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Sanz, Patricia Álvarez, Paula Benito, Raquel de Sande, and Tamara Fernández for
their understanding and encouragement during these years.

A big thanks goes to my parents Casimiro and Marı́a del Carmen. Papá,
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Abstract

Automated Planning is concerned with finding a program of actions that given
an initial state reaches a desired goal. This program can be a simple sequence or a
more complex partially ordered collection of actions. When action outcomes are
deterministic and information is perfect, it is called deterministic planning. Sig-
nificant advances have been made in recent years in the size and complexity of
deterministic problems that can be solved with these planners. However, in real
problems, unexpected events may occur, actions may have unexpected outcomes,
and the state of the world may not be known with certainty. If a deterministic
planner is used to solve such problems, the execution of the plan may fail be-
cause the plan does not take into account the possible contingencies. Traditional
approaches to planning under uncertainty involve Markov Decision Processes,
which generates robust plans, but have high computational overhead. Other ap-
proaches to planning under uncertainty use contingency planning, translation
into deterministic planning, or determinization and replanning.

In recent years, planning-based solutions have been also used to solve goal
recognition problems. Goal recognition may be seen as the inverse of planning
since it is concerned with inferring an agent’s goals given some or all agent’s per-
formed actions. There are few planning-based approaches for goal recognition,
but this paradigm is still in its infancy.

The previous paradigms all have one thing in common: the dominant tech-
niques to solve their problems involve heuristic functions to guide the planning
search. For this reason, in this thesis, we investigate classical heuristics that deal
with action costs and introduce a novel domain-independent heuristic function
that computes more accurate estimates of cost and estimates of probability. The
approach involves a propagation of cost or probability plus Interaction informa-
tion through a plan graph. This heuristic guides a classical planner to low-cost
solutions, guides a probabilistic planner to high probability of success solutions,
and rapidly solves goal recognition problems.

VII





Resumen Ampliado

La planificación automática consiste en producir una colección de acciones o plan
que lleven a un agente desde un estado inicial a un objetivo. Esta colección puede
ser una secuencia simple o una secuencia más compleja parcialmente ordenada
de acciones. Se denomina planificación clásica cuando se cuenta con información
completa del problema y las acciones son deterministas. Durante los últimos años
se han conseguido significativos avances en la planificación automática, siendo
capaz de resolver problemas de considerable tamaño y complejidad. Sin em-
bargo, este enfoque no es efectivo a la hora de resolver problemas reales ya que
en este tipo de problemas pueden suceder eventos inesperados, la respuesta tras
realizar una acción no se puede predecir y como consecuencia el estado actual del
mundo no se conoce con certeza. Por lo tanto, la ejecución de un plan generado
por un planificador clásico ante un problema de la vida real podrı́a fallar al no
tener en cuenta dichas contingencias. Cuando se cuenta con información incom-
pleta del problema y/o las acciones no son deterministas se denomina planifi-
cación bajo incertidumbre. Tradicionalmente, estos enfoques hacen uso de Pro-
cesos de Markov para generar planes robustos, pero de alta sobrecarga computa-
cional. Otros enfoques de planificación bajo incertidumbre hacen uso de plani-
ficación de contingencias, traducción del problema con incertidumbre a un pro-
blema determinista o determinization y replanificación para resolver problemas.

En los últimos años, la planificación automática se ha sumado al área de estu-
dio del reconocimiento de metas, el cual se puede interpretar como la operación
inversa a la planificación ya que tiene como objetivo inferir la(s) meta(s) de un
agente tras observar parcial o completamente las acciones llevadas a cabo por el
mismo. Recientemente, se han aplicado técnicas de planificación para resolver
problemas de reconocimiento de metas, pero este enfoque está todavı́a en sus
comienzos.

Problemas de planificación clásica, de planificación bajo incertidumbre y de
reconocimiento de metas se pueden resolver mediante búsqueda heurı́stica, una
de las técnicas que más éxito ha tenido resolviendo estos problemas. Las fun-
ciones heurı́sticas más comunes en planificación automática calculan estimaciones
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de distancia en forma de coste o probabilidad de alcanzar el estado meta desde
un estado actual particular. Se denominan heurı́sticas admisibles a aquellas que
guı́an la búsqueda hacia soluciones óptimas. Es decir, que minimizan el coste o
maximizan la probabilidad. Estas heurı́sticas, a pesar de producir una solución
óptima, pueden no ser suficientemente informativas o ser de alto coste computa-
cional. Por otro lado, se denominan heurı́sticas no admisibles a aquellas que ge-
neran soluciones subóptimas. Estas heurı́sticas pueden o no producir la solución
óptima, pero son más informativas que las heurı́sticas admisibles y han demos-
trado tener un buen rendimiento en cuanto a tiempo y calidad de la solución. En
esta tesis, se investiga sobre aquellas heurı́sticas en el estado del arte que consi-
deran acciones con coste o acciones probabilı́sticas para calcular estimaciones de
coste y estimaciones de probabilidad más precisas.

