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RESUMEN  

 
En este Trabajo de Fin de Máster se estudian técnicas de Monocular Visual 

SLAM (VSLAM a partir de ahora) implementadas sobre robots aéreos. Estas técnicas se 

caracterizan por el uso de una sola cámara para estimar la posición y la profundidad 

para así poder crear un mapa del entorno del robot. Tras un estudio del estado del arte 

de algoritmos de monocular VSLAM se ha decidido implementar las técnicas LSD-

SLAM (Large-Scale Direct Monocular SLAM), y ORB-SLAM (Oriented FAST and 

Rotated BRIEF SLAM). También se realiza un estudio de PTAM, una técnica 

desarrollada previamente a las anteriormente mentadas pero que sirve para entenderlas 

mejor de forma que se pueda establecer una comparativa.  

Los algoritmos mencionados en el anterior párrafo se implementan sobre el 

contexto de rescate y/o navegación de reconocimiento con micro vehículos aéreos 

(Micro Aerial Vehicles - MAV). En este tipo de aplicaciones, el MAV debe utilizar sus 

propios sensores incorporados para navegar de forma autónoma en entornos interiores 

desconocidos, hostiles y sin cobertura de GPS –como ruinas o edificios semiderruidos–.  

Para su aplicación en la estimación de la posición de un robot aéreo, la 

información obtenida mediante VSLAM se fusiona con la obtenida de la Unidad de 

Medición Inercial (Inertial Measurement Unit - IMU) –presente en todos los vehículos 

aéreos–y otros sensores abordo, utilizando un Filtro de Kalman Extendido (Extended 

Kalman Filter - EKF). Además, se utiliza la información de los sensores a bordo del 

robot para resolver el problema de la ambigüedad de escala propia de los algoritmos de 

VSLAM monocular.  

Por último, y utilizando la estimación de posición obtenida anteriormente, se 

desarrolla la capacidad de controlar el robot aéreo en tres dimensiones mediante el uso 

de la cámara frontal y la IMU, actuando sobre los motores del robot en función de 

órdenes enviadas en tiempo real o programadas previamente.  

La implementación se ha realizado sobre un robot aéreo comercial de bajo coste, 

el cual no es posible programar de forma sencilla. Por esta razón el control se realiza 

desde un Ground System siendo éste un PC remoto. Este PC tendrá instalado ROS 

(Robot Operating System) como entorno de desarrollo.  

 

Palabras Clave: Micro vehículos aéreos; Monocular VSLAM; navegación en 

interiores; fusión sensorial; mapeado y localización simultáneas; Robot Operating 

System.  

 

  



 
 

 

 

 

ABSTRACT 

 
In this thesis Monocular Visual SLAM (VSLAM in the following) techniques 

implemented on Micro Aerial Vehicles (MAV in the following) are studied. These 

techniques use only one camera to estimate the position and depth in order to create a 

map of robot’s environment. After a study of the state-of-art monocular VSLAM 

algorithms, we decided to implement two of these algorithms in our system: LSD-

SLAM (Large-Scale Direct Monocular SLAM) and ORB-SLAM (Oriented FAST and 

Rotated BRIEF SLAM), although there will be a study of PTAM too. PTAM is a 

VSLAM technique developed years before ORB and LSD but helps to understand both 

so we can establish a comparative. 

These algorithms are implemented in the context of rescue and/or recognition 

navigation tasks in indoor environments. In this kind of applications, the MAV must 

rely on its own onboard sensors to autonomously navigate in unknown, hostile and GPS 

denied environments –such as ruined or semi-demolished buildings–. 

For the estimation of MAV’s position, the obtained information from VSLAM is 

fused with the one obtained from the Inertial Measurement Unit (IMU in the following) 

–present in all MAVs– and other onboard sensors, using an Extended Kalman Filter 

(EKF in the following). Furthermore, the information from the onboard sensors is used 

to solve the problem of scale ambiguity common in most of monocular VSLAM 

algorithms. 

Finally, and from the previous position estimation, the frontal camera and the 

IMU are used to develop the ability of control the MAV in 3D. This control works in 

MAV’s thrusters depending on the real-time or previously programmed sent commands. 

The system has been implemented over a commercial low-cost aerial robot. This 

robot is not easily programmed, so the control has been managed from a Ground 

System. This system is a remote PC with ROS (Robot Operating System) installed as an 

Integrated Development Environment. 

 

Keywords: Micro aerial vehicles; Monocular VSLAM; indoor navigation; sensor 

fusion; simultaneous localization and mapping; Robot Operating System 
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CHAPTER 1: INTRODUCTION 

 
 1.1. Rise of MAVs 

Drones are fast, agile and versatile robots that can be implemented in a wide 

spectrum of projects. Due to it and the tendency of the technology to the 

miniaturization, these robots are living a golden age of development. It is possible to 

find drones from the ones that can be held in one hand to others that can carry a person 

as payload. Specifically, MAVs have become an important tool not only in the military 

domain, but also in civilian environments. Particularly quadcopters are becoming more 

popular, especially for observational and exploration purposes in indoor and outdoor 

environments, but also for data collection, object manipulation or simply as high-tech 

toys. 

      

Fig.  1. Different sizes of drones. 

There are numerous examples where MAVs are successfully used in practice, 

for example for exploratory tasks such as inspecting the damaged nuclear reactors in 

Fukushima in March 2011, and for aerial based observation and monitoring of 

potentially dangerous situations, such as protests or large scale sport events. 

There are however many more potential applications: a swarm of small, light 

and cheap quadcopters could be deployed to find survivors in collapsed buildings 

without risking human lives. Equipped with high-resolution cameras, MAVs could also 

be used as flying photographers, providing aerial based videos of sport events or simply 

taking holiday photos from a whole new perspective. 

The main advantage of these robots is that they are unmanned, so they perform 

missions that are too “dull, dirty or dangerous”. Furthermore, having a flying behaviour 

similar to a traditional helicopter, a quadrocopter is able to land and start vertically, stay 

perfectly still in the air and move in any given direction at any time without having to 

turn first. This enables quadrocopters –contrary to traditional airplanes– to manoeuvre 

in extremely constrained indoor spaces such as corridors or offices, and makes them 

ideally suited for stationary observation or exploration in obstacle-dense or indoor 

environments. 
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The growing research on MAVs and the consequent improvement of 

technologies like microcomputers and onboard sensor devices has increased the 

performance requirements of such kind of systems. Enabled by GPS and MEMS inertial 

sensors, MAVs that can fly in outdoor environments without human intervention have 

been developed. Unfortunately, most indoor environments remain without access to 

external positioning systems, and autonomous MAVs are very limited in their ability to 

operate in these areas.  

1.2. Key Challenges 

In the ground robotics domain, combining wheel odometry with sensors such as 

laser range-finders, sonars, or cameras in a probabilistic SLAM (Simultaneous 

Localization and Mapping) framework has proven very successful. Many algorithms 

exist that accurately localize ground robots in large-scale environments; however, 

experiments with these algorithms are usually performed with stable, slow moving 

robots, which cannot handle even moderately rough terrain. 

Unfortunately, mounting equivalent sensors onto a MAV and using an existing 

SLAM algorithm does not result in the same success. MAVs face a number of unique 

challenges that make developing algorithms for them far more difficult than their indoor 

ground robot counterparts. The requirements and assumptions that can be made with 

flying robots are sufficiently different that they must be explicitly reasoned about and 

managed differently.  

These are the main key challenges when developing autonomous navigation 

systems for MAVs: 

 Limited Sensing Payload. MAVs have a maximum amount of vertical thrust that 

they can generate to remain airborne, which severely limits the amount of payload 

available for sensing and computation compared to similar sized ground vehicles. 

This weight limitation eliminates popular sensors such as SICK laser scanners, large-

aperture cameras, high-fidelity IMUs, RGB-D cameras or even the management of a 

stereo system. Instead, indoor air robots must rely on lightweight Hokuyo laser 

scanners, micro cameras and lower-quality MEMS-based IMUs, which generally 

have limited ranges, fields-of-view and are noisier compared to their ground 

equivalents. 

 

 Limited Onboard Computation. Despite the advances within the community, 

SLAM algorithms continue to be computationally demanding even for powerful 

desktop computers and are therefore not usable on today’s small embedded computer 

systems that might be mounted onboard MAVs. The computation can be offloaded to 

a powerful ground-station by transmitting the sensor data wirelessly; however, 

communication bandwidth then becomes a bottleneck that constrains sensor options. 

For example, camera data must be compressed with lossy algorithms before it can be 

transmitted over wireless links, which adds noise and delay to the measurements. 

The delay is in addition to the time taken to transmit the data over the wireless link. 

The noise from the lossy compression artefacts can be particularly damaging for 

feature detectors that look for high frequency information such as corners in an 

image. Additionally, while the delay can often be ignored for slow moving, passively 

stable ground robots, MAVs have fast and unstable dynamics, making control under 

large sensor delay conditions impossible. 
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 Indirect Relative Position Estimates. Air vehicles do not maintain physical contact 

with their surroundings and are therefore unable to measure odometry directly, which 

most SLAM algorithms require to initialize the estimates of the vehicle’s motion 

between time steps. Although one can compute the relative motion by double-

integrating accelerations, lightweight MEMs IMUs are often subject to unsteady 

biases that result in large drift rates. We must then recover the vehicle’s relative 

motion indirectly using exteroceptive sensors –sensors that determine the 

measurements of objects relative to the robot's frame of reference–, and computing 

the vehicle’s motion relative to reference points in the environment. 

 

 Fast Dynamics. MAVs have fast dynamics, which results in a host of sensing, 

estimation, control and planning implications for the vehicle. When confronted with 

noisy sensor measurements, filtering techniques such as Kalman Filters are often 

used to obtain better estimates of the true vehicle state. However, the averaging 

process implicit in these filters mean that multiple measurements must be observed 

before the estimate of the underlying state will change. Smoothing the data generates 

a cleaner signal, but adds delay to the state estimates. While delays may have 

insignificant effects on vehicles with slow dynamics, the effects are amplified by the 

MAV’s fast dynamics. Additionally, the named “Ground effect” may occur when 

flying close to the ground, ceiling or walls. 

 

 Need to Estimate Velocity. The underdamped nature of the dynamics model implies 

that simple proportional control techniques are insufficient to stabilize the vehicle, 

since any delay in the system will result in unstable oscillations. For this reason, we 

must add damping to the system through the feedback controller, which emphasizes 

the importance of obtaining accurate and timely state estimates for both position and 

velocity. Traditionally, most SLAM algorithms for ground robots completely ignore 

the velocity states. MAVs do not incorporate sensors that can measure the current 

speed, so it has to be estimated by other means. For instance, the Bebop Drone (used 

in this work) puts to use a vertical camera placed in its bottom to estimate the 

horizontal velocity. In order to enable the drone to keep its position in spite of wind, 

an optical-flow based motion estimation algorithm utilizing the full 60 fps from the 

floor camera is performed onboard, estimating the drone’s horizontal speed. The 

exact way these values are determined however is not documented. 

 

 Constant Motion. Unlike ground vehicles, a MAV cannot simply stop and perform 

more sensing when its state estimates have large uncertainties. Instead, the vehicle is 

likely to be unable to estimate its velocity accurately, and as a result, it may pick up 

speed or oscillate, degrading the sensor measurements further. Thus, planning 

algorithms for air vehicles must not only be biased towards paths with smooth 

motions, but must also explicitly reason about uncertainty in path planning. 

 

 3D Motion. Finally, MAVs operate in a truly 3D environment since they can hover 

at different heights. While it is reasonable for a ground robot to focus on estimating a 

2D map of the environment, for air vehicles, the 2D cross section of a 3D 

environment can change drastically with height and attitude, as obstacles suddenly 

appear or disappear.  
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1.3. The ISLAMAV Project 

This work is part of the ISLAMAV Project –developed by the RobeSafe Group 

of the Electronics Department of the University of Alcalá– whose final goal is the 

development of a MAV-based inspection system that will recognize indoor ruined or 

semi-ruined buildings in the context of rescue missions. This kind of environments will 

be unknown and GPS-denied, so the MAV will have to trust in its own onboard sensors. 

In order to achieve this goal several measurements from different sensors are fused to 

improve the pose estimation for MAVs in indoor environments. As a strategy of the 

fusion algorithm, each of the sensors must be able to provide its own pose estimation to 

endow the system with some redundancy that allows it to work in different 

environmental conditions. 

 

 

Fig.  2. MAV put to use in a mission inside a ruined building. 

 

The software architecture of the whole navigation system proposed in the 

ISLAMAV Project is shown in Fig. 3. As it can be seen, the SLAM system fuses the 

information of three sensorial systems: a scan-matcher module based on laser 

measurements, a VSLAM system based on a monocular camera, and the rest of onboard 

sensors (IMU, ultrasounds, etc.). The usage of monocular VSLAM is justified because 

due to their low weight and cost, monocular cameras are included in most of the 

commercial MAVs. However, its usage is constrained to environments with specific 

features and lighting conditions, and so a laser sensor will improve the performance of 

the SLAM system in indoor environments due to its high working rate and its direct and 

accurate range detection. 

One of the requirements of the ISLAMAV Project is that the sensorial system 

has to be modular and configurable. So, this thesis focuses on the development of the 

monocular VLSAM module and the fusion with the onboard sensor measurements 

using an Extended Kalman Filter. 
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Fig.  3. Software architecture of the ISLAMAV Project: red modules correspond with out of the scope 
work; the blue modules are the ones implemented in this thesis. 

 
To face the computational requirements, the system is composed of a flight and 

a ground unit, so that code can be distributed in different nodes using ROS (Robot 

Operating System). The ground unit will be implemented as a laptop with ROS installed 

on it. We had to divide the system in these two parts due to some problems related with 

the use of MAVs explained before: limited onboard computation and limited sensing 

payload. 

The VSLAM algorithms that were chosen in order to calculate the pose 

estimation (along with the measurements from the other onboard sensors) and the map 

of the environment are: LSD-SLAM and ORB-SLAM.  Both of them are put to use so a 

comparison between the two methods can be performed. The differences between them, 

as well as the strengths and weaknesses will be explained in Chapter 5. 

One of the main problems of monocular camera VSLAM algorithms is the fact 

that it cannot calculate the scale of the data of tracking and mapping. It leads to a 

system that is not working with real-scale data, what could affect the integrity of an 

aerial robot. To solve this problem, our system uses the data from other onboard sensors 

to calculate the dynamic scale of the SLAM to return the real-time pose of the MAV 

without scale ambiguity.  

In this work, up-to-date VLSAM algorithms are fused with measurements from 

other onboard sensors (IMU, sonar, vertical camera, etc.) to solve the SLAM problem in 

complex indoor environments and robustly estimate the 6DOF (six-degrees-of freedom) 

pose of the MAV, using a distributed system with a flight unit and a ground station.  

In order to fuse measurements from the VSLAM algorithms and other onboard 

sensors, an EKF is implemented. Moreover, the system is able to calculate the dynamic 

scale of the measurements, what makes it a scale-aware system. Due to it, the EKF and 

the control stage work with real scaled data, in contrast to other monocular VSLAM 

systems. 



Visual SLAM Algorithms for Aerial Robots 

 6 

The problem of autonomous indoor MAV localization was addressed as a 

software challenge, focusing on high-level algorithms integration rather than specific 

hardware. For this reason, we use a low-cost commercial platform with minor 

modifications and an open-source development platform (ROS), so drivers of sensors 

and some algorithms can be used without development.  

1.4. Problem Statement and Initial Objective 

The initial objective of this work is to study different monocular VSLAM 

techniques and its ability to be implemented in aerial robots in order to estimate their 

6DOF position, taking into account the special constraints of this kind of platforms. The 

obtained pose estimation will be scaled using other onboard measurements, and finally 

will be fused with these measurements to improve the estimation. Besides, a position 

controller will be designed in order to guide the MAV to commanded target positions. 

Finally, another important objective is to implement the system in a real robotic 

platform to obtain experimental results that can be used to validate the study.  

 1.5. Outline 

The remaining sections of this document are organized as follows: 

In Chapter 2, a study of the state of the art is performed in order to explain some 

related work and to place this work in the field of study. 

Chapter 3 presents the formulated hypothesis for this work. The necessary steps 

followed in order to validate this hypothesis are mentioned. 

In Chapter 4, an overview of the system and the two sides of the architecture –

both hardware and software– are explained. 

Chapter 5 talks about the VSLAM algorithms and specifies which ones will be 

used for this work and why. A comparison performed by means of a benchmark is 

presented. 

In Chapter 6, the data fusion and how it is achieved in this work is explained. All 

the models implemented in our EKF are described in detail. 

Chapter 7 describes the PID controller developed in this thesis. 

Chapter 8 explains the results obtained in real experiments, comparing 

estimation and tracking from a ground truth. How this ground truth system was 

elaborated is explained too. 

In Chapter 9, the main conclusions and future work lines are summarized. 

The last sections correspond to the diagrams, specifications, budget, user guide 

and bibliography of this work. The thesis also includes an appendix where the achieved 

additional activities are listed and explained. 
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CHAPTER 2: STATE OF THE ART   

 
In this chapter a brief review of the main techniques used to develop 

autonomous navigation systems for aerial robots is presented. This study justifies the 

use of monocular cameras as the main sensor for navigation over other proposals for 

low-cost MAVs. It also includes a description of the closest related projects in order to 

contextualize the developed work. 

 

2.1. Autonomous navigation of MAVs 

Since the rise of use and research in the field of MAVs, there have been 

numerous efforts to fly quadrocopters autonomously. Most of these efforts have been 

made for outdoor situations. In this kind of environments the obstacles density is lower 

and the GPS signal will be enabled in almost all situations. For instance, in (Mellinger 

et al., 2011) an algorithm for addressing the controller design and the trajectory 

generation for a quadrotor manoeuvring in three dimensions is explained. Other authors 

use GPS-based methods in order to localize the drone in outdoor environments (Vago et 

al., 2015). Other applications are developed thinking in animal-based algorithms as in 

(Senanayake et al., 2016) (Lindsey et al., 2011) (Kushleyev et al., 2012) that performed 

a system based on a collaborative swarm of aerial robots. 

However, in this work the system will have to accomplish a simultaneous 

localization and mapping of indoor, unknown, and GPS-denied environments. The 

autonomous navigation of MAVs in this kind of environments is even today an open 

area of research. It is not possible to use the classic odometry systems –based on 

encoders– of ground robots for MAVs. Due to it, this kind of systems must be replaced 

by inertial systems so new sensor-based strategies for the localization have been 

developed. Besides, the absence of a previous map of the environment makes 

mandatory the implementation of simultaneous localization and mapping (SLAM) 

solutions, as well as robust state estimation and control methods. For these solutions, 

the use of different sensors has been proposed in the literature as: range laser scanners 

(Grzonka et al., 2009); monocular cameras (Achtelik et al., 2012); stereo cameras 

(Fraundorfer et al., 2012) or RGB-D sensors (Huang et al., 2011) (Bylow et al., 2013). 

As it has been explained before, one of the main problems when using this kind of 

sensors in MAVs is the limited sensing payload. The drone put to use must be able to 

fly steady carrying the chosen sensor. This is not possible to most of the commercial 

low-cost drones and a specific and more expensive MAV may be used for this situation. 

In addition, such drone able to carry a heavy payload is usually too big to be managed 

in indoor environments. The drone’s size may be a problem due to several reasons: it 

could be dangerous if flying near humans, and the strength of the thrusters could be 

enough to not allow the MAV to fly steady near walls or the floor due to the “ground 

effect”. 

So, the need to use small MAVs in indoor environments requires selecting the 

most appropriate sensors. Monocular cameras are light, small and cheap and indeed 

they are usually included in most low-cost commercial drones. Their inherent scale 



Visual SLAM Algorithms for Aerial Robots 

 8 

ambiguity problem can be solved by taking advantage of other typical onboard sensors 

such as IMU or ultrasound sensors. That is the reason why this proposal will be 

explored in this thesis in order to solve the SLAM problem in MAVs. 

2.2. Related Projects  

In this section, some works whose framework is close to the one treated on this 

thesis will be explained. They correspond to the main successful indoor navigation 

systems for MAVs developed in the last years. Some of them use heavy sensors that 

cannot be used in small low-cost MAVs, but propose software architectures that have 

inspired this work. Others propose monocular camera-based navigation systems and 

will be contextualized with respect to this thesis.  

One of the main works that served as a reference for the ISLAMAV project 

approach –within this thesis fits– is the one developed by Galton (Galton et al., 2009) in 

the Massachusetts Institute of Technology. This work presents a solution for enabling a 

quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore 

and map unstructured and unknown indoor environments. An overview of their solution 

to the key problems, including a multilevel sensing and control hierarchy, a high-speed 

laser scan-matching algorithm, an EKF for data fusion, a high-level SLAM 

implementation, and an exploration planner are provided. Finally, they show 

experimental results demonstrating the helicopter's ability to navigate accurately and 

autonomously in unknown environments. 

In this work, the authors fuse measurements from a Hokuyo range laser scanner 

with the ones from the IMU. Thanks to it, they achieve a robust SLAM system that can 

face adverse situations as bad illuminated environments. For this implementation, they 

have to use a drone that is able to carry a heavy payload –Hummingbird from 

Ascending Technologies, as seen in Fig. 4–, a much more expensive hardware 

architecture than the proposed for this thesis.  

 

Fig.  4. Hummningbird drone carrying a Hokuyo laser sensor (Galton et al., 2009). 

On the other hand, although their hardware platform target is not the same as 

ours, they have developed an autonomous system able to fly and avoid obstacles thanks 

to an estimation of the drone’s relative position within its environment and a controller. 

The software architecture of the navigation system is shown in Fig. 5, and it has served 

as reference for the autonomous navigation side of this thesis. 
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Fig.  5. Schematic of the sensing, control and planning architecture (Galton et al., 2009). 

