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Resumen

En los últimos años, a los centros de transformación se les está proporcionando un equipamiento que
permite la gestión completa del mismo. De este modo, de producirse medidas erróneas podría ser muy
perjudicial para el normal funcionamiento del centro.

En este trabajo, empleando las técnicas de predicción de carga que permiten estimar cual será la carga
eléctrica en el futuro, será posible detectar dos errores sistemáticos de medidas diferentes.

Para la predicción de carga, se utilizará una red neuronal y el análisis de componentes principales
será empleado para comprimir la información.

Finalmente, el sistema desarrollado será probado con datos obtenidos del simulador implementado
por un distribuidor eléctrico y datos reales proporcionados por una compañía eléctrica.

Palabras clave: Predicción de Carga, Detección de Errores de Medida, Red Neuronal, Análisis de
Componentes Principales, Centro de Transformación.





Abstract

In recent years, Secondary Transformer Substations are being provided with equipment to allow the
full management of the substation. In this way, erroneous measurements could be very harmful for the
normal performance of the substation.

In this work, employing Short Term Load Forecasting (STLF) which allows to estimate what the
future electric load will be, it is possible to detect two different systematic measurements errors. For the
load forecasting, the chosen system is composed by an artificial neural network and principal component
analysis is employed for information compression.

Finally, developed system is tested with simulated data obtained from a simulator provided by a
Transmission System Operator and real data provided by an Electrical Company. Different levels of gain
and offset errors are detected.

Keywords: Short Term Load Forecasting, Measurement Error Detection, Artificial Neural Network,
Principal Component Analysis, Secondary Substation.





Extended Abstract

In last years, Secondary Transformer Substations are being equipped with different devices to head
substations toward an autonomous management environment. It is a powerful enhancement for the
secondary substations due to the maintenance simplification. However, it implies a high risk due to the
acquired measurements are employed for acting and an erroneous measurement could imply a danger in
the normal performance of the operation. In this context, erroneous measurement detection appears as
a powerful tool to prevent the secondary substation well performance.

The electronic instrumental transducers are the devices employed for acquiring the measurements and
the ones that could start taking erroneous measurement at any moment. The erroneous measurements
could be produced for a failure at the device or for device ageing. Usually a failure at the device implies
erroneous measurements that are easily detectable. However, there exists other kind of failure at the
electronic instrumental transducers that are difficult to detect. These systematic errors, namely, offset
and gain errors are harder to identify. Their detection in a reasonable time could result in an interesting
information for the electrical companies which could identify which device is failing and send an operator
to accomplish a field test and replace the device if needed.

The measurements collected at a secondary substation, presents a high degree of periodicity depend-
ing on the day of the week and it varies depending on the month. It makes possible that the power
consumption (directly related with the current consumption) for a day can be obtained as a relationship
between the load consumption of its historical measurements and the day of the week and month of the
year. The historical measurement set is made up of the hourly loads for the previous day, the ones for
the same day one week before and the ones for the same day two weeks before.

As the historical data set of each day to forecast presents 72 measurements and those measurements are
highly correlated, compression techniques can be employed for reducing the dimensionality which would
decrease the processing time in the rest of the project and would reduce the amount of information. With
this information, employing different techniques it is possible to forecast the measurements.

Different techniques for forecasting are compared. Firstly, artificial neural networks, which is based
on the neural processing commonly found in the human brain is studied. The artificial neural network
is employed with the historical compressed information as input and it is trained with known forecast
measurements. A particular artificial neural network is needed for each electronic instrumental transducer
to be studied. The results obtained employing artificial neural networks are also compared with the ones
obtained with two hybrid models compounds by the combination of artificial neural networks and singular
spectrum analysis.

Singular spectrum analysis consists on a powerful technique employed in the field of time series
analysis. This method consists on two stages: decomposition and reconstruction. In this method the
original series are decomposed in different components and then the time series is reconstructed with the
chosen components eliminating the noise. This technique can be employed as a filter before the artificial



xiv Extended Abstract

neural network (Hybrid method 1) or a different neural network can be employed for each principal
component and then with the reconstruction of the output of each artificial neural network the forecast
load are obtained (Hybrid method 2). It would gives two different forecast load concurrently which can
be combined according to the accuracy of each method by a weighted average taking the best of each
method.

Once the forecast load are obtained independently on the employed method forecasting method, the
forecast load are compared with the real measurements token by the electronic instrumental transducer.
The novel method for comparison described in this work can independently identify the level of gain
and offset error. It is possible due to the fact that the differentiation in both measured and forecast
measurements would only be affected by a gain measurements and once that the gain measurement error
is obtained, the offset error can be obtained. In this way a system that is able to independently detect
the level of gain and offset error can be implemented.

Then, the system needs to be tested against collected measurement data. For this purpose, a simulator
developed by a transmission system operator generates simulated measurements for a chosen period of
time. Therefore, employing a period of two years data, the data set is enough for being divided in three
group. First group is employed for training the forecast system. The second one two validate it and the
the third one to test it. All the process is carried out over MATLAB R2014a and once the forecast process
system is correctly trained, errors are manually injected over the next set of measurements. Different level
of gain and offset errors are injected, in some cases simultaneously and they are successfully detected.

Finally, the system is tested with real data that was provided from different real Secondary Trans-
former Substations. The quality of this data is not as good as the one obtained from the simulator but it
is possible to demonstrate how our system, by employing different averaging processes, is able to obtain
a good approximation to the real levels of gain and offset errors.

The described system developed during this work, has also been published in an open access journal.
Sensors - Open Access Journal (ISSN 1424-8220; CODEN: SENSC9), which belongs to the first quartile
in Instruments and Instrumentation area, was the chosen journal for publication. Sensors is the leading
international, peer-reviewed, open access journal on the science and technology of sensors and biosensors.
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Chapter 1

Introduction

1.1. Presentation

With the development of communication and information technology over past decades, broadband
communication network has been prevalent in power systems. As a protocol to regulate communication
within Substation Automation System (SAS), IEC 61850 is becoming popular in recent years [6].

Unlike traditional SAS where Intelligent Electronic Devices (IEDs) are hardwired linked to imple-
ment data acquisition and carry out their function, development of Electronic Instrumental Transducer
Electronic Instrumental Transducer (EIT) and prevalence of communication and information technology
have led to a revolution in SAS using this new protocol. In the network based SAS, current and voltage
are measured with EIT and the output is sent to secondary equipments as numerical signals via broad-
band communication networks. Thereafter, the numerical measurements can be utilized conveniently for
controlling and protection applications of SAS.

However, as two edges of a sword, the risk emerges is erroneous measurement that may be introduced
in the signal (voltage and current) acquisition and measurement transmission. Erroneous measurement
received by protection system may lead to its mis-operation. Generally speaking, the major causes are
mal-function of EIT and broadband communication network.

The voltages and current consumption are very related with their historical measurements data de-
pending on different factors. From the earliest times, it has always been a way to enable the physical
balance between the supply and the demand, allowing a reliable system operation. In this way, load
forecast is an antique issue in the electricity sector domain and many different load forecasting models
have been proposed during the last years.

In this work, by means of the load forecast techniques and comparing the forecast measurements with
the real ones, different systematic error levels can be estimated. Concretely, this work is focused on gain
and offset error detections and our developed system is tested against both simulated and real secondary
substations data.



2 Chapter 1. Introduction

1.2. Motivation and targets

The motivation of this work is to develop a system which is able to detect measurement errors in a way
that differs from the current ones. This system allows to control from the same place if any EIT is not
measuring properly and in this way, an exhaustive test could be carried out over this device. Therefore,
this system enhances the working of secondary substations in an economical way.

The main goals of this work are divided in two:

Develop a system able to estimate the offset measurement error level of different EITs.

Develop a system able to estimate the gain measurement error level of different EIT.

At the same time different secondary goals related with the main ones need to be satisfied as well:

Basing on the current literature, choose the load forecasting model that best fits our necessities and
implement it.

Test the system against simulated and real secondary substation data.

Develop a graphical user interface which allows the user to easily obtain the error levels.

1.3. Project report structure

This project report is divided in the following sections, firstly in chapter 2 the principles for the
development work are explained and the utilised tools are described. Then, in chapter 3, the developed
system is detailed and the principal features are given. Finally, in chapter 4 the results of testing the
developed system against simulated and real data are provided.



Chapter 2

Theoretical study

2.1. Introduction

This work employs different tools for achieving the described goals. These tools are explained during
this chapter and the different principles that this work is based on are detailed.

An introduction to each of the employed tools and principles are given and some references are also
provided if greater detail is required.

This chapter starts with the description of the state of the art where the work which are the most
relevant to this project are described and the most important features of each work are highlighted.