Para mejorar la precisión de las estimaciones de coste, se desarrolla una función
heurı́stica que lleva a cabo propagación de costes en un grafo de planificación.
Estas estimaciones son más exactas gracias al uso de Interaction, término que per-
mite calcular la relación de independencia, de sinergia o de exclusión mutua en-
tre pares de elementos. Estas estimaciones de coste se utilizan para (1) guiar a
un planificador clásico hacia soluciones que minimizan el coste, (2) guiar a un
planificador probabilı́stico hacia soluciones que maximizan la probabilidad y (3)
resolver eficientemente problemas de reconocimiento de metas.

Para mejorar la precisión de las estimaciones de probabilidad, se desarrolla un
novedoso enfoque que lleva a cabo propagación de probabilidades en un grafo
de planificación. Esta propagación de probabilidades es más avanzada que la
previa ya que considera (1) la probabilidad global de cada proposición entre los
posibles efectos de cada acción probabilı́stica y (2) la dependencia de pares de
proposiciones entre los posibles efectos de una acción probabilı́stica. La unión de
ambas técnicas permite calcular estimaciones de probabilidad más exactas y ası́
generar soluciones de alta probabilidad de éxito.

Como resultado de este estudio se obtiene una familia de heurı́sticas que cal-
culan aproximaciones de coste y aproximaciones de probabilidad más exactas y
constantes que otras heurı́sticas del estado del arte.
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Chapter 1

Introduction

This chapter presents an overview of the theoretical framework needed to un-
derstand the motivation of this dissertation. It starts with an introduction of the
research area and presents the motivation of this work. Next, it presents the main
contributions and describes the structure and contents of this dissertation.

1.1 Motivation

Automated Planning is the problem of finding a program of actions that given
an initial state reaches a desired goal. This program can be a simple sequence
or a more complex partially ordered collection of actions. A classical planning
problem may be represented as a state-transition graph whose nodes represent
different states, and whose arcs represent operators, which designate the tran-
sition from a state s to a state s′ (Ghallab et al., 2004). A domain-independent
planner searches for a path in the space of states that connects the initial state to
a goal state.

Planning approaches can be divided into two categories based on the solu-
tion they seek: optimal planning, in which plans are guarantee to be optimal,
and satisficing planning, in which plans are not guarantee to be optimal. There
are a number of techniques to solve classical planning problems, but heuris-
tic search is the dominant technique in classical planning. In order to guide
the search for a solution, it makes use of a heuristic function to estimate the
cost of reaching a goal state from a particular current state. The STRIPS heuris-
tic (Fikes and Nilsson, 1971) is one of the first heuristic functions introduced in
planning. Modern heuristics use delete relaxation to consider a less constrained
version of the planning problem. McDermott (1996) and Bonet (1997) are exam-
ples of delete relaxation heuristics, which improved significantly the scalability of
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domain-independent planners. Current state-of-the-art approaches continue us-
ing this technique in both optimal (Haslum and Geffner, 2000; Bonet and Geffner,
2001; Helmert and Domshlak, 2009) and satisficing (Hoffmann and Nebel, 2001;
Keyder and Geffner, 2007; Richter and Westphal, 2010) planning. Improvements
in the performance of heuristic search come from two factors: improvements in
search algorithms and improvements in heuristic functions. This thesis focuses
on the later to seek a domain-independent heuristic that quickly computes esti-
mates of cost and estimates of probability, and improves the accuracy of those
estimates to (1) guide the search towards low-cost plans in classical planning, (2)
guide the search towards high probability of success plans in probabilistic plan-
ning, and (3) rapidly solve goal recognition problems.

1.2 Outline of contributions

The contributions of this thesis can be summarized as follows:

1. The hI heuristic: a more informative and stable heuristic that steps further
from the independent assumption by considering the cost and Interaction
information computed in a plan graph, obtaining closer approximations to
the optimal cost. Additionally, we propose three additive alternatives to the
admissible heuristic h2 (Haslum and Geffner, 2000): h2+g , h2+c , and h2+m . We
evaluate and demonstrate in various contexts the difference between the h2

and the hI heuristics, and perform an accuracy evaluation of the state-of-
the-art heuristics (in Chapter 3).

2. The Fast Goal Recognition (FGR) approach: a goal recognition approach that
uses the hI heuristic to quickly infer probability estimates for the possible
goals for a goal recognition problem with certain observations (in Chap-
ter 4).

3. The characterization of the ISS Crew Activities Domain: a real time goal
recognition problem concerned with maintenance tasks that astronauts must
conduct for the Envriomental Control and Life Support System aboard the
International Space Station. We demonstrate that FGR is practical for this
real time goal recognition problem (in Chapter 4).

4. The uncertain Fast Goal Recognition (uFGR) framework: a goal recognition
solution that combines a Bayesian network and a plan graph to solve goal
recognition problems with uncertain observations (in Chapter 4).
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5. The use of the cost and Interaction information to make better choices for
actions in computing relaxed plans for probabilistic planning, which goes
beyond what Bryce (2006) did. We show that this technique generates high
probability plans (in Chapter 5).

