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Abstract

Fuzzy constraints have been used in several automated multi-attribute

negotiation models. It is recognized that fuzzy constraints represent an

efficient way of capturing requirements and preferences, and an useful

mechanism for representing trade-offs. Most approaches are mainly fo-

cused on using constraints as a framework for describing preferences, and

few works focus on using them as an element in the communication pro-

cess itself in order to elaborate efficient negotiation strategies. This paper

proposes and evaluates a set of strategies for offer generation and for the

construction of offer relaxation requests in constraint-based negotiation

models. To deploy the strategies, a fuzzy constraint based model for

non-mediated bilateral automated purchase negotiations has been used.

Fuzzy constraints are used both to represent preferences and to express

offers. A set of locutions and decision mechanisms which trigger them are

fully specified, where each agent may decide its degree of cooperation and

its degree of expressiveness. Expressiveness is based on the propagation

of constraints and relaxation requests. The paper analyzes which com-

bination of different agents’ attitudes allow to improve the negotiation

processes. Experimental evaluation confirms the advantage of an expres-

sive approach based on the propagation of constraints. In addition, this

paper studies how applying a clustering algorithm to the seller’s cata-

logue of products instead of managing single products may contribute to

an improvement in the duration of the negotiation dialogues, and to a sig-

nificant improvement on the utility of the deals that are achieved. These

results support the usefulness of the proposed negotiation strategies.
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gel.lopez@uah.es
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1 Introduction

An automated bilateral negotiation may be seen as an automated interaction

between two agents with the goal of reaching an agreement over a given range

of issues or attributes. Most research in automated negotiation to date has

focused on the competitive aspect [21]. On the other hand, work by dispute

resolution theorists in the social sciences has also focussed substantially on how

to achieve negotiated agreements that are of a high value to all parties [4]. This

approach is known as integrative or interest -based negotiation, and it has been

recognised as the more successful approach to the negotiation problem. Scenar-

ios where such approach may arise are: business process management involving

agents within the same organization, e-commerce negotiations where the seller

is interested in having a satisfied buyer (e.g. long-term commercial relation-

ships), or e-commerce scenarios where risk averse agents avoid the conflict in

the negotiation processes. Different techniques may be used to implement an

integrative solution. For example, in multi-issue scenarios, issue trade-offs are

used to find win-win solutions. In order to implement issue trade-off mecha-

nisms, fuzzy constraints have been used in several multi-attribute negotiation

models, specially in e-commerce [9, 16, 12]. Fuzzy constraints represent an ef-

ficient way of capturing requirements, being capable of representing trade-offs

between the different issue values. Basically, a fuzzy constraint maps different

ranges of issue values into different utility levels. Most fuzzy constraint based

negotiation models have focused on using fuzzy constraints as a mean to cap-

ture and represent agent preferences [1], or to implement reasoning mechanisms

based on fuzzy logic [12]. However, constraints can also be used to express offers.

When expressing offers with constraints, a subspace from the solution domain

can be explored in a given exchange, and then the search for agreements can be

more efficient.

In [16], Xudong Luo et al. present in one of the most relevant works in the

field a fuzzy constraint based model for bilateral multi-issue negotiations. In

this model, two agents, a buyer and a seller, are able to automatically nego-

tiate the purchase of a product. A buyer agent expresses offers by means of

hard constraints extracted from a set of fuzzy constraints which represent her

preferences. The seller agent simply rejects or accepts the offer, but never acts

strategically rejecting acceptable offers waiting for future gains. The rejection

by the seller agent of a buyer’s offer implies that the buyer agent relaxes one of

the constraints to prepare a new proposal (the relaxation is assumed to minimize
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the loss of utility). As it can be seen, the negotiation protocol is simple, with a

very limited agents’ expressive capability, where the agents are assumed to be

risk averse and strategic behaviour is not considered. The main contributions of

their work are in the development of mechanisms and operators used to assess

the acceptability of the offers, and in the inclusion of rewards in the negotiation

process. However, in real negotiation environments the strategic aspects play

an important role, and these are not taken into account in this work. In real

life, some buyers or sellers could be risk seeking or risk neutral, and so, it is

important to consider the strategic perspective in the negotiation model. In ad-

dition, it would be desirable to enhance the expressive capabilites of the agents

in order to improve the efficiency of the negotiation processes.

This paper proposes and evaluates a set of strategies for offer generation

and for the construction of offer relaxation requests, which operates in a fuzzy

contraint-based negotiation framework. Taking as a basis the Luo’s et al. nego-

tiation model, we extend their negotiation framework by enhancing the expres-

siveness of the agents and by considering the strategic behaviour of the agents.

More specifically, we propose an expressive communication model which lets a

buyer agent to value the degree of importance that each submitted constraint

has, and lets a seller agent to inform which is the preference for a specific con-

straint to be relaxed. The proposed negotiation framework is formalized as a set

locutions and a set of decision mechanisms which trigger them. The aim of this

approach is to provide the basis for constructing integrative negotiation mech-

anisms, where agents with different strategic objectives can be considered, and

the negotiation processes can be made more efficient. In addition, this paper an-

alyzes which combination of agents’ attitudes allow to improve the negotiation

processes. Finally, we study how applying a clustering algorithm to the seller’s

catalogue of products instead of managing single products may contribute to an

improvement in the duration of the negotiation dialogues, and to a significant

improvement on the utility of the deals that are achieved. Experimental results

show that the proposal outperforms existing approaches.

The rest of the paper is organized as follows. Section 2 presents the ne-

gotiation model, which consists of a description of the agent preference model,

the dialogue model, the decision mechanisms, and the transition rules that con-

nect the dialogue model to the decision mechanisms. Next section presents the

dynamics of the negotiation process and the clustering algorithm. Section 4

analyzes the agent’s strategies under the model presented and selects the valid

joint strategies, and Section 5 presents the experimental scenario and the results

obtained. Finally, Section 6 compares the model with the existing work, and

last section summarizes the conclusions and sheds light on some future research.
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2 A negotiation model based on fuzzy constraints

We have used a formal dialogue game to structure the negotiation framework.

The framework of formal dialogue games is increasingly used as a base for struc-

turing the interactions of agent communication protocols [19], adopted from the

theory of argumentation field. Formal dialogue games are those in which two or

more players pronounce or transmit locutions in accordance with certain prede-

termined rules. In the proposed negotiation model all dialogues are confined to

two agents, buyer and seller, so that the dialogues are exclusively bilateral. The

model consist of an agent preference model, a set of locutions, a set of decision

mechanisms, and a set of transition rules which links the locutions to the deci-

sion mechanisms. It is worth noting that the only significant similarity with the

Luo’s et al. work is in the definition of the agent preference model. However,

in the proposed preference model several new concepts are introduced, like the

purchase requirement valuation, the relaxation requirement, and the negotiation

profiles which define the strategic behaviour of the agents. The notation used

in the description of the agent preference model is the same that the one used

in the Luo’s et al. work. For clarity purposes, in Appendix A, an UML state

diagram which summarizes the negotiation protocol is shown.