Then, the techniques and principles in which this project is based are described and some references
are given in case than a more exhaustive explanation is needed.

2.2. State of the art

In the past few decades, significant advances in communication and information technology have
accelerated the development and introduction of new broadband communication technologies in power
systems. This fact has facilitated the power system automation in substations and SSs. With the aim
of taking advantage of the current technology, there exists the IEC 61850 global standard for substation
automation which is becoming particularly popular in recent years [6].

Nowadays, the development of Electronic Instrumental Transducer (EIT) and the importance of com-
munication and information technology are quickly gaining acceptance in SSs. Consequently, traditional
Substation Automation System (SAS) where Intelligent Electronic Devices (IEDs) were hardwired linked
are being challenged by this new protocol standardized as IEC 61850. Different EITs carry out the
necessary current and voltage measurements sent as numerical signals, which are used to control and
protect the SSs. However, the advantages that this approach brings, could be negatively affected by the
existence of erroneous measurements in the process of the signal acquisition. This could lead to inefficient
operation of the protection system. [7].

On the other hand, the load profile and therefore the current consumption are strongly related to
their historical measurement data depending on different data depending on different variables, such
as economic factors and environmental data. With the aim of continuously maintaining the electricity
generation and consumption balance, several approaches to load forecasting have been proposed during
the last few years and some good examples can be found in [8] and [9].
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In this work, by using load forecasting techniques and comparing the forecast loads with the real
ones, different systematic error levels can be estimated, namely: gain and offset errors. The implemented
system is tested against data from both a SS simulator and electricity suppliers.

The scope of this work falls within two research fields: (1) short term load forecasting; and (2)
erroneous and false measurement detection. With this in mind, what follows presents the literature on
both fields.

As far as load forecasting is concerned, in literature various approaches have been proposed to solve
this issue. Load forecasting involves estimating the future electric load, for a forecast horizon, based on
the available information about the state of the system.

In this regard, this work focuses on short term load forecast (STLF) to estimate the load with a
horizon from one hour to one week. In [10] authors propose a new neural network approach to STLF
based on a new modified learning algorithm. The results obtained are compared with those from other
works [11][12] with the aim of evaluating the validity of the proposed approach. Despite of in some works
[13][14] environmental variables are also employed, in others [15][16] only the historical load consumption
is considered without a detrimental impact on the accuracy. The latter is the strategy adopted in this
book.

In [15] the authors propose a solution for STLF in microgrids based on a three-stage architecture,
which consists of a Self Organizing Map (SOM), a clustering via k-means algorithm, and a Multilayer
Perceptron (MLP). A set of 29 inputs are provided to the MLP: 24 with the hourly load of the previous
day; 2 for the day of the week of the previous day and 2 for the month of the previous day in the form
of sines and cosines; and lastly, one more input that represents the next day total load estimation is
provided. Finally, a total of 24 outputs corresponding to the estimated load for de forecasting day (d)
are obtained.

In [16] a different approach to one-day ahead load profile prediction is presented. Employing an
Artificial Neural Network (ANN) and testing three different scenarios with different inputs, the mean
absolute percentage of the forecasting error is reduced between 0.5 % and 16 %, depending on the nature
of the concurrent methodology used and the forecast day. The input information of the ANN depends on
the model implemented. Model I requires 72 inputs, namely: hourly load values of the last day available,
load values of the same weekday of previous week and load values of the same weekday 2 weeks before.
Adding three more inputs, 2 for the day of the week and 1 for normal or vacation, the authors define a
second model (Model II). In both models, 24 outputs are obtained which form the hourly predicted load
for the forecast day. These outputs and the 72 inputs of the first model could also be used as input of a
new ANN with a total of 96 inputs (Model III).

Regarding the topic of erroneous measurements detection, this problem has been addressed in different
papers over several topics, as in [17] where the sensor failure detection in process control systems is
discussed employing a neural network. In [18] a method based on fractal dimension is implemented for
sensor fault diagnosis. In [19] another neural-network-based algorithm is employed for sensor failure
detection for a flight control system.

Focusing in erroneous measurements in SSs, in [20] pattern identification is utilised to detect erroneous
measurements. In order to achieve high pattern identification precision within the time limit imposed
by the protection systems, a Radial Basis Function Neural Network (RBFNN) and an Orthogonal Least
Square (OLS) learning algorithm are implemented. For detecting these errors, measurements from all
the EITs are provided to the neural network as input and the only output of the neural network shows
the probability of fault occurrence.
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2.3. Utilized techniques

In this section, the most important tools that were employed in this work will be described. Firstly, in
2.3.1, it will be given a general vision of artificial neural networks which were used for the load forecasting.
Then, in 2.3.2 the statistical procedure of Principal Components Analysis which allows to compress the
information when the data is highly correlated is explained. Another method which can be employed in
forecasting , the Singular Spectrum Analysis (SSA) spectral estimation method is also described. Finally,
in 2.3.4, the description for the measurement errors is detailed.

2.3.1. Artificial Neural Network

In this subsection an overview of Artificial Neural Network (ANN) is given. The ANN, based on the
neural processing commonly found in the human brain, and its learning ability, has been widely used in
last years and it has been gaining more enthusiasts.

This technique is particularly interesting in problem categories that cannot be formulated as an
algorithm, moreover, in problems where many factors affect. [1]

On the other hand, a disadvantage of this distributed fault tolerant storage is the fact that at first
sight it cannot be realized what a neural network knows and performs or where its faults lie.

In this way, the main characteristics that are tried to adapt from biology to ANN are the following
ones:

Self-organization and learning capability

Generalization capability

Fault tolerance

A technical neural network consists of simple processing units, the neurons, and directed, weighted
connections between those neurons. The strength of a connection (or the connecting weight) between
two neurons i and j is referred to as wi,j .

A neural network is a sorted triple (N, V, w) with two sets N, V and a function w, where N is the
set of neurons and V a set {(i, j)| i, j ∈ N } whose elements are called connections between neuron i and
neuron j.

The weights can be implemented in a square weight matrix W with the row number of the matrix
indicating where the connection begins, and the column number of the matrix indicating, which neuron
is the target.

For a neuron j, the propagation function receives the outputs oi1,. . . , oin of other neurons i1, i2, . . . ,
in (which are connected to j), and transforms them in consideration of the connecting weights wi,j into
the network input netj that can be further processed by the activation function 2.1. Thus, the network
input is the result of the propagation function as can be seen in figure 2.1.

netj =
∑
i∈I

(oi · wi,j) (2.1)

Every neuron is, to a certain extent, at all times active. The reactions of the neurons to the input
values depend on this activation state. The activation state indicates the extent of a neuron’s activation
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Figure 2.1: Data processing of a neuron. [1]

and is often shortly referred to as activation. The threshold value represents the threshold at which a
neuron starts firing.

Finally, the output function of a neuron j calculates the values which are transferred to the other
neurons connected to j.

The neural network working can be seen as a system, there are different vectors that need to be
described: Firstly, the input vector x, which can be entered into the neural network. Then, depending
on the type of network being used the neural network outputs an output vector y. Finally, the training
sample p, which basically is an input vector which is used for training purposes because the desired output
vector t is known.

The learning strategy is an algorithm that can be used to change and thereby train the neural network,
so that the network produces a desired output for a given input.

Regarding to learning, a first classification can be done depending on the learning way:

Unsupervised learning: Only the input patterns are given; the network tries to identify similar
patterns and to classify them into similar categories.

Supervised learning: the training set consists of input patterns as well as their correct results in
the form of the precise activation of all output neurons.

Then, Another classification according to if the learning has any kind of feedback can be carried out:

Offline learning: Several training patterns are entered into the network at once.

Online learning: The network learns directly from the errors of each training sample.

Therefore, the best learning way needs to be selected depending on the desired application and the
information that is available. In this way, if a classification is needed, an unsupervised learning suits
better. In the case that a feedback could be interesting, where the system needs to adapt continuously
to new situations, an online learning is the best option.
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In this project, as the real measurements are available the day after, a supervised learning is used for
the load forecast. Furthermore, an online learning is chosen, where the system adapts to possible changes
in different fields that can affect the load demand such as economical or electricity prices.

In addition to the learning strategy, another factor that influences the working way is the algorithm
used for the ANN optimization. Between the different options of neural network topologies, there exists
several algorithms that can face the situation described in this work. In this case Levenberg-Marquardt
backpropagation alogrithm was selected:

Levenberg-Marquardt is a network training function that updates weight and bias values according
to Levenberg-Marquardt optimization. Levenberg-Marquardt is often the fastest backpropagation algo-
rithm, and is highly recommended as a first-choice supervised algorithm, although it does require more
memory than other algorithms.