6. The simple Incremental Contingency Planning framework that goes beyond
what Foss (2007) did by computing a high-probability seed plan, and a Gain
value that evaluates which outcomes will improve the overall seed plan
probability. In addition, we have included the Confrontation technique to
repair unrecoverable outcomes, which consists of adding a conformant so-
lution that achieves the goal by using a different path (in Chapter 6).

7. The characterization of a new technique to compute probability estimates
without determinization. This technique, called Probability Estimates with-
out Determinization (PEWD), computes more accurate probability estimates
because it considers the overall probability of a proposition across all the
action’s outcomes and the dependence between propositions in outcomes
(in Chapter 7).

1.3 Structure and contents

This dissertation is divided into eight chapters. Chapter 1 describes the motiva-
tion, contributions, and structure of this dissertation. Chapter 2 presents a state of
the art overview of the Automated Planning field. Chapter 3 and 4 deal with the
computation of estimates of cost and how we apply them for classical planning
and goal recognition. Chapters 5, 6, and 7 deal with the computation of estimates
of probability and how we apply them for probabilistic planning. In particular:

• Chapter 2: Automated Planning, presents an overview of the three main
problems addressed in this dissertation: classical planning, planning-based
goal recognition, and probabilistic planning. It first presents a description
of the classical planning problem, describes the planning algorithms, and
revises some of the planning techniques in the state-of-the-art. Next, a brief
description of the goal recognition problem is presented along with some
planning-based techniques to solve it. Finally, it describes the probabilistic
planning problem and enumerates the most significant approaches in the
state-of-the-art.

• Chapter 3: Cost Estimates in a Plan Graph using Interaction, presents a
novel technique to propagate cost through a plan graph that makes use of
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Interaction information. It first describes the simple cost propagation in
a plan graph. Then, it introduces the term Interaction. Next, it presents
the new heuristic estimator hI , and the new h2+ family of heuristics, along
with an accuracy study of them and other heuristics in the state-of-the-art.
Finally, it shows the use of the hI heuristic in planning along with an exper-
imental evaluation.

• Chapter 4: The hI Family of Heuristics in Goal Recognition, presents the
use of the hI heuristic in goal recognition. It first describes FGR, a heuris-
tic approach for goal recognition based on hI , and shows an experimental
evaluation. Next, it presents a real-time goal recognition problem for the In-
ternational Space Station crew activities, and shows an experimental eval-
uation. Finally, it outlines a framework for goal recognition problems with
uncertain observations.

• Chapter 5: The hI Family of Heuristics in Probabilistic Planning, presents
the use of the hI heuristic in probabilistic planning, in particular, through
the Determinization and Replanning technique. Then, it presents an experi-
mental evaluation.

• Chapter 6: Incremental Contingency Planning for Recovering from Un-
certain Outcomes, presents an approach to improve the overall probabil-
ity of a non-branching seed plan by incrementally generating contingency
branches to deal with the most critical outcomes of the actions of the plan.
Then, it presents an experimental evaluation.

• Chapter 7: Probability Estimates without Determinization, presents a new
technique to compute estimates of probability without determinization. It
first describes the problematic of the Determinization technique. Then, it
defines Interaction in terms of probability. Next, it presents a search al-
gorithm in the space of probabilistic states, and continues defining a novel
heuristic function based on probability propagation in a plan graph. Finally,
it presents an experimental evaluation.

• Chapter 8: Conclusions and Future Work, presents conclusions and dis-
cusses some relevant future research directions.

• Appendix A: Extended Experimental Results for Goal Recognition, presents
more details on the experimental evaluation performed in Chapter 4.

• Appendix B: ISS Crew Activities Domain Definition, presents the PDDL
description of the ISS Crew Activities Domain characterized in Chapter 4.
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Chapter 2

Automated Planning

This chapter contains the background definitions mentioned in subsequent chap-
ters. It first presents a classical planning problem. Next, it defines a goal recogni-
tion problem in the context of automated planning. Finally, it describes a proba-
bilistic planning problem.

2.1 Classical Planning

Classical planning is the problem of choosing and organizing a sequence of ac-
tions that when applied in a given initial state results in a goal state. Formally,
a planning problem model can be described as a tuple Π =< S, s0, sG, O, t >

where:

• S is a set of states.

• s0 ∈ S is a set that represents an initial state.

• sG ∈ S is a set that represents goal states.

• O is a set of actions.

• t is a transition function where t : S ×O 7→ S′.

A classical planning problem may be represented as a state-transition graph
whose nodes represent different states in S, and whose arcs represent actions
in O, which designate the transition from a state s to a state s′ (Ghallab et al.,
2004). The solution of a classical planning problem is a sequence of actions π =

{o1, ..., on}, or plan, which can be understood as a path from the initial node state
to the goal node state. If the transition function has unit cost, the cost of the plan
solution is the number of actions, or length. In contrast, if the transition function

7
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deals with costs, the cost of the plan solution is the sum of the cost of the actions
in the plan, i.e.:

Cost(π) =
∑
oi ∈π

cost(oi)

For large planning problems it is generally impractical to explicit represent
all the possible states and transition states. For this reason, planning languages
based on propositional logic emerged. These languages consist of a set of vari-
ables that represents those predicates that are true or false about the world. The
most common and first representation is known as and was used in the Stanford
Research Institute Problem Solver (STRIPS) (Fikes and Nilsson, 1971). STRIPS
defines a planning problem as a tuple Π =< P, O, I, G > where:

• P is a set of predicates.