Few years later, another work is proposed in (Bachrach et al., 2012), a new 

system for visual odometry and mapping using an RGB-D camera and its application to 

autonomous flight. By leveraging results from recent state-of-the-art algorithms and 

hardware, their system enables 3D flight in cluttered environments using only onboard 

sensor data. All computation and sensing required for local position control are 

performed onboard the vehicle, reducing the dependence on unreliable wireless links. 

However, even with accurate 3D sensing and position estimation, some parts of the 

environment have more perceptual structure than others, leading to state estimates that 

vary in accuracy across the environment. If the vehicle plans a path without regard to 

how well it can localize itself along that path, it runs the risk of becoming lost or worse. 

The authors show how the Belief Roadmap (BRM) algorithm (Prentice et al., 2008) –a 

belief space extension of the Probabilistic Roadmap algorithm– can be used to plan 

vehicle trajectories that incorporate the sensing model of the RGB-D camera. They 

evaluate the effectiveness of their system for controlling a quadrotor, demonstrate its 

use for constructing detailed 3D maps of an indoor environment and discuss its 

limitations.   

 

Fig.  6. High-cost MAV with a RGB-D camera mounted on its base (Bachrach et al., 2012). 

Although the system is a SLAM solution for indoor environments for MAVs, 

there is a huge difference between this work and the one proposed in this thesis: the 

hardware architecture. The drone put to use can lift a RGB-D camera, which weighs 

typically more than a kilogram. Furthermore, although the position control and the 

2 Bachrach et. al.

1 Introduction

Unmanned air vehicles (UAVs) rely on accurate knowledge of their position for

decision-making and control. As a result, considerable investment has been made

towards improving the availability of global positioning infrastructure, including

utilizing satellite-based GPS systems and developing algorithms to use existing RF

signals such as WiFi. However, most indoor environments and many parts of the

urban canyon remain without access to external positioning systems, limiting the

ability of current autonomous UAVs to fly through these areas.

Localization using sonar ranging (Leonard and Durrant-Whyte, 1991), laser

ranging (Thrun et al., 2000) or camera sensing (Se et al., 2002) has been used ex-

tremely successfully on a number of ground robots and is now essentially a com-

modity technology. Previously, we have developed algorithms for MAV flight in

cluttered environments using laser range finders (Bachrach et al., 2009a) and stereo

cameras (Achtelik et al., 2009). Laser range finders that are currently available in

form factors appropriate for use on a MAV are very high precision, but only provide

range measurements along a plane around the sensor. Since these sensors can only

detect objects that intersect the sensing plane, they are most useful in environments

characterized by vertical structures, and less so in more complex scenes.

Fig. 1 Our quadrotor micro air vehicle (MAV). The RGB-D camera is mounted at the base of the

vehicle, tilted slightly down.

Structured light RGB-D cameras are based upon stereo techniques, and thus

share many properties with stereo cameras. The primary differences lie in the range

and spatial density of depth data. Since RGB-D cameras illuminate a scene with a

structured light pattern, they can estimate depth in areas with poor visual texture

but are range-limited by their projectors. This paper presents our approach to pro-

viding an autonomous micro air vehicle with fast and reliable state estimates and

a 3D map of its environment by using an on-board RGB-D camera and inertial

measurement unit (IMU). Together, these allow the MAV to safely operate in clut-

tered, GPS-denied indoor environments. The control of a micro air vehicle requires

accurate estimation of not only the position of the vehicle but also the velocity –

estimates that our algorithms are able to provide. Estimating a vehicle’s 3D motion

from sensor data typically consists of estimating its relative motion at each time step



Visual SLAM Algorithms for Aerial Robots 

 10 

relative localization estimation is made offboard –that means, performed by a ground 

station– the SLAM is computed inside the drone, that is, performed by the onboard 

processor. Both features make the MAV a high-cost platform, which is the opposite of 

the idea suggested in this thesis. On the other hand, the fusion of a visual sensor with 

measurements from the IMU makes this work a close relative and a source of ideas for 

the system developed in this thesis. 

 

Fig.  7. System overview of the work in. (Achteleik et al., 2011). 

The research presented in (Achteleik et al., 2011) is closer to the research made 

for this thesis than the previous ones. The SLAM system fuses information from the 

monocular camera with measurements from the IMU. The authors give a solution to 

overcome the issue of having a low frequency onboard visual pose update versus the 

high agility of an MAV. This is solved by filtering visual information with inputs from 

inertial sensors, as can be seen in Fig. 7. Then, as their system is based on monocular 

vision, they present a solution to estimate the metric visual scale aid of an air pressure 

sensor. All computation is running onboard and is tightly integrated on the MAV to 

avoid jitter and latencies. This framework enables stable flights indoors and outdoors 

even under windy conditions. 
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There are two main differences between both works that must be highlighted. As 

seen in the two previous reviewed works, the authors put to use expensive MAVs in 

order to reach their goals. In (Galton et al., 2009) and (Bachrach et al., 2012), they were 

used to lift a heavy load, while for the work described in this section this kind of drone 

is implemented due to its onboard computer. In (Achteleik et al., 2011) the authors use a 

Pelican quadrocopter from Ascending Technologies. The other remarkable difference is 

–as just said– that they perform all the system onboard, while in our case all the 

computing has to be done by an external ground system due to the limitations of the 

platform. Therefore, they need a powerful computer on the drone.  

Another difference is the visual SLAM technique put to use for this system. The 

authors chose PTAM (Klein et al., 2007) as the algorithm used for the visual 

localization and mapping, which is an old and not very reliable technique. In this thesis 

newer, more efficient and more robust algorithms have been chosen. Furthermore, the 

method applied in this work in order to calculate the absolute scale for the monocular 

VSLAM estimations employs an onboard pressure sensor. The measurements from this 

sensor are very noisy and prone to drift due to changing weather conditions –the usage 

of this sensor was considerate for our work but was declined after several tests due to 

these problems–. Therefore, the authors had to design an EKF in order to fuse all data 

from different sensors and incorporate the scale and pressure sensor drift in the states. 

Thanks to it, they could achieve good results despite the noisy sensors. 

Finally, in (Engel, 2011) the authors developed a system that enables a 

quadrocopter to localize and navigate autonomously in previously unknown and GPS-

denied environments. This approach uses a monocular camera onboard the quadrocopter 

and does not require artificial markers or external sensors. 

Their approach consists of three main components, as it can be seen in Fig. 8. 

Firstly, the authors used a monocular, keyframe-based simultaneous localization and 

mapping (SLAM) system for pose estimation. Secondly, they implemented an extended 

Kalman filter, which includes a full model of the drone’s flight and control dynamics to 

fuse and synchronize all available data and to compensate for delays arising from the 

communication process and the computations required. Finally, they used a PID 

controller to control the position and orientation of the drone. 

 

 
Fig.  8. Architecture of the system proposed in (Engel, 2011). 

Furthermore, the authors proposed a method to estimate the absolute scale of the 

generated visual map from inertial and altitude measurements, which is based on a 

statistical formulation of the problem. Following a maximum likelihood (ML) approach, 

they derive a closed-form solution for the ML estimator of the scale. 



Visual SLAM Algorithms for Aerial Robots 

 12 

The authors implemented their approach on a real robot and extensively tested 

and evaluated it in different real-world environments. As hardware platform they used 

the Parrot AR.Drone; demonstrating what can be achieved with modern, low-cost and 

commercially available hardware platforms as tool for robotics research. In their 

approach, all computations are performed on a ground station, which is connected to the 

drone via wireless LAN. 

This work is the main reference for the work developed in this thesis. It makes 

this research the closest one in the investigation concerning. Due to its implementation 

in low-cost MAVs, they were not able to carry heavy sensors as RGB-D cameras and/or 

range laser scanners. It forced them to use the available sensors in most of commercial 

drones –monocular cameras and the IMU–. Although there are several similarities 

between this work and this thesis, there are some differences too. The most important 

contributions of this thesis are: 

 Platform: While the platform used in (Engel, 2011) is the AR.Drone1 the one 

chosen for this thesis is the Bebop drone2. The main improvements of the Bebop 

are its higher stability and lower dimensions. The flight of the Bebop drone is 

steadier than the one of the AR.Drone, something crucial when working with 

visual SLAM. Furthermore, a stable flight can avoid crashes when working with 

these aerial robots that have such fast dynamics. Other important improvement 

is the performance of the camera. Not only the field of view (FOV) has been 

increased but the resolution of the video. It allows the VSLAM algorithm to 

estimate the drone’s position in a better way without pre-processing the image –

with the delay that it implies–. 

 

 

 

 

 

 

Fig.  9.  Bebop drone (a) vs. AR.Drone 2.0 (b) of Parrot. 

 
 Visual SLAM technique: The VSLAM algorithm chosen in (Engel, 2011) is 

PTAM (Klein et al., 2007). This is an out-dated algorithm that causes drifts and 

errors when applied to fast platforms such as aerial robots. One of the initial 

objectives of this thesis was to study the ability of different up-to-date visual 

SLAM methods to be applied in aerial robots, and so this is one of the items in 

which an effort has been done. 

 

                                                        
1 http://www.parrot.com/es/productos/ardrone-2/ 
2 http://www.parrot.com/products/bebop-drone/ 

a)          b) 

http://www.parrot.com/es/productos/ardrone-2/
http://www.parrot.com/products/bebop-drone/
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The next section briefly reviews recent visual SLAM techniques in order to 

choose the ones to be studied and applied in the SLAM system proposed in this 

thesis. 

 

2.3. Visual SLAM techniques   

There are different sensors that can be implemented in a Visual SLAM system. 

While some of them are typically implemented in ground robots due to its weight, there 

are others that can be used in MAVs. As seen before, there are some research or 

professional-oriented MAVs that can also carry a heavy load and therefore the kind of 

sensors usually included in ground-robot systems, but this is not the scope of this 

project. These drones are able to lift such sensors as RGB-D or stereo cameras systems 

that are able to return not only a video stream but also a depth map of the environment. 

It simplifies the implementation of a VSLAM system and making it autonomous. 

However, in light and low-cost MAVs the best solution is to use the included 

monocular camera. 

In order to perform the simultaneous localization and mapping of the 

environment by means of visual information, the process of visual odometry (VO) must 

be accomplished. Visual odometry is the process of determining the position and 

orientation of a robot by analysing the associated camera images, thus, to estimate the 

6DOF position of the MAV. The VO approaches can be classified into two main 

categories based on the number of cameras adopted: monocular and stereo VO methods. 

A stereo pair is applied as minimum number configuration of cameras for solving scale 

ambiguity problem –as will be explained in Chapter 5- in order to carry on the stereo 

visual odometry (Brand et al., 2014). However, stereo camera systems are not the focus 

of this work but the monocular ones. 

In the literature, (Klein et al., 2007) has proposed the most representative 

monocular keyframe-based tracking and mapping system, PTAM (Parallel Tracking 

And Mapping), for real time pose estimation applications (Fig. 10.a). In (Forster et al., 

2014) a semi-direct monocular visual odometry algorithm is also presented, i.e. SVO 

(Semi-direct Visual Odometry). This algorithm can be implemented on an onboard 

embedded computer –in the case of the paper, in an Odroid U2– which runs at 55 FPS 

and outputs a sparse 3D reconstructed environment model. In (Newcombe et al., 2011), 

the work DTAM (Dense Tracking And Mapping), a real-time probabilistic monocular 

pose estimation method for 3D dense environment reconstruction is proposed. In (Engel 

et al., 2014 a) the authors describe a direct monocular simultaneous localization and 

mapping algorithm for building consistent, semi-dense reconstructions of the 

environments, the LSD-SLAM method (Fig. 10.b).  Finally, in (Mur-Artal et al., 2015) 

a keyframe-based monocular SLAM system with ORB features that can estimate the 

6DOF pose and reconstruct a sparse environment model is presented (ORB-SLAM – 

Fig. 10.c). 
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Fig.  10. VSLAM algorithms put to use for this work. Images from (Mur-Artal and Tardós et al., 2015). 

 

The two last algorithms –LSD-SLAM and ORB-SLAM– are two of the best 

VSLAM methods due to their robustness and performance. However, these recent 

methods have not been applied to aerial robots yet. A detailed description and 

comparison of the three methods shown in Fig. 10 –PTAM, LSD-SLAM and ORB-

SLAM– is shown in Chapter 5. Also, its application to aerial navigation is explored in 

this thesis. 

2.2. Visual Odometry

(a) PTAM (b) LSD-SLAM

(c) ORB-SLAM

Figure 2.5: The well-known monocular VO systems. Images from (Mur-Artal

and Tardós, 2015).

Especailly, (Strasdat et al., 2011) has implementated a double window op-

t imizat ion framework for constant-t ime visual stereo SLAM, i.e. ScaViS-

LAM2. As int roduced in chapter 1, a typical UAV has limited size, payload,

computat ion capability, power supply and expanded mount ing space for

other sensors. Although many stereo cameras are available to besold on the

commercial markets current ly, e.g. Skybot ix VI-sensor3, Point Grey Bum-

blebee24 and VisLab 3DV-E5, as shown in Fig. 2.8. However, the high cost

(e.g. Skybot ix VI-sensor and VisLab 3DV-E), big weight (e.g. Point Grey

Bumblebee2 and VisLab 3DV-E) or incompat ible communicat ion interface

(e.g. Point Grey Bumblebee2) reduce a number of potent ial university or

2ht tps:/ / github.com/ st rasdat / ScaViSLAM/
3ht tp:/ / www.skybot ix.com/
4ht tp:/ / www.ptgrey.com/
5ht tp:/ / vislab.it / products/
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CHAPTER 3: HYPOTHESIS AND METHODOLOGY   
 

After showing the problem statement of this work and performing a background 

research about related projects, we are in the position to formulate the hypothesis that 

will be developed in this thesis, and to set a series of specific objectives from the initial 

statement and the methodology to reach them. 

 

3.1. Hypothesis formulation  

After the study of the state of the art in MAVs autonomous navigation, it has 

been found that one of the main problems when developing reliable SLAM systems is 

the payload limitation, which restricts the kind and number of sensors to be used. For 

indoor applications, where the size of the drone has to be small and GPS signal is not 

available, this problem is particularly hard. In these situations it is required to use only 

light onboard sensors such as monocular cameras or inertial measurement units, but 

developing robust SLAM systems with this constraints is still a research challenge. 

The hypothesis of this work is that the application of recent monocular VSLAM 

techniques to aerial robots is possible by fusing the results with other onboard sensors in 

order to solve the scale ambiguity problem and to improve the results of the position 

and map estimation. It is intended to demonstrate this hypothesis on commercial low-

cost drones, whose computational onbard power is very limited. For this reason the 

SLAM system will be executed in a ground control unit, taking into account the delays 

of the wireless link in the control loop. 

 

3.2. Method for testing the hypothesis: specific goals  

In order to achieve a conclusion and to validate the hypothesis some objectives 

are needed to overcome. These objectives and the methodology to achieve them are the 

following: 

 Choose a robot development environment that facilitates the integration of the 

necessary codes. Robot Operating System (ROS)3 is a very popular platform 

today, and one of the most widespread in the research field, why it has been 

chosen for this work. It allows to create distributed network systems and 

provides the services expected from an operating system, including hardware 

abstraction, low-level device control, implementation of commonly-used 

functionality, message-passing between processes and package management. 

 

                                                        
3 http://www.ros.org/ 

http://www.ros.org/
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 Perform a research in the area of hardware platforms for drones and its available 

drivers for ROS. Due to their small size, light weight, low cost and to the 

possibility of controlling them from a remote station using ROS drivers, two 

platforms of Parrot will be studied: the AR.Drone and the Bebop drone. 

 

 Perform a research of the available monocular VSLAM algorithms for ROS and 

select the best ones. As it has been seen in the state of the art, PTAM is a 

classical monocular VSLAM method that has already been applied to drones. It 

is available as a ROS package. The two recent methods LSD-SLAM and ORB-

SLAM are both available as ROS packages too, but they have not been applied 

neither compared in aerial robots. The three methods will be tested and adjusted 

using the cameras of the AR.Drone and Bebop drones. 

 

 Study the scale ambiguity problem of the last algorithms and provide a solution 

that, using other onboard sensors (such as IMU or sonar), will get the real scale 

of the obtained map. 

 

 Develop an Extended Kalman Filter (EKF) to fuse the VSLAM and onboard 

sensors measurements in order to improve the estimation of the 6DOF pose of 

the drone and the local map. To do this, movement and observation models will 

have to be studied for the drone and its sensors. 

 

 Develop a PID controller that, using the estimated pose of the global SLAM 

system (output of the EKF), allows the drone to reach position goals. 

 

 Develop a ground-truth system that allows us to validate the estimated pose. A 

typical ground-truth system for aerial robots, due to their fast dynamics, is a 

motion capture system. However, as this is not available, a simplification will be 

designed based on a camera on the ceiling, which will permit to measure some 

of the variables of the system using an external reference. 

 

 Perform experiments in order to collect enough data to analyse and validate our 

proposal, calculating the errors and adjusting variables –as the coefficients of the 

PID controller, the working period of the system, the added Gaussian noise, 

etc.– to obtain an optimal response of the SLAM system 

 

 Present reviewed results and a conclusion about the hypothesis. 
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CHAPTER 4: SYSTEM OVERVIEW  

 
In this thesis, the problem of autonomous indoor MAV localization is addressed 

as a software challenge, focusing on high-level algorithms integration rather than 

specific hardware. For this reason, a low-cost commercial platform with minor 

modifications and an open-source development platform (ROS) are used, so that drivers 

of sensors and some algorithms can be used without development.  

Through this chapter an overview of the whole system is presented, starting with 

the hardware architecture and the reasons of why the platform put to use was chosen. 

Some hardware specifications are shown too. Next to it, the software architecture is 

explained. As said before, the objective is to develop a software system that could 

perform a SLAM addressing the MAV as a black box. Thus, in this project the most 

important side of the architecture is the software. 

4.1. Hardware Architecture 

The quadrotor MAV used for this work –shown in Fig. 11– is the Bebop from 

Parrot, a lighter (400 gr) and smaller (33x38x3.6cm) drone than the earlier AR.Drone 

2.0. The last was also put to use for the performance, but due to its lower flight stability 

its usage was declined. Bebop MAV can carry up to 200g of payload for about 5 

minutes and it is equipped with a frontal “Fisheye” camera. It has another vertical 

camera, which is used for stabilization and horizontal velocity estimation. Besides, it 

has an ultrasonic altimeter, a 3-axis accelerometer, 2 gyroscopes and a barometer. It 

incorporates an onboard controller 8 times more powerful than the one from the 

AR.Drone 2.0 (dual-core processor Parrot P7), a quad-core graphic processor, flash 

memory of 8Gb and a Linux distribution. It is controlled via Wi-Fi –it provides its own 

network– and a SDK is available for application development.  

 

Fig.  11. Bebop Drone from Parrot 
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This model of drone was chosen between all the low-cost commercial models of 

MAVs because of its steadiness, something crucial when flying these robots in indoor 

environments with a big amount of obstacles. Furthermore, a driver for ROS was 

already developed, as it will be explained in the next section.  

Although the Bebop comes with some software for basic functionality, it is 

neither open-source nor easy to modify, and so it is treated as a black box, using only 

the available W-LAN communication channels to access and control it from a remote 

station, in this case a laptop, as it is shown in Fig. 12. 

 

 

 

 

 

 

 

 

Fig.  12. Hardware and communications architecture 

 

Specifically, these are the inputs/outputs used by the SLAM system that will be 

executed in the ground station:  

 Video channel, to receive the video stream of the forwards facing 

camera, with maximal supported resolution of 640x368 and frame rate 

of 30fps.  

 

 Navigation channel, to read onboard sensor measurements every 5ms. 

The data used by the system are:  

 

1. Drone orientation as roll, pitch and yaw angles (Φ̅, Θ̅, Ψ̅ ).  
2. Horizontal velocity in drone’s coordinate system (vdx̅̅ ̅̅ ̅, vdy̅̅ ̅̅ ̅ ), 

calculated onboard by an optical-flow based motion estimation 

algorithm.   

3. Drone height h̅ , obtained from the ultrasound altimeter 

measurements.  

 

 Command channel, to send the drone control packages, with the desired 

velocities of x and y axis (in world coordinates); vertical speed and yaw 

rotational velocity:  

 u =  (vx̂, vŷ, vẑ, Ψ̂̇)   (1) 

Flying unit:  Bebop drone 

Ground Station 

Navigation channel 

Video channel 

Command channel 
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4.2. Software Architecture 

For the development of the software architecture, ROS meta-operating system 

was put to use –the whole project has been developed for ROS Indigo on Ubuntu 

14.04–. ROS implements packages in order to perform different applications for 

robotics. These packages contain nodes, which could be programmed in C++ or Python. 

The nodes achieve specific tasks for the whole package. The nodes are communicated 

by means of topics and messages. In this work topics are mostly used, and represent a 

channel of information where different nodes could read and/or write.  

The SLAM system explained in this work consists of three major components: 

(a) a monocular VSLAM system that obtains a 6DOF pose estimation (and a 3D map of 

the environment); (b) an Extended Kalman Filter that fuses the last estimation with the 

navigation data provided by the onboard sensors of the MAV to obtain a robust 6DOF 

estimation of the position of the robot in the generated map; and (c) a PID controller 

that allows the MAV to reach goal poses using the estimated position. All of these 

components will be deeply explained in their corresponding chapters. In the following 

the implementation in ROS is explained. 

 
Fig.  13. Software architecture 

As seen in the previous figure, all the computing is performed in the ground 

station. In Fig. 14 we show the ROS-based implementation of the system. The drone’s 

ROS driver (bebop_autonomy) reads the information obtained by the onboard sensors in 

order to compute the estimation and motion control. The forward camera brings the 

video stream needed for executing the VSLAM. The downward facing camera allows us 

to read the horizontal velocities –using an onboard implemented algorithm (Bristeau et 
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al., 2011) –; the ultrasound sensors inform about the distance between the floor and the 

drone and the IMU brings us direct measurements from gyroscopes and accelerometers. 