Levenberg-Marquardt Optimization is a virtual standard in nonlinear optimization which significantly
outperforms gradient descent and conjugate gradient methods for medium sized problems. It is a pseudo-
second order method which means that it works with only function evaluations and gradient information
but it estimates the Hessian matrix using the sum of outer products of the gradients. [21]

The Levenberg-Maquardt algorithm has been chosen for the ANN training two reasons:(i) the number
of iterations required for the ANN training is lower in comparison to other techniques,(ii) this algorithm
always guarantees the convergence of the training process[22][23].

More information about the employed ANN in this work can be found in next chapter, in section
3.3.2. There the employed inputs, the outputs that are obtained and the number of neurons that were
used are explained.

2.3.2. Principal Component Analysis

The central idea of principal component Principal Component Analysis (PCA) is to reduce the di-
mensionality of a data set consisting of a large number of interrelated variables, while retaining as much
as possible of the variation present in the data set. This is achieved by transforming to a new set of
variables, the Principal Components (PCs), which are uncorrelated, and which are ordered so that the
first few retain most of the variation present in all of the original variables. [24]

PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight
their similarities and differences. Once these patterns are found in the data, it can be compressed, i.e.
by reducing the number of dimensions, without much loss of information [25]. This technique has been
successfully employed in different fields such as face recognition [26], voice processing [27] and in ultrasonic
sensor [3].

For the explanation, an scenario with two dimensions data will be supposed and the reason why this
have been chosen is because in this way different plots of the data to show what the PCA analysis is
doing at each step can be provided.

Step 1: Subtract the mean

For PCA to work properly, it is needed to subtract the mean from each of the data dimensions. In
this way, a zero-centered data is obtained that is the one used in the following steps.

Step 2: Calculate the covariance matrix

Covariance measures how much the dimensions vary from the mean with respect to each other. It is
always measured between 2 dimensions in the following way 2.2.
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Figure 2.2: Left: Original 2-dimensional input data. Right: The data is zero-centered by subtracting
the mean in each dimension. [2]

cov(X,Y ) =
∑n

i=1(Xi − X̄) · (Yi − Ȳ )
(n− 1) (2.2)

If the covariance between one dimension and itself is calculated, the variance is obtained(eq 2.3).

cov(X,X) =
∑n

i=1(Xi − X̄) · (Xi − X̄)
(n− 1) =

∑n
i=1(Xi − X̄)2

(n− 1) = var(X) (2.3)

If the data set has more than 2 dimensions, there is more than one covariance measurement that can
be calculated. For example, from a 3 dimensional data set (dimensions x , y , z) it could be calculated
cov(x,y), cov(x,z), and cov(y,z). In fact, for an n-dimensional data set, n!

(n−2)!·2 different covariance values
can be calculated.

An useful way to get all the possible covariance values between all the different dimensions is to
calculate them all and place them in a matrix.

Cnxn = (ci,j , ci,j = cov(Dimi, Dimj)) (2.4)

For example in a dataset with three dimensions, the covariance matrix will be as described in 2.5.

C =

 cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)

 (2.5)

Step 3: Calculate the eigenvectors and eigenvalues of the covariance matrix

Since the covariance matrix is square, the eigenvectors and eigenvalues for this matrix can be calcu-
lated. The eigenvalues are rather important, as they show useful information about studied data.

By this process of taking the eigenvectors of the covariance matrix, the lines that characterise the
data are extracted. The rest of the steps involve transforming the original data to be expressed in terms
of these characteristics lines.
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Figure 2.3: Eigenvectors u1 and u2 are obtained. It can be seen that u1 is the line that characterise the
data and u2 does not offer big information [3]

Step 4: Choosing components and forming a feature vector

Once eigenvectors are found from the covariance matrix, the next step is to order them by eigenvalue,
highest to lowest. This gives the components in order of significance.

At this moment, it can be decided to ignore the components of lesser significance. With this process
some information is lost, but if the eigenvalues are small, there not exist much information loss.

Leaving out some components, the final data set has less dimensions than the original. To be precise,
if originally the dataset has n dimensions, and therefore n eigenvectors and eigenvalues are calculated,
and then only the first p eigenvectors are chosen, then the final data set has only p dimensions.

Finally, a feature vector is formed, which is just the name that is given to a matrix of vectors. This is
constructed by taking the eigenvectors that are wanted to keep from the list of eigenvectors, and forming
a matrix with these eigenvectors in the columns.

FeatureV ector =
(
eig1 eig2 eig3 . . . eign

)
(2.6)

Step 5: Deriving the new data set

This is the final step in PCA, once the components (eigenvectors) that have been chosen to keep in
the data and a feature vector has been formed, the transpose of the vector is taken and multiplied it on
the left of the original data set, transposed.

FinalData = RowFeatureV ector ×RowDataAdjust (2.7)

2.3.3. Singular Spectrum Analysis

In the field of time series analysis, a powerful technique has been developed which is known as SSA.
This new technique can be employed in many practical problems such as the study of classical time series,
multivariate statistics, multivariate geometry, dynamical systems and signal processing.

SSA can be applied in different areas as mathematics, physics, economics or financial. It can also be
employed in other areas such as meteorology, oceanology, social science, market research and medicine.
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Generally, any time series could be considered as an example of an application of SSA [28]

The basic SSA method consists of two complementary stages: decomposition and reconstruction. At
the first stage the series are decomposed and at the second stage the original series are reconstructed and
those reconstructed series are employed for forecasting new data points. The main concept in studying
the properties of SSA is to know how well different components can be separated from each other.

SSA is described as a non-parametric technique that works with arbitrary statistical processes, inde-
pendently of if they are or not linear, stationary or Gaussian. Therefore, in opposition to the traditional
methods of time series forecasting, SSA method is non-parametric and makes no prior assumptions about
the data. Furthermore, SSA method decomposes a series into its component parts, and reconstruct the
series by neglecting the random (noise) component [29].

Considering a time series XT = (x1, . . . , xT ). Fix the window length L which needs to be smaller
than the half of the total length (L < T/2) and K is defined as K = T − L+ 1.

Step 1: Trajectory Matrix This step converts the one-dimensional time series XT = (x1, . . . , xT )
into the multi-dimensional series Y1, . . . , Yk with vectors Yi = (xi, . . . , xi+L−1). From this step the
trajectory matrix Y = [y1, . . . , yK ]:

Y = (yij)L,K
i,j=1 =


x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1
...

...
...

. . .
...

xL xL+1 xL+2 . . . xT

 (2.8)

The trayectory matrix Y has all the elements along the diagonal i+ j have the same constant value
which indicates that this matrix is a Hankel matrix.

Step 2: Singular Vector Decomposition (SVD) of Y Y T At this step the eigenvalues and
eigenvectors of the matrix Y Y T and the represent it as Y Y T = PDPT . Where D is the diagonal matrix
which contains the eigenvalues of Y Y T ordered in values and P is the corresponding orthogonal matrix
of eigenvectors of Y Y T .

D = diag(λ1, . . . , λL) (2.9)

where λ1 > λ2 > . . . > λL.
P = (P1, P2, . . . , PL) (2.10)

Step 3: Selection of eigenvectors: A group of l eigenvectors (1 ≤ l ≤ L) where each eigenvector are
written as Pi1, Pi2, . . . , Pil. The elementary matrix Xi is divided in different groups and the matrices are
summed within each group. In this context, the set of eigenvectors indices are described as I = i1, . . . , il.
The matrix Xi corresponding to the group I is defined as XI = Xi1 + . . .+Xil.

Step 4: Reconstruction of the one-dimensional series: Finally, a new matrix with each term
following X̃ = xi,j =

∑l
k=1 PikP

T
ikX as an approximation to X. Now, averaging over the diagonals of the

matrix X̃ the transition to one-dimensional series can be achieved.

2.3.4. Measurement Errors

A measurement error is defined as real value at the output of a measurement system minus the ideal
value at the input of a measurement system:
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∆x = xr − xi (2.11)

Measurement errors can be divided in two main groups [30].

Systematic error (bias) is a permanent deflection in the same direction from the true value and it
can be corrected. Bias and long-term variability are controlled by monitoring measurements against
a check standard over time.

Random error is a short-term scattering of values around a mean value. It cannot be corrected on
an individual measurement basis. Random errors are expressed by statistical methods.

In this work, only the systematic errors are taken into account and more concretely in two of them
which are gain and offset errors. In this way, the random errors are depreciated for the difficulties to
detect them.

In this way, the two measurement errors that this work focus on,namely offset and gain errors, are
described:

The offset error, as shown in figure 2.4, is defined as the difference between the nominal and actual
offset points and for an ADC the offset point is the midstep value when the digital output is zero. The
offset error in percentage is compared against the full scale and this error affects all codes by the same
amount.

