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The development of high-power continuous-wave fiber lasers has triggered a

great interest in the phenomena of nonlinear pump spectral broadening and

continuous-wave supercontinuum (SC) generation. These effects have very

convenient applications in Raman amplification, optical fiber metrology and

fiber sensing. In particular, it was recently shown that pump incoherence has

a strong impact in these processes. In this paper we study experimentally

the effect of pump incoherence in nonlinear pump spectral broadening and

continuous-wave supercontinuum generation in optical fibers. We show that,

under certain experimental conditions, an optimum degree of pump

incoherence yields the best performance in the broadening process. We qual-

itatively explain these results and we point out that these results may have

important implications in continuous-wave supercontinuum optimization. c©

2006 Optical Society of America

OCIS codes: 060.4370,060.2380,190.5650,190.5890,290.5910

Nonlinear spectral broadening and supercontinuum (SC) generation in optical fibers

have been the subject of many studies in the last years. To date most of the experiments

have been performed using high peak power nanosecond, picosecond or femtosecond pulses

and/or special fibers such as photonic crystal fibers1 or dispersion-tapered fibers.2

Continuous-wave (CW) SC generation in optical fibers has attracted much attention in

the last years for the possibility of developing compact, high-quality sources for ultrahigh

resolution optical coherence tomography. Among their good properties, these sources exhibit
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extremely low coherence lengths (allowing resolutions of only several micrometers), high

power spectral densities (normally in the order of several mW/nm) and lower values of

relative intensity noise (RIN) than their pulsed counterparts.3,4 More recently, nonlinear

pump spectral broadening of CW beams has been demonstrated as an effective tool to

develop spectrally flattened Raman amplifiers.5

Previous experiments on CW spectral broadening and supercontinuum generation have

been performed both in standard telecommunication fibers6,7 and in highly nonlinear holey

fibers.8 However, until recently, little effort had been done to clarify the dynamics of the

process, and in particular the remarkable smoothness of CW SC spectra. Recent papers have

shown that these unique spectral features stem from the fission of the ”quasi” continuous-

wave input beam into a train of sub-picosecond pulses induced by the modulation instability

(MI).7,9, 10 These sub-ps pulses lead to the formation of optical solitons with inherently

random parameters, which self-frequency shift differently depending on their characteristics.

The resulting supercontinuum spectrum is hence the average of many different soliton spectra

which have suffered different frequency shifts. These works showed that the seed that starts

the broadening process is the incoherence of the source used as pump. Hence, a certain

amount of pump incoherence is necessary to trigger the modulational instability-induced

broadening process. However, it has been shown theoretically that the partial coherence of

the pump tends to stabilize the growth rate of the instability and, for a certain value of

incoherence, the instability is completely quenched.11 Hence, an experimental investigation

on these effects seems necessary to clarify the role of pump incoherence in nonlinear spectral

broadening and CW SC generation. In this paper we show experimentally, that under

certain experimental conditions (namely for a given value of the mean input
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power and center wavelength of the pump source used) there is an optimum value

of pump incoherence that yields the most efficient spectral broadening.

To investigate on the importance of pump incoherence on CW SC generation, we con-

struct three different experimental setups. The objective is to get three CW pump sources

with exactly the same emission wavelength and optical power characteristics but with differ-

ent spectral widths. We use these sources to pump a cascade of suitable optical fibers (the

same for the three cases) where they were effectively broadened to produce three CW SC

spectra.

The structure of the sources used is shown in figure 1. Source (a) is based on a fiber

ring laser based on erbium-doped fiber amplifiers (EDFAs) and a fiber Bragg grating (FBG)

filter. The central wavelength of the laser appears at 1553.5 nm, and the spectral width of

the laser is less than 0.02 nm. The optical power obtained at the output of the 1/99 coupler

is tuned to 200 mW. Source (b) is essentially similar in structure, except for the fact that

the filter used in this situation is a thin film filter whose pass-band spectrum is ten times

wider than the spectrum of the FBG. The output power and emission wavelength of this new

source are essentially similar to the ones achieved with source (a), but the spectral width is

approximately ten times wider (0.22 nm). Source (c) is composed of a light emitting diode

whose broadband emission is amplified and filtered by the filter used in source (b). The

output of the filter is re-amplified by a chain of EDFAs up to the power level achieved in the

previous sources. At the output of the 1/99 coupler, the power and emission wavelength of

source (c) are essentially the same as sources (a) and (b), except that the spectral width is

that of the filter used, approximately 1 nm. The polarization both inside and outside of the

ring is controlled, so as to ensure that the same conditions of light injection apply for the
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three structures used. By means of a fast detector and an oscilloscope, we observed

that no temporal intensity structure appeared in any of the three sources used.