2.1 Agent preference model

Buyer agent’s preferences over the attributes of a product are described by

means of a fuzzy constraint satisfaction problem (FCSP), which is a 3-tuple

(X,D,Cf ) where X = {xi| = 1, . . . , n} is a finite set of attributes or issues, D =

{di| = 1, . . . , n} is the set of finite domains of the attributes, and Cf = {Rf
j |j =

1, . . . ,m} is a set of m fuzzy constraints over the attributes. A fuzzy constraint

corresponds to the membership function of a fuzzy set, and the function that

numerically indicates how well a given constraint is satisfied is the satisfaction

degree function µRf
j

: X → [0, 1], where 1 indicates completely satisfied and

0 indicates not satisfied at all. Given the cut level σ ∈ [0, 1], the induced

crisp constraint of a fuzzy constraint Rf is defined as Rc. It means that if Rc

is satisfied, the satisfaction degree for the corresponding fuzzy constraint will

be at least σ. Therefore, the overall satisfaction degree (osd) of a given

solution x
′

= (x
′

1, . . . , x
′

n) is:

α(x′) = min{µRf (x′)|Rf ∈ Cf}

On the other hand, a seller agent owns a private catalogue of products S =

{sk|sk = (pk, uk)}, where pk is the vector of attributes and uk is the profit the

seller agent obtains if the product is sold. We assume that the profit uk may
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depend not only on the negotiated attributes but also on non-negotiated ones

(stock period for instance).

Let Ab and As represent a buyer and a seller agent respectively. A negotiation

process is a finite sequence of alternate proposals from one agent to the other.

During the negotiation stage, Ab utters purchase requirements:

π =
⋂{

R
c(σj)
j |j ∈ [1,m]

}
,

where R
c(σj)
j is a crisp constraint induced from R

f
j at a cut level σj . Therefore,

a purchase requirement is a purchase proposal that is formed by a set of crisp

constraints induced from the set of fuzzy constraints that describes the buyer’s

preferences regarding the attributes of the products. Each crisp constraint in

the purchase requirement can be induced at a different cut level.

Complementing the osd definition, the potential or expected overall satis-

faction degree (posd) is the osd that a buyer agent would get if the corre-

sponding purchase requirement is satisfied, and it is defined as:

απ = min{σi|i = 1, . . . ,m}

In addition, a buyer agent may add to the purchase requirement a purchase

requirement valuation :

v = {vj |j = 1, . . . ,m; vj ∈ [0, 1]},

where vj describes the degree of importance that the constraint R
c(σj)
j has for

the buyer agent.

A seller agent may respond in three different ways: rejecting the proposal, offer-

ing a product that satisfies the purchase requirement, or suggesting the relaxation

of the purchase requirement. So, a relaxation request is defined as a vector:

ρ = {rj |j = 1, ...,m; rj ∈ [0, 1]},

where rj represents the preference for constraint R
c(σj)
j to be relaxed.

The negotiation process and the agreements achieved will mainly vary de-

pending on the strategies followed by the agents when generating purchase

requirements and when requesting its relaxation. All these aspects are cov-

ered modeling the agents’ attitudes. Agents’ attitudes are related to the

agents’ strategic behaviour in the negotiation process, where strategic behaviour

is described in terms of expressiveness and receptiveness. A negotiation pro-

file Prs = {ψ, β} describes the seller agent’s attitude: ψ ∈ {0, 1} controls

whether seller agent uses relaxation requests, and β ∈ {0, 0.5, 1} modulates its
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attitude regarding a received purchase requirement. Finally, Prb = {η, ξ} de-

scribes the buyer agent’s attitude: η ∈ {0, 1} defines whether buyer agent

attends relaxation requests, and ξ ∈ {0, 1} controls whether purchase require-

ment valuations will be used.

2.2 Negotiation dialogue

The dialogue is structured in accordance to a set of locutions grouped in four

stages, open dialogue (L1-2), negotiate (L3-8), confirm (L9-10) and close

dialogue (L11):

L1: open_dialogue(Ab, As, θ) Ab suggests the opening of a purchase dialogue

to a seller participant As on product category θ. As wishing to participate must

respond with enter_dialogue(.).

L2: enter_dialogue(As, Ab, θ) As indicates a willingness to join a purchase

dialogue with participant Ab. Within the dialogue, a participant Ab must have

uttered the locution open_dialogue(.).

L3: willing_to_sell(As, Ab, pj) As indicates a willingness to sell a product.

Ab must have uttered a desire_to_buy(.) or a prefer_to_buy(.) locution.

L4: desire_to_buy(Ab, As, π) Ab requests to purchase a product that satis-

fies the purchase requirement π.

L5: prefer_to_sell(As, Ab, π, ρ) As requests to relax the purchase require-

ment π, and expresses which constraints are preferred to be relaxed by means

of the relaxation request ρ.

L6: prefer_to_buy(Ab, As, π, υ) Ab requests to purchase a product which

satisfies the purchase requirement π, and expresses its preferences for the dif-

ferent constraints by means of the purchase requirement valuation υ.

L7: refuse_to_buy(Ab, As, pj) Ab expresses a refusal to purchase a product.

This locution cannot be uttered following a valid utterance of agree_to_buy(.).

L8: refuse_to_sell(As, Ab, pj|π) As expresses a refusal to sell a product, or

it expresses a refusal to sell products that satisfy the purchase requirement π.

This locution cannot be uttered following a valid utterance of agree_to_sell(.).

L9: agree_to_buy(Ab, As, pj) Ab commits to buy a product. A locution of

the form willing_to_sell(.) must have been uttered.

L10: agree_to_sell(As, Ab, pj) As commits to sell a product. A locution of

the form agree_to_buy(.) must have been uttered.

L11: withdraw_dialogue(Ax, Ay, θ) For Ax and Ay participants with differ-

ent roles (i.e. sellers and buyers), Ax announces agent Ay the withdrawal from

the dialogue.
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2.3 Decision mechanisms

Syntactic rules are not enough to ensure that the dialogues are generated au-

tomatically. It is essential to equip each participant with mechanisms (seman-

tic decision mechanisms) that allow it to invoke the correct locution at the

right time, as a response to previous locutions or in anticipation of future ones.

The mechanisms are grouped together depending on the role of the participant,

Buyer (B) or Seller (S).

2.3.1 Buyer agent mechanisms

B1: Recognize Need allows to recognize the need to acquire a product. It

may be based on a explicit initiative of the user, or in an automated response

based on external stimulus.