Figure 2.4: Offset error [4]

The gain error, as shown in figure 2.5, is defined as the difference between the nominal and actual
gain points on the transfer function after the offset error has been corrected to zero. The gain point is
the midstep value when the digital output is full scale.

In the example shown in figure 2.6 it can be seen how the function changes with the different errors.
In this case, offset and gain errors are applied at the same time to a linear function. It can be noticed
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Figure 2.5: Gain errors [4]

how applying an offset to the function, the function moves through the ordinates axis. However, applying
the gain error, the slope of the linear function changes.

Figure 2.6: Gain and Offset errors [5]

These errors, in this work affect to the load measurements and this curve is not as simple as a linear
function and how gain and offset errors affect to this curve is shown in chapter 3.

2.4. Conclusions

In this chapter, the employed tools have been explained. An introduction to each one of the em-
ployed tools has been given and in the bibliography some documents were provided where more detailed
information can be found.
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As explained before three tools are used, PCA for compressing the data, ANN is utilised for obtaining
the load forecasting, and finally employing the theoretical principles of measurement errors it is possible
to develop a system that is able to satisfy our targets as it is described in chapter 3.





Chapter 3

Work development

3.1. Introduction

In this chapter the complete system that have been used for satisfying the different goals is explained.
Here, the tools and principles that were explained in the previous chapter are put together for developing
a system that is able to suit the targets.

Furthermore, some details of this concrete system are given and the choice of some important param-
eters is analysed.

3.2. Overview of the system

In this section a general view on the employed system is discussed. Figure 3.1 shows an overview of
the system. The available information pertains to the historical measurements from different SSs. The
different electrical variables measured are: voltage, current, active and reactive power. However, for the
system considered in this paper, just the current historical measurements are used. This is due to the
fact that the equipment for current measurement has a big variability in the measurements what hinders
the measurement error detection.

Therefore, with the available information, the developed system needs to be able to detect the different
levels of gain and offset measurement errors. This system is divided into two steps for reaching the
complete goal:

In the first step, the available data is used for forecasting which the load consumption will be in
the next day (d) in an hourly basis (24 load are forecast per day).

In the second step, once that the real load measurements for the studied day (d) are available, they
are compared with the forecast ones and the level of error is estimated by means of the developed
error detection system.

In the first step, the data is prepared for be provided as input to an ANN. This process is explained
in subsection 3.3.2. These inputs are compressed by means of PCA which is explained in subsection 3.3.1
and therefore the neural network training requires less time.

In the second and last step, the output obtained from the ANN, and the real measurements that have
been obtained are compared by the method explained in section 3.5.
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Figure 3.1: Overview of the general system

3.3. Load forecasting

In this section, the method for the load forecasting is explained. The only data that is available is
composed by the historical measurements of a set of secondary substations. Following one of the method
employed in [16], the system is able to perform an acceptable forecasting, using only the historical
information. The chosen data for estimating what the hourly load in the day (d) will be is the following
one:

24 hourly load of the previous available day (d-1)

24 hourly load of the previous available day (w-1)(d)

24 hourly load of the previous available day (w-2)(d)

Day of the week (sine and cosine)

Month of the year (sine and cosine)

Therefore, a total of 72 samples corresponding to hourly loads are employed. As the 72 first samples are
very correlated between themselves, PCA technique can be employed to reduce the number of dimensions.
The principal components resulting from the PCA process are now provided to the ANN and 4 more
inputs corresponding to day of the week and month of the year is provided as well.

Input1 = sin

(
day

7 · 2 · π
)

(3.1)

Input2 = cos

(
day

7 · 2 · π
)

(3.2)

Input3 = sin

(
month

12 · 2 · π
)

(3.3)

Input4 = cos

(
month

12 · 2 · π
)

(3.4)
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The day of the week and the month of the year are provided in sine and cosine ways due to the fact
that in this way the range of values is between −1 and 1 and the difference between the last value and
the first one is not high.

Therefore, the input vector that is provided to the ANN is composed by 4 inputs plus the number of
principal components returned from the PCA process. A sketch of the system is shown in figure 3.2.

Figure 3.2: Description of the Load Forecasting system
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3.3.1. Principal Component Analysis

As it was explained before, a set of 72 dimension data give historical information for forecasting. In
this way, if this data set is directly provided to the ANN, it slows down the neural network training. As
the 72 dimension shows the hourly load of different previous days, the correlation between the different
dimensions are studied. As it is shown in table 3.1 there is a big correlation between the hourly data.

Hour 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
01:00 1,00 0,92 0,85 0,81 0,77 0,80 0,72 0,57 0,57 0,68 0,72 0,68
02:00 0,92 1,00 0,95 0,91 0,88 0,88 0,79 0,63 0,57 0,67 0,77 0,78
03:00 0,85 0,95 1,00 0,96 0,93 0,93 0,86 0,70 0,61 0,69 0,80 0,82
04:00 0,81 0,91 0,96 1,00 0,97 0,95 0,90 0,76 0,67 0,73 0,83 0,84
05:00 0,77 0,88 0,93 0,97 1,00 0,96 0,93 0,81 0,73 0,76 0,84 0,86
06:00 0,80 0,88 0,93 0,95 0,96 1,00 0,94 0,81 0,73 0,77 0,82 0,84
07:00 0,72 0,79 0,86 0,90 0,93 0,94 1,00 0,93 0,85 0,84 0,84 0,85
08:00 0,57 0,63 0,70 0,76 0,81 0,81 0,93 1,00 0,95 0,87 0,78 0,78
09:00 0,57 0,57 0,61 0,67 0,73 0,73 0,85 0,95 1,00 0,93 0,78 0,74
10:00 0,68 0,67 0,69 0,73 0,76 0,77 0,84 0,87 0,93 1,00 0,89 0,82
11:00 0,72 0,77 0,80 0,83 0,84 0,82 0,84 0,78 0,78 0,89 1,00 0,94
12:00 0,68 0,78 0,82 0,84 0,86 0,84 0,85 0,78 0,74 0,82 0,94 1,00

Table 3.1: Covariance table between the first 12 hours of a day using data from a real secondary
substation. A total of 605 days were studied.

It is a good scenario to apply PCA and reducing the data dimensionality. Utilizing the PCA MAT-
LAB toolbox, and providing the previous available information (600 days approximately) the principal
component are obtained.

The percentage of the total variance for each of the 72 components is returned ordered by the per-
centage of variance as it is shown at table 3.2. In this table, it can be noticed that the first PCs represent
the information the most. However, the last PCs basically do not store information and therefore it can
be dispensable.

PC 1-12 PC 13-24 PC 25-36 PC 37-48 PC 49-60 PC 61-72
79,1659805 0,34157775 0,08589552 0,04661787 0,02618346 0,01320213
4,84705933 0,31395501 0,07665263 0,04574963 0,02483364 0,01265725
3,32608959 0,26653706 0,07260811 0,04367215 0,02378294 0,01198498
1,96242628 0,22365902 0,07161773 0,04041543 0,02279032 0,01122793
1,80536065 0,21653948 0,06976929 0,03884886 0,02239577 0,00986127
1,67388064 0,19336858 0,06536597 0,03622134 0,02057482 0,00958681
0,89809079 0,16982107 0,06310965 0,03521733 0,01976735 0,00675311
0,62905314 0,13307761 0,06097508 0,0329981 0,01906753 0,00660815
0,5643196 0,12855429 0,05772813 0,03116253 0,01790833 0,00572152
0,47962091 0,11613771 0,05729455 0,02998113 0,01643708 0,00488968
0,39390509 0,1081835 0,05507329 0,02918008 0,01611361 0,00438262
0,37754167 0,09333693 0,05269626 0,02783014 0,01447645 0,0040363

Table 3.2: Principal Components percentage of variance: In this table the percentage of variance of
each of the 72 Principal Components are represented.

The more PCs are not considered, the faster the neural network training is, but more amount of
information is lost. Taking these points into account, it was decided to keep the enough number of PCs
to keep the 97% of the variance. As shown in the example, this would mean to keep the first 19 PCs. In
this way and at this concrete example, the number of dimensions is reduced from 72 to 19 whit just a
lost of a 3% of variance. In the different cases the number of dimensions is reduced from 7 dimensions
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(simulator data) to 29 dimensions (real SSs data).

3.3.2. Artificial Neural Network

As described previously, the ANN receives the output PCs obtained from the PCA procedure and 4
more inputs divided in:

Day of the week (sine and cosine)

Month of the year (sine and cosine)

These inputs are stored in a matrix of n×m dimensions where n is the reduced number of inputs (11
to 33) and m is the number of samples (600 to 800 depending on the number of employed days). A target
matrix is as well created with 24 ×m dimensions which stores the real hourly load values measured in
the day d.

