dispatching
between the deliberative reactors and the functional layer. These reactors could
implement procedural executives that not only give correctness in the command
execution, but also provide a better level of abstraction and an interface between the
functional layer and the higher level reactors. In fact, these reactors are responsible
of gathering observations from the functional layer and to provide it in a convenient
way to the deliberative reactors.

In GOAC planning and execution are interleaved: while the functional layer is
executing a command, the executive is permanently observing the environment and
the robot internal state, so, it is capable of detecting changes and responding in a
short time by exploiting reactive planning schemes, instead of performing a replan-
ning process, often more expensive. In any case, at the beginning, the deliberative
component generates a plan to achieve the mission goals. The plan corresponds to
an assignment of the required transitions for each timeline to accomplish the ob-
jectives. The possible transitions of a timeline are defined in the DDL files and
each transition changes the timeline status, being the status defined by its value,
attributes (if required) and temporal interval, i.e., each action duration is temporary
ranged between a minimum and a maximum value. In GOAC the time has a major
importance in the system and it is important to mention that the time dedicated for
planning is fixed: if the deliberative is not able to obtain a plan in the given slot,
the system will halt and wait for human supervision.

In multi-agent architectures the coordination of agents is an important and no trivial
question, that requires an important effort to define the interactions. However, this
provides the goodness of a distributed and parallel system. The problem decom-
position depends on different factors, such as the modelling and agent capabilities.
Notwithstanding, good designs rely on the possibility of deploying specialized agents
with different reactivity and competence levels, which could be analysed and tested
one by one.



34 State of the art

2.2 Heuristic search 2D path planning algorithms

Some of the autonomous controllers presented above have been applied to mobile
robotics. In this regard, it is common that the deliberative employs path planning
algorithms to decide the paths to follow to achieve the mission goals. Then, path
planning is a widely research problem in mobile robotics. It is focused on finding an
obstacle free path between an initial position and a goal, trying as far as possible that
the path is optimal. However, in robotics is common to differentiate two approaches
in path planning: local path planning (usually identified as navigation) and global
path planning. First type is more related to the functional layer, in which, using the
sensors information (or external systems [50, 149, 151]), the robot moves to achieve
a (near) target by means of analytic methods. Instead, the global path planning
is associated with the P&S systems, exploiting algorithms to generate paths for
long traverses. Notwithstanding, both techniques can be complementary to provide
better mobility capabilities. In this regard, Guou et al. [67] argue that“path planning
methods such as A* and D* are efficient in a global scale at a coarse resolution to
save computational expenses, and analytic methods are good at a regional scale for
real time control”. In this dissertation we are centred on P&S, so we will focus on
global scale path planning. Also, we assume that the terrain is fully-observable (i.e.,
we have all information about the terrain) and static (i.e., the terrain does not change
during the path extraction).

Usually, the path planning problem is represented as a search problem over a
discrete environment with blocked or unblocked cells (i.e., a binary occupancy grid).
In such case we can perform the path extraction via uninformed search, using algo-
rithms such as Dijkstra [41], which only considers the cost of reaching a position for
the search evaluation function. So, a wide area of the search space must be explored
to obtain a path, which is an expensive process. As a consequence, this approach
presents a bottleneck in the processor and memory usage, as the algorithm complex-
ity grows exponentially with the problem complexity [154]. So, commonly, informed
search algorithms are used. Taking advantage of a domain dependent heuristic,
heuristic search algorithms provides good solutions with less computational effort.

The most used heuristic search algorithm to solve the path planning problem is
A* [69]. It quickly finds routes over a grid at the expense of an artificial restriction
of heading changes of π/4. A* is simple to implement, is very efficient and has lots of
scope for optimization [110]. In this direction, there have been many improvements
such as A* Post Smoothed (A*PS) [19] that smooths the path obtained by A* at
a later stage; Field D* [48] a modification that works on partially known and non-
uniform costs maps; or an approach that uses framed cells approach (a subdivision of
the grid) for continuous-field path planning with path-dependent state variables [11].

More recently has appeared the Theta* algorithm [134], which removes the re-
striction on heading changes of A*. Theta* generates shorter paths with less heading
changes than A* [36]. The main difference between A* and Theta* is that the former
only allows connecting adjacent locations, while in the last, it is possible to connect
no adjacent locations if the straight line between them does not cross blocked cells.
However, this improvement implies a higher computational cost due to additional
operations to be performed to check the line of sight between no adjacent nodes.



2.2. Heuristic search 2D path planning algorithms 35

The previously introduced algorithms are deterministic. However, there are also
non-deterministic search algorithms for path planning. For instance, the Rapidly-
exploring Random Trees (RRT) [98] or the Probabilistic Road Maps (PRM) [3]
algorithms are become largely popular, specially for the motion planning of robotics
arms. In this dissertation we are focused on deterministic algorithms, so we will
introduce A*, A*PS and Theta*, that are actually the most well known and used
deterministic path planning algorithms for mobile robotics. Next subsections present
the nomenclature employed during the rest of this dissertation and the selected
algorithms in more detail.

2.2.1 Grid definition and notation

The notation widely used in path planning for the 2D terrain discretisation is a
uniform regular grid with blocked and unblocked square cells [178]. Generally, we
can find two variants of this kind of grids: (i) the center-node (fig. 2.11 left) in
which the mobile element or node is in the center of the square; and (ii) the corner-
node (fig. 2.11 right), where nodes are the vertex of the square. In the center node
representation a cell is the surrounding area of the node. Instead, in the corner-node
a cell is the area contained between four adjacent nodes. For both cases, a valid
path is that, starting from the initial node, reaches the goal node without crossing
a blocked cell. In this dissertation we follow the corner-node representation, but
typically all algorithms are also able to work with the center-node one.

From now on, consider a node p as an arbitrary node, and s and g as the initial
and goal nodes respectively. Each node p is defined by its coordinate pair (xp, yp). A
solution path has the form (s, p1, p2, ..., g). To support heuristic search algorithms,
we require the following information for each node p:

• parent(p): the predecessor node of p. It is mandatory that the straight line
between p and its parent does not cross blocked cells.

• successors(p): a list of nodes that are reachable from p. The adjacent of each
node t in that list is p. Therefore, if parent(t) = p⇒ t ∈ successors(p).

• G(p): the cumulative length to reach the node t from the initial node, that is,
the length of the shortest path from the start node to the p node.

Figure 2.11: Possible node representations in grids: center-node (left); corner-node
(right).



36 State of the art

• H(p): the heuristic value of p, i.e., an estimation of the distance from p to g.

• F(p): the node evaluation function as in eq. 2.1.

F(p) = G(p) + H(p) (2.1)

While uniform grids only contain free or blocked cells, non-uniform maps (typ-
ically called traversability cost maps) define a numerical value for each cell. This
value (called cell cost) defines the effort of traversing such cell. The cost can be
computed accordingly to the application to express a terrain property (or a lineal
combination of different properties). Using traversability cost maps, the cost asso-
ciated to a path (i.e., G(p)) is obtained by multiplying the cost of the cell by the
distance travelled in that cell. Using this representation, path planning algorithms
can try to avoid certain areas that can be considered dangerous or unsafe.

To enable comparison of path planning algorithms, it is common to contrast four
parameters: length of the solution (path length), search time (runtime), number of
expanded nodes and number of heading changes. In the literature, it is common to
assess the goodness of an algorithm focusing on the first two parameters.

2.2.2 A* algorithm for path planning

Some path planning algorithms are a variation of the A* search algorithm [69]. It
is simple to implement, is very efficient and optimal when it is applied to visibility
graphs. But it has an important limitation: is typical to use 8 adjacent nodes, so
this restricts the path headings to multiples of π/4, causing that A* generates a
sub-optimal paths with artificial zig-zag patterns. It is possible to use more adjacent
nodes to relax this constraint, but the complexity grows exponentially with each
increment.

Using an eight-connected grid, A* obtains the best performance employing the
Octile heuristic, which represents the minimal cost to reach a node with eight move-
ments. It is calculated as in eq. 2.2.

Octile(p, t) =
√

2 · dsm+ (dlg − dsm) (2.2)

with dsm = min(|xt − xp|, |yt − yp|)
and dlg = max(|xt − xp|, |yt − yp|)

A* has two lists to manage the search: the open list, a priority queue of nodes
ordered by their F values; and the closed list, which contains the nodes that have
been already expanded. The search process, shown in alg. 1, will expand the most
promising nodes in the order established in the open list, i.e. it first expands the
nodes with lower values for F. In the case that the expanded node is the goal, the
algorithm will return the path by traversing the parents pointers backwards from
the goal to the start node. Instead, if the open list is empty, it means that it is
impossible to reach the goal node from the initial node and the algorithm will return
a failure.



2.2. Heuristic search 2D path planning algorithms 37

When we are dealing with the successor list, successors(p) being p the current
node, we need to update the data of non-expanded nodes. This is done by the
UpdateNode function at line 18 in alg. 1. When the search reaches a node for the
first time, or the cost to reach that node from the current position is less than the
previously obtained, the G and H values are updated properly and the parent of that
node is set to the current node. Then we update the open list and continues with the
search process. The pseudo-code of this function is presented in the alg. 2, taking
only into consideration the lines 12–19.

Algorithm 1 A* search algorithm

1 G(s)← 0
2 parent(s)← s
3 open← ∅
4 open.insert(s,G(s),H(s))
5 closed← ∅
6 while open 6= ∅ do
7 p← open.pop()
8 if p = g then
9 return path

10 end if
11 closed.insert(p)
12 for t ∈ successors(p) do
13 if t /∈ closed then
14 if t /∈ open then
15 G(t)←∞
16 parent(t)← null
17 end if
18 UpdateNode(p, t)
19 end if
20 end for
21 end while
22 return fail

2.2.3 A* Post-processing: improving A* paths

There are some variations of A* to convert it into an any-angle algorithm [89, 166].
Any-angle algorithms are those in which the heading of the robot is not limited to
certain values (as happens with A*). In this dissertation we use A* Post Smoothed
(abbreviated A*PS) algorithm [19]. It runs A* and then smooths the resulting path
in a post-processing step. Therefore, the resultant path may be shorter than the
original, but it increases the runtime. If A* finds a path (p1, p2, ..., pn), the smooth
process checks the line of sight between the first node and the successor node of its
successors. The meaning of line of sight between two nodes is that, if there are no
obstacles in the straight line which connects these two nodes, then, there is line of
sight, otherwise, there is not. For instance, taking the initial node s = p1 as the
current node, A*PS checks if there is line of sight between p1 and p3. If it is true,



38 State of the art

the parent of p3 is now p1 and thus p2 is eliminated from the path. The algorithm
then takes the next node in the path and checks the line of sight with the current
node. If there is not visibility between these two nodes, the last node becomes the
current node and the line of sight check continues. The process is repeated until it
reaches the goal. At the end of the procedure, the resultant path has the same or
less nodes than the original one, that is, n ≥ j, being n the number of nodes in the
original path and j the nodes in the post smoothed path. Removing intermediate
paths effectively reduces the path length and the heading changes.

2.2.4 Theta* algorithm: any-angle path planning

Theta* [36,134] is a variation of A* for any-angle path planning on grids. There are
two variants for Theta*: Angle-Propagation Theta* [134] and Basic Theta* [36]. We
assume that talking about Theta* refers to the last one, as it provides better results.
Theta* is identical to A* except the UpdateNode function, so the pseudo-code for
A* shown in alg. 1 also applies to Theta*.

Theta* works like A*PS: both try to connect no adjacent nodes that have line
of sight, erasing intermediate nodes and thus, possible zig-zag patterns generated
by A*. But there is an important difference between Theta* and A*PS: first one
does not need a post-processing step, it does the line of sight check during the nodes
expansion. When Theta* expands a node, p, it checks the line of sight between the
parent of the node and its successors. If there is line of sight between a successor
of p and its parent, then the parent of the successor is parent(p), not p like in A*.
When there is an obstacle blocking the line of sight, then Theta* works like A*.
For this reason, the parent of a node can be any node, and the path obtained is
no restricted to π/4 headings. The UpdateNode function pseudo-code for Theta*
is shown in alg. 2. The algorithm used to check the line of sight is a variant of a
drawing lines algorithm [20] that only uses integer operations, which is implemented
in the LineOfSight function (see alg. 2 line 2). In order to obtain better results,
the heuristic employed by Theta* is the Euclidean distance (computed as in eq. 2.3)
that represents the minimum cost to reach a node in a free obstacle area and without
restrictions on the heading angles. As a consequence of the expansion process, Theta*
only has heading changes at the corners of the blocked cells.

Euclidean(p, t) =
√

(xt − xp)2 + (yt − yp)2 (2.3)

Daniel et al. [36] perform an extensive comparison between Theta*, A*, Field
D* and A*PS. As a result we can see that Theta* is the one that usually gets
the shortest routes. The disadvantage of Theta* is that the line of sight check is
frequently performed, which degrades significantly its performance.

Moreover, some effort has been performed in order to improve the Theta* per-
formance, such as Incremental Phi* [135] that takes into consideration the free-space
assumption and angle ranges computation to provide a speed-up of approximately
one order of magnitude with respect to Theta*. As well, Choi et al. [31] include
pruning rules in the line of sight computation that can reduce the runtime of Theta*
by up to a factor close to 2 without a significant increase in the path length.



2.3. Path planning considering terrain properties 39

Algorithm 2 Update node function for Basic Theta*

1 UpdateNode(p, t)
2 if LineOfSight(parent(p), t) then
3 if G(parent(p)) + Euclidean(parent(p), t) < G(t) then
4 G(t)← G(parent(p)) + Euclidean(parent(p), t)
5 parent(t)← parent(p)
6 if t ∈ open then
7 open.remove(t)
8 end if
9 open.insert(t,G(t),H(t))

10 end if
11 else
12 if G(p) + Euclidean(p, t) < G(t) then
13 G(t)← G(p) + Euclidean(p, t)
14 parent(t)← p
15 if t ∈ open then
16 open.remove(t)
17 end if
18 open.insert(t,G(t),H(t))
19 end if
20 end if

2.3 Path planning considering terrain properties

Path planning algorithms previously presented try to minimize the total distance
that the robot should travel. Although this criteria has been widely used to compare
algorithms in the path planning community, it is not enough in the case of exploration
robots: the shortest path can cross rocky or high hills areas that the robot will not
be (safely) able to reach.

To include terrain characteristics some algorithms exploit traversability cost maps
that can include different terrain characteristics (e.g., quicksands, rocks, etc.) ex-
pressed as a numerical value. This value indicates the estimated effort required to
cross an area of the map. Algorithms that exploit cost maps may produce longer
paths, but safer, as they include some terrain information during the search. How-
ever, merging different terrain characteristics into a single value simplifies the algo-
rithm, but at the expense of losing specific information that can be useful during
the path search. In particular, analysing slopes, rocks or other terrain characteristic
separately can be desirable. Enabling the path planning algorithm to decide the
paths having in mind different terrain characteristics may rely on safer paths, rather
than only minimizing the path cost as reported in literature.

In that direction, algorithms such as the D* family (the most representative one is
Field D* [48]) deal with traversability cost maps. These algorithms use interpolation
to produce better value functions for discrete samples over a continuous state space.
The innovation in the Field D* algorithm is a method for computing the cheapest
path of each node t to the goal, given the path costs of its successors nodes. This



40 State of the art

value is traditionally computed as the minimum cost of traversing the edge between
t and any of its successors nodes plus the path cost of the chosen successor to the
goal. This computation only allows straight lines from t to its successors. However,
Field D* allows a straight line trajectory from a node t to any point on the boundary
of the successors cell. Since computing all the boundary points for a nodes is infea-
sible, Field D* provides and approximation for each boundary point by using linear
interpolation. Then, the cost of an edge that resides on the boundary of two cells is
defined as the minimum of the traversal costs of each of the two cells. Although in
some cases the linear interpolation returns a bad approximation, in general results
show the benefits of the algorithm. In particular, the NASA employs a variation of
Field D* to help in the path planning operations for the Martian rovers.

Other approaches exploit a cost map to represent the terrain elevation. Jaillet
et al. [86] propose the Transition-based RRT algorithm that performs path planning
on uneven terrains. This algorithm combines RRT with stochastic optimization
methods to explore the search space. The solutions generated can follow valleys in a
self-adaptive way. Initially, only very slow slopes are allowed. Then, if the algorithm
successfully climb small slopes, the slope limitation is increased. Otherwise, when it
is not possible to advance for the current slope limit, the limitation is relaxed.

Guti et al. [59] proposed an integrated 3D path planning architecture composed
of two stages: acquisition and map generation. In the acquisition phase the rover
obtains the elevation, slope, orientation and roughness of the terrain using a laser
scanner. Then, a fuzzy engine produces a 2D traversability cost map associating to
each cell a cost represented by a continuous value from 0 to 1. Particularly, they use
a lineal combination of different aspects (estimated distance to travel, navigation
cost, heading changes and safety areas) to compute the cell costs. Then, a path
planning module generates the path using a modified version of A*. However, this
solution heritages the unrealistic path generation since it exploits A*.

Another way to consider the terrain information during the search is based on
the energy consumption crossing a 2.5D elevation map representation. By 2.5D the
literature refers to a 2D grid with connected nodes to navigate areas which changes in
their height axes. For the terrain discretisation, a first approach is to use a triangular
mesh generated from a real Digital Terrain Model (DTM) [165], while others employ
multiple Gaussian functions with randomly selected mean, variance, and height for
terrain modelisation [32].

Also, Singh et al. [163] exploit 2.5D elevation maps representations to compute
stable trajectories on uneven terrains. Capturing the full dynamics of a 6 degree of
freedom wheeled robot, and a function that represents the surface, their approach
allows evaluating candidate trajectories. To do this, the velocity, acceleration and
wheel-ground contact constraints are used to analyse rover stability during the path.
Initially, an arbitrary path is generated (by means of a parametric function [67])
and evaluated. While the stability constraints are not met, a path replanning is
performed until a stable path is generated.

A different direction is to use a DTM, so the path planning algorithm will consider
the terrain relief. This enables to assess the path slope and to consider the mechanical
model of the robot. Following this direction, Ishigami et al. [85] present a technique
to evaluate the motion profiles of a rover when it has to follow the shortest path



2.4. Task planning and path planning integration 41

generated using the Dijkstra algorithm. Based on the DTM, they are able to evaluate
the path considering the rover dynamics model and the wheel-soil contact model.
Then, if the result of the path evaluation is not safe, they can generate a new path
modifying weighting factors. This approach can solve the problem, but it is time
consuming even for small areas of 50x50 meters. Moreover, it is limited to a particular
robot geometry.

Other approach based on the DTM usage is proposed by Page et al. [143]. They
are inspired by objects recognition algorithms that are based on a 3D triangle mesh.
The input to the path planning algorithm is a DTM model transformed to form a
triangle mesh and smoothed using a standard Gaussian algorithm. The generated
3D mesh can be non-uniform and non-regular. The output is a path following ei-
ther the valleys or ridges of the terrain depending on the user criteria. Also, they
introduce the Geodesian distance to operate over the discrete terrain instead of the
Euclidean distance. Although the idea is quite novel, a rigorous analysis and algo-
rithms comparison in a benchmark problem is missing.

2.4 Task planning and path planning integration

The path planning algorithms introduced above typically provide a path between
two points. However, mobile robotics usually require to reach different targets in
separate locations. Thus, the order in which the objectives are met has a great
impact in the solution optimality. In this regard, it is required to perform some
integration between a task planner and the path planning algorithm to generate
better solutions in the deliberative layer.

Traditionally, task planning and path planning problems were covered by sep-
arating both problems, i.e., high level task modelling ignores low level constraints.
This simplification results in inefficient or even infeasible solutions. Then, works
that integrate task planning and motion/path planning to solve problems such as
object manipulation or mobile robotics domains have been reported in the literature,
providing better solutions. We can mention work done by Zacharias et al. [179], in
which a two-arm humanoid robot must manipulate objects on a table. The partic-
ular problem addressed is how to automatically rearrange and manipulate objects
without collisions. This is done by using a motion planner to compute trajectories,
and a task planner to provide the grasping operations that achieve a obstacle free
configuration.

In this direction, Cambon et al. implemented the aSyMov planner [26], which
integrates Metric-ff [71] for task planning and PRM for motion planning. For the
integration, both planners share a geometric representation of the position of the
robots, obstacles, and objects in the environment. The plan extraction is guided by
the task planner, which initially provides a solution for a problem in which all motion
paths are valid (i.e., no obstacles are considered). Then, a motion planner checks if
it is possible to achieve the goals. Selection of actions is guided by a cost function
that adds (i) the number of times that an action fails due to infeasible paths, and
(ii) the heuristic computed by the task planner. When there are no valid paths to
achieve a goal, the motion planner updates the geometrical information of the task



42 State of the art

planner, which must generate a new plan. Finally, when a valid plan is generated,
an improvement process is executed with the aim of optimizing the planned paths
while attempting to perform concurrent actions in multi-robots domains.

The I-TMP algorithm [70] uses a motion planning algorithm (a PRM) to deter-
mine trajectory constraints for a logical description of the tasks to perform. Such
tasks are encoded in a formal language similar to PDDL and solved with and in-
tegrated planner that interleaves task and motion planning. This planner shows a
good performance for planning the navigation of legged robots.

The SAHTN algorithm [175] is designed to deal with pick-and-place domains
for robots equipped with arms. The algorithm implements a hierarchy from HTN
for task planning to RRT for low level actions (i.e., arm movement). In this way,
the hierarchy specifies a set of high level actions that can be refined until low level
movements. For each movement, a reachable state space is produced that can be
reused for different objects. By doing this, the associated search cost is reduced and,
therefore, avoids infeasible solutions for the higher level.

Some of these approaches combine task planning and motion planning in the
search process in a very specific way, without considering a general approach for
interfacing both planners. In that direction, Erdem et al. [44] present a framework
that provides bilateral interaction between the task planner and the motion planner.
This relationship allows both planners to guide the search: the task planner aims
to obtain an optimal task sequence and the motion planner performs geometrical
reasoning. Given a plan generated by the task planner, the motion planner must
ensure that the plan is kinematically solvable. If it is not, the motion planner will
include new constraints in the task planner. At the same time, during the plan
search, the motion planner includes specific domain information to guide the search.
This framework also allows exploiting different motion planning algorithms such as
PRM or RRT.

In a similar direction, Srivastava et al. [164] propose an approach in which they
integrate a PDDL planner (they use ff [72] in their experiments) with a motion
planner without modifying them. To perform such integration, they design an in-
terface layer that allows them to share information. The objective of the interface
layer is to invoke the motion planner to generate paths for the tasks produced by
the PDDL planner. If there are no valid dynamics for a given task, the geometrics
constraints discovered are abstracted and included in the PDDL model to fix the
plan. The way that they perform such abstraction is one of the main contributions
of the work.

In general, the above mentioned approaches focus on integrating task planning
and motion planning, which are more related to the manipulation of objects em-
ploying robotics arms. Meanwhile, this dissertation is focused on mobile robotics.
Notwithstanding, both problems are very similar as the objective is the integration
of domain specific information in the task planner, interleaving task planning with
path planning.



2.5. Evaluating autonomous controllers 43

2.5 Evaluating autonomous controllers

Considering the autonomous control architectures presented in sec. 2.1, we can
state that an autonomous controller is the result of a multidisciplinary team that
shall take into consideration a large number of aspects to safety deploy a robot.
Starting from the objectives (or goals) to achieve and the environment in which the
robot will operate, the design and implementation shall cover: (i) the specification
of the robot or platform and its instrumentation; (ii) the desired autonomy level
and; (iii) as function of the autonomy level, the controller shall implement certain
capabilities such as teleoperation, reactivity and, in the higher autonomous level,
on-board planning.

However, Fontana et. al. [56] identify that in autonomous robotics there is a
lack of a scientific testing methodology: the presence of uncertainty, errors and the
decision capabilities of the robot makes the results presented in robotics papers a
“proof of concept” due to the impossibility of reproducing the results, the heteroge-
neous experimental conditions and the use of subjective and/or insufficiently general
performance metrics. Also, Flückiger and Utz represent the common feeling about
performance and comparison of autonomous controllers in a phrase: “its [the au-
tonomous controller] performance is measured based on how well it supports robot
software development, not how well the robot control system performs.” [54]. In fact,
in the works summarized in the previous section, it is usual to see demonstration
of effectiveness in particular circumstances, but not extensive evaluations providing
details such as the performance of P&S systems. In this regard, the importance
of properly evaluating autonomous controllers with enough details and extensive
benchmarks can be summarized as:

• Validation and verification. For real applications it is important to validate
and verify the correctness of the whole system before deploying it. For AI
systems this implies a difficult point due to the complexity of the algorithms and
its ability to take decisions based on different factors, for instance, when dealing
with environment models with a high number of states or with uncertainty and
stochastic models.

• Improvement and robustness. In autonomous systems time plays a funda-
mental role. The time spent to take a decision could lead into inconsistencies
if the environment changes faster than the system deliberates or a passive at-
titude in certain circumstances can lead the system to a critical failure. Thus,
analysing the behaviour of the system allows us to improve it and to avoid
unsafe situations.

• Learning. As appear in Rockel et. al. [153], “one way to improve the ro-
bustness and flexibility of robot performance is to let the robot learn from its
experiences”. In order to learn (or to improve) behaviours, the robot must be
able to measure the performance of the different actions. This can be done in
two ways: measuring the goodness of the solution only as function of the result
or, using metrics that not only takes into consideration the final result, but
also the performance of different elements involved. This implies that, if we



44 State of the art

have good metrics, we can take into consideration those actions that improve
not only the final result, but the performance of the involved components.

• Comparison. Some controllers can be exploited to solve the same scenario.
However, to determine which one is the best option depends on several factors.
If we have a framework that enables the comparison of different approaches,
we can objectively choose the autonomous controller that fits better our appli-
cation.

In robotics research it is hard to compare and to analyse the result of different
approaches, in part, due to lack of technical details in the publications and also,
because reported results are tested by solving a limited set of specific problems,
in particular circumstances that usually are not reported, which include software,
hardware and problem representation. As described by Pobil [38], a benchmark is
required to avoid that situation, leading to an improvement of the quality of the
research results with rapid adoption of the new applications. He pointed out that
“a benchmark is successful if and only if it is widely accepted by the community
at which it is targeted.” One question that should be defined is the applicability
of the benchmark: it shall be useful, which implies, for a broad field as robotics,
that it must be focused on particular sub-domains. For this, Pobil proposes to
follow the next activities in the definition of a benchmark: first, make accessible
to the community the state of the art in the topic to address; then get involved
specialists in the process of benchmarking definition with workshops, discussions,
etc.; finally, describe the benchmark in detail, as well as their associated metrics,
and an independent measurement procedure.

So, it is clear that creating and providing a general benchmark for autonomous
controllers shall bring a big profit for the community involved in this area. However,
performing autonomous controllers assessment is not a trivial issue. It is required
to take into consideration all elements involved, characterize them, and test the
whole autonomous controller under different circumstances. How different layers are
interconnected is also relevant, so we need to test the system as a unit, meanwhile
we also analyse it from the perspective of the different components.

In the following subsections we will try to address this issue summarizing previous
works that try to analyse and characterize specific parts of an autonomous controller
or the system as a whole. First, we introduce some efforts that try, taking the
environment or the couple platform/functional support as a constant, to analyse the
performance of autonomous controllers. Then, we summarize the efforts done to
characterize and analyse autonomous systems from a theoretical perspective. Also,
we present approaches that try to cover relevant topics of an autonomous controller
from the perspective of Knowledge Engineering (KE) and ontologies.

2.5.1 Comparing architectures

Only one work tries to compare different control architectures using the same robotic
platform. Orebäck and Christensen [142] implement three autonomous controllers
(Saphira [91], TeamBots [12] and BERRA [102]) over a Nomadic Super Scout robot
with the objective of accomplishing office navigation tasks. Although this work seems



2.5. Evaluating autonomous controllers 45

to be very interesting as a starting point for comparing autonomous controllers,
the authors focused on non-objective and weak evaluation criteria to compare the
architectures. They evaluate some aspects such as the complexity of installing the
system, operating systems supported, inclusion of graphical interfaces, types of HMIs
and documentation, among others. The only objective values that they included were
sensor actuator latency and memory required, which is very limited information to
provide a relevant performance assessment. The main contribution of this work
thus, is not the comparison of different architectures. As a result of their effort, they
provide a set of guidelines to implement control architectures, with the objective of
allowing easy interfacing to a variety of platforms and porting these systems across
laboratories, to avoid the difficulties and lacks that they found in their experiments.

Another point of view is the robot competitions, e.g., euRathlon [156], RoCKIn
[101], etc. There, the environment and the objectives are the same, but the platforms
sometimes are different. Pobil [38] argues that robots competitions provide a good
and fast way to improve the research results in autonomous robotics. Behnke [14]
goes further and argues that robots competitions are fine to provide benchmarking
in the manner that the competitions provide a good channel to evolve and exchange
ideas between different teams by solving a common task using different approaches.
Such robot competitions provide a standardized way of defining the environment,
constraints and application of the participant robots, thus, it is possible to directly
compare the different hardware and software solutions.

However, a difference in the performance between two robots could be due to
different performance of a subsystem, such as actuators or decision makers, while,
also, when a robot does not perform well, maybe this is due to a software/hardware
failure or a bad solution for the problem. Thus, it is desirable to include specific
subsystem tests in the competitions. Finally the lack of detailed technical documen-
tation of the winning team is an important issue. After the competition a detailed
report shall be required in order to advance the entire field.

2.5.2 Defining models

Hudson and Reeker [77] claim that if the autonomy is standardized, researchers
and companies interested in robotics and AI could test their innovations with the
same criteria than previous works and other teams, allowing a good measuring of the
improvement produced. They identify five areas required to measure the autonomy of
a system: replication, human dependency, adaptation, communication and learning.
The replication gives a score taking into consideration if the robot is able or not to
replicate itself (both, software and hardware), the more capacity it has to replicate,
the higher the score. For human dependence it is quite similar, higher scores are given
when the system has less dependence. The adaptation capability is highly related
to the dependence; it measures the ability of dealing with dynamic and changing
environments without human intervention. The communication can be expressed as
a percentage of understanding between the autonomous system and humans and/or
others systems. Finally, the learning component relies on a (not fixed) scale that
gives more score to those systems that not only can learn by itself, thus also can
transfer knowledge to other ones.



46 State of the art

Once all of these five aspects of autonomy have been measured, they can be added
together to obtain a global value. This global value can be used in the Sheridan’s
model [144] to obtain a specific category of autonomy for the system. The Sehridan’s
model is presented in table 2.2.

Table 2.2: Sheridan’s model (extracted from [144]).

Levels of automation of decision and actions selection

HIGH 10 The computer decides everything, acts autonomously, ignoring the
human

9 Informs the human only if it, the computer, decides to

8 Informs the human only if asked

7 Executes automatically, then necessarily informs the human

6 Allows the human a restricted time to veto before automatic exe-
cution

5 Executes that suggestion if the human approves

4 Suggest one alternative

3 Narrows the selection down to a few

2 The computer offers a complete set of decision/action alternatives

LOW 1 The computer offers no assistance: human must take all decision
and actions

Another attempt to characterize the autonomy of a robotic system is the Auton-
omy Levels For Unmanned Systems (ALFUS) [76]. It aims to compare the capabil-
ities of unmanned1 systems from a common perspective, covering a wide range of
autonomous systems, such as military, service and exploration robots. Their inter-
est come from two sides: to allow a common communication to express autonomy
requirements and to provide a tool that could be used for testing/verification of
autonomy systems. To do this, four components are depicted:

• A set of standard terms and definitions, published by the unmanned working
group [1].

• A detailed model for Autonomy Levels. To define the levels of autonomy,
the ALFUS framework is divided into three categories: (i) mission complexity,
(ii) environment difficulty, and, (iii) human independence. These categories are
composed of a set of detailed metrics which are (in part) specific for each system
and application. Figure 2.12 shows a possible representation of two different
autonomous controllers after obtaining the scores using this three-axis model.

• A Summary Model for Autonomy Levels, which is generated from the detailed
model. From the previous metrics, a summarized model is a final score that is

1In some areas an autonomous system is commonly designed as unmanned system. However, we
prefer autonomous system to avoid confusions with terms such as Unmanned Aerial Vehicle (UAV)
that can be referred to an autonomous system or to a drone, which is typically teleoperated.



2.5. Evaluating autonomous controllers 47

Figure 2.12: Evaluation of two controllers using the ALFUS summary model.

the addition of the three autonomy levels, each of them with values between
0 and 10, being the higher values the most complex mission, environment and
human independent systems. So, the final score for the summary model is a
value between 0 (no autonomy) and 30 (ideal autonomous robot).

• A set of guidelines, processes, and use cases to explain how to apply the ALFUS
framework for autonomous systems evaluation. A set of different unmanned
systems are considered following the ALFUS approach and their scores are
computed [108]. However, these examples do not present the full set of metrics
employed and they are only based on the information published of the differ-
ent tested systems, but the authors claim that “the assessments presented are
subjective, although all bias has been consciously avoided”.

For this framework a spreadsheet-based software was planned to be developed.
In this tool, is proposed that the three autonomy levels scores are automatically
computed based on weights and the metrics scores defined by the user. For every
level a set of detailed metrics can be obtained by decomposing each task in a set
of subtasks that can be, at the same time, decomposed into more subtasks. With
this, a task tree is created, and each subtask have a weighted score. The final
score for a task is the average score for its subtask tree. However, some technical
difficulties arise in this point, for instance it is not clear how to decompose tasks
and what are the correct weights to obtain a valuable metric. Also correlations and
interdependency among metrics and measurably are complex issues: sometimes an
average value does not give good information and a bounded interval is preferable
or, the metric requires a no numeric scale, which is usually difficult to measure and
generate with an automated tool. Thus, the ALFUS framework only provides a small
set of guidelines as a start point to deal with these questions, and does not give a
general framework that can be used to deal with different autonomous systems in a
correct and objective way.



48 State of the art

2.5.3 Defining methodologies

The Idaho National Laboratory proposes a methodology for testing autonomy of un-
manned systems from lessons learned through different experiments [65]. A primary
goal of their work is to enhance the understanding of how the robot, the control,
interface, context and the human contribute to the mission success. In that point, an
important focus is to choose the appropriate level of autonomy and how to measure
the performance combining the task allocation between humans and robots. Thus,
some metrics shall be focused on the operator (such as cognitive workload, error or
frustration), while other rely on the autonomous system (distance travelled, sensor
performance, robot initiative, etc.). Also, between both it is possible to distinguish
metrics to analyse the communication interface (bandwidth, logging, etc.).

They proposed a methodology for testing autonomy composed of the following
sequential steps:

1. Subject selection.

2. Comprehensive planning and study design.

3. Data logging from tests execution.

4. Subjective and objective measures to characterize human-robot performance.

In every step the users play a fundamental role. First, the user selection shall take
into consideration the issue that a mission shall involve different kinds of users with
different experience levels. Planning a mission requires a multidisciplinary effort and
the appropriate level of realism and difficulty. Then, execute the missions and gather
data. Although this seems easy, acquiring data is not a trivial task when searching
for significant results. Attempting to figure out a priori which data is relevant could
lead to miss significant data. Also, logging all data can produce a huge amount of
information that is hard to interpret and manipulate. A good approach to retrieve
data will help us to address unforeseen questions in order to obtain more objective
metrics. Finally, from the data logged, metrics can be defined to determine the
performance and autonomy level of the system. A conclusion that the authors present
from their study is that “neither objective nor subjective data alone are sufficient to
provide an in-depth understanding of performance and performance issues.”

2.5.4 Defining metrics

Continuing the work started with ALFUS, Huang et. al. present the Performance
Measures For Unmanned Systems (PerMFUS) [74,75]. Following the ALFUS schema,
the performance is measured as attributes of the mission that the system shall per-
form (the complexity of the mission’s objectives), the environment in which the robot
works and the complexity of the system itself. With this, they want to facilitate the
understanding of the intelligent system effectiveness to ensure that it meet the op-
erational requirements and, also, devising technological improvements and inspiring
innovation in the field.



2.5. Evaluating autonomous controllers 49

In this way, a general framework is proposed to, starting from the requirements
(captured via formal documents and from the knowledge of domain experts and ob-
servation), establish sets of metrics, to describe an approach and to provide a set of
guidelines to facilitate the performance measurement of intelligent systems. The key
to measure this performance is analysing the behaviours when the system interacts
with the environment and humans, while aiming to achieve its mission goals. To
do this, PerMFUS decomposes the performance into a set of areas according to the
functionality of the system: mobility and navigation, energy, sensing and perception,
communication, human-robot interaction, manipulation, coordination and collabo-
ration and payload. For these areas, some general parameters characterization are
described along a three-axis model (such as in ALFUS): system, environment and
mission. First one explores how the physical or logical properties of the autonomous
system affect its performance. Next one describes the parameters from the world
that affect the system. Finally, the mission can provide details on how the whole
system performs in term of mission goals. In PerMFUS, metrics are the parameters
identified for measuring the performance, which can be selected from a general set
or obtained through the requirements of the system. In order to obtain the met-
rics, an evaluation shall be performed starting from subsystem tests, and finishing
with scenario based tests for mission levels, while detailing the setup, procedures,
equipment, personnel involved and so on.

PerMFUS puts the focus on the concept of contextual metrics, emphasizing that
the performance evaluation is based on context. It presents a set of six core generic
metrics (completeness, accuracy, efficiency, reliability, safety and autonomy) that
can be applied to different types of missions, by identifying the required measured
parameters for each particular application and context. In this sense, these metrics
are meaningful only when the application and context are properly defined.

By its side, the International Electrotechnical Commission published a technical
report [84] in which they describe what and how to measure a set of performance
metrics for service robots in a household environment. Although some measures can
be easily adopted for other type of robots (such as position accuracy), some measures
are highly coupled to the field of application or even are not interesting/practicable
for others robotics systems (capability of returning to charging stand, noise test,
etc.). Also, these measures are only valid to define performance of the whole system,
they do not give any information of how different components perform. For instance,
an error in the pose estimation can be due to a problem with a high-level path planner
or to an incorrect implementation of the functional layer.

Another important point to discuss when dealing with autonomous systems is
the interface. Currently, there is no perfect autonomous agent (which can superbly
perform without human intervention), so, how it interacts with a human operator or
supervisor (depending on the degree of autonomy) is a question to address. Crandall
and Goodrich have made a study [35] to deal with performance metrics combining
the autonomy degree of the robot and the interface between it and the human. To
do this, they proposed a set of four metrics:



50 State of the art

• Neglect tolerance: how much the robot can do autonomously. It represents
a measure of the effectiveness of the robot autonomy. In general, when the
human neglects the system, the performance decreases. For instance, teleoper-
ation requires continuous human operation, while the point-to-point interaction
scheme requires only interaction in particular times.

• Interface efficiency: how much the robot supports human interaction. It
measures the effectiveness of the interface: when the human is attending the
robot, it is expected that the performance of the robot increases. A good
interface is one which gives enough information and well presented to allow
the human to quickly interact with the system. A poor one, instead, can
present a huge amount of information, unstructured or in a non-human legible
way, causing that the human spends more time searching/interpreting the data
rather than interacting with the robot.

• World complexity: how difficult is to operate in the environment. This af-
fects both the robot performance and the interface. Usually, the performance
of the robot decreases as function of the environment complexity and, also, it
can be due to the interface. As the authors say, “any metric which claims to
estimate robot performance must take into account world complexity”. How to
measure the world complexity is an open issue, however, as a guideline, the au-
thors claim that a good measure of world complexity is that which gives higher
values for environments which make a task difficult for a robot to perform.

• Instantaneous performance: how the robot performs in the current time.
It is defined as the work performed by the robot with respect to its capacity to
perform the work, computed as the ratio work

capacity . It is usually easy to compute
the performance for a whole task, however, the instantaneous performance
(when the task is in progress) can be very difficult to measure. In this work, it
is assumed that the performance can be measured or estimated continuously.

Following with Crandall work [35], the performance of an autonomous system
decreases as the human is dedicated to other tasks and/or the world complexity
increases. Combining the neglect tolerance and interface efficiency it is possible to
determine the human interactions frequency and their duration required to maintain
a certain performance level of the system. For this, the Robot Attention Demand is
defined as don

don+doff
where don is the average time spent by the human interacting with

the robot and doff is the neglect time. Considering such function, we can identify
the most useful schemes: those who offer low workload to the human and obtain
high performance, when doff � don, that is, the system exhibits more autonomy.

So, the performance of the system (including the interface) is defined as V (π; t, c,
tN ) where π represents an interaction scheme; t the time index, c the world com-
plexity and tN the neglect time. It indicates the average frequency and duration
of interactions that should take place between human and a robot for a minimum
performance level. Considering t = ton (elapsed time since the robot started to inter-
act with the human) we obtain VS(π; ton, c, tN ) a measure of the interface efficiency.
Instead, if t = toff (the robot is being neglected), the tuple VN (π; toff , c) provides a
measure of the neglect tolerance.



2.5. Evaluating autonomous controllers 51

To test this approach an evaluation has been performed. It consists of a simulated
system in which a robot shall move inside a map. For the robot three interaction
schemes are depicted: teleoperation, P2P and scripted. For the first one the operator
uses a joystick to control the robot; in the second the operator tells the robot what
to do in the next intersection (which way shall follow, like turn right) and, for the
last one, the operator can drop a set of waypoints in a map to lead the robot to its
goal. The environment consists of a set of maps with different complexities. The
complexity value is computed taking into consideration the obstacles and the density
of intersections. Then, with a group of operators a set of 120 tests were performed.
In order to neglect the control of the robot, each operator controls two robots, one
by one, while also, as a secondary task, s/he shall answer arithmetic problems until
it is time to control other robots. As part of the conclusions, authors claim that,
although the described metrics are powerful, user studies are very time consuming
and sometimes impractical, thus more efficient methods for measuring these metrics
are required.

More related to the functional support, Lampe and Chatila present a way to
measure the performance of mobile robot autonomy [94]. In that case, the study
is focused only on the mobility of a robot using autonomous obstacle avoidance
methods, and the environment complexity, taking into consideration that the robot
could have partial environment knowledge. One of the intentions of the work is to
express the performance as a function of the world complexity, which can allow to
predict the performance for a particular mission. To do this, a set of missions shall be
executed to obtain the functions that describe the performance. Then, it is possible
to extract the operational domains, the acceptable bounds for relevant parameters
(such as reactivity, robustness, time or energy required) for a particular mission.
Comparing the user constraints to the operational domains gives a percentage of
mission constraints that we could expect to be reached by the robot.

The metrics involved in a navigation mission can be the velocity, travelled dis-
tance, duration and mission success rate. Also, for some metrics, it is possible to
define both, global and local metrics. First one is measured at the end of the mis-
sion, while local metrics shall be acquired during mission progress. As well, the
world complexity shall be defined. In that case, the complexity is also measured for
global and local areas. For the global complexity the map is represented as a grid
and the complexity is a measure of the entropy of the map. Locally, it represents a
measure of the zone around the robot, taking into consideration the area covered by
an obstacle sensor. The local complexity is defined as the largest free obstacle angle
detected by the sensor. Finally, there is also a measure that quantifies the amount
of information that is shared between the robot map and the real one.

