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ABSTRACT 

 
Kerr effect accounts for the change in refractive index of a material with the light intensity and appears in all known 

optical materials. In this work we analyze Kerr effect in structured superluminal media (e.g some specific types of 

resonators). We show that Kerr effect in these structures can be cancelled or even reversed (in comparison with the Kerr 

effect of the material composing the structure) depending on the group index of the structure. We also discuss some 

possible realizations of structured superluminal media.   
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1 INTRODUCTION 

 

Along the last years, the focus of slow light research [1,2] has shifted from the creation of delay lines to the 

enhancement of light-matter interactions. Light-matter interactions are weak in most optical media in 

conventional conditions. Slow light structures allow a large reduction of the group velocity of the light signals 

travelling through them, and, as a consequence, a strong confinement of the electromagnetic field and a great 

enhancement of light-matter interactions. These interactions include various linear and nonlinear effects 

(including Kerr effect) as well as spontaneous emission. In the particular case of Kerr effect (change in 

refractive index with light intensity), the combination of longer transit times and higher power densities 

increase the efficiency of the effect by a factor proportional to the square of the group index. For example, 

many photonic crystal waveguides can exhibit group index values close to 100 over 1 THz bands. In these 

waveguides, one may expect Kerr effect enhancement factors up to 10000 over this bandwidth, which is 

extremely remarkable. Such enhancement factors are impossible to achieve otherwise (e.g. engineering of the 

waveguide effective area). As a result of this new approach, one can envisage many devices arising from the 

possibility of doing practical (low-power) nonlinearities in conventional materials and fabrication processes. 

 

While this interest in slow light structures has been thoroughly discussed, there has been little or no discussion 

on the possibility of actually cancelling Kerr effect in superluminal media. Kerr effect cancellation is 

interesting from a technological point of view since all known optical material exhibit Kerr effect. While, for 

typical applications, Kerr effect is negligible, in some applications it turns out to have a detrimental impact. 

As an example, the precision of fiber-optic gyroscopes is known to be severely impaired by Kerr effect. Fiber-

optic gyroscopes rely on optical fibers, which show usually a positive Kerr coefficient, this is, the refractive 

index grows with the intensity. The basic structure of these devices relies on a Sagnac interferometer. Non-
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reciprocal phase changes owing to rotation are recorded at the output of the device as a change in the 

transmission, and any reciprocal perturbation (temperature, etc) is cancelled by the structure itself. One of the 

main sources of error in these artifacts is that the coupling ratio of the coupler needed to develop the 

gyroscope never has an exact ratio of 50%. This carries as a consequence that the counter-propagating signals 

show different power levels. Due to the Kerr effect, this imbalance causes a non-reciprocal phase offset which 

is proportional to the power difference. Since the coupling ratio slightly varies, through the effect of e.g. 

temperature variations, the offset varies too, which at the end induces an indistinguishable signal variation 

from a rotation-induced signal. Air-core fibers have been proposed to solve this issue [3], however they 

introduce additional errors due to their imperfect coupling properties with conventional single-mode fibers.  

 

Using conventional perturbation theory [4], it can be shown that Kerr effect can be cancelled in media 

exhibiting ng=0, and reversed when ng<0. In this paper we discuss this possibility as well as possible 

structures that would allow achieving this situation. In particular, we will describe the observation of tunable 

superluminality in two types of fiber-optic based structures: phase-shifted chirped fiber Bragg gratings and 

lossy ring resonators. We will show, both theoretically and experimentally, that these two structures can 

exhibit group index values of zero or below over relatively small bandwidths. Furthermore, we will show that 

Kerr effect in these structures can indeed be cancelled or reversed over a certain power range. 
 

 

2 KERR EFFECT IN STRUCTURED SLOW/FAST LIGHT MEDIA 
 

Kerr effect in slow/fast light structures can be analyzed using simple perturbation theory [4]. This can be 

justified considering that Kerr effect generally causes extremely small refractive index changes. In this 

scenario, it can be shown that the effect of any refractive index change (n) can be accounted for by a 

corresponding shift in the dispersion relation, hence (k)  (k) +sn/n, where s is the carrier frequency, 

considered given in normal experimental conditions. The corresponding phase change caused at the carrier 

frequency can be simply derived from the deviation of the dispersion curve =dk/d·(sn/n)·L=snL/nvg. 