Each matrix is divided into two sub-matrix. The value p represents the portion that is stored in the
first sub-matrix (0.8-0.95). The first sub-matrix is an n× (m · p) matrix and the second sub-matrix is an
n× (m · (1− p)).

The first sub-matrix is used for the neural network training which also is divided in three groups for
training, test and validation of the ANN. With the second sub-matrix the ANN faces new data that has
not seen before. In this way, a case close to the real one is performed, where previous data is used for
training and then new data is received as days pass by.

At this time, providing to the ANN the first sub-matrix corresponding to input and target matrices,
the ANN is trained. This data is divided by the neural network Matlab toolbox in three groups. Firstly,
a group corresponding the 60% of the data for the real training, 20% for the testing and the final 20% for
the validation. Indicating the number of neurons and the algorithm, the train assigns the corresponding
weight to each neural connection for reaching the closest to the target with the given inputs.

The ANN used in this paper is a three-layer perceptron with a single hidden layer since it is the most
frequently employed in forecasting and time series due to its performance [31]. The output and the input
signals are related by the following equation:

y = ϕ

 n∑
j=1

xj · wj − θ

 (3.5)

where y is the output, xj represents the input data, wj expresses the weight that is associated with
each xj , and θ is the threshold. Finally, ϕ is the transfer function that usually is represented as:

ϕ = 1
1 + e−x

(3.6)

The Levenberg-Maquardt algorithm has been chosen for the ANN training two reasons:(i) the number
of iterations required for the ANN training is lower in comparison to other techniques,(ii) this algorithm
always guarantees the convergence of the training process[22][23].

Taking into consideration that every EIT to be checked by the described system generates its own
data, the ANN differs between the different EITs, hence the importance of selecting the algorithm that
best provides accuracy and fast convergence in equal measure.
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An important issue is to define the number of neurons of the hidden layer since this significantly
affects the performance of the network in terms of execution time and accuracy. In this regard, an
iterative process which consists in carrying out different tests is used. Varying the number of neurons of
the hidden layer from 1 to 100 and comparing the performance for each iteration, the ANN that minimizes
the test error is composed of a 15-neuron hidden layer.

Figure 3.3: MATLAB toolbox GUI for neural training

For adjusting the number of neurons, after several tests where the error was measured using different
number of neurons for the same data, it was shown that the best result was given with a hidden layer
of 5-20 neurons as it can be seen in figure 3.4. This error is calculated using the second sub-matrix, the
forecasting for the day d, is estimated using the previous information and the Mean square error (MSE)
is calculated comparing the forecast load against the real load in day(d).

MSE = 1
n

n∑
i=1

(Ŷi − Yi)2 (3.7)

where n stands for the total number of samples, Y represents the actual load value and finally Ŷ

corresponds to the forecast value.

3.4. Error Measurement Detection

3.4.1. Errors identification

Once that the load forecasting has been carried out and the new measurements for the day (d) are
available, the error measurement detection process can start. Firstly, the different errors that can be
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Figure 3.4: Mean absolute square error depending on number of neurons

detected with this system are described. These errors are systematic ones and they are classified in two
different types:

Offset error

Gain error

3.4.1.1. Offset Error

As it was explained in section 2.3.4, an offset error affects all codes by the same amount and focusing
in the secondary substation measurements, an offset error would affect as it is shown in figure 3.5.

In this way, the load measurement that is received (Measured load) could be represented as the load
measurement with no error (Ideal load), plus a constant which represents the offset error (β):

MeasuredLoad = IdealLoad+ β (3.8)

3.4.1.2. Gain Error

As it was explained in section 2.3.4, a gain error affects depending of the measured value and focusing
in the secondary substation measurements, a gain error would affect as it is shown in figure 3.6.

In this way, an offset error could be represented as:

MeasuredLoad = IdealLoad · α (3.9)

3.4.1.3. Error combination

In some cases, both errors could appear at the same time which makes more difficult to identify the
level of each one of the errors. In that case the Real load is represented as:
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Figure 3.5: Offset error -5%

MeasuredLoad = (IdealLoad · α) + β (3.10)

3.4.2. Errors detection

Regarding their presence, offset and gain errors can occur simultaneously, which greatly hinders the
error detection. In this context, both errors must be detected independently. Interestingly, the system
described in this paper performs well under worst-case scenarios such as the occurrence of both errors
with different signs.

The most general possible scenario is considered when both errors appear at the same time as described
in the following equation:

mlp(t) = (ilp(t) · α) + β (3.11)

where mlp represents the measured load profile, ilp is the ideal measurement load profile, i.e. when
no error occur, and α and β represents the gain and offset error, respectively.

By using the strategy described previously, the forecast load profile (flp(t)) can be estimated. Since
the process of forecasting introduces a random error (ef (t)), equation 3.11 can be rewritten as:

mlp(t) = ((flp(t) + ef (t)) · α) + β (3.12)

= flp(t) · α+ ef (t) · α+ β (3.13)

It goes without saying that the better the load prediction, the smaller the error introduced. However,
this error can be neglected on account of the fact that it is a random error with mean 0. Therefore, by
using different averaging processes, equation 3.13 can be reformulated as:
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Figure 3.6: Gain error -5%

mlp(t) = flp(t) · α+ β (3.14)

Differentiating both terms in equation 3.14 leads to equation 3.15:

∆mlp(t)
∆t = ∆(flp(t) · α+ β)

∆t = ∆flp(t)
∆t · α (3.15)

Then, the following equation can be obtained by solving for α:

α = ∆mlp(t)/∆t
∆f lp(t)/∆t

= ∆mlp(t)
∆f lp(t)

(3.16)

Finally, substituting the gain error into equation 3.14, and solving for β leads to 3.17:

β = mlp(t)− flp(t) · α (3.17)

The proposed system is able to estimate the value of gain and offset error independently. As there exist
a considerable variability in the offset and gain measurement error estimation, the recursive least squares
algorithm with forgetting factors (FRLS) is employed for filtering. This algorithm has been extensively
utilized in the time-varying system as in [32] where a novel recursive least squares with forgetting factors
algorithm was developed.

With this process, the system is able to estimate the value of gain and offset error independently
and therefore if an error remains during a period of time, out of a defined threshold range, it alerts of a
misbehaviour of the measurement device.
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3.4.3. Real system description

In this subsection, the details for the real employed system described before are given. Firstly, it is
supposed that the data provided does not contain any offset or gain error because that data is employed
for training the ANN and then the errors are injected manually over the data. In the real case, this data
is used for the network training, and the new one would be analysed for detecting the error levels.

The complete system was developed in MATLAB R2014a and the standard functions available in
Matlab libraries were employed for file reading, data processing, principal component analysis, artificial
neural network and process system.

In this work, as the information available is supposed to not contain any error, the errors are included
manually as described in equation 3.10. In this way, the “Ideal Data”, is transformed in a “Real Data”
with errors and this is the data that the system receives.

As the data and the forecast data could present some variability in the measurement or experimental
error samples (outliers), which would be very dangerous for the differentiation, a first averaging between
5 consecutive samples is done. This average could be considered as a digital filter which well employed
improves greatly the forecasting results.

As it was described in the previous section, for the process, it is needed to differentiate the “Real
Load” and the forecast one. In this way, the differentiation is applied over an interval of time. After
different tests, the interval of time which was selected is 7 days. This differentiation is highly important
for the gain level error successfully detection.

With the goals of reducing the forecasting error contribution to this system and smooth the deriva-
tion curves, a second averaging of 2 samples is done in both, differentiated forecasting curve and
differentiated real load curve.

Finally, division is done for obtaining the gain value, for each of the n different samples of the two
differentiated curves and therefore n values of gains are obtained. The values that are higher than
200% (2) or smaller than 50% (0.5), are depreciated. With the other ones, the gain estimated value
is the median of all these values.

This process is done with every one of the studied hours, and therefore a different result of gain error
can be estimated for each hour. Finally, for avoiding false alarms a filtering process is carried out. As
mentioned before this filtering is carried out by a recursive least squares algorithm with forgetting factors
(FRLS) where the forgetting factor utilised was 0.83. This factor was decided by comparing the
obtained filtered curves at different forgetting factor. This factor was chosen because is considered the
one that gives a good relationship between filtering false alarms and fast detection of the measurement
error.

For making it easier, some of the parameters explained above can be modified by means of the
developed GUI which is explained in appendix A.

3.5. Forecasting optimization with SSA and ANN combination

As it has been described in section 3.3 the more accuracy the forecast process has, the better results
in erroneous measurements detection is obtained. In this way, a hybrid system between SSA and ANN
is also developed.

Hybrid methods between SSA and ANN can be a good combination in terms of load forecasting. In
this work, two different topologies have been implemented.
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3.5.1. Hybrid Model 1: SSA filtering

In this model, SSA has be employed for data decomposition and then select exclusively the components
that have a considerable amount of information and they are employed for reconstruct the filtered original
information in a time series array. Concretely, a total of 50 principal components are employed to
reconstruct the original data.