A simulation has been performed consisting of a simulated robot with local avoid-
ance algorithm an a proximity sensor that can detect obstacles at a distance provided
as a parameter. The goal of the robot is to move in a corridor in which obstacles
are randomly placed. The global analysis of simulations with different sensor ranges
shows how it is possible to interpolate a function to link the global world complexity
with the total mission duration. Also the local world complexity is related to the
instantaneous velocity.



52 State of the art

2.6 Summary

In this chapter we presented a review of autonomous controllers for robotics. During
the presentation of the different systems, it is clear the diversity of solutions and
technologies deployed. In this regard, we are focused in the higher layers, which entail
deliberation by means of P&S techniques. As well, most of the presented system are
focused on mobile robots, being the most common application the surface exploration
domain. In this direction the high level layer has to be able to plan the paths to
achieve the mission goals. For this reason, we also presented a survey in heuristic
search path planning algorithms for flat surfaces. However, robotics shall deal with
uneven terrains, so a brief analysis of path planning algorithms that consider terrain
properties are presented as well. Then, we introduced different approaches that
interleaves task planning and motion planning for domains such as pick and place,
that can be applicable to the exploration domain. In this sense, these researches
seem to be relevant to be implemented in deliberative layers, in order to generate
better plans for autonomous robotics applications.

However, how to assess these new P&S systems is an open issue. We presented
some works that aim to contribute providing evaluation methodologies and mea-
sures for autonomous systems. Notwithstanding, none of these approaches enables
a general comparison method that is enough to generate objective and reproducible
experimental campaigns. Then, the experimental evaluations of autonomous con-
trollers can be seen as a demonstration of effectiveness in particular circumstances,
as the results are, currently, neither comparable nor reproducible.



Chapter 3

Heading changes in 2D path planning
algorithms

A reliable autonomous controller must be able not only to move between two loca-
tions, but also to reason about the path to reach the different goals. In this point, it is
required to differentiate between short-term navigation and long-term path planning.
First one is coupled to the functional level of the robot; it uses sensors information to
navigate between waypoints, sometimes using AI vision algorithms. For the second
one, we refer to path planning as a long-term route between two or more locations,
obtained using AI methods over a digital representation of the terrain. Then, to
reason about the routes to follow, heuristic search path planning algorithms, such as
the presented in sec. 2.2, are typically exploited.

In this chapter we improve path planning capabilities for autonomous robots
by creating and evaluating new path planning algorithms based on heuristic search,
applying constraints based on the heading changes made during the path search [128].
In mobile robotics, the cost of making a turn could be higher than moving forward.
As well, performing stationary turns in soft terrains can be dangerous. For this
reason, it is interesting to assess the heading changes during the path search. To do
this, first, the heading changes are formally defined. Then, we propose to focus on
the heading changes to reduce the computational search requirements, i.e., memory
and time. Finally, we describe an algorithm suitable for mobile robots that improves
the heading changes of the path.

3.1 Measurement and formulation of heading changes

To measure the amplitude of a heading change during the search, we define Alpha
(p, t, g) (or simply α) as the deviation required to reach a node t starting from the
node p and pointing to the node g. Figure 3.1 shows its graphical representation and
eq. 3.1 gives the way to compute the value of α(p, t, g) in the range [0◦, 180◦], being
0◦ when three nodes are in the same line and ordered p → t → g or p → g → t;
and 180◦ when they are in the same line and the p node is in the middle, that is,
t → p → g or vice versa. The dist(p, t) function is equivalent to the Euclidean
distance, defined in eq. 2.3.



54 Heading changes in 2D path planning algorithms

Figure 3.1: Graphical representation of α(p, t, g).

Alpha(p, t, g) = arccos
dist(p, t)2 + dist(p, g)2 − dist(t, g)2

2 · dist(p, t) · dist(p, g)
(3.1)

In path planning, the length of the resulting path is usually employed as a the
main measure for the solution optimality when comparing algorithms. Besides, there
are other parameters such as the expanded nodes or the execution time. However, in
the literature, the total amount of heading changes (i.e., the cumulation of degrees
turned) usually is not reported. The number of heading changes cannot give us
enough information about how smooth is the path: there could be low number of
heading changes, but big in amplitude. In order to select a path planning algorithm
for that case we can take into consideration how this parameter affects the quality
of the path. To do that, we consider also a fifth parameter relevant to the study of
path planning algorithms: the total turn parameter.

We define the total turn, Beta or β, parameter as the sum value of all heading
changes (considering that the mobile element is oriented towards the first node of
the resultant path) between the start and goal nodes. This is formally expressed in
eq. 3.2.

Beta =

n−2∑
i=1

βi (3.2)

Each heading change, βi, is the angle variation produced when we go from the
node pi to the node pi+2 through node pi+1. In other words, βi is the resultant
angle of the intersection of a line that crosses the nodes pi and pi+1, and the line
that crosses the nodes pi+1 and pi+2. Also, the involved nodes must have the parent
relationship: pi = parent(pi+1) and pi+1 = parent(pi+2). We assume that the mobile
element can rotate both to the left and to the right, so, in case of the resultant
angle βi is greater than 180◦, it must be reduced to obtain an angle in the interval
[0◦, 180◦]. βi is computed as in eq. 3.3 and the angle calculation is obtained as in eq.
3.4. This last represents the angle formed by the abscissa axis and the point (xp, yp).
A visual example of how to compute βi and the total turn value is shown in fig. 3.2.

βi = |angle(pi+2, pi+1)− angle(pi+1, pi)|
βi = 360− βi when βi > 180 (3.3)

angle(t, p) = arccos
(xt − xp)2 + dist(p, t)2 − (yt − yp)2

2 · (xt − xp) · dist(p, t)
(3.4)



3.2. Heading changes as a heuristic: efficiency improvement 55

Figure 3.2: Example of βi calculation for a small path. βi expresses the heading
between three nodes in the current path. The total turn value is β1 +β2, considering
that the mobile are pointing to p2 at the beginning.

Beta measures the total turn required to reach a path, so we do not get a measure
of the amplitude of each turn. We can obtain the mean value for the turn amplitude
simply dividing the total turns by the number of heading changes. But it is not
really necessary due to the implicit proportionally relationship between these two
values: less number of heading changes with higher values of total turns implies high
amplitude turns.

3.2 Heading changes as a heuristic: efficiency improve-
ment

In this section we take into consideration the measurement of heading changes during
the search process to guide the search toward the objective. To do this, we consider
that the shortest path between two points is the straight line if there are no obstacles.
Thereby, points far from this line are not desirable and thus we do not want to
expand them: they probably lead us further away from the goal. Using α as part of
the heuristic value allow us to minimize the number of expanded nodes, and thus, the
processing time and the memory required during the search, but having a negative
impact in the path length and heading changes [123].

Considering the definition of α in eq. 3.1, we redefine the heuristic function of
a node as the original heuristic employed by the path planning algorithm plus the
value of α(s, p, g), obtaining a new evaluation function, F(p), as in eq. 3.5.



56 Heading changes in 2D path planning algorithms

F(p) = G(p) + [H(p) + α(s, p, g)] (3.5)

To compute the α value we require three nodes. One is the current node, p, and
the other two are the initial and goal nodes, s and g respectively. Calculating α with
these three nodes aims to expand only the nodes that are near (or are contained) in
the straight line that connects the start and the goal nodes.

This line is the smallest distance between these two nodes if there are no obsta-
cles blocking the path. For this reason, α takes values in the range [0◦, 180◦], being
0◦ when the node belongs to the line and the search algorithm goes towards the goal
node. It takes the middle value, 90◦, when the deviation of the node is perpendic-
ular to the line. Values greater than 90◦ implies that reaching the successor node
increments the distance to the objective, being the maximum value, 180◦, when the
node is in opposite direction to the goal.

Figure 3.3 shows an example with the relevant data for two nodes. The α values
for nodes p and p′ are 11.31◦ and 18.43◦ respectively. If we suppose that the central
cell (corresponding to the square formed by nodes (2, 2), (2, 3), (3, 2) and (3, 3)) is
blocked, A* expands first the nodes located at the top left of the map, expanding
the node p′, before the node p. But we can see that the predicted any-angle path
length (dotted line) has higher βi value for node p′ than for node p. The difference
in the heading change is 17% higher for node p′ than node p in this example. So
expanding the node p′ is less likely with our heuristic. Using α with the algorithm
forces the search to expand first the node p and relegates nodes far to the optimal
unblocked path to the back of the open list.

We can deduce a quick conclusion about applying α directly to A*: the search
algorithm evolves into a greedy search algorithm which tries to expand only the
nodes that belong to the straight line between the start and goal nodes. In fig. 3.4

Figure 3.3: Example of α values for two nodes. When A* reaches the obstacle in the
center, it expands p′ before p. First one is not desirable due to the longer unblocked
path length required and the bigger α value. Also, βi is less for p than p′.



3.2. Heading changes as a heuristic: efficiency improvement 57

Figure 3.4: Path obtained using original A* (grey) and A* with the evaluation
function presented in eq. 3.5 (black). Nodes expanded by A* are represented as a
white circle whereas the red filled are expanded by both. With the modified heuristic,
A* expands less nodes and therefore, the runtime is lower.

two paths, starting from the top left node and finishing at the bottom right node,
obtained with A* are presented. The grey line correspond to the path found by the
original A* algorithm (using the Octile heuristic), meanwhile the black line is the
path generated with A* and the modified heuristic that includes the α value. Also,
the expanded nodes for each search have been marked. Non-modified A* expands
41 nodes (empty and filled circles) and A* with α in its heuristic function expands
14 nodes (filled circles only).

A* with the modified heuristic expands near 66% less nodes than the original
one in that example. We can also note the tendency of the algorithm to border the
obstacles in order to recover the line with α = 0. Therefore, although is predictable
that it reduces the number of vertex expanded (and thus, the runtime), the use of
α with A* does not imply benefits in terms of path length, and, if there is some
obstacles blocking the line between the start and the goal nodes, the number of
heading changes could increase. On the other hand, this pseudo-capability to detect
obstacles could be useful for any-angle algorithms, so for these reasons, we will
employ this heuristic over those kind of path planning algorithms.

We must take into consideration that α takes values in the interval [0◦, 180◦].
Considering a map with 100x100 nodes, the cost to transverse from one corner to its
opposite corner is 100

√
2 ≈ 141, and we can consider that α is well sized. However,

for smaller or bigger maps this shall not be valid. For example, for 50x50 maps, the
relative weight of α is double than for a 100x100 map and, for 500x500 nodes maps, is
the fifth part. In the last case, α has less effect in the search process, so the algorithm
tends to behave like the original one, that is, both expand a similar number of nodes;
whereas for small maps the heuristic has an excessive cost to expand nodes that are
a little bit far from the line between s and g. In order to compensate this fact, we
modify the value of α as a function of the map size. This is show in eq. 3.6, taking
into consideration a map with NxN nodes.



58 Heading changes in 2D path planning algorithms

α(s, p, g) = α(s, p, g) · N

100
(3.6)

However, the relative weight of α can modify the behaviour of the search algo-
rithm. Then, we have considered to multiply its initial value by a weight factor,
αw, as in eq. 3.7. As this factor increases, the relative weight of α over the search
algorithm grows up. That is, the heuristic of moving away from the line that con-
nects the start and goal nodes is bigger and force the algorithm to expand less nodes.
This means that the αw factor is inversely proportional to the number of expanded
nodes during the search. It must be taken into consideration that, if αw = 0, the
algorithm does not change its behaviour (due to the definition of the heuristic as in
eq. 3.5). So, we can modify the behaviour of the search algorithm using αw as a
parameter. In the following section we discuss how the value of αw affects the differ-
ent search algorithms employed, that is, A*PS and Theta*. To summarize, we can
say that a high value of αw makes the search algorithm greedy, and values near to
0, slightly changes the original behaviour. As well, experimental results shows that
values higher than 1 do not involve a better performance. Also, the degradation of
path length is directly proportional to the value of the αw factor.

α(s, p, g) = αw · α(s, p, g) with αw ∈ [0, 1] (3.7)

3.3 Heading changes heuristic experimental evaluation

In this section we provide a comparison between A*, A*PS and Theta*, and A*PS
and Theta* using α as part of the heuristic function. For the experiments we use
0.25, 0.50, 0.75 and 1.00 for the αw factor (when αw = 0 the heading change is not
considered, i.e., the algorithm behaves like the original one). Figure 3.5 summarizes1

the results for the execution of the different algorithms over 5000 random generated
maps (see appendix A for details about the map generation algorithm) of 500x500
nodes with different number of blocked cells (5%, 10%, 20%, 30% and 40%, with
1000 maps for each group). For each map, we set the start and goal points in the
following way: the start node is the south-west corner and the goal node is randomly
chosen at the bottom from the column of the east. For all tests, the map generation
algorithm and the initial conditions design guarantees that all problems have at least
one solution.

The different path planning algorithms evaluated are implemented in Java and
use the same methods and structures to manage the grid information. The execution
is done on a 2.5 GHz Intel Core i7 with 8 GB of RAM under Ubuntu 14.04. We
have performed the same tests for grids of 100x100 and 1000x1000 nodes (results
not shown) getting similar results to the exposed here, so the presented results are
representative independently of the map size. The algorithms that employ the α

1Although in path planning it is typically to present average values (graphically using barplots),
we introduce the boxplot to provide a deeper representation of the generated data, showing the
median, quartiles and variability outside the upper and lower quartiles. We think that exploit only
average values for assessment looses relevant data. In this regard, initial researches that aim to
improve the assessments performed in path planning are presented by Muñoz et al. [114–116].



3.3. Heading changes heuristic experimental evaluation 59

value in the heuristic computation are denoted with H-Alpha followed by the αw
value. For the experiments, we have taken into consideration the values for the
classical parameters analysed in path planning, replacing the number of heading
changes with the β parameter introduced in sec. 3.1: (i) the length of the path, (ii)
the total turns (β), (iii) the processor time or search runtime and, (iv) the number
of expanded nodes during the search.

We compare the results obtained for A*PS and Theta* with and without α.
For reference, we also include the results for A*. First, we take into consideration
the path length. So let us start with A*PS. In terms of path length, the use of α

Figure 3.5: Results for the execution of different path planning algorithms over 5000
random generated maps (each obstacle group has 1000 maps). From top to bottom:
path length, total turn in degrees, runtime in milliseconds and number of expanded
nodes.



60 Heading changes in 2D path planning algorithms

has little effect with less than 20% of blocked cells and with low α weights (that
is, αw = 0.25). The best cases correspond to few blocked cells and low αw values,
getting similar paths than the original algorithm. The worst case, 40% blocked cells
and αw = 1.00, gets, in average, 1.16% longer paths. Similarly, the total turns of the
path increases proportionally to the αw value, being more notorious the increases of
the path length. However, the runtime using α is always better, decreasing between
1/3 (less blocked cells) and 1/2 (more blocked cells) when αw = 1.00. This can be
explained due to the number of expanded nodes: A*PS H-Alpha expands less nodes
as the αw factor increases. Also, we can observe that A*PS H-Alpha with αw ≥ 0.50
decreases both the path length, nodes expanded and the runtime compared to A*.

For Theta* using α the results are similar to the obtained with the modified
A*PS, but the degradation of the path length is more notable in the cases with
less obstacles. For instance, the path length worst case (40% blocked cells and
αw = 1.00), gets, in average, 1.83% longer paths than the original Theta*. As well,
the total turns of the path increases as αw increases. The runtime is always lower
using Alpha, but with αw = 0.25 it needs near 65% of the original time to get a
solution, and with αw = 1.00 the speed-up is near to 50%, so Theta* using α works
better in terms of runtime. Same as above, Theta* H-Alpha and αw = 0.25 achieves
better runtimes than A*. For the expanded nodes the behaviour is the same as
in A*PS; with αw = 0.50 it expands near the half of nodes than Theta* and with
αw = 1.00 it decreases to the third part.

We are pursuing the objective of reducing the total turns for a path. In this
sense, we can see that the algorithms with H-Alpha provides similar results in such
parameter with low number of obstacles, but tends to perform more turns when the
percentage of blocked cells grows more than 20%. Notwithstanding, even with the
higher number of obstacles there are better solutions using αw = 1.00. In table
3.1 we provide the number of solutions with lower β values for the original path
planning algorithms (A*PS or Theta*), for the algorithm using Alpha (with different
αw values), and the number of solutions in which β has the same value for both
algorithms (that is, with and without α). For A*PS with Alpha we obtain good
results for maps with less than 30% blocked cells. For instance, with 10% of blocked
cells and αw = 0.50 we have the same β value for near 5% of the maps and better
values than the original algorithm in about 40% of the maps. That is, in 45% of
the maps the modification has no effect or has positive effects in this parameter.
With more blocked cells, the original algorithm has better β values, but always we
can found maps in which α has positive impact in the path planning algorithm. For
Theta* we can observe a higher degradation as a consequence of both the percentage
of blocked cells and the αw factor. In this regard, the Alpha values work better in
A*PS rather than in Theta*.



3.3. Heading changes heuristic experimental evaluation 61

Table 3.1: Solutions with better β value over 5000 maps of 500x500 nodes clustered
by the number of obstacles (each obstacle group has 1000 maps). For each obstacle
group we present the number of maps in which the original algorithm (A*PS or
Theta*) obtains better β values than the modified algorithm (for different αw values
in each column), or equals when both algorithm obtain the same β value.

5% blocked cells

αw 0.25 0.50 1.00 αw 0.25 0.50 1.00

A*PS 311 378 439 Theta* 478 525 569

A*PS H-Alpha 422 478 439 Theta* H-Alpha 79 78 71

Equals 267 144 122 Equals 443 397 360

10% blocked cells

αw 0.25 0.50 1.00 αw 0.25 0.50 1.00

A*PS 431 545 655 Theta* 685 751 798

A*PS H-Alpha 412 407 319 Theta* H-Alpha 118 108 93

Equals 157 48 26 Equals 197 141 109

20% blocked cells

αw 0.25 0.50 1.00 αw 0.25 0.50 1.00

A*PS 574 751 850 Theta* 816 868 912

A*PS H-Alpha 352 239 148 Theta* H-Alpha 153 112 79

Equals 74 10 2 Equals 54 20 9

30% blocked cells

αw 0.25 0.50 1.00 αw 0.25 0.50 1.00

A*PS 681 826 920 Theta* 816 893 935

A*PS H-Alpha 291 170 80 Theta* H-Alpha 165 103 64

Equals 28 4 0 Equals 19 4 1

40% blocked cells

αw 0.25 0.50 1.00 αw 0.25 0.50 1.00

A*PS 721 893 948 Theta* 822 889 967

A*PS H-Alpha 264 107 52 Theta* H-Alpha 173 111 33

Equals 15 0 0 Equals 5 0 0

Figure 3.6 summarizes the results presented above using average values. Left
charts show the degradation of the path length and the heading changes as the αw
increases. Meanwhile, right charts present the relationship between the αw and the
runtime and number of expanded nodes. This last case is related to the memory and
processor usage of the algorithm, which are smaller when the αw increases. These
results are provided for two maps groups with different number of blocked cells:
20% (top) and 40% (bottom). Please note that the original algorithm (without the
modified heuristic) corresponds to the case in which the Alpha weight is 0.



62 Heading changes in 2D path planning algorithms

Figure 3.6: Trade-off between αw and average values for path length/total turns (left)
and runtime/expanded nodes (right), for groups of 1000 maps of 500x500 nodes with
20% of blocked cells (top) and 40% of blocked cells (bottom).

3.4 Heading changes as a cost function: the S-Theta*
algorithm

If we consider the α value during the search as part of the cost function, G(p),
we obtain a search algorithm that optimizes the combination of path length plus
heading changes of the route, not only the path length as usually path planning
algorithms do. An algorithm that provides smoother paths could be very desirable
for some kinds of robots with limitations on turning. In the previous section we have
employed the nodes p, s (start node) and g (goal node) to compute α, so the value
obtained is fixed for each random node p. If we want to include the heading changes
as part of the cost function we need to employ other nodes: the heading to reach a
node is dependent on the path followed.

Taking into consideration that the cost function is the one that we try to minimize
during the search, a good election on the nodes involved in the calculation of α could
give us a minimization in the βi value, and thus, in the total turn of the resultant
path. Looking at the formulation of βi in eq. 3.3, we could infer a good relationship
between the three nodes: considering the expansion process, we want to reach the
goal node g, and, from the current position, be it p, we are trying to expand the node
t. The actual direction of the path is the one that follows the line which connects
node p with its parent, q = parent(p). So, the deviation to reach the node t from
the current position is defined by both, the actual heading and the turn required to
go from p to t having in mind that we want to achieve the goal position.



3.4. Heading changes as a cost function: the S-Theta* algorithm 63

Finally, we have that the relationship q = parent(p) has important implications:
employing α value as part of the cost function in A* does not improve the path: for
A* we have that q = parent(p)⇒ p ∈ successors(q), so it is possible to locally reduce
the zig-zag patterns but with a higher computational cost due to the computation
of α. Then, we cannot apply it to A*PS neither.

So, we describe α(q, t, g) as the deviation in the trajectory measured from the
current position, p, to reach the goal node g through the node t in relation to the
current heading defined by the parent of its predecessor q = parent(p) and the node
t ∈ successors(p). α(q, t, g) is graphically represented in fig. 3.7.

Taking into consideration the previous issues, we propose the Smooth Theta*
(S-Theta*) algorithm [124] that we have developed from Theta*. It aims to reduce
the amount of heading changes that a mobile robot should perform to reach the goal
using the α value as part of the cost function. The evaluation function for the nodes,
F(t), in S-Theta* is computed as in eq. 3.8.

F(t) = [G(t) + α(q, t, g)] + H(t) (3.8)

The α(q, t, g) term (which is added to the accumulated path length) gives us
a measure of the deviation from the optimal trajectory to achieve the goal as a
function of the direction to follow, conditional to traverse a node t. Considering an
environment without obstacles, the optimal path between two points is the straight
line. Therefore, applying the triangle inequality, any node that does not belong to
that line will involve both, a change in the direction and a longer distance. Therefore,
α causes that nodes far away from that line will not be expanded during the search.

The result is that, once the initial direction has changed, the algorithm tries to
find the new shortest route between the successor to the current position, t, and
the goal node. The shortest route will be, if there are no obstacles, the one with
α(q, t, g) = 0, i.e., the route in which the successor of the current node belongs to the
line connecting the parent node of the current position and the goal node. Figure
3.8 shows how the value of α evolves as the search progresses.

Algorithm 3 shows the pseudo-code of the function UpdateNode for S-Theta*
(please note that the search process is the same as in A* or Theta*, see alg. 1 for
more details). Alpha is included as a cost in the evaluation function of the nodes,

Figure 3.7: Graphical representation of α(q, t, g). Actual position is p with q =
parent(p). The successor considered is t ∈ successors(p) and g is the goal node.



64 Heading changes in 2D path planning algorithms

Figure 3.8: Representation of the evolution of α. Arrows are pointed to the parent
of the node after expansion.

so the algorithm will also discriminate the nodes in the open list depending on the
orientation of the search. Thus, a node in the open list may be replaced (which
means that its parent will be changed) due to a lower value of α. In contrast,
Theta* updates a node depending only on the distance to reach it, regardless of its
orientation. As a result, the main difference with respect to Theta* is that S-Theta*
can produce heading changes at any point, not only at the vertex of the obstacles.
This difference can be seen in fig. 3.9, and in fig. 3.10, in which we also show example
paths obtained for different algorithms in 500x500 nodes maps with 20% and 30%
of blocked cells.

The results presented in the next section show that S-Theta* obtain better values
for the total turn parameter than Theta*, with slightly longer path lengths.

Figure 3.9: Resultant paths for Theta* (red) and S-Theta* (blue) in a random map.
Theta* only has heading changes at vertices of blocked cells, while S-Theta* not.
Path lengths are 142.28 and 147.82, and total turns 121.54◦ and 71.56◦ for Theta*
and S-Theta* respectively.



3.4. Heading changes as a cost function: the S-Theta* algorithm 65

Figure 3.10: Solution paths for different algorithms in random generated maps.

Algorithm 3 Update vertex function for S-Theta*

1 UpdateNode(p, t)
2 if LineOfSight(parent(p), t) then
3 αt ← α(parent(p), t, g)
4 Gaux ← G(parent(p)) + dist(parent(p), t) + αt
5 if Gaux < G(t) then
6 G(t)← Gaux
7 parent(t)← parent(p)
8 if t ∈ open then
9 open.remove(t)

10 end if
11 open.insert(t,G(t),H(t))
12 end if
13 else
14 αa ← α(p, t, g)
15 Gaux ← G(p) + dist(p, t) + αa
16 if Gaux < G(t) then
17 G(t)← Gaux
18 parent(t)← p
19 if t ∈ open then
20 open.remove(t)
21 end if
22 open.insert(t,G(t),H(t))
23 end if
24 end if



66 Heading changes in 2D path planning algorithms

3.5 S-Theta* experimental evaluation

In the same way as done in sec. 3.3, this section provides a comparison of heuristic
search path planning algorithms in randomly generated maps in the same conditions
as sec. 3.3 (we exploit the same generated maps and initial/goal positions). Partic-
ularly, we compare A*, A*PS, Theta* and S-Theta*. Also, A*PS and Theta* with
the Alpha modified heuristic are included (considering only αw = 1). Figure 3.11
summarizes the results obtained for the resolution of 5000 random generated maps
of 500x500 nodes, gradually increasing the percentage of blocked cells to 5%, 10%,
20%, 30% and 40% (each obstacle group has 1000 maps). For the experiments, we
have taken into consideration the values for the following parameters: (i) the length
of the path, (ii) the accumulated degrees by the heading changes (total turn or β) in
degrees, (iii) the processor time or search runtime, and, (iv) the number of expanded
nodes during the search. The number of heading changes is not provided as it is
proportional in some way to the total turn parameter, while also this last one gives
us more information about the objective of the analysis, i.e., minimize both, the path
length and the total turn. The experiments are performed on a 2.5 GHz Intel Core
i7 with 8 GB of RAM under Ubuntu 14.04.

As we can see, the algorithm that obtains the shorter paths is Theta* while
A* obtains the worse performance (except for the case of 40% of blocked cells).
From the modified algorithms, there is one that obtains closer path lengths to A*
when the number of blocked cells increases: S-Theta*. For 40% of blocked cells,
A* obtains an average path length of 730, Theta* gets 699 and S-Theta* gets 810.
Moreover, S-Theta* has an important degradation in the path length respect to its
former (Theta*) that grows from 0.45% with 5% of obstacles to 15.88% with 40% of
blocked cells. Regarding the algorithms that employ Alpha as part of the heuristic
function, we obtain less degradation than the obtained in S-Theta* for both cases,
A*PS H-Alpha and Theta* H-Alpha. It is visible that the degradation is directly
dependent on the number of blocked cells, being more remarkable with higher number
of obstacles.

For the total turn parameter we obtain that S-Theta* has the best values (except
for the minimum obstacles case) and, obviously, A* is the worst due to the constraint
of heading changes to multiples of 45◦. Here we can see that the difference in the total
turns between Theta* and S-Theta* is bigger with more obstacles. Theta* requires
44.28% degrees more than S-Theta* for maps with 20% of obstacles (in average 202
degrees and 140 degrees for Theta* and S-Theta* respectively) and 320% degrees
more when the blocked cells grow up to 40% (765 degrees for Theta* and 239 degrees
for S-Theta* in average). This difference remarks that S-Theta* tends to maintain
smoothed paths at the expense of the path length. For A*PS and Theta* with Alpha
as part of the heuristic function we obtain the same behaviour of the path length:
turn performance degrades as a function of both, the percentage of obstacles and the
value of αw factor.

In the case of the runtime, best values are achieved by Theta* using Alpha as part
of the heuristic function. A*PS and Theta* using Alpha improves their performance
in a factor close to 3 for the first algorithm and 2 for the second one. Both A*PS
H-Alpha and Theta* H-Alpha have better runtime than A* in all cases (with the



3.5. S-Theta* experimental evaluation 67

Figure 3.11: Results for the execution of different path planning algorithms over
5000 random generated maps (each obstacle group has 1000 maps). From top to
bottom: path length, total turn in degrees, runtime in milliseconds and number of
expanded nodes.



68 Heading changes in 2D path planning algorithms

exception of A*PS H-Alpha and 5% of blocked cells). Also, we can observe that S-
Theta* obtains the worse runtime. It is notorious a degradation in the performance
when increasing the number of obstacles. This is due to the computational effort
required to perform the Alpha computation and, as consequence of the minimiza-
tion of the heading changes, S-Theta* requires to check the line of sight for longer
segments, degrading more its performance. Moreover, as we see following, S-Theta*
expands more nodes than the other algorithms. This is the result of trying to keep
the heading during the search.

Finally, and directly proportional to the runtime, there is the number of expanded
nodes. We want to remark the difference between the expanded nodes by A* and
A*PS. This is because A*PS uses the Euclidean distance instead of the Octile one as
A* does. Also, we can see that S-Theta* expands significantly more nodes than the
former one, Theta*. As happens with the runtime, the number of expanded nodes
significantly increases with the number of blocked cells.

To get a more accurate analysis of the optimality of the solution for the different
path planning algorithms, in fig. 3.12 we graph the sum of the average path length
and total turn against the percentage of blocked cells. We can observe that the worst
result is for A*, followed by A*PS H-Alpha and Theta* H-Alpha (whose results are
practically superposed). In fourth position there is A*PS. Then, for 5% and 10% of
blocked cells the last two algorithms, Theta* and S-Theta*, have very similar results.
However, for more obstacles, S-Theta* obtains better values, being more remarkable
when the number of obstacles grow up to 40%. Then, S-Theta effectively reduces the
heading changes of the path, at the expense of the degradation of the path length
and the search runtime.

Figure 3.12: Evolution of path length plus total turn respect to the percentage of
blocked cells for 5000 random generated maps.



3.6. Summary 69

3.6 Summary

Path planning for long term missions is a relevant feature in autonomous mobile
robots. In this direction, the common objective is to reduce the distance travelled.
However, in determinate circumstances, e.g., sand surfaces or robots with limited
turning capability, the required heading changes of the path could also be relevant.
For this reason, in this chapter we introduced the heading changes in heuristic search
path planning algorithms. As result, we produced two outcomes. First, using the
heading changes in the heuristic function in algorithms such as A*PS or Theta*,
we can significantly reduce its runtime and memory required, at the expense of a
degradation of the path length. And second, we developed the S-Theta* algorithm
that reduces the number of heading changes and their amplitude with respect to its
former algorithm, Theta*.





Chapter 4

Extending 2D path planning algorithms
to 3D surfaces

As stated before, mobile robots require a path planner that can safely deal with
realistic terrains, i.e., considering the relief or other characteristics [133]. The al-
gorithms presented in the previous chapter works in flat terrain, which may not be
enough to provide safe paths. Then, we propose the 3D Accurate Navigation Al-
gorithm (3Dana) path planning algorithm, based on S-Theta* (see sec. 3.4), which
integrates during the search the DTM information so it is able to avoid potentially
dangerous areas. Particularly, it can discard movements that cross uneven terrains,
generating safer routes. Besides, during the search process, the algorithm calculates
the necessary turns needed to reach the next point taking into consideration the
current heading and the position of the goal. This has two advantages: on the one
hand, it could be used to obtain smoother routes; and on the other hand, it can avoid
routes with abrupt heading changes, which is appropriate for soft terrains. Along
this chapter we provide the description of 3Dana functionality, while at the end, an
experimental evaluation is performed to demonstrate its capabilities under different
maps, considering not only DTMs, but also traversability cost maps in either real
and randomly generated terrains. Before presenting the 3Dana algorithm, the next
section defines the terrain model and its mathematical representation.

4.1 Linearly interpolated DTM

In sec. 2.3 we have seen that 3D environments or DTMs have been used for path
planning. However, some aspects about how the DTM is modelled remains unclear.
In particular, there is not a common representation that enables path planning by
means of heuristic search algorithms. Then, in this section we present a mathematical
formulation for the DTM that can be used by heuristic search algorithms.

Starting from the 2D uniform grid we can transform it to a 3D grid or DTM by
adding the elevation of each node. That is, for now on, any node p with coordinates
(xp, yp) has an elevation zp. Then, the terrain representation followed is a set of
k = n × m spatial (three coordinates) points (xi, yj , zi,j), where 1 ≤ i ≤ n and
1 ≤ j ≤ m. We will call these points nodes as well. The ground projection of
the terrain remains regular, i.e., the distance between two nodes with coordinates



72 Extending 2D path planning algorithms to 3D surfaces

(xi, yj) and (xi+1, yj), 1 ≤ i < n; 1 ≤ j ≤ m is constant and equally between two
nodes (xi, yj) and (xi, yj+1), 1 ≤ i ≤ n; 1 ≤ j < m. However, the distance between
two nodes with coordinates (xi, yj , zi,j) and (xi+1, yj , zi+1,j) varies with the altitude
of each node. A possible graphical representation can be seen in fig. 4.1, while a
general outline is depicted in the following matrix:

(x1, ym, z1,m) (x2, ym, z2,m) · · · (xn, ym, zn,m)
...

...
...

...
(x1, y2, z1,2) (x2, y2, z2,2) · · · (xn, y2, zn,2)
(x1, y1, z1,1) (x2, y1, z2,1) · · · (xn, y1, zn,1)

Figure 4.1: Representation of a DTM.

To fill the elevation data we can artificially generate each zi,j value, or we can
use a DTM obtained, for example, from an on-board satellite instrument. In both
cases, we get the elevation data for each point of the grid. This is enough to work
with algorithms such as A* restricted to move between adjacent nodes. However,
such restriction does not apply to any-angle algorithms such as Theta*. They can
enter/exit cells at any point, in which the altitude is not known and can traverse
long regions without crossing a node. This implies that we need to interpolate the
elevation for points that not belong to the rectangular grid. The objective is to
obtain the most approximate distance travelled by the robot when we are not forced
to move between adjacent nodes.

First, considering the elevation, the cell formed by the four nodes (xi, yj , zi,j),
(xi+1, yj , zi+1,j), (xi, yj+1, zi,j+1) and (xi+1, yj+1, zi+1,j+1), 1 ≤ i < n; 1 ≤ j < m
could not be (usually is not) a plane. Thus we need to define the geometry of the
planes that conform the cell. We assume that each cell is composed by four triangles
whose base is the connection between two nodes, while the two sides adjacent to
the opposite angle are the joints between each node an the central point of the cell,
(xcij , ycij , zcij), as shown in fig. 4.2. The altitude at the central point is computed
as the mean value of the heights of the four points that conform the square as in
eq. 4.1. Coordinates xc and yc are computed as in eq. 4.2. This representation of
the terrain is computationally complex when calculating the distance travelled, but
unambiguous.

zcij =
zi,j + zi+1,j + zi,j+1 + zi+1,j+1

4
(4.1)



4.1. Linearly interpolated DTM 73

Figure 4.2: Lineal interpolation using four planes to define each cell.

xcij =
xi + xi+1

2
; ycij =

yi + yi+1

2
(4.2)

There are two possibilities to cross a cell. The first one is to move from one node
p to another node t that is adjacent, i.e., t ∈ successors(p). If the nodes are inside
the same axis, the length is computed using the Pythagoras theorem. When the
move is diagonal between opposite nodes, it is required to consider two segments:
one from the node p to the central point, (xcij , ycij , zcij), and from the central point
to the t node. As the altitude of the central point is defined in eq. 4.1, the resultant
length is, again, obtained using Pythagoras for the two segments.

The second one, when the movement starts in two arbitrary nodes p and t that
are not adjacent, i.e., t /∈ successors (p), the path crosses more than one cell. This is
a particularity of any-angle algorithms and requires a special treatment as the path
entry/exit cells at intermediate points, not only at the vertex as A* does. Then, we
need to compute the altitude for the entry and exit points to a cell. First, suppose
that one of these entry/exit points is (xi, yu, zi,u), 1 ≤ i < n, u ∈ (j, j + 1),
then (xi, yu) will belong to the straight line between the two grid points (xi, yj) and
(xi, yj+1), where j = buc. Then, by triangle similarity, the altitude zi,u over (xi, yu)
can be obtained as in eq. 4.3. This allows us to compute the elevation of any point
between two adjacent nodes with the same x coordinate.

zi,u = zi,j +
zi,j+1 − zi,j
yj+1 − yj

(yu − yj) (4.3)

If we suppose that the entry/exit point is (xv, yj , zv,j), v ∈ (i, i+ 1), 1 ≤ j < m,
then (xv, yj) will belong to the straight line between the two grid points (xi, yj) and
(xi+1, yj), where i = bvc. Then, the elevation zv,j is calculated as in eq. 4.4.

zv,j = zi,j +
zi+1,j − zi,j
xi+1 − xi

(xv − xi) (4.4)



74 Extending 2D path planning algorithms to 3D surfaces

So, let be (xi, yu, zi,u) the entry point and (xv, yw, zv,w) the exit point to a cell.

Considering that (xi, yu, zi,u) belongs to the line (xi, yj , zi,j), (xi, yj+1, zi,j+1) as fig.
4.2 shows; then we can exit through one of the other three sides of the cell. According
to the exit point, it is possible that we need to cross two or three planes of the cell.
The possibilities are the following:

(a) Exit at the side defined by the straight line (xi, yj , zi,j), (xi+1, yj , zi+1,j). Then
the two planes formed by the points (xi, yj , zi,j),(xi+1, yj , zi+1,j), (xcij , ycij , zcij)
and (xi, yj+1, zi,j+1) are crossed.

(b) Exit at the opposite side at a point that belongs to the line (xi+1, yj , zi+1,j),

(xi+1, yj+1, zi+1,j+1) constrained to
yv + yw

2 < ycij . Then three planes are
crossed, and the one not crossed is the one formed by the points (xi, yj+1,
zi,j+1), (xcij , ycij , zcij), and (xi+1, yj+1, zi+1,j+1). This is the case presented in
fig. 4.2.

(c) Exit at the opposite side at a point that belongs to the line (xi+1, yj , zi+1,j),

(xi+1, yj+1, zi+1,j+1) constrained to
yv + yw

2 = ycij . Then two planes are
crossed, and the point (xcij , ycij , zcij) belongs to the path. In this case the
length of the path inside the cell can be computed using Pythagoras for the
two segments.

(d) Exit at the opposite side at a point that belongs to the line (xi+1, yj , zi+1,j),

(xi+1, yj+1, zi+1,j+1) and constrained to
yv + yw

2 > ycij . Then three planes
are crossed, and the one not crossed is the formed by the points (xi, yj , zi,j),
(xcij , ycij , zcij) and (xi+1, yj , zi+1,j).

(e) Exit at a point that belongs to the line (xi, yj+1, zi,j+1), (xi+1, yj+1, zi+1,j+1).
Then the two planes formed by the points (xi, yj , zi,j), (xi, yj+1, zi,j+1), (xcij ,
ycij , zcij) and (xi+1, yj+1 zi+1,j+1) are crossed.

We can also consider entering the cell at a point that belongs to (xi, yj , zi,j),

(xi+1, yj , zi+1,j), but it is equivalent to the previous cases presented and can be
solved using symmetry. In the same way, following we present the formulation to
compute the length traversed in a cell for cases (a) and (b); (d) and (e) are analogous,
meanwhile (c) is trivial. Now, we need to compute the point(s) in which the straight
line that connects the entry and exit points changes between the planes of the cell.

Focusing on the the enumerated cases with the points (xi, yu, zi,u) and (xv, yw,
zv,w) we have that, in case (a), we cross two planes, so, only one point shall be
computed, let it be (xaij , yaij , zaij). For case (b) three planes are cut, so we need
to compute two points, in the same way, be these points (xb1ij , yb1ij , zb1ij) and
(xb2ij , yb2ij , zb2ij) as fig. 4.2 shows. To obtain these points we need the point (xα, yα),
α ∈ {aij, b1ij, b2ij} and then interpolate the elevation at such point. The way to
obtain the crossing points is to employ the equation of the line and obtain the
point(s) in which the line (xi, yu), (xv, yw) and the diagonal(s) (defined by the lines
(xi, yj), (xi+1, yj+1) and/or (xi, yj+1), (xi+1, yj)) intersects. For all cases, we defined
a set of functions:



4.1. Linearly interpolated DTM 75

• m(x1, y1, x2, y2) is the slope of a line which contains the points (x1, y1) and
(x2, y2). It is computed as in eq. 4.5.

m(x1, y1, x2, y2) =
y2 − y1
x2 − x1

(4.5)

• b(x1, y1, x2, y2) is the independent term of the line equation, computed as in
eq. 4.6.

b(x1, y1, x2, y2) = y1 −
x1 · (y2 − y1)
x2 − x1

(4.6)

• xcut(m1, b1,m2, b2) is the x coordinate for the intersection of two lines defined
by their slope and independent term. It is computed as in eq. 4.7.

xcut(m1, b1,m2, b2) =
b2 − b1
m1 −m2

(4.7)

• ycut(m1, b1,m2, b2) is the y coordinate for the intersection of two lines defined
by their slope and independent term. It is computed as in eq. 4.8.

ycut(m1, b1,m2, b2) =
m1 · (b2 − b1)
m1 −m2

+ b1 (4.8)

Then, to compute the desired points, we define m1, b1, m2 and b2 as in eq. 4.9
for the diagonals of the cell. The intersection points for the path are computed as
follows: for case (a) we only have the point (xaij , yaij , zaij) as in eq. 4.10. For case
(b), we have (xb1ij , yb1ij , zb1ij) and (xb2ij , yb2ij , zb2ij) as in eq. 4.11.

m1 = m(xi, yj , xi+1, yj+1); b1 = b(xi, yi, xi+1, yi+1)
m2 = m(xi, yi+1, xi+1, yj); b2 = b(xi, yi+1, xi+1, yj)

(4.9)

xaij = xcut(m1, b1,m(xi, yu, xv, yw), b(xi, yu, xv, yw))
yaij = ycut(m1, b1,m(xi, yu, xv, yw), b(xi, yu, xv, yw))

zaij = (zcij − zi,j) ·

√
(xaij − xi)2 + (yaij − yj)2

(xcij − xi)2 + (ycij − yj)2
+ zi,j

(4.10)

xb1ij = xcut(m1, b1,m(xi, yu, xv, yw), b(xi, yu, xv, yw))
yb1ij = ycut(m1, b1,m(xi, yu, xv, yw), b(xi, yu, xv, yw))

zb1ij = (zcij − zi,j) ·

√
(xb1ij − xi)2 + (yb1ij − yj)2

(xcij − xi)2 + (ycij − yj)2
+ zi,j

xb2ij = xcut(m2, b2,m(xi, yu, xv, yw), b(xi, yu, xv, yw))
yb2ij = ycut(m2, b2,m(xi, yu, xv, yw), b(xi, yu, xv, yw))

zb2ij = (zcij − zi+1,j) ·

√
(xb2ij − xi+1)

2 + (yb2ij − yj)2

(xcij − xi+1)
2 + (ycij − yj)2

+ zi+1,j

(4.11)

Finally, we can compute the distance travelled through the cell using Pythagoras.
In case (b), the one presented in fig. 4.2, the length for a move between two given
points (xi, yu, zi,u) and (xv, yw, zv,w) is computed as in eq. 4.12.