• O is a set of actions, each having the form < prec(O), add(O), del(O) >

where:

◦ prec(O) ⊆ P is the set of predicates that must be satisfied (true) before
the action can be executed.

◦ add(O) ⊆ P is the set of positive predicates that are true when the
action is applied.

◦ del(O) ⊆ P is the set of negative predicates that are false when the
action is applied.

• I ⊆ P is a set of initial state predicates.

• G ⊆ P is a set of goal state predicates.

A plan solution is a sequence of actions π = {o1, ..., on}, which represents the
path to reach G starting from I . A plan solution is optimal when Cost(π) is the
minimum among all the possible plans.

Since STRIPS, different planning languages have been developed. The most
common is the Planning Domain Description Language (PDDL) (McDermott,
1998), with PDDL 3.1 (Helmert, 2008) being the latest version. PDDL has been
adapted as the standard language in planning competitions. A PDDL planning
problem consists of a domain that defines predicates, constants, functions, and ac-
tions, and a problem that defines objects, an initial state, and a goal state. The ob-
jects described in the problem definition are used to instantiate predicates, func-
tions, and actions defined in the domain description. This process is known as
grounding and consists of performing all possible combinations of objects to cre-
ated ground predicates or propositions from predicates, and ground actions from
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actions. Actions described in the domain definition may have an associated func-
tion total-cost, which represents the cost of execute them.

(define (domain logistics)

(:requirements :strips :typing :action-costs)

(:types truck package location)

(:predicates (connected ?a1 ?a2 - location)

(at ?l - location ?pkg - package)

(at ?l - location ?t - truck)

(in ?pkg - package ?t - truck)

(scanned ?pkg - package ?t - truck)

(verified ?pkg - package ?t - truck))

(:functions (total-cost))

(:action drive

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t) (verified ?pkg ?t))

:effect (and (not (at ?from ?t)) (at ?to ?t) (increase (total-cost) 1))

(:action load

:parameters (?pkg - package ?l - location ?t - truck)

:precondition (and (at ?l ?t) (at ?l ?pkg))

:effect (and (in ?pkg ?t) (not (at ?l ?pkg)) (increase (total-cost) 1))

(:action verify

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (in ?pkg ?t) (at ?l ?t))

:effect (and (verified ?pkg ?t) (increase (total-cost) 1))

(:action scan

:parameters (?pkg - package ?t - truck)

:precondition (and (in ?pkg ?t) (verified ?pkg ?t))

:effect (and (scanned ?pkg ?t) (increase (total-cost) 1))

(:action unload

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (at ?l ?t) (scanned ?pkg ?t))

:effect (and (not (in ?pkg ?t)) (at ?l ?pkg) (increase (total-cost) 1))

(define (problem logistics-p01)

(:domain logistics)

(:objects a b - location trk - truck pkg - package

(:init (connected a b) (at a trk) (at a pkg) (= (total-cost) 0))

(:goal (at b pkg))

(:metric minimize (total-cost)))

Figure 2.1: A PDDL domain and problem description in the Logistics Domain.

A description in PDDL of a simple Logistics domain and problem is shown
in Figure 2.1, where there is a package and a truck at location a and the package
needs to be delivered to location b. The package can be loaded on the truck. The
truck can drive between locations, but before it can do it must be verified that the
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package is on the truck. In addition, the package needs to be scanned before it can
be unloaded from the truck. Therefore, this domain lists five operators for driving
between connected locations, and loading, unloading, scanning, and verifying a
package. The drive operator can be instantiated with a truck object trk, location
objects a and b, and a package object pkg to generate, for instance, the ground
action (drive trk a b) whose preconditions are {(connected a b), (at a trk), (in pkg
trk), (verified pkg trk)}, and effects are {(at b trk), (¬at a trk)}. Each action in
the domain description has an associated cost of 1 given by the function (increase
(total-cost) 1). The problem instance in Figure 2.2 indicates that the initial state is:

I = {(connected a b), (at a trk), (at a pkg)}

and the goal state is:

G = {(at b pkg)}

Init Goal

a b
pkg

trk
a b pkg

Figure 2.2: Initial and goal states for a simple Logistics domain.

A valid plan π for this problem is:

π =


(load pkg a trk),
(verify pkg trk a),
(drive trk a b),
(scan pkg trk)
(unload pkg trk b)

 with Cost(π) = 5

2.1.1 Planning algorithms and techniques

Classical planning models assume that the planning problem Π is finite, i.e., it
has a finite set of states; is fully observable, i.e., the represented knowledge in Π is
always known; is deterministic, i.e., the resulting state after the application of an
action may be predicted exactly. Therefore, classical planning may be performed
as a deterministic state model, which may be solved by search algorithms. A
search space may be in the space of states, which defines the search space as a
tree whose nodes represent a state in the world, and whose edges represent a
transition action; or in the space of plans, which defines the search space as a tree
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whose nodes represent a partial plan, and whose edges represent an action that
may be added to the plan.