These three last sensors –grouped in the channel hNAVDATA– allow the system to perform 

the data fusion by means of the EKF. Then, knowing the current estimation of the 

position and a goal, the PID controller calculates the command u and sends it to the 

drone through the drone’s driver. 

 

Fig.  14. Software architecture overview.   

In Fig. 14, blue blocks represent the packages developed for this thesis, while 

the red ones are previously programmed packages available for ROS. Thus, the drivers 

for both of the drones put to use were previously developed –something kept in mind 

when the drone’s models were chosen– so were the compared monocular VSLAM 

algorithms. Regarding to this, the work accomplished for this thesis was to learn how to 

use these packages and to implement them in our system. The tool Rviz –a 3D 

visualizer developed for ROS– is also implemented in ROS and is used to visualize 

results and debugging the code. Fig. 15 shows a screenshot of Rviz during an execution 

of the SLAM system, where the trajectory followed by the drone and the obtained map 

are shown in red and black respectively. It is possible to display also a video stream, the 

position estimated by a laser or a topic of type Odometry. This last kind of marker is 

employed to display the estimation of the system by means of the node odom_publisher 

–also included in the package of the EKF–. Furthermore, the node robot_tf_publisher 

replaces the estimated position of the drone from the location of the forwards facing 

camera to the drone’s centre –which is around 105mm behind in the X axis–. It allows 
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the system to estimate the drone’s position from the correct frame and helps when 

comparing the recorded results with the ground truth. 

 

 

Fig.  15. Rviz performance. 

On the other hand, two packages were specifically developed for this thesis: the 

EKF and the PID Controller. Both of them will be deeply explained in their respective 

chapters.  

Another node was developed in order to read the estimated pose by ORB-SLAM 

so it can be recorded. It helped us to obtain the required information for the comparison 

performed between both VSLAM methods by means of a benchmark –explained in 

section 5.3.4–. This node is in charge of reading the pose estimated by ORB-SLAM 

between the data published by the array in /tf –it is possible by detecting the data whose 

parent and child frames are ORB_SLAM/World and ORB_SLAM_Camera 

respectively–. Then, the node assigns a timestamp value (obtained from the 

/camera/rgb/camera_info topic given in a bagfile provided by the benchmark) to each of 

the estimated poses. Finally, it publishes the estimation with an assigned timestamp. 

The whole software was developed so it could be launched using both drones –

AR.Drone and Bebop from Parrot, shown in Fig. 9–. It detects which drone is being 

used so it adapts the performance to it.  
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CHAPTER 5:  MONOCULAR VISUAL SLAM  

 
5.1. Introduction  

SLAM is defined as “the computational problem of constructing or updating a 

map of an unknown environment while simultaneously keeping track of an agent's 

location within it”. Monocular VSLAM techniques are a kind of SLAM that uses a 

monocular camera in order to construct that map while tracking the agent’s location.  

This method was chosen because monocular cameras are included in most 

commercial drones, so it could be launched in most of them. Another reason for 

choosing this method is the power consumption and the weight of other sensors that 

consume and weight much more than an embedded monocular camera. However, the 

utilization of VSLAM techniques comes with problems that do not appear when using 

other visual sensors –such as RGB-D cameras or stereo camera systems– or even laser: 

 Need of movement in order to build the map and track the agent’s position. 

 Scale ambiguity. 

 Weakness against pure rotational and/or fast movements. 

Other camera sensors measure the depth of an image in different ways. For 

example, a ToF (Time of Flight) camera –as the RGB-D model– calculates the distance 

between the camera and the object using the speed of light. A RGB-D camera as the one 

in Fig. 16 implements a RGB colour camera, an IR (infrared) emitter and a receptor. 

While the RGB-D camera captures each frame, the IR emitter sends a pattern of light 

that bounds on the object and is received by the IR receptor. Using the measured passed 

time between the emission and reception of the IR the depth of the image is 

reconstructed. Also the deformation of the received pattern is computed, in order to 

reconstruct the relief of the image. 

 

 

Fig.  16. Kinect camera by Microsoft, a RGB-D camera model 

On the contrary, a monocular camera system needs the camera to move in order 

to perform the SLAM. Monocular systems cannot compare one frame with another 

without moving the camera –while stereo systems can do just because two or more 

cameras form it–. This comparison of frames is mandatory in order to perform the 

SLAM, as the stereo pair is needed to reconstruct the 3D map with 2D images by means 

of a disparity map. 
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Fig.  17. Stereo pair 

 

In Fig. 17 an example of a stereo pair can be observed. In both images the same 

castle is represented, but each of them from a different point of view. The dot pattern at 

the back helps the system to compare the relative position of each building of the castle. 

Matching the relative position the keypoints can be extracted and the position of each of 

them. Furthermore, the depth of the image can be processed, as well as the 3D 

reconstruction can be performed. This is how the disparity map between two frames is 

computed. So, in order to reconstruct the 3D map of the camera’s environment a couple 

of frames are needed at least. In this work, as the hardware architecture has only one 

camera, the MAV should fly around in order to reconstruct its environment. Some 

systems can calculate the disparity map using a pair of cameras, and they are called 

“stereo systems”. On one hand, these stereo systems can calculate the disparity map by 

their own. On the other hand, they have an important disadvantage: their FOV –Field Of 

View– is limited to the field covered by both cameras. It makes stereo systems an 

inadequate chose if the robot has to cover large environments.  

 

5.2. Scale ambiguity of monocular systems 

The main problem that must be faced when working with monocular VSLAM is 

the ambiguity of the scale issue. The monocular configuration cannot identify the length 

of translational movement –also known as scale factor– only from feature 

correspondences. Fig. 18 represents this issue in a graphical way. The camera does not 

know the real depth of the object in the image, so it cannot compute its real scale. As 

seen before, RGB-D cameras calculate the real depth of each frame, so they can 

compute the real scale thanks to it. Other systems, as the ones formed by binocular 

cameras –explained before– are capable of this measurement. 
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Fig.  18. Scale ambiguity problem 

Stereo camera systems can calculate the depth using triangulation of an image. 

Due to it, they can build a disparity map –as seen before– comparing the video feed 

from each of the cameras. Once the disparity map has been built, the scale can be 

directly calculated. As the real distance between both cameras is known, the 

mathematical process can be easily performed. Firstly, the real depth must be obtained. 

As seen in Fig. 19, the variables needed for the calculation are the focal length, the 

distance between both cameras and the disparity –the difference between the points of 

projection in the two cameras–, expressed in pixels. 

 

 

 
 

Fig.  19. Principles of stereo vision 

 

As explained before, monocular camera systems need some kind of movement 

from the camera to obtain a couple of frames and compare the features between them in 

order to extract the keypoints. Since the real distance of this camera’s movement is not 

known, the system is not able to calculate the depth. Thus, it is not able to calculate the 

real scale. 

Some approaches have been developed in order to calculate this unknown factor. 

A few of them measure an object which size is previously known so the 3D scale could 

be estimated (Tournier et al., 2006). Others employ measurements from the IMU –3D 

acceleration from the accelerometers, altitude from altimeter and attitude from 
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gyroscopes– (Engel et al., 2014 b) (Johnson et al., 2008).  For this work the altitude is 

measured with an ultrasonic downward sensor, so the scale can be computed. The idea 

is that if the real height is known (hSONAR) as well as the estimated by the VSLAM, the 

scale could be directly calculated as follows:  

 𝑠𝑐𝑎𝑙𝑒 =
ℎ𝑆𝑂𝑁𝐴𝑅

ℎ𝑉𝑆𝐿𝐴𝑀
            (2) 

 𝑥𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑥𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (3) 

 𝑦𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑦𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (4) 

 𝑧𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑧𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (5) 

 

This idea was firstly developed in (Nützi et al., 2011). Our work employs this 

method to achieve a scale-aware system. The scale is calculated with every iteration of 

the system, which works at 25Hz.  

On the other hand, the problem of VSLAM algorithm’s weakness facing pure 

rotational movements can also be solved by fusing the visual information with the 

measurements from the IMU. The information obtained from the gyroscopes are robust 

readings of the drone’s orientation. It allows the system to compare the information 

between both sources –always considering the measurements from the NAVDATA  

channel more reliable in this matter– and calculate the real orientation. Even if the 

VSLAM algorithm loses the track, the system will keep estimating the drone’s position 

using the models of prediction and NAVDATA correction until the visual algorithm 

reengage that track. 

 

5.3. Monocular VSLAM Methods 

The following lines describe an overview of the monocular VSLAM algorithms 

used in this thesis. As an introduction to visual SLAM techniques, two big groups are 

defined and studied in this work: feature-based methods and direct methods.  

 Feature-Based Methods. The fundamental idea behind feature-based 

approaches –both filtering-based and keyframe-based– is to split the overall 

problem –estimating geometric information from images– into two 

sequential steps: first, a set of feature observations is extracted from the 

image. Second, the camera position and scene geometry are computed as a 

function of these feature observations only.  

While this decoupling simplifies the overall problem, it comes with an 

important limitation: only information that conforms to the feature type can 

be used. In particular, when using keypoints, information contained in 

straight or curved edges –which especially in man-made environments make 

up a large part of the image– is discarded. Several approaches have been 

made in the past to remedy this by including edge-based or even region-

based features. Yet, since the estimation of the high-dimensional feature 

space is tedious, they are rarely used in practice. To obtain dense 

reconstructions, the estimated camera poses can be used to subsequently 
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reconstruct dense maps, using multiview stereo. 

 Direct Methods. Direct visual odometry (VO) methods circumvent this 

limitation by optimizing the geometry directly on the image intensities, 

which enables the use of all information in the image. In addition to higher 

accuracy and robustness –in particular in environments with little 

keypoints– it provides substantially more information about the geometry of 

the environment, which can be very valuable for robotics or augmented 

reality applications.  

Direct methods are able to perform dense or semi dense reconstructions of 

the environment, while the camera is localized so that it directly optimizes 

over image pixel intensities. These direct approaches do not need to extract 

features and can avoid the corresponding artefacts, being clearly more 

robust to blur. In addition their denser reconstructions compared to the 

sparse point map of Feature-Based methods are more useful for other tasks 

than just camera localization.  

However, apart from these benefits, direct methods have their own 

limitations. Firstly, these methods assume a surface reflectance model that 

in real scenes produces its own artefacts. These methods typically match 

pixels from a narrow baseline as the reflectance model is violated from wide 

baseline and many erroneous correspondences would appear. This has a 

great impact in reconstruction accuracy, which requires wide baseline 

observations to reduce depth uncertainty. Finally, because direct methods 

are in general very computationally demanding, the map is just 

incrementally expanded as in DTAM. Otherwise, map optimization is 

reduced to a pose graph optimization, discarding all sensor measurements as 

in LSD-SLAM. In contrast, feature-based methods are able to match 

features from wide baselines –thanks to their viewpoint invariance– and 

perform bundle adjustment that jointly optimizes camera poses and points 

over sensor measurements.  

 

 

Fig.  20. Types of monocular VSLAM 
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There are other types of VSLAM algorithms, but the study of them was declined 

after consideration. Some of them are out-of-date, or simply the performance of 

Feature-Based and Direct SLAM is better. Others, as for example dense visual SLAM 

were declined because of other factors. For this method, the performance of the 

localization and specifically the reconstruction of the environment’s map are better, but 

the computational requirements are too high. High efficiency GPU (Graphics Processor 

Unit) implementation is mandatory in order to implement Dense SLAM (Newcombe et 

al., 2011). 

One of the biggest problems when working with SLAM techniques is a chicken 

or the egg causality dilemma. Both Feature-Based and Direct methods build a map 

using information extracted from the environment, but they also need to estimate the 

position of the camera related to this map. Algorithms usually divide both processes in 

two parallel threads so they are executed concurrently. Other methods first build an 

environment map –as for example, ORB-SLAM and PTAM at the initialization– with 

enough keypoints so the localization can be performed. Others –as LSD-SLAM– 

estimate a random depth value at the beginning and it is not recalculated until some 

keyframes are captured. It leads to initialization errors sometimes. Then, after the 

initialization both localization and mapping are processed at the same time in a parallel 

way. 

In order to develop the system, a study of the state of the art related with 

monocular VSLAM algorithms was performed –see Chapter 2–. After that study, LSD-

SLAM (Large-Scale Direct Monocular SLAM) and ORB-SLAM (Oriented FAST and 

Rotated BRIEF SLAM) –both available as ROS packages– were chosen. Both 

algorithms are up-to-date and are among the highest performance in monocular 

VSLAM techniques. Each algorithm belongs to one of the two big groups defined 

before, so it allows this work to make a comparative between the two methods with up-

to-date algorithms that represent them. 

The study of PTAM technique helped us to understand the basis of VSLAM. 

This algorithm is quite out-of-date, but as said before it is useful in order to comprehend 

feature-based monocular SLAM algorithms. Furthermore, an important reference for 

this work is tum_ardrone (Engel., 2011), a ROS package which uses PTAM as the 

VSLAM technique fused with other measurements from a MAV. 

Due to the age and lack of performance of this technique, LSD-SLAM and 

ORB-SLAM algorithms replace PTAM in this work. This allows the system to be more 

accurate and reliable than tum_ardrone in this respect. 

 

5.3.1. PTAM 

 
PTAM is a reference between Feature-Based methods. The algorithm, developed 

by Klein and Murray (Klein et al., 2007), was the first work to introduce the idea of 

splitting camera tracking and mapping in parallel threads. It also demonstrated to be 

successful for real-time augmented reality applications in small environments. 

As other algorithms, it divides tracking and mapping in two separated tasks: one 

thread deals with the task of robustly tracking erratic hand-held motion, while the other 

produces a 3D map of point features from previously observed video frames. This 

https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Dilemma
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allows the use of computationally expensive batch optimisation techniques as Bundle 

Adjustment. The result is a system that produces detailed maps with thousands of 

landmarks which can be tracked at frame-rate. 

The first thing that must be completed in order to use the algorithm is the 

initialization. In contrast to ORB-SLAM, PTAM needs human intervention. When the 

initialization begins –pushing the spacebar–, the camera should be moved smoothly 

sideways –avoiding rotational movements– so the system can recognize enough feature 

points in order to build a map. Fig. 21 represents a frame captured by the camera while 

it extracts feature points during initialization. Once there are enough captured points –it 

must be decided by the user– the spacebar should be pressed again. Then, PTAM starts 

the simultaneous localization and mapping.  

 

Fig.  21. Initialization of PTAM 

Fig 22. and Fig. 23 display how the PTAM visual interface looks like when it is 

initialized. In Fig. 22 the video streaming mode is selected. Feature points are printed 

on it. The colour of each of this points symbolise the “edge level” of the feature. The 

sharpest of the features are the red ones, while the blue ones have smoother edges. The 

interface displays other information, as the number of keypoints, keyframes, etc. A grid 

is overlaped with the video stream and represents the “initial plane” of the map. It is 

used as a reference between both interfaces of the system. 

 

Fig.  22. PTAM performance 
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Fig 23 displays the map of the environment features. With the plain grid used 

for the world frame as a reference the feature points map is built around it. This 

interface displays the position of the camera based on the environment’s map, 

representing the translation (X, Y, Z) and the rotation (R, P, Y). It displays also this 

pose translation with scale at the bottom.  

 

Fig.  23. Map built by PTAM 

The map created by this algorithm consists in a big number of points –features 

located in a world coordinate frame– where each of them represents a locally planar 

textured patch in the world. 

An overview of the technique is displayed in the next block diagram: 

 

Fig.  24. Overview of the PTAM algorithm 



Monocular Visual SLAM 

31 
 

Some other tips can be obtained from (Klein et al., 2007): 

 Tracking and Mapping are separated, and run in two parallel threads.  

 Mapping is based on keyframes, which are processed using batch 

techniques (Bundle Adjustment).  

 The map is densely intialised from a stereo pair (5-Point Algorithm)  

 New points are initialised with an epipolar search.  

 Large numbers (thousands) of points are mapped.  

In this algorithm the chicken or the egg causality dilemma mentioned before is 

solved creating a map of the environment firstly –as explained in the initialization– and 

then starting to estimate the real-time camera’s pose relative to this map. As seen in Fig. 

24 the tracking stage could be summarized with the following steps: 

 

1. A new frame is acquired from the camera, and a prior pose estimate is 

generated from a motion model.  

2. Map points are projected into the image according to the frame’s prior pose 

estimate.  

3. A small number (50) of the coarsest-scale features are searched for in the 

image.  

4. The camera pose is updated from these coarse matches.  

5. A larger number (1000) of points is re-projected and searched for in the 

image.  

6. A final pose estimate for the frame is computed from all the matches found.  

 

PTAM has some important limitations, as the lack of a loop closing mechanism, 

the low invariance to viewpoint of its relocalization method, the need of human 

intervention for map initialization, and its restriction to small scenes. Because of it the 

Feature-Based method used in this work is ORB-SLAM, a method that avoids all of 

these limitations. 

 

5.3.2. ORB-SLAM 

ORB-SLAM is also a feature-based monocular SLAM method. This technique 

estimates the camera's position in an extremely accurate way. It makes it perfect for be 

implemented over a system based on a MAV due to its fast and unstable dynamics. 

Furthermore, ORB-SLAM does not commit into the failures of PTAM explained in the 

previous section.  On the other hand, due to ORB-SLAM is a Featured-based method 

this algorithm will need a big amount of features in the environment in order to perform 

the SLAM in a proper way –while LSD-SLAM would need less–. As LSD-SLAM, this 

algorithm will need information from the environment what will not be available in dark 

zones. 

The performance of the algorithm is explained in Fig. 25 and Fig. 26. The first 

one represents the map built by the system with a video stream recording the same path 

followed in Fig. 30 (below). Blue “pyramids” that appear on the image represent the 

position of the camera when a keyframe is captured and the red one is the current 

position of the camera in real time. The green line is the path followed by the camera. 

https://en.wikipedia.org/wiki/Causality
https://en.wikipedia.org/wiki/Dilemma
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The coloured dots are the point features extracted by ORB-SLAM. If they are coloured 

in black, it means that they are not currently in use, but they are stored in the system. If 

they are not coloured in black, they have appeared in the latest seconds of the video 

stream. 

 

Fig.  25. ORB-SLAM map built indoors 

ORB-SLAM is a reliable and robust algorithm but looking at Fig. 25 it appears 

to be obvious why the fusion with other sensors is needed. While the tracking goes well 

at the beginning, when the camera turns left at the corner the algorithm fails –the turn 

degree was around 90o–. It also incurs in a mistake measuring the length of the corridor 

after it (it is shortened). 

 

Fig.  26. ORB-SLAM map built outdoors 

On the other hand, Fig. 26 shows the operation of the system outdoors. Although 

the focus of the work is not the tracking and mapping in this situation, it is important to 

see the performance when building a big map with thousands of keypoints and lots of 
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keyframes. The figure represents the track of the camera moving around a square of 

around 35m2 with a loop closing at the end. Thanks to a smart culling of keyframes the 

system can build maps of a big size without consuming many computational resources. 

Another remarkable feature is the loop-closing accuracy of the method. The loop 

closing thread compares on each iteration the last keyframe processed by the local 

mapping with all of the neighbours and tries to detect and close loops. If the algorithm 

detects a loop –the keypoints of the last processed keyframe matches with the keypoints 

of another keyframe stored– it fuses duplicated map points. It also modifies the map and 

the current position making translation and rotation transforms to achieve the actual 

position of the camera. 

 

As seen in Fig. 27, this system incorporates three threads that run in parallel: the 

tracking, the local mapping and the loop closing. The tracking thread is always trying to 

localise the camera in the environment with every frame. ORB-SLAM introduces some 

features that improve the performance of the algorithm: a constant velocity motion 

model that roughly predict the new camera pose and then perform an initial matching 

with the previous frame. If the tracking is lost –e.g. due to occlusions, abrupt 

movement–, the place recognition module is used to perform a global relocalization. 

But what makes fast and robust ORB-SLAM is that this relocalization is fully 

embedded in the tracking procedure, and that the keyframe insertion policy is generous. 

Being embedded in the tracking thread makes the relocalization faster than if it were a 

separated thread. Furthermore, because of the generous policy of keyframes insertion 

the tracking of the camera’s pose is really reliable without being worried about the 

amount of data being stored as the keyframe culling procedure in the local mapping 

thread will later discard redundant keyframes. 

 
 

Fig.  27. Overview of the ORB-SLAM algorithm 
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All data is published and displayed using Rviz. There, the point map can be 

visualized along with the current position of the camera. The parent and child frames 

should be selected in order to achieve a correct visualization. The algorithm itself 

performs translation and rotation transformations between both frames –world and 

camera frames– which correspond with parent and child frames respectively.  

 

 
 

Fig.  28. World-camera frame transformation 

 
5.3.3. LSD-SLAM 

 

LSD-SLAM is a direct (feature-less) monocular SLAM algorithm which, along 

with highly accurate pose estimation based on direct image alignment, reconstructs the 

3D environment in real-time as pose-graph of keyframes with associated semi-dense 

depth maps.  

LSD-SLAM is able to estimate the camera’s position and build large-scale semi-

dense maps of its environment in real time. In contrast with dense visual SLAM –which 

could perform a better performance building the map of the environment, but offline 

due to the computing requirements– this technique allows to observe the environment of 

the MAV during the flight. However, as said before, the final system –which includes 

this project– will include a laser SLAM block. This block will bring the system a 2.5D 

map, so the 3D map built by LSD-SLAM is deprecated. Due to the later implementation 

of the laser SLAM node and its 2,5D map, only the 6DOF pose estimation of this 

algorithm is taken as an input to the data fusion filter. Laser’s map was chosen instead 

the one created by LSD-SLAM because of the better accuracy of the first one and due to 

the computational requirements needed by the last one.  