To obtain nonlinear pump broadening and SC generation, it is necessary to use a fiber

with several kilometers and raise the power of the pump source up to the watt level. To obtain

an appropriate pump power to generate SC emission, we use a Raman amplifier that works in

a regime of strong depletion. This amplifier consists of a 6 km long standard single-mode fiber

(SMF) and a suitable wavelength division multiplexer. The pumping of the Raman amplifier

is done by means of a Raman Fiber Laser (RFL) tuned at 1455 nm, and whose power is

tunable between 0 and 2.1 W. The amplifier is configured in co-propagation to obtain

the highest degree of power transfer between the RFL and the signal at 1550

nm. The RFL exhibits random temporal intensity structures in the order of 100

ps, verified through autocorrelation measurements.9 However, these structures

should not be imprinted in the 1550 nm signal since there is a large walk-off in

the SMF between the pump at 1455 nm and the signal at 1550 nm (around 9

ns). The spectra of the pump signal before and after the SMF are shown in figure 2, both

spectra measured with an Optical Spectrum Analyzer (OSA) with a resolution of 10 pm.

For these measurements the RFL was switched off, so that there is no amplification of the

pump beam along the SMF. Since the propagation along the SMF is done well in the region

of anomalous dispersion, modulational instability should occur but with a narrow spectrum.

In fact, the signature of modulational instability at the output of the SMF is clear through

the presence of two symmetric noise bands in the case of source (a). We can also recognize

this feature in source (b), but this is by no means recognizable in the case of source (c). As

the RFL power is increased, more power is transferred to the wavelength at 1553.5 nm. At
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full power (2.1 W), the pump wavelength at 1553.5 nm has a power of 0.9 W, regardless of

the actual source used in the experiment (a, b or c).

The output of the SMF is delivered into a dispersion-shifted fiber (DSF) whose zero

dispersion wavelength appears at 1553.2 nm. Hence, the propagation of the pump beam

in this fiber is performed in the region of small anomalous dispersion. In these conditions

one should expect the buildup of broad MI gain bands at each side of the pump spectrum

(see figure 3(a)). As the power of the RFL is raised, more power is transferred to the line

at 1553.5 nm and the spectral broadening process becomes increasingly efficient. For a RFL

pump power of 2.1 W, the spectra of the SC emission obtained in the three cases are depicted

in figure 3(b). We can see that the widest spectrum is obtained for source (b), hence the

one with intermediate spectral width, whereas pump broadening is strongly inhibited with

source (c) due to its large incoherence. As explained above, for a given mean input

power of the pump source, some incoherence of the pump source used in SC generation

is necessary to initiate the spectral broadening, but too much incoherence quenches the MI

gain bands and inhibits the broadening process. For broader bandwidth pumps, which

exhibit shorter temporal structures, we can expect that larger powers will be

required for the evolution of the MI-amplified noise into solitons. Equivalently,

we can expect that for higher pump powers the optimum spectral width will

grow since broader bandwidths should yield shorter temporal structures, which

require more power to build-up.

On the other hand, it is interesting to observe the behavior of the shorter wavelength part

of the SC spectrum. While shifting their wavelengths, the Raman solitons described above

(that compose the longer-wavelength part of the SC spectrum) shed away some blue-shifted
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radiation in the form of dispersive waves,9 which explains the generation of the blue-side of

the continuum. It is interesting to note that this feature appears to be more developed in

the case of the more incoherent pump.

In figure 3(b) we can also observe a spectral peak appearing at a wavelength of 1660 nm.

The power of this peak is the same for the three sources, and it is the consequence of the

Raman-assisted four wave mixing process among the Raman fiber laser wavelength (tuned

at 1455 nm) and the center wavelength of the sources (all of them tuned at 1553.5 nm).

In conclusion, we have demonstrated that the supercontinuum spectra generated with

sources of identical mean output power and center wavelength but different spectral

widths are considerably different in terms of width and morphology. Moreover, we have

demonstrated experimentally that under certain experimental conditions there exists

an optimum value of pump incoherence that leads to the most efficient spectral broadening.

We believe that this is an important variable to take into account in the engineering of CW

SC sources.
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Figure 1. Experimental setup for the generation of CW SC with the following pump

sources with different spectral whidths: (a)a ring laser with a linewidth of 0.02 nm;

(b)a ring laser with a linewidth of 0.22 nm; and (c)three EDFAs, with a linewidth

of 1 nm. PC: Polarization Control; WDM: Wavelength Demultiplexer; ISO: isolator;

SMF: fibra estándar; DSF: dispersion shifted fiber; ATT: optical tunable attenuator;

OSA: Optical Spectrum Analizer; RFL: Raman Fiber Laser.

11



(a) (b)

Figure 2. Spectrum of the three pump soures with different coherence, of the ex-

perimental setups of figure 1: (a)adquired at the input of SMF, (b)adquired at the

output of SMF.

(a) (b)

Figure 3. (a)Spectrum of the three pump soures with different coherence, of the

experimental setups of figure 1, adquired at the end of DSF, without Raman ampli-

fication. (b)Spectrum of the SC generated with the three pump soures with different

coherence, of the experimental setups of figure 1 amplified by Raman (RFL pump

power = 2.1W).
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