76 Extending 2D path planning algorithms to 3D surfaces

D =
√

(xi − xb1ij)2 + (yu − yb1ij)2 + (zi,u − zb1ij)2
+
√

(xb1ij − xb2ij)2 + (yb1ij − yb2ij)2 + (zb1ij − zb2ij)2
+
√

(xb2ij − xv)2 + (yb2ij − yw)2 + (zb2ij − zv,w)2
(4.12)

Besides the distance computation, we can provide also the terrain slope at each
cell. To compute the slope we need to obtain the equation of each plane of the
cell. Considering the plane formed by the points (xi, yj , zi,j), (xcij , ycij , zcij) and
(xi+1, yj , zi+1,j), we can obtain the normal vector, −→nπ, of the plane as in eq. 4.13.
The angle obtained for such plane using the eq. 4.14, αz, is the angle formed by the
normal vector and the Z axis. This angle is the slope of the terrain. As each cell is
divided into four planes, we can obtain four different slopes as fig. 4.3 shows.

−→nπ = (A,B,C) with:
A = (ycij − yj) · (zcij − zi+1,j)− (zcij − zi,j) · (ycij − yj)
B = (zcij − zi,j) · (xcij − xi+1)− (zcij − zi+1,j) · (xcij − xi)
C = (xcij − xi) · (ycij − yj)− (ycij − yj) · (xcij − xi+1)

(4.13)

αz = arccos
C√

A2 +B2 + C2
(4.14)

Figure 4.3: Four normal vectors for a cell in the lineal interpolation.

4.2 The 3Dana path planning algorithm

The 3D Accurate Navigation Algorithm (3Dana) [131] is a path planning algorithm
developed to obtain safer routes based on heuristic search over a DTM and/or a
traversability cost map. Its application scope is mobile robots in which the ter-
rain characteristics (specially the surface relief) can affect their mobility. The main
features of 3Dana are:

• Evaluation of potentially dangerous areas using a traversability cost map, as
done in algorithms such as Field D*. A cost map defines one or more terrain



4.2. The 3Dana path planning algorithm 77

characteristics combined in a numerical factor. Using a cost map, the algorithm
tries to minimize the path cost, avoiding high cost areas.

• Evaluation of the path distance using the terrain altitude. 3Dana performs
path planning over a realistic surface model, using the DTM introduced in the
previous section. The movement cost is a function of the distance between two
points given their altitudes.

• Evaluation of heading changes during the search. Like the S-Theta* algorithm
(see sec. 3.4), 3Dana calculates the necessary turns needed to reach the next
position taking into consideration the current heading of the robot and the
position of the goal. This has two advantages: first, it could be used to obtain
smoother routes; and second, it is possible to avoid routes with abrupt heading
changes.

• Evaluation of the terrain slope. 3Dana avoids paths that exceed the maximum
slope allowed by the robot. This enables to obtain safer and feasible paths.

• Parametrization of the four above properties. 3Dana allows defining different
configurations to use cost maps or DTMs alone or combined. Also, the slope
and heading changes constraints can be set by the user.

The 3Dana algorithm is an evolution of the A* search algorithm that uses vertex
re-expansion. Moreover, it takes advantage of the any-angle path planning algo-
rithms such as Theta* or S-Theta*, applying them to a DTM and/or a traversability
cost map. The search process in this new algorithm is similar to these algorithms,
but adjusted to the mathematical model required to operate with the terrain relief.
Next subsections introduce the algorithm functionality: first, the search and the
nodes expansion processes are described. Following subsection shows how the line of
sight between two nodes is calculated, which is directly related to the path length and
cost calculation. Then, the slope consideration to avoid potentially infeasible paths
is described. Finally, the heuristic computation and the heading changes evaluation
is presented.

4.2.1 3Dana Search Process

The 3Dana search process is based on A* with node re-expansion. Algorithm 4
shows the pseudo-code for the search process employed. It is quite similar to A*
but with two relevant differences. First, A* obtains better results using the Octile
heuristic, while 3Dana uses a variation of the Euclidean distance. This last takes into
consideration the altitude difference between the two nodes involved as explained in
sec. 4.2.4. This difference is placed in line 6 of alg. 4. Second, the treatment of the
nodes expansion (function UpdateNode at line 14) is different for both algorithms.

A* requires two nodes lists, open used to order the list of pending nodes to process
(in ascending order, arranged by the F value), and closed with the expanded ones.
However, 3Dana uses node re-expansion, so the closed list is no longer necessary;
all nodes will be evaluated even if they are previously expanded. This may lead to



78 Extending 2D path planning algorithms to 3D surfaces

Algorithm 4 3Dana search algorithm

1 for p ∈ map do
2 G(p)←∞
3 parent(p)← null
4 end for
5 G(s)← 0
6 H(s)← EuclideanZ(s, g)
7 open← ∅
8 while open 6= ∅ do
9 p← open.pop()

10 if p = g then
11 return path
12 end if
13 for t ∈ successors(p) do
14 UpdateNode(p, t)
15 end for
16 end while
17 return fail

better paths, but increasing the runtime due to the possibility of expanding the same
node several times.

At the beginning of the search, the open list only contains the start node, whose
cost G is 0 and its heuristic is given by the EuclideanZ function (see sec. 4.2.4). The
algorithm executes the search while there are nodes in the open list. When this list
is empty, all the reachable nodes from the start position have been processed and
none is the goal position. Thus, there is no feasible path between the desired points.
Otherwise, the first node from the open list, that is, the most promising node, is
extracted. If that node is the objective, the algorithm returns the path between
the start and the goal through backtracking of the parents pointers of the nodes
from the goal to the start. Otherwise, the successors(p) function returns a set with
the visible adjacent nodes for the current node. In this point, A*-based algorithms
without re-expansion discard nodes that are contained in the closed list: they have
been expanded and, in a flat surface without traversal costs, expanding them again
usually not rely on a better path. However, dealing with elevation and traversability
cost maps implies that, maybe, the previous path is not the best. For instance, the
algorithm can reach a point by climbing a hill, that can be more expensive that
surrounding it. This usually implies to expand more nodes, and thus, the better
path is discovered later during node re-expansion. Then, the adjacent nodes to the
current position will be processed by the UpdateNode function.

The UpdateNode function shown in alg. 5 corresponds to the function employed
by 3Dana. It is similar to the one used by Theta* but considering the possibility of
node re-expansion. Theta* selects the route to follow (Path1 at line 11 or Path2, line
6) taking into consideration only the line of sight between the parent of the current
position and the successor. This means that, if there is a line of sight between
these two nodes, Theta* always chooses the Path2, the one that allows any-angle



4.2. The 3Dana path planning algorithm 79

Algorithm 5 Update node function for 3Dana

1 UpdateNode(pos, succ)
2 GA ← AdyacentCost(pos, succ)
3 GT ← SegmentCost(pos.parent, succ)
4 update← false
5 if GT > 0 and GT ≤ GA and GT < G(succ) then
6 tentativeG← GT {Path2: any-angle}
7 tentativeH ← EuclideanZ(succ, g)

+α(parent(pos), succ, g) · wα
8 tentativeParent← parent(pos)
9 update← true

10 else if GA > 0 and GA < G(succ) then
11 tentativeG← GA {Path1: adjacent node}
12 tentativeH ← EuclideanZ(succ, g) + α(pos, succ, g) · wα
13 tentativeParent← pos
14 update← true
15 end if
16 if update then
17 if (tentativeG+ tentativeH) < F(succ) then
18 G(succ)← tentativeG
19 H(succ)← tentativeH
20 parent(succ)← tentativeParent
21 end if
22 if parent(succ) 6= null then
23 open.insert(succ)
24 end if
25 end if

routes. Obviously, this behaviour is undesirable for 3Dana, due to the necessity of
considering the elevation of the terrain and the traversal cost of the region that it
crosses.

3Dana needs to calculate the path cost for both possibilities, the any-angle path
and the adjacent node path (i.e., the one followed by A*). This is required as the
algorithm has to decide which path is better considering the terrain relief and cost.
To do this we have implemented two functions that will be reviewed in sec. 4.2.2
and whose descriptions are as follows:

• AdyacentCost (alg. 5 line 2): is used to calculate the cost for the adjacent
nodes, that is, those that follow Path1. This function returns a positive value
since there is always line of sight between a node and its successors.

• SegmentCost (alg. 5 line 3): performs the line of sight check and calculates the
cost associated to the line that connects two arbitrary nodes. It represents the
Path2. When it is not possible to move between the desired nodes (the path
is blocked by an obstacle), it returns a negative value.



80 Extending 2D path planning algorithms to 3D surfaces

When the costs of both paths have been calculated, the algorithm chooses the
any-angle path (Path2) when there are no obstacles and the cost is lower than the
one calculated for Path1. In both cases, if the cost to reach the successor node is less
than the cost to reach that node from a different one (if it was previously reached),
the heuristic of the successor must be calculated (as shown in sec. 4.2.4) and the
cost and the parent have to be set. For Path1, the parent is the current position
and the cost is calculated through the function AdyacentCost. While for Path2 the
successor’s parent is the parent of the current position and the cost is previously
computed using the SegmentCost function. When the cost to reach the node under
evaluation is lower than its previous value, its F value is updated accordingly to the
path selected and, if its parent is null (that is, it is not in the open list), it is included
in the open list.

4.2.2 Line of sight and cost calculation

In the UpdateNode function there are two methods to compute the path cost between
two nodes: the one associated with the adjacent nodes (the path followed by A*); and
the one that includes the line of sight check for arbitrary nodes (the any-angle path).
In the first case the line of sight is guaranteed: the successors function returns a list
with the reachable adjacent nodes. Then, we compute the path cost by obtaining
the length between adjacent nodes (as in sec. 4.1) and multiplying it with the value
of the crossed cell.

In the case of an arbitrary pair of nodes, i.e., any-angle path, we need to perform
the line of sight check and the cost calculation. To do this, we employ an algorithm
similar to the Cohen-Sutherland clipping algorithm [55]. The procedure is imple-
mented in the SegmentCost function and divided in two phases. First, it is required
to compute the points in which the line that connects the two nodes intersects with
the horizontal or vertical axes. Second, for each segment formed by two consecutive
points, it is required to compute the length between points and the cost related to
the region that it crosses.

For the first step, we have implemented the algorithm shown in alg. 6 to compute
the axes intersection points. It returns an ordered list of points that intersects the
axes and belong to the segment p0, pn. This algorithm allows us to compute the
points in any situation, but if the line is parallel to one of the axes (i.e., ∆x = 0
or ∆y = 0) a faster computation using integers is performed (not shown here),
improving the computational effort required. Figure 4.4 shows an example of the
points list that the alg. 6 computes for the line that connects the nodes p0 and p6.
The resultant point list is the ordered set of points {p0, p1, p2, p3, p4, p5, p6}.

Once the points list has been calculated, the second step of the SegmentCost
function is to process each segment formed by two consecutive points. Then, we
need to perform the following computation for each two points, pi and pi+1:

1. Take the cost value of the cell that contains the segment pi, pi+1. If the cell is
an obstacle then the function ends, returning a negative value; there is no line
of sight. Otherwise, the cell cost is stored in a variable called cellCost. If no
cost map is provided, cellCost is always 1.



4.2. The 3Dana path planning algorithm 81

Algorithm 6 Algorithm to compute axes intersection points for a segment

1 SegmentPoints(p, t)
2 pointList← ∅
3 stepx ← if tx ≥ px then 1 otherwise -1
4 stepy ← if ty ≥ py then 1 otherwise -1
5 m← (ty − py)/(tx − px)
6 Xx← px + stepx
7 Y y ← py + stepy
8 Y x← px + (Y y − py)/m
9 Xy ← py + (Xx− px) ·m

10 while Xx < tx and Y y < ty do
11 if (Xx ≤ Y x and stepx > 0) or (Xx ≥ Y x and stepx < 0) then
12 pointList.insert(Xx,Xy)
13 Xx← Xx+ stepx
14 Xy ← py + (Xx− px) ·m
15 else
16 pointList.insert(Y x, Y y)
17 Y y ← Y y + stepy
18 Y x← px + (Y y − py)/m
19 end if
20 end while
21 return pointList

2. If the user has defined a maximum slope, the algorithm computes the terrain
slope of the cell using the normal vector for the terrain. If the slope is higher
than the maximum defined, the function returns a negative value as if the way
is blocked by an obstacle. More details about the maximum slope are presented
in sec. 4.2.3.

3. Compute the length of the segment pi, pi+1 using the lineal interpolation pro-
cedure. To do this, the algorithm employs the equations introduced in sec. 4.1.
The length obtained is long.

4. The associated cost of the segment pi, pi+1 is calculated as long · cellCost.

Following this procedure we obtain a negative value if there is no line of sight (or
the slope exceeded the user defined constraints), or a cost for the path that is the
sum of all pi, pi+1 segments. In the example of fig. 4.4, the total cost associated to
the path between the nodes p0 and p6 is given by eq. 4.15. We consider that the
number of the cells corresponds to the traversal cost matrix, and A2 is the value of
the traversal cost associated to cross the cell A2.

SegmentCost(p0, p6) = p0p1 ·A2 + p1p2 ·B2 +

p2p3 · C2 + p3p4 · C3 + p4p5 ·D3 + p5p6 · E3 (4.15)



82 Extending 2D path planning algorithms to 3D surfaces

Figure 4.4: Line of sight evaluation.

4.2.3 Terrain slope consideration

When we deal with the terrain relief, 3Dana considers it in two ways: (i) computing
the distance travelled, and (ii) analysing the slope to avoid dangerous areas. The
objective is to provide an algorithm that is able to obtain feasible paths based on the
DTM information. For example, it is possible to generate a cost map that integrates
in some way the DTM information, but that approach simplifies the terrain and
remove relevant data, i.e., we cannot provide paths constrained by the slope.

Consider the paths presented in fig. 4.5: both paths are obtained using 3Dana
over a DTM file (without employing a cost map) with a variation of the maximum
slope allowed. The left path, without slope limitation, is highly undesired: it crosses
a crater. Meanwhile, when the maximum slope is setted to 15◦, the algorithm avoids
the crater and surrounds it, obtaining a longer but safer path.

To deal with the terrain slope, 3Dana computes the slope for each cell crossed
by the path. In the SegmentCost function, the slope is evaluated during the line of
sight checking. As each cell is formed by four planes (each one with its associated
normal vector, see fig. 4.3), we need to analyse what planes are crossed during
the movement. In this regard, 3Dana obtains the slope of each plane crossed and
compute the average value as the slope for such cell. In the case that the movement
belong to an axis, the value used is the average slope of the two planes that share the
line that behaves to the movement. Then, if the computed slope is higher than the
constraint imposed by the user, 3Dana discards such path. In the case that the path
belongs to an axis, only the the vectors that are adjacent to the path are considered.

4.2.4 Heuristic and heading changes

The heuristic employed by 3Dana is implemented in the EuclideanZ function as in
eq. 4.16. This is a variant of the Euclidean distance that takes into consideration the
altitude difference between points, and thus, it prioritizes nodes without elevation
changes.

EuclideanZ(p, t) =
√

(xt − xp)2 + (yt − yp)2 + (zt − zp)2 (4.16)



4.2. The 3Dana path planning algorithm 83

Figure 4.5: No slope limited path versus limited slope path over a DTM.

Besides this heuristic, 3Dana uses the value provided by the Alpha function (or
α) inherited from S-Theta* to evaluate the heading changes during the path search.
Given two arbitrary nodes, p, t, and the goal node, g, α(p, t, g) gives a measure of the
heading changes necessary to reach the node t from p and facing it with the required
heading to reach the goal node. This value is computed as in eq. 3.1 (see sec. 3.1).
If this value is 0, then the three nodes involved in the calculation are in the same
line, and the t node is nearest to the goal than p. When it returns 180, it happens
the opposite: the three nodes are in the same line, but t is farthest from the goal
than p.

Using this value in the heuristic enables 3Dana to consider the heading changes
during the search process, delaying the expansion of nodes that require a high turn
to be reached. This means that the algorithm tries to minimize the distance, but
considering first paths with fewer turns. The Alpha function gives a value in the
interval [0◦, 180◦], so, modifying the weight of this value we can change the order
of the open list. Small weights imply a soft restriction in the heading changes,
meanwhile bigger weights make the algorithm trends to follow smoother paths with
less heading changes. We previously called this weight αw (see sec. 3.2), which takes
values in the range 0 (heading changes are not considered during search) and 1.
Experimentally, we have seen that values higher than 1 do not rely on improvements
in the heuristic.



84 Extending 2D path planning algorithms to 3D surfaces

4.3 3Dana experimental evaluation

In this section we present the assessment of 3Dana in different scenarios with ran-
domly generated maps: exploring only traversability cost maps and dealing with
both, elevation and traversability costs maps. The map generation algorithm for
random maps can be seen in the appendix A. Please note that we do not consider
maps with more than 10% of obstacles since increasing that number implies that
the algorithm will avoid the obstacles rather than consider the terrain cost/relief.
Finally, we assess 3Dana using only the DTM information from real Mars maps. All
experiments are carried out on a 2.5 GHz Intel Core i7 with 8 GB of RAM under
Ubuntu 14.04, except the ones presented in the next section, which are executed on
a 2014 Mac Pro with a 3.9 GHz Intel Xeon E5 and 64 GB of RAM.

4.3.1 Random cost maps

First, an evaluation is performed considering only traversability cost maps. In this
regard, we have compared 3Dana with A* and Theta*. These algorithms are not
ready to work with traversability cost maps and/or DTMs, so we have adjusted both
algorithms. To do this, in A* we have used a modified version of the Octile distance
that considers the elevation difference between nodes. As well, we have adjusted
Theta* by replacing the original line of sight evaluation with the one presented in
sec. 4.2.2 and the heuristic with the EuclideanZ. Then, both algorithms use the
terrain model presented in sec. 4.1. Also, thanks to a member of the Mars rover
operation team, we have been able to use in our comparison the Field D* version
employed at Jet Propulsion Laboratory (JPL) for the Mars rovers operations. In
the case of 3Dana, different configurations for the heading change parameter (i.e.,
different values of αw) has been considered. Figure 4.6 shows the results obtained
for the resolution of 1500 randomly generated cost maps of 500x500 nodes, gradually
increasing the percentages of blocked cells from 0% to 10% (each obstacle group has
500 maps). In these experiments, the DTM is not considered, i.e., the terrain is flat.
In all cases the initial position corresponds to the coordinate (0, 0) and the objective
is to reach a node in the last column randomly chosen the row from the bottom fifth
(499, 460–499).

The algorithm that obtains better routes in terms of the path cost (i.e., the path
length multiplied by the traversal cost) is 3Dana without considering the heading
changes during path search (αw = 0.00), followed by 3Dana with increasing values
of αw, Field D*, A* and, finally, Theta*. This happens for all number of blocked
cells, being quite similar the result obtained for Field D* and 3Dana 1.00 and 10% of
blocked cells. It is remarkable that the path cost of 3Dana increases as αw increases.

In the total degrees turned (the total amount of heading changes), we can ob-
serve that higher αw values effectively reduce the total turns for 3Dana. Also, all
algorithms provide smoother paths than Field D*, being the best one for Theta*,
followed by the different configurations of 3Dana.

For the runtime, it is notorious that Field D* has a very low runtime to compute
the path, while other algorithms require between 5 seconds and more than a minute
in the worst case. Particularly, while all algorithms have been executed in the same



4.3. 3Dana experimental evaluation 85

Figure 4.6: Results for the execution of different path planning algorithms over 1500
randomly generated cost maps with 0%, 5% and 10% of obstacles (each group has 500
maps). From top to bottom: path cost, total turn in degrees, runtime in milliseconds
and number of expanded nodes (note that we do not have such value for Field D*).
The number after 3Dana identifies the αw value.



86 Extending 2D path planning algorithms to 3D surfaces

machine, Field D* is implemented in C++ and is very well optimized, while the
others algorithms are implemented in Java. Then, apart from Field D*, A* obtains
better runtime than the other algorithms, followed by Theta*, with the exception
of the scenario without obstacles. In such situation, Theta* does not perform any
heading change. Thus, each time a node is expanded, the line of sight check has to
evaluate farther nodes, requiring more time for each evaluation. Then, the runtime is
related to the line of sight check, not to the search process. Finally, 3Dana increases
its runtime proportionally to the αw value.

With respect to the expanded nodes, all the algorithms obtain similar values for
each map group (note that the Field D* values are not displayed since the implemen-
tation used at JPL does not calculate this value). However, 3Dana expands nearly
the same number of nodes independently of the αw value. Although the runtime
increases with αw, the expanded nodes remain almost constant. The reason for this
behaviour is that 3Dana re-expands some of the nodes in order to reduce the heading
changes. This also has an important impact on the line of sight check: 3Dana has
to check longer segments, degrading its performance.

4.3.2 Combined random cost maps and DTMs

Previous subsection has presented an evaluation of 3Dana in flat terrains. In this
section we include the terrain relief, so the algorithm will search a path considering
both, the cost map and the terrain elevation. In this regard, to create the terrain
elevation we use a hill algorithm [139], normalizing the elevation in the range [0,
125]. As in the previous subsection, we compare 3Dana and the adjusted versions of
A* and Theta*. However, we cannot adapt Field D* since we do not have access to
the code, so those results are omitted.

Figure 4.7 shows the results obtained for the 1500 randomly generated maps.
Each map consist of a traversability cost map and a terrain elevation, i.e., DTM.
We have gradually increased the percentage of blocked cells from 0% to 10% (each
obstacle group has 500 maps). As in the previous section, maps have a size of 500x500
nodes and the initial position corresponds to the coordinates (0, 0) and the objective
is to reach a node in the last column randomly chosen the row from the bottom fifth.

Regarding to the path cost, 3Dana obtains better results in all obstacles group.
Also, as happened with the results presented in the previous subsection, the path
cost slightly increases with higher αw values. As well, looking at the total turn
value, it decreases as αw increases. Then, the heading changes heuristic is providing
significant smoother paths. However, the best algorithm for providing the lower
heading changes is Theta*, but at the expense of higher path costs.

With respect to the runtime, A* outperforms the other algorithms. Focusing on
3Dana, the runtime grows as the αw value increases in all the obstacles group. Never-
theless, Theta* obtains the worst runtime as the line of sight evaluation significantly
degrades its performance.

Looking at the nodes expanded, we cannot appreciate significant differences; all
algorithms expand nearly the same number of nodes. 3Dana behaves the same as in
the previous experiments in relation to the runtime and the re-expansion of nodes.



4.3. 3Dana experimental evaluation 87

Figure 4.7: Results for the execution of different path planning algorithms over 1500
randomly generated maps (each obstacle group has 500 maps), considering either
the cost map and the terrain altitude (DTM). From top to bottom: path cost, total
turn in degrees, runtime in milliseconds and number of expanded nodes. The number
after 3Dana identifies the αw value.



88 Extending 2D path planning algorithms to 3D surfaces

4.3.3 Real Mars DTMs

In this section, we test the behaviour of the 3Dana algorithm using only the in-
formation of a DTM (without a traversability cost map) of real surfaces instead of
randomly generated ones. The altitude data is obtained by the Mars Reconnaissance
Observer (MRO) spacecraft probes using the High Resolution Imaging Science Ex-
periment (HiRISE). With such data, it is possible to generate DTMs [90] that are
publicly accessible1. The DTMs provide an elevation grid with a horizontal resolu-
tion from 0.25 to 2 meters and a vertical accuracy of 25 centimetres. All maps used
in this article have a horizontal resolution of 2 meters, i.e., we have a uniform grid
with elevation points every two meters. From the available DTMs we have selected
five maps and, on them, we have run the modified A* algorithm and 3Dana with
different αw values (i.e., αw ∈ {0.0, 0.5, 1.0}).

For the slope limitation, we have considered from no slope limitation to decrement
the maximum slope allowed from 30◦ to 10◦. In this section we present two of these
maps; the data for the others three can be checked in the appendix B. As well, we
attempted to execute Theta*, but the runtime was excessive because there were no
obstacles, and thus, Theta* trends to follow long paths without heading changes,
degrading the performance due to the line of sight checking (as shown in sec. 4.3.1).

The first map considered presents a central structure and layered bedrock in a
30-kilometre diameter crater2 in the Noachis Terra region3. The total area covered
is near 40 km2. The dimension in nodes is 3270 x 6636. In this map we set the initial
point to the coordinates (700, 1500) and the goal to (2800, 6000). Then, we have
run A* and 3Dana with the configurations defined above. The results obtained for
the different paths are given in table 4.1, and some of them are depicted in fig. 4.8.

Figure 4.8: Paths obtained for the DTEEC 017147 1535 using A* and different
configurations of 3Dana. Image rotated 90◦.

1DTMs are available at http://hirise.lpl.arizona.edu/dtm
2http://uahirise.org/dtm/dtm.php?ID=ESP_017147_1535
3The location in Mars of the selected areas can be seen in fig. B.1.

http://hirise.lpl.arizona.edu/dtm
http://uahirise.org/dtm/dtm.php?ID=ESP_017147_1535


4.3. 3Dana experimental evaluation 89

Table 4.1: Paths data for DTEED 017147 1535. In bold: best path length plus total
turns for each maximum slope.

Alg. Max. slope αw Length (m) Turn (◦) Time (s) Expanded nodes

A* - - 11010 31770 1120 2497903

3Dana - - 10189 751 776 2503970

A* - 11079 37260 1347 2873747

30◦ 0.0 10266 1676 1158 2560630

3Dana 0.5 10326 1402 4288 2689312

1.0 10340 1355 6016 2687201

A* - 11090 34245 1031 2427605

25◦ 0.0 10354 2372 1056 2445298

3Dana 0.5 10403 2203 2770 2769846

1.0 10467 2635 5147 2911966

A* - 11427 39915 1023 3032953

20◦ 0.0 10822 4918 1842 4087662

3Dana 0.5 10887 3742 4112 3870873

1.0 11022 3720 5670 3990782

A* - 12834 56475 1237 4902528

15◦ 0.0 12116 7404 2196 5403052

3Dana 0.5 12235 7017 4039 5230152

1.0 12336 6887 6332 5140151

A* - 15434 73260 833 5213506

10◦ 0.0 14703 10815 1617 5514326

3Dana 0.5 14979 10355 2485 5384046

1.0 15193 10923 3147 5391994

Given the data, we can observe that the path length and the heading changes
obtained by 3Dana are better than the values obtained by A* for all configurations.
As we consider maximum slopes for the path, we can see that as higher is the
restriction imposed (i.e., smaller slope allowed), both, the path length and the total
turns increase. This is specially notorious when we restrict the slope to 10◦, in
which the path length is 1.35 times longer that the path restricted to 20◦ (without
considering heading changes). Regarding to the heading changes, we can appreciate
that, higher αw values effectively reduces the total turn parameter. However, we
can see cases in which using αw = 1.0 the values of the heading changes increases
respect to its previous configurations. For instance, this happens with maximum
slopes of 25◦ and 10◦. While this parameter works fine in flat environments (see sec.
4.3.1), considering the elevation seems to affect negatively sometimes. Particularly,
attempting to avoid heading changes can lead to follow longer paths, as we can
discard better paths (as function of the slope) in spite of reducing the turns. Also,



90 Extending 2D path planning algorithms to 3D surfaces

Figure 4.9: Area of the map expanded by 3Dana (with αw = 0.0) for the first
experiment, considering different slopes. From left to right: no slope consideration,
20◦ and 10◦.

we can observe that the runtime increases with higher αw values. 3Dana requires
some time to find paths as a consequence of both, the re-expansion process of the
nodes and the computational cost related to the management of the DTM (note that
the DTM used is quite wide).

Figure 4.9 provides a visualization of the expanded nodes for different configura-
tions of 3Dana. In the left figure we can appreciate that the expanded nodes follow
the path obtained by 3Dana αw = 0 with no slope in the fig. 4.8. Then, the center
figure requires more expansions, as the maximum slope is restricted to 20◦. Finally,
the right figure requires to expand more areas from the top, but there are others
areas that are not considered during the search (e.g., the crater), which correspond
to zones with slopes higher than the limit imposed. Then, 3Dana selects a path that
stays away from the crater, but also surrounds the hills. This path is longer, but
safer and maybe more efficient as it does not climb hills.

The second map considered presents an uplift of a 30-kilometre diameter crater
in Noachis Terra4. The total area covered is near 15 km2. The dimension in nodes
is 2960 x 2561. In this map we set the initial point to the coordinates (800, 600) and
the goal in (1800, 2500). We have run the same experiments, i.e., αw ∈ {0.0, 0.5, 1.0}
and maximum slopes between 10◦ and 30◦. However, in this map, there is no valid
path that does not exceed the 10◦ slope limitation.

4http://uahirise.org/dtm/dtm.php?ID=ESP_030808_1535

http://uahirise.org/dtm/dtm.php?ID=ESP_030808_1535


4.3. 3Dana experimental evaluation 91

Figure 4.10: Paths obtained for the DTEED 030808 1535 using A* and different
configurations of 3Dana.

Figure 4.11: Area of the map expanded by 3Dana (with αw = 0) for the second
experiment, considering different slopes. From left to right: no slope consideration,
20◦ and 10◦ (no path found in this case).

Table 4.2 presents the results of these executions. As for the first experiment,
3Dana outperforms A* in both, path length and total turns for all cases. As well,
we can appreciate that the path length increases more than 1 km from the case with
maximum slope of 20◦ to the case of 15◦. If we analyse the heading changes, we
can also appreciate that increasing the αw value not always improves the heading
changes. In fact, usually when more limited is the slope, higher αw values trend to
degrade the paths, while increasing the heading changes.

In fig. 4.11 we can appreciate the nodes expanded during the search for cases
without considering maximum slope (left), maximum slope of 20◦ (center) and 10◦

(right). This last case is remarkable because neither A* nor 3Dana are able to found
a path. For 3Dana, we can see that the algorithm expands several nodes, but there
is no path that allows to safely traversing the desired goal. Then, fig. 4.11 (right)
provides a vision of the reachable areas of the map when we restrict the maximum
slope to 10◦. This could provide an insight of the terrain that can be useful for
human operators during the mission planning.



92 Extending 2D path planning algorithms to 3D surfaces

Table 4.2: Paths data for DTEED 030808 1535. In bold: best path length plus total
turns for each maximum slope.

Alg. Max. slope αw Length (m) Turn (◦) Time (s) Expanded nodes

A* - - 4800 13995 49 407544

3Dana - - 4493 478 77 720744

A* - 4986 20790 198 797942

30◦ 0.0 4662 3145 235 1034084

3Dana 0.5 4705 2221 576 1062632

1.0 4839 2388 904 1401925

A* - 5440 27765 301 1577711

25◦ 0.0 5077 3374 369 1705122

3Dana 0.5 5145 2703 701 1638401

1.0 5170 2658 831 1566578

A* - 5990 28080 343 2129666

20◦ 0.0 5665 4442 433 2230932

3Dana 0.5 5776 4241 777 2150387

1.0 5786 4428 983 2153923

A* - 7387 41850 244 2712912

15◦ 0.0 7010 8569 409 2789358

3Dana 0.5 7175 9066 749 2721862

1.0 7450 9061 901 2774165

A*
- No path

3Dana 10◦

In the experiments carried out on the Mars maps, we have noticed a degradation
on the path turns with high αw values that are not reproduced with the synthetic
maps (evaluating the DTM or in combination with a cost map). While the synthetic
DTMs are mainly hills and valleys, real maps have different characteristics (e.g., hills,
fissures). Higher αw values (> 0.5) force the algorithm to follow the current heading.
On the complex Mars surface, this can have an undesirable effect as may lead the
path to an hazardous area in which many heading changes are required to arrive to
a suitable terrain. In fact, it is remarkable that this behaviour is directly related to
the slope limitation; without (or soft) slope restriction, αw works as expected.



4.4. Summary 93

4.4 Summary

Path planning on flat surfaces is not enough when dealing with robotics such as
rovers, which are designed to move on uneven terrains. Then, it is required to
exploit more realistic terrain representations, and a path planning algorithm that
can work with them. Then, in this chapter we first defined an accurate mathematical
representation of a DTM. By means of lineal interpolation methods we can provide
the elevation at any point, which allows using any-angle path planning algorithms.
Exploiting such representation, we introduced the 3Dana path planning algorithm
that takes advantage of previous algorithms such as S-Theta*. 3Dana is able to
plan the paths having in mind the terrain elevation, allowing the user to define
slope constraints. Then, the algorithm can discriminate paths that overcome the
slope limitation imposed, providing safer and reachable paths. Moreover, it is also
possible to use a traversability cost map in combination with the DTM to characterize
other terrain properties as done with algorithms like Field D*. Finally, 3Dana allows
defining the relevance of the heading changes, generating smoother paths in a similar
way as done by S-Theta*.





Chapter 5

Interleaving path and task planning for
deliberative layers

This chapter provides the description and functionality of the up2ta planner. This
system is intended to be a deliberative layer for autonomous controllers for mobile
robotics. Specifically, its application is to those domains in which there are several
goals allocated in different positions and the optimality of the solution depends on
the total distance travelled. Thus, next section introduces the motivation of such
system. Following, early PDDL models that integrates path and task planning to
be solved by a PDDL planner are presented, while the models used by up2ta are
provided as well. Then, some concepts required to understand the new planner are
defined. Section 5.5 presents the planner architecture. The chapter ends with an
experimental section applying up2ta to an exploration domain.

5.1 Integration of path and task planning

Most of the autonomous controllers presented in sec. 2.1 have been demonstrated
in mobile robots, that move and perform tasks in a variety of environments. In
order to do that, they have to avoid obstacles, find safe trajectories and plan the
tasks. Generally, they move in known or partially known surfaces and the number
of decisions is usually limited.

However, when dealing with increasing number of goals we require more capable
systems to achieve the goals considering how to optimally order them. For instance,
the mobility and science capabilities of new science missions such as the new rovers for
planetary exploration (e.g., Mars Science Laboratory (MSL), ExoMars) increase from
the previous missions, requiring more powerful tools to assist on-ground operators to
plan the long term targets. In this regard, in previous missions plan the path followed
by the rover was not a complex task due to the short distances they could travel per
day. Nevertheless, a critical aspect in future missions is to try to optimally plan the
path that a robot should follow while performing scientific tasks [125]. In addition,
improvements for such domains can also be incorporated into commercial robotic
applications, e.g., performing inventory tasks in a large warehouse or autonomous
logistics domains.



96 Interleaving path and task planning for deliberative layers

For this reason, we need a planner that integrates capabilities of path planning
(introduced in the previous chapters) and task planning. The main idea is to take
advantage of path planning heuristics and merge them with domain independent
heuristics to generate better solutions in mobile robotic domains. Following this
approach, we propose a planner, called Unified Path Planning and Task Planning
Architecture (up2ta) [129], which is able to plan paths considering the shortest path
while performing the objective tasks in an efficient ordered way. A PDDL planner
is responsible of ordering the tasks while a path planning algorithm searches for
the route between tasks. In up2ta, these planners are highly coupled, merging the
heuristics of both planners to provide better solutions for mobile robotics domains.

5.2 PDDL models for interleaving task planning and
path planning

In the literature we can find different approaches focused on integrating task plan-
ning and motion planning, which are more related to the manipulation of objects
employing robotics arms (see sec. 2.4). However, our objective is to efficiently plan
the paths that a mobile robot has to follow to achieve a set of targets. In this regard,
while our objective is different, the techniques required to perform such integration
are similar to the previous works. In this direction, the main issue is to integrate
domain specific information in a task planner, interleaving task and path planning.

Our first approach to solve a mobile robotic domain was to integrate a DTM
within the PDDL problem and provide a description of the movement actions in the
domain. Then, we solved the problem using a PDDL planner (see fig. 5.1a). How-
ever, this solution did not provide good results. The problem of using a PDDL-based
planner to integrate both path planning and task planning presents two drawbacks.
First, the complexity of the domain and the problem. In our domain we used eight
possible movement actions north, south, east west, north-east, north-west, south-
east, and south-west. However, the critical part is in the problem, where we need
to provide the DTM in a grid form. This means that we have to define all nodes
and their connections. In other words, what nodes are adjacent with each other.
Second, the size of the grids (at least 500 x 500 nodes). The planner must instan-
tiate a huge number of actions. Particularly, the movement action is instantiated
for every adjacent pair of nodes. Considering the possibility of movement in eight
directions, we can instantiate eight possible move actions for each node. This results
in an exponential explosion of the search space. The more locations we define in the
problem, the more instantiated operators will be generated. So, even for medium
size maps, the search is intractable and no state of the art planner could solve it
(partially or fully grounded planners).

Solving small maps with this approach leads to routes with headings restricted
to multiples of π/4 since we have defined movements in diagonal, horizontal and
vertical, which may cause sub-optimal paths (as happens with A* in eight-connected
grids). We could have defined more operators in order to smooth this restriction,
but the search was already intractable. In this direction, we have first used ff [72],
increasing the grid size. Results show that the planner can manage 50 x 50 grids



5.2. PDDL models for interleaving task planning and path planning 97

(a) Using a PDDL based planner (b) Interleaving both planners

Figure 5.1: Possible solutions to merge path planning and task planning.

with 6 and 9 tasks in 1 and 2 seconds respectively, but requires a high amount of
memory (near 1 GB). Increasing the map size implies that ff is unable to manage
the problem size, and thus, it cannot provide a solution. Since we wanted to test if
the behaviour only occurred in ff, we did the same test with other fully grounded
planners such as SGPlan [73], getting the same behaviour. We have also performed
the same test for the partially grounded planner SatPlan2006 [157]. Results were
even less encouraging since more time was needed to solve the basic problems that
ff was able to solve.

A better solution is to decouple path planning and task planning using a three
phases planning process (see fig. 5.1b). The idea is to include a path planner
that generates a visibility graph considering all the waypoints given in a PDDL
problem (that is, the initial and goal positions). This reduces the complexity of the
PDDL domain because all the movement actions are reduced to a single one that
traverses between waypoints. On the other hand, the PDDL problem includes only
the relevant positions. By doing this, it is no longer required to include the DTM
in the PDDL model, as the path planner considers it during the path search. This
reduction in the number of actions and objects also decreases the workload of the task
planner. Then, the PDDL planner provides a solution in which there are movements
between waypoints, but without providing the real path between them. The last
phase replaces the movements between waypoints with a valid path by executing
again the path planner. Finally, we obtain a plan in which tasks and movements are
properly interleaved.



98 Interleaving path and task planning for deliberative layers

This approach has two advantages: (i) it allows to easily interchange the PDDL
planner and path planner to exploit different algorithms, and (ii) it eliminates zig-
zag patterns and provides better routes when it uses an any-angle path planning
algorithm. However, this schema presents a major drawback: as there is no shared
information between the path planner and the task planner during the search phase,
solutions generated can be highly inefficient. In particular, the selection of the task
planner has a big impact in the solution optimality as the domain independent
heuristic does not take into account the distance among tasks during the search.

In this sense, we have performed an experiment using SGPlan, OPTIC [15] and
up2ta in a classical exploration domain where each task performs a single action in
a determined location. In particular, the test consists of 10 maps of 100 x 100 nodes
(considering a distance between nodes of 1 meter) with 20% of blocked cells. For
each map, two scenarios with 6 and 12 tasks randomly distributed are defined. For
all planners, the path planning algorithm employed is S-Theta*, so the differences
in the path length to accomplish all tasks are due to the task ordering rather than
the path planning algorithm. The average results of this test is shown in table 5.1.
Regardless of the reduced number of scenarios tested, the difference between the
solutions provided is significant. SGPlan provides worse results than OPTIC, and
up2ta gives the best results. This is evidence that when we merge the heuristic of
the path planner and the heuristic of the task planner we get better results than
independently. A detailed discussion on this issue will be presented in sec. 5.6.

Table 5.1: Results for the execution of different maps (with a dimension of 100 x
100 m) with up2ta and two different PDDL-based planners. All use S-Theta* as
the path planner. In bold, best values.

# tasks Planner Runtime (ms) Path length (m)

6

SGplan 2007 413.780

OPTIC 2653 389.600

up2ta 1661 164.363

12

SGPplan 8364 1785.121

OPTIC 69800 1386.400

up2ta 8917 718.340

5.3 Input files for up2ta

The idea behind the up2ta planner comes from our experience using a PDDL planner
as the deliberative layer for the control of a mobile robot in exploration domains. We
want a planner that gets a closer to optimal ordering of multiple tasks placed in a grid.
In order to do that, we combine a modified ff planner and a path planning algorithm
to work together in a coordinated way. The resultant system, called up2ta, takes
the benefits of (i) a PDDL planner for task planning using PDDL problems and
domain independent heuristics, and (ii) a path planning algorithm for generating
better routes using a DTM and domain specific heuristics.



5.3. Input files for up2ta 99

To perform the integration, our first objective is to remove any information of the
path planning operations from the task planner. That is, we do not want that the
task planner provides the path, it just connects the different targets in an efficient
order. For this reason, the PDDL domain and problem do not contain the DTM (it
is only used by the path planner). Then, the files required by up2ta are:

• Domain and problem: up2ta accepts any PDDL version that is supported
by the PDDL planner used in the integration. However, up2ta requires in
the domain description an action called MoveTo that allows the robot to move
between waypoints (wp). Besides, the problem file does not need to provide
a DTM, just the waypoints in which we want to perform a task or traverse
through. These waypoints must have the form Ca_b to represent a position
with coordinates x=a and y=b. Figure 5.2 shows a valid domain for up2ta.
As well, fig. 5.3 shows an example of a problem file that has three waypoints:
C1_1, C9_5, and C6_8; the first one represents the initial position (which is also
the desired final one), and the second and third ones represent where the goals
are placed. An extended version of this domain is explained in sec. 6.2.

• DTM: this file contains the information of the terrain. The codification and
content depend on the path planning algorithm used. If the algorithm works
as the ones presented in chapter 3, a map with blocked and unblocked cells
is required. However, more complex path planning algorithms require also
a traversal cost map, which contains the costs related to move through each
region of the map for algorithms like Field D*, or a more complex DTM for
working in 3D environments, for instance, using 3Dana. There is a relationship
between the DTM and the PDDL files: each location defined in the PDDL
problem (Ca_b) corresponds to a position in the DTM with coordinates x=a

and y=b.

Using these files, the up2ta planner provides a sequence of actions with the
(sub)optimal paths between the tasks, which achieves all the goals defined in the
PDDL problem.



100 Interleaving path and task planning for deliberative layers

(define

(:domain UP2TA-exploration)

(:types wp subsyst ptu_aim - object)

(:predicates

(on ?s - subsyst) (off ?s - subsyst)

(robot_at ?n - wp) (ptu_pos ?p - ptu_aim)

(picture ?n - wp ?p - ptu_aim) ...

)

(:action MoveTo

:parameters (?n1 ?n2 - wp)

:preconditions (and (robot_at ?n1) (on gnc)

(ptu_pos P0_0))

:effect (and (not (robot_at ?n1))

(robot_at ?n2))

)

(:action TakePicture

:parameters (?n - wp ?p - ptu_pos)

:precondition (and (robot_at ?n) (off gnc)

(on cam) (ptu_pos ?p))

:effect (picture ?n ?p)

)

(:action Drill

:parameters (?n - wp)

:precondition (and (robot_at ?n) (off gnc)

(on drill) (ptu_pos P0_40))

:effect (sample ?n)

)

)

Figure 5.2: Example PDDL domain file for the up2ta planner.

5.4 Concepts and definitions for up2ta

The following terms are defined in order to understand the integration explained in
the next section.

• Ti is a task to be performed, defined as a goal in the PDDL problem. Each
task takes place on a waypoint Ca_b.