 

Fig.  29. Video stream and inverse depth map of LSD-SLAM. 
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Fig. 29 represents the video streaming from the camera and the inverse depth 

map that LSD-SLAM uses to create the map of the environment. The closest points of 

the image are represented with green and the farthest in red and black. 

 
 

Fig.  30. Results of LSD-SLAM. The first picture represents the translation of MAV's camera around a room. 

The second one represents the results of the translation around the same room and along two corridors. 

 

In Fig. 30 the 3D semi-dense map built by the algorithm is shown. The first map 

represents a desk –a small part of the environment–. The second one displays the path 

followed by the camera when it was moving around a room and going across a couple 

of corridors. It proves the capability of the system of mapping big-scaled environments. 

The size of the environment to be mapped could be even bigger. While results are good 

in this case, the system needs a high amount of visual characteristics that are not 

available in dark zones, where it needs to be fused with other sensors. Furthermore, it is 

very sensitive to pure rotational movement.  

In both pictures the green line indicates the track where the camera went over. 

This track is defined by the 6DOF pose estimated by the algorithm. The blue marks are 

the camera’s poses where the VSLAM algorithm captured a keyframe. As more 



Visual SLAM Algorithms for Aerial Robots 

36 
 

keyframes obtaining ratio is defined, more accurate will be the map and the estimate 

pose, but more computational requirements will be needed. The red marks correspond 

with the actual pose of the camera. This position is given in real-time. The grey-scale 

shapes are the 3D objects of the environment mapped by LSD-SLAM. As more 

keyframes are correctly captured (without drift or depth mistakes), the map of the 

environment will be better defined. Due to it, the pose estimation will be more robust 

and reliable. 

 

Fig.  31. Overview of the LSD-SLAM algorithm. 

An overview of the complete LSD-SLAM algorithm is displayed in Fig. 31. The 

first stage, Tracking, involves two steps: capture a new image and track on the current 

keyframe (KF). When the camera captures a new image the system estimates its current 

position with respect to the current keyframe –using the pose of the previous frame as 

initialization–.    

In the second stage, Depth Map Estimation, the system decides if the new image 

captured by the camera should become a new KF. Tracked frames that do not become a 

keyframe are used to refine the current keyframe. The result is incorporated into the 

existing depth map, thereby refining it and potentially adding new pixels. Once a new 

frame is chosen to become a keyframe, its depth map is initialized by projecting points 

from the previous keyframe into it. Finally, it replaces the previous keyframe and is 

used for tracking subsequent new frames.  

During the last stage, Map Optimization, the algorithm adds the new KF –the 

current keyframe that could have been replaced or refined– to the map and tries to 

optimize it. This stage is responsible of the map’s building and adding new details to it.  

Even when LSD-SLAM is a Direct method of VSLAM, it does extract and use a 

small number of keypoints of each keyframe in order to optimize the loop-closuring. 

This method allows LSD-SLAM not only to use keyframes but also keypoints when 

trying to look for loop-closures, what makes this algorithm more robust.  
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5.3.4. Comparison 

 
In order to compare the two VSLAM algorithms put to use for this thesis a 

benchmark was applied. The chosen benchmark was RGB-D SLAM Dataset and 

Benchmark 4  of the Computer Vision Group from TUM (Technische Universität 

München). The authors of this benchmark provide some datasets with measurements 

from sensors –they use a RGB-D camera for the SLAM, but it can be used in the same 

way for monocular VSLAM methods–. They also give the ground-truth pose of the 

camera along with the video feed from it. For this experiment, the dataset 

rgbd_dataset_freiburg1_xyz was put to use. This dataset contains a video recorded from 

a camera that describes smooth and rotation free movements that are perfect for the 

comparison.  

We made the two VSLAM algorithms –LSD-SLAM and ORB-SLAM– to 

process the recorded video before mentioned five times each. The estimated pose of 

each of these processes is compared with the ground-truth by means of the online tool 

provided by the authors of the benchmark5 and its results recorded. Then, a median of 

the five recorded values of each field given back by the online tool is performed. The 

results are presented in Table 1. As said before, the monocular VSLAM algorithms 

cannot calculate the real scale of its estimations. Due to it, the estimations extracted 

from the dataset of each algorithm were pre-processed. Thanks to it the real-scale was 

calculated with a Matlab script and added as an argument in the online tool. 

 LSD-SLAM ORB-SLAM 

Compared pose pairs 782 283 

Absolute translational error 

(RMSE)  

0.0609 0.049 

Absolute translational error 

(mean)   

0.0474 0.0310 

Absolute translational error 

(median) 

0.0357 0.0185 

Absolute translational error 

(std)  

0.0382 0.0361 

Absolute translational error 

(min) 

0.033 0.0023 

Absolute translational error 

(max) 

0.2792 0.2608 

Table 1. Comparison between both monocular VSLAM algorithms. The results are given in meters.  

The calculations given back by the online tool are: 

 The compared pose pairs. Each of the methods has a different number of 

compared pairs due to not all of the estimated poses are compared. It happened 

because of the assigned timestamp to each of the measurements. The time of 

each estimation must match with the timestamp of the given by the ground-truth. 

Otherwise, the comparison and therefore the error calculation cannot be 

performed. Furthermore, each of the methods has its own period time. For 

instance, the results from LSD-SLAM were just recorded from the topic 

                                                        
4 http://vision.in.tum.de/data/datasets/rgbd-dataset 
5 http://vision.in.tum.de/data/datasets/rgbd-dataset/online_evaluation 

http://vision.in.tum.de/data/datasets/rgbd-dataset
http://vision.in.tum.de/data/datasets/rgbd-dataset/online_evaluation
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/lsd_slam/pose –the topic provided by the method–. Due to it, new poses are 

recorded each time the algorithm detects a new frame –even if it is not a 

keyframe–. On the other hand, as the pose estimation by ORB-SLAM is 

published in the topic /tf as an array a reader and publisher node had to be 

developed.  

 The following fields correspond with different ways of expressing the absolute 

translational error between pose pairs. The first one is the Root-mean-square 

deviation (RMSE). This method is the most used when trying to express the 

error between an estimator and real values. 

 The third field corresponds with the mean of the vector of errors between pairs 

computed by the benchmark. 

 The next field is the same as the previous but using a median instead of the 

mean. 

 This field displays the standard error or deviation (std) of the recorded value of 

errors. 

 The two last fields express the minimum and maximum error calculated by the 

benchmark respectively. 

According to these results, the performance of ORB-SLAM is slightly better 

than the one of LSD-SLAM. However, the video from the used dataset has many 

features to extract, which benefits a Featured-Based method as ORB-SLAM. On the 

other hand, the initialization from LSD-SLAM could be better –if it does not initialize 

in a bad way due to its random values given to the estimated depth at the beginning– 

because ORB-SLAM needs to build a point’s map of the environment before starting 

the tracking. It leads to the loss of tracking of the first camera’s movements. 

Furthermore, ORB-SLAM needs an amount of features in the environment in order to 

build a map and performance the SLAM. If the environment does not offer 

characteristics as corners or sharp edges and consist of soft edges or round-shapes ORB-

SLAM will not achieve good results or even could not initialize. On the contrary, LSD-

SLAM could face these kinds of environments and perform the SLAM –as explained at 

the beginning of the Section 5.3–. However, ORB-SLAM is more robust facing pure 

rotational movements. This conclusion was reached by means of the trial-and-error 

approach –LSD-SLAM loss the track way more times than ORB-SLAM if the camera 

suffered pure rotational movement–. 

Another parameter to be discussed is the execution time. It is similar for both 

methods –the median in a certain number of flights is 38.2ms for LSD-SLAM and 

35.2ms for ORB-SLAM–. Nevertheless, ORB-SLAM needs a script that could 

distinguish between the whole array of values that is /tf which are the data 

corresponding with ORB-SLAM. It means that the sampling period of the ORB-SLAM 

estimation could be chosen, but not the inner execution time of the algorithm.  

Finally, the computer requirements for both algorithms should be compared. 

Given that both of them could be run without its visualization tool –lsd_slam_viewer for 

LSD-SLAM and rviz for ORB-SLAM–, which is the most computational consuming 

part of the algorithm, the requirements are not perceptible for a CPU. This work was 

developed to be operated from a ground station, so the computational requirements are 

not highly important.  
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CHAPTER 6: DATA FUSION WITH EKF   

 
The developed system of this thesis consists in a quadrocopter, which will send 

measurements from some sensors to a ground control unit in charge of computing an 
estimation of the drone position. This estimation of its position, orientation and velocity 
is called its state. The state of a MAV is dynamic, so it changes with time. Thus, the 
changing state of our robot must be estimated periodically and this is why the sensors 
are put to use. The problem of real-world sensors is that they are subject to 
measurement errors –called noise–. Due to it, state’s estimation from a unique sensor 
will lead to unstable and poor results. However, if these sensors acquire information 
about the same state they could be fused. Fusing data allows the system to improve its 
accuracy reducing the effects of noise. Furthermore, it improves the system 
performance by adding redundancy to it, what leads to a better estimation of the state 
and more robustness facing challenging situations –that could deny the measurements 
from one or more sensors, for example–. For this fusion the Kalman Filters (KF) are 
used.  

The Kalman filter is a well-known method to filter and fuse noisy measurements 
of a dynamic system to get a good estimate of the current state. It assumes that all 
observed and latent variables have a (multivariate) Gaussian distribution, the 
measurements are subject to independent, Gaussian noise and the system is linear. Due 
to the system developed for this thesis is not linear, this kind of filter could not be 
implemented. On the other hand, the Extended Kalman Filter (EKF) drops the 
assumption of a non-linear system, making it applicable to a much wider range of real-
world problems.  

In this thesis, we use an EKF to estimate the state of the drone, fusing visual 
pose estimates provided by VSLAM algorithms (and corrected with real-scale) with 
sensor measurements provided by the other onboard sensors. In the following sections, 
we describe the Kalman filter used. In particular we define the state space as well as the 
state transition model and the observation models. We also describe how the model 
parameters are determined. 

 

6.1. The State Space 

The state vector of the EKF is defined to be: 

 𝝌𝑡 ≔ (𝑥𝑡 , 𝑦𝑡, 𝑧𝑡, 𝑣𝑥𝑡, 𝑣𝑦𝑡, 𝑣𝑧𝑡, Φ𝑡, Θ𝑡 , Ψ𝑡, Ψ̇𝑡)
𝑇
∈  ℜ10   (6) 

 

where (𝑥𝑡, 𝑦𝑡 , 𝑧𝑡) is the position of the MAV in meters (m); (𝑣𝑥𝑡, 𝑣𝑦𝑡, 𝑣𝑧𝑡) the velocity 
in meters/second (m/s); (Φ𝑡, Θ𝑡, Ψ𝑡) the roll, pitch and yaw angles in radians (rad); and 

(Ψ̇𝑡) the yaw-rotational speed in radians/second (rad/s). All of them are evaluated in 

world coordinates.  

In the following, any variable with a line over it means that this is a measured 
variable. That is, Ψ̅ is the measured yaw angle. Moreover, if a variable has an angle 

over it will be a variable that belongs to the command vector. So, Ψ̂̇  is the yaw 
rotational speed that is sent to the drone. If the variable appears without any of the 
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previous symbols, it represents the estimated value of that variable. On the other hand, 
for better readability, the time argument is omitted when clear from context. 

 

6.2. The Prediction Model 

The prediction model is based on the full motion model of the quadcopter’s 
flight dynamics and reaction to control commands derived in (Engel et al., 2014). A 
new calibration of the model parameters has been done for the Bebop Drone and for the 
AR.drone 2.0. 

The model establishes that the horizontal acceleration of the MAV is 
proportional to the horizontal force acting upon the quadcopter, that is, the accelerating 
force minus the drag force. The drag is proportional to the horizontal velocity of the 
quadcopter, while the accelerating force is proportional to a projection of the z-axis of 
the drone onto the horizontal plane, which leads to: 

  𝑣𝑥̇ = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ cosΨ + sinΦ sinΨ) − 𝑣𝑥)   (7) 

 𝑣𝑦̇ = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ sinΨ − sinΦ cosΨ) − 𝑣𝑦)  (8) 

 

where K1 and K2 are model constants: K2 defines the maximal speed attained with 
respect to a given attitude, while K1 defines how fast the speed adjusts to a changed 
attitude. The drone is assumed to behave the same in x and y direction. 

Besides, the influence of the sent control command 𝐮 = (𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇)  is 

described by the following linear model: 

     Φ̇ = −𝐾3(𝐾4𝑣𝑦̂ + Φ) (9) 

  Θ̇ = 𝐾3(𝐾4𝑣𝑥̂ − Θ) (10) 

  𝑣𝑧̇ = 𝐾7(𝐾8𝑣𝑧̂ − 𝑣𝑧) (11) 

  Ψ̈ = 𝐾5 (𝐾6Ψ̂̇ − Ψ̇) (12) 

 

where K3 to K8 are model constants which are determined experimentally in next 
subsection. Again, the behaviour of the drone is assumed to be the same with respect to 
roll and pitch angles. 

From equations (7) to (12) the overall state transition function is obtained:  

 

(
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𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ cosΨ + sinΦ sinΨ) − 𝑣𝑥)

𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ sinΨ − sinΦ cosΨ) − 𝑣𝑦)

𝐾7(𝐾8𝑣𝑧̂ − 𝑣𝑧)

−𝐾3(𝐾4𝑣𝑦̂ + Φ)

𝐾3(𝐾4𝑣𝑥̂ − Θ)

Ψ̇

𝐾5 (𝐾6Ψ̂̇ − Ψ̇) )

 
 
 
 
 
 
 
 

 (13) 
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6.2.1. Calibration of model parameters    
 

The proportional coefficients K1 to K8 were estimated from data collected in a 
series of test flights. The coefficients are calculated by pairs, which are related in the 
state equations –as seen in (13)–. For instance, K7 and K8 appear in the state equation 
(11): 

 𝑣𝑧̇ = 𝐾7(𝐾8𝑣𝑧̂ − 𝑣𝑧)  
    

This equation characterizes the evolution of the drone’s vertical velocity when a 
command of speed in the z-axis is applied to it. If the previous equation is transformed 
to the Laplace domain we get the following: 

 

 𝑣𝑧̇ = 𝐾7(𝐾8𝑣𝑧̂ − 𝑣𝑧) →  s · Vz(s) = 𝐾7(𝐾8𝑉𝑧(𝑠) − 𝑉𝑧(𝑠))  (14) 

 
𝑉𝑧(𝑠)

𝑉̂𝑧(𝑠)
=

𝐾8

(
1

𝐾7
)𝑠+1

     (15) 

If the transfer function of a first order system is known: 

 

 𝐹(𝑠) =  𝑘
𝜏𝑠+1

   (16) 

 

The parameters are obtained just by matching: 

 𝜏 =
1
𝐾7

   (17) 

 𝑘 = 𝐾8  (18) 

 

Thus, K8 represents the static gain between the vertical velocity sent to the drone 
–which was normalised between ±1– and the actual reached vertical velocity. K7 is the 
inverse of the time constant of this evolution.  

 

Following the previous example, how was the data collected in order to obtain 
the coefficients K7 and K8 is now explained. We sent a unit step as a command in vz to 
the drone, which correspond to the maximum vertical speed between the normalized 
values. While the drone was flying up –the vertical speed was increased–, reached a 
goal height and landed –the vertical speed was decreased–, the z-axis speed was 
recorded. The collected data is displayed in Fig. 32.  
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Fig.  32. Displayed results of a test flight. 

 

A closer look is displayed in the next figure in order to make easier the analysis, 
where the important numerical values are marked: 

 

 

Fig.  33. Closer view of the previous figure. Some lines were added to the picture to mark the values of 
the speed and time. 

A roughly constant value is reached at 0.425 m/s. As seen in the transfer 
function of (16), this value corresponds to the constant k. And, according to (18), it 
matches with the value of the parameter K8. Now, the time constant 𝜏 must be obtained. 
The time passed between the beginning of the speed’s increment in the z-axis and the 
moment the constant value is reached is measured. This time t is 2.349s. An 
approximation of this passed time says that it corresponds with five times the value of 
the time constant. It leads to a value of 𝜏 = 0.4698. According to (17), the value of K7 

is the inverse of 𝜏, so: 

 

𝐾7 = 2.1286 

𝐾8 = 0.425 
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And the identification of the rest of Ki parameters could be performed in the 
same way. Each of the variable’s pairs corresponds to different velocity functions. For 

example, K5 and K6 are related with Ψ̇ –these relationships can be seen in (13) –. So, 
the way to calculate the values of the rest of the constant pairs is repeating the same 

experiment previously explained using the corresponding velocity –vx, vy or Ψ̇–. 

 

6.3. The Observation Model 

 
The observation model calculates the expected measurements based on the 

current state of the drone. As two distinct observation sources are used, two separate 

observations models are required. 

 

6.3.1. NAVDATA Observation Model 

 

This model relates the onboard measurements obtained through the navigation 

channel of the quadcopter –that we called “NAVDATA” in Fig.3, 12 and 13– described 

in section 4.1 and the state vector. The quadcopter measures its horizontal speed 

(𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅) in its local coordinate system, which is transformed into the world frame 

(𝑣𝑥, 𝑣𝑦). The roll and pitch angles measured by the gyroscope are direct observations 

of the corresponding state variables. On the other hand, the height and yaw 

measurements are differentiated as observations of the respective velocities. The 

resulting measurement vector zNAVDATA and observation function ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌𝑡) are: 

 

 𝑧𝑁𝐴𝑉𝐷𝐴𝑇𝐴: = (𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅, 𝑧𝑡−1 + ℎ̅𝑡 − ℎ̅𝑡−1, Φ̅, Θ̅, Ψt−1 + Ψ̅t − Ψ̅t−1  )               (19) 

  ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌) ∶=

(

  
 

𝑣𝑥𝑡𝑐𝑜𝑠Ψ + 𝑣𝑦 · 𝑠𝑖𝑛Ψ
−𝑣𝑥 · 𝑠𝑖𝑛Ψ + 𝑣𝑦 · 𝑐𝑜𝑠Ψ

𝑧
Φ
Θ
Ψ )

  
 

     (20) 

 

The height and yaw angle variables are not direct measurements in order to 
avoid mistakes. Firstly, the height is calculated as an increment between the current 
measurement and the previous one. This increment is added to the preceding altitude 
estimation. Thanks to it, the system will not fall in measurement errors if the drone flies 
over an object. If this step would not be taken, the system will consider the next height 
measure the difference between the ultrasound altimeter and the top of the object 
instead of the difference with the floor. In the same way, this improvement avoids 
measurement mistakes if the MAV flies over a pit. 

The yaw angle relative estimation is made in order to avoid measurement 
mistakes during the initialization. Due to the fact that the driver of the used drone does 
not incorporate a working flat trim option –at least for ROS, it does exist in the 
application for Android– the system is not able to set the measurements from the IMU 
to zero at desire. So, it was programmed that the first estimation of RPY was zero in the 
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initialization of the EKF node and the following estimations would be the increment of 
those measurements. 

 

6.3.2. VSLAM Observation Model 

 
When the VSLAM algorithm successfully tracks a video frame, its 6DOF pose 

estimation is transformed from the coordinate system of the front camera to the 
coordinate system of the quadcopter, leading to a direct observation of the quadcopter’s 
pose given by: 

  𝑧𝑉𝑆𝐿𝐴𝑀,𝑡: = 𝑓(𝐸𝐷𝐶𝐸𝐶,𝑡)    ∈  ℜ
6    (21) 

  ℎ𝑉𝑆𝐿𝐴𝑀(𝝌) ∶= (𝑥, 𝑦, 𝑧, Φ, Θ,Ψ)
𝑇   ∈  ℜ6   (22) 

 

where 𝐸𝐶,𝑡  ∈  𝑆𝐸(3)  is the estimated scale-aware camera pose, 𝐸𝐷𝐶 ∈  𝑆𝐸(3)  the 

constant transformation from the camera to the quadcopter coordinate system. 𝑓 ∶
 𝑆𝐸(3)  → ℜ6  is the transformation from an element of SE(3) to the roll-pitch-yaw 
representation (𝑥, 𝑦, 𝑧, Φ, Θ, Ψ). 

 

6.4. Delay compensation 

One of the main problems of using a low-cost drone is the delay caused by the 
Wi-Fi communication and the computational times. Other MAVs which implement 
onboard processing avoids this issue, but ours cannot carry an external processor neither 
processes it by itself. The delays in the estimation lead to a poor control even if the 
estimation is correct. Some tests were made before implementing the delay correction to 
the EKF and the problematic was evident. The estimation of the MAV’s position was 
behind the current position of the drone in the terms of time, which sometimes leaded to 
a wrong command calculation. Furthermore, due to the time that takes to the command 
to reach the drone and take effect, it was almost always too late for the drone to react –
the command was calculated for a drone’s position that is not the current one–. Thus, 
and thanks to one of the main profits of using EKF is that the delay can be corrected 
with its usage an algorithm was developed.  

The time needed on each iteration for the whole system is explained below. In 
first place, a frame is captured by the drone’s front camera. This frame is sent via Wi-Fi 
to the ground station. The time it takes varies depending on the Wi-Fi nets in the 
surroundings. We have assumed a delay of approximately 120ms for it. Then, the 
VSLAM algorithm processes the frame and performs an estimation of the position. This 
step takes a median of around 30ms –depending on the VSLAM algorithm, as seen in 
5.3.4–. With this estimation and the measurements of the NAVDATA channel –which 
are considered to be almost immediate due to they are received each 5ms, a much 
smaller time than the period– the data fusion is performed by means of the EKF. It is 
performed each 40ms. This period was chosen in order to assure that one new frame 
would be processed on each iteration of the system. With the estimation from the EKF, 
the immediately PID controller calculates and sends the new command u. As it has to be 
sent via Wi-Fi, it takes around 80ms to reach the MAV and take effect.  