In this way the noise is eliminated and the information that arrives to the ANN, which conserves the
structure explained in 3.3.2, is cleaner which can improve the forecasting result in terms of forecasting
errors.

The output obtained from the SSA process is a time series array which needs to be restructured
for providing the correct input to the ANN. Following the structure of 3.3.2 it is needed a total of 76
dimensions. Unlike PCA where the set of information was compressed reducing the number of dimensions
and that was the input to the ANN, here SSA does not compress the information and the 76 dimensions
are employed as input.

3.5.2. Hybrid Model 2: Principal Component separated ANNs

In this second method, the time series information is decomposed by the SSA method. The information
to decompose is at a first step analyzed to detect which principal components contain valuable information
and which ones contain noise. In this second method, each of the principal components that contain
valuable information, has its own trained ANN.

This personalized training for each ANN associated to each principal component, follows the same
data structure as the previous models. It means that the data contained in every principal component is
restructured for creating a 76 dimensional data with the information for the historical data (72 dimensions)
and the day of the week and the month of the year. The main goal in this hybrid model is to forecast
the value for each principal component in the required hour. the output of the different ANN gives
the forecast values for all the valuable PCs which are reconstructed to get the forecast values that are
employed in the measurement error detection.

3.5.3. Hybrid Model Combination

The two hybrid models described in previous section provide two forecast concurrently. It was noticed
that both of forecast method could be combined and in this way one of the method can reduce the other
method error. It would prevent the over or underestimation of any of the two models. For comparing
both methods, the Mean Absolute Percentage Error (MAPE) indicator is employed which was especially
designed for prediction accuracy and it is described by

MAPE = 1
n
·

n∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ · 100 (%) (3.18)

where Ai stands for the actual value and Fi represents the forecast value. The MAPE for each of the
previous hybrid model was analysed and it returned an averaged MAPE of 3.99 % for the Hybrid model
1 and a MAPE of 5.15 % for the Hybrid model 2. The first idea for the combined method is to employ
the average between the two forecast data set, and the MAPE was reduced to 2.68 %. The value of 2.68
% results a great improvement against the two method separately. However, a different approach was
developed where the average would be inversely weighted to the MAPE value related which each model.
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By employing this weighted average, the MAPE value was slightly improved and it was reduced to 2.60
%.

In Fig. 3.7 the real measurements are compared with the forecast measurements obtained with
hybrid models 1 and 2. It can be seen how the real measurement is found between the two forecast
model. Representing as well the forecast measurements obtained through the hybrid model combination
it can be realised of the forecast improvement which was reflected through the MAPE value.

Figure 3.7: Hybrid models forecast comparison

The different MAPE values were collected and represented on a bar diagram in Fig. 3.8 which the
weighted average hybrid model combination appears as the method with best accuracy.

Figure 3.8: Hybrid models forecast MAPE comparison

However, as the load forecasting method described in subsection 3.3, presents a less data dimension-
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ality which facilitates the computational time and the data storage, it will be the one employed hereafter.

3.6. Conclusions

In this section the complete process carried out for completing this work has been explained and the
main details of the system have been given.

Starting with the load forecasting process and describing the main tools utilized. The PCA techniques
that were used for information compression and then the artificial neural network that was developed
using the information that the PCA returns, the estimation of which the future load will be is provided.

Once that the forecast load has been predicted and the real data for the corresponding day is available,
they both are compared with each other and the different levels of gain and offset error are estimated.
The comparison is made by differentiation and with different averaging processes.

Finally, a forecasting optimization by the combination of ANN and SSA has also been studied showing
forecasting enhancement but incrementing the computational and storage costs.

In this way, basing this system in the theory described in chapter 2, it has been possible to detect the
different errors as it will shown in next chapter 4.





Chapter 4

Results

4.1. Introduction

In this chapter, the developed system described in chapter 3 is tested against simulated and real data.
In this way, it is possible to demonstrate if the developed system meets the targets that were proposed
at the beginning of the book and if it is able to detect the gain and offset measurement errors.

Then, the validation of the results is done with different indicators such as MAPE, Normalized Mean
Bias Error (NMBE) and Normalized Root Mean Square Error (NRMSE) and with the absolute error
between the detected error and the real one. This verification is applied over both real and simulated
data.

4.2. Data bases

For the testing of the system, two different data bases are employed, one with simulated data and the
second one with real data.

As far as the first data set is concerned, the simulator has been developed by a distribution operator
and it provides simulated measurements from different SSs located in the Henares corridor, in Madrid.
This simulator provides 4 measurements: Voltage, Active Power, Reactive Power and Current. For
this work just the current measurement is used which is the parameter that has been employed in the
literature and because the equipment for current measurement has a big variability in the measurements
what hinders the measurement error detection.

A simulated data set based on current measurement is therefore obtained every 15 minutes for two
years (from January 1st, 2010, to December 31st, 2011.

Simulator provides the data in raw text, and it was needed to import that data, using different scripts
to Matlab. Once that it was imported it was possible, by doing an averaging process between every
4 measurements, to obtain an averaged hourly load. In the simulated case the data is very correlated
between the days which enhances our system.

On the other hand, the system has also been tested against a real data set obtained from different
SSs located in the Community of Madrid. This data set contains information half-hourly recorded from
several SSs in the period ranging from January 1st, 2010 to December 31st, 2011.

Although both data sets contain data acquired with different frequency, they are analysed in the same
way since only hourly average values are taken into consideration.
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Figure 4.1: Distribution operator simulator screenshot

In the real data, some measurements are missing. That is very harmful to our system, due to the
fact, that a missing measurement affects to the current day, to the day after, to the same day in the week
after and to the same day two weeks ahead. For solving this, when this occurs and when it is possible,
the measurement that was taken one year before is replaced.

4.3. Experimental Scenario

Both data bases are analysed in the same way, independently if they have 2 or 4 measures per hour,
an averaging process is carried out for just obtaining one value per hour and applying the same process
to both data.

Then, the data is divided in two subgroups, most data is employed for training (80-95%) and the rest
is used for testing. In the data employed for training (80-95%), the neural network also divides the data
in 3 subgroups for training, validate and testing the network. This division was set to 60 % for training,
20% for validation and 20% for testing. In his work, it was decided to make a previous division because,in
this way, it is closer to the real case, where it is needed to train the neural network with the available
information and once it has been trained, it faces new data of the following days for detecting the error
level in those days.

Under normal operating conditions, the current measurement accuracy including all the equipment
involved in the measuring process (mainly current transformer and measurement equipment) is below
±2%. The contribution of the current transformer is not higher than ±1% [33] [34] and the measurement
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equipment [35] can include between ±0.5% and ±1% error depending on the manufacturer.

Within this context, for ensuring that a systematic measurement offset or gain error is occurring
without generating false alarms, a minimum threshold of ±5% is considered. Nonetheless, the results
have been analysed until a maximum measurement error of ±10%.

4.4. Experimental Results

In this section, the system is tested against both simulated and real data. It shows the result of the
different steps of the system, the forecast measurements are depicted against the real ones and in this
way it is possible to appreciate how is the forecasting system working.

Then, different levels of gain and offset errors between -5% and -10% or between +5% and +10% are
applied and our system returns an estimated error value per hour. As it is known that the error remains
in the same level, the estimated error levels are filtered by a recursive least squares with forgetting factor
for ensuring than an error is occurring and not false alarm are appearing.

As it will be shown there exists a big difference between working with the real data or the simulated
one and it can be perceived in the results. The real data is less correlated between the days, and in
this way it provides difficulties to carry out a good load forecasting. If the system is not able to have
an acceptable prediction, the forecasting error increases and in this way the process explained in the
previous chapter where the forecasting error was depreciated for estimating the gain and offset error will
not be completely valid and our targets will not be completely satisfied.

It is also important to highlight that as a forecasting error is always appearing and it is a random
error, there is variability between the error detected in the different days. This variability is also higher
in the real data case, due to the fact, that the forecasting error is higher as well. That is the reason why
it was decided, as explained before, to approximate with the line that best fits these points.

4.4.1. Simulated data

In the following figures, the results obtained from testing the described system against simulated data
are depicted. Firstly, in figure 4.2, all the measurements taken from 2 years (730 days) are shown.

Then, in figures 4.3, 4.4 and 4.5 it is shown a comparison between the forecast and the real measure-
ments in different ways. Figures 4.3, 4.4 compare forecast and simulated measurements at the same hour
during all available days that have not been used for training. Finally, figure 4.5 depicts the 24 hourly
loads forecast for a day d and the available measurements for that day, in this case the error between the
forecast and the simulated measurement data can be neglected.