• hFF (Ti) is the ff heuristic function, which is computed using a relaxed plan
graph. It returns the estimated number of actions required to reach a plan for
a given goal.

• dist(Ti,Tj) is a specific path planning heuristic. It is generally computed as
the Euclidean distance (straight line distance between two waypoints).

• greedy(Ti,Tj) is the cost of a fast computed path between two waypoints. This
path is generated using the Alpha heuristic with an any-angle path planning



5.4. Concepts and definitions for up2ta 101

(define

(problem explor01)

(:domain UP2TA-exploration)

(:objects

C1_1 C9_5 C6_8 - wp

P0_0 P30_20 P0_40 - ptu_aim

gnc ptu cam drill - subsyst

)

(:init

(robot_at C1_1)

(ptu_pos P0_0)

(off gnc)

(off ptu)

(off cam)

(off drill)

)

(:goal (and

(picture C9_5 P30_20)

(sample C6_8)

(robot_at C1_1))

)

)

Figure 5.3: Example PDDL problem file for the up2ta planner.

algorithm (those presented in sec. 3.2), which returns a suboptimal path with
lower runtime and memory usage.

• path(Ti,Tj) is the path length between two waypoints. This path is computed
using a classical path planning algorithm such as A* or Theta*.

• H(Ti) is the heuristic function computed for a task. When a task requires a
movement between waypoints, the heuristic is computed by adding the heuristic
of the task planner (hFF ) and the heuristic from the path planner.

• C(Ti) is the cost associated to perform Ti. This is value is computed by the
task planner. Since we use ff, each action has unit cost (for non-movement
actions).

As well, we have to define the two planners to use in our integration. For the
path planner algorithm, as we discuss later, our integration makes easy to replace it
with a different one. In any case, the algorithms presented in this dissertation will
be used (i.e., S-Theta* and 3Dana).

The election of the task planner entails more discussion. There is a number of
relevant PDDL heuristic planners that have shown good performance in recent In-
ternational Planning Competition (IPC). Particularly, newer planners can deal with
complex domains that include temporal constraints or preferences [57,64]. However,
we have decided to use the well-known ff planner in our integration. It was the



102 Interleaving path and task planning for deliberative layers

winner of some competitions in the past. It is written in C, making it very com-
pact and fast, suitable for real robots applications when the processor capacity is
limited. Some newer planners such as Metric-ff and SGPlan rely on ff. There-
fore, it seems to be possible that we can integrate our modifications without much
effort in ff-based planners. Since we are more focused on evaluating the integration
between a path planning heuristic and a domain independent heuristic, ff seems
to be good enough for our purposes. It is worth underscoring that newer planners
are usually more complex to be modified due to external modules, lexical analysers,
among others.

5.5 The up2ta deliberative

Figure 5.4 shows the up2ta planner scheme. It works as a single system, but it has
two different parts: the task planner and the path planner. The control of the system
resides in the task planner, i.e., a PDDL planner. The process starts reading the
PDDL data and instantiating the defined objects such as the robot initial position,
the subsystems state, and the tasks to be performed. However, we can introduce
other parameters and/or constraints into the PDDL domain such as the subsystems
restrictions or hierarchical tasks. The DTM is given to the path planner.

Consider the domain and problem definitions shown in fig. 5.2 and 5.3. To
achieve the goal picture C9_5 P30_20 (denoted as T1), the robot must move (action
MoveTo) from the initial position robot_at C1_1 to the waypoint C9_5. Next, the
camera has to point at the angle P30_20, that is pitch = 30◦ and yaw = 20◦. Then,
the robot can take the picture (action TakePicture). This action sequence achieves
goal T1. In general, the robot should perform a MoveTo and a the required action(s)
(e.g., TakePicture) to reach a goal Ti. In this example, each task is performed at a
particular position. Therefore, Ti denotes the task and the location. For instance,

Figure 5.4: up2ta general structure.



5.5. The up2ta deliberative 103

T1 is located at C9_5, which corresponds to coordinates x=9 and y=5 in the DTM.
Then, we need to plan for the second goal T2 = drill C6_8, and finally the third
goal T3 = robot_at C1_1. Note that the robot ends at the same position where it
starts.

As mentioned previously, the order in which we achieve the goals has a significant
impact in the quality solution due to the total distance travelled. To optimally order
the tasks, we have modified the task planner search algorithm to merge its heuristic
with the path planner heuristic. For up2ta, we use ff as the task planner and
S-Theta* as the path planner algorithm. For ff, we have transformed the Best
First Search algorithm into an A* algorithm. The only difference between Best First
Search and A* is that the latter includes the heuristic computation in the node
evaluation. In addition, we have disabled the Hill Climbing search to avoid local
minimums. For the path planner, we do not need to perform any modification.

The search begins when up2ta takes each task Ti that can be performed from the
initial position (start) defined in the problem (denoted as robot_at in the example).
It calculates the task planner heuristic, hFF (Ti), and the one provided by the path
planning algorithm, dist(start,Ti). The hFF (Ti) heuristic is a domain independent
heuristic that computes an estimation of the actions required to accomplish a goal
based on a relaxed planning graph. The dist(start,Ti) heuristic is computed by
the path planning algorithm, but it is only required when the task planner needs to
instantiate an action MoveTo. In general, this heuristic is computed as the Euclidean
distance, but others can be used. The way in which we have merged both heuristics
in up2ta is by adding them as in eq. 5.1, where Tj = start at the beginning of
the search. By doing this up2ta can decide which goals to reach first based on the
distance and not only in the number of actions required to accomplish it.

H(Ti) = hFF (Ti) + dist(Tj ,Ti) (5.1)

The reason to combine the heuristics of the task planner and the path planner
is because of the way ff performs the search. If hFF is equal to 0, it means that
the action under evaluation has reached the goal, and ff returns the plan. However,
if the last action is a movement action, we need to consider the distance before
returning the plan. That is the reason why we include the path planning heuristic
in H(Ti).

Once the heuristic value is calculated, we need to compute the G(Ti) value. That
is, the cost associated to reach task Ti from the previous task. If a movement action
is required, we need to compute the distance between the two tasks. This step
plays a fundamental role in the search process because obtaining a close to optimal
ordering of the task depends on the environment. It is unusual to transverse routes
between two points in straight-line because of the presence of obstacles or terrain
features that make the path more costly. This is specially problematic when there
are tasks that are close to each other, or with high number of obstacles in the map.
In these cases, the real path length may be too far from the heuristic value and
the selection of the actions to perform first depends on the presence of obstacles.
Therefore, it seems to be a good idea to compute the real path when dealing with a
pair of tasks. However, when we deal with a higher number of tasks, computing the



104 Interleaving path and task planning for deliberative layers

distance between them requires a higher computational effort. The solution adopted
here is to use a greedy path planning algorithm (like the ones described in sec. 3.2) to
calculate estimations of the path length between a pair of tasks. As we seen before,
the heuristic modification in these path planning algorithms implies that fewer nodes
will be expanded and, therefore, less memory and time are spent during the search
of paths for partial plans.

Although this approximation does not generate the real path, the associated path
length allows us to take into consideration the presence of obstacles without spending
several time in obtaining paths between tasks that probably will not be used in the
final solution. We define greedy(Ti,Tj) as the path cost between tasks Ti and Tj

using a greedy path planning algorithm. In addition, we need to compute the cost
of the actions involved in performing a task Ti. This value is represented as C(Ti)
and it is given by the task planner. G(Ti) is a cumulative cost that depends on the
cost of reaching the previous task, the distance (estimated) between the two tasks,
and the cost of performing a task i as in eq. 5.2.

G(Ti) = greedy(Ti,Tj) + C(Ti) + G(Tj) (5.2)

The task planner keeps a list of partial plans (where a partial plan is a plan that
achieves an arbitrary task Ti) ordered by the F(Ti) values. So, each time that the
task planner extracts a partial plan, it adds it to the list. Then, the search process
continues with the extraction of the best promising partial plan. up2ta generates
all possible partial plans starting from the new location where the robot is located.
The task planner continues extracting partial plans until there are no more goals (all
objectives are accomplished), or there is no solution (unreachable task/s). When all
task are performed, up2ta does not give the solution directly. The paths computed
between each pair of consecutive tasks are processed using suboptimal algorithm
(the greedy ones). Therefore, the system takes each pair of tasks and requests the
path planning algorithm for the real path (using the S-Theta* algorithm). Figure
5.5 shows the scheme integration between the PDDL planner and the path planner.
The task planner is in charge of ordering the tasks and obtaining a plan, while the
path planning module provides an estimation of the cost between partial plans and
the routes for the final solution.

Figure 5.6 shows an example for the search process of the up2ta planner for a
problem with three goals. There are three possible tasks T1, T2, and T3 at the start
position. The first step is to calculate the heuristic and cost values H(Ti) and G(Ti)
for each task. The heuristic H(Ti) is calculated as in eq. 5.2 and it corresponds to
the Euclidean distance between the task and the current position plus the heuristic
given by the task planner, i.e., the estimated number of actions. The cost G(Ti) of
achieving the position of each task is calculated as in eq. 5.2. Once H(Ti) and G(Ti)
are calculated, there are three partial plans to be evaluated, one for each task Ti.

up2ta takes the one with lower F(Ti) value. In our example, it is the partial
plan that performs T1. Next, it evaluates the other two possible tasks T2 and T3.
In the same way, the system calculates the heuristic and cost to reach T2 and T3

from T1, which in our case T2 has the lower value. At this point, there is only one
remaining task T3, so the search finishes by adding that task. Once all tasks have



5.6. up2ta experimental scenario description 105

Figure 5.5: up2ta algorithm integration.

been selected, the ordered tasks sequence for the solution is T1 → T2 → T3. Figure
5.6 shows the most promising partial plans connected through a bold line (others
have dotted lines). Then, up2ta will calculate the real path between each pair of
consecutive tasks that have been previously ordered. Finally, the system provides
an ordered list of tasks and the paths between them.

5.6 up2ta experimental scenario description

In this section, we describe the scenario that we use in the experimental evaluation.
It consists of a mobile robot that must achieve a set of exploration tasks in different
locations. As explained in sec. 5.3, we must provide three files to up2ta: the
PDDL domain and problem, and the terrain grid (DTM). The PDDL domain was
partially presented in fig. 5.2. It describes the robot operations to manage the
different subsystems (power on/off), move between points (MoveTo), and perform
tasks (e.g., TakePicture, Drill, etc.) to accomplish mission goals. The robot is
modelled to have different subsystems. In particular, it has a scientific/navigation
camera mounted on top of a Pan-Tilt Unit (PTU), a navigation subsystem, and
drilling equipment. Each subsystem can be on or off (must be on before operation).
In addition, there are some constraints that must be considered when operating
the different subsystems. Some of these constraints are presented in the MoveTo,
TakePicture, and Drill operators. Concretely:



106 Interleaving path and task planning for deliberative layers

Figure 5.6: Representation of the up2ta search process for a problem with three
tasks.

• To move between waypoints, the rover must power on the navigation subsystem
(gnc) and point the PTU at the front position (represented as P0_0) since the
navigation camera is mounted on it. The other subsystems must be off to avoid
mechanical problems and energy overconsumption.

• To take a picture, the rover must be stopped in the desired location and with
a specific PTU position, which are defined in the goal. The camera must be
active and the locomotion subsystem must be off.

• To get a sample from a desired location, the rover must use the drilling equip-
ment to perforate the subsurface. To do this, the rover must be stopped in the
desired position and the PTU must point at the surface (this allows the rover
to take pictures during the drilling process).

Initially, all rover’s subsystems are off with the PTU pointing to the front. The
DTM, or terrain information, is in a different file. Particularly, the one that we used
within our path planning algorithms provides a grid with blocked and unblocked cells
(see fig. 5.7b). Given these data, up2ta generates the solution shown in fig. 5.7a.

MoveTo C2_7

MoveTo C6_8

MovePTU P0_40

Drill C6_8

MovePTU P0_0

MoveTo C8_7

MoveTo C9_5

MovePTU P30_20

TakePicture C9_5 P30_20

MovePTU P0_0

MoveTo C8_2

MoveTo C1_1

(a) Plan given by up2ta (b) Plan graphical representation

Figure 5.7: Solution for the problem of fig. 5.3.



5.7. up2ta experimental results 107

It is remarkable that the path planner expands the move actions between tasks to
provide free collision paths, while the task planner orders the goals to minimize the
distance travelled for the final plan.

For this domain, each task can be performed independently. That is, there is no
relationship between tasks except for the robot position. For this reason, we have
also defined a more challenging domain where tasks interfere with each other. This
new domain is an extension of the previous one that includes extra requirements
for the drilling process: it can only take one sample at a time, and it is necessary
to deliver each sample before getting a new one. The delivering process implies
going to a particular location and execute a deliver action. Once the robot delivers
the sample, it can get another one. For this domain, the planner has to take into
consideration the limited capacity of the drill to order the goals. The drill samples
must be gotten one by one, but the pictures can be taken independently. This means
that the planner must try to optimize the pictures acquisition interleaving them with
the drilling/delivering operations, when possible.

5.7 up2ta experimental results

In the following, we present an experimental evaluation on the mobile robot explo-
ration domains described in the previous section. The test consists of running the
up2ta planner with different path planning algorithms (A* and Theta* (see sec.
2.2), and S-Theta* (see sec. 3.4)) over 100 uniforms flat surfaces of 500 x 500 nodes
with 40% of blocked cells (the map generation algorithm can be found in appendix A)
and randomly placed tasks. In addition, we try different heuristic configurations for
both, task planning and path planning. For each test, we measure three parameters:
(i) the runtime for the planning process, (ii) the total distance travelled to achieve
all goals, and (iii) the total turns in degrees for the final path. The experiments
were performed with a time limit of 2 minutes for each execution. The execution
was conducted on a 2.5 GHz Intel Core i7 with 8 GB of RAM under Ubuntu 14.04.

We have performed two sets of experiments. In the first one, we use the domain
shown in fig. 5.2 and different path planning heuristics combination. In the second
one, we use the extended version of the exploration domain (with samples delivering
and unitary capacity for the drill) in which we have substituted the drill operation
with a collect and deliver task to analyse the importance of the task planner heuristic.
In general, the objective is to evaluate the best configuration of up2ta in terms of
runtime and distance travelled (modifying the path planning algorithm), and to
compare it with the results obtained with approaches that do not share information
between the path planner and the task planner during the search.

For the first test we want to analyse how the path planner heuristic affects
the tasks ordering by the task planner. We are also interested in analysing the
paths generated to select the best performance configuration as function of the dis-
tance travelled. The way that we do this is by testing three different cost functions,
F(Ti)=[H(Ti)] +[G(Ti)], for the integration of task planning and path planning:



108 Interleaving path and task planning for deliberative layers

1. We only use the ff heuristic and the cost is computed using the greedy path
planning algorithm as shown in eq. 3.6. This technique does not share infor-
mation between the task planner and the path planner. That is, it provides
solutions in a similar way that the solution proposed in sec. 5.2 in which
planners are interleaved without sharing information (see fig. 5.1b).

F(Ti) = [hFF (Ti)] + (5.3)

[G(Tj) + greedy(Ti,Tj) + C(Ti)]

2. We use the ff heuristic and the Euclidean distance as the task planner heuris-
tic. The cost is obtained using a path planning algorithm as show in eq. 5.4.

F(Ti) = [hFF (Ti) + dist(Ti,Tj)] + (5.4)

[G(Tj) + path(Ti,Tj) + C(Ti)]

3. We use the ff heuristic and the Euclidean distance as the task planner heuris-
tic. The cost is given by a greedy path planning algorithm as in eq. 5.5.

F (Ti) = [hFF (Ti) + dist(Ti,Tj)] + (5.5)

[G(Tj) + greedy(Ti,Tj) + C(Ti)]

Figure 5.8 shows the results for the above mentioned approaches. For each case,
9 tasks will be executed. As we can see, when we only exploit the ff heuristic we
obtain the worst results for all parameters. That is especially relevant in the case
of the distance travelled. The reason why we obtain these results is that we do
not provide any information about the distance in the heuristic, and then, the task
planner will only take into consideration the number of pending tasks. This may
lead to connect tasks that are located far from each other. When we include the
path planning heuristic (eq. 5.4 and 5.5), we get the same results in path length and
heading changes. The difference resides in the runtime: when we compute the path
length using a non-modified path planning algorithm, the planner requires near 20-
30% more time to generate a solution. In eq. 5.5 we use the greedy (or the modified)
path planning algorithm that is faster since it provides an estimation of the path
cost. Then, it requires less execution time. Therefore, the best configuration is the
one that uses the evaluation function presented in eq. 5.5, being the one adopted for
the up2ta deployment. In the case of the path planning algorithm, A* provides the
longer paths and the highest heading changes, while Theta* provides the best paths.
However, S-Theta* obtains the best results in heading changes, and, also, the best
paths when combining path length and heading changes. Thus, in the following we
adopt S-Theta* as the path planner for up2ta.

For the second test we have used the extended PDDL domain in which we have
substituted 1/3 of the problem’s goals by a collect and deliver task that requires
4 actions: (i) move to a location, (ii) collect a sample, (iii) move to the delivering
location, and (iv) deliver the sample. In our test, the system has unitary capacity,
which means that the current sample should be delivered before getting a new one.



5.7. up2ta experimental results 109

lo
g

(C
P

U
 t

im
e
) 

(l
o

g
((

s
))

7

8

9

10

A* Theta* S−Theta*

Eq.5: No heuristic

A* Theta* S−Theta*

Eq. 6: Classical

A* Theta* S−Theta*

Eq. 7: UP2TA

a) Runtime in seconds

P
a

th
 l
e

n
g

th
 (

m
)

1000

1500

2000

2500

3000

3500

4000

A* Theta* S−Theta*

Eq.5: No heuristic

A* Theta* S−Theta*

Eq. 6: Classical

A* Theta* S−Theta*

Eq. 7: UP2TA

b) Path length in meters

D
e
g
re

e
s
 (

º)

2000

4000

6000

8000

10000

12000

A* Theta* S−Theta*

Eq.5: No heuristic

A* Theta* S−Theta*

Eq. 6: Classical

A* Theta* S−Theta*

Eq. 7: UP2TA

c) Heading changes in degrees

Figure 5.8: How the path planner affects the task ordering. Solutions of 100 problems
with maps of 500 x 500 nodes with 40% of obstacles and 9 randomly placed pictures.
Results are clustered by the path planning algorithm (A*, Theta* and S-Theta*)
and the F function used (from left to right): no path planning heuristic (eq. 5.3);
cost function using classical path planning algorithms (eq. 5.4); cost function using
greedy path planning algorithms (eq. 5.5).

This implies that the planner should take such constraint into consideration to order
the goals in the best way possible. This is done by the task planner. There two
problems for this domain, which consist of delivering two and three samples and
taking 4 and 6 pictures, being 6 and 9 the total number of tasks respectively. The
rest of parameters are the same as the previous experiment (100 maps of 500 x 500
nodes with 40% of obstacles). To perform this test we use the up2ta planner with eq.
5.5 to compute F(Ti). In order to analyse the impact of the task planner heuristic,
we have removed the ff heuristic and used the F(Ti) shown in eq. 5.6. In any case,
we use S-Theta* as the path planner.



110 Interleaving path and task planning for deliberative layers

F(Ti) = [dist(Ti,Tj)] + (5.6)

[G(Tj) + greedy(Ti,Tj) + C(Ti)]

Figure 5.9 shows the results for the second test. We can see that when we remove
the hFF heuristic, the system is not able to find any solution for the 9 tasks case
within the given time limit. Moreover, all parameters are worse than using up2ta
with F(Ti) computed as in eq. 5.5. Conversely, up2ta solves the 6 tasks and 9

Tasks

lo
g
(C

P
U

 t
im

e
) 

(l
o

g
(s

))

7

8

9

10

11

12

6 9

Eq. 7: UP2TA

6 9

Eq. 8: No heuristic

a) Runtime in seconds

Tasks

P
a

th
 l
e

n
g
th

 (
m

)

2000

3000

4000

5000

6 9

Eq. 7: UP2TA

6 9

Eq. 8: No heuristic

b) Path length in meters

Tasks

D
e
g
re

e
s
 (

º)

2000

3000

4000

5000

6000

6 9

Eq. 7: UP2TA

6 9

Eq. 8: No heuristic

c) Heading changes in degrees

Figure 5.9: How the task planner heuristic affects the solutions. Results for 100
sample and deliver problems with maps of 500 x 500 nodes with 40% of obstacles.
Parameters clustered by the number of tasks (6 and 9) and the F function used (from
left to right): cost function using greedy path planning algorithm (eq. 5.5) and; no
task planning heuristic (eq. 5.6). In all cases employing S-Theta* as path planning
algorithm.



5.8. Summary 111

tasks problems within 6 and 60 seconds respectively. The problem of removing the
hFF heuristic is similar to removing the path planning heuristic in the previous
experiment. In this extended domain, the planner without the hFF heuristic only
tries to follow the shortest path between tasks. However, the problem is when a task
has dependencies with other tasks. In that case, the system behaves like a breadth
search algorithm, where the search space grows uncontrolled as a function of the
number of tasks. The planner is not able to properly manage the tasks ordering
to accomplish first the ones required to complete others actions. This generates
undesirable behaviours such as movements to a location in which we want to take a
sample when the previous sample is not delivered, delaying the solution.

5.8 Summary

In this chapter we presented an integration schema to interleave task planning and
path planning, with the objective of generating optimal plans to achieve several ob-
jectives in different locations. Then, it is required to evaluate the paths between
pairs of goals and properly sequence them, so the solution reduces the total distance
travelled. Following that direction, we implemented the up2ta planner, that inte-
grates the path planning algorithms presented in ch. 3 and 4 with a state of the art
PDDL planner. During the search phase, both planners share information, so it is
possible to determine the tasks ordering by means of the distance among them. In
this regard, we merge the domain independent heuristic of the task planner with the
path planner heuristic. Then, up2ta is able to provide plans that are shorter that
others approaches in which planners are loosely integrated. Besides, using a PDDL
planner provides the advantages of a modelling language, being possible to use in
different domains. Moreover, the path planning algorithm is easily exchangeable, so
we can select the best one that suits our application.





Chapter 6

A model-based autonomous controller

In this chapter we present an insight of the MOBAR autonomous controller, providing
details about the technology and models employed for each layer. First, we introduce
the controller from a global perspective. Then, the following three sections present
the layers of the controller, i.e., deliberative, executive and functional. Finally, we
show the results of the experimental evaluation of MOBAR when dealing with an
exploration domain with both a simulated robotic platform, the ESA ExoMars rover,
and a commercial robot, the TurtleBot 2 platform.

6.1 The MOBAR autonomous controller

The initial objective of MOBAR was to autonomously control the PTinto hexapod
robot [117,130] for exploration domains. In this regard, we want that starting from a
representation of the environment, a model of the robot subsystems and a set of goals,
the robot could decide when and how to safely achieve the higher number of goals.
This implies that the control architecture must take into consideration environmental
restrictions, subsystems status, energy consumption and time, and the ability to plan
and act under uncertainty and within dynamic environments. Then, we also feel the
need to reuse it for further developments, since the architectures presented in sec.
2.1 rarely allowed that, i.e., the code is not publicly accessible or there is no enough
technical documentation. In this regard, MOBAR provides an autonomous controller
that enables testing the assets produced in this dissertation, i.e., the path planning
algorithms (ch. 3 and 4) and the up2ta planner (ch. 5).

MOBAR corresponds to a hybrid 3T architecture, in which the top layer is in
charge of the deliberative process and long-term memory. The middle level or exe-
cution system also has a short-term memory, as well as a series of rules that trigger
the reactive behaviours implemented, in order to respond in a short time to eventual
external or internal situations. Finally, the low level or functional level, is respon-
sible for providing the hardware-related implementation details, and relaying the
information collected by the sensors to the upper layers.

Each layer is based on a abstracted model that defines the properties, capabilities
and constraints of the robot. The most detailed models are located in the functional
layer; they contain the robot internal state plus the abilities that it has. The upper



114 A model-based autonomous controller

layers have less detailed models, and thus, less coupled with the underlying hard-
ware. In this way, the executor is in charge of taking high level actions coming
from the deliberator and decomposing them into lower level commands supported
by the functional layer. The executor has also the capability of managing the short
term-memory reading data from the functional layer, and generating the symbolic
knowledge used by the deliberator. We aim the executor to have little dependence
on the hardware, for this reason, the high level model only knows the hardware in
terms of available subsystems and high level abstraction of constraints. In fact, the
deliberator works over a long-term memory using a symbolic formalism which in-
cludes actions that could be applied when its preconditions match with the current
context, and their expected effects when they are applied. Also, the deliberator deals
with the list of goals to achieve and the current state of the environment.

To minimize the time employed in coding the autonomous controller we have
taken advantage of different general purpose technologies to implement MOBAR.
This allows us to focus on the high level models rather than in implementation
issues. High level models can describe the system constraints and capabilities in
an upper level abstraction than the code, while also can provide supporting tools
for simplifying the development and deployment. In this way, models provide a
better way to define the platform behaviours and environmental constrains, which
are usually easier to implement, understand and maintain.

For the deliberative layer we have used PDDL [106] and a PDDL planner (or the
up2ta planner). We have chosen the PLEXIL Executive (PE) and its language, Plan
Execution Interchange Language (PLEXIL) [169] to model and control the executor.
Finally the GenoM framework [53] and Robot Operating System (ROS) [150] for the
definition and implementation of the functional layer in different robotic platforms.
The first two layers, deliberator and executor, use models (which are loaded at
runtime) and thus, are easily interchangeable in order to adapt them to multiple
robots. Instead, the functional layer is strongly coupled with the hardware but the
philosophy of the modules generation framework (GenoM) or nodes (ROS) allows
building and testing functional modules faster than do it from scratch.

Figure 6.1 shows the MOBAR architecture and the connections between adjacent
layers. These connections have great importance: each layer has a different vision of
the world in terms of how the world is and what the robot can do. So, a direct channel
of communication is not suitable, and the interconnection is done via interfaces,
providing the possibility of sending requests and retrieve data from the adjacent
layer. An interface has the capability to understand the request from its upper layer
and to respond with data that fits the model of the destination layer.

The execution flow of the autonomous controller starts when the planner obtains
a valid plan that satisfies the higher number of science targets that are set by the
user. This plan is read by the executor, which takes each action and decomposes
it in a group of lower level commands. For instance, a high level action can be
move to waypoint N, so the executor must understand this task. Then, the executor
decomposes the action into a sequence of commands executable by the functional
layer that allows the robot to power on the locomotion subsystem and to move
the desired distance. Finally, the functional layer executes the commands sent by
the executor and relays the execution result and other data (such as the internal



6.1. The MOBAR autonomous controller 115

Figure 6.1: Conceptual vision of MOBAR and its connections between adjacent layers.

state of the subsystems or the science data) to the executor. The executor is in
charge of analysing the results and acting accordingly. When everything is correct,
the execution continues normally, but if there is a failure, the executor must take
into consideration the failure type in order to entering into a safety state, or, more
typically, detect a contingency in the plan execution (e.g., an unknown obstacle).
In that case, the executor needs to update the information of the problem (as a
previous step to call replanning at the deliberative level) or try to solve the error
using a failure tolerant behaviour encoded for such purpose.

In MOBAR, the term model refers to high level models employed by the delib-
erative and executive to control the architecture execution flow. These models are
written in the specific languages used by the respective systems. For the high level
model, a PDDL domain and problem must be provided. These models are easy
to deploy and understand, but the language version and planners employed could
restrict the potential usage. For instance, using PDDL 1.0 [107] does not allow us
to deploy models that take into consideration time for actions, while PDDL 2.1 [57]
does. In the case of the executive, PLEXIL is semantically simple, but very expres-
sive and provides a good way to define hierarchical tasks decomposition and basic
resource models. The inherent problem to create PLEXIL models is that they must
be hand coded and they require an important effort in checking that the coordination
of parallel tasks is properly performed. Also, the PLEXIL model is dependent of the
service provided by the interfaces, then, filling the gap between the executive and
the adjacent layers implies a trade-off among the implementation of the interfaces
and the coding of the PLEXIL plan. That is, as more services are provided by the
interface, less effort shall be done to create the PLEXIL plan and vice-versa.

Instead, the benefits of using models could be summarized in:

• The possibility of an incremental development. This implies that we can make
a basic model of the environment and the robot, and deploy it in a small
period of time in order to test and verify the basic functionality. Then, we can
improve the environment with a more realistic scenario and include models for
secondary subsystems, fault tolerant behaviours, etc.

• Same models for different robots. The same high level models can be used for
different rovers. For example, the locomotion or cameras subsystems operation
is essentially the same in the deliberative layer since they are coded like move or
take picture actions, and the executor models are in charge of a more detailed



116 A model-based autonomous controller

description of the actions. Furthermore, the specific implementation of the
subsystem operation resides only in the functional layer.

• Improvements on the fly. Models of the architecture could be modified during
its execution adding or deleting functionality. For example, in the high level
model we can include subsystems that are not available for the robot at the
start of the mission. This potentially allows us to use this architecture with
modular robots such as the S-Bots [42] increasing its abilities.

In the following sections each layer is described in detail.

6.2 The deliberative layer

For our 3T architecture we use a general purpose P&S system based on a standard
language. Using a general purpose planner with a standard language enables the
possibility of replacing the deliberator with a more powerful one with low cost, while
also the models are reusable. In this direction, we have chosen PDDL, so we can
exploit several planners that use such language. The same domain/problem files can
be used without modification, and, if the planner support new PDDL features (e.g.,
time and metrics in PDDL 2.1 or constraints and preferences in PDDL 3 [64]) or
extensions (like PIPSS [145], which implements resources as a PDDL extension), we
will be able to extend the possibilities of the deliberator system in a short period of
time.

Let’s consider a planetary exploration scenario as an example to provide a de-
scription of MOBAR. In this regard, the deliberator goal is to obtain a close to
optimal ordering of multiple scientific tasks placed in a grid, and the paths to follow
between them. We can exploit a complex PDDL model that implements the scientific
tasks to achieve, the rover’s subsystems, and the model of the terrain as presented in
sec. 5.2. However, as it has more cons than pros (complexity of modelling the DTM
in the problem, zig-zag movements or planning requirements), we have used the in-
terleaving schema presented in the previous chapter. Then, we can detach the DTM
information from the PDDL model and exploit the up2ta planner. However, up2ta
does not allows exploiting temporal actions as it uses PDDL version 1. For this rea-
son, to also enable planning with time and resources, we have used the interleaving
schema of task planning and path planning presented in sec. 5.2 (see fig. 5.1b) using
planners that accept PDDL version 2.1 or higher. In this regard, the models used by
both deliberatives are similar, removing only the temporary definition of the actions
and the resources usage to adjust the model to the up2ta planner.

Figure 6.2 shows part of the PDDL domain for the deliberator, that is, the set
of actions that the robot can perform. These actions can only be executed by a
robot if its model has the required subsystem involved in the action. The domain
presented is used for the tested platforms, being only slightly modified in the case of
the TurtleBot, which includes a battery recharge action (not shown here). In fig. 6.3,
the problem definition for the ExoMars is presented. The TurtleBot is very similar
and not shown. In this sense, both robots have cameras mounted on a PTU, but
only ExoMars has a drill and communication equipment (some elements have been



6.2. The deliberative layer 117

removed for simplicity). However, the TurtleBot has the possibility of recharging its
battery in locations in which a dock station is placed. Goals are defined as scientific
tasks to be achieved in a specific location on the map. This model is evolved from
the up2ta template model presented in sec. 5.3 (see fig. 5.2 and 5.3), improved with
the temporal behaviour and resource usage.

(:durative-action MoveTo

:parameters (?r - rover ?p1 ?p2 - wp ?n - navmode)

:duration (= ?duration (/ (distance_to_move ?p1 ?p2)(speed ?r ?n)))

:condition (and (over all (has_locomotion ?r))

(over all (navigation_mode ?r ?n))

(over all (PTU_pos NavCam p0_0))

(at start (position ?r ?p1))

(at start (>= (energy ?r)(*(power_per_m ?r ?n)

(distance_to_move ?p1 ?p2)))))

:effect (and (at start (not (position ?r ?p1)))

(at end (position ?r ?p2))

(at end (decrease (energy ?r)(*(power_per_m ?r ?n)

(distance_to_move ?p1 ?p2)))))

)

(:durative-action MovePTU

:parameters (?r - rover ?c - cam ?p1 ?p2 - ptupos)

:duration (= ?duration (time_move_PTU ?p1 ?p2))

:condition (and (at start (PTU_pos ?c ?p1))

(at start (>= (energy ?r)(*(PTU_energy)

(time_move_PTU ?p1 ?p2)))))

:effect (and (at start (not (PTU_pos ?c ?p1)))

(at end (PTU_pos ?c ?p2))

(at end (decrease (energy ?r)(*(PTU_energy)

(time_move_PTU ?p1 ?p2)))))

)

(:durative-action TakePicture

:parameters (?r - rover ?p - wp ?c - cam ?a - ptupos ?m - mode)

:duration (= ?duration (time_to_picture ?c ?m))

:condition (and (over all (camera_mode ?r ?c ?m))

(over all (position ?r ?p))

(over all (PTU_pos ?c ?a))

(at start (>= (energy ?r) (camera_energy ?c ?m))))

:effect (and (at end (picture ?p ?m ?a))

(at end (decrease (energy ?r) (camera_energy ?c ?m))))

)

Figure 6.2: PDDL actions definition for the rover example.



118 A model-based autonomous controller

In fig. 6.2 we present three high level actions that the robot could perform.
First, the movement action (MoveTo) is based on the rover navigation mode (fast
or slow as specified in the problem) and the travelled distance. The time to travel
is dependent on the speed of the rover in the current navigation mode. One relevant
condition prior to move is to check that the PTU of the navigation cameras is pointing
to the front. The other actions are related to the picture acquisition: MovePTU and
TakePicture. First one moves the PTU associated to a specific camera from a start
pointing to a desired pointing. The duration of this action depends on the movement,
and the energy required is a fixed value multiply by the required time. To take a
picture, we need a camera with a determined mode, orientation of its PTU and the
rover stopped in the desired location. Time and energy consumption of the action is
a function of the camera and the operation mode.

To define the time and energy constraints, each subsystem could have different
operation modes with different duration and energy consumption. These elements
are defined in the problem and employed in the domain to compute the correct
values during the plan search. For instance, the locomotion subsystem has defined
two modes related to the speed of the rover, expressed in m/s. For each speed,
we also define the energy consumed. The duration and energy consumption for the
MoveTo action is, thus, calculated using these values as a function of the distance
between the current location and the next waypoint to reach.

Then, fig. 6.3 shows an example problem in which we employ the ExoMars rover
to perform a set of scientific tasks. First, we need to define the possible objects, that
is, the relevant locations, the cameras and their operation modes, the PTU positions
and, finally, the rover speed and its navigation modes. Next, there is the rover data.
It contains the initial position, energy, navigation mode and the energy consumption
of each subsystem. This includes the PTU (with the pointing positions that follows
a similar schema to the locations, i.e., p15_30 indicates that the PTU is pointing
with angles pitch = 15◦ and yaw = 30◦). Attached to the PTU is the navigation
camera (NavCam), which has the low resolution mode (lowRes). As well, the time
required to operate the different subsystems are provided.

The last part of the problem is the goal(s) definition. It defines the tasks that the
rover has to perform, such as, go to a desired location, or take an image in a specific
location and with a particular orientation and mode. If the planner supports plan
preferences, one or more targets could not be satisfied by the planner, assuming a
penalization for each unsatisfied goal. The goals defined for the rover example are:
take two pictures and finish the plan in the initial location.

In the particular case of the TurtleBot we have also included a set of actions that
allows the deliberative to decide when an energy charge (using a dock station) is
required to accomplish the objectives, and, as a common goal, end the execution at
a dock station. In fact, the charge action specifies how long the robot shall charge
its batteries by modelling the energy charged per time.



6.3. The executive layer 119

(define (problem RoverProb)

(:domain Rover)

(:objects

C0_0 C6_0 C5_-5 - wp

NavCam - cam lowRes - mode

p0_0 p15_30 - ptupos

slow fast - navmode

exomars - rover

)

(:init

(position exomars C0_0)

(= (energy exomars) 1.44)

(has_locomotion exomars)

(navigation_mode exomars fast)

(= (speed exomars fast) 0.2)

(= (speed exomars slow) 0.1)

(= (power_per_m exomars slow) 0.0025)

(= (power_per_m exomars fast) 0.0032)

(camera_mode exomars NavCam lowRes)

(= (camera_energy NavCam lowRes) 0.001)

(= (time_to_picture NavCam lowRes) 15)

(PTU_pos NavCam p0_0)

(= (PTU_energy) 0.001)

(= (time_move_ptu p0_0 p15_30) 10)

(= (time_move_ptu p15_30 p0_0) 10)

)

(:goal (and

(picture C6_0 lowRes p15_30)

(picture C5_-5 lowRes p15_30)

(position exomars C0_0) )

))

Figure 6.3: PDDL problem for the ExoMars rover.

6.3 The executive layer

An executor is a system that runs between the deliberator and the functional layer.
Its purpose is to read the high level orders generated by the deliberator and translate
them into a sequence of orders that the functional layer can execute. At the same
time, the executor has to supervise the execution of these actions: if an error arises
during the execution, it may produce that the rest of the plan cannot be executed. In
this situation the system will most likely fall into a wrong state or, in the worst case,
the entire system will fail. Then, when an error happens, the executor must have a
response to control that event. In some cases it could try to execute an alternative
command. In other cases, it will call back the deliberator with the current state so
that it can return a new plan.



120 A model-based autonomous controller

For the execution system we have used the couple PLEXIL and its associated
executor, the PE. This system has been successfully applied to prototypes of plane-
tary rovers, a drilling equipment [24, 168], and to demonstrate automation for some
operations in the International Space Station (ISS).

PLEXIL is a structured language to make flexible and reliable command execu-
tion plans. It is portable (since it uses eXtensible Markup Language (XML) for the
encoding), lightweight, deterministic (given the same sequence of events from the
external world) and very expressive. PE is the interpreter, designed to facilitate the
inter-operability of P&E frameworks.

The PE executes PLEXIL plans that are designed to perform one or more tasks.
A PLEXIL plan is a nodes tree that represents a hierarchical breakdown of tasks.
Each node has a set of conditions to control its execution and a section that describes
its function. The set of conditions that control the execution of a node (at start,
at end and during execution) can be triggered by the internal state of the executor
or by an external event (such as time, failures or commands requests). Also as
part of the conditions, we can implement a resource model for enabling/disabling
commands execution. With all these elements we can express if-then branches, loops
and parallel or batch processes. Finally, the PLEXIL language allows us to define
and use sub-plans, known as PLEXIL libraries. These libraries are PLEXIL plans
that can be attached to other plans creating an hierarchy of plans, which provides
us a structured way to made complex behaviours.

The PE executor is divided into three modules as shown in fig. 6.4. First, the
PLEXIL core that implements the PLEXIL syntax and the algorithms to execute
the plans. Then, there is a module for the management of the resources in case there
are usage conflicts. Finally, the lowest module in the figure, is an interface module
to connect the executor with an external system. The PE core algorithm processes
each node of the PLEXIL plan when it reaches its depth in the tree structure and its
starting conditions are fulfilled. When an internal or an external state changes, this
change is propagated in cascade until there are no more nodes that can be executed.
Before executing a node, if it employs resources, the resource arbiter checks if there
are enough resources available to start its execution. Commands that are executed by
an external system are described with a function name and its associated parameters,
which are accepted by an interface defined in an interfaces configuration file. This
interface must be implemented in order to connect the executor with a library that
provides the functionality requested by the PLEXIL plan. Multiple interfaces can
be defined as shown in fig. 6.4, and the executor accepts both, synchronous and
asynchronous command execution.

The executive model is a set of hierarchical plans written in PLEXIL. The top
PLEXIL plan is in charge of the planning/replanning processes, and the interaction
between the executor and the planner control. This is associated with the high level
interface adapter which allows reading the plan obtained by the deliberator and
accessing and modifying the information contained in the high level model, keeping
the deliberative database updated during execution. When the deliberative generates
a plan, the PE reads the actions one by one, and executes them. Each action must
be associated with a PLEXIL node (normally it is a PLEXIL library) that manages
the correct decomposition and execution of the commands through the functional



6.3. The executive layer 121

Figure 6.4: Representation of the PE modules and possible interfaces.

layer. This allows us to expand the functionality of the executor without modifying
other components, for instance, by adding a new PLEXIL library to control a new
functional command.

For each possible command, there is a functional module that executes it (cur-
rently GenoM or ROS). Examples of possible actions obtained from the planner are
rotate or take a picture as specified in the high level model. The rotate action corre-
sponds to a rotation request of the Locomotion module and the picture acquisition
to the Camera module. In the case of the take a picture action, some functional
commands are required: change camera mode, take picture, compress it and save
into a particular position of the memory to make it accessible. The executor is in
charge of the correct execution of this sequence, and thus, it must monitor the com-
mand execution complying with the time and the resources constraints specified in
the high level model.

In order to connect each GenoM/ROS module with the executor, there is an
interface adapter that communicates the module with the PE. This interface sends
and monitors the requests to the GenoM/ROS module, and catches the result sent
by the module. If the execution is correct, the executor continues its plan without
change, but if an error is reported, the PLEXIL plan is responsible for finding a
solution. In our architecture, the reactive behaviours are designed to manage the
failures of the plan execution at this level.

For the execution control, we have employed a top PLEXIL plan in charge of the
planning/replanning process and a set of PLEXIL libraries that decompose the high
level actions into low level commands, and execute and monitor them. The top plan
is connected with the deliberator and can access the model data in order to read
and update it when necessary. When a high level plan is obtained, the top PLEXIL
plan reads the actions of the plan and executes them through the corresponding
PLEXIL library. For example, the PLEXIL library responsible for the movement is
connected to the Locomotion module (in GenoM or ROS) and it manages the safety
of the movement command. This library can react to unexpected problems during
the movement, such as the presence of unknown obstacles or possible malfunctions



122 A model-based autonomous controller

of the subsystem (e.g., overconsumption). In the first case, the executor updates the
terrain information of the deliberator and requests a new path. In the second one,
if the movement could continue (e.g., there is enough energy), the executor must
take into account the new situation in terms of energy consumption and time needed
to move, and adapt the resource model to ensure that the rover can continue its
mission.

The basic execution flow for a general case of an action that causes a fault can
be seen in fig. 6.5. When an action is executed, the outcome is read by the executor.
If the action has been successfully executed, the plan continues nominally. However,
when the action fails, a PLEXIL plan that implements failure tolerant behaviours
shall be executed. These plans can attempt to execute the action several times or
execute alternative commands trying to continue with the current plan. In the case
that the failure tolerant behaviour cannot solve the problem, the executive updates
the planner information, that is, the PDDL problem, in order to produce a new plan
by invoking a replanning process in the deliberative layer.

Figure 6.6 shows the current PLEXIL plans using a graphical interface included
in the PLEXIL distribution. The high level plan instantiates and runs the deliber-
ative system, obtaining a plan. Then, the executor starts reading the actions and
decomposes them into lower levels commands in order to relay them to the functional
layer. The corresponding decomposition of the action into lower levels commands is
guided by specific PLEXIL plans which are executed only when a match between the
high level action and a PLEXIL library exists. This implies, for example, that the
same executive model could be used to solve the previously presented domain and
problem for the deliberator. So, the executive model can contain the operation, but
only will be executed when the robot has defined the subsystem into the high level
module, because a direct correspondence between high level actions and PLEXIL
libraries to manage these actions exists.