The frame that is processed by the ground station on every iteration corresponds 
to a previous instant and the command that controls the drone’s motion is calculated in 
an instant previous to the moment it takes effect. We have estimated these delays as 
multiples of T –the system period, 40ms–. N constant correspond with the delay of the 
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frame transmission and M with the one of the command. For the next example, N will 
be 3 and M 2. If we consider that the current iteration is the third (3T), the frame that is 
currently being processed by the system –as said before, we are not considering the 
delay from the NAVDATA channel– was captured 3 system iterations before. 
Furthermore, the u command calculated in this iteration will not take effect until the 
fifth iteration. For this reason, a system that put to use the predictor to avoid these 
delays was developed. Fig. 34 is presented for a better comprehension of the algorithm: 

 

Fig.  34. Delay correction 

On each iteration –let’s keep on assuming we are on the third one– the pose’s 
estimation made by the EKF is corrected with the IMU and VSLAM correction models. 
The frame processed by the VSLAM algorithm in order to correct the estimation was 
taken in the first iteration –x(0)–. With the new corrected estimation the system predicts 
the next N+M drone’s positions based on this corrected estimation and the recorded 
previously sent control commands. With this prediction the system is able to calculate 
the control command which will correspond with the future position of the drone –
assuming the delays caused by the Wi-Fi communications in both directions–.The 
algorithm performs the following calculations: 

First, the correction is performed: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 𝑉𝑆𝐿𝐴𝑀 𝑚𝑜𝑑𝑒𝑙 → 𝑥(0) = 𝑓(𝑉𝑆𝐿𝐴𝑀) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑦 𝑁𝑎𝑣𝑑𝑎𝑡𝑎  𝑚𝑜𝑑𝑒𝑙 → 𝑥(0) = 𝑓(𝑁𝐴𝑉𝐷𝐴𝑇𝐴) 

Then, the next N+M drone’s position is predicted: 

𝑥(1) = 𝑓(𝑥(0), 𝑢(0)) 

𝑥(2) = 𝑓(𝑥(1), 𝑢(1)) 

… 

𝑥(1 + 𝑁 +𝑀) = 𝑓(𝑥(1 + 𝑁 +𝑀), 𝑢(1 + 𝑁 +𝑀)) 

And finally, the PID controller calculates the control command based on the last 
predicted estimation: 

𝑢(1 + 𝑁 +𝑀) = 𝑓(𝑥(1 + 𝑁 +𝑀)) 

This control command is then recorded in a buffer in order to predict the next 
N+M drone’s positions in the following system iterations. 
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6.5. Implementation 

The EKF has been implemented as a ROS package. This package has a node 

with four include files that depend on it. Each of these includes contains a C++ object 

with a working function on it. One of those files is the scale calculator. It uses 

measurements from the onboard sensors and data received from the VSLAM package –

LSD or ORB, depending on which one is being used at the moment– to perform the 

calculation of the absolute scale of the readings from the VSLAM system. The other 

three files correspond to the three models implemented in the EKF –prediction, 

VSLAM correction and NAVDATA correction–. They fuse measurements from the 

NAVDATA with the information from the visual method to achieve a robust, scale-

aware estimation of the MAV’s location. All of these include files contain a function 

utilized for perform its task. The EKF node is also adaptive. For instance, if the video 

stream from the MAV is “frozen” –something that happens in most of the flights due to 

the inner software of the drone and that depends on the number and strength of the 

surrounding Wi-Fi networks– the node can detect it. Then, if this “freezing” is 

successfully detected the filter starts to estimate the MAV’s position using only the 

prediction and IMU correction models. Due to it, the estimation keeps on even in 

situations where the vision is disabled or the visual tracking is lost –which could lead to 

wrong estimations–. The implementation of the EKF along with the adaptive ability are 

represented in Fig. 35. 

 

 

Fig.  35. Implementation of the EKF.  The a) diagram represents the system when the video stream is 
being received, so all models are being used along with the scale calculator. If the system detects that 
the video stream is frozen, the EKF will only implement the prediction and NAVDATA correction mod-

el, as in b).  
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CHAPTER 7: PID CONTROLLER  

 

Control theory deals with the problem of controlling the behaviour of a dynamic 
system, i.e. a (physical) system that changes its state over time and which can be 
controlled by one or more system input values. The general goal is to calculate system 
input values u(t), such that the system reaches and holds a desired state. In other words, 
the measured error e(t) between a given setpoint r(t) and the measured output of the 
system y(t) is to be minimized over time. In particular, the goal is to quickly reach the 
desired setpoint and hold it without oscillating around it, counteracting any random 
disturbances introduced into the system by the environment. This process is 
schematically represented in Fig. 36. 

 

Fig.  36. Schematics of a PID control. 

In this chapter, a proportional-integral-derivative controller (PID controller) –a 
generic control loop feedback mechanism widely used in industrial control systems– is 
presented. This mechanism is used in our approach to directly control the quadrocopter, 
in order to reach a desired setpoint. It is based on three separate control threads, the 
control signal being a weighted sum of all three terms. 

 

7.1. Proportional term 

The proportional term produces an output value that is proportional to the current 
error value. The proportional response can be adjusted by multiplying the error by a 
constant Kp, called the proportional gain constant. 

The proportional term is given by: 

𝑃𝑂𝑈𝑇 = 𝐾𝑝 · 𝑒(𝑡) 

A high proportional gain results in a large change in the output for a given change in 
the error. If the proportional gain is too high, the system can become unstable. In 
contrast, a small gain results in a small output response to a large input error, and a less 
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responsive or less sensitive controller. If the proportional gain is too low, the control 
action may be too small when responding to system disturbances.  

 

7.2. Integral term 

 

The contribution from the integral term is proportional to both the magnitude of the 
error and the duration of the error. The integral term in a PID controller is the sum of 
the instantaneous error over time and gives the accumulated offset that should have 
been corrected previously. The accumulated error is then multiplied by the integral gain 
(Ki) and added to the controller output. 

The integral term is given by: 

𝐼𝑂𝑈𝑇 = 𝐾𝑖∫ 𝑒(𝜏)𝑑𝜏
𝑡

𝑜

 

The integral term accelerates the movement of the process towards the setpoint and 
eliminates the residual steady-state error that occurs with a pure proportional controller. 
However, since the integral term responds to accumulated errors from the past, it can 
cause the present value to overshoot the setpoint value. 

 

7.3. Derivative term 

 

The derivative of the process error is calculated by determining the slope of the error 
over time and multiplying this rate of change by the derivative gain Kd. The magnitude 
of the contribution of the derivative term to the overall control action is termed the 
derivative gain, Kd. 

The derivative term is given by: 

𝐷𝑂𝑈𝑇 = 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 

Derivative action predicts system behaviour and thus improves settling time and 
stability of the system. An ideal derivative is not causal, so that implementations of PID 
controllers include an additional low pass filtering for the derivative term to limit the 
high frequency gain and noise.  

In Fig. 37 the response of the system when using just the proportional term of the 
controller is displayed at the left. The output reaches its goal –the reference–, but after a 
while and with a lot of oscillation. In real-life systems purely proportional controllers 
cause severe overshoot, leading to strong oscillations. In the same figure, at its right, the 
same system with its reference is represented, this time using a PD controller. In this 
case, the derivative term dampen occurring oscillations: the higher the rate of change of 
the error, the more this term contributes towards slowing down this rate of change, 
reducing overshoot and oscillations. This is an ideal system, as there is no bias in it that 
could cause a steady state error. 
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Fig.  37. At the left, a P control performance. At the right, the same but adding a derivative term. 

In Fig. 38, another system is reviewed. While the reference is the same, this 

system has some bias. Due to it, a PD controller reaches a steady state, but it has an 

offset. In order to compensate this offset the integral term is included. However, this 

term needs to be treated with caution as it may increase convergence time and cause 

strong oscillations –as seen in the figure, an overshooting appears when the integral 

term is added to the control–. 

 

Fig.  38. At the left, a PD controller performance. At the right, the same but adding an integral term. 

7.4. Implemented Controller 

 

 

Fig.  39. PID controller blocks diagram.  

A PID controller was included in this work in order to control the motion of the 
MAV based on its estimated position. The controller requires a reference 𝒓 =
(x̂, ŷ, ẑ, Ψ̂) as the desired position of the drone in relation with the surroundings. The 

EKF will bring the estimation of the pose, as shown in Fig. 39. The difference between 
the reference and the estimated pose is the error that will be minimized by the PID 

controller by sending to the MAV an appropriate control command u=(𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇). 

Then, the MAV receives this command and with the reaction of its thrusters changes its 
position. Then, the sensors measure the new readings from the MAV –data from the 
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onboard sensors and new keyframes from the vision algorithm–. The block PID is 
where the error signal is computed in order to calculate the command signal by means 
of the following equations: 

 

 𝑣𝑥̂ = 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑠𝑖𝑛Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇]  (23) 

 

 𝑣𝑦̂ = −𝑠𝑖𝑛Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇] (24) 

 

 𝑣𝑧̂ = 𝐾𝑝 ∙ (𝑧̂ − 𝑧) + 𝐾𝑑 ∙ 𝑧̇ + 𝐾𝑖 ∙ ∫(𝑧̂ − 𝑧)   (25) 

 

 Ψ̂̇ = 𝐾𝑝(Ψ̂ − Ψ)  (26) 

 
The only velocity command that must be controlled by an integral term is the 

altitude, as seen after several experiments. Also, the yaw position is well adjusted using 
just the proportional part of the controller. On the other hand, the velocities of X and Y 
axis need the derivative term in order to dampen oscillations in the estimation of the 
pose –otherwise, it could not reach a stable estimation–. Due to the steady state error 
obtained because of the PD controller is almost negligible and the integral term caused 
dangerous overshooting this last term was declined for keeping the MAV safe. 

The PID controller allows the algorithm to drive the MAV along a series of 
points in the map so it can follow a specific track, as will be shown in the experimental 
results of Chapter 8. The controller has been implemented as a package in ROS. This 
package contains a node with an include file related to it. The include file was written 
with a function in it in charge of perform a simple PID control. It receives a goal 
position, the current estimated position and calculates the errors in x, y, z and Ψ 
between them. These errors allow obtaining the control signals that will be sent to the 
drone in order to reach the desired position. It is executed on each iteration –each 
40ms–. 

 

Fig.  40. Information given by the PID controller main script. 

The main script node is in charge of coordinating the signals received and sent 

from the package and to guide the PID controller along all of the stages of the 

previously configured path. This script returns by the prompt information about the 

current estimation and the commands sent to the MAV. Firstly, the node calculates the 

errors –the distances between the estimated position in this iteration and the goal–. 

Then, the commands that will be sent are computed and the Euclidean distance is 

estimated. The Euclidean distance is used as a reference that allows the system to know 

when the MAV has reached the goal position. Furthermore, the PID coefficients –Kp, 

Ki, Kd– were configured as variables so they change depending on this distance (if the 

drone is so far from the next goal position, the coefficients are increased in order to 

make it move faster and if it is close are decreased in order to make the movements 

softer). 
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CHAPTER 8: RESULTS 

 
In this chapter, we design and perform several experiments to test and validate the 

proposed SLAM system. All these experiments have been done using the Bebop of 

Parrot as flying unit, and a laptop as ground station with the SLAM system running on 

it. In order to validate the estimated pose and characterize the different errors, it has 

been necessary to design a ground truth system based on an external sensor. The first 

section of this chapter describes the ground truth system, and later we show the different 

experiments and analyse the obtained results. 

 

 

8.1. Ground Truth System 

Since a motion capture system to obtain a reliable measure of the actual pose of the 

MAV was not available, we have designed a simplified system that allows us to 

approximately estimate some coordinates of the MAV’s pose under certain 

assumptions. The value of this ground system is that, although some approximations 

will be done, it is an external system that has not cumulative error. 

The ground truth system is based on a monocular camera that was positioned on the 

ceiling of the laboratory, as it is shown in Fig. 41. Adding a pair of distinguishable 

artificial markers to the MAV (two coloured circles) –as it is shown in Fig. 42– it is 

possible to estimate the x, y, z and Ψ coordinates of the MAV under some assumptions. 

 

Fig.  41. Ground truth system 
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Fig.  42. Bebop drone with both coloured circles incorporated as markers for the ground truth system. 

 
8.1.1. Tracking Algorithm 

 

In order to track the real position of the drone, we have coded a script in Matlab 

that processes the recorded video stream of the camera. This algorithm calculates 

MAV’s real position thanks to the coloured circles incorporated at both sides, knowing 

that the centre of the drone is in the middle of both circles and the orientation can be 

obtained if it is known that the green circle is at the right. This script looks for two 

circles –the colour of both is known– and extrapolates the 6DOF pose of the drone 

thanks to it, using some geometry and approximations. The main assumption is that the 

drone is always in a horizontal plane, which is quite realistic because horizontal 

velocities of the MAV are very small. Under this assumption, the distance between 

markers inform us about the height of the MAV, and the x, y and Ψ coordinates can be 

extracted.   

 

Fig.  43. Measurements from the ceilling camera 
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Firstly, a calibration is made in order to calculate a constant (related with the 

instrinsics of the camera) that will help the system to calculate the position of the MAV 

in real scale. This constant is called k and needs an initial measure where the drone is 

placed on the floor. 

 𝑘 =
𝑙·𝐷
𝐿

 (27) 

 

where l is the euclidean distance between the centroids of both circles in pixels; L is the 

euclidean distance between the centroids of both circles in cm and D is the distance 

between the camera and the floor. Once the constant is obtained the same equation 

allows the system to recalculate the distance D (distance from the camera to the MAV) 

on each photogram of the video depending on the value of the variable l. This is the way 

the algorithm calculates the height of the MAV with just one camera: using the distance 

between both circles in pixels as it will be bigger when the drone is closer to the camera 

and smaller when it is further. So, each value of D is calculated as follows: 

 

 𝐷 =
𝐿·𝑘
𝑙

 (28) 

 

Knowing the changing value of the variables on each iteration, the position in 

real scale of the drone can now be obtained: 

 

 𝑋 =
𝑥1+𝑥2
2
· 𝐷
𝑘

 (29) 

 𝑌 =
𝑦1+𝑦2
2
· 𝐷
𝑘

 (30) 

 

 

The ground-truth position of the drone P(X,Y) is calculated knowing the 

position of each circle p1(x1,y1), p2(x2,y2). Furthermore, due to the total height from the 

camera to the floor is known –hT=4.35 meters–, the altitude of the drone can be 

calculated with the following equation: 

 

 𝑍 = ℎ𝑇 − 𝐷    (31) 

 

And with trigonometric, the orientation can be obtained too: 

 

 Ψ = 𝑎𝑡𝑎𝑛 (
𝑥2−𝑥1
𝑦2−𝑦1

)  (32) 

 

The representation of the tracking of a MAV’s flight is represented in Fig 44. 

Firstly, the position of both circles is obtained and then the centre of the drone is 

calculated. 
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Fig.  44. Tracking of the flight of the drone. Blue crosses represent the locations of the blue circle and 
the green crosses the locations of the green one. The purple crosses represent the calculated center of 

the MAV. 

In order to achieve a better representation, the toolbox Robotics Toolbox for 

Matlab was put to use. It was useful for the calculating of the homogenous transform of 

the localizations of the MAV and its plots. Fig. 45 represents a flight of the drone 

tracked but with some of the homogenous transforms printed over it. In this way it is 

easier to represent not only the tracking of the path followed by the drone, but the 

orientation that it had by the moment. 

 

Fig.  45. Flight of the drone tracked with homogenous transforms printed. 
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Thus, the way followed to test the system is to record the performance of the 

system and make a processing of the images obtained. Firstly, each frame from the 

video is extracted and then undistorted with Matlab. Finally, the whole set of 

undistorted frames is processed in order to track the real and undistorted position of the 

drone. Then, the Matlab script accomplish the comparison and the error extraction. 

 

8.1.2. Camera Calibration 

 

A fundamental part for setting up the whole ground truth system was the camera 

calibration. It had to be done before for all the cameras that we used (the ones from both 

drones, from the laptop…), but the process of calibration that is here explained is the 

one for the camera in the laboratory’s ceiling. 

The method used to do so was the Camera Calibration Toolbox for Matlab6. As 

its name indicates, it is a toolbox developed for Matlab. This toolbox was used for this 

work instead any other because of its effectiveness and accuracy. The negative side of 

the method is that it is not automatic and needs some human interaction.  

The first thing that should be done in order to calibrate the camera is to acquire a 

set of pictures taken with the target camera where a pattern –typically a chessboard– 

appears in different positions and orientations. The pattern should be captured in 

different positions, altitudes and inclinations in order to measure the intrinsics in 

different heights and also the skew. 

 
Fig.  46. Set of pictures taken to calibrate the camera. 

 

Once the toolbox has read the set of pictures, it is necessary to mark the four 

corners of the chessboard on each of the pictures. As said before, most of calibration 

methods perform this step automatically, but not this one.  

 

                                                        
6 http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
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Fig.  47. Selecting the four corners of the chessboard. 

This step will take a while, but due to the results this time is worth spent. If the 

system recognise all the squares between the four marked corners, an image similar to 

Fig. 48 should appear:   

 

 
Fig.  48. All squares recognized. 

Once the corner extraction is performed, the calibration main step may be 

accomplished. The system will return both extrinsic and intrinsic parameters, but 

without some modifications the error will be large. Fig. 49 displays the error in pixels. 

Each cross represents the error depending on the picture. The script allows clicking on 

each of the crosses and it returns the error numerically and from which picture it comes 

from. 
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Fig.  49. Reprojection error without corner recalculation 

If the pictures that are giving some problems are known –in this case by clicking 

on each of the target crosses–, the algorithm allows recalculating the corners depending 

on a given window. These windows represent an area –which the algorithm asks for its 

size– on the image where the algorithm can look for the position of the corner and 

recompose it. After this step, the calibration step should be done once more. Now the 

results should be better than before. These steps can be repeated as many times needed 

in order to achieve satisfying results.  

Fig. 50 represents the reprojection error where the corner recalculation have 

been done a few times. The error in pixels is significantly reduced. A good calibration 

will allow a reprojection error of less than one pixel. 

 

Fig.  50. Reprojection error with corner recalculation. 
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After all this steps the results can be evaluated. Matlab will return them in the 

following format, where intrinsic parameters are presented: 

 

%-- Focal length: 
fc = [ 1381.464674497992746 ; 1369.588046959953999 ]; 

  
%-- Principal point: 
cc = [ 908.141070410591510 ; 411.958838419264737 ]; 

  
%-- Skew coefficient: 
alpha_c = 0.000000000000000; 

  
%-- Distortion coefficients: 
kc = [ -0.367231995407932 ; 0.097184689401318 ; 0.001232102399891 ; -

0.002651682895832 ; 0.000000000000000 ]; 

  
%-- Focal length uncertainty: 
fc_error = [ 17.506239189864644 ; 16.988183955035929 ]; 

  
%-- Principal point uncertainty: 
cc_error = [ 10.953708474264381 ; 13.016513363654543 ]; 

  
%-- Skew coefficient uncertainty: 
alpha_c_error = 0.000000000000000; 

  
%-- Distortion coefficients uncertainty: 
kc_error = [ 0.008490237042604 ; 0.005221438985826 ; 0.001529055899329 

; 0.001302242978082 ; 0.000000000000000 ]; 

 

The program will also return some other parameters. The extrinsics of each 

picture are some of those parameters: 

%-- Image #1: 
omc_1 = [ 3.070369e+00 ; -1.192283e-02 ; 2.160154e-02 ]; 
Tc_1  = [ -1.424322e+02 ; 2.392306e+02 ; 4.190836e+03 ]; 
omc_error_1 = [ 2.365183e-02 ; 1.849515e-03 ; 2.900762e-02 ]; 
Tc_error_1  = [ 3.327460e+01 ; 3.985263e+01 ; 5.380459e+01 ]; 

 

Where omc_i and Tc_i are rotation and translation vectors respectively. 

Another interesting function of this toolbox is that it displays extrinsic 

parameters of the camera in the world or camera coordinates. It allows comparing the 

results and the pictures used for the calibrations with the data obtained by the toolbox. 

Plotted in Fig. 51 the extrinsic parameters –translation and rotation vectors– appear 

world and camera centred. It is measured in pixels. 
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Fig.  51. Display of intrinsics and extrinsics. 

 
 

Fig.  52. Difference between original image and its undistorted version. 
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Once the calibration is successfully finished an undistortion of a set of images 

can be made. Thus, each frame of a video can be processed looking for the real position 

of the drone. Fig. 52 represents the difference between the original image and its 

undistorted version. 

8.2. Experimental results  

This section lists and describes the experimental results and under which 

conditions were. The results will be explained using different models and will be 

compared between each other. 

8.2.1. Test Conditions and Benchmark 

 

For a better interpretation of the results achieved in this work, a benchmark was 

developed for the Matlab software. The data from a certain flight was recorded –both 

the information from the ground-truth and the pose estimation of the system– so it could 

be compared afterwards. Furthermore, the needed data for the performance of the EKF 

was also recorded, so this package could be launched at will. Thus, we run the 

algorithm in different situations, always comparing the results using both VSLAM 

methods used for this work –LSD-SLAM and ORB-SLAM–. During the recorded flight 

we made the drone to move along a series of points performing a rectangle of 

120cmx60cm. The size and shape of the performed figure by the drone were chosen due 

to some limitations imposed by our ground truth. Firstly, it only can track in a reliable 

way the X and Y axis so any planar geometric figure could have been elected. 

Furthermore, the camera has a limited field of view, which is larger in the width axis 

than in the height one. These reasons made us to choose the shape and the length of the 

track. 