A search algorithm may be progressive, which searches forward from the initial
state considering sequence of actions until it finds a sequence π that reaches the
goal state. Initially, π is empty. Each step in the search involves the selection of
an action. In particular, given a state description s, it first checks if s is a goal
state. If so, the search process finishes. Otherwise, it finds the set of applicable
ground actions to s, and computes the successor state s′ resulting from applying
a ground action a in s, that is:

s′ = {s− del(a)} ∪ add(a)

A search algorithm may be also regressive, which searches backward from the
goal state considering the inverse of ground operators to produce subgoals, and
stopping if it produces a set of subgoals satisfied by the initial state. Given a goal
description g and a ground action a, the regression from g over a gives a state g′

such as:
g′ = {g − add(a)} ∪ prec(a)

Progression and regression search algorithms return a plan solution (if there
is one) that corresponds to a path from the initial state to the goal state, or a failure
if a path is not found.

There are several techniques that may be used in progression and regression
algorithms and may perform a search in a space of states or a space of plans. In
this dissertation, we focus on planning graph techniques (Blum and Furst, 1997)
and heuristic search planning (Bonet and Geffner, 2001; Hoffmann and Nebel,
2001), which are described in Sections 2.1.2 and 2.1.3 respectively. Other well-
known techniques are:

• Total order planning: generates totally ordered plans, which means that
each action in the plan is ordered with respect to every other action. Total
order planners are commonly associated with a states-space search (Fikes
and Nilsson, 1971; Vidal and Pierre, 1999). However, there are several well-
known total order planners have been plan-based (Veloso et al., 1995; Tate,
1974; Warren, 1974).

• Partial order planning: generates partially ordered plans, which means that
each action in the plan is partially ordered with respect to every other ac-
tion. Partial order planners are commonly plans-space (Coles et al., 2010;
Penberthy and Weld, 1994, 1992; Bonet and Geffner, 2003b; Joslin and Pol-
lack, 1994), but it is possible to have a state-based planner (Godefroid and
Kabanza, 1991)
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• SAS+ planning: the SAS+ formalism (Bäckström and Nebel, 1995) repre-
sents a planning problem using multi-valued state variables instead of the
propositional facts in STRIPS. It has been used to derive heuristics (Helmert,
2006; Helmert et al., 2008), landmarks (Richter et al., 2008), search mod-
els (Chen et al., 2008), and strong mutual exclusion constraints (Chen et al.,
2009).

• Propositional satisfiability planning: converts the planning problem into a
propositional satisfiability, that is, as the problem of determining whether
a propositional formula is satisfiable. Then, it extracts a plan. Planning as
satisfiability was first proposed by Kautz and Selman in their SATPLAN
system (Kautz and Selman, 1992), and it has been improving continuously
over the years (Kautz and Selman, 1996; Rintanen, 2004, 2006; Chen et al.,
2009; Wehrle and Rintanen, 2007; Robinson et al., 2009; Rintanen, 2011, 2012;
Huang et al., 2012).

2.1.2 Planning reachability

As mentioned previously, classical planning is the problem of finding a path from
an initial state to a goal state in a state-transition graph. A significant drawback in
planning is the state-space representation size, which may be impractical. Given
the difficulty in solving large planning problems, reachability analysis has been
studied. The aim of reachability analysis is to detect in advance unreachable
propositions and actions from the initial state. By discovering those actions, the
search space may be reduced, resulting in a simpler search space for planning. A
common method of doing reachability analysis makes use of plan graphs.

A plan graph was first used in the GRAPHPLAN planner (Blum and Furst,
1997). It is a powerful and inexpensive structure that provides an efficient method
to estimate the set of achievable propositions, and the set of feasible actions, start-
ing in a particular state. This structure does not detect all the propositions and
actions that may be excluded. However, any proposition and any action that is
pruned, i.e., does not appear in the structure, may be dismissed for planning pur-
poses.

A plan graph is a directed leveled graph where each level l is composed of
two layers: Pl, the set of achievable propositions, and Al, the set of feasible ac-
tions. Arcs represent relations between propositions and actions, and between
propositions. An outgoing arc from a proposition node in Pl to an action node in
Al is a precondition arc. An outgoing arc from an action node in Al to a proposition
node in Pl+1 is an effect arc, which may be positive or negative. An outgoing arc
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from a proposition node in Pl to a proposition node in Pl+1 is a no-operation arc,
which is a doing nothing action. A plan graph is extended forward until all goals
are reached. Starting at level 0, the first layer consists of the set P0 of propositions
defining the initial state of the problem. The subsequent actions’ layer consists
of the set Al of actions, which contains all the actions whose preconditions are
true in P0. The union of all positive and negative effects of A0, along with the
propositions in P0, form the next propositions’ layer which consists of the set P1

of preconditions. Because no-operations (noop) are allowed, a proposition that
appears in the propositions’ layer Pl also appears in the propositions’ layer Pl+1.