Figure 6.5: Definition of fault tolerant behaviours.



6.4. The functional layer 123

Figure 6.6: Graphical visualization of a PLEXIL plan during execution.

6.4 The functional layer

The functional level of the architecture must provide a good description of the ca-
pabilities of the hardware to control, and the implementation to safely operate it.
Although every robot has different subsystems and technologies, there are possibili-
ties to make standardized descriptions of subsystems functionality in order to obtain
more adaptable and reliable implementations. Therefore, we have used GenoM and
ROS for this layer.

GenoM [53, 105] is a framework that allows the definition of standardized mod-
ules. A module consists of a formal definition of the internal structures, the services
that provides, and the associated software code which is responsible for the services
execution. The framework allows us to model a subsystem into one (or more) mod-
ule(s) and to perform the functionality of the module, which are invoked by external
systems.

The creation of a module consists of two steps: a file definition (data structures,
requests interface, etc.) and the services implementation of the requests into a piece
of software called codels (which stands for code elements). When these elements
are already generated (both can be refined a posteriori) the automated tools of the
framework do the rest. The result is a server, which integrates the services and data
of the module, and a series of interface libraries to access the posters (the module



124 A model-based autonomous controller

data) and their requests. A GenoM module provides a portable and reliable service,
and allows us to integrate initialization services, interrupt routines, handle of failures,
parameters checking and coordination of services. It is interesting to highlight that
the module works in a server-client paradigm, that allows connecting more than
one client to the module, which could be useful in order to monitor the module in
real-time or enabling access to human controlled interfaces.

The MOBAR functional layer for the ExoMars simulation environment is im-
plemented with GenoM modules. Since every robot has different subsystems and
sensors, the functional layer must be implemented for each particular one. Never-
theless, following a good design philosophy and using GenoM, we can quickly adapt
the MOBAR architecture for each robot. A GenoM module first defines what it does,
and then, how it does it. Then, if we correctly define the subsystems functionality,
that is, the requests and posters of the module, we only need to implement the codels
for each robot. This implies that the interface between the executor and the func-
tional modules does not change, and thus, there is no need to modify the executor
(except for the model to include/exclude functionality).

For instance, a typical request for the locomotion module is rotate θ degrees.
The description of this service is the same regardless the locomotion mode, so we
only need to change the associated codel that implements the particular locomo-
tion method for every robot. If we use a legged robot, we implement the correct
movements of the legs to perform the rotation, and if the functional module must
manage a wheeled rover, the codel must control the velocities of each wheel. But
the description of the module and the interface to access the functionality does not
change.

Instead, ROS [150] has been used for the TurtleBot robot. ROS is a middleware
placed on the operating system that provides a framework to develop reusable soft-
ware for robotic systems. In essence, ROS operates as a distributed meta-operating
system, offering a process execution environment and powerful interprocess com-
munication mechanisms. In ROS terminology, processes are named nodes, and they
interface the robot’s sensors and actuators. In order to isolate potential errors, nodes
are independent, and usually a robot control system involves a set of nodes.

In such a distributed processing environment, communication is essential and
thus ROS provides a set of features to ease inter-node communication. The main
tool is the topic, which implements a publish-subscribe pattern. In this way, for
instance, a node controlling a sensor publishes its data through a certain topic and
any node interested in getting those data listens to the topic. ROS also implements
a one-to-one communication tool named services, where one node may offer a service
to other nodes that consume it, similarly to a procedure call.

6.5 MOBAR as a black box

Using the previous domains and problems, we can consider MOBAR as a black box
with a set of inputs (as shown in fig. 6.7) to define the specific behaviours and
encapsulate the complexity of the underlying components. In order to specify a
particular instance of the architecture, the following elements are required:



6.5. MOBAR as a black box 125

• A functional layer that provides the support to control the desired robot or
simulator.

• The interfaces configuration file that defines the available operations given by
the functional layer. This file also includes the operations to give access to the
executor from the PDDL planner in order to obtain plans, analyse the output,
and to read and/or modify the elements in the problem. This file is required
by the PE.

• PLEXIL plans to manage the execution flow and decompose the actions into
lower levels commands accepted by the functional layer. Our current top
PLEXIL plan can be used as a template to manage the planning process.

• A configuration file for the planner. This file includes the domain, problem and
DTM data, the PDDL planner to use, and the desired path planning algorithm
to employ for the path search (only for up2ta). As well, it is required some
domain specific data to parse the planner output.

With these elements we can modify the behaviour of the architecture and adapt it
to different robots without changing the implementation. We can define basic models
and improve them later using an incremental schema. For instance, we can define a
basic PDDL model to control the robot locomotion and the PLEXIL plan to manage
it. Then, we can include cameras operations and the required task decomposition
into the executor. Also, we can switch the path planner in the up2ta system, or
even, use only a PDDL planner, we can do it by simply modifying the planner
configuration file employed by the PLEXIL plan. It is worth mentioning that our
interface between PLEXIL and the planner is generic and can be easily adapted for
different PDDL models and planners.

Figure 6.7: MOBAR as a black box.



126 A model-based autonomous controller

6.6 MOBAR experimental evaluation

In the following subsections an experimental evaluation of MOBAR is provided. First,
experiments have been performed using the ExoMars rover in a simulator suite.
Second, some tests have been made using the TurtleBot robot. In both cases different
PDDL planners have been exploited, including up2ta.

6.6.1 Experiments with the ExoMars rover simulator

An important part of the investigation on Mars is the surface exploration and in-situ
experiments. The ESA ExoMars rover (fig. 6.8) pretends to be the first robot to
investigate the subsurface of Mars using a drill equipment and a subsurface sounding
radar. It provides key mission capabilities: surface mobility, subsurface drilling
(maximum 2 meters) and automatic sample collection, processing, and distribution to
instruments, using solar panels to generate the required electrical power. It will host
a suite of analytic instruments dedicated to exobiology and geochemistry research.

Moreover, the ExoMars has to exhibit autonomous capabilities: “due to the infre-
quent communication opportunities, only 1 or 2 short sessions per sol (Martian day),
the ExoMars rover has to be highly autonomous. Scientists on Earth will designate
target destinations on the basis of compressed stereo images acquired by the cameras
mounted on the Rover mast. The Rover must then calculate navigation solutions and
safely travel 100 meters per sol” [46].

The locomotion is achieved through six wheels. Each wheel pair is suspended
on an independently pivoted boogie (the articulated assembly holding the wheel
drives), and each wheel can be independently steered and driven. All wheels can
be individually pivoted to adjust the rover height and angle with respect to the
local surface, and to create a sort of walking ability, particularly useful in soft,
non-cohesive soils like dunes. The camera system’s images, combined with ground
penetrating radar data collected while travelling, will allow scientists on-ground to
define suitable drilling locations.

Figure 6.8: ExoMars artistic representation (left) and rover model in the 3DROV
simulator (right).



6.6. MOBAR experimental evaluation 127

To test the rover model and the control system, ESA has developed the 3DROV
planetary rover simulation environment [146], which allows early-stage virtual mod-
elling of terrain and mobile robots systems. This suite includes last model of the
ExoMars rover as shown in fig. 6.8 (right). The simulation environment is composed
of multiple modules connected through standardized interfaces, being the most im-
portant the Simulation Framework, that is the ESA’s Simsat, responsible for the
execution and scheduling of the simulation and the Generic Controller that man-
ages the on-board flight software. This module allows us to connect software modules
to control the rover. Also, it includes the Environment block in charge of the time-
keeping, terrain and atmospheric conditions, and the Visualization Environment, a
front-end that provides real-time visualization of the simulation progress.

ExoMars is a complex rover that requires engineering work to implement the
control architecture, specially the functional layer. Thus, the incremental design
possibilities of the MOBAR architecture allows making a first functional version of
the autonomous control despite some of the subsystems are not functional [127,132].
Figure 6.9 (left) shows a conceptual vision of the MOBAR architecture deployed to
control the ExoMars rover, and, in fig. 6.9 (right) there is a visualization example
of a resolution of a small problem using the 3DROV simulation environment.

The functional layer deployed to control the rover is formed by some GenoM
modules, but others can be added in the future (such as the control of the scientific
load for example):

• Power: this module is in charge of the energy of the rover. It takes into
consideration the available power, the recharge rate of the solar panels and
the consumption of the active subsystems to guarantee the correct thermal
and energy state. In that sense, it can deny power on subsystems when the
consumption overcomes the nominal design margin and it is able to send critical
alerts to the executor in order to assure the safety of the vehicle.

• Locomotion: to control the locomotion and the position of the rover. This
module implements a set of requests to move the rover and to update its po-
sition. The position data is exported via posters to grant direct access to the
executor to this information.

• Storage: the memory management and the compression rate for the scientific
data is performed by this module. All the scientific related modules that need
to read or write data must do it through this module.

• Communication: this module contains another two modules, one to control the
omnidirectional antenna and another one for the high gain antenna. The access
to these two modules are controlled by the Communication module that has
the visible interface with the executor. Also, it is in charge of the reception of
the telecommands from the ground station and relay them (when appropriate)
to the executor.

• Cameras: to access the multiple cameras of the rover, this module provides an
interface to the executor. Each camera has its own module to implement the
camera functionality (for example, shot mode or filter).



128 A model-based autonomous controller

Figure 6.9: ExoMars MOBAR models and execution under the 3DROV simulator.

• Mast: this module implements the mobility of the mast.

• Drill: it controls the subsurface drill equipment.

Until now, we have described the ExoMars subsystems and the specific func-
tional layer deployed to control them. In the following, we present the experiments
performed using the models presented along this chapter, exploiting the next config-
uration for the three layers:

• The ExoMars GenoM functional layer connected to the 3DROV simulator
suite.

• The PLEXIL plans without replanning capabilities or reactive behaviours.

• The up2ta planner and the task planning and path planning interleaving
schema presented in sec. 5.2 (see fig. 5.1b).

Currently we are more interested in assessing the deliberative layer due to: (i)
the functional and executive layers are more related to the engineering level, and its
development is time consuming. Then, we only implement the required behaviours
to enable the integration with the deliberative layer; and (ii) in this dissertation
we have proposed different path planning algorithms and a new P&S system for
mobile robots. Thus, we are interested in assessing how well these assets support
autonomous operations when dealing with a robotic platform. For this reason, the
experiments are only focused on the deliberative layer.



6.6. MOBAR experimental evaluation 129

We present a comparison coupling the task planner with a path planner to ensure
safe routes on a Mars-like terrain. We use the ExoMars rover and its simulation suite,
which provides a realistic physics for the wheel-soil contact. Moreover, we use 3Dana
for path planning as we are exploiting a rover with a suspension system in a complex
terrain. Due to the complexity of the model, we have only used two planners that
can deal in an efficient way with it: SGplan [73] and OPTIC [15]. We have employed
both planners to solve the same problems with different number of tasks, interleaving
with 3Dana for the path planning phase. We called these deliberatives SGplan3D

and OPTIC3D . Also, we have included up2ta that uses ff, and thus PDDL version
1. In such case, we lose the possibility to model time and energy consumption in
actions.

The results are presented in tab. 6.1, and show the runtime to obtain a plan
and the total length travelled to achieve the mission goals. In the case of up2ta,
we obtain better results for the search time due to the simplicity of the model (it
does not have the energy model neither temporal actions). However, it is remarkable
the difference in the distance travelled: up2ta clearly outperforms the interleaving
schema of task planning and path planning used in SGplan3D and OPTIC3D . In this
way, the search integration of the task planner and the path planner in up2ta, as
happened in the standalone experiments (see sec. 5.7), demonstrates the effectiveness
of the approach. In this regard, fig. 6.10 shows full routes for two problems obtained
by up2ta planner with 6 and 12 tasks. The path followed by the rover is marked
with a line, while the tasks are denoted with a dot. In the problem definition, one of
the tasks is marked to be the last one, in order to finish the route in that position.

Table 6.1: Results for the execution of different problems with the up2ta system and
two different PDDL planners combined with 3Dana using the ExoMars simulator.

Deliberative # tasks Search time (ms) Path length (m)

SGplan3D 6 2007 413.780

OPTIC3D 6 2653 389.60

up2ta 6 1661 164.363

SGPplan3D 12 8364 1785.121

OPTIC3D 12 69800 1386.400

up2ta 12 8917 718.340

6.6.2 Experiments with the TurtleBot platform

Figure 6.11 shows the TurtleBot 2 [141] robot that we have used to test the MOBAR

controller. The reasons to choose this platform among all the available in the market
was twofold: the low-cost and the possibility to use open-source software (including
ROS).

By default, the TurtleBot provides a mobility subsystem based on two motorized
wheels with integrated encoders and its electronic support to provide odometry. It
has a maximum lineal velocity of 65 cm/s and rotational of 110 deg/s. Also, it has



130 A model-based autonomous controller

Figure 6.10: Example of solutions for a problem with 6 tasks (left) and 12 tasks
(right) solved with up2ta using 3Dana for path planning. We do not show paths
for SGplan3D or OPTIC3D as the paths have several intersections that make hard
to follow the route.

three infrared sensors and a frontal collision detector. Typically, it is used with an
attached Microsoft Kinect camera, which provides optic and depth field images. In
our robot we have mounted the Kinect on top of the robot with a PTU (formed by
two servo motors) to enable camera pointing. The battery enclosed in the robot base
has a capacity of 4.4Ah. The total mass including the control hardware is near 7 Kg
with a dimension of 354 x 354 x 550 mm.

To control it, we have used a small factor PC endowed with a dual core Intel
Atom processor, 2GB of RAM with Ubuntu 14.04 and ROS Indigo. Also, we have
added an Arduino board to control the PTU and other sensors that will be added
for specific applications.

With this configuration, we are able to perform autonomous navigation, picture
acquisition and autonomous docking in recharge stations. Since we apply a long-term
path planner with a map containing the environment, we only use the odometry for
autonomous navigation, avoiding the Kinect based navigation and its high compu-
tational and energy requirements.

In opposition with the previous platform, the functional layer of the TurtleBot is
implemented using ROS nodes and connected with the executive with two PLEXIL
interfaces; one to connect to the ROS services (navigation, camera and energy) and
the other one to Arduino. The services required to provide access to the functional
layer are encapsulated into Remote Procedure Call (RPC) servers, that allows easy
interfacing with PLEXIL, while also provide a simple way to deploy tele-operation
systems.

The models for the MOBAR deliberative and executive are closely the same that
the one exploited for the ExoMars simulator. In the case of the TurtleBot we have
included in the PDDL model an action that allows the deliberative to charge the
battery in a dock station if there is not enough energy to accomplish all goals. In
particular, the duration for the recharge action is set to 10 seconds, recharging near
0.1% of the battery capacity.



6.6. MOBAR experimental evaluation 131

Figure 6.11: TurtleBot robot in our lab facilities. The dock station is visible at
left-bottom.

Figure 6.12: Panoramic view of the test area and its map representation.

Related to the path planning, we do not use 3Dana since we are not considering
the DTM (the TurtleBot is designed to work in flat areas). Thus, we have exploited
S-Theta* (see sec. 3.4) with an extension that defines a safety margin restriction
to avoid movements close to obstacles. This means that the algorithm considers an
area or margin surrounding every obstacle that the robot is enforced to avoid, but
if there is no other possibility, it can ignore the area at the expense of performing
low speed movements and moving only between the adjacent cells (i.e., behaving like
A*).

Taking into consideration these facts, the evaluation consists of acquiring different
pictures in a room (shown in fig. 6.12). The floor has a dimension of 8.0 x 5.6 m,
modelled as 20 x 14 cells (each cell is 0.4 x 0.4 meters). In the test scenario there are
two docking stations to recharge the battery as they can be seen in the figure and on
the map (in green). At the end of each test, the robot shall finish in a dock station.
However, for the initial position, the robot starts at different random locations, and,
sometimes, over a dock station.



132 A model-based autonomous controller

For the deliberative layer, we have tested the previous PDDL planners: SGplan
and OPTIC. As we are interleaving them with the S-Theta* path planning algorithm,
we call them SGplanSθ and OPTICSθ. Following, we present the different scenarios
tested with the TurtleBot where we have measured the execution time, deliberation
time, the distance covered by the platform and, for those scenarios in which there
is no replanning, the estimated distance provided by the planner. We attempted to
provide the battery consumption but the TurtleBot platform does not allow us to
obtain accurate values, so we discard such data. For this reason, we model in PDDL
the battery recharge when its level falls to 20%.

We present the results for the 6 different scenarios represented in fig. 6.13 with the
following elements: the docking stations (green), the robot position (black marker),
the initial goals (black cameras), the goals requested by the human operator during
execution (camera surrounded by a green square) and initial unknown obstacles (red
circle) if any. During the tests, the functional layer resides in the TurtleBot PC, while
the deliberative and executive layers of MOBAR are running on a laptop connected
via WiFi to the robotic platform. Next, each scenario is described in detail.

Test 1 (fig. 6.13a): starting at a dock station with full battery, the objective is
to acquire two pictures. This is the easier scenario or nominal operation where the
goals are achieved without any replan or recharge.

Test 2 (fig. 6.13b): this is similar to the previous one, but the initial position
is located at the bottom of the map and the initial battery capacity is not enough to
achieve all objectives. Thus, both planners generate a plan in which an intermediate
recharge is required.

Test 3 (fig. 6.13c): in this case, the robot starts at the top dock station and the

(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

Figure 6.13: Initial configurations for the TurtleBot test scenarios.



6.6. MOBAR experimental evaluation 133

goal is to acquire three pictures. The initial battery charge does not allow to achieve
all goals, and thus, both planners provide a plan in which a recharge is performed
before achieving all objectives.

Test 4 (fig. 6.13d): this scenario is similar to the previous one, but the bat-
tery charge is very low and the pictures requested are quite close. Due to the low
initial battery level, the generated plan requires, at least, one battery recharge. In
particular, SGplanSθ plans 4 intermediate recharges, while OPTICSθ only 2.

Test 5 (fig. 6.13e): this scenario starts with the robot near the top dock
station and two goals defined. When both pictures are taken, during the path to the
nearest dock station, the human operator requested a third picture. At that point,
the system deliberates to generate a plan to take the new image and then, go to the
dock station.

Test 6 (fig. 6.13f): in this scenario the robot initial position is close to the top
dock station and there are two goals. The first picture is taken without problem,
but, on the way to the second one, the robot hits an unknown obstacle. Then, the
map is updated to include the obstacle and the deliberative obtains a new plan to
overcome it and take the last picture. The robot ends at the dock station.

The parameters measured for each scenario are presented in table 6.2. We have
measured the following:

• Execution time: the total time to achieve the mission goals in seconds.

• Deliberation time: time in milliseconds spent deliberating to generate the
plan(s).

• Distance planned: predicted distance in meters that the robot shall travel
to achieve its goals. It is provided by the deliberative layer. We only provide
this value when there is no replanning.

• Distance travelled: is the total distance in meters measured by the robot
odometry.

With these results we can observe that the robot is able to achieve the goals
in different scenarios using various PDDL planners with the same model. However,
OPTICSθ outperforms SGplanSθ except for the time spent in deliberating. In this
regard, we can see that it is preferable to deliberate during more time to achieve
a better plan that, in some cases, can reduce the distance travelled (and thus, the
execution time and battery required) to half. This is the case of scenarios 5 and 6, in
which OPTICSθ requires more deliberation, but provides plans that better optimize
the distance.

We can see that different planners take different routes to accomplish the ob-
jectives, even if the initial conditions and the path planner algorithm are the same.
Then, evaluating and comparing deliberatives in real robotics platforms deserves a
deeper analysis than evaluating them with a small set of variables acquired from
a set of test scenarios. Meanwhile both planners achieve the solution, SGplanSθ
has better search times than OPTICSθ, which obtains better executions times and
distances travelled.



134 A model-based autonomous controller

Table 6.2: Parameters measured for the TurtleBot test scenarios.

Planner Execution
time (s)

Search
time (ms)

Planned
dist. (m)

Odometry
dist. (m)

Test 1
SGplanSθ 505 47.416 15.609 15.663

OPTICSθ 332 51.629 9.5276 9.2895

Test 2
SGplanSθ 425 58.229 11.5572 11.5758

OPTICSθ 328 337.597 10.3276 10.2951

Test 3
SGplanSθ 750 48.303 19.26 19.222

OPTICSθ 618 221.204 15.0084 14.9527

Test 4
SGplanSθ 1079 57.393 24.4852 24.4593

OPTICSθ 736 2567.94 13.9848 13.843

Test 5
SGplanSθ 588 120.153 - 23.194

OPTICSθ 427 201.463 - 11.0791

Test 6
SGplanSθ 672 163.328 - 26.5437

OPTICSθ 380 268.921 - 12.3835

Moreover, we have performed another experimental evaluation using the Turtle-
Bot without considering the temporal and energy constraints. This enables to com-
pare up2ta with the previous employed planners. The test consists of the two
following scenarios:

• Acquiring six pictures using the previous domain.

• Acquiring three pictures, and getting and delivering a sample. This domain is
an extension of the previous one that includes a collecting sample and deliver
goal. In this regard, the robot has to reach a position in which a user puts an
item on top of the robot and then, the robot shall deliver such item to another
user. Also, there is only space for one item on the robot tray, so only one item
is allowed.

We have performed each scenario three times to gather average values of the
execution. We still use S-Theta* for the path planning side. The room used for the
experiments has a dimension of 7.2 x 8.4 m modelled as 18 x 21 cells (each cell is 0.4
x 0.4 m).

Table 6.3 shows the results for the pictures acquisition scenario. The data shows
that up2ta obtains better results that the interleaving approach in terms of path
length and execution time, but at the expense of a larger deliberation time. We
can see that SGPlanSθ and OPTICSθ generate two times longer paths than up2ta.
However, it is remarkable that the path provided by SGPlanSθ requires more heading
changes, slightly increasing the execution time. Figure 6.14 shows the location of
the first scenario goals and the generated paths for each planner. The dots represent



6.6. MOBAR experimental evaluation 135

Table 6.3: Parameters measured for 6 pictures acquisition scenario.

Planner Search
time (ms)

Execution
time (s)

Planned
dist. (m)

Odometry
dist. (m)

Turn
(◦)

SGPlanSθ 47 395 23.44 23.16 527

OPTICSθ 68 370 23.57 23.32 428

up2ta 308 251 11.10 11.41 534

Figure 6.14: Planned path for 6 pictures acquisition scenario. From left to right:
SGPlanSθ, OPTICSθ and up2ta. #P identifies the order in which pictures are
taken. S denotes the start position.

points in which the robot performs a heading change. The initial position of the robot
is represented in the map by the S label. The #P labels identify the positions of the
taking picture goals, preceded by a number that represents the order in the plan. We
can see that up2ta provides paths easier to follow compared to the ones generated
by SGPlanSθ and OPTICSθ. These two systems provide paths that traverse from
south to north and vice-versa several times. This increases the distance travelled
and, therefore, the execution time. If we analyse the routes, the path generated by
SGPlanSθ first acquires the picture on the bottom left (labelled as 1P) and then
traverses to the bottom-right where it acquires the second picture (2P). However, it
would be better to complete task numbered as 5P than 2P, which is on the way. The
same happens when trying to traverse from the start position to the first picture;
there is a goal in the middle of the map (4P) that can be acquired, but it is achieved
later on. OPTICSθ has a similar behaviour. Instead, up2ta acquires first the picture
on the top-middle (1P) of the map followed by the one at the top-right (2P). Then,
it goes to the bottom of the map, but acquiring the picture in the middle (3P) before
reaching the south side. Then, it takes the last pictures of the bottom from left to
right (4P, 5P and 6P).

For the sample and delivering scenario, the results are presented in table 6.4.
In this scenario up2ta also requires more time to achieve a plan than SGPlanSθ
or OPTICSθ. However, the length of the path is nearly 33% shorter than the one
generated by OPTICSθ. Also, OPTICSθ outperforms SGPlanSθ in distance and
execution time. The paths generated can be seen in fig. 6.15. In the same way as
the previous scenario, paths are represented by lines and heading changes as dots.
In this case, there are three labels: P for Pictures, T for Taking a sample and D



136 A model-based autonomous controller

Table 6.4: Parameters measured for 3 pictures acquisition and 3 samples delivering
scenario.

Planner Search
time (ms)

Execution
time (s)

Planned
dist. (m)

Odometry
dist. (m)

Turn
(◦)

SGPlanSθ 72 672 41.21 41.71 814

OPTICSθ 138 582 34.93 35.29 766

up2ta 5041 480 26.55 26.82 615

Figure 6.15: Planned path for 3 pictures and 3 samples delivering scenario. From left
to right: SGPlanSθ, OPTICSθ and up2ta. Actions in sequential order: P=picture;
T=take sample; D=deliver sample.

for Delivering a sample (the deliver point is on top of the start position, S). If we
analyse the paths followed by SGPlanSθ or OPTICSθ, we can observe that, usually,
they do not interleave pictures acquisition with samples collecting/delivering. For
example, SGPlanSθ first takes the sample at the bottom-left (1T) and then delivers
it (2D). Then it acquires the sample at the bottom-right (3T) and delivers it (4D).
However, the picture at the bottom-middle (8P) or the one in the middle of the
map (7P) are delayed to the end of the plan. This issue results in longer paths
and suboptimal solutions. In a similar way, OPTICSθ does not properly interleave
samples acquisition/delivering with pictures acquisition. It first acquires the picture
at the top-middle (1P) and then acquires the sample at the bottom-left (2T). It
could have been a better decision to take the sample on the right of the first taking
picture (7T), but instead, it has decided to move to the south. Then during the
traverse to deliver the sample (4D), it acquires the picture at the middle of the map
(3P). Then, it acquires the sample at bottom-right (5T) and delivers it (6D). Again,
it delays the action of taking a picture close to other goal to the end of the plan
(9P). This is a consequence of the domain independent heuristic used by the PDDL
planners that do not properly consider the distance travelled during the planning
process, delaying goals even when the robot traverses nearby them. In the case of
up2ta, it performs picture acquisitions while moving to the sample acquisition goals
or to the delivery position. It starts moving to the south of the map, acquiring the
picture in the middle (1P) and then the one in the bottom-middle (2P). After, it
takes the sample at the bottom-right (3T) and delivers it (4D). The next goal is
the sample at the top-right (5T) but, before delivering it (7D) it acquires a picture



6.7. Summary 137

(6P). At this point, all pictures goals are achieved and there is only one task sample
remaining. up2ta takes the sample (8T) and delivers it (9D). We can conclude that
sharing information between the path-planner and task-planner allows interleaving
goals that are close to each other, which results in better solutions.

6.7 Summary

In this chapter we presented a description of MOBAR, an autonomous controller
focused on models and high level behaviours. In this direction, the implementation
of MOBAR is done by means of general purpose technologies. The deliberative and
executive layers provide languages for modelling the behaviours for the deployed
application (i.e., PDDL for the deliberative and PLEXIL for the executive), which
reduces the time required for the implementation of the controller and allow focus-
ing the efforts in defining the behaviours. Then, we presented the models for an
exploration domain that is operationalised through a simulator and a real robotic
platform. This shows that the controller enables the use of different P&S technolo-
gies, while dealing with different execution scenarios that require on-board replanning
capabilities.





Chapter 7

A framework for autonomous controllers
assessment

In this chapter we address the open issue of evaluating and characterizing au-
tonomous controllers, particularly focusing on the P&S systems and their integra-
tion in robotics. For such purpose, we implement a software tool that, following the
defined methodology and performance metrics, enables to generate objective and
reproducible plan-based controllers assessment. First, we introduce the structure for
assessing autonomous controllers. Following, we define a methodology for the test-
ing process with the objective of generating objective and reproducible experiments.
Then, a set of general and domain independent metrics that enables comparison
among different P&S and P&E approaches for robotics applications are introduced.
The metrics are formally defined and exemplified in MOBAR in sec. 7.5 for the plan-
etary exploration domain introduced in sec. 7.4. Then, we evaluate the metrics in
GOAC. In sec. 7.7 we summarize the software tool that allows automatic bench-
marking. Finally, the framework is evaluated by comparing MOBAR and GOAC,
demonstrating the effectiveness of the approach.

7.1 Toward autonomous controllers assessment

When we are interested in evaluating the performance of an autonomous control ar-
chitecture, we need to take into account all the components of the architecture, not
only the deliberative ones. The configuration of the architecture, that is, the hierar-
chy built on top of a set of different components and how they are connected, plays
a fundamental role: some planning technologies generate a complete plan before ex-
ecuting it, while others generate partial plans, interleaving planning and execution
in a loop. This implies questions such as the different delays interchanging data
between components that affects the performance of the system. In order to analyse
different deliberatives, we need to employ the same functional support, while em-
ploying different technologies for P&S over the same problems. Thus, we can obtain
valuable information to better understand how the different components interact,
and to select the best controller and configuration for a particular problem.

If we want to analyse and to compare autonomous controllers, we need to provide
not only a valid methodology for the testing process, but also a tool that helps and



140 A framework for autonomous controllers assessment

guides users during the different phases. Since in the current state of the art we
cannot find any system that accomplishes both objectives, we need to start defining
the requirements for such effort. In that sense, starting from lessons learned from
the experiments reported of different autonomous controllers, and from the different
works that try to characterize and evaluate autonomous controllers, we identify a
set of requirements to cope with the purpose of defining a methodology and testing
environment for objective evaluation of autonomous controllers. These requirements
are the following:

• Objective of the test: first, we need to define what is the objective of the
test. It is not the same to compare two autonomous controllers in the same
scenario than evaluate the performance of an autonomous controller in different
scenarios. For the first case we need to analyse general parameters applicable
to both controllers, while in the second one we can be more specific.

• Metrics: in function of what is our objective, we need to define what we want
to measure. This is a fundamental step: the result of the evaluation depends
on the selected metrics. It is important to define at least a small set of metrics
that are commonly applicable to all autonomous controllers. Moreover, if we
want to focus on a particular autonomous controller, we can include specific
metrics for that controller in our tests.

• Scenarios: the scenario can be defined as the initial set of constraints and
goals that the autonomous controller takes as input. In general, we will have
a domain that represents the interactions between the world and the robotic
platform, and a problem, that defines the objectives to accomplish. However,
to deal with uncertainty, this classical approach is not enough: autonomous
controllers shall deal with challenging scenarios in which the environment is
dynamic; external agents can send more goals during execution and even some
failures can occur, requiring capabilities such as replanning and failure recov-
ering schemes. Then, it is required that the description also includes different
execution scenarios.

• Instantiation: usually it is required to generate different files that combine
various sets of initial constraints and goals (scenarios), which are lately em-
ployed by the autonomous controller. Also some autonomous controllers can be
deployed with different configurations, so, a tool that simplifies and automates
this task to allow executing a large number of tests is necessary.

• Execution: an autonomous controller often requires some manual work to be
executed. This is an important lack that shall be solved if we want to perform
exhaustive tests campaigns. A tool that automates the process of instantiating,
executing, monitoring, collecting and analysing the data of several executions
of an autonomous controller is required. Also, that tool shall support modifi-
cations of the nominal execution, by automatically injecting goals or failures
to test different operative scenarios.

• Evaluation: with the data gathered an objective evaluation shall be per-
formed. Since a large amount of data can be produced during the execution,



7.2. A methodology for autonomous controllers assessment 141

we need a tool that compacts the information into standard reports to be
shared along different research centres. This implies not only to create a tool,
but also to define a general representation for the data produced.

• Reproducibility: if we want to provide valid experiments, they shall be repro-
ducible by others researchers. In this way, providing the metrics, the scenarios
definition and the configuration of the autonomous controller, each researcher
must be able to reproduce the results by her/himself.

• Costs: next to the reproducibility are the costs. Typically the experiments
are done using robotics platforms that are expensive or even unique and not
accessible to all researchers. Thus, experiments done in this way are not repro-
ducible. Then, a solution is to employ software simulators publicly available
and/or accessible robotic platforms.

For this reason, we address the problem of creating a software environment and a
methodology for testing the autonomous capabilities of robot controllers, in particu-
lar, those endowed with deliberative capabilities. This framework, called On-Ground
Autonomy Test Environment (OGATE) [120–122], is intended to be an integrated en-
vironment to test features of autonomy software of different autonomous controllers.
Moreover, its objective is to enable quantitative comparison based on accurate exper-
iments and qualitative analysis allowed by inspection and visualization of software
internal monitors of the controlled system. Also, the possibility of creating exper-
iments concerning either single features or a combination of them is required to
analyse and obtain a better comprehension of the interactions between the different
layers of the architecture. These features are enclosed in a methodology for defin-
ing the testbench and a set of metrics that enable general autonomous controllers
assessment. Both elements are operationalised in the OGATE software tool, which
provides the automated support to instantiate, execute and evaluate autonomous
controllers under a unified platform. It is proposed as a partially interactive tool
to help designers and operators of autonomous controllers to deal with performance
evaluation, while also provides a unified interface for in-execution control and met-
rics inspection of the controlled system. Focusing on the performance evaluation,
OGATE acts as an automatic tool instantiating and executing the required compo-
nents of the autonomous controllers and scenarios defined by the user, supervising
the execution and generating a report with the metrics retrieved.

7.2 A methodology for autonomous controllers assess-
ment

If we want to analyse the performance of a plan-based controller while generating
reproducible assessments, we need to follow a common methodology. In the same
way as Gertman et al. [65], we propose a methodology for autonomous controller
assessments composed on sequential phases. Our methodology can be described as
the composition of three sequential phases: evaluation design, tests execution and,
report and assessment.



142 A framework for autonomous controllers assessment

In general terms, given one or more autonomous controller to be assessed, a set
of evaluation objectives should be isolated and some performance metrics must be
formally identified. Then, a set of suitable experiments should be defined and per-
formed in order to collect relevant information that will constitute a quantitative
basis for the evaluation process. Finally, reports should be generated to point out
measurements indicating the performance of the controller according to the evalu-
ation criteria and metrics defined in the first phase. Particularly, a synthetic view
of measurements can be generated, e.g., through graphical reports, to simplify the
comprehension of the performance data. In the following, each phase is described in
detail.

1) Evaluation Design. First, it is required to identify the evaluation objectives. In
fact, according to the evaluation target different aspects may result relevant (or not).
For instance, measuring the distance travelled or battery consumed could provide
relevant information. In this case, very specific parameters can be considered and
analysed. Regarding to the evaluation objectives, a metrics definition task is required
to determine the parameters that should be measured during experiments execution.
By means of a set of general metrics it is possible to compare performance of different
control systems in the same operative scenario. In this way, for general assessments of
autonomous controllers, metrics defined in sec. 7.3 will be applied. Besides, focusing
on a particular autonomous controller or an operative scenario allow considering
specific metrics in addition to the general ones. For each metric µi considered, a
metric weight, µWi , that represents the relevance of the metric in the assessment
shall be defined. This is a key as the result of the evaluation strongly depends on the
selected metrics and its relevance. In the following, considering a set of n metrics,
the sum of all weights is supposed to be 100 as eq. 7.1 shows.

n∑
i=0

µWi = 100 (7.1)

Then, the definition of different scenarios and configurations to be tested should
be implemented. The scenarios can be defined as the set of constraints and goals
that the autonomous controller takes as input, i.e., the domain and problem.

However, to also deal with uncertainty, more than one scenario should be con-
sidered to investigate the behaviour of the autonomous controller under different
conditions. For instance, external agents that can dynamically generate additional
goals, or failures that may occur during execution are typically situations which an
autonomous controller should deal with. This is done by means of autonomous ca-
pabilities, e.g., replanning or failure recovering schemes. In this way, we consider
three general cases that an autonomous controller should deal with in real operative
scenarios: (i) nominal execution, when everything goes as expected; (ii) dynamic
goal injection, an extension of the nominal execution in which one or more goals are
dynamically included during the system operation; and (iii) execution failure, when
some components of the system induce a non-nominal behaviour. This forces the
controller to adapt its plan to overcome the contingency. Failures in that case can
be due to external perturbations, mechanical failures or degradation of the system
over time.



7.2. A methodology for autonomous controllers assessment 143

2) Tests Execution. Performing tests entails the execution of each scenario to be
monitored. In case of uncertainty and/or uncontrollable tasks are part of the prob-
lem, each scenario should be performed several times, to collect average behaviours
and define metric values.

In this regard, a scenario instantiation step is required to generate the set of
models needed to define a suitable set of planning domains and required goals. Also,
autonomous controllers can be deployed with different internal settings and, thus,
scenarios instantiation should also consider to enable the execution of tests with
different configurations.

Then, the tests execution is needed. This is an important step for instantiat-
ing, executing, monitoring and collecting the data after several executions of an
autonomous controller in a given scenario. During the tests execution, modifications
of the nominal execution should be considered by automatically injecting goals or
failures to also test non-nominal scenarios.

After execution, with the data collected, each metric defined has to provide a
metric score, µSi , ranged from 0 to 100 (better score) that defines the performance.
In the case of the controller cannot accomplish the mission goals, all the metrics
scores for that execution are 0. This means that failing to achieve the objectives will
have a negative impact in the controller evaluation.

3) Report and Assessment. Once all the tests are completed, a report with the
information gathered during several executions shall be provided. Reports contain
an insight of the controller behaviours, providing values for each metric as well as
generating synthesized views, e.g., by means of graphical representations to support
the users while analysing the system performance. In fact, the information provided
within the reports is to inform the users and to enable a performance assessment,
allowing an objective evaluation of the control architecture in the different considered
scenarios.

Within the assessment, we propose a controller evaluation by means of a syn-
thesized value: the Global Score (GS). The GS provides a score between 0 and 10
considering the linear combination of all metrics defined in the controller assessment.
Each metric is determined by two values: its relevance, µWi , as defined in the first
phase of the methodology (see again eq. 7.1); and its score, µSi , obtained through
tests execution. Then, the GS is computed as in eq. 7.2.

GS =

∑n
i=0

(
µSi · µWi

)
1000

(7.2)

After execution, a huge amount of generated data is expected and thus, it is desir-
able to provide reports that are human comprehensible. For instance, in ALFUS [108]
and PerMFUS [75], a three axis representation is presented. In a similar way, we
propose a circular representation, such as the one depicted in fig. 7.1, to represent
the autonomous controller assessment. In such graphical representation the metrics
scores are divided into the four quadrants. The division of the metrics scores simpli-
fies the comprehension of the evaluation, while also allows focusing on a particular



144 A framework for autonomous controllers assessment

metrics group (see next section and fig. 7.2) to perform controller comparisons. The
graphical representation has three different areas. Namely, starting from the center,
the GS, the execution times and the metrics scores area.

The GS is shown at the center. Surrounding it, from one to three circular bars
are depicted. These bars provide the average time required by the considered au-
tonomous controller to complete each operative scenario defined in the evaluation
design. Starting from the center, these bars represent: the execution time in (i)
nominal execution, (ii) in dynamic goal injection and (iii) execution failures. At the
bottom of the picture the execution times in seconds are also depicted.

Finally, the external ring in the chart presents the metrics scores. The smallest
circumference (after the GS) of the ring represents the lower score for a metric, while
the outside circumference is the best value (µSi = 100). Between both circumferences,
dashed lines highlight the 25, 50 and 75 over 100 metrics scores. In each quadrant
the metric scores are represented as a filled circular sector, that is proportionally
wide to the metric weight. Then, better evaluations are those in which more ring
partitions are filled.

This methodology constitutes a generic and reproducible process to evaluate au-
tonomous controllers while considering varying execution scenarios. In this regard,
the definition of metrics, weights and experimental cases, is the basic step on which
we can rely to reproduce the evaluation results. However, a set of generally applicable
metrics is required to achieve objective and reproducible evaluations.

Figure 7.1: Controller assessment graphical report.



7.3. General metrics for autonomous controllers assessment 145

7.3 General metrics for autonomous controllers assess-
ment

To provide autonomous controllers assessment, it is required to isolate general be-
haviours of autonomous controllers, and to formalize them in metrics. Then, using
the data collected during execution, we can provide an objective evaluation.

Performing empirical evaluations is a common practice in research. Such evalua-
tions allow characterizing and comparing different aspects of a system under study,
by means of metrics that objectively describe the relevant performance features. As-
sessing classical planners is a well established practice [103], measuring parameters
such as running time, memory usage or plan quality among others. However, the
evaluation of P&S systems in real conditions is not yet widely considered. Integrat-
ing planners with different technologies to control a robotic platform (P&E) requires
to evaluate general aspects and avoid domain dependent characteristics.

Analysing the execution of an autonomous controller, a plan guides the platform
toward achieving the goals. Such plan is obtained by applying P&S techniques over
a domain that represents the robot behaviours and the environment. Then, the
performance will be greatly influenced by the deliberative and the representation
used. Besides, the deliberative has to be connected to the functional layer to exploit
the robot capabilities. This integration is usually done with an executive that is in
charge of P&E integration. Then, how well these components are integrated, has
to be assessed as well. For this reason, we have classified the metrics introduced
following into four groups accordingly to the behaviours that they measure, as show
in fig. 7.2:

Plan accuracy P&E integration

Plan Time Accuracylb Controller Processor Usage

Plan Time Accuracyub Controller Memory Usage

Plan Effective Time Controller Dispatching Time

Controller Sensing Time

Controller Monitoring Time

Controller Reaction Time

Planner model adequacy Planner performance

Command Time Discrepancylb Planner Deliberation Time

Command Time Discrepancyub Planner Deliberation Memory

Planner Model Analogy Planner Deliberation Efficiency

Planner Synchronization Ratio

Planner Synchronization Frequency

Model ← → Controller

Figure 7.2: Clustering of the proposed metrics into four areas.



146 A framework for autonomous controllers assessment

1. Plan accuracy. We want to evaluate the quality and accuracy of the plan
when it is being executed. Assessing the plan generated will allow us to ensure
that it is suitable for real applications. This evaluation requires to execute
the plan; standalone test cannot isolate the uncertainty implicit in a robotic
application. Then, to provide a general evaluation of the plan regarding to its
execution, we introduce three metrics:

• Plan Time Accuracy Lower-Bound: evaluates how well the minimal
plan duration fits the execution time.

• Plan Time Accuracy Upper-Bound: in a similar way that the previ-
ous metric, it assesses if the plan is time coherent with its execution, i.e.,
it finishes before reaching the maximum time planned.

• Plan Effective Time: gives a measure of the time employed by the
platform executing the plan, i.e., the time in which the platform is not
idle or waiting for external events.

2. Planner model adequacy. Different domains can be used to solve the same
scenario. In this way, we aim to analyse how well the actions defined in the
domain fit the robot behaviours. As the plan generated is dependent of the
domain employed, we need to check the correctness of the high level definitions
of the robot behaviours. Assessing the domain will allow us to improve its
adequacy. We have defined three metrics:

• Command Time Discrepancy Lower-Bound: evaluates how accu-
rate is the temporal definition of the modelled actions, by analysing the
minimum duration defined in the model and facing it with the execution
time.

• Command Time Discrepancy Upper-Bound: measures the discrep-
ancy between the time employed executing actions and their maximum
defined time in the model, which enables (in addition to the previous met-
ric) the evaluation of the temporal coherence of the model and the robot
behaviour.

• Planner Model Analogy: assesses if the controller has a closed loop
between P&E, i.e., if each action carried out by the platform provides
feedback to the planner to ensure correct action monitoring.