8.2.2. Performance of the whole system 

 

Firstly, the performance of the whole system will be displayed and compared 

between VSLAM algorithms. This experiment is made with and without initialization 

stage for both methods. Afterwards, the improvements introduced by the sensor fusion 

in the EKF are validated. 

a) Performance without initialization stage for the VSLAM algorithms 

In the first experiment, the system had not an initialization stage for its VSLAM 

algorithms. As explained in the Chapter 5, some monocular VSLAM techniques need 

an initialization stage in which the algorithm extracts enough features from the 

environment so it could build a point’s map. In this case, ORB-SLAM require of it, as it 

will be seen in the following. On the other hand, it is not required for LSD-SLAM. 

Nonetheless, one of the flight’s data set recorded when using LSD-SLAM was 

discarded because it had a wrong initialization –due to the random depth values that the 

algorithm sets at the beginning–. The tracking of the system using each of the methods 

is shown in Fig. 53. This figure displays the performance of the system using all the 

models, comparing the results when using each of the VSLAM algorithms. Five tests 

were made using each algorithm putting to use the same benchmark –all of them 

represented by a coloured line, as expressed in the legend–. The track calculated by the 

ground truth system is represented too as a path of red crosses. Finally, the desired track 

is represented as a magenta thick line. We presented the results obtained when using 
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LSD-SLAM above and the ones obtained when using ORB-SLAM below. It is 

important to remark that this work is focused in obtain a scale-aware, accurate 

estimation system but some upgrades where made to it in order to improve the 

performance of the PID controller. Despite of it, due to some reasons that will be 

explained in the next chapter the drone is not able to follow exactly the marked path.  

 

Fig.  53. Performance of the system using each of the VSLAM methods. Several tests were accomplished, 
each of them represented as a coloured line. The red dots shape represents the ground-truth tracking. 
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One of the prerequisites of the system developed in this work becomes clear 

looking at Fig. 53. In order to calculate the scale, the system needs to start the VSLAM 

algorithm’s measurements from the floor along with the node EKF node. If not, the 

scale is not properly calculated –due to it have to be a differential calculation–. As seen 

in (2-5) equations, the scale is calculated dividing the height estimated by the VSLAM 

algorithm with the real height measured by the vertical ultrasounds sensor. These 

equations take for granted that the first measurement from both sources is taken from 

the floor. If not, the equations should have looked like this:  

 𝑠𝑐𝑎𝑙𝑒 =
ℎ𝑆𝑂𝑁𝐴𝑅𝐶𝑢𝑟𝑟𝑒𝑛𝑡−ℎ𝑆𝑂𝑁𝐴𝑅𝐹𝑖𝑟𝑠𝑡−𝑓𝑟𝑎𝑚𝑒

ℎ𝑉𝑆𝐿𝐴𝑀𝐶𝑢𝑟𝑟𝑒𝑛𝑡−ℎ𝑉𝑆𝐿𝐴𝑀𝐹𝑖𝑟𝑠𝑡−𝑓𝑟𝑎𝑚𝑒

             

 𝑥𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑥𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒            

 𝑦𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑦𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒            

 𝑧𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑧𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒             

 

This method was tested, but due to the dynamic changes in the estimations’ scale 

of the VSLAM algorithms it leads to drift and scale calculation errors. By the way, as 

said before, if ORB-SLAM does not have an initialization stage before the take-off, the 

estimations will not be as accurate as they could be using the current scale calculation 

method. Furthermore, the algorithm will lose some tracking frames because it would 

need the first frames of the video stream for the features extraction and the initial points 

map building, so not all the camera’s movements will be tracked. It increases the 

estimation error. The results are presented in the following table. The errors are 

presented in the same way than in 5.3.4, but this time in centimetres. In the following, 

the results will be expressed in this way. 

 LSD-SLAM ORB-SLAM 
Compared pose pairs 207 288 
Absolute translational 
error (RMSE) 

6.9894 8.0597 

Absolute translational 
error (mean) 

5.0335 5.9480 

Absolute translational 
error (median) 

3.4622 4.4534 

Absolute translational 
error (std) 

4.8494 5.4387 

Absolute translational 
error (min) 

0.0123 0.0194 

Absolute translational 
error (max) 

18.7031 26.3586 

Table 2. Results without initialization stage. Error results are given in centimeters. 

Even in this adverse situation the highest RMSE error is around 8cm for the 

pose’s estimation of the drone, making this system a robust, scale-aware and accurate 

method.  

b) Performance with initialization stage for the VSLAM algorithms 

In the following experiment, the flight of the drone will be preceded by an 
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initialization stage –the drone is moved smoothly on the floor in all directions without 

taking-off–. Thanks to it, the ORB-SLAM algorithm could build the points map and 

therefore start the tracking before the take-off.  

 

Fig.  54. Results obtained with an initialization stage. The blue line represents the estimated tracking 
of the drone, while the red dots shape represents the ground truth tracking. 
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The results now achieved are shown in the following chart: 

 LSD-SLAM ORB-SLAM 
Compared pose pairs 210 348 
Absolute translational 
error (RMSE) 

6.7410 5.3203 

Absolute translational 
error (mean) 

4.8385 3.9001 

Absolute translational 
error (median) 

3.2138 2.7995 

Absolute translational 
error (std) 

4.6936 3.6186 

Absolute translational 
error (min) 

0.0022 0.0061 

Absolute translational 
error (max) 

18.2302 14.5284 

Table 3. Results with an initialization stage. Error results are given in centimeters. 

Now, the error is drastically reduced for ORB-SLAM, while LSD-SLAM 

achieves similar results to the obtained without the initialization stage. The system 

achieves better results putting to use ORB-SLAM with an initialization stage because of 

two reasons: the drone’s pose started to being calculated from the floor, so the scale was 

properly calculated; and because the estimation started before the camera began to 

move, so all the frames were tracked.  

 

Fig.  55. Comparison between the estimated yaw orientation and the tracked by the ground truth. 
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Not only the absolute translational error should be measured, the error in the 

estimation of the orientation is presented too. In the following figure the yaw estimated 

by the system and the tracked by the ground truth are compared, both expressed in 

degrees. As said previously, the estimation of the yaw is not absolute but differential. It 

means that the yaw is estimated in relation with the initial values so when the EKF node 

is launched the first yaw value that the filter estimates –under some conditions– would 

be the initial point. These differential measurements are performed only if the drone is 

flying at one meter or higher. This decision was taken due to the readings from the 

gyroscope “jumps” when the drone changes rapidly its altitude. The tracked yaw also 

fails in its measurements due to the abrupt take-off of the drone that makes the drone to 

strongly incline, incapacitating the yaw calculation by the ground system. 

A closer look of the previous pictures makes easier to understand the 

measurements. While the estimations are always close to 0 –the maximum estimated 

difference is 5 degrees–, the ground truth says that there is an error in that estimation 

caused by the drift. 

 

Fig.  56. Closer look to the results presented in the previous figure. 

Avoiding the sections of the recorded data where the EKF was not estimating 

the orientation, the results of the error’s calculations indicate that the RMSE error is 

around 6.5 degrees. Although there is a visible error caused to the drift in the yaw 

estimation, it is insignificant and it does not affect the performance of the system. 
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 All models with ORB-SLAM 
Compared pose pairs 3411 
Orientation error (RMSE) 6.5365 
Orientation error (mean) 5.3486 
Orientation error (median) 4.8821 
Orientation error (std) 0.6029 
Orientation error (min) 2.5317·10-5 
Orientation error (max) 15.3799 
Table 4. Errors in the yaw measurements. The results are expressed in degrees. 

 

Finally, we compared the track followed by the drone and the desired one and 

analyse the error. Although the main goal of this work is to develop a robust, scale-

aware estimation system, the performance of the included PID controller will be 

analysed too. The next figure displays the performance of the system using all models 

versus the desired track for this experiment. 

 

Fig.  57. Followed vs. desired tracks in red and blue respectively. 

Even when the error induced by the delays was drastically reduced –as explained 

before– it cannot be completely eliminated. Due to it and because of its fast dynamics 

the drone cannot follow exactly the desired track, but it can reach a series of goal points. 

The next chart explains the errors committed between the followed track and the one 

that the MAV should have followed.  
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 All models with ORB-SLAM 
Compared pose pairs 3411 
Orientation error (RMSE) 12.7408 
Orientation error (mean) 10.0462 
Orientation error (median) 8.5733 
Orientation error (std) 2.7175 
Orientation error (min) 7.8382·10-14 
Orientation error (max) 28.5918 
Table 5. Error between the desired track and the followed by the drone, given in centimeters. 

The RMSE error is less than 13cm, so the drone can follow appropriately the 

marked path even with the disadvantages associated to the using of low-cost MAVs. It 

could be achieved due to a fast and accurate estimation system working with a delay 

correction algorithm. 

8.3. Sensor fusion improvements 

In this section the results achieved by the different models are presented. The 

results, displayed in the figures, make clear the need of data fusion. There is a lack of 

precision in the pose’s estimation when the system is not using all the models of the 

EKF or even it may reach messy results –as in the case of using only the NAVDATA 

correction model–.  All the figures are presented with the track of the ground truth and 

the desired path –the red crosses track and the magenta line, respectively– for a better 

comprehension of the results. . It is important to remark that the exposed results –not 

only for this case, but the previous ones too– where only appears one line for each 

experiment does not means that only one flight was needed in order to record the data. 

The plotted data is the median of 5 flights in all the cases in order to compare in a better 

way the results and to know which algorithm causes more problems –as bad 

initializations–. It is displayed in this way to make every figure self-explanatory and 

clean. 

In the first figure the performance of the system using only the predictor model 

is compared with the results achieved by the data fusion between the predictor model 

and the NAVDATA correction model –the green and blue lines, respectively–. The 

pose’s estimation could be compared with the real position of the drone. Even though 

the estimation is not that bad –keeping in mind that in this case the system does not 

have a sensor reading that could bring a feedback– the error committed between the 

estimation and the real track is not admissible. If the prediction model is fused with the 

data from the NAVDATA correction model the performance is visible improved. The 

system lacks of a feedback in this case too, but the correction made by the NAVDATA 

model improves the results of the estimation. The results obtained in the five flights 

were similar between them for both experiments and all of the flights were successful. 
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Fig.  58. Comparative of the results achieved when using just the predictor model with the results 
achieved using the predictor and NAVDATA correction models –blue and green line respectively–. 

The results can be understood in a better way reading the errors presented in the 

next table. The performance improvement is clear just by looking at the figure and helps 

to understand the results presented in the table. The error between the estimation and the 

real track followed by the drone is clearly reduced –around 5cm– when fusing data. 

 Only predictor model Predictor and NAVDATA 
correction model 

Compared pose pairs 228 332 
Absolute translational 
error (RMSE) 

16.9341 11.5263 

Absolute translational 
error (mean) 

14.2136 9.4269 

Absolute translational 
error (median) 

13.0264 8.7872 

Absolute translational 
error (std) 

9.2054 6.6324 

Absolute translational 
error (min) 

0.0158 
 

0.0870 

Absolute translational 
error (max) 

39.5941 23.4986 

Table 6. Comparison between the performance of the system using only the predictor model and the 
fusion of the predictor and the NAVDATA correction model. 

In the following figure the performance of the system using only the VSLAM 

correction model is presented. This figure and the table helps to compare the results 

obtained using each of the VSLAM algorithms. The data sets collected from the five 

flights were similar for each experiment and both of them had one bad initialization, so 

the data from that flight was removed. 
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Fig.  59. Comparative of the results achieved when using just the VSLAM correction model with LSD-

SLAM and ORB-SLAM algorithms –blue and green line respectively–. 

There is a big difference between the scale estimated by each of the algorithms. 

It leads to a big difference in the depth estimation by the VSLAM algorithm and 

therefore in the errors committed by the system. The performance using ORB-SLAM is 

way better so was in the experiment made in the section 5.3.4. For this reason, the 

algorithm that will be used in the future for the experiments will be ORB-SLAM. 

 Only VLSAM correction 
model using LSD-SLAM 

Only VLSAM correction 
model using ORB-SLAM 

Compared pose pairs 168 158 
Absolute translational 
error (RMSE) 

16.8754 10.7131 

Absolute translational 
error (mean) 

11.9105 8.4936 

Absolute translational 
error (median) 

8.4262 6.8763 

Absolute translational 
error (std) 

11.9548 6.5291 

Absolute translational 
error (min) 

0.0028  0.1222 

Absolute translational 
error (max) 

49.7062 29.8959 

Table 7. Comparison between the performances of the system using only the VSLAM correction model 
putting to use each of the VSLAM algorithms studied in this work. 

For the last experiment, all the previous recorded data sets are plotted together. 

Is easier to understand the improvement of the performance just by looking at the next 

figure.  
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Fig.  60. Comparative of the results achieved when using just the VSLAM correction model with LSD-
SLAM and ORB-SLAM algorithms –blue and green line respectively–; the predictor and NAVDATA 
correction models –in cyan– and all the models together –in black–. 

The results presented in the next table demonstrate the improvement of the 

performance by data fusion. The estimation gets more accurate when fusing the data 

from the models previously explained. The results obtained in the previous experiment 

with the predictor and NAVDATA correction models together are improved by adding 

a correction model from a sensor that bring measurements that can be read as feedback. 

The errors are compared with the best results obtained in the previous experiments. The 

error is drastically reduced to the half, getting an RMSE error of around 5cm. It makes 

this system an accurate and robust estimation algorithm. 

 All models Only VLSAM 
correction model 
using ORB-SLAM 

Predictor and 
NAVDATA 
correction 
model 

Compared pose pairs 346 158 332 
Absolute translational 
error (RMSE) 

5.3248 10.7131 11.5263 

Absolute translational 
error (mean) 

3.9765 8.4936 9.4269 

Absolute translational 
error (median) 

3.0542 6.8763 8.7872 

Absolute translational 
error (std) 

3.5413 6.5291 6.6324 

Absolute translational 
error (min) 

0.0105 0.1222 0.0870 

Absolute translational 
error (max) 

14.8238 29.8959 23.4986 

Table 8. Validation of data fusion. Errors given in centimeters. 
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CHAPTER 9: CONCLUSIONS AND FUTURE WORK  
 

After all the processes presented in the previous chapters we accomplish the 

conclusions that will be explained below. After it, the main future work lines that could 

be achieved are discussed. 

 

9.1. Conclusions 

This work demonstrates that it is possible to use a commercial and low-cost 

drone as the hardware platform of a pose estimation and motion control system. The 

Bebop drone is a new, stable and reliable MAV recently released. Its firmware is also 

periodically reviewed and updated by their creators, so it is in a continuous 

improvement. It also implements a ROS driver that allows the MAV to communicate 

with a computer via Wi-Fi. On the other hand, the VSLAM algorithms that have been 

chosen to study in this thesis were also recently developed so their performance is the 

best between each monocular VSLAM method. Therefore, both the hardware 

architecture and the VSLAM techniques put to use are in the state-of-the-art.  

It is important to remark the importance of the data fusion in order to achieve the 

performance of the current system. It not only improves the accuracy of the pose 

estimation in our case, but also prevents from errors caused by drifting and scale 

dynamic calculation. The fact of adding a sensor such as a monocular camera that 

brings a feedback of the position helps to the system in the calculation of the estimation, 

correcting it when models as the predictor or the NAVDATA correction –both sensitive 

to drift errors– are failing in that estimation. 

The implementation of an EKF not only helps with the previously commented 

facts but also reducing the errors caused by the delays. In our case, the main source of 

these problems is the communication channel. The communication channel between the 

ground station and the chosen model of drone is a Wi-Fi network with delays that lay 

between 60 and 200ms, depending on the bandwidth used by nearby wireless LAN 

networks. Thanks to the EKF, the pose estimation and motion control errors caused by 

the delay was drastically reduced. 

Despite the previously commented improvements implemented on the system, 

there is a main weakness on this work that is the performance of the motion controller. 

It is caused because the error produced by the delay is not completely removed, in 

addition with the fast dynamics of a MAV. It leads to a system that could achieve 

results as presented in Chapter 8 related with the motion control. Another limitation of 

the system developed in this work is the real scale calculation for the pose and 

environment map. As explained in the previous chapter, it needs to be launched from 

the floor, and it also needs the VSLAM algorithm to be ready and estimating the 

drone’s pose.  
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9.2. Future work 

In the future, the software architecture will be implemented over another 

hardware platform. The chosen MAV –the Erle-Copter7– has a developed driver for 

ROS and is able to carry up to 1kg. It allows the drone to carry an onboard computer 

and other sensors such as a scanner laser rangefinder. The computer permits the drone 

to perform the whole system onboard without having to communicate it to a ground-

station. It avoids the delays caused by the wireless network, solving the main problem 

of the current system. The only delays that the system will face would be the ones 

caused by the computational times, which are insignificant for it –even if they produce 

any error it could be reduced by the developed algorithm included in the EKF node–. 

Another advantage related to the change of hardware platform will be the 

capability of the drone to carry heavy sensors such as Hokuyo’s. The main goal of the 

ISLAMAV project is to develop a MAV-based inspection system able to recognize 

indoor ruined or semi-ruined buildings in the context of rescue mission. This system 

will fuse the data from the models put to use in this work with a laser correction model. 

The measurements from a laser are faster and more robust facing fast and/or pure 

rotational movements than the computed by a monocular VSLAM model. It will also 

provide a 2D map of the environment required for the future development of the 

MAV’s autonomy. Furthermore, the data fusion will improve the pose estimation of the 

system –as explained before– and add some recursion to it.  

The fact of having two sources that could bring a feedback to the system will 

allow us to develop an intelligent algorithm that could not only add both correction 

models to the estimation but also to choose between both of them depending on the 

situation. For example, if the MAV is flying in an environment with poor illumination 

or directly in the darkness it could detect it and temporally disable the VSLAM 

correction model. Or if the drone notices that the detectable objects of the environment 

are too far for the reliable performance of the laser the algorithm could temporally 

disable the laser correction model. 

Finally, those improvements will allow us to test the system in adverse situations 

that could not be considered before. 

                                                        
7 http://erlerobotics.com/blog/erle-copter-es/ 

http://erlerobotics.com/blog/erle-copter-es/
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CHAPTER 10: DIAGRAMS 

 
Different diagrams that are important for the comprehension of the system are 

displayed in this chapter. The first two figures –Fig. 61 and Fig. 62– are flowcharts of 

the developed nodes of the EKF and the PID controller, respectively. The black circle 

represents the start of the algorithm and the same circle surrounded by another circle the 

ending. The PID controller node has a certain start and end –when the drone has 

reached all the goal points– but this is not the case of the EKF node. The control loop of 

this node is infinite and it will not end until the user kills the process –pressing the 

buttons CONTROL+C in the terminal where the process is running–. 

 
Fig.  61. Flowchart of the EKF node. 



Visual SLAM Algorithms for Aerial Robots 

74 
 

 
Fig.  62. Flowchart of the PID controller node. 
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Fig. 63 and Fig. 64 are diagrams of the whole software architecture depending 

on the method used –the first one using LSD-SLAM and the second one ORB-SLAM–. 

These diagrams can be built by ROS with the command rosrun rqt_graph 

rqt_graph. The container rectangles symbolize packages and the others are topics 

that communicate two nodes. The round shapes are the nodes. The nodes are 

communicated between them by topics, whose connections are represented by arrows. 

 

 
Fig.  63. System using LSD-SLAM nodes tree 

 
Fig.  64. System using ORB-SLAM nodes tree 
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CHAPTER 11: SPECIFICATIONS 

 
For this project, the following conditions need to be satisfied:  

 Computer using GNU/Linux 14.04 with approximately 4 Gb of free space and a 

Wi-Fi network card. The map visualization is not necessary for the performance 

of the developed system, but it needs a powerful computer –which minimum 

specifications are not specified– in order to display it. The following software 

tools are required:    

– ROS - full version.  

 

The next three items are ROS packages. 

 

– Ardrone_autonomy/bebop_autonomy. 

– LSD_SLAM and ORB_SLAM. 

– Rviz. 

 Matlab software (optional) for displaying trajectories and measurements. Robotic 

toolbox will be compulsory. It would be necessary for the camera calibration of 

an optional ground-truth system. In this case the Camera Calibration Toolbox is 

needed. 

 Bebop drone / AR.drone 2.0. 
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CHAPTER 12: BUDGET 
 

This chapter will describe the theoretical cost of the whole project. It will 

include the equipment cost and the professional fees. Finally, the taxes will be added for 

getting the total cost of the project.  

12.1. Equipment cost 

In this section, the cost of the different materials (hardware and software) is 

detailed and the VAT (21%) is included.  

 

Item Unit price 

(euro) 

Unit Total cost 

(euro) 

 

 

 

 

 

Hardware 

Bebop 

Drone 

399 1 399 

AR.Drone 

2.0 

249 1 249 

ASUS 

Laptop 

599 1 599 

IP 

Camera 

79,88 1 79,88 

Switch D-

Link 

20 1 20 

POE 

injector 

30,42 1 30,42 

Hardware total cost 1377,3 

 

 

 

 

 

Software 

Ubuntu 

v14.04 

0 1 0 

Robot 

Operating 

System 

0 1 0 

ROS 

packages 

0 1 0 

Matlab 

(Student 

edition) 

69 1 69 

VLC 0 1 0 

Software total cost 69 

Equipment total cost 1446,3 
Table 9. Equipment budget (VAT included), presented in euros. 
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12.2. Professional fees 

In this section the different professional fees are calculated. These fees are 

calculated as gross incomes. The following table includes all the professional activities 

related with the project.  

Activity Price 

(euro/hour) 

Time (hours) Total cost 

(euro) 

Engineering 20 600 12000 

Writing up 15 150 2250 

Fees total cost 14250 
Table 10. Professional fees (gross salary), expressed in euros. 