It is thus clearly visible that any refractive index change in these structures causes a phase change that is 

affected by a factor proportional to the group index. The origin of the quadratic enhancement of Kerr effect 

with the group index lies in the term n itself, which is also enhanced by a factor proportional to ng (the pulse 

in a slow light medium is spatially compressed, leading to higher peak intensities by a factor of ng).  

  

It is then clear that high group indexes allow strong enhancements of the Kerr effect, a possibility that offers a 

large potential for the development of all-optical devices. This possibility has been largely commented upon 

in the literature. However no comment has been done for the situations in which ng falls below one or even 

below zero. In these conditions, the previous analysis also holds, leading to zero Kerr effect for ng=0 or 

reversed Kerr effect for ng<0. The possibility of actually cancelling the Kerr effect in an optical material is 

rather exciting, since all known optical materials exhibit Kerr effect. Although these conditions offers far less 

possibilities than the situation of large group index, it is both interesting from a fundamental point of view and 

also from a technological perspective. It is interesting to note that this group index dependence appears only 

in those cases known as structural slow light media (photonic crystals, resonators, etc). Kerr effect in material 

slow light media does not follow the same rules. In the next sections we will show, both theoretically and 

experimentally, different fiber-based structures that exhibit fast light and that seem suitable for Kerr effect 

cancellation.   

 

 

3 FAST LIGHT IN PHASE-SHIFTED CHIRPED FIBER BRAGG GRATINGS 

 

In this section we demonstrate experimentally that a wide range tuning of the group delay of a chirped Fiber 

Bragg Grating (CFBG) is possible, including situations of superluminal propagation. It is based on the 



creation of a temporary phase-shift introduced locally by a wire heater [5]. This setup is particularly attractive 

for the implementation of simultaneously wavelength and group index-tuneable devices. The phase-shift can 

be accurately controlled through the current applied on the wire and the wavelength can be tuned by moving 

the wire along the CFBG. Another remarkable feature of this setup is the capability to switch between strong 

delay or advancement depending on the phase-shift value. Using a 10 cm long CFBG, we report 

experimentally delay/advancement of more than 1000 ps in a frequency range of a few GHz. Although it is 

difficult to determine the exact group index achieved (since the reflection is distributed), this delay variation 

far exceeds the maximum delay corresponding to the physical length of the device, which, in the case of 

advancement, implies group index values below 0.  

 

Our experiments were realized on a 10 cm-long linearly chirped FBG written into a hydrogen-loaded single-

mode fiber through a 1070.040 nm-period phase mask characterized by a chirp rate of 49 pm/cm. As shown in 

Fig.1, the CFBG reflection spectrum presents a 3 dB bandwidth of 0.71 nm while its dispersion is around 

1400 ps/nm. The grating is not apodized, which explains the strong ripple on the group delay curve in the 

reflection band. All measurements were carried out using the optical vector analyzer CTe from Luna 

Technologies with a 3 pm wavelength resolution and a wavelength sampling set to 10 pm. In the setup, a NiCr 

wire heater (diameter of about 0.2 mm) is placed perpendicularly to the stripped CFBG. A voltage source and 

a variable resistor are used to control the temperature of the wire. Because of the thermo-optic effect, the 

refractive index of the fiber locally changes with the temperature of the wire heater. As a result, a phase shift 

is introduced in this region of the grating. Our experiments have revealed that a temperature elevation of 

about 150 °C yields a  phase shift.  

 

Figure 2 depicts the reflected amplitude and group delay evolutions when a 0.2 mm-wide region of the grating 

is heated. Figure 2(a) presents the results obtained for a phase-shift slightly smaller than . A notch of ~15 dB 

is induced in the spectrum at the phase-shift location. It results in a strong additional delay of ~1200 ps, which 

is about 200 ps higher than the maximum delay offered by the used CFBG. Fig. 2(b) depicts the results for a 

phase-shift slightly above . A negative variation of the delay reaching more than 1000 ps is induced in this 

case. Hence, at the same wavelength, a flip-flop between sub- and superluminal propagation is achievable in 

the notch. In both cases, the bandwidth of the notch is ~5 GHz (FWHM), which is quite common for phase-

shift devices. Also, one can change the working wavelength by moving the wire along the CFBG. Thus, the 

system allows both wavelength and delay tuning. 

 

Figure 3 displays the evolution of the group delay variation as a function of the phase-shift value. The latter 

was computed from the temperature reached around the NiCr wire using the relationship given in ref. [6]. 