3. Planner performance. Usually, deliberation is an expensive task, so we want
to characterize the planner performance. Moreover, different P&S systems can
be used for the same domain. Then, to properly evaluate the planner perfor-
mance we need to choose the best deliberative for our application. Moreover,
it is also expected that the deliberative monitors the plan execution to ensure
that the operative constraints remain safe. Then, how the planner monitors
the plan execution is also object of study. We propose five metrics to assess
the planner performance:

• Planner Deliberation Time: evaluates how much time is required by
the planner to generate the plan(s).



7.3. General metrics for autonomous controllers assessment 147

• Planner Deliberation Memory: assesses how much memory the plan-
ner uses when deliberating, facing to the required one during the plan
execution.

• Planner Deliberation Efficiency: provides the efficiency of the gener-
ated plan by analysing domain independent features, such as the number
of planned goals or the time required to achieve them regarding to the
time required for the planning process.

• Planner Synchronization Ratio: measures how often the planer re-
ceives updates from the lower layers to keep its internal database updated.

• Planner Synchronization Frequency: evaluates how often the planner
analyses the platform/environment status to check the coherence between
the planned status and the current execution.

4. P&E integration. The plan execution is not usually done by the deliberative
system. Typically, an executive entails plan execution by exploiting the func-
tional support. In this regard, deliberative, executive and functional support
must share information that rarely has a common representation. This entails
translation processes between layers, but also synchronization so all layers work
in a coordinated way. Then, evaluate the P&E integration will allow us to en-
sure that the different layers of the autonomous controller work properly. In
this regard, to assess the performance of P&E, we introduce six metrics:

• Controller Processor Usage: measures the processor usage of the con-
troller.

• Controller Memory Usage: measures the memory required by the
controller during execution.

• Controller Dispatching Time: evaluates the performance of P&E
when dispatching commands, i.e., the effort required to translate and
dispatch commands from the deliberative layer to the functional layer.

• Controller Sensing Time: assesses the time required to translate raw
data collected from the sensors to information that can be used by the
other layers (e.g., deliberative model facts).

• Controller Monitoring Time: provides a measure of the effort required
by the controller to check the coherence between the planned status and
the current status.

• Controller Reaction Time: evaluates the capacity of the controller to
react to unexpected events and external perturbations during the plan
execution.

Furthermore, these four groups can be split in two classes as shown in fig. 7.2. By
one side, P&E integration and Planner performance consider the assessment from
the point of view of the Controller. That is, they evaluate the technologies used to
implement the autonomous controller and how well they are coupled. Also, these
metrics assess the performance of the controller over a particular computer. By the
other side, Planner model adequacy and Plan accuracy are related to the correctness



148 A framework for autonomous controllers assessment

of the P&S model employed, measuring the quality of the model when is applied
to a real scenario. These metrics are independent of the hardware, but rely on the
robotic platform capabilities, e.g., commands execution time.

All the metrics depicted in fig. 7.2 will be formally presented and exemplified
in sec. 7.5 using the MOBAR autonomous controller as an study case when dealing
with the planetary exploration scenario presented in the next section. As well, in
sec. 7.6, we apply these metrics to the GOAC controller using the same exploration
scenario.

7.4 The planetary exploration case study

From now on, we will present assessments of MOBAR and GOAC to formalise and
exemplify the metrics. To do this, we exploit both controllers to solve the planetary
exploration scenario. We have selected this scenario as some of the autonomous
controllers referenced in sec. 2.1 exploit such domain for the experimental demon-
stration. The base of this scenario consists of achieving a set of targets (e.g., pictures
or samples acquisition) in different locations defined by the human team in charge of
the mission. After acquisition, the data gathered shall be communicated to a Ground
Control Station (GCS) or a satellite that may not be visible for some periods. Al-
though the scenario concept is quite easy, the implementation of an autonomous
controller to deal with is technologically challenging. To achieve the mission goals,
the robotic platform and the autonomous controller shall deal with navigation, per-
ception and decision making, among other capabilities.

In order to enable reproducible results, we have to set some parameters, i.e., the
operative rules and the robotic platform. The operative rules are typically defined
in the P&S model and must be hold during the overall mission to maintain safe
and effective configurations for the robot. For our scenario we have the following
conditions:

C1: While the robot is moving the PTU must be pointing to the front.

C2: Pictures can only be taken if the robot is still in one of the requested locations
while the PTU is pointing at the desired target.

C3: All acquired pictures shall be transmitted to the GCS.

C4: While communicating, the robot has to be still

C5: While communicating, the station has to be visible.

C6: We assume a flat terrain.

C7: There are no obstacles in the terrain.

We can exploit different robotics platforms to complete this scenario. By one
side, GOAC was demonstrated using the DALA rover, which is one of the LAAS
robotic platforms used for autonomous exploration experiments. By the other side,
we have exploited the TurtleBot platform to test MOBAR.



7.4. The planetary exploration case study 149

DALA is an iRobot ATRV that provides a number of sensors and effectors. It can
use vision based navigation (such as the one used by the MER rovers) by means of
stereo cameras mounted on top of the PTU, as well as indoor navigation based on a
Sick laser range finder. Its locomotion system is ready for uneven terrains and it has
a communication facility. Then, DALA is able to autonomously navigate, take high-
resolution pictures and communicate images to a GCS. However, we cannot exploit
the robot for our experiments as it is property of LAAS and constructing a similar one
is expensive. Then, we are only able to simulate it by means of the OpenPRS. This
simulator provides the same behaviours as the real robot and enables customizing
some of them (e.g., defining the duration of the different actions). Nevertheless, it
does not have a Graphical User Interface (GUI) to show the execution in real time
and it is not possible to modify the environment (e.g., we cannot place obstacles).

In the case of the TurtleBot we have a cheap and open-source robotic platform
that can be easily customizable. In particular, we exploit the customization presented
in sec. 6.6.2, so we have a robot that can be used for our scenario. In this sense,
the TurtleBot provides good mobility in indoor environments, but it is not able to
deal with uneven terrains; for this reason we have added the constraint C6. As
well, the robot can perform autonomous navigation using Sample Localization And
Mapping (SLAM) algorithms [49] with the data provided by the Kinect camera.
However, for our tests, we do not enable such characteristic as the on-board computer
is not powerful enough to exploit it without a significant latency. In this regard, we
navigate using the information provided by the odometry sensors, assuming that
we work on an open and free obstacle area (constraint C7). Instead, the TurtleBot
is accessible in the GAZEBO simulation environment [140], that enables a good
inspector panel of the robot status and its visualization in the environment (which
is also customizable). Using an open-source platform will ease other researchers
to recreate the experiments, either, with the real robot and/or with the GAZEBO
simulator.

Then, in our experiments we use the simulated TurtleBot in GAZEBO. As a con-
sequence, we have adjusted the GOAC functional support to work with the TurtleBot
instead of DALA. For each execution, we consider the following data:

• The initial goal is to acquire two pictures in different locations. The acquisition
of the picture implies: (i) move to a defined location; (ii) set the PTU; (iii)
take the picture and; (iv) communicate the picture to the GCS.

• A third picture goal is injected during execution (at time 55 seconds).

• It is only possible to communicate the pictures after 50 seconds.

• In the domain, the actions have a defined maximum duration of: (i) 60 seconds
for the movement action; (ii) 3 seconds for the PTU setup; (iii) 5 seconds for
the picture acquisition and; (iv) 12 seconds to transmit the picture.

• The functional layer is executing in the robot mini-pc, while the other layers
of the autonomous controller are running on a computer endorsed with a 2.5
GHz processor and 8 GB of RAM.



150 A framework for autonomous controllers assessment

7.5 Formalising and applying the metrics to MOBAR

In this section we formally define the metrics introduced in sec. 7.3. To simplify
the definition, we introduce an example to compute the scores. In this regard, we
execute MOBAR with the TurtleBot robot for the exploration scenario presented in
the previous section. Then, in addition to the initial data provided in the scenario
definition, we obtain the following relevant values after the execution of MOBAR:

• The maximum predicted time to complete the three goals (or maximum plan-
ning horizon) is 228 seconds. This value is given by the MOBAR deliberative.

• The execution time to accomplish the scenario is 149 seconds. We call this
value εt = 149.

For the experiments, we use MOBAR with the OPTIC planner as the deliberative
layer instead of up2ta. The reason is that up2ta does not allow defining temporal
behaviours for the actions, so the metrics related to the model will be very low.

The plans generated by the MOBAR deliberative are composed of fixed sequence
of actions that are sequentially executed, i.e., it is not possible to temporary reallo-
cate them during execution. Since the PDDL version used only manages one value
for the actions durations, we have used it as the maximum duration. As a conse-
quence, MOBAR is not able to provide a minimum duration for the actions neither
a minimal end time for the generated plan.

It is worth mentioning that in MOBAR P&E are loosely coupled. The planner
is only executed to generate the plan (i.e., at the beginning of the mission, when
new goals are injected or when an action fails during execution), and then, the
executive takes the control and executes and monitors the actions outcomes. Then,
the only interaction between the planner and the executive is a component that
provides access to the PDDL model and plan, while updating the problem with the
information provided by the executive.

In the following subsections we formalize and exemplify the metrics starting from
the Plan accuracy (top-left in fig. 7.2) and following the groups counter-clockwise.
To follow the methodology each metric has to provide a score denoted by µS . To
obtain such value, a formalization of the metrics is introduced, enabling to compute
the score from the data gathered during the controller execution.

7.5.1 Plan accuracy

Various P&S systems can generate different solutions for the same domain. In this
regard to assess the plan generated, classical planning performance measures (e.g.,
number of actions) are not generally applicable when dealing with uncertainty and
dynamic environments. Then, as introduced in sec. 7.3, we evaluated these three
metrics:

Plan Time Accuracy Lower-Bound – PTAlb. First, we want to evaluate if the
plan is time coherent with its execution. In this way, the plan is temporary bounded



7.5. Formalising and applying the metrics to MOBAR 151

between a minimum and a maximum duration time. The objective of this metric
is to measure the difference between the minimum plan duration (the lower plan
horizon or plan horizonlb) and the real execution time. A good plan will provide a
plan horizonlb that is smaller than the execution time; otherwise the planner or the
model employed are not timely coherent with the real system. In such case is not
possible to properly monitor the execution as the plan ends before expected. Then,
if the execution time (εt) is lower than the plan horizonlb the score for this metric is
0. On the contrary, the score is inversely proportional to the difference between the
execution time and the plan horizonlb as in eq. 7.3.

εt

plan horizonlb

{
≤ 0⇒ µS

PTAlb = 0

> 0⇒ µS
PTAlb =

plan horizonlb
εt

· 100
(7.3)

The planner in MOBAR does not provide a lower planning horizon, as the actions
are only temporary defined in their maximum duration. Thus, the metric score for
the PTAlb is 0. If we analyse the execution, it ends in 149 seconds. However, it
can be faster. Due to the physical restrictions of the robot, the execution should
be at least 109 seconds (since the robot cannot, for instance, move faster than the
maximum velocity). Let’s consider an execution in which a sensor provides bad
information (e.g., the odometry returns higher distances than the real travelled),
and the execution is completed in 90 seconds (which is physically not possible). Such
issue cannot be detected if the planner does not provide a minimum plan duration,
but the controller believes that the goal have been completed, which is actually false.
For instance, in the case the pictures are taken in wrong places.

Plan Time Accuracy Upper-Bound – PTAub. Following the temporal cor-
rectness of the plan, we can also evaluate the maximum duration predicted by the
planner. In this direction, the controller must provide a maximum plan duration
(plan horizonub) that shall be bigger than the execution time. So, the plan has to
finish its execution before reaching the plan horizonub time. Everything that happens
after such time is out of the temporal scope of the planner, and thus, is not properly
controlled. The score for this metric is 0 when the execution time is bigger than the
plan horizonub. Otherwise, the score is the coefficient between the execution time
and the plan horizonub, as in eq. 7.4.

plan horizonub

εt

{
≤ 0⇒ µS

PTAub = 0

> 0⇒ µS
PTAub = εt

plan horizonub
· 100 (7.4)

MOBAR’s deliberative provides a maximum duration for the plan, so we can
acknowledge that something goes wrong if the plan execution time becomes larger
than the given planning horizon. For the initial two goals, the planning horizon is
196 seconds. Then, when the new goal is injected, MOBAR generates a new plan
(discarding the previous one) to achieve the pending goals. This last plan has a
(maximum) duration of 228 seconds. Then, the PTAub score is 65.35 over 100. This
means that the maximum planning horizon is not very accurate, so the plan does
not well fit the robot behaviours.



152 A framework for autonomous controllers assessment

Plan Effective Time – PET. The plan has to take into consideration uncon-
trollable events that affect its performance. For instance, an action may be only
applicable when a specific event occurs (e.g., communicate only when a satellite is
visible). Thus, a good plan is that in which the actions are allocated having in
mind such events, avoiding idle times. The objective of this metric is to measure
how much time has been used performing actions to achieve the mission goals. To
compute this metric we face the time spent executing actions (called cmd exec time)
with the execution time. As well, the time generating the plan (deliberation time) is
considered as proactive time, so it is deducted from the execution time as in eq. 7.5.

µSPET =
100 · cmd exec time

εt − deliberation time
(7.5)

If we analyse the data gathered during the MOBAR execution, we observe that we
need 149 seconds to execute the plan, but only 144 seconds (cmd exec time) are used
executing actions (i.e., moving, setting the PTU, taking pictures or communication
to ground). As well, the planning time is less than 1 second (0.3 seconds in total),
so for near 4 seconds the platform is idle since the communication can only start at
time 50. In this scenario, MOBAR uses most of the time on the mission objectives,
but it is relevant to analyse why the platform is idle for near 4 seconds. In fig. 7.3
we show the first 60 seconds of the execution1. We can find that the platform is
idle before the transmission of the first picture. Analysing the plan, the planned
movement action (GoingTo) duration is 60 seconds, but the robot takes 36 seconds
in executing it. This discrepancy between the planned time and the execution time
is relevant when dealing with synchronous tasks or external events, as we cannot
continue executing the plan, in this case, until the communication opportunity. It
is possible to overcome such issue by adjusting the plan during execution or using
a planner that better deals with temporal constraints. However, as the planner in
MOBAR is not well suited for temporal constraints neither supervises the execution,
the plan is not modified to perform other actions, e.g., repositioning the PTU for
the next movement. Then, the PET score is 96.84.

Figure 7.3: Execution for MOBAR, remarking the idle time waiting for the commu-
nication opportunity.

1MOBAR’s planner is based on predicates. However, we use a timelines representation to show
the execution. Each timeline represents the state of a particular subsystem over time.



7.5. Formalising and applying the metrics to MOBAR 153

7.5.2 Planner model adequacy

The previous metrics are dependent of both, the planner used and the domain em-
ployed. Furthermore, using different domains, the same planner can generate differ-
ent solutions. The previous metrics assess the plan at a coarse granularity. Now, we
are focused on evaluating the model at a fine granularity, i.e., we want to assess how
the planner model fits the actual behaviours of the robotic platform. The definition
of the three metrics is as follows:

Command Time Discrepancy Lower-Bound – CTDlb. As we did with the
plan, we want to evaluate if the actions defined in the domain have a correct temporal
definition. The objective is to characterize the quality of the deliberative model
employed in terms of how well it fits the robotic system during execution. In this
regard, an important aspect to be covered is to analyse the difference between the
time planned for a command and its execution time. In general, we need to properly
model the actions duration so the planner can provide feasible plans. Actions that
require less time to execute (we call this value cmd timeexecuted) than the minimum
planned time (cmd timemin planned) entails that the model does not fit the execution.
This metric provides a fidelity measure of the time planned for the commands and its
real execution time. To compute this metric, for each command i we define CTDlb

i as
the difference between the execution time of a command and the minimum planned
time for that command. In the case that the CTDlb

i is negative, means that either
the planner did not use a good model for the actions duration or there is a specific
problem executing the command. In that case the CTDlb

i is penalized multiplying
its value by a factor δ. This factor is set by the user with values starting at 1 (i.e.,
no penalization), and increasing proportionally to the penalization desired. In our
case we set δ to 2 (i.e., negative CTDlb

i has double penalization in the evaluation
than positive CTDlb

i ). The metric score is computed as the total time discrepancy
for all actions (i.e., the sum of all CTDlb

i ) divided by the execution time as in eq.
7.6.

CTDlb
i = cmd timeexecuted − cmd timemin planned

if CTDlb
i < 0⇒ CTDlb

i = CTDlb
i · (−δ)

µSCTDlb = 100−
∑n

i=0CTD
lb
i

εt
· 100 (7.6)

As we stated before, MOBAR does not provide the minimum action duration,
which has negative consequences for the execution monitoring. For instance, consider
that there is a failure in the robot odometry and it gives higher values for the distance
travelled than the real ones. If we properly model the time for the movement, the
planner can supervise the temporal behaviour and determine that the movements end
to fast, overcoming the robot physical constraints. Then, it is possible to determine
that there is a failure. However, without such supervision, the planner receives a
position that is not the true one, failing to complete the desired objectives, e.g., a
picture acquisition in a determined location. For this reason, the score for this metric
is 0.



154 A framework for autonomous controllers assessment

Command Time Discrepancy Upper-Bound – CTDub. In the same way that
we also measure the discrepancy between the minimum action duration, we mea-
sure the difference between the time employed executing a command and its max-
imum planned time. Actions that require more time than the planned time (cmd
timemax planned) are out of its temporal scope, and thus, are out of the planner con-
trol. The metric is computed as the previous one, but defining the CTDub

i as the
difference between the maximum planned time and the execution time. As well, we
apply the same penalty factor of the previous metric for negative CTDub

i . Then, the
score is computed as in eq. 7.7.

CTDub
i = cmd timemax planned − cmd timeexecuted

if CTDub
i < 0⇒ CTDub

i = CTDub
i · (−δ)

µSCTDub = 100−
∑n

i=0CTD
ub
i

εt
· 100 (7.7)

In MOBAR the actions have a fixed duration defined in the domain. Then, during
the execution we obtain a CTDub

i for each executed action. We can depict these
values in a chart generating the temporal profile presented in fig. 7.4, so the peaks
of the chart provides the CTDub

i value for each action. We can see that the first
action has a negative CTDub

i , which is penalized in the evaluation. In this case the
first repositioning of the PTU requires more time that the planned (the maximum
planned time is 3 seconds and the execution is near 5.5 seconds). The reason for
this behaviour is a problem related to the initialization of the PTU module at the
executive level (we only observe this anomaly for the first PTU setup, the others
PTU movements requires less time than the planned one). As well, the higher peaks
correspond to the movement action. The total time discrepancy measured is 113
seconds, obtaining a score of 24.16 over 100. This means that, in general, the actions
model do not fit well the robot behaviour.

Figure 7.4: Temporal profile of CTDub
i for MOBAR.

Planner Model Analogy – PMA. In a robotic application, the deliberative model
can be defined with a variable number of actions. This means that the model can be
more coupled with the functional layer (more lower level actions) or more abstracted



7.5. Formalising and applying the metrics to MOBAR 155

(higher level, typically less actions). For instance, considering the robot movement,
a high level action can define the movement to a waypoint. On the contrary, it is also
possible to define two movements, rotation and forward. In any case, it is required
that each action provides feedback to the planner after execution. So, the objective
of this metric is to analyse the similarity of the planner model with the real environ-
ment and platform, evaluating the feedback provided by the actions execution. It
is desirable that, at least, each command produce an update in the P&S system, so
the controller has a closed loop between P&E. This metric is computed facing the
number of times that the planner receives feedback to keep the knowledge database
up-to-date (planner states updates) with the number of commands executed. The
score is computed as in eq. 7.8. When the score is higher than 100, it is normalized
to 100.

µSPMA =
planner states updates

commands executed
· 100 (7.8)

In MOBAR the result of each action is defined in the PDDL problem to keep the
platform state up-to-date. Then, if a replanning is required, the problem reflects the
current state and achieved goals. In this regard, 33 planner updates are produced
during the execution (which the temporal distribution of fig. 7.5), for 13 executed
actions. This implies that each action has a reflect in the planner knowledge base.
Then the metric score is 100. This implies that, in MOBAR, P&E works in a closed
loop.

Figure 7.5: Temporal profile of the planner updates in MOBAR.

7.5.3 Planning performance

The generation of the plan that guides the execution is usually an expensive task.
Then, it is relevant to measure the performance of the planning process. Classical
measures used in the planning community such as the time employed and memory
required during deliberation can be considered. Moreover, in a robotic application
other aspects must be taken into account. In this direction, the planner has not
only to generate the plan, but also to monitor its execution, maintaining the safety



156 A framework for autonomous controllers assessment

constraints defined in the domain. Next, the five metrics to assess the planner
performance are presented:

Planner Deliberation Time – PDT. We can apply a classical measure in the
planning community: the time spent generating the plan. In this regard, it is desir-
able to generate a plan as fast as possible, as the environment can change invalidating
the plan when the planning process takes excessive time. To compute the score for
this metric, the deliberation time is faced with the execution time as in eq. 7.9. This
gives better scores for lower deliberation times with longer execution times.

µSPDT = 100− 100 · deliberation time

εt
(7.9)

For our example, MOBAR has a temporal profile for the deliberation time such as
the depicted in fig. 7.6. This profile shows two peaks when MOBAR is deliberating.
The first planning process (for the initial two goals) requires near 0.215 seconds.
Then, at time 55 seconds a third goal is injected. If we observe the plan execution
(see again fig. 7.3), we can see that at time 60 the first goal (i.e., taking and commu-
nicating a picture) is completed. At this moment, the third goal is planned, requiring
near 0.085 seconds to generate the plan for the injected goal and the pending second
goal. Then, with a total deliberation time of 0.3 seconds, the PDT score is 99.80
over 100. In this sense, the planner is fast and does not require a long deliberation
time respect to the execution time.

Figure 7.6: Temporal profile of the deliberation time in MOBAR.

Planner Deliberation Memory – PDM. During the plan generation, it is usual
that the deliberative requires some extra memory. In this regard, it is not desirable
that the planner allocates an excessive amount when planning. That is, we penalize
planners that does not have a constant memory usage (which is desirable for real
time systems). To characterize this point, this metric provides a score facing the
average memory and the maximum memory used when planning, as in eq. 7.10.

MOBAR has a low memory requirement, except when the deliberative is gener-
ating a plan. In this sense, the temporal profile for the memory usage (for both the



7.5. Formalising and applying the metrics to MOBAR 157

deliberative and the executive) is shown in fig. 7.7. We can see a peak at the begin-
ning, when the deliberative is generating the first plan. In that point, the memory
required is near 0.1%. Instead, during execution the planner is not running. Then,
the 0.00067% of memory used during the rest of the execution is employed by the
executive. This means that the planner greatly increases the memory required when
planning, and thus, the metric score is 0.67. We obtain such low score as this exces-
sive allocation of memory for the planning process is undesirable. In this regard, it
could impose restrictions in the design, e.g., forcing the system to reserve memory
for the planning process or to perform memory reallocation during execution.

µSPDM = 100 · average memory used

max memory used
(7.10)

Figure 7.7: Temporal profile of the memory usage in MOBAR.

Planner Deliberation Efficiency – PDE. We can measure the efficiency of the
planning process by analysing the generated plan, e.g., assessing the plan length
respect to the optimal solution. However, we need to address the efficiency of the
planner from a general perspective, avoiding domain dependent features. For this
reason, we evaluate the deliberation efficiency in terms of the time employed in
deliberating, the number of planned goals and the time for executing the plan (i.e.,
the time executing actions, defined previously as cmd exec time). In general, it is
desirable to plan as much goals as possible in less time. Then, the score is computed
as in eq. 7.11.

µSPDE = 100− 100 · deliberation time

cmd exec time · number of goals
(7.11)

For our example, MOBAR requires 0.3 seconds to generate the plans to achieve
the three goals, and 145 seconds to execute the actions contained in the plan. Then,
the PDE score is 99.93 over 100. This means that MOBAR requires much more time
to execute the plan than the required to generate it.



158 A framework for autonomous controllers assessment

Planner Synchronization Ratio – PSR. To maintain the safety constraints, it
is usual that the planner monitors the plan execution. To do this, the planner has to
keep its internal knowledge base up-to-date by receiving updated information from
the lower layers (e.g., the robot position). In this direction the planner can receive
updates each time that a parameter changes or with a defined frequency (depending
of the implementation). Comparing these updates with the expected states, the
planner effectively monitors the plan execution. The frequency of the updates must
be enough to capture all changes of the monitored parameters, which is dependent of
the environment/platform. Then, the objective of this metric is to link the number
of updates received by the planner regarding to the scenario frequency (set by the
user). The score for this metric is computed as in eq. 7.12.

µSPSR =
planner updates

εt
· 100

frequency
(7.12)

For the PSR metric we need to define the update frequency for our system. In
this regard, we will use a frequency of 1 second. This means that we acknowledge any
change in the environment/platform within 1 second. However, the robot position
in MOBAR is only updated at the end of the movement action. Thus, the planner
does not receive information with the current position during the movement, so it
is not possible to trace the action execution at a fine granularity. This also happens
with the other actions. So, in MOBAR we have that the temporal profile for the
planner updates is the one previously presented in fig. 7.5, showing that 33 planner
updates are generated. Then, the score for this metric is 22.15. This means that the
MOBAR deliberative database is not frequently updated, which is a requirement to
properly monitor the plan execution. For instance, monitoring the action movement
each second allows detecting problems early during execution (e.g., if the robot is
moving significantly slowly respect to its nominal speed), not only at the end of the
action.

Planner Synchronization Frequency – PSF. The planner can be updated by
receiving information from the lower layers after a command execution. However, it
is useful that the planner has a periodic task to monitor the plan execution, analysing
what is currently in execution. This task enables the planner to halt the system if
an unexpected or unsafe state is detected. Then, this metric measures how often the
planner analyses the system status to check the coherence between the planned status
and the current execution. As well, the frequency defined in the previous metric is
applicable to this one. To compute this metric is required to obtain how often the
planner compares the current status and the planned one. We call this value planner
synchronizations, and it can be obtained evaluating the temporal distribution of the
planner updates, or using the CMT metric (as explained later). Then, we compute
the PSF score comparing the planner synchronizations with the total execution time
and the desired frequency.

µSPSF =
planner synchronizations

εt
· 100

frequency
(7.13)



7.5. Formalising and applying the metrics to MOBAR 159

As we stated before, in MOBAR the planner updates came only from the execution
of an action, i.e., the planner is not actively supervising the execution. If we look
again at fig. 7.5, each peak represents one planner synchronization (if the action
outcome does not correspond to the expected one, the planner generates a new
plan). Then, there are 13 planner synchronizations, which means that the planner
is updated, in average, every 11.46 seconds, which is far from our 1 second desired
frequency. Then, the PSF score is 8.72. MOBAR only supervises changes in the
environment/platform at the end of a command execution. Thus, any change that
occurs during execution may not be registered, which could lead to miss opportunistic
objectives or environmental changes that affect the execution.

7.5.4 P&E integration

The integration between the deliberative and the other layers has a major impact
in the overall performance of a plan-based controller. Typically, each layer of the
architecture has a different temporal scope and abstraction to express the platform
and environment status. While the planner manages high level data with a long
term memory, the executor is usually more coupled with the functional level, with
a short term memory to ensure current action monitoring. Then, assessing how the
information is synchronized among layers is relevant. Also, identifying the computa-
tional requirements for the controller allows determining the processor and memory
capacity for the robotic platform. The six metrics in this group are next explained:

Controller Processor Usage – CPU. As any other software, the computational
resources usage is a relevant performance measure. Then, measuring the processor
usage during execution will enable to determine if its capacity is enough to support
the controller. To compute this metric, we consider the processor usage each second,
CPUi. This value is the quotient between the cpu time and the current execution
time. Then, eq. 7.14 provides the score for this metric using the average processor
usage.

CPUi =
cpu time

current execution time
· 100

µSCPU = 100−
∑εt

i=0CPUi
εt

(7.14)

The temporal profile (which shows the combined CPUi values for the deliberative
and the executive) generated by the MOBAR execution for our scenario example is
presented in fig. 7.8. From such data we can obtain that, in average, MOBAR

uses 0.025% of the processor capacity. As well, there are visible the two planning
processes, which require near 0.16% and 0.1% of the processor capacity. Then,
the CPU score is 99.98 over 100. This means that the planner and executive are
lightweight in terms of processor requirements, being suitable for lower resource
computers than the actual exploited for our test.



160 A framework for autonomous controllers assessment

Figure 7.8: Temporal profile of the processor usage (CPUi) in MOBAR.

Controller Memory Usage – CMU. Another relevant resource to measure is
the amount of memory required by the controller during execution. We can obtain
the percentage of memory used at any moment, CMUi, facing the resident memory
of the controller and the total memory of the platform. This enables to provide a
temporal characterization of the memory usage. Then, we can compute the metric
score using the average memory required as in eq. 7.15, considering that we obtain
a memory measure each second.

CMUi =
resident memory

total memory
· 100

µSCMU = 100−
∑εt

i=0CMUi
εt

(7.15)

MOBAR requires a small amount of memory as can be seen in the temporal profile
in fig. 7.7. In average, the controller requires 0.007% of the available memory, being
the biggest usage corresponding to the initial planning. Thus, the score for this
metric is 99.99. In this sense, MOBAR requires a small amount of memory, so it is
possible to execute the controller in machines with much less memory.

Controller Dispatching Time – CDT. The plan generated provides high level
actions that (commonly) are not executable by the platform. Thus, the actions
have to be translated, and sometimes, decomposed into simpler commands to be
executed. This is usually done by the executive. The objective of this metric is to
measure the effort required to translate the plan into functional level commands.
In this regard, this metric provides a measure of the performance of P&E when
dispatching commands. To do this, we measure the time elapsed to translate and
dispatch each planned action. The metric score is obtained considering the time
spent for dispatching all the commands (dispatching time) and facing it with the
total execution time for the mission, as in eq. 7.16.

µSCDT = 100− 100 · dispatching time

εt
(7.16)



7.5. Formalising and applying the metrics to MOBAR 161

The dispatching time in MOBAR has a temporal profile such as the shown in fig.
7.9. In that profile we can observe that, during the action execution, the time is 0,
while before the command execution there is a peak. Such peak represents the time
required to (i) translate the action information (from PDDL objects to numerical
parameters) and (ii), to select the corresponding behaviour in the PLEXIL plan to
execute the action. In total, the dispatching time is 0.968 seconds, which gives a score
of 99.35. In this regard, the time employed by MOBAR dispatching the commands
to execution is negligible respect to the execution time.

Figure 7.9: Temporal profile for the dispatching time in MOBAR.

Controller Sensing Time – CST. As happen with the commands, the sensor data
has to be translated to be used by the different layers. In this sense, it is relevant to
characterize the time required to deliver each sensor data to the other layers of the
controller. This enables to evaluate how well the different layers share information.
For instance, controllers in which P&E have a common abstraction will require less
effort. The score for this metric is computed as in eq. 7.17, considering that the
sensing time is the sum of the time employed to deliver all sensor data to the other
layers.

µSCST = 100− 100 · sensing time

εt
(7.17)

As in the case of the CDT, MOBAR only performs data gathering at the end of
a command execution. Then, the temporal profile for the sensing time is the one
presented in fig. 7.10. It shows that the sensing time during actions execution is 0.
Then, the peaks provide a measure of the effort required to translate the sensor data
into PDDL information, being in total 0.007 seconds. Then, the CST metric has a
score of 99.99. This means that sharing the platform/environment data collected by
the sensors to the other layers is a fast process.

Controller Monitoring Time – CMT. Typically, the planner receives updates
after a command execution. However, environmental changes can affect the plan
execution. For this reason, to keep the safety constraints defined in the model, the



162 A framework for autonomous controllers assessment

Figure 7.10: Temporal profile of the sensing time in MOBAR.

planner has to monitor the environment and platform status. Thus, a periodical task
to check coherence between the execution and the plan is encouraged. Previously,
we provide a performance measure based on the frequency of this task (see PSF).
The objective of this metric is to assess the performance of such a task based on
the time that it requires, which includes gathering sensor information and coherence
checking. To compute the score we face the total time employed monitoring the plan
execution and the execution time, as in eq. 7.18.

µSCMT = 100− 100 ·monitoring time

εt
(7.18)

In MOBAR there is no permanent supervision of the execution. Both the planner
and the executive are not monitoring how the commands are being executed. For
this reason, the score for this metric is 0. Then, it is not possible to detect problems
during actions execution, being only possible at the end of the execution.

Controller Reaction Time – CRT. During the execution, external agents can
produce new goals or failures may arise. Such unexpected events can broke the
plan execution, requiring that the planner provides a new plan (replan) or repairs
the current one to take into consideration the event. In this regard, it is possible
to replan after the event detection or do it later. Nevertheless, delaying the plan
generation could not be a good strategy: an execution failure has to be considered
as soon as possible to avoid hazardous situations, while replanning new goals can be
more efficient than executing them later (the new goal could be close to the current
execution context). Then, this metric has the objective of measuring the capacity
of the controller to react to unexpected events and external perturbations. Its score
is determined by the time elapsed between an unexpected event is triggered and the
time in which the planner starts the planning process to consider it. That is, for
each event we define CRTi as the time difference between an event i occurs at the
subsequent planning process. Accumulating all CRTi and comparing them to the
total execution time, we obtain the metric score as in eq. 7.19. In case that there
are no unexpected events, this metric has a score of 100.



7.5. Formalising and applying the metrics to MOBAR 163

CRTi = timedeliberation starts − timeevent

µSCRT = 100−
∑n

i=0CRTi
εt

· 100 (7.19)

If we look again at the deliberation temporal profile (see fig. 7.6), we can see
that the injected goal is planned nearly at the same time that is added: the goal
is injected at 55 seconds and the replanning process starts at time 60 seconds. We
have that CRT1 is 60-55 = 5 seconds, so, the score for this metric is 96.64 over 100.
Particularly, MOBAR performs the replanning process after the current command in
execution ends, i.e., it is not possible to interrupt commands execution. This high
score means that MOBAR can rapidly take advantage of injected goals to adapt the
plan to achieve to, for example, opportunistic goals.

7.5.5 MOBAR Assessment

Considering these metrics we can provide an assessment of any controller that en-
ables to characterize relevant aspects of the P&S system and the model used, but
also about the P&E integration. For our example scenario we can summarize the
evaluation for MOBAR in the fig. 7.11, being the GS 5.61 over 10. P&E is well in-
tegrated in the controller, requiring low computation resources and showing a good
performance in the layers interconnections. However, as there is no supervision of
the plan execution, the score for the monitoring time is 0. Looking at the plan-
ner performance, we can see that the deliberation time and efficiency provides good
scores. Notwithstanding, the memory allocated during deliberation is notoriously
higher than during the execution, which negatively affects the evaluation. More-
over, the planner synchronization ratio and frequency have very low scores as there
is no permanent supervision of the plan execution. For instance, commands that
continuously change a parameter during execution (e.g., the robot position during a
movement) are only covered at the end of the action.

Focusing on the model, its accuracy could be greatly improved. First, the mod-
elling language does not support the definition of temporal intervals for the actions,
only a single value for the duration is possible (which is used for the maximum dura-
tion). Thus, it is not possible to ensure the temporal correctness of the plan during
execution. Furthermore, the maximum action duration is not very accurate for the
movement action, which degrades more the evaluation. Finally, the planner does not
provide a minimum plan duration and there is a significant difference between the
actual execution time and the maximum duration planned. However, the platform
spends most of the time executing the plan or planning, so the platform is rarely
idle. In general terms, the strengths of MOBAR are the performance of the planning
process and the low resource usage, meanwhile its weakness are more related to the
model used and the plan monitoring.



164 A framework for autonomous controllers assessment

Figure 7.11: Summary report for the MOBAR example.

7.6 Applying the metrics to GOAC

In the previous sections we have defined a set of metrics for autonomous controller
assessment and we have applied them for an execution of the MOBAR controller.
Notwithstanding, we want to analyse if we can use such metrics to assess other
controllers with different technologies for P&S and P&E. Then, in this section, we
apply the metrics to the GOAC controller (see sec. 2.1.4).

For the experiments (and for the assessment done later in sec. 7.8) we exploit
a GOAC instance with two reactors as shown in fig. 7.12: a Deliberative reactor
using an APSI-TRF timeline-based planner and a Command dispatcher reactor.
The Deliberative reactor is responsible of performing the deliberative tasks given a
domain and a problem. The Command dispatcher reactor is in charge of executing
commands and collecting execution feedback, exploiting the TurtleBot robot.

In the deliberative layer, the domain expresses the possible transitions for a
set of timelines that represent the robot subsystems (robot position, camera, PTU

Figure 7.12: GOAC instance used.



7.6. Applying the metrics to GOAC 165

and communications) and the environment (communication opportunities with the
GCS). The transitions specify how and when the status of a timeline vary. Each
state has its temporal interval, e.g., for a movement of the PTU we can define the
minimum and maximum time required by the robot performing the action. As well,
synchronizations between timelines shall occur to keep the mission constraints, e.g.,
the robot can move only when the PTU is pointing to the front.

Then, given a domain and a set of goals, the P&S system can generate a plan to
guide the execution considering the allowed transitions and synchronizations among
timelines. The plan corresponds to an assignment of the required states for each
timeline. In the case of GOAC, the planner allows a flexible temporal allocation
of tasks for a given planning horizon. The horizon represents the maximum time
allowed to achieve all goals and it is given by the user. The first 60 seconds of the
plan execution can be seen in fig. 7.14. In the figure we can see that, for the first
10 seconds, the system is still in the initial state. That time slot is dedicated for the
planning process, which is set by the user.

Regarding to the P&E, in GOAC some of the timelines states correspond to ac-
tions that can be executed by the robotic platform (e.g., GoingTo, TakingPicture).
These states are translated into functional commands by the Command Dispatcher
reactor and executed through the functional layer. As well, this reactor is in charge
of collecting and translating the sensors information. During the execution P&E are
interleaved. This means that the planner is permanently observing the environment
and robot status. This allows detecting execution flaws in a short time, allowing to
exploit reactive planning schemes.

Then, to test the metrics we perform an assessment of GOAC for the same sce-
nario of the previous section, and defined in sec. 7.4. Additionally to the information
given in the scenario description, GOAC provides the following data for the execu-
tion:

• In the domain, the actions have a defined minimum duration of: (i) 20 seconds
for the movement action; (ii) 1 second for the PTU setup; (iii) 1 second for the
picture acquisition and; (iv) 8 seconds to transmit the picture.

• The GOAC maximum planning horizon is set by the user to 300 seconds.

• The GOAC planning slot is set by the user to 10 seconds.

• The execution time to accomplish the scenario is 196 seconds, i.e., εt = 196.

Next, each set of metrics are evaluated.

Figure 7.13: Plan generated by GOAC for the two initial goals. Considering mini-
mum duration (top) and maximum duration (bottom) for all actions.



166 A framework for autonomous controllers assessment

7.6.1 Plan accuracy

When GOAC generates a plan, the solution is temporary bounded. In fig. 7.13 the
plan generated for the two initial goals is presented. The plan on the top shows the
most time optimistic plan, in which each action has the smaller duration. Instead,
fig. 7.13 bottom shows the plan considering the longest duration of each action. We
can see that the minimum duration for the plan is 73 seconds, while the maximum is
179 seconds. However, the plan is flexible till a maximum time set by the user (in our
example, 300 seconds). Then, GOAC is allowed to reallocate the starting time of the
actions, so the plan can long till 300 seconds. In any case, the plan execution shall
finish between the given interval, otherwise the plan generated and the execution are
not time coherent. In such undesirable case, the model or the planner have flaws that
lead to potentially uncontrolled situations. The score of the metrics in this group
are next calculated:

Plan Time Accuracy Lower-Bound – PTAlb. For our example, GOAC provides
a plan with a minimum duration of 73 seconds for the first two goals plans. When
these goals are completed, GOAC generates a new plan to achieve the injected goal,
which has a minimum duration of 164 seconds. That is, the mission shall long
more than 164 seconds to achieve all goals. In fact, the execution ends at time 196
seconds. Then, the metric score is 83.67 over 100. In this sense, GOAC is quite
accurate predicting the minimum duration of the plan.

Plan Time Accuracy Upper-Bound – PTAub. For our scenario, GOAC planned
a maximum execution time of 300 seconds and the real execution time is 196, ob-
taining a score of 65.33 over 100. This means that, the longer end time of the plan
is significantly different to the real execution. However, this value is set by the user
and can be better adjusted.

Plan Effective Time – PET. In our example, the total time employed executing
actions (we called this value cmd exec time) is 150 seconds, and the total deliberation
time is 0.341 seconds, providing a score of 77.88. GOAC obtains this score due to
the planning slot and the actions delays (as shown in fig. 7.14). In this example, the
planning slot is excessively long for the deliberation requirement, i.e., we have a total
time of 20 seconds for deliberating and only 3.4 seconds are used, being the last 16.6
seconds unused. Notwithstanding, this value is set by the user and can be better set
to avoid idle time. In the case of the actions delays, we have that some time is wasted
due to the communication between the different reactors when notifying/receiving
the updated status of the shared timelines.

7.6.2 Planner model adequacy

GOAC provides a modelling language that enables to provide temporary bounded
actions as shown in fig. 7.15 for a movement action. This means that the planner
can discriminate actions failures for premature or excessive actions duration. The
values of the metrics in GOAC are next evaluated:



7.6. Applying the metrics to GOAC 167

Figure 7.14: GOAC execution showing the idle time of the robotic platform due to
the planning slot and delays in actions execution.

Figure 7.15: Times difference for an action planned time (lower and upper bounds)
and execution time.

Command Time Discrepancy Lower-Bound – CTDlb. Figure 7.16 provides a
temporal evolution of the CTDlb

i values for GOAC, that are represented as peaks in
the chart. The total time discrepancy between the minimum action duration and the
real action duration is 57 seconds, obtaining a metric score of 70.91. In this sense,
we can see that the minimum action duration is quite accurate with the exception
of the movement action, that provides significantly higher differences.

Figure 7.16: Temporal profile of the CTDlb
i for GOAC.

Command Time Discrepancy Upper-Bound – CTDub. Figure 7.17 shows the
temporal profile of the CTDub

i for the execution. From such data we obtain that
GOAC has a total deviation of 101 seconds between the maximum planned time
and the real execution time. Then, the score for this metric is of 48.47 over 100.
This means that the model is not very accurate respect to the robot behaviours.
As happens with the previous metric, the problem resided mainly in the movement
action, whose maximum duration is set to a big enough value to enable long moves.



168 A framework for autonomous controllers assessment

Figure 7.17: Temporal profile of the CTDub
i for GOAC.

Planner Model Analogy – PMA. In our example, we have that GOAC executes
16 actions to complete the objectives. The number of planner states updates are
72, and can be extracted through the temporal profile given in the fig. 7.18. The
computed score is higher than 100, and thus, normalized to 100. This means that
each action has a reflect in the planner database, closing the sense-plan-act cycle.

Figure 7.18: Temporal profile of the planner updates for GOAC.