Outputs: wait, have_need(θ), have_no_need(θ), where (θ) defines a product

category.

B2: Generate Purchase Requirement defines two possible outputs, one

that states that it is impossible to generate a purchase requirement and another

one that specifies a requirement.

Outputs: empty_set(∅), π

B3: Generate Purchase Requirement Valuation generates a purchase

requirement valuation υ when ξ = 1 (i.e. when buyer is expressive). Otherwise,

the mechanism returns an empty_set.

Outputs: empty_set(∅), υ

B4: Consider Offers works accepting or rejecting a sale offer proposed by the

seller agent, or detecting the need to generate a new purchase requirement. Given

πt sent at instant t, a buyer agent accepts a sale offer pj when α(pj) > απt+1

.

The acceptance of an offer opens the offer confirmation stage of the dialogue.

If a sale offer is not accepted and does not match πt, the mechanism returns

reject_offer(pj). Otherwise, if the sale offer is not accepted, but it matches

the constraints in πt, the mechanism returns gen._p._req.(pj), indicating that

a new purchase requirement must be generated. This last case may appear if

πt does not contain information for all the constraints in Cf .

Outputs: accept_offer(pj), reject_offer(pj), gen._p._req.(pj)

B5: Consider Withdrawal decides if it should terminate a dialogue with the

seller agent. Outputs: wait, withdraw(θ)

2.3.2 Seller agent mechanisms

S1: Recognize Category assures that the seller agent has available products

of the category (θ) in its catalogue.

Outputs: wait, wish_to_enter(θ), wish_not_to_enter(θ)
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S2: Assess Purchase Requirement evaluates a received purchase require-

ment πt. If exists, the mechanism returns the sale_offer(pj) which matches

πt and maximizes the seller’s utility (risk aversion is assumed). Otherwise, it

returns ∅ or πt depending on the seller’s expressive profile (ψ = 0 and ψ = 1

respectively). The πt output indicates that another mechanism should generate

a relaxation request based on the information contained in πt.

Outputs: sale_offer(pj), empty_set ∅, purchase_requirement(πt)

S3: Generate Potential Sale-Offers evaluates which products in the cata-

logue can be considered as good sale offers.

Outputs: Sp, set of products considered as good offers.

S4: Generate Relaxation Request generates a relaxation request ρ. Given

the set of potential sale offers Sp, it generates the relaxation request with the

aim of leading the buyer agent towards the products contained in Sp.

Outputs: ρ

S5: Accept or Reject Offer decides whether an offer to purchase a product

should be accepted. The mechanism returns accept(pj) when pj exists, and

reject(pj) otherwise.

Outputs: accept(pj), reject(pj)

S6: Consider Withdrawal decides whether a dialogue with a buyer agent

should finish.

Outputs: wait, withdraw(θ)

Given the set of locutions and the corresponding internal decision mecha-

nisms, the next stage is to link these elements to finally shape the complete

negotiation framework.

2.4 Operational semantics

Operational semantics in a dialogue game indicates how the state of the dia-

logue changes after locutions have been sent. The locutions sent throughout

the course of the dialogue generate transitions between the different states, so

that the sent locutions are inputs of one or more decision mechanisms, which in

turn generate new outputs in the form of locutions. Therefore, the operational

semantics is a formalization of the connection between the locutions available

in the dialogue model and the defined decision mechanisms. To express the

operational semantics, the tuple 〈Ax,K, s〉 expresses that the decision mecha-

nism K of agent Ax generates an output s. When the transitions are between

the mechanisms of different agents, they are defined by the locutions that are

sent, and when they are between the mechanisms of the same agent, they are

defined without locutions. In the first case, an arrow and the denomination of

the pertinent locution indicates the transition. In the second case only an arrow
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appears. In the following, the set of transition rules is presented, and a brief

description is given for the first four rules:

TR1〈Ab, B1, have_need(θ)〉 L1
−→

〈As, S1, .〉 indicates that a buyer agent that

wishes to acquire a product from category θ, is trying to start a purchase negoti-

ation dialogue using the locution L1: open_dialogue(.). Said locution activates

the mechanism S1: Recognize Category of the seller agent with which it wants

to establish the dialogue.

TR2〈Ab, B1, have_no_need(θ)〉 → 〈Ab, B1, wait〉 indicates that a buyer agent

that does not wish to acquire a product from category θ, will not start a purchase

negotiation dialogue and will review the situation later on.

TR3〈As, S1, wish_not_to_enter(θ)〉 → 〈As, S1, wait〉 states that a seller agent

that does not wish to start a trading dialogue with a buyer agent will review

the situation later.

TR4〈As, S1, wish_to_enter(θ)〉 L2
−→

〈Ab, B2, .〉 states that seller agent that wishes

to participate in a purchase negotiation dialogue will do so by sending the locu-

tion L2: enter_dialogue(.). This transmission makes the buyer agent to execute

mechanism B2: Generate Purchase Requirement with the objective of generat-

ing the first purchase requirement.

TR5〈Ab, B2, ∅〉 → 〈Ab, B5, .〉

TR6〈Ab, B5, withdraw(θ)〉L11
−→

〈As, S6, .〉

TR7〈As, S6, withdraw(θ)〉L11
−→

〈Ab, B5, .〉

TR8〈Ab, B2, π〉 → 〈Ab, B3, .〉

TR9〈Ab, B3, ∅〉L4
−→

〈As, S2, .〉

TR10〈Ab, B3, υ〉 L6
−→

〈As, S2, .〉

TR11〈As, S2, ∅〉L8
−→

〈Ab, B2, .〉

TR12〈As, S2, sale_offer(pj)〉 L3
−→

〈Ab, B4, .〉

TR13〈As, S2, purchase_requirement(πt)〉 → 〈As, S3, .〉

TR14〈As, S3, SP 〉 → 〈As, S4, .〉

TR15〈As, S4, ρ〉 L5
−→

〈Ab, B2, .〉

TR16〈Ab, B4, generate_purchase_requirement(pj)〉 → 〈Ab, B2, .〉

TR17〈Ab, B4, accept_offer(pj)〉 L9
−→

〈As, S5, .〉

TR18〈Ab, B4, reject_offer(pj)〉 L7
−→

〈As, S2, .〉

TR19〈As, S5, accept(pj)〉L10
−→

〈Ab, B5, .〉

TR20〈As, S5, reject(pj)〉 L8
−→

〈Ab, B2, .〉

TR21 〈Ax,K,wait〉 → 〈Ax,K, .〉

One of the fundamental aims of this work is to develop an automated ne-

gotiation system. Therefore, the first thing we must demonstrate is that the

dialogue model, the decision mechanisms, and the operational semantics, that

is to say, the dialogue game framework for automated purchase negotiation is
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able to generate dialogues automatically. This demonstration is presented in

Appendix C.