As a plan graph represents parallel propositions and actions that can be mutu-
ally exclusive, during the construction phase the relations that may exist between
pairs of propositions and pairs of actions are considered in each level. Specifically,
the algorithm defines the following mutual exclusion relations:

• Between pairs of operators:

◦ Inconsistent effects: the effect of one operator deletes a proposition that
is added by the other.

◦ Effects clobbering preconditions: one action’s effect deletes a precondition
of the other.

◦ Competing needs: the two operators have mutex preconditions.

• Between pairs of propositions:

◦ Contradiction: one proposition is the negation of the other.

◦ Inconsistent support: all the ways for obtaining both propositions are
mutex.

Figure 2.3 shows a graphical representation of mutex relations. Circles refer to
propositions and squares refer to actions. Red lines define mutex relation between
two elements.

(¬a)

(a)

(a) Inconsistent effects

(a)

(¬a)

(b) Effects clobbering preconditions (c) Competing needs

(¬a)

(a)

(d) Contradiction (a) Inconsistent support

Figure 2.3: Graphical description of mutex relations in a plan graph.
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The plan graph construction process is repeated until (1) a set Pl of propo-
sitions that contains all goal propositions is achieved, and goal propositions are
not mutually exclusive between them, or (2) the plan graph reaches quiescence,
i.e., two consecutive sets of propositions Pl−1 and Pl are identical. If the goal is
not achieved when the plan graph reaches quiescence, then the goal is not reach-
able, which means that there is no plan solution. This process is illustrated in
Figure 2.4 for the simple logistics problem shown in Figure 2.1. Table 2.1 lists the
mutex relations for the example presented in Figure 2.4.

P0

at a trk

at a pkg

A0

load pkg a trk

P1

at a trk

at a pkg

in trk pkg

A1

load pkg a trk

verify pkg a trk

P2

at a trk

at a pkg

in trk pkg

verified pkg trk

Figure 2.4: Example of a plan graph.

Table 2.1: List of mutex relations.

Layer Mutex Pair Mutex Relation
A0 {load pkg a trk}×{noop-at a pkg} Inconsistent effects

P1
{at a pkg}×{in trk pkg} Inconsistent support
{at a pkg}×{¬at a pkg} Contradiction

A1

{load pkg a trk}×{noop-at a pkg} Inconsistent effect
{load pkg a trk}×{noop-in trk pkg} Competing needs
{load pkg a trk}×{verify pkg a trk} Inconsistent effect

P2
{at a pkg}×{in trk pkg} Inconsistent support
{at a pkg}×{verified pkg trk} Inconsistent support

2.1.3 Planning as heuristics search

A classical planner aims to automatically solve a deterministic planning prob-
lem by exploring the state-space of the problem to find a path from I to G. One
optimal way to find an optimal solution to a planning problem is to perform an
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exhaustive search over the state-space and get the best (optimal) solution. How-
ever, this is impractical for a large size states-spaces. As mentioned previously,
reachability analysis may help to reduce the state-space, although it is insuffi-
cient. A more effective way to solve deterministic planning problems is to use
heuristic search algorithms (Hart et al., 1968; Nilsson, 1980; Hoffmann and Nebel,
2001; Hansen and Zilberstein, 2001), which have been used in most recent clas-
sical planners (Bonet and Geffner, 2001; Hoffmann and Nebel, 2001; Hoffmann,
2003; Gerevini et al., 2003; Do and Kambhampati, 2003; Chen et al., 2006; Keyder
and Geffner, 2007, 2008a; Keyder et al., 2010; Richter and Westphal, 2010; Keyder
et al., 2012).

A heuristic search algorithm is a technique that uses a heuristic to find the
sequence of actions that reach the goal from the initial state. The search space
consists of a set of nodes, which represent a description of a state s in form of
propositions. There is a unique node s0 known as the initial state node. Nodes
are connected by arcs, which represent an action a that was used to reach a state
s′ from state s. s′ is known as the successor node of s. A basic heuristic search
procedure explores the search space by ranking all the current reachable nodes
according to the following heuristic function:

f(n) = cost(s) + h(c(s, g)) (2.1)

where cost(s) is the cost of the explored part, and h(c(s, g)) is the estimated cost
of reaching a goal state g from a given state s (Pearl, 1984). Therefore, f(n) is used
to guide the search towards the most promising nodes. The algorithm starts from
s0 by expanding and computing f(n) for each successor of s0. These successors
are then ranked according to their f(n) in an open list. At each step, the most
promising successor is removed from the open list to be inserted in a closed list,
while its successors are added to the open list, ordered by the value of f(n). In
order to avoid repeated states, it is verified if the current successor is present in
the open list or closed list, which means that it has already been generated. If it is
present in the closed list or in the open list with a worse f(n), the value and the
action associated with the node are updated, and if it was present in the closed
list, the node is moved to the open list.