7.6.3 Planning performance

For our example, GOAC has a fixed time slot (set by the user to 10 seconds) for the
planning process. If the planner generates a plan before the time limit, the system
will wait until the end of the time slot. Properly evaluating the planning performance
will allow us to set this value for a better performance. The values for the metrics
in this group are:

Planner Deliberation Time – PDT. Figure 7.19 presents the temporal profile
of the deliberation time for our execution. It presents two planning processes, one
at the beginning (to plan the two initial goals) and another one later (to plan the
injected goal). From the data gathered in that chart, the deliberation time is the
sum of the time employed for these two planning processes, i.e., 0.341 seconds. Then,
the scores for this metric is 98.26 over 100. This implies that GOAC does not spend
much time deliberating regarding to the time employed to complete its objectives.



7.6. Applying the metrics to GOAC 169

Figure 7.19: Temporal profile of the deliberation time for GOAC.

Planner Deliberation Memory – PDM. In fig. 7.20 we show the temporal
profile of the memory used by GOAC during execution, differentiating the memory
required for each layer. We can see that there is a peak in the memory required for the
deliberative layer (APSI planner) at the begin of the execution, as it is generating the
first plan. In this case, the maximum memory allocated by the GOAC deliberative
is 1.6% with an average value of 1.39%, providing a score of 86.88.

Figure 7.20: Temporal profile for the memory usage in GOAC.

Planner Deliberation Efficiency – PDE. In our execution scenario, GOAC prop-
erly plans and executes the three goals. The time executing commands is 150 seconds
and the deliberation time is 0.341 seconds, giving a PDE score of 99.24. In this re-
gard, the planner is efficiently deliberating in a small amount of time regarding to
the time required to execute the actions contained in the plan.

Planner Synchronization Ratio – PSR. During execution, the planner receives
updates of the environment/platform with the temporal distribution shown in fig.
7.18. From such data, we observe that GOAC acknowledges 72 changes of the en-
vironment/platform during the execution. As in the previous section, we want a
frequency of 1 second for the environment monitoring. Then, the score for this met-
ric is 36.73 over 100. This means that some states are only notified at the end of
commands execution, e.g., we cannot track the movement action or the transmis-



170 A framework for autonomous controllers assessment

sion of a picture at a fine coarse granularity. Then, it is not possible to monitor
commands execution at the desired frequency.

Planner Synchronization Frequency – PSF. In our example, GOAC keeps its
planner knowledge base up-to-date by means of a periodically task that monitors the
environment/platform every second. Then, its score is 100.

7.6.4 P&E integration

If we analyse how GOAC performs during execution, we appreciate that the planner
and the executive are highly coupled, sharing a common knowledge database. Then,
it is expected that sharing information among layers is fast. The values of the metrics
are next reported:

Controller Processor Usage – CPU. The temporal profile of the processor usage
(CPUi) for the execution is shown in fig. 7.21. GOAC has a 0.25% of average
processor usage for the deliberative and 0.26% for the executive, providing scores
of 99.75 and 99.73 respectively. Then, we have a score of 99.74 over 100 for the
controller (average score for the components). This means that both layers require
low processor usage and are suitable for lower resources computers than the used in
the experiments.

Figure 7.21: Temporal profile for the CPUi in GOAC.

Controller Memory Usage – CMU. The temporal profile of the memory usage
for the execution is presented in fig. 7.20. From the data in such profile, the average
memory required by GOAC is 1.39% and 0.1% for the deliberative and executive
respectively. The scores are 98.59 and 99.90 for the layers and 99.24 for the controller.
This implies a very low memory usage of the computer used.

Controller Dispatching Time – CDT. During execution we obtain a temporal
profile such as the presented in fig. 7.22, where each peak represents the time required
by the controller to dispatch a command for execution. Then, the dispatching time is
in total 0.003 seconds (APSI planner) and 0.001 seconds (TREX) for translating and



7.6. Applying the metrics to GOAC 171

dispatching the commands. Then, the controller score is 99.99. As both layers share
the data with a common representation, the only translation required is to transform
the timeline attributes into numerical values for the functional layer, which is very
fast given the results.

Figure 7.22: Temporal profile for the dispatching time in GOAC.

Controller Sensing Time – CST. Figure 7.23 presents the temporal profile of
the sensing time for the GOAC execution. The sensing time is the sum of all peaks,
i.e., the time employed in translating each sensor data into a planner fact. For
our example, the sensing times are 1.546 seconds and 0.01 seconds for the different
layers, providing a score of 99.20 over 100. In this way, the process of generating the
timelines states from the data given by the platform is fast, and, as the executive
and deliberative share the same database, it is only required to translate the sensor
data once to permit the access to the other layers.

Figure 7.23: Temporal profile of the sensing time for GOAC.

Controller Monitoring Time – CMT. In the case of GOAC the different reac-
tors spend some time each second to analyse the current state of the system. This
is specially relevant in the case of the APSI planner: it uses this time to check the
coherence between the plan and the execution status. As a consequence, GOAC gen-
erates a temporal profile when synchronizing its internal data such as the presented
in fig. 7.24. In this execution the monitoring times for GOAC are 7.764 seconds and



172 A framework for autonomous controllers assessment

0.016 seconds for the deliberative and executive respectively. Thus, the CMT score
for the controller is 96.03. This means that the controller requires low time to check
the coherence between the current execution status and the planned one.

Figure 7.24: Temporal profile of the monitoring time for GOAC.

Controller Reaction Time – CRT. For our example, we have a new goal injected
at time 55 seconds. Such goal is considered by GOAC in a planning process that
starts at time 122 seconds (see again fig. 7.19). Thus, the CRTi for that contingency
is 122-55 = 67. There is only one contingency (n = 1), so the CRT score is 65.81
over 100. In this sense, GOAC delays the planning process until the previous plan
has been executed, which may have a negative impact in the execution. For instance,
failures have to be considered as fast as possible, while usually the plan performance
could be increased when injected goals are rapidly taken into consideration. In this
direction, if we inject a goal close to the current position, delaying the planning
process could lead to a longer execution if the planned actions were farther away
from the actual position.

7.6.5 GOAC assessment

With the metrics presented we are able to evaluate GOAC considering the execution
of the controller in an exploration scenario. The GS for this execution is 8.16, which
is notoriously better than the obtained by MOBAR. In this sense, we can see, given
the different metrics scores, that GOAC properly integrates P&E. However, the
strategy of delaying the injected goal until the previous goals have been achieved,
reduces its evaluation. The planner performance also shows good scores, except for
the synchronization ratio.

Focusing on the model adequacy, the model employed lacks on the actions dura-
tion, specially in the movement action. In any case, the evaluation allows improving
the controller for our scenario. In the case of the plan accuracy, we observe that the
lower planning horizon is quite accurate, but the upper bound could be improved.
As well, by reducing the planning slot we can obtain a better score for the effective
time. In this sense, the metrics not only allow us to evaluate the controller, but also
to select the best controller parameters for our application. As well, the controller
can be enhanced by modifying how it plans for injected goals. Probably, it is better
to replan the new goals when they are injected, instead of delaying them.



7.7. The OGATE software tool 173

Figure 7.25: Summary report for the GOAC example.

7.7 The OGATE software tool

To perform the controllers assessment with the previous metrics requires some effort.
Particularly, executing several times a controller and gathering the data generated is
an onerous task. Moreover, following the methodology, it is required to perform the
test several times (to collect average behaviours) and under different scenarios (to
evaluate autonomous capabilities). It is possible to manually carry out such work,
but it is impractical if we want to perform large testbenchs. Then, it is desirable a
software tool to automate the controllers assessment through the methodology and
metrics defined in the previous sections.

In order to support autonomous controllers assessment we have developed the
On-Ground Autonomy Test Environment (OGATE) [118,119]. It offers capabilities
required for automated testing of autonomous controllers: controller instantiation
within a scenario defined by the user, supervision of the plan execution and report
generation with the information gathered during the test as shown in fig. 7.26. Then,
OGATE can be exploited in order to implement a suitable sequence of evaluation
steps for supporting the objective assessment of autonomous controllers, defining
testbenchs that can be shared and reproduced by different researchers. Further-
more, OGATE also constitutes an interactive tool to help designers and operators of
autonomous controllers providing an interface for in-execution control and inspection
of the controlled system during execution.

To enable controller assessment with OGATE, it is required to include internal
monitors in the system under study. The objective of the monitors is to measure the
parameters required to compute the metrics scores (e.g., deliberation time, planning
horizon) for the evaluation. Then, to provide the metrics values (and optionally,
telemetry data) to OGATE a TCP/IP communication has to be set. This enables a
data channel between OGATE and the controller, which can send the metrics values



174 A framework for autonomous controllers assessment

at any time during execution. Moreover, multiple communication channels can be
set, so it is possible to provide an insight of the metrics values for the different layers
of the controller. With the data provided it is possible to generate temporal profiles
for the metrics, providing charts such as the presented in sec. 7.5 and 7.6, which
are accessible by the user in real time. As each layer can provide its own data it is
possible to inspect the controller performance with more detail.

OGATE also allows defining a second interface to enable execution supervision
of the autonomous controller. This interface provides functionality to manage the
execution (start, pause or finish) while monitoring the controller status during the
test (executing, paused, failing), and at the end (execution correct or failed) for
the different layers. Additionally, this interface defines a telecommand function that
allows OGATE to send instructions to be executed, for instance, goal injection during
test execution. Implementing this interface in the autonomous controller enables
automatic benchmarking and user-controlled execution.

Once the interfaces have been set in the controller under study, a previous step
to perform assessment is to supply to OGATE a configuration file with the scenario
definition. This file entails the evaluation design of the proposed methodology. In
this regard, the configuration includes the scenarios description (i.e., domain and
problem), user-defined metrics for assessing specific domain characteristic (the met-
rics introduced in sec. 7.3 are attached by default) and the controller configuration
(executable files and their parameters). To enable assessment of different config-
urations for the same controller, it is possible to provide different values for each
parameter defined in the configuration. For instance, different goals and missions
durations can be set. Then, OGATE will set up the different combinations for all
pairs of parameter/value defined.

The last step before the assessment is to define the non-nominal execution sce-
narios (i.e., dynamic goal injection and execution failure). To do this, a controller-
dependent file is required. It includes the definition of the events to be sent to the
autonomous controller, and the time in which they will be injected during execu-
tion. In this regard, OGATE only dispatches the events to the controller using the
telecommand interface, i.e., OGATE does not manipulate that data.

Reaching the previous requirements enables automatic tests execution, data gath-
ering and report generation. In this direction, multiple executions of the same con-
troller can be done to collect average metrics behaviours. At the end, OGATE
provides the user with a report about the collected data. It includes temporal pro-

Figure 7.26: Tests execution through OGATE.



7.7. The OGATE software tool 175

filing for the different metrics values and the graphical report presented in sec. 7.2.
Moreover, such information is also available during execution through a GUI, which
enables the user to inspect the evolution of the controller in real-time. As well, there
is a dedicated slot in the GUI that can be customized by the user to represent the
data gathered by the telemetry interface. This dedicated interface can also enables
the user to interact with the controlled system, for instance, allowing injecting goals
during execution, providing an initial support to integrate the HMI.

Technically, OGATE is composed of three different modules as depicted in fig.
7.27. Each module provides the services required to enable assessment through the
presented methodology. Initially, the Mission Specification module takes the config-
uration files required to instantiate all elements, and then, the Mission Execution
module executes all generated configurations for the autonomous controller(s), while
retrieving the metrics and generating reports at the end of the execution. All steps
can be controlled/monitored by the user through the OGATE GUI module. Next,
these modules are explained.

• Mission specification: allows the system to deal with the configuration file
and the instantiation process, that is, the description of the components that
defines a control architecture and the platform over which they operate. In
this way, the system provides a convenient mode to allow the user to configure
the components of the autonomous controller to evaluate. For each controller,
it is possible to define different values for a parameter, so this module is in
charge of generating all possible instances for large test campaigns combining
the parameters defined in the configuration file.

• Mission execution: this module provides the execution support to deal with
the complexity of the autonomous controller under evaluation. It supports
the automatic testbench execution of the user defined scenarios, meanwhile
gathering the metrics data. In this regard, using specific defined interfaces,
OGATE is able to access to the different layers of the autonomous controller
to supervise and retrieve the metrics data. Also, during the execution, the user
must be able to interact with the controlled system, for instance, including new
goals to change the nominal execution, in order to test the robustness of the
system and features of different components such as replanning capabilities of
deliberative components.

Figure 7.27: OGATE concept.



176 A framework for autonomous controllers assessment

• Report: the collected information are exploited to generate detailed reports
to support assessments based on the analysis of the considered metrics. In
this way, OGATE provides a graphical report as the ones presented in fig.
7.11 and 7.25, but also the temporal profiles of the selected metrics and their
representative values (minimum, maximum, average and aggregated value) in
a Comma Separated Values (CSV) file that can be assessed with other analysis
tools.

• OGATE GUI: this module contains graphical support for the previous mod-
ules to provide a user friendly environment. For the Mission Specification
module the GUI gives features to create/modify the OGATE configuration
file. For the Mission Execution it provides the execution status for the differ-
ent components, graphical reports for the metrics, and controller specific con-
trols (implemented by the user) to manage the execution through the graphical
interface.

While some engineering effort shall be done to exploit the OGATE capabilities,
a similar or higher effort should be dedicated in order to perform hand tailored tests
campaigns. In this sense, the benefits of exploiting OGATE are the saving effort
for preparing the tests campaign, the data gathering and analysis, and easing the
dissemination of the required elements to reproduce the experimental setups.

Finally, OGATE has been designed to directly connect the planning and/or exe-
cution layers of an autonomous controller, and allows performing experiments with
either real or simulated robotic platforms exploiting different robotic frameworks
(e.g., ROS, ROCK [39], OpenPRS, PLEXIL).

7.8 Experimental evaluation: MOBAR and GOAC com-
parison

In this section we present a comparison between MOBAR and GOAC for the explo-
ration scenario defined in sec. 7.4. The configuration of the two controllers is the
same presented in sec. 7.5 for MOBAR and sec. 7.6 for GOAC. Both controllers re-
lies on different P&S paradigms: MOBAR exploits an action-oriented planner, while
GOAC is based on timelines [126]. As well, both controllers exploit different solutions
for P&E integration. As stated before, the execution objective is to acquire and to
communicate two pictures in different locations, with a communication opportunity
that starts at time 50 seconds. Each execution has a maximum time allowed of 300
seconds. As well, the following execution scenarios are considered:

• Nominal execution, i.e., no perturbations affect the execution.

• Dynamic goal injection in which a new picture goal is included between time
50 and 60 seconds after the execution starts.

• Execution failure in which the second PTU movement is not properly executed.



7.8. Experimental evaluation: MOBAR and GOAC comparison 177

For the presented scenario we have executed each controller 10 times for each
scenario to collect average behaviours (30 total executions for each controller). The
metrics that provide the performance assessment are those introduced in sec. 7.3.
For the metrics relevance, we consider that each metric group contributes with 25%
of the controller score and the weights are uniformly distributed for each metric
group.

The test execution is automatically carried on by OGATE in a PC endowed with
an Intel Core i7 2.5GHz processor with 8GB of RAM. After execution, OGATE
provides the temporal profiles of the metrics for each execution (such as the one
presented in sec. 7.5 and 7.6), as well as the summarized graphical report that
enables the controller comparison (see fig. 7.1).

First, lets have a look at the average execution time for each scenario in table
7.1. It is remarkable that GOAC is unable to solve the execution failure scenario (as
happened in the previous section). It is also notorious that MOBAR is faster than
GOAC. However, assessing the GS in table 7.2, we can observe that GOAC outper-
forms MOBAR for the GS in the nominal and goal injection scenarios, even when
achieving the objectives requires more time. In this regard, assessing an autonomous
controller without providing an insight of the P&S integration does not allows us to
extract relevant conclusions.

Figure 7.28 presents the graphical assessment for both controllers. This report
will ease us to isolate different aspects of the controller that entail the performance
differences. As well, the graphical representation contains the data presented in
tables 7.1 and 7.2. The graphical reports for each execution scenario can be seen at
the end of this section in fig. 7.29.

Then, starting the controllers comparison from the GS, we can observe that each
controller has similar scores for the nominal and goal injection scenarios. This means
that injecting goals during execution does not reduce their performance. As well, the
GS for MOBAR remains nearly constant in the execution failure scenario. Instead,
GOAC is not able to complete such scenario. In this regard, the GOAC delibera-
tive component is able to generate a valid plan, but the controller fails in properly
completing its execution. In particular, when the deliberative component receives
the PTU miss-configuration, it does not correspond to its planned states, producing

Table 7.1: Execution time (seconds) for each scenario (average for 10 runs each).

Nominal Goal injection Exec. failure

MOBAR 103.5 148.6 101.6

GOAC 128.6 201.6 –

Table 7.2: GS for 30 executions (10 runs each scenario).

Nominal Goal injection Exec. failure Average

MOBAR 5.62 5.64 5.61 5.62

GOAC 7.86 8.11 0.0 5.33



178 A framework for autonomous controllers assessment

Figure 7.28: Average values for 30 executions of MOBAR (left) and GOAC (right).

a failure that leads to a system halt. By its side, MOBAR is able to solve this issue
discarding the current plan and generating a new one. The failure to solve 1/3 of
the scenarios significantly reduces the average GS for GOAC. Notwithstanding, the
average evaluation for the 30 executions of GOAC is only 0.3 out of 10 less than the
average GS for MOBAR.

Focusing on the external ring, i.e., the metrics scores, we can characterize each
controller for the four metrics groups (see fig. 7.2). While in MOBAR (fig. 7.28
left) the metrics can fill all the ring (all executions are completed), in GOAC (fig.
7.28 right) the maximum score is 66.6 over 100 due to the inability to complete the
execution failure scenario.

We start analysing the metrics in the first quadrant (top-right), which summarize
the scores for the P&E integration. We can appreciate that both controllers do not
require excessive resources, i.e., CPU and CMU have high scores. As well, the
command dispatching and sensing time (CDT and CST) have scores close to the
best value. This indicates that dispatching commands and perceptions among layers
is fast, i.e., the planner and executive are well integrated. Then, we assess the
metric that evaluates how the system is monitoring the environment/platform, i.e.,
the CMT. In MOBAR there is no monitoring of the plan execution, the internal state
is only updated after a command execution. Thus, its score is 0. Instead, GOAC
is permanently observing the execution, obtaining a good score (in average 98 over
100 for the nominal and goal injection scenarios). Finally, the CRT provides us a
measure of the delay between a new goal is added or an execution failure arisen
and the subsequent planning process. MOBAR outperforms GOAC in this metric
with scores 92 and 81 (without considering the execution failure) respectively. The
reason of this is how the replanning process occurs. In GOAC the goal added during
execution is planned when the initial goals are executed. Instead, MOBAR replans
after the current command executions ends, discarding the plan in execution and
generating a new one.



7.8. Experimental evaluation: MOBAR and GOAC comparison 179

For the second quadrant (the metrics that provide a measure of the planner
performance) we can observe that the PDT is slightly better in MOBAR. This
means that the planning process is faster. MOBAR requires near 214 milliseconds in
average while GOAC employs 7287 milliseconds in average. However, for the PDM
MOBAR obtains a significant low score. In fact, during execution, the planner is
not running, and the memory employed in runtime is just used to store the plan.
Then, during deliberation, it requires some extra memory in opposition with the used
during plan execution. By its side, GOAC maintains the deliberative in execution,
but it requires a low extra memory while deliberating. Regarding to the deliberation
efficiency, MOBAR has a better score, 99.56, than GOAC 92.51 (without considering
the execution failure scenario). The reason of this is the planning slot in GOAC: there
is a fixed slot of 10 seconds for the deliberation process, even when the deliberation
requires less time. Currently, the system is idle for near 6 seconds after the plan
generation. The last metrics in this group analyse how the planner knowledge base
is updated, i.e., PSR and PSF. In this regard, MOBAR has significant low values for
both metrics as the planner is only updated at the end of a command execution.
In the opposite, GOAC obtains the best score in the PSF as the deliberative is
continuously monitoring the platform/environment during execution. However, the
PSR has a lower score as the planner is not updated each second. For instance, during
the movement action, the planner does not receive the current robot position; it is
only provided at the end of the command execution.

Considering the metrics that analyse the model employed (in the third quadrant)
we can observe a relevant issue. MOBAR has a 0 score for the CTDlb. The reason is
that the planner in MOBAR only provides one value for the action duration. Such
value is set for the maximum duration of the action, and thus, it is used to compute
the CTDub. Instead, GOAC provides a temporal range for each action, so it can
properly monitor the temporal coherence of the plan during execution. Besides,
GOAC outperforms MOBAR for the CTDub with scores 46.5 (without considering the
execution failure scenario) and 23.6 over 100 respectively. In any case, this indicates
that the temporal model of the actions is not very accurate. In particular, we have
different actions: move the PTU, take pictures, transmit the pictures and going to.
While most of them have small uncertainty in the time required for execution, the
going to action is dependent of the distance travelled (assuming constant velocity).
However, the models employed in both planners do not consider such issue as they
do not integrate path planning capabilities. Then, the maximum duration for each
going to action is set to a high value, big enough to reach all the different locations.
For the PMA metric both controllers obtain the best score as the planner receives
data for each command executed, i.e., the controller has a closed execution loop.

Finally, for the evaluation of the plan accuracy (fourth quadrant), MOBAR ob-
tains a 0 score for the PTAlb. Instead, the plan provided by GOAC is temporal
bounded. The score for this metric in GOAC is 69.85 without considering the exe-
cution failure scenario. However, MOBAR has a better PTAub (64.25) than GOAC
(55.03 without considering the execution failure scenario). This implies that the
plan generated by MOBAR is more approximated to the execution time than the one
produced by GOAC. The reason is because GOAC employs a temporal planning
horizon (set by the user) that allows time flexible allocation of the actions, while



180 A framework for autonomous controllers assessment

in MOBAR the plan is time fixed and the maximum planning horizon is set by the
planner. As a consequence, the planning horizon in GOAC is longer and the metric
score lower. The metric that expresses the time employed accomplishing the mission
objectives (PET) shows that MOBAR has a good score (near 96 over 100). However,
GOAC obtains 77 without considering the execution failure scenario. In fact, the
performance degradation in GOAC is due to the fixed deliberation slot and several
delays in command executions.

Assessing the data generated in the presented experimental campaign allows us
to extract relevant facts about different aspects of the controllers under study. Par-
ticularly, MOBAR does not supervise properly the plan execution, which can be
problematic in dynamic environments. By its side, GOAC is designed to work with
temporal flexibility, but it requires some implementation work to complete the fail-
ure execution scenario. As well, the temporal model for both controllers can be
enhanced, as the current ones are not so accurate (mainly in the GoingTo action).

7.9 Summary

In this chapter we presented a framework that enables autonomous controllers eval-
uation and comparison. The objective of such effort is to generate objective and
reproducible experimental results for the integration of AI techniques in robotics.
Particularly, we assessed the integration of P&S systems in robotics, characterizing
the models employed and the performance of the planning process. As well, we eval-
uate how well P&E are merged, providing a better characterization of deliberative
layers when dealing with real application scenarios. In this direction, we defined
a methodology to guide the testing process and a set of metrics that are generally
applicable to plan-based controllers, independently of the technologies used or the
application domain. Both elements are operationalised in the OGATE software tool
that automatically carries on with large testbench for different execution scenarios.
Then, it is possible to evaluate and compare different autonomous controllers based
on objective criteria.

To demonstrate the effectiveness of the framework, we performed a testbench
evaluating the GOAC and MOBAR controllers. From the analysis of the results, we
could compare the performance of different controllers, but also test different param-
eters and configurations to choose the best one for our application. In general, it is
worth underscoring that performing the same evaluation without OGATE represents
a significant effort in terms of coding, customization of specific metrics, collection
of performance information, and generation of reports. The main effort required
for using OGATE is related to the implementation of the interfaces for the specific
autonomous controller. Thus, OGATE constitutes an off-the-shelf tool for carrying
out a significant amount of work in an automated manner.



MOBAR Nominal scenario GOAC

Goal injection scenario

Execution failure scenario

Figure 7.29: Evaluations for the different execution scenarios (10 runs each) of the
controllers under study.





Chapter 8

Conclusions

This last chapter presents the conclusions of this dissertation. They are divided
into three parts, corresponding to the three main aspects covered in this thesis:
(i) the path planning algorithms; (ii) the MOBAR autonomous controller (including
the up2ta planner) and; (iii) the evaluation of and characterization of autonomous
controllers with the OGATE framework. The dissertation ends with a list of future
research lines.

8.1 Path planning

We have introduced the angle deviation between nodes during the search phase.
Applying this parameter in the evaluation function of the search process we can
modify path planning algorithms in two ways: (i) improving its efficiency when we
use it as a dependent domain heuristic, which reduces the computational resources
used during the path extraction, but with a slight degradation of the generated path
length respect to the original algorithms, and; (ii) producing a new algorithm, S-
Theta*, that minimizes the heading changes during the search process, not only the
path length as the former one does.

Using the angle parameter (named Alpha) as part of the heuristic function of a
path planning algorithm has three advantages: first, it is easy to implement, and
is valid for any heuristic search path planning algorithm, such as those based on
A*. Second, we can modify the behaviour of the Alpha parameter using a factor
to deal between the runtime and the degradation of the other path parameters.
Finally, Alpha affects to the memory required: using this value makes that the
search algorithm expands less nodes, and thus, less memory and time are required.

We have also presented the S-Theta* algorithm, based on Theta*, exploiting the
Alpha value as part of the cost function. The new algorithm effectively reduces the
number of heading changes of the generated path, as well as the total cost associated
with these turns. As the experimental results show, the S-Theta* algorithm improves
the former algorithm on the total turn, in exchange of a slight degradation on the
path length. Notwithstanding, if we consider that an optimal solution is the one that
minimizes both, the path length and the total turns, S-Theta* gets better results
than Theta*.



184 Conclusions

Finally, we have proposed a new any-angle algorithm named 3Dana. It is de-
signed with the purpose of considering the terrain relief during search, while also
minimizing the heading changes of the generated paths. 3Dana integrates during
the search the DTM combined with a traversability cost map, so it is able not only
to avoid potentially dangerous areas, but also excessive terrain slopes in order to
generate safer routes. Besides, during the search process, the algorithm calculates
the necessary turns needed to reach the next position taking into consideration the
current heading and the position of the goal, such as S-Theta* does. Additionally,
3Dana provides different parameters that allows customizing the search process to
adapt the algorithm to each robotic platform and application requirements.

8.2 MOBAR autonomous controller

The autonomous control of a robot requires the deployment of P&S techniques, which
usually constitutes a high effort to perform the modelling and P&E integration.
In this dissertation we have presented the MOBAR autonomous controller. It is a
3T architecture that aims to provides a modular way to implement an autonomous
control architecture using models. To design the models that abstract the underlying
hardware of the robot, some general purpose technologies have been identified and
exploited. The deliberative integrates a PDDL based planner and the path planning
algorithms presented in this dissertation. Using a standard language it is possible
to reuse the model with different deliberatives. The executive layer uses models
codified in PLEXIL. These plans provide an abstraction to decompose, execute and
monitor commands implemented in the functional layer. This last layer is the one
that implements the particular hardware to control the robot, but using the GenoM
and ROS frameworks it is possible to implement the functionality in an incremental
way, using standard interfaces given by the frameworks.

In mobile robot applications it is required that the planner provides optimal
sequencing of goals. In this regard, we have included in MOBAR the up2ta planner
that integrates task planning using a PDDL-based planner, and a path planning
algorithm to generate the paths between goals. The motivation of this system is to
obtain a deliberative layer for autonomous robots, that can interleave task planning
and path planning in order to obtain a close to optimal ordering of tasks, taking
into consideration the path between them. This approach allows the robot to take
advantage of each planner goodness to deal with more complex scenarios ensuring a
good performance and improved quality of the generated plan. Also, it is possible
to replace the path planner, deploying different instances of up2ta adapted to the
application needs.

We have shown evidences of how MOBAR provides an incremental design phi-
losophy. The use of PDDL, a very extended language in the planning community,
or PLEXIL, simple and easy to understand, allows MOBAR to work as a black-box
which, connected with a particular functional layer, enables the deployment of func-
tional prototypes in a short period of time. In this regard, we provide a general
interface for connecting PDDL-based planners, which simplifies to swap between dif-
ferent planners, domain and problems. Also, a set of interfaces to connect different
GenoM modules is provided. If a different functional layer is used, such as ROS,



8.3. Autonomous controllers assessment 185

some engineering effort must be done in order to create the interface between the
functional layer and the executor. Moreover, a deployment with ROS is provided as
well.

To demonstrate the capabilities of MOBAR some experiments have been per-
formed with either real and simulated robots with different characteristic. In this
regard, the same models (for the deliberative and executive layers) have been tested
in the ExoMars rover (simulated) and with a commercial platform supported on ROS,
the TurtleBot 2 platform. In this way, an exploration mission consisting of pictures
acquisition have been carried out, demonstrating the effectiveness of the controller in
different execution scenarios, which include on-board replanning. Moreover, we have
extended the up2ta experimentation providing a real testbench over the TurtleBot
platform. Such experiments demonstrated that the task planning and path planning
integration performed in up2ta is suitable for mobile robots scenarios, providing
better solutions than approaches in which the planners are less coupled.

8.3 Autonomous controllers assessment

In the experimental section of the MOBAR controller we have demonstrated the
effectiveness of the system. However, only a limited set of test were performed and
we did not provide any comparison with other state of the art autonomous controllers.
The reason is that there is not a standard way to perform experiments according to
some structured methodology.

In this dissertation we have proposed a work towards producing a framework
for plan-based controllers assessment. To deal with this open issue, a methodology
to properly guide the testing phase to enable generation of reproducible testbench
campaigns was proposed. The methodology is operationalised through sequential
steps that cover the scenario definition, the test execution and the report and per-
formance assessment. It also defines a compact graphical representation for the
performance assessment, in order to simplify the comprehension and comparison of
controllers performance over different operational scenarios. Such methodology is
supported by a set of general applicable and formally defined metrics that allows us
to characterize the performance of plan based controllers by means of the integra-
tion between the P&S systems, while also analysing the correctness and accuracy
of the deliberative components and the models employed for abstracting the robotic
platform and environment. These metrics are grouped into four performance ar-
eas, namely, P&E Integration, Planner Performance, Planner Model Adequacy and
Plan Accuracy. Each group provides details about different aspects of the controller
under study that provide an objective evaluation of the parameter under analysis.
Then, exploiting the methodology and metrics, it is possible to assess autonomous
controllers regardless the application domain or the technology employed.

These metrics and methodology are operationalised in a software environment,
called OGATE, that automatizes the benchmarking process. OGATE provides a
general testbench to enable easy deployment of autonomous controllers. Also, spe-
cialized graphical interfaces could be enabled to show the relevant data to the user,
encapsulating the complexity of the underlying functionality, and allowing a better



186 Conclusions

interaction with the controlled system. Finally, OGATE also offers an automated
testbench to obtain quantitative comparison based on accurate experiments.

By means of OGATE, an exhaustive analysis of different planning policies for
the deliberative component of the GOAC controller has been performed. Assessment
has involved inspecting internal measures of the GOAC deliberative component while
executing scenarios with increasing complexity. Within these tests we have been able
to obtain different reports describing the performance of the system. This allows us
to obtain conclusions that were hard to be achieved performing standalone tests.

Finally, using OGATE a test campaign consisting of evaluating MOBAR and
GOAC has been performed. For the tests, both controllers operate over the same
simulated robotic platform to perform an exploration mission. Analysing the data
generated during the testbench, we are able to characterize both controllers in dif-
ferent execution scenarios. Using the methodology and the metrics defined, it is
possible to fairly compare the performance of the two autonomous controller, even
when both rely not only in different representations for the deliberative layer, but
also in different P&E schemas implemented with different technologies. Given these
results we can acknowledge that the current metrics and methodology constitutes
a step forward to improve the quality of the experiments performed in autonomous
controllers, allowing to better characterize the performance of such systems. It also
enables to reproduce the results by other researchers since the results are supported
by an objective and formal description of the metrics involved.

8.4 Future research lines

In the following we present future research lines related to the works presented in
this dissertation.

• Currently, in the path planning community the comparison and evaluation of
the algorithms is performed using the average values for the different parame-
ters measured, typically focusing on the path length and the runtime. However,
the average value does not provide enough information to made strong assump-
tions. For this reason, it could be interesting to stablish better practices in the
path planning community evaluating the algorithms based on statistical values,
following the direction started in this thesis.

• Continuing with the path planning evaluation, the experimental assessment
typically consists on performing extensive execution of different path planning
algorithms over: (i) binary maps with increasing number of randomly placed
obstacles; and (ii) games maps. However, several aspects remain unclear in
the definition of the testbenchs. For instance, in the literature there is not a
reference algorithm to create the maps. In this regard, we want to evaluate
the possibility of properly defining a map generation algorithm (such as the
presented in appendix A) that can be used for the experimental assessment.
Then, we need to ensure that the generation algorithm is suitable to generate
large maps sets that are relevant for the evaluation of path planning algorithms.



8.4. Future research lines 187

• Currently up2ta does not allow defining the temporal behaviour of the con-
trolled system. Then, the integration with a planner that supports temporal
constraints is encouraged. In this regard it is not only interesting to exploit
a PDDL 2.0 planner (or newer), but also testing the integration proposed in
timelines based planers (e.g., APSI-TRF). In this direction, the temporal be-
haviour of the controlled system could entail new constraints when searching
for the optimal solution.

• We argue that the average value could not be enough to made strong as-
sumptions for large benchmarks. In this regard, the current definition and
implementation of the metrics in the OGATE framework exploit average val-
ues. Notwithstanding, the software tool currently captures other values, i.e.,
minimum, maximum and aggregated. However, these values are not used in
the evaluation. Then, a required step is to provide a statistical analysis of the
metrics, which could rely in a better assessment.

• The current metrics set for autonomous controllers evaluation provides an in-
sight of different aspects of P&S, P&E and the integration of these techniques
in robotics. However, it is required to continue the research effort to isolate
other aspects (e.g., resource usage, interaction with other agents, etc.) that
could be relevant for the plan-based controllers assessment.

• The OGATE software could be enhanced by adding new modules to provide
extra functionalities. For instance, a plan supervision module could be added
to assist the human operators during the execution of plans. In this regard, a
potential objective is to include a HMI to simplify the comprehension of the
controller execution, while also providing a step toward the implementation of
mixed initiative controllers.

• We have being able to assess two autonomous controllers through OGATE.
Meanwhile both controllers relies on different P&S and P&E schemes, it is de-
sirable to evaluate and compare other controllers that have similarities/diffe-
rences with the previous ones. Then, we could better demonstrate the gener-
ality of our approach.

• As well, it could be interesting to integrate up2ta in GOAC and performs
a comparison between MOBAR and GOAC exploiting the same deliberative.
This could rely in executing more complex domains in which path planning is
required.

• We have currently evaluated the controllers over a particular domain. Thus,
it is desirable to test the same controllers over different domains, assessing the
adaptability of the controllers, meanwhile we can demonstrate that the metrics
and methodology are fully domain independent.





Appendix A

Random maps generation

To perform comparative tests over several path planning algorithms two strategies
are generally followed. The first one consist of using previously generated map sets,
typically obtained from games. This approach is quite limited as the number of
available maps is generally low, while also the maps are very limited in their prop-
erties (e.g. size, obstacles). The second testbench is based on random generation
of large maps sets. This approach provides more possibilities as the maps can be
generated using different parameters to set the maps dimension, number of obsta-
cles, etc. However, the form in which these maps are generated is rarely indicated.
Therefore, in this appendix we introduce a random map generation schema based
on parameters. This method differentiates two parts: the DTM generation and the
obstacles positioning, which could include the generation of a random traversability
cost map. So, using the algorithms presented here it is possible to generate maps
that can be fairly used to compare different path planning algorithms.

The elevation map or DTM are generated by using the Hill algorithm shown in
alg. 7. The logic of this algorithm consists of selecting a point of the map randomly
and increase the altitude of the surrounding area accordingly to a radius given by
the user. What we obtain is a hill at such point. Repeating this procedure several
times generates a map with valleys and hills. Then, a last steps is to normalize the
altitude for the user defined range.

The obstacles and traversal cost map are generated in a separate file. Generally,
an obstacle is defined by a cell that has a cost greater than a maximum defined value,
cmax. Also, the minimum cell cost is 1, so, at least, the path cost is equal to the
path length. The obstacle positioning and the cost map generation are done by the
algs. 8 and 9 respectively.

The obstacle generation algorithm randomly places obstacles until it reaches a
maximum percentage of blocked cells defined by the user. As well, each obstacle
has a maximum dimension set by the user. After placing an obstacle its perimeter
is protected. This means that further iterations of the algorithm cannot place an
obstacle in such area, so there is no unreachable nodes in the generated map. This
ensures that the generation algorithm produces maps in which it is possible to find a
path between each pair of nodes. Moreover, the first/last column/row are protected.
As a consequence of the generation algorithm, in function of the dimension of the
obstacles and the percentage of blocked cells, it is possible that the algorithm does

189



190 Random maps generation

not converge. In practice, with less than 50% of blocked cells, the algorithm usually
generates a map in a negligible time.

If costs have to be included, these will be added after positioning the obstacles
in the same map. First, a random position is selected along with a random cost
value within a range from 1 to the maximum value defined by the user (cmax). From
this point onwards, a rectangular region of dimensions specified by the user, will be
created with the random cost value. The blocked cells will be ignored and the process
will be repeated a user desired number of iterations. Those cells, which its associated
cost has not been modified, will remain always with the initial value, being this value
the unit.

The required parameters to define a testbench are the ones outlined in table A.1.
N , R, zmin and zmax parameters correspond to the elements used to generate the
DTM. O, DX and DY are required to generate the obstacles. Finally, and in case
of including the transversal costs, M , CX, CY and cmax must be supplied. Addi-
tionally, it has to be specified whether the center-node or the corner-node schema
is used. In the experiments carried out with random generated maps in this thesis,
the corner-node schemas is used, while the parameters for the maps generation are
presented in the last column of table A.1.

Table A.1: Map generation parameters.

Param Definition Range Value used

N Number of points to elevate DTM [1.. inf) min(cols, rows)/4

R Radius of the circle to elevate [1.. inf) min(cols, rows)/5

zmin Minimum altitude value (− inf, inf) 0

zmax Maximum altitude value [> zmin, inf) min(cols, rows)/4

O Percentage of obstacles [0%, 50%] between 0% and 40%

DX First dimension of the obstacle [1, cols) cols/25

DY Second dimension of the obstacle [1, rows) rows/25

M Number of transversal costs re-
gions to generate

[0.. inf) (cols · rows)/(DX ·DY )

CX First dimension of the transversal
cost region

[1, cols) DX · 4

CY Second dimension of the transver-
sal cost region

[1, rows) DY · 4

cmax Maximum transversal cost [2, inf) 8



Algorithm 7 Hill algorithm for DTM generation

Require: cols, rows: map dimension
N : number of iterations
R: hill radius
zmin, zmax: normalized altitude range

1 dtm← new empty map of cols× rows
2 for i← 0 to N do
3 x← random ∈ [0, cols)
4 y ← random ∈ [0, rows)
5 for zx← x−R to x+R do
6 for zy ← y −R to y +R do
7 if zx ∈ [0, cols) and zy ∈ [0, rows) then
8 nz ← R2 − (zx− x)2 + (zy − y)2

9 if nz > 0 then
10 dtm[zx][zy]← dtm[zx][zy] + nz
11 end if
12 end if
13 end for
14 end for
15 normalize dtm in[zmin, zmax]
16 end for
17 return dtm



Algorithm 8 Random obstacles generation algorithm

Require: : cols, rows: map dimension
O: percentage of blocked cells
DX,DY : obstacles dimension

1 costmap← new empty map of cols× rows
2 blockedcells← (O · cols · rows)/100
3 while blockedcells > 0 do
4 x← random ∈ (0, cols)
5 y ← random ∈ (0, rows)
6 for ox← x to x+DX do
7 for oy ← y to y +DY do
8 if ox ∈ (0, cols− 1) and oy ∈ (0, rows− 1) then
9 if blockedcells > 0 and map[ox][oy] not protected then

10 costmap[ox][oy]← obstacle
11 blockedcells← blockedcells− 1
12 end if
13 end if
14 end for
15 end for
16 for sx← x− 1 to x+DX + 1 do
17 for sy ← y − 1 to y +DY + 1 do
18 if cx ∈ [0, cols− 1] and cy ∈ [0, rows− 1] then
19 if costmap[cx][cy] empty then
20 costmap[cx][cy]← protected
21 end if
22 end if
23 end for
24 end for
25 end while
26 return costmap



Algorithm 9 Random traversal cost map generation algorithm

Require: costmap: an obstacle map of cols× rows
M : number of traversal cost regions generated
CX,CY : size of traversal cost regions
cmax: maximum traversal cost

1 for i← 0 to M do
2 x← random ∈ [0, cols)
3 y ← random ∈ [0, rows)
4 c← random ∈ [1, cmax]
5 for cx← x to x+ CX do
6 for cy ← y to y + CY do
7 if cx ∈ [0, cols) andcy ∈ [0, rows) then
8 if costmap[cx][cy] 6= obstacle then
9 costmap[cx][cy]← c

10 end if
11 end if
12 end for
13 end for
14 end for
15 return costmap





Appendix B

Path planning on Mars with 3Dana

In this appendix we present the solutions obtained with A* and 3Dana for three
Mars maps obtained with the HiRISE instrument. In fig. B.1 we put in context the
selected maps in a Mars topographical representation. The maps presented in sec.
4.3.3 (fig. 4.8 and 4.10) are located in the Noachis Terra region, corresponding to
different areas of a 30-kilometre crater. The first map presented in this appendix
(fig. B.2) is an structure of the Leighton crater, at the east of the Schiaparelli crater.
The second map (fig B.3) is a region with compositional diversity in northern Hellas
region. The last map (fig. B.4) shows the central uplift of the Ritchey crater, also
located in the Noachis Terra region.

Figure B.1: DTMs available in the HiRISE web as August 2016. The labels identify
the figure with the paths obtained by 3Dana for the maps of sec. 4.3.3 and this
appendix.

195



196 Path planning on Mars with 3Dana

The first map presents a structure in the Leighton Crater1. The total area covered
is near 36 km2 with a dimension of 5522 x 3257 nodes. Table B.1 and fig. B.2 present
the data for a path between points (1000, 300) and (2300, 5200).

Table B.1: Paths data for DTEED 020492 1830. In bold: best path length plus total
turns for each maximum slope.

Alg. Max. slope αw Length (m) Turn (◦) Time (s) Expanded nodes

A* - - 11007 14175 270 1246143

3Dana - - 10306 516 557 2058774

A* - 11015 19035 279 1268072

30◦ 0.0 10308 577 804 2001361

3Dana 0.5 10332 275 9685 2096684

1.0 10334 164 11559 1920525

A* - 11021 21555 274 1240419

25◦ 0.0 10317 703 809 808631

3Dana 0.5 10336 527 6410 2036773

1.0 10347 497 8435 2117518

A* - 11073 24795 286 2180587

20◦ 0.0 10360 1472 1004 2398166

3Dana 0.5 10384 1019 5302 2347419

1.0 10399 1161 7235 2340256

A* - 11187 34560 429 1740510

15◦ 0.0 10459 2574 1049 2788701

3Dana 0.5 10504 2348 4653 2751384

1.0 10507 2169 6617 2718648

A*
- No path

3Dana 10◦

1http://uahirise.org/dtm/dtm.php?ID=ESP_020492_1830

http://uahirise.org/dtm/dtm.php?ID=ESP_020492_1830


197

Figure B.2: Paths obtained for the DTEED 020492 1830 using A* and different
configurations of 3Dana.