3 The negotiation process

The negotiation process can be summarized as follows. Buyer agent performs the

communicative act desire_to_buy which includes a purchase requirement. In

order to construct the purchase requirement buyer agent applies the mechanism

B2: Generate Purchase Requirement described in Section 2.3. Mechanism B2

guarantees that the new purchase requirement implies a bounded lost of posd.

Depending on the buyer’s attitude (η = 1), the seller’s relaxation requests are

evaluated in order to build the new purchase requirement which is expected to be

the most valued by the seller agent. With this strategy the buyer agent limits the

lost of posd and at the same time cooperates with the seller agent. In addition,

an expressive (ξ = 1) buyer agent may value the new purchase requirement.

A valuation implies that for each constraint in the purchase requirement, a

numerical value is included which weights its importance.

From the perspective of the seller agent and given a received purchase re-

quirement, there are two alternatives: offer a product which satisfies the pur-

chase requirement, or send a relaxation request. Assuming that the seller agent

is risk averse, seller agent will always offer a product if it satisfies the purchase

requirement. Otherwise, the seller agent will respond with the prefer_to_sell

communicative act which includes a relaxation request. The relaxation request

is built in mechanisms S3: Generate Potential Sale Offers and S4: Generate

Relaxation Request.

In order to help the understanding of the negotiation model, in the following,

the mechanisms to generate purchase requirements and relaxation requests are

described in detail.

3.1 Buyer generation of purchase requirements

Given a purchase requirement πt which has been sent at instant t ∈ N, this

mechanism applies a general concession strategy which generates πt+1 so that

απt

≥ απt+1

≥ απt

− ε. ε ∈ [0, 1] is an arbitrary value that fixes the maximum

accepted loss of posd. It determines the agent’s attitude with respect to how

rapidly it is willing to make concessions.

The generation of a new purchase requirement implies to extract a new set of

crisp constraints. Algorithm 1 implements the required functionality. In Step

1, a set Sπt+1
i is formed which contains the potential purchase requirements.

Each potential requirement is obtained relaxing only one of the constraints in
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Algorithm 1: Generate Purchase Requirements

Input: πt, ρt, η, ε

Output: πt+1

forall constraint i in πt do1

relax constraint i to obtain πt+1
i ;

compute απt+1
i ;

if απt+1
i ≥ απt

− ε then

Sπt+1

← πt+1
i ;

end
end
if η == 1 then2

πt+1 = arg maxSπt+1 (ρt · (πt − πt+1
j ));

else

πt+1 = arg maxSπt+1 (απt+1
j );

end
return πt+1

πt, and must satisfy that its posd falls within the concession limits fixed by ε. In

Step 2, buyer agent makes the selection of a purchase requirement from Sπt+1
i .

Selection depends on parameter η. For η = 1, buyer agent selects the purchase

requirement which maximizes the scalar product of the relaxation request and

the difference πt − πt+1
i . This difference is a measure of the relaxation made if

πt+1
i is selected. It is computed by substracting the cut levels σ applied to each

constraint in πt and πt+1
j . In short, the candidate which maximizes the seller’s

preferences is selected. For η = 0, the purchase requirement which maximizes

the posd is selected. It means that buyer agent does not attend seller’s relaxation

requests.

A buyer’s purchase requirement valuation is an expression of how important

is the satisfaction of each constraint in a purchase requirement. Algorithm 2

implements the required functionality.

Algorithm 2: Generate Purchase Requirement Valuation

Input: πt+1, ξ

Output: υ

if ξ == 1 then

υ = {1− απ
(t+2)
1 , ..., 1− απ(t+2)

m };1

else
υ = ∅;

end
return υ
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Given πt+1 (i.e. the requirement that is going to be submitted), a vector is ob-

tained with the posd for all the possible purchase requirements that result from

relaxing only one of the constraints. To sum up, what is being computed is the

posd that would be obtained if constraint Rj is relaxed in a future negotiation

round. The operation 1 − απ
(t+2)
j reflects that the valuation increases for low

values of posd.

3.2 Seller generation of relaxation requests

The generation of relaxation requests is a two step process. First, the seller

agent evaluates which products in its catalogue can be considered as good sale

offers. The aim of this mechanism is not to generate specific sale offers to

be sent to the buyer agent. Its main purpose is to serve as an input to the

mechanism which finally builds the relaxation request expression. The idea is

that the relaxation requests will be built in order to lead the buyer agent to

make offers for products in this set. It must be noted that this mechanism only

works when there are no products in the catalogue which satisfy the purchase

requirement received.

Two aspects for carrying out the selection process of good sale offers have

been considered: Utility and Viability . Utility is a local criterion which refers

to the utility uk of a sale offer sk. Viability depends on two aspects: the degree

of similarity between the product pk and the purchase requirement π, and the

buyer’s purchase requirement valuation υ. Both parameters are related by the

function prefer(sj):

prefer(sj) = β ∗ uj + (1− β) ∗ ̂viability(pj , π
t, υ),

where ̂viability = 1 − d̂ist(pj , π
t, v). The distance term d̂ist(pj , π

t, v) is com-

puted as the euclidean distance between the product attributes and the lim-

its specified in the constraints of the purchase requirement, weighted by the

purchase requirement valuation. For high valuation levels, distance estimate

increases. The agent’s receptive profile parameter β modulates the weight of

utility and viability. For β = 1 only utility is considered, while for β = 0 the

product selection criterion is based on the expected viability of the sale offer.

For β = 0.5 both criteria are equally considered.

Once the preference values for all the products in the catalogue have been

obtained, a preference threshold is applied to generate the list of potential sale

offers Sp. The threshold value influences the relaxation request generation pro-

cess. Low threshold values imply a higher number of products in Sp, whereas a

more selective threshold means a smaller set Sp. So, preference threshold mod-

ulates the impatience of the seller agent for constructing selective relaxation
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requests.

Finally, given the set of potential sale offers Sp, the relaxation request is built

with the aim of leading the buyer agent towards those sale offers. The basic

principle of this mechanism is to get the buyer agent to relax those constraints

that are not satisfied by the products contained in Sp. So, the relaxation request

is defined as a vector ρ = r1, ..., rm, where rk = 0 indicates that constraint Rk

is not satisfied by any product, and rk = 1 that constraint Rk is satisfied by at

least one product.

3.3 Clustering the seller catalogue of products

The seller agent performs calculations for every product in the catalogue and

for each negotiation round in order to estimate the distance from each product

to the constraints received. So, in addition to this approach, a modification to

the algorithm is proposed in order to reduce the number of operations. The

hypothesis is that applying clustering to the seller’s product catalogue, the per-

formance of the mechanism can be improved. The proposed algorithm works as

follows.