As the prediction is good in the simulated case, the error detection will give a better result. In both
cases, the output that shows the level of error has variation between the days although the included error
is the same. That is the reason why the output of error level for all the different days will be approximated
with the line that fits best. This line will determine the error level that the EIT is experiencing.

Finally, there are several figures (4.6, 4.7, 4.8, 4.9) where the results with different error levels (offset
and gain errors applied simultaneously in some cases) are shown. As there is not a considerable forecast
error in simulated data, the error detection will be acceptable.
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Figure 4.2: CT 1779 - approximately two years measurements: Measurements taken during 815 days are
depicted in this figure.

Figure 4.3: CT 1779 - Forecasting at 01.00h: During available days the measurement at 01:00h and the
forecast for that hour are depicted.
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Figure 4.4: CT 1779 - Forecasting at 13.00h: During available days the measurement at 13:00h and the
forecast for that hour are depicted.

Figure 4.5: CT 1779 - Day Forecasting: Simulated load for the day after the training and forecast for
that period are depicted.
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(a) Gain error detection

(b) Offset error detection

Figure 4.6: CT 1779 - Gain 0% & Offset 0%: Detecting 0% gain and 0% offset errors during the days
after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.7: CT 1779 - Gain 0% & Offset 10%: Detecting 0% gain and 10% offset errors during the days
after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.8: CT 1779 - Gain 10% & Offset -10%: Detecting 10% gain and -10% offset errors during the
days after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.9: CT 1779 - Gain 7% & Offset -6%: Detecting 7% gain and -6% offset errors during the days
after training.
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4.4.2. Real data

In the following figures, the results obtained from testing the described system against real data are
depicted. Firstly, in figure 4.10, all the measurements taken from exactly 2 years (730 days) are shown.
In this figure, it can be seen how the real data is not as good as the simulated one, some days do not have
measurement for different kind of issues. In the cases where it was possible, the missing measurements
were substituted by the measurements that were taken one year before.

Then, in figures 4.11, 4.12 and 4.13 it is shown a comparison between the forecast and the real
measurements in different ways. Figures 4.11, 4.12 compare forecast and real measurements at the same
hour during all available days. Finally, figure 4.13 depicts the 24 hourly loads forecast for the day d and
the available measurements for that day. In these figures it can be seen a higher difference between the
forecast and the real data, which gives a bigger forecast error and will increase the difficulty for detecting
the measurement error.

Finally, there are several figures (4.14, 4.15, 4.16, 4.17) where the results with different error levels
(offset and gain errors applied simultaneously in some cases) are shown. As there is a considerable forecast
error in real data, the error detection will not be so accurate as it was in the simulated case.

As the prediction is worse in the real case, the error detection will give a worse result. In both cases,
the output that shows the level of error has variation between the days although the included error is
the same. That is the reason why the output of error level for all the different days will be approximated
with the line that fits the best. This line will determine the error level that the EIT is experiencing.
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Figure 4.10: CT 50004 - two years measurements: Measurements taken during 715 days are depicted in
this figure. In black real measured data and in gray the substituted data where there was missed data.

Figure 4.11: CT 50001 - Forecasting at 01.00h: During available days the measurement at 01:00h and
the forecast for that hour are depicted.
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Figure 4.12: CT 50001 - Forecasting at 13.00h: During available days the measurement at 13:00h and
the forecast for that hour are depicted.

Figure 4.13: CT 1779 - Day Forecasting: Simulated load for the day after the training and forecast for
that period are depicted.



4.4 Experimental Results 41

(a) Gain error detection

(b) Offset error detection

Figure 4.14: CT 50001 - Gain 0% & Offset 0%: Detecting 0% gain and 0% offset errors during the days
after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.15: CT 50001 - Gain 0% & Offset 10%: Detecting 0% gain and 10% offset errors during the
days after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.16: CT 50001 - Gain 10% & Offset -10%: Detecting 10% gain and -10% offset errors during the
days after training.
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(a) Gain error detection

(b) Offset error detection

Figure 4.17: CT 50001 - Gain 7% & Offset -6%: Detecting 7% gain and -6% offset errors during the
days after training.
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4.5. Analysis of the Results

For comparing the results that were obtained, an error analysis strategy has been implemented [36].
The MAPE, the NMBE and the NRMSE indicators are used to compare the results. These indicators
show accuracy in terms of percentage and can be expressed as:

MAPE = 1
n
·

n∑
i=1

∣∣∣∣Ei −Ai

Ei

∣∣∣∣ · 100 (%) (4.1)

NMBE = 1
n
·

n∑
i=1

(
Ei −Ai

Ei

)
· 100 (%) (4.2)

NRMSE =

√√√√ 1
n
·

n∑
i=1

(
Ei −Ai

Ei

)2
· 100 (%) (4.3)

where n denotes the number of samples, E stands for the error level injected and A represents the
hourly detected error level.

Under normal operating conditions, the current measurement accuracy including all the equipment in-
volved in the measuring process (mainly current transformer and measurement equipment) is below ±2%.
The contribution to the error of the transformer is not higher than ±1% [33] [34] and the measurement
equipment [35] can introduce between ±0.5% and ±1% of error depending on the manufacturer.

Within this context, for ensuring that a systematic measurement offset or gain error is occurring
without generating false alarms, a minimum threshold of ±5% is considered. Nonetheless, the results
have been analyzed until a maximum measurement error of ±10%.

MAPE and NRMSE indicators show that there exists considerable variability in the result. However,
the NMBE indicator is smaller, showing that the estimated error level oscillates around the right value.
As a consequence, by using a recursive least squares algorithm with forgetting factor, the measured error
estimation is filtered. Likewise, a comparison between the current and the filtered estimated errors in
absolute value is drawn:

abs =
∣∣E − F ∣∣ (4.4)

where abs represents the absolute estimation error, E stands for the injected error level and F is the
mean value of the filtered estimated error level along the different tests. Table 4.1 and 4.2 summarize
the MAPE, NMBE, NRMSE and absolute errors indicators for gain and offset error in simulated data,
respectively. Table 4.3 and 4.4 show the same indicators for real data.

In order to carry out this test and in an attempt to enhance the versatility of this system, simulated
and real data from five EITs located in different SSs is used. In this regard, 20 different tests are set for
each EIT, which involves training a new ANN for each test.

Finally, with the aim of showing average results for each studied error under simulated and real
scenarios, an averaging process over the tests and over the different EITs is performed.

Table 4.5 details the results obtained when both offset and gain errors occur simultaneously. In the
author’s view, these results represent an excellent initial step toward the implementation of the system
in open substation nodes for protection and security purposes.
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Table 4.1: Error indicators for different gain error levels - Simulated data

Simulated Data - Gain
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

-10 % 20,915 17,021 25,857 1,705
-9 % 21,629 16,357 27,001 1,472
-8 % 22,871 15,718 28,786 1,264
-7 % 24,970 15,353 31,574 1,076
-6 % 27,958 14,930 35,393 0,895
-5 % 32,548 14,694 41,157 0,741
+5 % 34,706 11,770 42,908 0,586
+6 % 29,723 11,694 36,719 0,697
+7 % 26,193 11,641 32,346 0,814
+8 % 23,615 11,558 29,150 0,920
+9 % 21,613 11,508 26,644 1,039
+10 % 20,068 11,513 24,702 1,152

Table 4.2: Error indicators for different offset error levels - Simulated data

Simulated Data - Offset
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

-10 % 7,327 0,595 9,155 0,073
-9 % 8,146 0,903 10,170 0,085
-8 % 9,170 1,243 11,442 0,103
-7 % 10,486 1,662 13,078 0,122
-6 % 12,241 2,208 15,256 0,129
-5 % 14,664 2,839 18,269 0,140
+5 % 14,870 3,845 18,732 0,195
+6 % 12,487 3,354 15,742 0,202
+7 % 10,761 2,955 13,573 0,207
+8 % 9,455 2,633 11,931 0,211
+9 % 8,426 2,362 10,636 0,212
+10 % 7,597 2,132 9,592 0,213

Table 4.3: Error indicators for different gain error levels - Real data

Real Data - Gain
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

-10 % 29,476 11,584 35,924 1,156
-9 % 32,658 11,662 39,666 1,047
-8 % 36,603 11,560 44,344 0,925
-7 % 42,024 11,582 50,772 0,809
-6 % 48,871 11,561 58,913 0,690
-5 % 58,561 11,506 70,410 0,574
+5 % 62,436 12,890 74,999 0,641
+6 % 52,737 13,088 63,483 0,784
+7 % 45,686 13,172 55,110 0,924
+8 % 40,366 13,091 48,779 1,045
+9 % 36,504 13,218 44,210 1,188
+10 % 33,438 13,407 40,601 1,344

4.6. Conclusions

Regarding to the obtained results and their analysis, it is possible to obtain some conclusions that
have been previously described and now they will be highlighted.