Figure 3 clearly demonstrates the possibility to accurately tune the group delay variation, either positively or 

negatively. As shown in Fig. 2, the wavelength range in which the phase-shift occurs is characterized by a 

strong amplitude decrease. In practice, this amplitude distortion can be drastically attenuated by locally 

heating two closely-spaced sections of the CFBG. Indeed, thanks to the induced wavelength shift, one can use 

the first heated region to decrease the amplitude spectrum variation on the second one, while keeping constant 

the group delay variation. Figure 4 shows a comparison between a single heated configuration (Fig. 4a) and a 

double heated configuration (Fig. 4b – 13 mm of distance between heated regions) where the same delay is 

reached and the loss is highly reduced at the operating wavelength. The second configuration is thus more 

interesting to use in practice. 

 

Finally, let us mention that all our experiments are consistent with numerical simulations (not shown here) 

carried out using the coupled mode equations with parameters close to those of the experimental CFBG. 



  

Fig. 1. CFBG reflected spectrum and associated 

group delay evolution (light launched through 

the long-wavelength port).  

Fig. 2. Amplitude and phase spectra for a 0.2 

mm heated region yielding a phase-shift <  (a) 

and >  (b).   

  

Fig. 3. Evolution of the group delay as a 

function of the thermally-induced phase shift 

value. 

Fig. 4. Comparison between a single phase shift 

region (a) and two closely spaced phase shift 

regions (b) yielding the same delay. 

 

 

4 FAST LIGHT IN LOSSY FIBER-BASED RING RESONATORS 

 

In this section we perform a theoretical study of slow and fast light in lossy fiber ring resonators. We show 

that, depending on the coupling ratio and the losses in the resonator, the group delay of the ring resonator can 

be tuned from strong delay to strong advancement, including situations of negative group index. Furthermore, 

we also demonstrate theoretically that, when these structures are engineered to have zero group index, they 

also exhibit zero Kerr effect. 

 

 

 

 

 

 

 

 

 

 Fig.5: fiber-based ring resonator considered. Light travels from left to right. 
 

 

 

 

 

 

 



We consider the structure depicted in Fig. 5, i.e. the typical fiber ring resonator with a variable loss element 

inside. Our analysis of this structure is similar to the analysis done by Heebner et al. [7] for resonator-coupled 

waveguides. A transfer function can be found for the case of the lossy resonator: 
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Where  and a are, respectively, the coupling coefficient and the losses in the resonator. As expected, this 

transfer function leads to resonances in the spectrum with a periodicity given by 2nL/c. It can be easily 

shown that, when the losses exceed the coupling (undercoupling), negative group delays can be found at the 

resonances, while they remain positive in the opposite case (overcoupling). Fig. 6 displays the phase, modulus 

and group index response of the structure considered for the two cases mentioned, showing the different 

qualitative behavior between the overcoupled and undercoupled cases. 

 

 

  
gi(a) (b) 

 

Fig.6: phase, modulus and group delay of the resonator considered. The length of the resonator is set to 5 cm, 

coupling coefficient is 0.31 dB. In (a) the losses in the resonator are tuned to 0.17 dB while in (b) they are set 

to 0.43 dB. Refractive index is set to 1.45. Center wavelength is 1554 nm. 
 
 

By precisely tuning the losses in the above structure one can achieve zero group delay of close to any length 

of fiber followed by the resonator. As an example, we consider a section of 20 cm of fiber followed by the 

same resonator as in Fig. 6, in which the losses have been tuned to 0.82 dB. Fig. 7 shows the phase, modulus 

and group index of the structure considered, showing zero group delay over the resonance. The dashed line 

shows the same for a structure in which there has been an index elevation of 10
-7

, a typical value that could be 

achieved in a fiber through an intense beam. As it can be seen, there is a shift of the global phase response in 

these conditions (the FSR slightly changes by the same amount), but overall the response of the structure 

remains a zero phase change at the wavelengths of zero group delay, which is consistent with the above 

reasoning. Of course this holds many restrictions (it is only valid for a certain wavelength range), but it proves 

that Kerr effect can be cancelled through an intelligent structuration of the material. 

 

5 CONCLUSIONS 

 

We have shown that structured superluminal media can be engineered to show zero Kerr effect. We have 

shown two structures that exhibit fast light through plain structuration (not through material preparation). The 



implications of this are basic as well as technological, since all known optical media exhibit Kerr effect. 

Experimental demonstration of these effects is underway. 

 

 
Fig.7: phase, modulus and group delay of the resonator considered, after a 20 cm piece of fiber. The losses in 

the resonator are tuned to 0.82 dB. 
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