The fuzzy c-means algorithm (see Appendix B) is applied over the pk ele-

ments in the product catalogue S. When the process finishes a set of represen-

tatives RepS = {RepS
i |i = 1, ..., c} is obtained, where c is a predefined number

of partitions. Now, for each product pk, the different membership degrees to the

different partitions µ1k, ..., µck are computed. Before entering a negotiation dia-

logue it is assumed that the seller agent has applied the clustering algorithm to

the product catalogue S. It generates the set of product representatives RepS,

one for each of the partitions made, which may be considerably smaller than the

product catalogue. In order to compute the prefer value of a product a set of par-

tial similarity estimates simRep = {simRep
i |simRep

i = sim(RepS
i , π

t); i = 1, ..., c}

are computed between the purchase requirement received and the representa-

tives. Finally, the prefer value is computed for each product pk as follows: 1)

The partial similarity estimates are weighted by the corresponding membership

degrees. The average of the partial estimates provides the global similarity esti-

mate for pk (it must be noted that with this approach we do not need to make

similarity calculations for all the products in the catalogue but only for the rep-

resentatives). Moreover, the variations of the similarity estimates will be smaller

because the references will be the representatives, not the products. 2) The lo-

cal utility uk is used, not the utilities of the representatives. Summarizing, the

prefer function is redefined as:

prefer(sk) = β ∗ uk + (1 − β) ∗ ˆviability(simRep, (µ1k, ..., µck))
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where

ˆviability =

n∑

i=1

sim
Rep
i ∗ µik.

4 Analysis of strategies

The presented negotiation framework allows for testing negotiation scenarios

where agents behave according to different negotiation profiles. An expressive

buyer agent (ξ = 1) will use purchase valuations, whilst a non-expressive one

(ξ = 0) will not. A non-receptive (η = 0) buyer agent will not attend the seller’s

relaxation requests to generate new purchase requirements, whilst a receptive

(η = 1) agent will consider both the relaxation request and the potential overall

satisfaction degree of the purchase requirement to be generated. On the other

hand, an expressive seller agent (ψ = 1) will use relaxation request, whilst a

non-expressive one (ψ = 0) will not. Finally, the seller’s receptive profile β

may indicate no receptiveness (β = 1), intermediate receptiveness (β = 0.5),

or maximum receptiveness (β = 0). The receptive profile determines how the

relaxation request is formed.

In the following, the validity of expressiveness vs receptiveness relationships

for each agent are evaluated, and then, for the valid relationships, an analysis

of joint strategies is presented.

4.1 Analysis of strategies at agent level

To denominate the different strategies the following convention is used. BA

refers to a Buyer agent Attitude or behaviour, and SA refers to a Seller agent

Attitude or behaviour. Next, first the types of expressive behaviour ne and

e appear, to define non-expressiveness and expressiveness respectively. Finally

the types of receptive behaviour nr and r appear, to define non-receptive and

receptive respectively. Only for a seller agent and for a receptive behaviour (r)

a numerical suffix is added to consider the level of receptiveness. We look first

at agent level, beginning with the buyer agent.

(BAer) expressive and receptive, (BAner) non-expressive and re-

ceptive, and (BAnenr) non-expressive and non-receptive are coherent

strategies. However, (BAenr) expressive and non-receptive strategies makes

no sense, as the purpose of a purchase requirement valuation is to redirect the

negotiation in such a way that the seller agent sends useful relaxation request.

If the agent does not consider relaxation requests, the valuation is of no use

whatsoever. To sum up, the buyer agent can behave in three different ways:

BAer, BAner y BAnenr.

For the seller agent, (SAer1) expressive and receptive (β = 0), (SAer0.5)
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expressive and receptive (β = 0.5), (SAenr) expressive and non-receptive

(β = 1), and (SAnenr) non-expressive and non-receptive are valid strate-

gies. However, (SAner1 or SAner0.5) non-expressive and any receptive

strategy makes no sense, as a non-expressive seller agent does not send relax-

ation requests, and the main purpose of a receptive strategy is to direct the

relaxation request generation. To sum up, the seller agent can behave in accor-

dance with four different strategies: SAer1, SAer0.5, SAenr and SAnenr.

4.2 Analysis of combination of strategies

There are 12 different combinations of strategies. However, some of these com-

binations are not coherent. In BAer vs SAnenr the buyer agent’s valuations

are not taken into account by the seller agent, which furthermore is not expres-

sive. This aspect is detectable by the buyer agent, given that it does not receive

relaxation request. A rational agent will not send valuations if it knows they

are of no use. The best strategy for a buyer agent under these circumstances is

to change to a non-expressive and non-receptive strategy BAnenr. In BAner

vs SAnenr neither of the agents is expressive, so for the buyer agent to be

receptive makes no sense, and furthermore this fact is detectable by the buyer

agent. A rational buyer agent would change to a BAnenr strategy. After this

analysis, there are 10 pairs of balanced strategies : BAer vs SAer1, BAer vs

SAer0.5, BAer vs SAenr, BAner vs SAer1, BAner vs SAer0.5, BAner

vs SAenr, BAnenr vs SAer1, BAnenr vs SAer0.5, BAnenr vs SAenr,

y BAnenr vs SAnenr. To simplify this repertoire the following groupings are

built:

BAer vs SAe_r_ has in common the fact that the buyer agent is simulta-

neously expressive and receptive, and the seller agent is expressive. Furthermore

it seems obvious that the seller agents’ different receptive profiles will affect the

results of the negotiation, because the generation of relaxation request varies

depending on this profile. Therefore, a priori we need to test with the three

combinations that make up the group.

BAner vs SAe_r_ has in common the fact that the buyer agent is not

expressive, it is receptive, and that the seller agent is expressive. When the seller

agent is receptive, intuitively it can be stated that the results of the negotiations

are different to those of the previous group. This is so because the buyer agent’s

valuations are not available to the seller agent. However, when the seller agent

is not receptive the scenario is identical to the previous group. In other words, if

the seller agent is not receptive it makes no difference whether the buyer agent

sends valuations or not. In conclusion, the BAner vs SAenr pair is identical

to BAer vs SAenr, as far as the results of the negotiation are concerned. To
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speed up the tests of this type, we restrict the tests to BAner vs SAenr.

BAnenr vs SA_e_r_ is characterised by the non-expressiveness and non-

receptiveness of the buyer agent. So, it makes no difference whether the seller

agent is expressive or receptive as the buyer agent will be unable to take it into

account. To speed up the execution of the tests in this group, we have opted to

define as representative the BAnenr vs SAnenr pair.

Summarizing, there exist 6 pairs of strategies that can resolve negotiations

with disparate results: 1) BAer vs SAer1, 2) BAer vs SAer0.5, 3) BAner

vs SAenr, 4) BAner vs SAer0.5, 5) BAner vs SAer1 and 6) BAnenr

vs SAnenr.