Pearl (1984) defines a heuristic as a method to decide among alternative courses
of action in order to find the most effective way to achieve a goal. A heuristic
needs to be simple to compute and effective to discriminate among the different
alternatives. Although it does not always guarantee optimality, it has been an
efficient method in combination with heuristic search algorithms to explore the
state-space even when it is extremely large.
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In heuristic planning techniques, the search space is assumed to be an OR
graph where a path from an initial state to a goal state needs to be found. A graph
consists of a set of nodes, which in the planning context represent the description
of a state s in the form of propositions. Nodes are connected by arcs, which in
the planning context represent an action a that was used to reach a state s′ from
state s. In the search of this path using heuristic planning techniques, a heuristic
takes the form of heuristic estimator (h), which is the estimated cost of reaching a
goal state g from a given state s through the course of action beginning with a,
i.e., h(s) = c(s, a). The perfect heuristic estimator, h∗, provides the optimal (or
cheapest) cost from a state s to a goal state g. That is, h∗(s) = min{c(s, a)}. This
means that, there is always an optimal path to reach g from s. Essentially, in order
to guarantee an optimal solution, h should be optimistic and never overestimate
the cost of reaching the goal. Such heuristics are called admissible heuristics. A
heuristic estimator h is admissible when:

h(s) ≤ h∗(s) ∀ s (2.2)

Admissible heuristic estimators in combination with heuristic search algo-
rithms produce optimal solutions, but may take a long time for large state-spaces.
A drawback of an admissible heuristic estimator is that it may spend a significant
amount of time discriminating among the different courses of action for some
problems. In those cases where admissibility is harmful to the search process,
non-admissible heuristic estimators can be used, which may lead the problem
towards suboptimal solutions. Non-admissible heuristic estimators can overesti-
mate the cost to reach the goal, which means that potential courses of action that
actually have a lower cost may not be explored. For this reason, non-admissible
heuristics can produce suboptimal solutions, but make often the search more
tractable.

Heuristic functions are commonly derived from simplified models of the orig-
inal problem, which are generated by removing constraints and by making as-
sumptions (Pearl, 1984). This is known as relaxation. A common relaxation-based
heuristic in planning is the delete relaxation, which consists of ignoring delete ef-
fects. In other words, in an original problem, any applicable action a in a state s
produces a new state s′ where s′ = {s − (add(a) ∪ del(a))}. If delete effects are
ignored, s′ = {s + add(a)}. This means that a proposition holds after the first
level at which it can be achieved. Relaxation-based heuristics are admissible if
the cost of the relaxation is lower than the optimal cost. The following heuristic
functions are based on this relaxation idea.
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The max heuristic

The max heuristic hmax (Bonet and Geffner, 2001) computes an estimation of cost,
which is defined by the following recursive equation:

hmax(p, s)
def
=


0 if p ∈ s

argmin
a∈O(p)

{
cost(a) + max

q ∈ prec(a)
hmax(q, s)

}
otherwise

(2.3)

where hmax(p, s) refers to an estimate of the cost of achieving a proposition p

from state s. This estimate is the minimum cost among all the actions a that add
p, which, in turn, is defined as the maximum cost among all preconditions of a.
The max heuristic is admissible since the cost of achieving a set of propositions
cannot be lower than the cost of achieving any proposition of the set.

The additive heuristic

The additive heuristic h+ (Bonet and Geffner, 2001) computes a cost approxima-
tion, which is defined by the following recursive equation:

h+(p, s)
def
=


0 if p ∈ s

argmin
a∈O(p)

{
cost(a) +

∑
q ∈ prec(a)

h+(q, s)

}
otherwise

(2.4)

where h+(p, s) refers to an estimate of the cost of achieving a proposition p from
state s. This estimate is the minimum cost among all the actions a that add p,
which, in turn, is defined as the sum of the cost of the individual preconditions
of a. This estimation of cost assumes that subgoals are independent. When this as-
sumption is true, that is, when preconditions of an action do not interfere with
each other, the additive heuristic is admissible in the delete relaxation. On the
other hand, when this assumption is not true, that is, when preconditions of an ac-
tion are synergistic with each other, it may overestimate the cost. For this reason,
the additive heuristic is not admissible. Therefore, the estimated cost computed
is an approximation of the optimal cost.
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The relaxed plan heuristic

The relaxed plan heuristic hFF (Hoffmann and Nebel, 2001) computes a cost ap-
proximation by computing a plan, which is not guaranteed to be optimal. This is
done using a construction plan graph procedure like is described in Section 2.1.2.
Since delete relaxation is assumed, a relaxed plan graph with no mutex is built.
The relaxed plan graph is used to extract a plan π starting from state s, where
the length of π gives an approximation of the estimated cost of achieving the goal
from s.

Function RELAXEDPLANEXTRACTION (Gl)

l ≡ number of levels in the relaxed plan graph

Gl ≡ the set of goals at level l in the relaxed plan graph

g ≡ a goal proposition

S ≡ the set of propositions of Gl already achieved

Al ≡ the set of actions at level l for an specific goal

a ≡ an action

la ≡ the level in which action a is first reached

π ≡ a relaxed plan

Lπ ≡ the length in number of actions of π

1. π ← ∅

2. while l > 0 do

3. S ← ∅

4. Gl−1 ← ∅

5. while Gl 6= ∅ do

6. g ← g ∈ Gl

7. if g /∈ S then do

8. Al ← {a : g ∈ add(a) ∧ la < l }

9. a ← argmin
a∈Al

{ | prec(a) | }

10. S ← S ∪ add(a)

11. Gl−1 ← Gl−1 ∪ prec(a)

12. π ← π ∪ {a}

13. Gl ← Gl − {g}

14. l ← l − 1

15. return Lπ

Figure 2.5: The relaxed plan extraction pseudo-algorithm.