12.3. Total cost 

The theoretical total cost of the whole project is itemized in this section and 

presented in below: 

Equipment cost 1446,3 

Professional fees 14250 

Printing 90 

Transport 500 

Total 16286,3 

Table 11. Total cost, expressed in euros. 
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CHAPTER 13: USER GUIDE 

 
In order to use the system developed in this work it is mandatory to follow some 

steps that will set up the computer. Firstly, which tools have to be downloaded and 

installed are listed. It is detailed also how to install them and the commands needed to 

launch the system later. Then we present a brief explanation of how to install the nodes 

developed for this. The chapter ends with a guide of how to launch all the nodes in 

order to run the whole system. 

 

13.1. Download the necessary tools 

The next steps describe how to download some tools needed for the performance 

of the system: 

1. Install ROS following the steps given in the official ROS website 

(http://wiki.ros.org/ROS/Installation). Create a workspace as explained 

in: 

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnviron

ment. 

2. Install bebop_autonomy or ardrone_autonomy following the steps given 

in the next websites: 

 (http://bebop-autonomy.readthedocs.io/en/latest/installation.html /   

http://ardrone-autonomy.readthedocs.io/en/latest/installation.html). 

3. Install LSD-SLAM following the steps given in the GitHub website 

(https://github.com/tum-vision/lsd_slam) 

4. Install ORB-SLAM following the steps given in the GitHub website 

(https://github.com/raulmur/ORB_SLAM) 

 

13.2. Install the nodes 

Install the nodes developed for this work. Create a package (or two, if you want 

to separate both of them) as explained in: 

http://wiki.ros.org/ROS/Tutorials/CreatingPackage. Place the folders of each node (EKF 

and PID) into the src folder of the package. Move to the root folder and execute the 

order catkin_make. 

 

13.3. Launching the nodes 

This section guides the user along the commands that have to be launched in 

order to use the whole system: 

 

 

http://wiki.ros.org/ROS/Installation
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://bebop-autonomy.readthedocs.io/en/latest/installation.html
http://ardrone-autonomy.readthedocs.io/en/latest/installation.html
https://github.com/tum-vision/lsd_slam
https://github.com/raulmur/ORB_SLAM
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
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13.3.1. Establishing the communication 

 
First, it is necessary to establish the communication between the drone and the 

ground station. Make sure the MAV is on and connect the computer to its Wi-Fi 

network. Once it is connected, open a new terminal and source the setup file of the 

drone’s driver (this step is only needed when using the Bebop drone due to its ROS 

driver can only be installed as a new workspace): 

source ~/bebop_autonomy/devel/setup.bash 

If you installed the ardrone_autonomy in the same workspace where you have 

all your packages and the source is always established for this workspace the previous 

step can be avoided. If it is not, write down the following order in a terminal: 

source ~/your_workspace/devel/setup.bash 

Now launch the ROS driver for the drone. If you are using the Bebop drone: 

roslaunch bebop_driver bebop_node.launch 

If you are using AR.Drone 2.0 (there are also some example launch files in the 

launch directory if you want to configure parameters): 

rosrun ardrone_autonomy ardrone_driver 

 

13.3.2. Launching the VSLAM algorithm 

 

The following commands explain how to launch each VSLAM algorithm.  

a) LSD-SLAM 

We will start with LSD-SLAM. If you want to run the visualizer included in this 

package, write the following order: 

rosrun lsd_slam_viewer viewer 

The previous step can be avoided because it only displays the built map of the 

environment and the track of the camera but is not needed for the package’s 

performance. Furthermore, it is the node that more computational requirements has, so 

if you are running the system in a computer with low performance do not use it. The 

next order launchs the LSD-SLAM estimation and tracking node: 

rosrun lsd_slam_core live_slam /image:=<yourstreamtopic> /c

amera_info:=<yourcamera_infotopic> 

Both drones put to use for this work provide a camera_info topic. When using 

this topic only the image dimensions and the K matrix from the camera info messages 
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will be used, hence the video has to be rectified. Alternatively, you can specify a 

calibration file using: 

rosrun lsd_slam_core live_slam /image:=<yourstreamtopic> _c

alib:=<calibration_file>  

In this case, the camera_info topic is ignored, and images may also be radially 

distorted. This work provides one calibration file for each drone, but if you want to 

calibrate your drone’s camera on your own, follow the steps given in the next website: 

http://wiki.ros.org/camera_calibration. 

For an improvement of the performance of this algorithm the amount of 

keyframes and the weight of each of them should be increased using the dynamic 

configuration: 

rosrun rqt_reconfigure rqt_reconfigure 

The parameters that should be changed are KFUsageWeight and KFDistWeight. 

A value of 6 for each of them may be enough. Now, the algorithm will take much more 

keyframes, what means a larger map that leads to more loop closures. Therefore, the 

algorithm performance will be slower. If your computer can handle it, the change makes 

the package to generally give much better and more robust results. 

 

Fig.  65. Dynamic configuration. 

b) ORB-SLAM 

Here it is explained how to launch ORB-SLAM. There are two ways to launch 

this package. As before, it could be launched using a visualizer that is not mandatory for 

the performance of the package or it could be launched in a low-consuming way. The 

visualizer that this package uses is Rviz, a powerful software that provides some 

http://wiki.ros.org/camera_calibration
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interesting tools. ORB-SLAM could be launched customizing one launch file and 

adding it to the root folder (there are attached some of them in the package). 

roslaunch ORB_SLAM your_launch_file.launch 

The other way avoids the visualizer, economizing the computational 

consumption. Copy the next orders in two new terminals in order to launch it: 

rosrun ORB_SLAM ORB_SLAM Data/ORBvoc.txt Data/ calibration_

file.yaml 

rosrun image_view image_view image:=/ORB_SLAM/Frame _autosi

ze:=true 

The file ORBvoc.txt is provided by the ORB_SLAM package (it is highly 

recommended to decompress the .tar.gz file in which it is contained for speeding up the 

performance of the algorithm). The calibration_file.yaml is provided by our system for 

each of the drone’s cameras. 

ORB-SLAM needs to extract an amount of features from the environment in 

order to create an initial point’s map. Until this map is not built the package cannot start 

the tracking algorithm. Our system needs to start reading the pose estimations of the 

VSLAM from the floor in order to calculate correctly the scale (as explained in previous 

chapters), so ORB-SLAM may need an initialization stage. Move smoothly your drone 

backwards and forwards and also from left to right and vice versa without separating it 

from the floor. Do it until the package says that the initial map has been correctly built. 

The next figure makes a comparison of how looks the system initiated and not initiated: 
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Fig.  66. Comparison of both stages of ORB-SLAM. 

 
13.3.3. Launching the EKF node 

 

Once there is a communication between the drone and the ground-station and the 

VSLAM algorithm is performing its estimation the EKF node can be launched. Write 

the following in a new terminal: 

rosrun EKF EKF 

The system will start to estimate the real position of the camera. The estimation 

is published in the topic /kalman_topic and can be displayed with the following 
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command: 

rostopic echo /kalman_topic 

An optional node can be launched too. It transforms the position of the frame 

from the camera to the centre of the drone. To launch it, use the following order:  

rosrun EKF camera_frame_converter 

The new estimation is published in /kalman_topic_rect, and can be displayed 

with the following command: 

rostopic echo /kalman_topic_rect 

 

13.3.4. Taking-off the drone 

 

It is important to make a flat trim before the take-off in order to avoid problems. 

The flat trim process will send a request to the drone to re-calibrate its rotation estimates 

assuming that it is on a flat surface. Do not call this service while the drone is flying or 

while the drone is not actually on a flat surface. When using the AR.Drone 2.0, the 

driver ardrone_autonomy provides a service that we can call: 

rosservice call ardrone/flattrim 

But the service is not yet developed for the Bebop drone, so the flat trim must be 

performed by means of the free android application provided by bebop (FreeFlight 3). 

It could be performed just by clicking in the flat trim button indicated in the next figure: 

 

Fig.  67. Free Flight 3 android application interface. 
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Once the flat trim is made make your drone to take-off. If you are using the 

Bebop drone copy the next command into a new terminal: 

rostopic pub bebop/takeoff std_msgs/Empty 

If you want to land it use: 

rostopic pub bebop/land std_msgs/Empty 

But if you are using an AR.Drone 2.0 use the following orders for the take-off 

and the landing: 

rostopic pub /ardrone/takeoff std_msgs/Empty 

rostopic pub /ardrone/land std_msgs/Empty 

 
13.3.5. Launching the PID controller 

Once the drone is flying and its current real-scale position is being estimated the 

PID controller could be launched. Type the following command in a new terminal: 

rosrun PID PID_main 

The drone will now fly along the pre-configured in the PID controller script 

series of points. When it reaches the last point it will fly down to an altitude of one 

meter and finally land. 
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APPENDIX:  ADDITIONAL ACTIVITIES 
 

In order to achieve the required knowledge for the subject “Introducción al 

TFM” some additional activities were performed. In the draft, we proposed some of 

them as: 

1. Approach of the thesis using the scientific method. Documentation about the 

scientific methodology was studied in order to suggest a hypothesis. The 

experiments and tests performed for the validation of this hypothesis are 

presented in this work. 

2. Development of a complete state of the art related with the technologies and 

techniques included in the thesis. The state of the art is included in the thesis. 

Furthermore, documentation about the use of bibliographic sources in 

technique investigation was studied. 

3. Writing of a scientific paper, which will be sent to international conference 

in the field of robotics. The accepted paper is attached in its corresponding 

section along with the written proof of conference attendance. 

4. Implementation of all the developed algorithms over a real platform that 

allows to validate the obtained results, using for it an experimental 

methodology. The methodology is explained along the work and the results 

exposed represent real information obtained from the MAV’s fly instead 

from a simulation. 

5. Attendance to conferences and lectures that are interesting for the 

development of the work. 

1. Approach of the thesis using the scientific method 

The information regarding the use of the scientific method studied for this thesis 

was obtained from the following links: 

a) http://www.aulafacil.com/cursos/t639/ciencia/investigacion/ciencia-
ymetodo-cientifico  
 

This link contains information about a course named “Science and Scientific 

Method”. It gives some definition of basic terms and rules that define them. It starts 

with the definition of what is a method and what is the science. Then, the information 

from both definitions and rules is fused and gives as a result an explanation about the 

scientific method. The process of it is presented as a series of stages that should be 

reached, according to Bunge, M. (1989), “La investigación científica”:  

I. Descubrimiento de una deficiencia en las teorías anteriores o de un 

problema. 

II. Planteamiento preciso de la cuestión. 

III. Búsqueda de conocimientos relevantes al problema, tales como datos 

empíricos y de técnicas de medición. 

IV. Tentativa de solucionar el problema con ayuda de los medios 

identificados. 

V. Invención de nuevas ideas o producción de nuevos datos empíricos que 

puedan ayudar a resolver el problema. 

http://www.aulafacil.com/cursos/t639/ciencia/investigacion/ciencia-ymetodo-cientifico
http://www.aulafacil.com/cursos/t639/ciencia/investigacion/ciencia-ymetodo-cientifico
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VI. Utilización del instrumento conceptual o empírico disponible para la 

obtención de una solución del problema. 

VII. Investigación de las consecuencias de la solución obtenida. 

VIII. Confrontar la solución con la totalidad de las teorías y con la información 

empírica pertinente. 

IX. Análisis de la corrección de todo el proceso seguido. 

 

A part of the previous proposed steps is the formulation of the hypothesis. Thus, 

the definition of it is presented. They are definded as follows: “Las hipótesis, por tanto, 

son tentativas de explicación de los hechos y fenómenos a estudiar, que se formulan al 

comienzo de una investigación mediante una suposición o conjetura verosímil destinada 

a ser probada por la comprobación de los hechos”. Some aspects that should be kept in 

mind when formulating the hypothesis are listed. The author of the course then explains 

that the person that follows the scientific method cannot just formulate and validate a 

series of unrelated hypothesis but that person must construct one or more theories that 

guide the research and fuse the information from the validated hypothesis. Then, the 

basic objectives of these theories, that help to differentiate between the scientific and the 

non-scientific are listed, according to Bunge. 

Finally, the author explain in detail different models of the scientific method 

followed by the point of view of different authors (Popper, Kuhn, Lakatos, etc.). 

 

b) http://www.aulafacil.com/cursos/t679/ciencia/investigacion/investigacion  
 
This link also contains an online course. It is called “Investigation”. It also starts 

with some definitions of different terms as science, epistemology, the scientific method 

and the scientific perspective. Some features related with this definitions are listed, as in 

the case of the science. Once the term of science is defined, it makes a differentiation 

between the factual science (the one that study objective facts that occur in the nature) 

and the formal science (that are concerned with characterizing abstract structures 

described by sign systems). The scientific method is explained as in the previous course 

and it conducts to the definition of the scientific perspective. The author defines the 

scientific investigator as follows: “El investigador científico es un individuo que aplica 

procedimientos formales, sistemáticos, para obtener información acerca de algún 

aspecto que le interesa de la realidad”. There is a differentiation between the methods of 

obtaining knowledge making a reference to the previous course, which explains the 

difference between the regular knowledge and the scientific knowledge. The first one is 

imprecise, subjective and lacks of a method while the second one has been obtained by 

means of a scientific method and could be tested again in order to improve it. 

The next points of the course talk about the design of an investigation project. It 

explains the main objectives that compound this kind of projects. Next to it, how a 

research should be developed and the basics of the writing of an investigation work are 

explained. Finally, an example of a report is presented. 

 

2. Development of a complete state of the art 

Some documentation about the use of bibliographic sources was studied. The 

following links contain information related to it: 

http://www.aulafacil.com/cursos/t679/ciencia/investigacion/investigacion
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a) http://mtu-pnp.blogspot.com.es/2013/07/la-investigacionbibliografica.html  
 

The link of this section has information about the bibliographic investigation. It 

starts defining what is an investigation problem, which is the reason that motive the 

investigation itself. The authors explain that is the first step in the sequence: problem  

investigation  solution. Then they continue talking about the features of the 

bibliographic investigation. The first of this features is the definition, and they present 

some examples of this feature. I would like to highlight this one: “el proceso de 

búsqueda de información en documentos para determinar cuál es el conocimiento 

existente en un área particular”. The authors of the website then remark the importance 

of the field that they are talking about. Next to it, a list of different kind of publications 

appears in this order: paper, treatise, monograph, journal and annual. They talk then 

about the methodology of making an enquiry (when the investigator is starting to learn 

about some field) and after it about the methodology of the bibliographic investigation. 

It explains how to collect, select, incorporate and organize the references. 

b) http://tecnicasdeinvestigacion.blogspot.com.es/2010/05/fuentesbibliografica
s.html 
 

The web related with the link of this section talks about the bibliographic 

sources. The author of the web differentiate between three types of sources: primary, 

secondary and tertiary. The first ones are the kind of sources that contain new 

information. Some examples of them are: books, publications, thesis, etc. The secondary 

sources organize the information about the primary sources in the form of summaries or 

index. It allows the user to obtain and use the information contained in the primary 

sources. The secondary sources are called too “reference manuals”. Examples of 

secondary sources are: bibliographies, dictionaries, etc. The last kind of sources are the 

tertiary ones. They collect secondary documents in order to guide the user to secondary 

and primary sources making easier the location of the information. Directories, 

catalogues and internet itself are examples of this kind of sources. 

3. Writing of a scientific paper 

In this section a text which talks about what is a scientific article and how to 

write one is explained. Then, the paper exposed for the ICARSC’2016 conference is 

detailed. 

a) http://www.ugr.es/~filosofia/recursos/innovacion/convo-
2005/trabajo-escrito/como-elaborar-un-articulo-cientifico.htm  

The text of the link starts defining a scientific article as a written and published 

report that describes original results of an investigation. It is important to remark that 

this kind of articles are not just summaries which the author should keep but a report 

that is clear enough so third persons could understand its message. 

The author of the text continues listing some features that a scientific article 

should reach. Different schemes that could be followed when writing the article are 

explained (in this work we have followed the second scheme, including the conclusions 

into the discussion section). The rules that must be kept in mind for the development of 

a scientific article are listed, which were considered when writing our article –excepting 

the way of mark the bibliographic references, as we used the IEEE style–. Finally, the 

http://mtu-pnp.blogspot.com.es/2013/07/la-investigacionbibliografica.html
http://tecnicasdeinvestigacion.blogspot.com.es/2010/05/fuentesbibliograficas.html
http://tecnicasdeinvestigacion.blogspot.com.es/2010/05/fuentesbibliograficas.html
http://www.ugr.es/~filosofia/recursos/innovacion/convo-2005/trabajo-escrito/como-elaborar-un-articulo-cientifico.htm
http://www.ugr.es/~filosofia/recursos/innovacion/convo-2005/trabajo-escrito/como-elaborar-un-articulo-cientifico.htm
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principal sections of a proper article are listed and described in detail. 

b) “Indoor SLAM for Micro Aerial Vehicles Control using Monocular Camera 

and Sensor Fusion” 

The results obtained in this thesis were sent as a paper to two conferences: the 

IEEE International Conference on Autonomous Robot Systems and Competitions 

ICARSC 20168, in Bragança (Portugal) and the Workshop on Autonomous Vehicles in 

Off-Road Scenarios within the 2016 IEEE Intelligent Vehicles Symposium IV’16 9, 

Gothenburg (Sweden). It was accepted for both of them, but we chose to present it in 

the ICARSC’2016. We declined to present it in the IV because the paper was accepted 

for a workshop (Workshop on Autonomous Vehicles in Off-Road Scenarios) and we 

could present the work in a conference itself at the ICARSC. Both of the symposiums 

were part of the IEEE program. 

The data of the publication are: 

Authors: Sergio García, M. Elena López, Rafael Barea, L. Miguel Bergasa, 

Alejandro Gómez and Eduardo J. Molinos 

Title: Indoor SLAM for Micro Aerial Vehicles Control using Monocular 

Camera and Sensor Fusion 

Publication:  Proceedings of the IEEE International Conference on Autonomous 

Robot Systems and Competitions ICARSC 2016 (ISBN: 978-1-5090-2255-7) 

Date:  May 2016 

 

Firstly, the camera ready version of the work is presented. After it, the written 

proof of assistance is attached. It is important to remark that I have attended to most of 

the lectures given in the conference (since the Wednesday 4th of May to the Friday 6th). 

It allowed me to learn about robotics from other points of view so new ideas could be 

added to my work (new hardware platforms, recently-developed VSLAM algorithms, 

other methods for scale calculation, etc.).  

                                                        
8 http://icarsc2016.ipb.pt/ 
9 http://iv2016.org/  

http://icarsc2016.ipb.pt/
http://iv2016.org/
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Molinos 

Electronics Department 

University of Alcalá 

Alcalá de Henares (Madrid), Spain 

sergio.garciagonzalo@edu.uah.es, elena@depeca.uah.es 
 

Abstract— This paper represents research in progress in 

Simultaneous Localization and Mapping (SLAM) for Micro 

Aerial Vehicles (MAVs) in the context of rescue and/or recog-

nition navigation tasks in indoor environments. In this kind of 

applications, the MAV must rely on its own onboard sensors 

to autonomously navigate in unknown, hostile and GPS denied 

environments, such as ruined or semi-demolished buildings. 

This article aims to investigate a SLAM technique that fuses 

visual information and measurements from the inertial meas-

urement unit (IMU), to robustly obtain the 6DOF pose estima-

tion of a MAV within a local map of the environment. The 

monocular visual SLAM algorithm along with the IMU calcu-

late the pose estimation through an Extended Kalman Filter 

(EKF). The system consists of a low-cost commercial drone 

and a remote control unit to computationally afford the 

SLAM algorithms using a distributed node system based on 

ROS (Robot Operating System). Some experimental results 

show how sensor fusion improves the position estimation and 

the obtained map under different test conditions. 

Keywords—micro aerial vehicles; indoor navigation; sensor 

fusion; simultaneous localization and mapping; robot operating 

system 

I.  INTRODUCTION 

Micro Aerial Vehicles (MAVs) have been widely used 
in various areas ranging from military to civilian domains, 
including surveillance operations, weather observation, 
disaster relief and civil engineering inspections. Enabled by 
GPS and MEMS inertial sensors, MAVs that display an 
impressive array of capabilities in outdoor environments 
have been developed [1,2,3]. Unfortunately, most indoor 
environments remain without access to external positioning 
systems, and autonomous MAVs are very limited in their 
ability to operate in these areas.  

The two main challenges of indoor MAV navigation are 
the denied reception of GPS signal and the constraints of 
the indoor aerial platforms. Unlike the conventional 
GPS/INS based navigation in which the MAV global posi-
tion and velocity are directly obtained, indoor navigation 
needs to get these information by sophisticated algorithms 
based on relative sensing. Besides, indoor MAVs are usual-
ly designed to be small and having very limited payload, 
and this results in limited onboard computational power 
which makes the algorithms even harder to be implement-
ed. 

Especially, pose estimation is essential for many navi-
gation tasks, including localization, mapping and control. 
The technique used depends mainly on the available on 

board sensors, which in aerial navigation must be carefully 
chosen due to payload limitations. Through their low 
weight and consumption, most commercial MAVs incorpo-
rate at least one monocular camera, so VSLAM (Visual 
SLAM) techniques have been widely used [4, 5]. However, 
most of these works have been limited to small workspaces 
that have definite image features and sufficient sunlight. 
Furthermore, computational time is too high for the fast 
dynamics of aerial vehicles, making difficult to control 
them. On the other hand, despite their greater weight and 
consumption, range sensors such as RGB-D cameras or 
laser range sensors have also been used on MAVs due to 
their fast distance detection. 

The work presented in this paper is part of the 
ISLAMAV project –develop by the RobeSafe Group of the 
Electronics Department of the University of Alcalá– whose 
final objective is to fuse several sensors to improve the pose 
estimation for MAVs in indoor environments. As a strategy 
of the fusion algorithm, each of the sensors must be able to 
provide its own pose estimation to endow the system with 
some redundancy that allows it to work in different 
environmental conditions. In [6] we presented the whole 
architecture –which includes laser, vision and inertial 
sensing-, while in this paper we focus only on monocular 
camera and IMU fusion.  