5 Experiments

5.1 Settings

The buyer agent’s preferences are described as a set of 5 fuzzy constraints

R
f
1...5 over 5 issues a1...5, where each fuzzy constraint restricts one issue. The

seller agent’s preferences are described as a catalogue of products. The

products are defined taking into account the fuzzy constraints. By restricting

the range of values that each attribute may take, products with predefined

utilities for the buyer agent can be defined.

First, a set of products which maximizes the buyer agent’s utility is gen-

erated. This set is called the solution set Ssol ⊆ S, and it has been fixed to

provide the buyer agent an overall satisfaction degree α(pk) = 0.7 ∀pk ∈ Ssol.

Finally, the noise set Snoise ⊆ S|Ssol ∪ Snoise = S is built to provide an

α(pk) 6 0.3 ∀pk ∈ Snoise.

The next step is to assign utility values from the seller’s side (i.e. assign uk

to each product). In the case of Snoise, utilities are randomly generated using

a uniform allocation between 0.9 and 1, while for Ssol a uniform allocation

between 0 and 0.69 is used. Also randomly, the utility of one of the products

from the set Ssol is assigned 0.7. The aim is to see if this optimal solution is

reached after a negotiation. With these utilities, the seller agent’s preferred sale

offers correspond to the noise set products. However, a smart seller agent will

come to the conclusion that these products are not viable sale offers.

Settings defined above have been used in the experiments without clustering

(i.e. without grouping the products in the seller’s catalogue). In the cluster-

ing approach the experimental settings are similar. However, only the BAner

vs SAer0.5 strategies are considered, which correspond to the best results ob-

tained with the non-clustering approach. In addition, an experiment implies to

generate one or more solution sets, and one or more noise sets. The different
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sets are generated restricting the range of values that each attribute may take.

In this way we could, for instance, generate 2 solution sets and 3 noise sets with

the restrictions shown in Table 1. Once the ranges of values for the different

sets are established, the products in the different sets are randomly generated

within these ranges of values. Different sizes of catalogues, varying the num-

ber of products in each set from 16 to 256 have been generated. For a given

experiment, i.e., a solution and noise sets configuration and a given size, 300

negotiation dialogues are launched varying the product catalogues. Moreover,

the same experiment is performed using and without using clustering in order

to test the validity of the hypothesis. It must be noted that in the experiments,

the number of clusters is known in advance.1 The following distributions of

noise and solution sets have been tested: 1 solution + 1 noise, 1 solution + 4

noise, 2 solution + 1 noise, 2 solution + 3 noise. The aim of these distributions

is to have scenarios where the probability to find good solutions at random is

lower or higher.

5.2 Results without clustering

For each of the 6 pairs of strategies under analysis, and for different sizes of

catalogues, 300 negotiations are carried out. The median of the joint utility and

the success rate has been analyzed, where the success rate estimates the number

of times that the pareto-optimal solution is obtained, that is to say, the solution

in which uk = 0.7. In Fig. 1 the results obtained (with the 95% confidence

intervals) from the tests of the BAnenr vs SAnenr, and BAner vs SAer05

scenarios are summarised. In the upper graphic the medians are shown, and

in the bottom the success rates. The success rates follow the same trend for

all the catalogues, with an improvement in the case of the BAner vs SAer05

scenario. Regarding the medians, for catalogues with up to 64 products, the

results are optimal. For catalogues with more than 256 products the strategies

tend to converge. It should be recalled that a heavily populated catalogue

means the seller agent will have high utility sale offers with a higher probability.

For the other four strategies the results are identical to the results obtained

in the BAnenr vs SAnenr scenario. These results for the BAer/BAner vs

SAer1 scenarios were foreseeable, taking into account that the seller agent

only considers the purchase requirements, and so, the relaxation requests have

no effect. In the BAer vs SAer0.5 scenario the valuation of the purchase

requirements negatively impacts the viability estimation, so it unfavourably

modifies the preferences for the different sale offers. The results obtained for

1There exist techniques which estimate the optimal number of clusters in terms of two val-
ues, the partition and entropy coefficients. These techniques could be used in real negotiation
scenarios.

17



the BAner vs SAenr scenario show how when a seller agent limits itself to

looking out for its best interest, the agent worse off.

In more detail, in the BAnenr vs SAnenr scenario the success rate sta-

bilizes around 10%, although for 4 and 8 products the rate is higher, which is

logical, as the number of relaxation combinations is higher than the number

of products. There is a dip in the median value with 16 products, however,

the median grows again as the number of products increases. This effect was

foreseeable, as when the number of products increases, the probability that the

seller agent has products with a high utility increases. Finally, in the BAner

vs SAer0.5 scenario it can be seen how the results are significantly better in

every case. This test shows that the expressiveness of the seller agent is key to

obtain satisfactory solutions.

In Fig. 2 two graphs depict the percentage improvement in the success rates

and the comparative percentage improvement in utility. The improvement in the

success rates portrays the comparative between the percentage of success rates

obtained in the BAner vs SAer05 scenario and those obtained in the BAnenr vs

SAnenr scenario (similar to the scenario described in [16]). This graph shows

an improvement trend of improvement in the success rates. For catalogues

with a small solution set the improvement is of approximately 200%, with an

increase of around 325% for catalogues of 16 and 32 products. It should be

taken into account that when there are very few products, the possibility of

a good solution being found at random, is higher than when the catalogue is

large, which is why the improvement is smaller for 4 and 8 products. Although

for 64 products the success rate decreases to 250%, in general, as the size of the

catalogues increases there is a trend for the rates to improve. As the catalogues

become very large, the probability of obtaining an optimal solution without

expressiveness decreases down to zero, whereas with expressiveness the optimal

solution is explicitly searched for.

The relative improvement in utility is a comparative measure that shows

the improvements obtained with the BAner vs SAer05 strategies. It can be

observed that the reference catalogue is the one with 16 products, which is

the scenario with which the maximum utility is obtained. So, the graph shows

a percentage of relative improvement of 100% for this catalogue. For large

catalogues the percentage of relative improvement decreases below 10%. The

minimum percentage improvement for smaller catalogues is 10% with an average

value of around 60%.
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5.3 Results with clustering

All the experiments show an improvement in the duration of the negotiation

dialogues when using the clustering approach. In Fig. 3 the percentage im-

provement is presented. It increases as the number of product increases, with

around 35% of improvement for noise and solutions sets with 256 products.