Firstly, it should be noted that there is a big difference between the simulated and the real data
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Table 4.4: Error indicators for different offset error levels - Real data

Real Data - Offset
Error Level MAPE (%) NMBE (%) NRMSE (%) Abs (%)

-10 % 12,932 0,568 16,230 0,072
-9 % 14,365 0,621 18,026 0,072
-8 % 16,153 0,681 20,268 0,071
-7 % 18,448 0,750 23,143 0,069
-6 % 21,503 0,829 26,968 0,066
-5 % 25,773 0,919 32,313 0,064
+5 % 25,576 3,271 31,930 0,146
+6 % 21,472 3,053 26,788 0,168
+7 % 18,517 2,822 23,090 0,183
+8 % 16,282 2,600 20,295 0,192
+9 % 14,527 2,394 18,103 0,198
+10 % 13,111 2,209 16,337 0,000

Table 4.5: Combined error detection in real data

Offset Error Level
-10% -7.5% -5% 0% 5% 7.5% 10%

-10% -8.9 -10.3 -8.9 -7.8 -8.9 -5.3 -8.8 -0.4 -8.5 4.5 -8.5 7.0 -8.5 9.5
-7.5% -6.7 -10.2 -6.7 -7.7 -6.7 -5.2 -6.6 -0.3 -6.3 4.6 -6.3 7.1 -6.3 9.5
-5% -4.5 -10.1 -4.5 -7.6 -4.5 -5.1 -4.4 -0.2 -4.1 4.7 -4.1 7.1 -4.1 9.6
0% -0.1 -9.9 -0.1 -7.4 -0.1 -4.9 0.0 0.0 0.2 4.9 0.3 7.4 0.3 9.8
5% 4.2 -9.7 4.2 -7.2 4.2 -4.7 4.4 0.2 4.6 5.1 4.6 7.5 4.7 10.0
7.5% 6.4 -9.6 6.4 -7.1 6.4 -4.6 6.5 0.3 6.8 5.2 6.8 7.6 6.8 10.2

G
ai
n
E
rr
or

Le
ve
l

10% 8.5 -9.5 8.5 -6.7 8.6 -4.5 8.7 0.4 8.9 5.3 9.0 7.8 9.0 10.3

Gain error level detected Offset error level detected

results. This difference is not only due to the fact that the real load data is less correlated between the
days than the simulated one, it is also due to the fact that there are lost measurements for different issues
and it is very harmful to the system developed in this project.

Secondly, the results show that there exists a big variation between the detected measurement errors
and the actual error as it is shown with the Mean Absolute Percentage Error indicator. This variability is
caused because the forecast error also has a high variability between the days and that is why there exists
a bigger MAPE in the real data than in the simulated one. However, it was found that if a same level
of error is maintained during several days, the error measurement detection tends to variate or oscillate
around the right level of error.

Finally, as a solution for the issue exposed above, approximating the measurement error detection to
the line that fit the best and making a comparison between the line and the real error, it was obtained
acceptable results for both simulated and real data with less than 1 % of absolute error detection.

In this way, it can be concluded that the system developed in this work, presents results that are
suitable with the targets that were proposed at the beginning of this work.





Chapter 5

Conclusions and future works

5.1. Conclusions

In this project, a new system for detecting measurement errors in secondary substations has been
implemented. In this way, it is possible to detect an EIT misbehaviour while it is connected and operating.

With the historical measurements taken from an EIT and implementing a model of short term load
forecasting the forecast based on an Artificial Neural Network, the forecast measurements for the day (d)
are obtained. Comparing these ones with the actual measurements, the offset and gain level errors can
be obtained independently.

In this way, important information is obtained, letting the operator to know which device could be
given bad measurements, and the verification tests could be realised for the substitution. Therefore, the
EIT replacement process is improved.

The described system developed here has also been published in Sensors - Open Access Journal which
belongs to the first quartile in Instruments and Instrumentation area [37].

5.2. Future work

This work could be continued in the following several ways:

Firstly, the better forecasting model is used, the less forecast error will appear and a better measure-
ment error detection will be obtained. In this way a comparison between different forecasting methods
could be carried out.

Different errors could be try to be detected as well with the comparison between the forecast data
and the actual ones, as an example, abnormal random error could be tried to be detected.

Finally, using different data, such as, temperature, wind speed, economic rates, etc. A better load
forecast may be implemented and the error detection could be improved.





Chapter 6

Budget

This chapter will describe the theoretical cost of the whole project. It will include the material cost
and the professional fees. Finally, the taxes will be added for getting the total cost of the project.

6.1. Material cost

In this section, the cost of the different materials (hardware and software) are detailed and the VAT
(21%) is included.

Table 6.1: Material Costs (AVT included)

Item Unit Price (euro) Units Total Cost(euro)
Hardware Windows PC i7 2.93 GHz 600 1 600

Hardware total cost 600

Software

MATLAB 120 1 120
ANN Toolbox (included in MATLAB) 0 1 0
PCA Toolbox (included in MATLAB) 0 1 0

LaTeX Editor 0 1 0
Software total cost 120

Material total cost 720
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6.2. Professional fees

In this section the different Professional fees are calculated. This fees are calculated as gross incomes.
It includes all the professional activities related with the project.

Table 6.2: Professional fees (gross salary)

Activity Price (euro) Time (months) Total Cost (euro)
Engineering 1500 4 6000

Typing 1000 1 1000
Fees Total Cost 7000

6.3. Total cost

Table 6.3: Additional costs and total

Material Cost 720
Professional fees 7000

Printing 90
Transport 250

Total 8060
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Appendix A

User guide

A.1. Introduction

A graphical user interface was developed for easing the operator handling. The GUI was developed
employing the MATLAB GUI Layout Editor and it is compatible with both simulated and real data.
This interface is divided in five parts that are depicted in figure A.2. Every part is now explained:

Figure A.1: Interface parts depiction
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1. In this part, the data base (Real or simulated) is selected, depending on the chosen data base,
different secondary substations will appear in the second pop up menu for being picked. At this
point, the system is trained and once that the train is finished different offset and gain error levels
can be introduced.

2. Here, different advanced parameters can be modified. As the modification affects the results of the
training, after modifying any parameter it is needed to retrain the network loading new data. Every
parameter will be explained in more detail in section A.2.

3. In this panel the results will be shown and the value of the performance will be shown. This
result compares the actual error value with the estimated error value by different processes that are
explained in section A.2.

4. A button is available for showing the last created graphic whenever it is wanted to be seen and a
dialogue box where the program will return information of how the process is going.

5. Finally, when it is required, the graphics will be shown in the two axis available on the left part.
The top axis contains depicts the gain error and the bottom one shows the offset error.

A.2. Manual

For running the interface, select “Interfaz1” as current folder in MATLAB and write “Interfaz1” in
the command window. The GUI will be as depicted in A.2.

Then it is needed to select one data base. Two data base are available:

Simulator: This data base is composed by simulated data, and three different secondary substations
will be available.

Real data: This data base is composed by real data, and nine different secondary substations will
be available for analysis.

One of the available secondary substations needs to be selected and internally the system will be
trained. The data of the substation is shown and once that the process is finished, the dialogue box will
shown the message “Done”.

At this point, the graphics and the result for 0% gain error and 0% offset error can be depicted by
clicking on the “Show graphics” button.

If we are not happy with the result, the different advanced parameters can be modified until getting
an acceptable result. The different parameters needs to be explained:

High threshold: It determines the maximum acceptable gain value for an hour expressed as parts
per unit, in case that the obtained value is higher than this threshold it will not be included for the
gain level detection.

Low threshold: It determines the minimum acceptable gain value for an hour expressed as parts
per unit, in case that the obtained value is lower than this threshold it will not be included for the
gain level detection.

Averaging 1: This parameter is used for select the number of hourly samples to average before the
differentiation process.
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Figure A.2: Example of interface working

Averaging 2: It indicates the number of averaging samples once that the differentiation has been
carried out.

Averaging 3: This parameter indicates the number of days that are averaged for determine the gain
value.

Neurons: This parameter allows the user to determine how many neurons will be in the hidden
layer of the ANN. It is recommended to use a value between 10 and 20 neurons.





Appendix B

Specifications

For this project, the following specifications need to be satisfied:

Computer with approximately 4 Gb of free space. The minimum requirements are not specified but
for a proper work of the program it will be necessary a powerful computer. In this case a Windows
PC i7 2.93 GHz was employed.

The following software was needed for completing the project:

1. MATLAB R2014a with the ANN and PCA toolboxes

2. LaTeX editor
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