To face the computational requirements, the system is 
composed of a flight and a ground unit, so that code can be 
distributed in different nodes using ROS (Robot Operating 
System).  

The study explained in this paper uses two monocular 
VSLAM algorithms to calculate the pose estimation (along 
with the measurements from the IMU) and the map of the 
environment: LSD-SLAM [7] and ORB-SLAM [8]. 

One of the main problems of monocular camera 
VSLAM algorithms is the fact that it cannot calculate the 
scale of the data of tracking and mapping. It leads to a 
system that is not working with real-scale data, what could 
affect the integrity of an aerial robot. To solve this problem, 
our system uses the data from the IMU to calculate the 
dynamic scale of the SLAM and return the real-time pose 
of the MAV without scale ambiguity.  

The remaining part of this paper is organized as follows. 
Section 2 discusses related work. Section 3 describes the 
overall system. The SLAM approach is explained in section 
4. The experimental results are presented in Section 5. Fi-
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nally, it is followed by the conclusion and future work in 
Section 6. 

II. RELATED WORK 

The most challenging part of SLAM for MAVs is to ob-
tain the 6DOF pose of the vehicle without odometry infor-
mation. To do this, different sensor sources have been sug-
gested, such as laser range sensors [9], monocular cameras 
[4], stereo cameras [5] or RGB-D sensors [10].  

Due to weight limitations (in addition to power con-
sumption), most of the works only use the onboard camera 
and IMU to apply VSLAM (Visual SLAM) techniques 
[11,12,13,14,15,16,17]. These systems demonstrate auton-
omous flight in limited indoor environments using VSLAM 
techniques that are out-dated, what results in inaccurate 
estimations and poor control results. The work developed in 
[17] has been the main reference for our research. But 
VSLAM algorithm, hardware architecture and some other 
improvements –as the scale calculation method, or the abil-
ity to include another SLAM stage based on laser- have 
been implemented. 

In this work, up-to-date VLSAM algorithms are fused 
with measurements from the IMU to solve the SLAM 
problem in complex indoor environments and robustly 
estimate the 6DOF pose of the MAV, using a distributed 
system with a flight unit and a ground station. Furthermore, 
the system is able to calculate the dynamic scale of the 
measurements, what makes it a scale-aware system. Due to 
it, the EKF and the control stage work with real scaled data, 
in contrast to other monocular VSLAM systems. 

III. SYSTEM OVERVIEW 

We address the problem of autonomous indoor MAV 
localization as a software challenge, focusing on high-level 
algorithms integration rather than specific hardware. For 
this reason, we use a low-cost commercial platform with 
minor modifications and an open-source development plat-
form (ROS), so that drivers of sensors and some algorithms 
can be used without development. 

A. Hardware Architecture 

Our quadrotor MAV, shown in Fig. 1, is the Bebop 
from Parrot [18], a lighter (400 gr) and smaller 
(33x38x3.6cm) drone than the earlier AR.Drone 2.0. This 
MAV can carry up to 200g of payload for about 5min and 
is equipped with a frontal “Fisheye” camera. It counts with 
another vertical camera, which is used for stabilization and 
horizontal velocity estimation. Besides, it has an ultrasonic 
altimeter, a 3-axis accelerometer, 2 gyroscopes and a ba-
rometer. It incorporates an onboard controller 8 times more 
powerful than the one from the AR.Drone 2.0 (dual-core 
processor Parrot P7), a quad-core graphic processor, flash 
memory of 8Gb and a Linux distribution. It is controlled 
via Wi-Fi (it provides its own net) and a SDK is available 
for application development.  

Although the Bebop comes with some software for 
basic functionality, it’s neither open-source nor easy to 
modify, and so we treat the drone as a black box, using only 
the available W-LAN communication channels to access 
and control it. 

 

Fig. 1.  Bebop Drone from Parrot, the commercial drone used as flying 
unit in our experiments. 

 
Specifically, these are the inputs/outputs we use in our 

SLAM system: 

• Video channel, to receive the video stream of the 
forwards facing camera, with maximal supported resolution 
of 640x368 and frame rate of 30fps. 

• Navigation channel, to read onboard sensor meas-
urements every 5ms. The data used by our system are: 

1. Drone orientation as roll, pitch and yaw angles 
(Φ̅, Θ̅, Ψ̅). 

2. Horizontal velocity in drone’s coordinate sys-

tem (𝑣𝑑𝑥, 𝑣𝑑𝑦), calculated onboard by an op-

tical-flow based motion estimation algorithm 
[19]. 

3. Drone height ℎ, obtained from the ultrasound 
altimeter measurements. 

• Command channel, to send the drone control 
packages, with the desired velocities of x and y axis; verti-
cal speed and yaw rotational velocity: 

  𝒖 = (𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇)           (1) 

B. Software Architecture 

As it’s shown in Fig. 2, the onboard controller and pro-
cessor perform sensor readings and basic control of the 
MAV. The ground station executes our SLAM system and 
also the control and planning strategies, the last ones being 
out of the scope of this paper. 

The SLAM system explained in this paper consist of 
two major components: (a) a monocular VSLAM system 
that obtains a 6DOF pose estimation (and a 3D map of the 
environment); (b) an Extended Kalman Filter that fuses the 
last estimation with the navigation data provided by the 
onboard sensors of the MAV to obtain a robust 6DOF esti-
mation of the position of the robot in the generated map. 
Besides, we have implemented a PID controller that allows 
the MAV to reach goal poses using the estimated position. 

IV. SLAM APPROACH 

In the following subsections, we describe the modules of 

the SLAM system. 
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Fig. 2. Software architecture of the ISLAMAV project (red modules are 
out of the scope of this paper). 

A. Monocular VSLAM 

After a study of the state-of-art monocular VSLAM al-
gorithms, we decided to implement two of these algorithms 
in our system: LSD-SLAM (Large-Scale Direct Monocular 
SLAM) and ORB-SLAM (Oriented FAST and Rotated 
BRIEF SLAM), both available as ROS packages. 

LSD-SLAM is a direct (feature-less) monocular SLAM 
algorithm which, along with highly accurate pose estima-
tion based on direct image alignment, reconstructs the 3D 
environment in real-time as pose-graph of keyframes with 
associated semi-dense depth maps. Due to the later imple-
mentation of the laser SLAM node and its 2,5D map, we 
are only using the 6DOF pose estimation of this algorithm 
as an input to the data fusion filter. We chose to use the 
laser’s map instead the one created by LSD-SLAM because 
of the better accuracy of the first one and due to the compu-
tational requirements needed by the last one. 

Fig. 3 shows the 3D map and pose estimation obtained 
by the LSD-SLAM technique in a room (up); and the 3D 
map and pose estimation obtained in the same room and 
across two corridors (down). Although results are good in 
this case, the system needs a high amount of visual charac-
teristics that are not available in dark zones, where it needs 
to be fused with other sensors. Furthermore, it is very sensi-
tive to pure rotational movement. 

On the other hand, ORB-SLAM is a feature-based mo-
nocular SLAM. ORB-SLAM estimates the drone's position 
in an extremely accurate way. It makes it perfect for be 
implemented over a system based on a MAV due to its fast 
and unstable dynamics. Furthermore, thanks to a smart 
development of the algorithm it is able to do a reliable loop 
closing.  

Fig. 4 shows the pose estimation obtained with ORB-
SLAM in the same environment of Fig. 3. It can be de-
duced that data from other sensors is needed to correctly 
estimate the position of the MAV. Although the tracking is 
correct in the room and along the corridor, it fails calculat-
ing the rotation angle after turning the corner. Furthermore, 
the changing scale makes to get a wrong estimation of dis-

tances (the length of the corridor after the corner is short-
ened). 

Fig. 5 shows the results obtained when the algorithm es-
timates de position of the camera around a square of 35m2 
approximately. The loop closure algorithm allows the 
VSLAM technique to accurately track the real time pose of 
the camera. 

As said before, one of the main problems when working 
with monocular VSLAM is scale ambiguity. As we need to 
work with a scale-aware system, we developed a method to 
calculate the scale based on onboard sensing. Due to it, our 
system works with real-scale magnitudes. To solve this 
problem, the system uses the altitude measurements from 
the altimeter and VSLAM for calculating the scale as fol-
lows: 

 𝑠𝑐𝑎𝑙𝑒 =
ℎ𝐼𝑀𝑈

ℎ𝑉𝑆𝐿𝐴𝑀
              (2) 

 𝑥𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑥𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (3) 

 𝑦𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑦𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒          (4) 

 𝑧𝑅𝐸𝐴𝐿−𝑆𝐶𝐴𝐿𝐸 = 𝑧𝑉𝑆𝐿𝐴𝑀 ∙ 𝑠𝑐𝑎𝑙𝑒           (5) 

The scale is calculated at each iteration of the node be-
fore the data fusion to avoid problems due to dynamic 
changes.  

Fig. 3. Results of LSD-SLAM. The first picture represents the translation of 
MAV's camera around a room. The second one represents the results of 
the translation around the same room and along two corridors. The green 
line indicates the track where the camera went over. The blue marks are 
the camera’s poses where the VSLAM algorithm captured a keyframe. The 
red marks correspond with the actual pose of the camera. The grey-scale 
shapes are the 3D map of the environment made by LSD-SLAM. 
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Fig. 4. Results of ORB-SLAM estimating the pose of the camera in the 
same environment of Fig. 3. 

 

 

B. Data Fusion with EKF 

In order to fuse all available data, we employ an Ex-
tended Kalman Filter (EKF). This EKF is also used to 
compensate for the different time delays in the system, as 
detailed described in [17], arising from wireless LAN 
communication and computationally complex visual track-
ing. 

The EKF uses the following state vector: 

𝝌𝑡 ≔ (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑧𝑡 , Φ𝑡 , Θ𝑡 , Ψ𝑡 , Ψ̇𝑡)
𝑇
∈  ℜ10  (6) 

where (𝑥𝑡 , 𝑦𝑡 . 𝑧𝑡) is the position of the MAV in meters (m); 
(𝑣𝑥𝑡 , 𝑣𝑦𝑡 , 𝑣𝑧𝑡)  the velocity in meters/second (m/s); 
 Φ𝑡 , Θ𝑡 , Ψ𝑡 the roll, pitch and yaw angles in radians (rad); 

and (Ψ̇𝑡)  the yaw-rotational speed in radians/second 

(rad/s). All of them are evaluated in world coordinates. In 
the following, we define the prediction and observation 
models.  

1) Prediction Model 

The prediction model is based on the full motion model 
of the quadcopter’s flight dynamics and reaction to control 
commands derived in [17]. A new calibration of the model 
parameters has been done for the Bebop Drone. 

The model establishes that the horizontal acceleration of 
the MAV is proportional to the horizontal force acting upon 
the quadcopter, that is, the accelerating force minus the 
drag force. The drag is proportional to the horizontal ve-
locity of the quadcopter, while the accelerating force is 
proportional to a projection of the z-axis of the drone onto 
the horizontal plane, which leads to:

𝑣𝑥𝑡 = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ cosΨ + sinΦ sinΨ))  7) 

𝑣𝑦𝑡 = 𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ sinΨ − sinΦ cosΨ))  (8)

 

Fig. 5. Results of ORB-SLAM estimating the pose of the camera around 
a square. 

 
Furthermore, the influence of the sent control command 

𝐮 = (𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇)  is described by the following linear 

model: 

  Φ̇𝑡 = −𝐾3(𝐾4𝑣𝑦̂𝑡 +Φ𝑡)          (9) 

  Θ̇𝑡 = 𝐾3(𝐾4𝑣𝑥̂𝑡 − Θ𝑡)          (10) 

  𝑣𝑧̇𝑡 = 𝐾7(𝐾8𝑣𝑧̂𝑡 − vz𝑡)         (11) 

  Ψ̈𝑡 = 𝐾5 (𝐾6Ψ̂̇𝑡 − Ψ̇𝑡)          (12) 

We estimated the proportional coefficients K1 to K8 
from data collected in a series of test flights. From equa-
tions (7) to (12) we obtain the overall state transition func-
tion:  

(
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𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ cosΨ+ sinΦ sinΨ) − 𝑣𝑥𝑡)

𝐾1(𝐾2(𝑐𝑜𝑠Φ 𝑠𝑖𝑛Θ sinΨ− sinΦ cosΨ) − 𝑣𝑦𝑡)

𝐾7(𝐾8𝑣𝑧̂𝑡 − 𝑣𝑧𝑡)

−𝐾3(𝐾4𝑣𝑦̂𝑡 +Φ𝑡)

𝐾3(𝐾4𝑣𝑥̂𝑡 − Θ𝑡)

Ψ̇𝑡

𝐾5 (𝐾6Ψ̂̇𝑡 − Ψ̇𝑡) )

 
 
 
 
 
 
 
 

 

             
(13) 

2) Inertial Navigation Observation Model 

This model relates the onboard measurements obtained 
through the navigation channel of the quadcopter described 
in section III.A –that we called “navdata” in Fig. 2– and the 
state vector. The quadcopter measures its horizontal speed 

(𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅) in its local coordinate system, which we trans-

form into the world frame (𝑣𝑥, 𝑣𝑦). The roll and pitch an-
gles measured by the accelerometer are direct observations 
of the corresponding state variables. On the other hand, we 
differentiate the height measurement and the yaw meas-
urement as observations of the respective velocities. The 
resulting measurement vector zNAVDATA and observation 
function  ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌𝑡) are: 
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 𝑧𝑁𝐴𝑉𝐷𝐴𝑇𝐴: = (𝑣𝑑𝑥̅̅ ̅̅ ̅, 𝑣𝑑𝑦̅̅ ̅̅ ̅, ℎ̅𝑡 − ℎ̅𝑡−1, Φ̅, Θ̅, Ψ̅t − Ψ̅t−1  )                
(14) 

 ℎ𝑁𝐴𝑉𝐷𝐴𝑇𝐴(𝝌𝑡) ∶=

(

 
 
 

𝑣𝑥𝑡𝑐𝑜𝑠Ψ𝑡 + 𝑣𝑦𝑡𝑠𝑖𝑛Ψ𝑡
−𝑣𝑥𝑡𝑠𝑖𝑛Ψ𝑡 + 𝑣𝑦𝑡𝑐𝑜𝑠Ψ𝑡

𝑧𝑡
Φ𝑡
Θ𝑡
Ψ𝑡 )

 
 
 

      (15) 

3) VSLAM Obvservation Model 

When the VSLAM algorithm successfully tracks a vid-
eo frame, its 6DOF pose estimation is transformed from the 
coordinate system of the front camera to the coordinate 
system of the quadcopter, leading to a direct observation of 
the quadcopter’s pose given by: 

  𝑧𝑉𝑆𝐿𝐴𝑀,𝑡: = 𝑓(𝐸𝐷𝐶𝐸𝐶,𝑡)    ∈  ℜ
6                    (16) 

 ℎ𝑉𝑆𝐿𝐴𝑀(𝝌𝑡) ∶= (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , Φ𝑡 , Θt, Ψ𝑡)
𝑇   ∈  ℜ6      (17) 

where 𝐸𝐶,𝑡  ∈  𝑆𝐸(3)  is the estimated scale-aware camera 

pose, 𝐸𝐷𝐶 ∈  𝑆𝐸(3)  the constant transformation from the 
camera to the quadcopter coordinate system and 𝑓 ∶
 𝑆𝐸(3)  → ℜ6 the transformation from an element of SE(3) 
to the roll-pitch-yaw representation (𝑥, 𝑦, 𝑧, Φ, Θ,Ψ). 

C. PID Controller 

A PID controller was developed in order to control the 
movements of the MAV based on the estimated position. A 

reference (x̂, ŷ, ẑ, Ψ̂) is needed as the desired position of the 

drone in relation with the surroundings. The EKF will bring 
the estimation of the pose, as shown in Fig. 6. The differ-
ence between the reference and the estimated pose is the 
error that will be minimized by the PID controller, by send-
ing to the MAV an appropriate control command 

u=(𝑣𝑥̂, 𝑣𝑦̂, 𝑣𝑧̂, Ψ̂̇), that is calculated in the following way: 

𝑣𝑥̂ = 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑠𝑖𝑛Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇]
              (18) 
𝑣𝑦̂ = −𝑠𝑖𝑛Ψ[𝐾𝑝(𝑥̂ − 𝑥) + 𝐾𝑑 ∙ 𝑥̇] + 𝑐𝑜𝑠Ψ[𝐾𝑝(𝑦̂ − 𝑦) + 𝐾𝑑 ∙ 𝑦̇]
              (19) 
 𝑣𝑧̂ = 𝐾𝑝 ∙ (𝑧̂ − 𝑧) + 𝐾𝑑 ∙ 𝑧̇ + 𝐾𝑖 ∙ ∫(𝑧̂ − 𝑧)   (20) 

Ψ̂̇ = 𝐾𝑝(Ψ̂ − Ψ)            (21) 
 

 It allows the algorithm to drive the MAV along a series 
of points in the map so it can follow a specific track. 

V. RESULTS 

For the purpose of testing our system with a reliable 
ground truth, we used a horizontal motion detector camera, 
which was installed in the ceiling of the test environment. It 
allows us to measure the XY movements of the drone using 
an external sensor. It is not possible to sense the altitude 
with this method, so we trust in the altimeter integrated in 

the MAV as the ground truth. This procedure allows us to 
contrast the position estimated by our algorithm with the 
true position detected by the external camera.  

ORB-SLAM was used during the tests which results are 
represented in Fig. 7, Fig. 8 and Fig. 9. We used this 
VSLAM algorithm instead of LSD-SLAM because we 
didn’t need the 3D map that LSD-SLAM could bring us –
so the computational requirements were avoided–. For this 
work the light conditions were optimal and we provided 
enough features to be extracted by the algorithm to ensure 
its performance. In other conditions –for example lack of 
features, where LSD-SLAM execution stands out–we could 
have chosen other algorithm. Furthermore, we realized that 
ORB-SLAM represents a more robust VSLAM technique 
facing pure rotational movement and fast translations. 

As said before, the PID controller allows the MAV to 
execute a path through a series of points. As a test, we 
made the drone to fly trying to recreate a square of 1mx1m 
–which is plotted as a green square in Fig 7, Fig. 8 and Fig. 
9. 

As a first test, we run the algorithm with each of the 
stages of the EKF separately –this is, only with prediction 
stage, only with IMU correction stage and only with 
VSLAM correction stage–, shown in Fig. 7. As we are not 
able to test the vertical precision of the algorithm –where 
the IMU performance stands out– the better tracking of 
prediction and VLSAM correction stages are obvious. To 
represent the bad performance of the algorithm when it’s 
using only the IMU measurements, Fig. 7 plots the results 
of the method with all its drift. Below, Fig. 8 includes the 
same graph but zoomed in order to make easy to see the 
differences between implementations. 

The performance’s improvement of the system with the 
addition of the stages summarized on IV-B is evaluated on 
the Fig 9. As shown, the system is most accurate with pre-
diction and both IMU and VSLAM correction stages. That 
precision is the cause of this project and why we are mak-
ing the fusion of VSLAM and IMU measurements –and as 
explained in VI, laser as a future new stage–. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper shows work in progress and initial results of 
an indoor SLAM system for MAVs that fuses measure-
ments from a monocular camera and onboard sensors to 
obtain a better estimation of the 6DOF pose of the MAV 
and a map (3D if LSD-SLAM is being used) of the local 
environment. 

This work provides a scale aware tracking and mapping 
system, which will be incorporated to the whole architec-
ture of the ISLAMAV project [6]. This will conclude in a 
system that could calculate in real time the position of the 
drone without drift and a 2.5D template or map of the envi-
ronment. This will be extremely useful to estimate the real 
position of the MAV. Furthermore, this system will be 
more robust facing problems as lighting changes. 

In future work comparisons between the performances 
of the system using each algorithm should be made and 
displayed.  

 

Fig.  6. PID Controller Blocks Diagram 
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Fig.  7. Zoom out of different stages implemented separately. 

 

Fig.  8. Zoom in of different stages implemented separately. 

 

 

 

Fig.  9. Performance of added stages. 
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4. Implementation of all the developed algorithms over a real 

platform. 

The implementation over a real platform and the reached results are deeply 

explained in the book of the thesis. 

5. Attendance to conferences and lectures. 

Some conferences and lectures that dealt with related fields of this work were 

attended. As they exposed innovative ideas in the state of the art it was interesting to 

listen and discuss about different concepts in order to develop the research in the field 

of this work.  

The writing proof of attendance to the conference of ICARSC is attached in the 

following. Some lectures from the conference were related to MAVS, but most of them 

put to use a laser as the main sensor for data fusion. Others have developed a system 

based on swarm strategies and the rest did not have results or their results were 

simulated. After it, the writing proof of attendance to the lecture given by the Dra. 

Marta Salas García (from Zaragoza’s University) about “Layout Aware Visual Tracking 

and Mapping” is attached too. The author of the work talked about the monocular 

camera-based system that she developed. It is a monocular VSLAM featured-based 

algorithm intended of work indoors that is able to recognize different rooms and know 

when is inside each of them. It reduces the computer requirements (the features that are 

not in use because they were extracted in a room where the camera is not at the moment 

are not processed). It also recognize windows and doors so it is able to avoid typical 

problems related with monocular VSLAM algorithms. 

I have also attended to the classes of the subject “Sistemas de Percepción” of the 

“Master Universitario en Industriales” in Alcalá University by Dr. Luis Miguel Bergasa 

Pascual; where the camera calibration procedures were explained.  

It is also expected the attendance to the Workshop “Robotics for Inspection and 

Maintenance (ROBIM)” that it is going to be held in Madrid the 7th of July. It is 

organized by the Robotics and Mechatronics Spanish Robotics Network (REDROM) 

and the Spanish Society for Research and Development on Robotics (SEIDROB). This 

Workshop includes several sessions about aerial robotics and computer vision for 

drones. 
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