Fig. 4 shows a set of boxplots representing the utilities the seller agent

obtains, and Fig. 5 shows the pareto-optimality rate (success rate). Using

clustering, negotiations perform similar or better than when clustering is not

used. For catalogues with 1 solution set, clustering strictly performs better for

heavily populated catalogues. For catalogues with 2 solution sets, clustering

always performs better. Last result was foreseeable, taking into account that

the number of solution representatives is higher with respect to the number

of noise representatives. Regarding the pareto-optimality rate, clustering is

always useful, and usefulness increases for large product catalogues. Moreover,

in scenarios where the probability of reaching good agreements (2 solution +1

noise and 2 solution + 3 noise scenarios) is high, this proposal performs even

better.

6 Related work

There are vastly different research directions regarding automated bilateral ne-

gotiations covering different areas such as game theory, evolutionary compu-

tation or distributed artificial intelligence, many of them involving integrative

negotiation mechanisms [3, 7, 14, 15, 20]. In this paper, a non-mediated fuzzy

constraint based negotiation framework for competitive e-marketplaces has been

proposed and analyzed. In competitive markets [11, 16, 5], there is an inherent

need to restrict the amount of private information the agent reveals. However,

this restriction can have a detrimental effect on the search for a solution. As

it is stated above, especially in the case of multi-attribute negotiations, it is

possible to reach a more satisfactory agreement by means of an adequate com-

bination of attributes or constraints. However, most solutions put forward to

tackle this problem are mediated and iterative mechanisms, which are applicable

to preference models based on linear-additive or quasi-concave utility functions

[2, 3, 13]. As an alternative to these solutions, the negotiation framework pro-

posed is based on a dialogue of constraint based offers in which preferences or

satisfaction degrees are partially disclosed.

There are several works which use fuzzy constraints to model preferences,

however, most of them use fuzzy constraints simply to model preferences, while

interaction is described as a positional bargaining. The FeNAs platform [10]
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uses fuzzy constraints and permits correlated multiple bilateral negotiations,

however, the agent’s interactions are positional. In [12] a general framework

for multi-attribute and multilateral negotiation based on fuzzy constraints is

proposed. The negotiation model is based on fuzzy constraints, which when

applied to a distributed domain of agents are organized as a network of dis-

tributed fuzzy constraints. This work makes an interesting contribution to the

regularization of the mechanisms for calculating the satisfaction degrees. The

negotiation model is also based on single-point offers. In [18] a dialogue game

framework for agent purchase negotiations is presented. This paper focuses on

defining the dialogue rules, but does not describe specific decision mechanisms.

The most closely related work to ours is presented in Luo et. al. [16]. They

propose a fuzzy constraint based model for bilateral multi-issue negotiations

in semi-competitive environments, which uses constraints to express offers, and

includes the idea of rewards and restrictions. The most noticeable aspects are

related to the acceptability function defined and with the operators used to

apply the prioritization of the fuzzy constraints. Under the assumption of non-

strategic behaviour, the model exhibits communicative asymmetry. A buyer

agent expresses offers by means of fuzzy constraints, while a seller agent simply

rejects or accepts a proposal. This limitation in turn means that the joint

decision is not balanced and the search for a good agreement for both parties is

somewhat random. In order to cope with the drawback of this asymmetry, in

our work a more expressive communication model lets the buyer agent to value

the degree of importance that each submitted constraint has, and lets the seller

agent to inform which is the preference for a specific constraint to be relaxed.

The aim of this approach is to provide the basis for constructing integrative

negotiation mechanisms. Finally, in [6, 17] a set of auction-based negotiation

protocols among agents with nonlinear utility functions are proposed. However,

the main difference to our work is that we employ a non-mediated solution

specially adapted to purchase negotiation scenarios.

7 Conclusions

This paper presented a fuzzy constraint based model for automated purchase

negotiations. The model uses fuzzy constraints to model preferences and to

express proposals. In addition, agents can add meta-information to offers and

counter offers to enhance the convergence of the negotiation processes. Formally,

the negotiation framework is defined as a dialogue game, with a set of locutions,

a set of decision mechanisms and a set of transition rules which link the locutions

to the decision mechanisms. The analysis of the model includes a study of the

agents’ strategic behaviour and an experimental evaluation. The results show
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that the best joint strategies correspond to a buyer agent using non-valued

constraint based proposals, and a seller agent submitting relaxation requests

attending to utility and viability of potential sale offers. We can conclude that

a limited disclosure of preferences (expressiveness) of the seller agent is essential

to obtain an improvement in the negotiations. However, the expressiveness of

the buyer which consist of attaching a valuation to a purchase requirement

makes the results come close to those achieved with the reference strategies:

non-expressive and non-receptive. However, it must be pointed out that an

’inexpressive’ buyer agent is more expressive than an ’inexpressive’ seller agent

because a buyer agent covers an offer subspace with a given purchase proposal,

while a seller agent expresses offers as concrete products or rejections to purchase

requirements.

In addition, a clustering algorithm applied to the catalogue of products of the

seller agent has been proposed. By means of the clustering of products, the seller

agent optimizes the generation of relaxation requests in terms of computation

time, also getting to increase the joint utility of the agreements reached.

In terms of future work, the main research task that should be considered is

the inclusion of different constraint based preference models. In the fuzzy con-

straint based model, a buyer agent uses the min operator to compute the overall

satisfaction degree of an offer, and applies a concession algorithm to generate

new purchase requirements which relaxes one constraint per negotiation round.

Moreover, once a constraint has been relaxed, the proposed algorithm does not

consider to return to a previous relaxation level. However, in a more complex

setting such as a weighted constraint based framework, the overall satisfaction

levels strongly depend on the different constraint relaxation levels. This makes

necessary the development of new concession algorithms which incorporate new

techniques to efficiently use the relaxation requests.
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Appendix A: UML state diagram of the negotia-

tion protocol

Fig. 6 shows the UML state diagram of the negotiation protocol. Each state

represents a decision mechanism, and each line connecting the state boxes shows

the output which activates the transition to another state. If the transition links

the states of different agents, then the line connecting the state boxes also shows

the invoked locution.
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Appendix B: Fuzzy c-means clustering algorithm

The aim of the clustering is to carry out automatic grouping of the products in

the seller’s catalogue. The fuzzy c-means algorithm has been used in order to

compute the partitions. This grouping algorithm is widely used in different fields

such as pattern recognition, data mining or image processing [8]. Each partition

will be formed by a subset of products and a representative product. In general,

when using fuzzy c-means a set of partitions is generated where each partition

has a representative, and every element belongs to the different partitions si-

multaneously at different membership degrees. Let X = {x1, x2, x3, ..., xn} be

a set of n objects where xi ∈ RS is an object described as a set of S real values

which are measures of its characteristics. A fuzzy c-partition of X is a class of

c fuzzy sets V1, V2, ..., Vc where c is an integer in the range [2, n]. So, a fuzzy

c-partition for X is defined as Mfcn = (U ∈ Rc×n). The membership degree of

an object k to a partition i is defined as µik ∈ [0, 1], where
∑c

i=1 µik = 1, ∀k.