198 Path planning on Mars with 3Dana

The second map is located in northern of the Hellas region2. The total area
covered is near 53 km2 with a dimension of 7955 x 3349 nodes. Table B.2 and fig.
B.3 present the data for a path from (1200, 500) to (1800, 7000).

Table B.2: Paths data for DTEED 029815 1530. In bold: best path length plus total
turns for each maximum slope.

Alg. Max. slope αw Length (m) Turn (◦) Time (s) Expanded nodes

A* - - 13694 24255 923 2806279

3Dana - - 13140 592 694 1956913

A* - 13677 27180 804 2546422

30◦ 0.0 13141 596 1192 1885863

3Dana 0.5 13150 264 6730 1665626

1.0 13152 287 7573 1538329

A* - 13677 23940 768 2426763

25◦ 0.0 13144 593 1244 1982619

3Dana 0.5 13151 275 5695 1565942

1.0 13152 309 6944 1577497

A* - 13687 27675 7256 2125253

20◦ 0.0 13164 685 1154 1733098

3Dana 0.5 13174 353 3024 1272223

1.0 13179 460 2839 1055844

A* - 14844 42075 1568 4111250

15◦ 0.0 13823 1839 1950 2406437

3Dana 0.5 13862 1902 4428 2412699

1.0 13974 1460 5457 2544489

A* - 16141 45450 1788 6020368

10◦ 0.0 15305 2195 4608 6621195

3Dana 0.5 15478 2533 11322 6983322

1.0 Timeout >5h

2http://uahirise.org/dtm/dtm.php?ID=ESP_029815_1530

http://uahirise.org/dtm/dtm.php?ID=ESP_029815_1530


199

Figure B.3: Paths obtained for the DTEED 029815 1530 using A* and different
configurations of 3Dana.



200 Path planning on Mars with 3Dana

Finally, the third map shows the central uplift of the Ritchey Crater3. The total
area covered is near 50 km2 with a dimension in of 7758 x 3242 nodes. Table B.3 and
fig. B.4 present the data for a path between points (1500, 1500) and (2000, 7000).

Table B.3: Paths data for DTEED 029964 1510. In bold: best path length plus total
turns for each maximum slope.

Alg. Max. slope αw Length (m) Turn (◦) Time (s) Expanded nodes

A* - - 11499 19980 150 1103194

3Dana - - 11133 964 455 1796831

A* - 11522 21330 157 1107588

30◦ 0.0 11133 985 659 1764564

3Dana 0.5 11147 304 4044 1615257

1.0 11149 357 4550 1431735

A* - 11539 23040 164 1104231

25◦ 0.0 11136 1305 679 1784577

3Dana 0.5 11153 667 3444 1709972

1.0 11148 478 4647 1677322

A* - 11616 26910 181 1138413

20◦ 0.0 11168 1539 927 2136595

3Dana 0.5 11185 960 4116 2114850

1.0 11200 792 4975 2030527

A* - 11911 34020 530 2333058

15◦ 0.0 11375 2578 1321 3011790

3Dana 0.5 11447 2152 4265 3127010

1.0 11490 2283 5503 3984846

A* - 12746 53325 1202 4577942

10◦ 0.0 12129 9826 2209 5266664

3Dana 0.5 12277 8166 7031 5834310

1.0 12372 6465 8976 5683667

3http://uahirise.org/dtm/dtm.php?ID=ESP_029964_1510

http://uahirise.org/dtm/dtm.php?ID=ESP_029964_1510


201

Figure B.4: Paths obtained for the DTEED 029964 1510 using A* and different
configurations of 3Dana.





Bibliography

[1] Ad Hoc Autonomy Levels for Unmanned Systems Working Group. Autonomy
levels for unmanned systems (ALFUS) framework – volume I: Terminology.
Technical Report 1011-I-2.0, National Institute of Standards and Technology,
October 2008.

[2] P. E. Agre and D. Chapman. What are plans for? Robotics and Autonomous
Systems, 6:17–34, 1989.

[3] M. Akinc, K. Bekris, B. Chen, A. Ladd, E. Plaku, and L. Kavraki. Proba-
bilistic roadmaps of trees for parallel computation of multple query roadmaps.
Algorithmic Foundations of Robotics VI, Springer Tracts in Advanced Robotics,
14:80–89, 2005.

[4] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An architecture
for autonomy. Field Robotics, Special Issue on Integrated Architectures for
Robot Control and Programming, 17:315–337, 1998.

[5] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and Y. Quin.
An integrated theory of the mind. Psycological Review, 111(4):1036–1060, 2004.

[6] R. C. Arkin. Navigational path planning for a vision-based mobile robot.
Robotica, 7(1):49–63, 1989.

[7] R. C. Arkin. Integrating behavioral, perceptual, and world knowledge in reac-
tive navigation. Robotics and Autonomous Systems, 6(1-2):105–122, 1990.

[8] R. C. Arkin and T. Balch. AuRA: Principles and practice in review. Experi-
mental and Theoretical Artificial Intelligence, 9(2-3):175–189, 1997.

[9] R. C. Arkin and D. C. MacKenzie. Temporal coordination of perceptual al-
gorithms for mobile robot navigation. IEEE Transactions on Robotics and
Automation, 10(3):276–286, 1994.

[10] P. Aschwanden, V. Baskaran, S. Bernardini, C. Fry, M. D. R-Moreno,
N. Muscettola, C. Plaunt, D. Rijsman, and P. Tompkins. Model-unified plan-
ning and execution for distributed autonomous system control. In Association
for the Advancement of Artificial Intelligence (AAAI) 2006 Fall Symposia,
Washington DC, USA, October 2006.

203



204 BIBLIOGRAPHY

[11] G. Ayorkor, A. Stentz, and M. B. Dias. Continuous-field path planning with
constrained path-dependent state variables. In ICRA 2008 Workshop on Path
Planning on Costmaps, Pasadena, CA, USA, May 2008.

[12] T. Balch. Teambots. Online: www.teambots.org.

[13] A. Basu, M. Bozga, and J. Sifakis. Modeling hterogeneous real-time compo-
nents in BIP. In Procs. of the 4th IEEE International Conference on Software
Engineering and Formal Methods, Washington DC, USA, September 2006.

[14] S. Behnke. Robot competitions – ideal benchmarks for robotics research.
In 2006 IEEE/RSJ International Conference on Robots and Systems (IROS)
Workshop on Benchmarks in Robotics Research, Beijing, China, October 2006.

[15] J. Benton, A. Coles, and A. Coles. Temporal planning with preferences and
time-dependent continuous costs. In Procs. of the 22nd International Confer-
ence on Automated Planning and Scheduling, Atibaia, São Paulo, Brazil, may
2012.

[16] D. Bernard, G. Doraist, E. Gamble, B. Kanefskyt, J. Kurien, G. K. Man,
W. Millart, N. Muscettola, U. Nayak, K. Rajant, N. Rouquette, B. Smith,
W. Taylor, and Y. wen Tung. Spacecraft autonomy flight experience: The DS1
Remote Agent experiment. In Procs. of the AIAA Space Technology Conference
and Exposition, Albuquerque, NM, USA, September 1999.

[17] R. P. Bonasso. Integrating reaction plan and layered competences through
syncrhonous control. In Procs. of the 12th International Joint Conference on
Artificial Intelligence, Sydney, New South Wales, Australia, August 1991.

[18] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G.
Slack. Experiences with an architecture for intelligent reactive agents. Exper-
imental and Theoretical Artificial Intelligence, 9(2):187–202, 1997.

[19] A. Botea, M. Muller, and J. Schaeffer. Near optimal hierarchical path-finding.
Journal of Game Development, 1:1–22, 2004.

[20] J. Bresenham. Algorithm for computer control of a digital plotter. IBM Sys-
tems Journal, 4:25–30, 1965.

[21] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2:14–23, 1986.

[22] R. A. Brooks. How to Build Complete Creatures Rather than Isolated Cognitive
Simulators. Lawrence Erlbaum Assosiates, Hillsdale, NJ, 1991.

[23] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[24] M. Bualat, L. Edwards, T. W. Fong, M. Broxton, L. Flueckiger, S. Y. Lee,
E. Park, V. To, H. Utz, V. Verma, C. Kunz, and M. MacMahon. Autonomous
robotic inspection for lunar surface operations. In Procs. of the 6th Inter-
national Conference on Field and Service Robotics, Chamonix, France, July
2007.



BIBLIOGRAPHY 205

[25] L. M. Camarinha-Matos. Plan generation in robotics: State of the art and
perspectives. Robotics, 3(3-4):291–328, 1987.

[26] S. Cambon, R. Alami, and F. Gravot. A hybrid approach to intricate motion,
manipulation and task planning. International Journal of Robotics Research,
28(1):104–126, 2009.

[27] J. G. Carbonell, O. Etzioni, Y. Gil, R. Joseph, C. Knoblock, S. Minton, and
M. Veloso. PRODIGY: An integrated architecture for planning and learning.
SIGART Bulletin, 2(4):51–55, 1991.

[28] A. Ceballos, S. Bensalem, A. Cesta, L. D. Silva, S. Fratini, F. Ingrand, J. Ocón,
A. Orlandini, F. Py, K. Rajan, R. Rasconi, and M. V. Winnendael. A goal-
oriented autonomous controller for space exploration. In Procs. of the 11th
Symposium on Advanced Space Technologies in Robotics and Automation, No-
ordwijk, the Netherlands, April 2011.

[29] A. Cesta, G. Cortellessa, S. Fratini, and A. Oddi. Developing an end-to-end
planning application from a timeline representation framework. In Procs. of the
21st Innovative Applications of Artificial Intelligence Conference, Pasadena,
CA, USA, July 2009.

[30] A. Cesta and A. Oddi. DDL1: A Formal Description of a Constraint Repre-
sentation Language for Physical Domains. IOS Press, Amsterdam, 1996.

[31] S. Choi, J. Y. Lee, and W. Yu. Fast any-angle path planning on grid maps
with non-collision pruning. In Procs. of the IEEE International Conference on
Robotics and Biomimetics, Tianjin, China, December 2010.

[32] S. Choi, J. Park, E. Lim, and W. Yu. Global path planning on uneven elevation
maps. In Procs. of the 9th International Conference on Ubiquitous Robots and
Ambient Intelligence, Daejeon, Korea, Nov 2012.

[33] R. J. Clark, R. C. Arkin, and A. Ram. Learning momentum: On-line perfor-
mance enhancement for reactive systems. In Procs. of the IEEE International
Conference on Robotics and Automation, Nice, France, May 1992.

[34] J. H. Connell. SSS: A hybrid architecture applied to robot navigation. In
Procs. of the IEEE International Conference on Robotics and Automation,
Nice, France, May 1992.

[35] J. W. Crandall and M. A. Goodrich. Measuring the intelligence of a robot
and its interface. In Performance Metrics for Intelligent Systems (PerMIS’03)
Workshop, Gaithersburg, MD, USA, September 2003.

[36] K. Daniel, A. Nash, S. Koenig, and A. Felner. Theta*: Any-angle path planning
on grids. Journal of Artificial Intelligence Research, 39:533–579, 2010.

[37] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint network. Artificial
Intelligence, 49:61–95, 1991.



206 BIBLIOGRAPHY

[38] A. P. del Pobil. Why do we need benchmarks in robotics research? In 2006
IEEE/RSJ International Conference on Robots and Systems (IROS) Workshop
on Benchmarks in Robotics Research, Beijing, China, October 2006.

[39] DFKI Robotics Innovation Center. Rock: the robot construction kit.
http://rock-robotics.org.

[40] M. B. Dias, S. Lemai, and N. Muscettola. A real-time rover executive based
on model-based reactive planning. Technical Report 169, Robotics Institute,
2003.

[41] E. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[42] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi,
T. Baaboura, M. Birattari, M. Bonani, M. Brambilla, A. Brutschy, D. Burnier,
A. Campo, A. L. Christensen, A. Decugniere, G. A. D. Caro, F. Ducatelle,
E. Ferrante, A. Forster, J. Guzzi, V. Longchamp, S. Magnenat, J. M. González,
N. Mathews, M. A. M. de Oca, R. O’Grady, C. Pinciroli, G. Pini, P. Rétor-
naz, J. Roberts, V. Sperati, T. Stirling, A. Stranieri, T. Stuetzle, V. Trianni,
E. Tuci, A. E. Turgut, and F. Vaussard. Swarmanoid: a novel concept for
the study of heterogeneous robotic swarms. IEEE Robotics & Automation
Magazine, 2012.

[43] M. Dorigo, E. Tuci, V. Trianni, R. GroB, S. Nouyan, C. Ampatzis, T. H. La-
bella, R. O’Grady, M. Bonani, and F. Mondada. Swarm-Bot: Design and Im-
plementation of Colonies of Self-assembling robots, chapter 6, pages 106–135.
Computational Intelligence: Principles and Practice. IEEE Computational In-
telligence Society, NY, 2006.

[44] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining
high-level casual reasoning with low-level geometric reasoning and motion plan-
ning for robotic manipulation. In Procs. of the IEEE International Conference
on Robotics and Automation, Shangai, China, May 2011.

[45] K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complexity and expres-
sivity. In Procs. of the National Conference on Artificial Intelligence, Seattle,
WA, USA, July 1994.

[46] ESA. Exomars rover, October 2015. http://exploration.esa.int/mars/45084-
exomars-rover.

[47] ESA-ESTEC Requirements & Standards Division. Space engineering: Space
segment operability. Technical Report ECSS-E-ST-70-11C, European Coordi-
nation for Space Standardization, Noordwijk, The Netherlands, July 2008.

[48] D. Ferguson and A. Stentz. Field D*: An interpolation-based path planner
and replanner. In Procs. of the International Symposium on Robotics Research,
October 2005.



BIBLIOGRAPHY 207

[49] J. A. Fernández-Madrigal and J. L. Blanco. Simultaneous Localization and
Mapping for Mobile Robots: Introduction and Methods. IGI Global, 2012.

[50] N. B. Figueroa, F. Schmidt, H. Ali, and N. Mavridis. Joint origin identification
of articulated robots with marker-based multi-camera optical tracking systems.
Robotics and Autonomous Systems, 61(6):580–592, 2013.

[51] R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application
of theorem-proving to problem-solving. Artificial Intelligence, 2(3):189–208,
1971.

[52] R. J. Firby. An investigation into reactive planning in complex domains. In
Procs. of the 6th National Conference on Artificial Intelligence, Seattle, DC,
USA, July 1987.

[53] S. Fleury, M. Herrb, and A. Mallet. GenoM: User’s Guide. CNRS; LAAS,
May 2010.

[54] L. Flückiger and H. Utz. Service oriented robotic architecture for space
robotics: Design, testing, and lessons learned. Journal of Field Robotics, Spe-
cial Issue on Space Robotics, 31(1):176–191, January 2014.

[55] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley, 1992.

[56] G. Fontana, M. Matteucci, and D. G. Sorrenti. RAWSEEDS: Building a
benchmarking toolkit for autonomous robotics. In F. Amigoni and V. Schiaf-
fonati, editors, Methods and Experimental Techniques in Computer Engineer-
ing, Springer Briefs in Applied Sciences and Technology, pages 55–68. Springer
International Publishing, 2014.

[57] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. AI Research, 20:61–124, 2003.

[58] S. Fratini, F. Pecora, and A. Cesta. Unifying planning and scheduling as
timelines in a component-based perspective. Archives of Control Sciences,
18(2):231–271, 2008.

[59] A. Garcia, A. Barrientos, A. Medina, P. Colmenarejo, L. Mollinedo, and
C. Rossi. 3D path planning using a fuzzy logic navigational map for plan-
etary surface rovers. In Procs. of the 11th Symposium on Advanced Space
Technologies in Robotics and Automation, Noordwijk, The Netherlands, May
2011.

[60] E. Gat. ALFA: A language for programing reactive robotic control systems.
In Procs. of the IEEE International Conference on Robotics and Automation,
Sacramento, CA, USA, April 1991.

[61] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-world mobile robots. In Procs. of the 10th
National Conference on Artificial Intelligence (AAAI), pages 809–815, San
Jose, CA, USA, July 1992.



208 BIBLIOGRAPHY

[62] E. Gat. ESL: A language for supporting robust plan execution in embedded
autonomous agents. In Working notes of the AAAI Fall Symposium on Plan
Execution, Cambridge, MA, USA, November 1996.

[63] E. Gat. On Three-Layer Architectures. AAAI Press, 1998.

[64] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. In
Procs. of the 5th International Planning Competition, Italy, 2005.

[65] D. I. Gertman, C. McFarland, T. A. Klein, A. E. Gertman, and D. J. Bruem-
mer. A methodology for testing unmanned vehicle behavior and autonomy. In
Performance Metrics for Intelligent Systems (PerMIS’07) Workshop, Wash-
ington, D.C. USA, August 2007.

[66] A. K. Goel, K. S. Ali, M. W. Donnellan, A. G. de Silva Garza, and T. J.
Callantine. Multistrategy adaptive path planning. IEEE Expert, 9(6):57–65,
1994.

[67] Y. Guou, Y. Long, and W. Sheng. Globlal trajectory generation for nonholo-
nomic robots in dynamic environments. In Procs. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Rome, Italy, April 2007.

[68] K. Z. Haigh and M. M. Veloso. Interleaving planning and robot execution
for asynchronous user requests. Autonomous Robots - Special Issue on Au-
tonomous Agents, 5(1):79–95, 1998.

[69] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4:100–107, 1968.

[70] K. Hauser and J. Latombe. Integrating task and PRM motion planning: Deal-
ing with many infeasible motion planning queries. In Procs. of the 9th In-
ternational Conference on Automated Planning and Scheduling, Thessaloniki,
Greece, September 2009.

[71] J. Hoffman. The Metric-ff planning system: Translating “ignoring delete lists”
to numeric state variables. Journal of Artificial Intelligence Research, 20:291–
341, 2003.

[72] J. Hoffmann and B. Nebel. The ff planning system: Fast plan generation
through heuristic search. Artificial Intelligence Research, 14:253–302, 2001.

[73] C. Hsu and B. Wah. The SGPlan planning system in IPC-6. In In Procs. of the
6th International Planning Competition, Sydney, Australia, September 2008.

[74] H.-M. Huang, E. Messina, and A. Jacoff. Performance measures framework
for unmanned systems (PerMFUS): Initial perspective. In Performance Met-
rics for Intelligent Systems (PerMIS’09) Workshop, Gaithersburg, MD, USA,
September 2009.



BIBLIOGRAPHY 209

[75] H.-M. Huang, E. Messina, A. Jacoff, R. Wade, and M. McNair. Performance
measures framework for unmanned systems (PerMFUS): Models for contextual
metrics. In Performance Metrics for Intelligent Systems (PerMIS’10) Work-
shop, Baltimor, MD, USA, September 2010.

[76] H.-M. Huang, K. Pavek, J. Albus, and E. Messina. Autonomy levels for un-
manned systems (ALFUS) framework: An update. In SPIE Defense and Se-
curity Symposium, Orlando, FL. USA, May 2005.

[77] A. R. Hudson and L. H. Reeker. Standardizing measurements of autonomy
in the Artificially Intelligent. In Performance Metrics for Intelligent Systems
(PerMIS’07) Workshop, Washington, D.C. USA, August 2007.

[78] F. Ingrand, R. Chatila, R. Alami, and F. Robert. PRS a high level supervision
and control language for autonomous mobile robots. In Procs. of the IEEE In-
ternational Conference on Robotics and Automation, Minneapolis, USA, April
1996.

[79] F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture for real-time
reasoning and system control. IEEE Expert, 7(4):34–44, 1992.

[80] F. Ingrand, S. Lacroix, S. Lemai-Chenevier, and F. Py. Decisional autonomy
of planetary rovers. Field Robotics, 24(7):559–580, 2007.

[81] F. Ingrand and F. Py. An execution control system for autonomous robots.
In Procs. of the IEEE International Conference on Robotics and Automation,
Washington DC, USA, May 2002.

[82] B. Innocenti, B. López, and J. Salvi. Design patterns for combining social
and individual intelligences on modular-based agents. In 3rd International
Workshop on Hybrid Artificial Intelligence Systems, Salamanca, Spain, June
2008.

[83] B. Innocenti, B. López, and J. Salvi. Integrating individual and social in-
telligence into module-based agents without central coordinator. Frontiers in
Artificial Intelligence and Applications, 179(1):82–93, 2008.

[84] International Electrotechnical Commission (IEC). Performance evaluation
method of intelligent mobile robot platform for household and similar appli-
cations. Technical report, International Electrotechnical Commission (IEC),
2012.

[85] G. Ishigami, K. Nagatani, and K. Yoshida. Path planning for planetary ex-
ploration rovers and its evaluation based on wheel slip dynamics. In Procs. of
the IEEE International Conference on Robotics and Automation, Roma, Italy,
April 2007.

[86] L. Jaillet, J. Cortés, and T. Siméon. Transition-based RRT for path planning
in continuous cost spaces. In Procs. of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, Nice, France, September 2008.



210 BIBLIOGRAPHY

[87] A. K. Jonsson, P. H. Morris, N. Muscettola, K. Rajan, and B. D. Smith. Plan-
ning in interplanetary space: Theory and practice. In Procs. of the 5th Inter-
national Conference on Artificial Intelligence Planning Systems, Breckenridge,
Colorado, USA, April 2000.

[88] L. P. Kaelbling. Goals as parallel program specifications. In Procs. of the
National Conference on Artificial Intelligence, Saint Paul, MN, USA, August
1988.

[89] M. Kanehara, S. Kagami, J. Kuffner, S. Thompson, and H. Mizoguhi. Path
shortening and smoothing of grid-based path planning with consideration of
obstacles. In Procs. of the IEEE International Conference on Systems, Man
and Cybernetics, Montreal, QC, Canada, October 2007.

[90] R. L. Kirk, E. Howington-Kraus, M. R. Rosiek, J. A. Anderson, B. A. Archinal,
K. J. Becker, D. A. Cook, D. Galuszka, P. E. Geissler, T. M. Hare, I. M.
Holmberg, L. P. Keszthelyi, B. L. Redding, W. A. Delamere, D. Gallagher,
J. Chapel, E. M. Eliason, R. King, and A. S. McEwen. Ultrahigh resolution
topographic mapping of Mars with MRO HiRISE stereo images: Meter-scale
slopes of candidate Phoenix landing sites. Journal of Geophysical Research:
Planets, 113(E3):1–31, 2008.

[91] K. Konolige and K. Myers. The Saphira architecture for autonomous mobile
robots. Technical report, MIT Press, November 1996.

[92] P. Laborie and M. Ghallab. Planning with sharable resource constraints. In
Procs. of the International Joint Conference on Artificial Intelligence, Mon-
treal, Canada, August 1995.

[93] J. E. Laird. Extending the Soar cognitive architecture. In Procs. of the Con-
ference on Artificial General Intelligence, Memphis, Tennessee, USA, March
2008.

[94] A. Lampe and R. Chatila. Performance measure for the evaluation of mobile
robot autonomy. In Procs. of the IEEE International Conference on Robotics
and Automation, Orlando, FL, USA, May 2006.

[95] P. Langley. Cognitive architectures and general intelligent systems. AI Maga-
zine, 27(33):33–44, 2006.

[96] P. Langley and D. Choi. A unified cognitive architecture for physical agents.
In Procs. of the 21st National Conference on Artificial Intelligence, Boston,
MA, USA, July 2006.

[97] P. Langley, D. Choi, and S. Rogers. Interleaving learning, problem solving,
and execution in the ICARUS architecture. Technical report, Computational
Learning Laboratory, Standford University, 2005.

[98] S. M. LaValle and J. J. Kuffner Jr. Randomized kinodynamic planning. Inter-
national Journal of Robotics Research, 20(5):378–400, 2001.



BIBLIOGRAPHY 211

[99] C. Lebiere and J. R. Anderson. A connectionist implementation of the ACT-R
production system. In Procs. of the 15th Annual Conference of the Cognitive
Science Society, Colorado, CO, USA, June 1993.

[100] S. Lemai. IxTeT-eXeC: Planning, Plan Repair and Execution Control with
Time and Resource Management. PhD thesis, LAAS-CNRS and Insitut Na-
tional Polytecnique de Tolouse, France, 2004.

[101] P. Lima, D. Nardi, G. Kraetzschmar, J. Berghofer, M. Matteucci, and
G. Buchanan. RoCKIn innovation through robot competitions. IEEE Robotics
& Automation Magazine, 21(2):8–12, 2014.

[102] M. Lindström, A. Orebäck, and H. Christensen. BERRA: A research archi-
tecture for service robots. In Procs. of the IEEE International Conference on
Robotics and Automation, San Francisco, CA, USA, may 2000.

[103] C. L. López, S. Jiménez, and M. Helmert. Automating the evaluation of plan-
ning systems. AI Communication, 26(4):331–354, 2013.

[104] A. Mallet, S. Fleury, and H. Bruyninckx. A specification of generic robotics
software components: future evolutions of GenoM in the Orocos context. In
Procs. of the International Conference on Intelligent Robotics and Systems,
Lausanne, Switzerland, september 2002.

[105] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand. GenoM3:
Building middleware-independent robotic components. In Procs. of the IEEE
International Conference on Robotics and Automation, Anchorage, Alaska,
USA, May 2010.

[106] D. McDermott. The PDDL planning domain definition language. The AIPS-98
Planning Competition Comitee, 1998.

[107] D. McDermott. PDDL: the planning domain definitin language. AI Magazine,
21(2):35–55, 2000.

[108] G. T. McWilliams, M. A. Brown, R. D. Lamm, C. J. Guerra, P. A. Avery, K. C.
Kozak, and B. Surampudi. Evaluation of autonomy in recent ground vehicles
using the autonomy levels for unmanned systems (ALFUS) framework. In Per-
formance Metrics for Intelligent Systems (PerMIS’07) Workshop, Washington,
D.C. USA, August 2007.

[109] D. P. Miller. Planning by Search Through Simulations. PhD thesis, Yale
University, 1985.

[110] I. Millington and J. Funge. Artificial Intelligence for Games. Morgan Kauf-
mann Publishers, 2 edition, 2009.

[111] B. G. Milnes, G. Pelton, R. Doorenbos, M. Hucka, J. E. Laird, P. Rosenbloom,
and A. Newell. A specification of the Soar cognitive architecture in Z. Technical
report, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, 1992.



212 BIBLIOGRAPHY

[112] N. Muscettola. HSTS: Integrating Planning and Scheduling. Intelligent
Scheduling. Morgan Kaufmann, 1994.

[113] N. Muscettola, P. P. Nayak, B. Pell, and B. C. Williams. Remote Agent: To
boldly go where no AI system has gone before. Artificial Intelligence, 103:5–48,
1998.

[114] P. Muñoz, D. F. Barrero, and M. D. R-Moreno. Run-time analysis of classical
path-planning algorithms. In Procs. of the 32nd SGAI International Confer-
ence on Artificial Intelligence, Cambridge, UK, December 2012.

[115] P. Muñoz, D. F. Barrero, and M. D. R-Moreno. Statistic methods for path-
planning algorithms comparison. Künstliche Intelligenz, 27(3):201–211, 2013.

[116] P. Muñoz, D. F. Barrero, and M. D. R-Moreno. A statistically rigorous analysis
of 2D path-planning algorithms. The Computer Journal, 58(11):2876–2891,
2014.

[117] P. Muñoz, B. Castaño, and M. D. R-Moreno. Simulation of the hexapod
robot PTinto walking on irregular surfaces. International Journal of Simulation
Modelling, 14:1–12, March 2015.

[118] P. Muñoz, A. Cesta, A. Orlandini, and M. D. R-Moreno. Toward a test en-
vironment for autonomous controllers. In 5th Italian Workshop on Planning
and Scheduling, Turin, Italy, December 2013.

[119] P. Muñoz, A. Cesta, A. Orlandini, and M. D. R-Moreno. First steps on an on-
ground autonomy test environment. In Procs. of the 5th International IEEE
Conference on Space Mission Challenges for Information Technology, Mary-
land, USA, September 2014.

[120] P. Muñoz, A. Cesta, A. Orlandini, and M. D. R-Moreno. Evaluating au-
tonomous controllers: An initial assessment. In 6th Italian Workshop on Plan-
ning and Scheduling, Ferrara, Italy, September 2015.

[121] P. Muñoz, A. Cesta, A. Orlandini, and M. D. R-Moreno. A framework for
performance assessment of autonomous robotic controllers. In Proc. of the
2nd Workshop on Planning and Robotics (ICAPS-15), Jerusalem, Israel, June
2015.

[122] P. Muñoz, A. Cesta, A. Orlandini, and M. D. R-Moreno. The on-ground
autonomy test environment: OGATE. In Procs. of the 13th ESA Workshop
on Advanced Space Technologies for Robotics and Automation, Noordwijk, The
Netherlands, May 2015.

[123] P. Muñoz and M. D. R-Moreno. Improving efficiency in any-angle path-
planning algorithms. In Procs. of the 6th IEEE International Conference on
Intelligent Systems, Sofia, Bulgaria, September 2012.

[124] P. Muñoz and M. D. R-Moreno. S-Theta*: Low steering path-planning al-
gorithm. In Procs. of the 32nd SGAI International Conference on Artificial
Intelligence, Cambridge, UK, December 2012.



BIBLIOGRAPHY 213

[125] P. Muñoz and M. D. R-Moreno. Cooperative systems in mission planning. In
Procs. of the 12th ESA Workshop on Advanced Space Technologies for Robotics
and Automation, Noordwijk, The Netherlands, May 2013.

[126] P. Muñoz and M. D. R-Moreno. Deliberative systems for autonomous robotics:
A brief comparison between action-oriented and timelines-based approaches.
In Procs. of the 1st Workshop on Planning and Robotics (ICAPS-13), Rome,
Italy, June 2013.

[127] P. Muñoz and M. D. R-Moreno. Model-Based Architecture on the ESA 3DROV
simulator. In Procs. of the 23rd ICAPS Application Showcase, Rome, Italy,
June 2013.

[128] P. Muñoz and M. D. R-Moreno. On Heading Change Measurement: Improve-
ments for Any Angle Path-Planning, chapter 6. Novel Applications of Intelli-
gent Systems, April 2015.

[129] P. Muñoz, M. D. R-Moreno, and D. F. Barrero. Unified framework for path-
planning and task-planning for autonomous robots. Robotics and Autonomous
Systems, 82:1–14, 2016.

[130] P. Muñoz, M. D. R-Moreno, and B. Castaño. Integrating a PDDL-based plan-
ner and a PLEXIL-executor into the PTinto robot. In Procs. of the 23rd In-
ternational Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems: Next-Generation Applied Intelligence, Córdoba,
Spain, june 2010.

[131] P. Muñoz, M. D. R-Moreno, and B. Castaño. 3Dana: Path planning on 3D
surfaces. In Procs. of the 36th SGAI International Conference on Artificial
Intelligence, Cambridge, UK, December 2016.

[132] P. Muñoz, M. D. R-Moreno, and A. Mart́ınez. A first approach for the auton-
omy of the Exomars rover using a 3-Tier architecture. In Procs. of the 11th
ESA Workshop on Advanced Space Technologies for Robotics and Automation,
Noordwijk, The Netherlands, April 2011.

[133] P. Muñoz, M. D. R-Moreno, A. Mart́ınez, and B. Castaño. Fast path-planning
algorithms for future Mars exploration. In International Symposium on Arti-
ficial Intelligence, Robotics and Automation in Space, Turin, Italy, September
2012.

[134] A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-angle path planning
on grids. In Procs. of the 22nd AAAI Conference on Artificial Intelligence,
British Columbia, BC, Canada, July 2007.

[135] A. Nash, S. Koening, and M. Likhachev. Incremental Phi*: Incremental any-
angle path planning on grids. In Procs. of the International Joint Conference
on Artificial Intelligence, Pasadena, CA, USA, July 2009.

[136] N. J. Nilsson. A mobile automation: an application of artificial intelligence
techniques. In Procs. of the 1st International Joint Conference on Artificial
Intelligence, Washington, D.C, USA, May 1969.



214 BIBLIOGRAPHY

[137] N. J. Nilsson. Principles of Artificial Intelligence. Palo Alto: Tioga, 1980.

[138] N. J. Nilsson. Shakey the robot. Technical report, AI Center, SRI International,
Menlo Park, CA, USA, April 1984.

[139] B. Nystrom. Hill algorithm. http://www.stuffwithstuff.com/robot-
frog/3d/hills/hill.html.

[140] Open Source Robotics Foundation. Gazebo robot simulation.
http://gazebosim.org.

[141] Open Source Robotics Foundation. Open-source robot development kit for
apps on wheels. http://turtlebot.com.

[142] A. Orebäck and H. I. Christensen. Evaluation of architectures for mobile
robotics. Journal of Autonomous Robots, 14:33–49, 2003.

[143] D. L. Page, A. F. Koschan, and M. A. Abidi. Ridge-valley path planning for
3D terrains. In Procs. of the IEEE International Conference on Robotics and
Automation, Orlando, FL, USA, May 2006.

[144] R. Parasuraman, T. B. Sheridan, and C. D. Wickens. A model for types and
levels of human interaction with automation. IEEE Transactions on Systems,
Man and Cybernetics, Part A: Systems and Humans, 30(3):286–297, May 2000.

[145] J. Plaza, M. D. R-Moreno, B. Castaño, M. Carbajo, and A. Moreno. PIPSS:
Parallel integrated planning and scheduling system. In 27th Annual Workshop
of the UK Planning and Scheduling Special Interest Group, Edinburgh, UK,
December 2008.

[146] P. Poulakis, L. Joudrier, S. Wailliez, and K. Kapellos. 3DROV: A planetary
rover system design, simulation and verification tool. In Procs. of the 9th
International Symposium on Artificial Intelligence, Robotics and Automation
in Space, Hollywood, CA, USA, February 2008.

[147] F. Py and F. Ingrand. Dependable execution control or autonomous robots.
In Procs. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, Sendai, Japan, September 2004.

[148] F. Py, K. Rajan, and J. McGann. A systematic agent framework for situ-
ated autonomous systems. In Procs. of the 9th International Conference on
Autonomous Agents and Multiagent Systems, Toronto, Canada, May 2010.

[149] Y. Pyo, K. Nakashima, S. Kuwahata, R. Kurazume, T. Tsuji, K. Morooka,
and T. Hasegawa. Service robot system with an informationally structured
environment. Robotics and Autonomous Systems, 74, Part A:148–165, 2015.

[150] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng. ROS: an open-source robot operating system. In ICRA workshop
on open source software, May 2009.



BIBLIOGRAPHY 215

[151] M. D. R-Moreno, B. Castaño, M. Carbajo, A. Moreno, D. F. Barrero, and
P. Muñoz. Multi-agent intelligent planning architecture for people location
and orientation using RFID. Cybernetics and Systems, 42(1):16–32, 2011.

[152] M. D. R-Moreno, A. Cesta, and J. Kurien. Innovative AI technologies for future
ESA missions. In Procs. of the 10th Symposium on Advanced Space Technolo-
gies in Robotics and Automation, Noordwijk, the Netherlands, November 2008.

[153] S. Rockel, B. Neuman, J. Zhang, K. S. R. Dubba, A. G. Cohn, S̆. Konec̆ný,
M. Mansouri, F. Pecora, A. Saffiotti, M. Günther, S. Stock, J. Hertzberg,
A. M. Tomé, A. J. Pinho, L. S. Lopes, S. von Riegen, and L. Hotz. An
ontology-based multi-level robot architecture for learning from experiences. In
Designing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium,
Stanford, CA, USA, March 2013.

[154] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 3 edition, 2009.

[155] K. R. Scherer. Appraisal Considered as a Process of Multilevel Sequential
Checking, chapter Appraisal Processes in Emotion: Theory, Methods, Re-
search. Oxford Universty Press, 2001.

[156] F. Schneider, D. Wildermuth, and H.-L. Wolf. ELROB and euRathlon: Im-
proving search & rescue robotics through real-world robot competitions. In
10th International Workshop on Robot Motion and Control (RoMoCo), Poz-
nan, Poland, July 2015.

[157] H. K. B. Selman and J. Hoffman. Satplan: Planning as satisfiability. In
Abstracts of the 5th International Planning Competition (IPC-5), hosted at
the International Conference on Automated Planning and Scheduling (ICAPS),
Cambria, UK, June 2006.

[158] G. Shaffer and A. Stentz. A robotic system for underground coal mining.
In Procs. of the IEEE International Conference on Robotics and Automation,
Nice, France, May 1992.

[159] R. Simmons. Structured control for autonomous robots. IEEE Transactions
on Robotics and Automation, 10(1):34–43, 1994.

[160] R. Simmons and D. Apfelbaum. A task description language for robot control.
In Procs. of the IEEE/RSJ International Conference on In Intelligent Robots
and Systems, Victoria, B.C., Canada, October 1998.

[161] R. Simmons and C. Fedor. Experience with a task control architecture for
mobile robots. Technical report, Carnegie Mellon University, December 1989.

[162] R. Simmons and E. Krotkov. An integrated walking system for the Ambler
planetary rover. In Procs. of the IEEE International Conference on Robotics
and Automation, Sacrament, CA, USA, April 1991.



216 BIBLIOGRAPHY

[163] A. K. Singh, K. M. Krishna, and S. Saripalli. Planning non-holonic stable
trajectories on uneven terrain through non-linear time scaling. Autonomous
Robots, pages 1–22, 2015.

[164] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel. Com-
bined task and motion planning through an extensible planner-independent
interface layer. In Procs. of the IEEE International Conference on Robotics
and Automation, Hong Kong, China, June 2014.

[165] Z. Sun and J. H. Reif. On finding energy-minimizing paths on terrains. IEEE
Transactions on Robotics, 21:102–114, 2005.

[166] C. E. Thorpe and L. H. Matthies. Path relaxation: Path planning for a mo-
bile robot. In Procs. of the OCEANS Conference, Washington D.C., USA,
September 1984.

[167] M. Veloso, J. G. Carbonell, A. Perez, D. Borrajo, E. Fink, and J. Blythe.
Integrating planning and learning: The PRODIGY architecture. Experimental
& Theoretical Artificial Intelligence, 7(1):81–120, January 1995.

[168] V. Verma, V. Baskaran, H. Utz, and C. Fry. Demonstration of robust execution
on a NASA lunar rover testbed. In International Symposium on Artificial
Intelligence, Robotics and Automation in Space, Hollywood, USA, 2007.

[169] V. Verma, A. Jónsson, C. Pasareanu, and M. Iatauro. Universal Executive and
PLEXIL: Engine and language for robust spacecraft control and operations.
In American Institute of Aeronautics and Astronautics Space Conference, San
Jose, CA, USA, september 2006.

[170] D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive sys-
tems: Implications for the autonomous development of mental capabilities
in computational agents. IEEE Transactions on Evolutionary Computation,
11(2):151–180, April 2007.

[171] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das. The CLARAty
architecture for robotic autonomy. In Procs. of the IEEE Aeroespace Confer-
ence, Big Sky, MT, USA, March 2001.

[172] R. Volpe, I. A. D. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das.
CLARAty: Coupled layer architecture for robotic autonomy. Technical report,
JPL, December 2000.

[173] D. Wettergreen, H. Thomas, and C. Thorpe. Planning strategies for the Ambler
walking robot. In Procs. of the IEEE International Conference on Systems
Engineering, Pittsburgh, PA, USA, August 1990.

[174] B. C. Williams and P. P. Nayak. A model-based approach to reactive self-
configuring systems. In Procs. of the 30th National Conference on Artificial
Intelligence (AAAI), Portland, OR, USA, August 1996.



BIBLIOGRAPHY 217

[175] J. Wolfe, B. Marthi, and S. Russell. Combined task and motion planning
for mobile manipulation. In Procs. of the 10th International Conference on
Automated Planning and Scheduling (ICAPS), Toronto, Canada, May 2010.

[176] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, and D. Pullan. Autonomous
science for an ExoMars rover-like mission. Field Robotics, 26(4):358–390, 2009.

[177] M. J. Woods, L. Baldwin, G. Wilson, S. Hall, A. Pidgeon, D. Long, M. Fox,
R. Aylett, and R. Vituli. MMOPS: Assessing the impact of on-board autonomy
for deep space missions. In Procs. of the SpaceOps Conference, Rome, Italy,
June 2006.

[178] P. Yap. Grid-based path-finding. In Advances in Artificial Intelligence, volume
2338 of Lecture Notes in Computer Science, pages 44–55. Springer Berlin /
Heidelberg, 2002.

[179] F. Zacharias, C. Borst, and G. Hirzinger. Bridging the gap between task
planning and path planning. In Procs. of the IEEE International Conference
on Robotics and Systems, Beijing, China, October 2006.


	Introduction
	Motivation
	Objectives
	Structure
	Publications

	State of the art
	Autonomous controllers
	Reactive controllers
	Cognitive systems
	Hybrid architectures
	Multi-agent architectures

	Heuristic search 2D path planning algorithms
	Grid definition and notation
	A* algorithm for path planning
	A* Post-processing: improving A* paths
	Theta* algorithm: any-angle path planning

	Path planning considering terrain properties
	Task planning and path planning integration
	Evaluating autonomous controllers
	Comparing architectures
	Defining models
	Defining methodologies
	Defining metrics

	Summary

	Heading changes in 2D path planning algorithms
	Measurement and formulation of heading changes
	Heading changes as a heuristic: efficiency improvement
	Heading changes heuristic experimental evaluation
	Heading changes as a cost function: the S-Theta* algorithm
	S-Theta* experimental evaluation
	Summary

	Extending 2D path planning algorithms to 3D surfaces
	Linearly interpolated DTM
	The 3Dana path planning algorithm
	3Dana Search Process
	Line of sight and cost calculation
	Terrain slope consideration
	Heuristic and heading changes

	3Dana experimental evaluation
	Random cost maps
	Combined random cost maps and DTMs
	Real Mars DTMs

	Summary

	Interleaving path and task planning for deliberative layers
	Integration of path and task planning
	PDDL models for interleaving task planning and path planning
	Input files for up2ta
	Concepts and definitions for up2ta
	The up2ta deliberative
	up2ta experimental scenario description
	up2ta experimental results
	Summary

	A model-based autonomous controller
	The MOBAR autonomous controller
	The deliberative layer
	The executive layer
	The functional layer
	MOBAR as a black box
	MOBAR experimental evaluation
	Experiments with the ExoMars rover simulator
	Experiments with the TurtleBot platform

	Summary

	A framework for autonomous controllers assessment
	Toward autonomous controllers assessment
	A methodology for autonomous controllers assessment
	General metrics for autonomous controllers assessment
	The planetary exploration case study
	Formalising and applying the metrics to MOBAR
	Plan accuracy
	Planner model adequacy
	Planning performance
	P&E integration
	MOBAR Assessment

	Applying the metrics to GOAC
	Plan accuracy
	Planner model adequacy
	Planning performance
	P&E integration
	GOAC assessment

	The OGATE software tool
	Experimental evaluation: MOBAR and GOAC comparison
	Summary

	Conclusions
	Path planning
	MOBAR autonomous controller
	Autonomous controllers assessment
	Future research lines

	Random maps generation
	Path planning on Mars with 3Dana