Now, the main goal is to find the best U matrix partition in Mfcn, which is

achieved when the following function is minimized:

Jm(U, V ) =

n∑

k=1

c∑

i=1

µm
ik.d

2
ik(vi, xk), U ∈Mfcn, 1 < m <∞.

In this function vi defines the representative (prototype or centroid) of each

class, m expresses the fuzziness of the different sets, and d is the euclidean

distance. The representatives are computed using the following formula:

vi = (

∑n
k=1 µ

m
ik.xk∑n

k=1 µ
m
ik

),

and the fuzzy membership using:

µik =

[
( 1

d2
ik

(vi,xk)
)1/(m−1)

∑c
j=1(

1
d2

ik
(vj ,xk)

)1/(m−1)

]
.

The fuzzy c-means algorithm iterates recalculating vi and µik in order to mini-

mize Jm(U, V ). It is established that this algorithm converge for anym ∈ [1,∞),

but fuzziness of the partitions increases as m increases [8]. So, m must be cho-

sen depending on the specific problem considered. In the negotiation scenario,

hyperspheric sets are assumed, and an a priori number of fuzzy sets is defined.

If needed, there exist techniques which estimate the optimal number of fuzzy

sets in terms of two values, the partition and entropy coefficients.
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Appendix C: Demonstration of the automatic gen-

eration of dialogues

This appendix provides the demonstration that the negotiation framework pro-

posed generates dialogues automatically (i.e. the negotiation protocol is com-

plete).

We need to demonstrate: (a) that all the locutions can be activated by

one or more of the decision mechanisms, and (b) that every time one of these

mechanisms is executed it ultimately activates a locution. To support these

propositions we first present for (a), a list of the locutions, together with the

mechanisms that activate them, and the transition rule in which the activation

is featured.

L1: Mechanism B1 (Rule TR1).

L2: Mechanism S1 (Rule TR4).

L3: Mechanism S2 (Rule TR12).

L4: Mechanism B3 (Rule TR9).

L5: Mechanism S4 (Rule TR15).

L6: Mechanism B3 (Rule TR10).

L7: Mechanism B4 (Rule TR18).

L8: Mechanism S2 (Rule TR11); Mechanism S5 (Rule TR20).

L9: Mechanism B4 (Rule TR17).

L10: Mechanism S5 (Rule TR19).

L11: Mechanism B5 (Rule TR6); Mechanism S6 (Rule TR7).

For (b), we show for each mechanism and their possible states: whether

they activate a locution, or whether they indirectly activate a mechanism that

in turn activates a locution. We also present the transition rules where these

connections are established.

B1: Output have_need activates L1 (Rule TR1).

B1: Output have_no_need activates the mechanism B1 (Rule TR2).

B2 : Output empty_set activates the mechanism B5 (Rule TR5).

B2: Output π activates the mechanism B3 (Rule TR8).

B3: Output empty_set activates the locution L4 (Rule TR9)

B3: Output υ activates the locution L6 (Rule TR10).

B4: Output generate_purchase_requirement invokes the mechanism B2 (Rule

TR16).

B4: Output accept_offer invokes the locution L9 (Rule TR17).

B4: Output reject_offer invokes L7 (Rule TR18).

B5: Output withdraw_dialogue invokes L11 (Rule TR6).

S1: Output wish_not_to_enter activates the mechanism S1 (Rule TR3).

S1: Output wish_to_enter activates the locution L2 (Rule TR4).
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S2: Output emtpy_set invokes L8 (Rule TR11).

S2: Output sale_offer invokes L3 (Rule TR12).

S2: Output purchase_requirement invokes the mechanism S3 (Rule TR13).

S3: Output Sp activates the mechanism S4 (Rule TR14).

S4: Outputρ invokes the locution L5 (Rule TR15).

S5: Output accept invokes L10 (Rule TR19).

S5: Output reject invokes L8 (Rule TR20).

S6: Output withdraw invokes the locution L11 (Rule TR7).

It can easily be proven that all the mechanisms generate a locution or activate

a mechanism that then generates a locution, or activate a mechanism that then

generates another mechanism that finally generates a locution.
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Rf
1 Rf

2 Rf
3 Rf

4 Rf
5

Sol1 [61,100] [61,100] [91,100] [91,100] [61,70]

Sol2 [61,100] [61,100] [61,70] [61,70] [91,100]

Noise1 [40,60] [40,60] [1,20] [1,20] [1,20]

Noise2 [1,20] [1,20] [1,20] [40,60] [40,60]

Noise3 [1,20] [40,60] [40,60] [1,20] [1,20]

Table 1: An example of ranges of attributes for 2 solution and 5 noise sets.
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Figure 1: Comparative of the BAnenr vs SAnenr and the BAner vs SAer05
strategies.
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Figure 2: Improvement in the success rate and relative improvement of utility.
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Figure 3: Improvement in the duration of the negotiation dialogues using fuzzy
c-means.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4: Boxplot of utilities achieved by the seller agent. Without clustering:
(a) 1 solution+1 noise (c) 1 solution + 4 noise (e) 2 solution+1 noise (g) 2
solution+3 noise. With clustering: (b) 1 solution+1 noise (d) 1 solution + 4
noise (f) 2 solution+1 noise (h) 2 solution+3 noise.
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Figure 5: Pareto optimality rate % (success rate %) vs Number of products per
noise and solution set: (a) 1 solution+1 noise (b) 1 solution + 4 noise (c) 2
solution+1 noise (d) 2 solution+3 noise.
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B1:Recognize Need

have_no_need

S1:Recognize Categoryhave_need/L1:open_dialogue

wish_not_to_enter

B2:Generate Purchase Requirement

wish_to_enter/L2:enter_dialogue

B5:Consider Withdrawalempty_set

S6:Consider Withdrawal

withdraw/L11:withdraw_dialogue

B3:Generate Purchase Requirement Valuation
p_req

S2:Assess Purchase Requirement

p_req_val/L6:prefer_to_buy
empty_set/L4:desire_to_buy

empty_set/L8:refuse_to_sell

S3:Generate Potencial Sale-Offers

p_req

S4:Generate Relax Requirement

Sp

r_req/L5:prefer_to_sell

B4:Consider Offers
sale_offer/L3:willing_to_sell

reject_offer/L7:refuse_to_buy

generate_purchase_requirement
S5:Accept or Reject Offer

accept_offer/L9:agree_to_buy

accept/L10:agree_to_sell

reject/L8:refuse_to_sell

TR2

TR1

TR3

TR4
TR5

TR6 y TR7

TR8

TR9

TR10

TR11

TR12
TR13

TR14

TR15

TR16

TR17TR18

TR19

TR20
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