Figure 2.5 shows the high-level algorithm used to extract a relaxed plan. The
algorithm starts with the propositions corresponding to the goals at level l. For
each goal proposition g, the algorithm selects an action from level l− 1, that sup-
ports g. If there is more than one supporter, the process selects the one with the
lowest number of preconditions. Each time an action is selected, all its positive
effects are marked as achieved at level l, to prevent double check goals from level
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l, and its preconditions are added as goals for the l − 1 level. The algorithm re-
peats the same process on the l − 1 level of the plan graph, with preconditions
of the actions selected at actions’ layer l − 1 as the goals for the l − 1 level. The
search succeeds when level 0 is reached, that is, the initial state. The sequence of
selected actions forms relaxed plan. The heuristic value is the length, or number
of actions, of the relaxed plan.

To illustrate this algorithm, considerer the simple Logistics problem described
in Section 2.1. Figure 2.6 shows the plan graph for the problem. The goal set
at level 4 contains the single proposition (at b pkg), which supporter is action
(unload pkg trk b) at level 3. Propositions (scanned pkg trk) and (at b trk), which
are the preconditions of (unload pkg trk b), are the goals at level 3. The action
(scan pkg trk) supports the goal (scanned pkg trk), and adds (in trk pkg) and
(verified pkg trk) as goals at level 2. The action (drive trk a b) supports the goal
(at b trk), and adds (at a trk), as well as (in trk pkg) and (verified pkg trk) that
were already added by (scan pkg trk). The goal (at a trk) and (in trk pkg) at level
2 have the (noop) action as supported, while (verified pkg trk) has action (verify
pkg a trk), which adds propositions (at a trk) and (in trk pkg) as goals at level 1.
(These two propositions were already added by the (noop) action.) Again, (at a
trk) is supported by the (noop).The proposition (in trk pkg) is supported by action
(load pkg a trk), which adds propositions (at a trk) and (at a pkg) goals at level 0.
Finally, propositions (at a trk) and (at a pkg) are true at level 0, which means there
is a valid solution. The relaxed plan consists of actions (load pkg a trk), (verify
pkg a trk), (scan pkg trk), (drive trk a b), and (unload pkg trk b). Therefore, for
this example the heuristic value is 5.

P0

at a trk

at a pkg

A0

load pkg a trk

P1

at a trk

at a pkg

in trk pkg

A1

load pkg a trk

verify pkg a trk

P2

at a trk

at a pkg

in trk pkg

verified pkg trk

A2

load pkg a trk

verify pkg a trk

scan pkg trk

drive trk a b

P3

at a trk

at a pkg

in trk pkg

verified pkg trk

scanned pkg trk

at b trk

A3

load pkg a trk

verify pkg a trk

scan pkg trk

drive trk a b

unload pkg trk b

P4

at a trk

at a pkg

in trk pkg

verified pkg trk

scanned pkg trk

at b trk

at b pkg

Figure 2.6: A relaxed plan graph example.
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Unlike the additive heuristic and the max heuristic, the original relaxed plan
heuristic does not take cost information into account, and considers unit action
costs. Nevertheless, it is possible to easily extend this to action costs by summing
the cost of the actions in the relaxed plan.

The higher-order heuristic

The higher-order heuristic hm (Haslum and Geffner, 2000) computes an admis-
sible cost approximation for regression search. It is a generalization of the max
heuristic that computes estimates of cost for sets ofm propositions from the initial
state s0. It is defined by the following equation:

hm(A)
def
=



0 if A ∈ s0

min
〈B,a〉 ∈R(A)

cost(a) + hm(B) if |A| ≤ m and A * s0

max
B⊂A, |B|=m

hm(B) if |A| > m

(2.5)

where hm(A) refers to the cost of achieving a state s where a set of propositions A
of size m is true, s0 refers to the initial state definition, and R(A) refers to the set
of pairs 〈B, a〉where B is the resulting state of regressing A through a, defined as
R(B, a) = {A− add(a)} ∪ prec(a).

The hm heuristic is admissible because hm(B) ≤ h∗(B) for every B, and it is
true for size m of the set. However, it presents a trade-off between accuracy and
efficiency. Higher values ofm are more accurate, but more expensive to compute.
The computation of hm is a low-order polynomial in Nm where N is the number
of propositions in the problem, andm the size of the considered sets. For practical
purposes, it is limited to m = 2 or m = 3. When the size of m is one, the heuristic
hm is equivalent to the max heuristic. When the size of m is two, the heuristic hm

computes the estimated cost between two propositions p and q as follows:

h2({p, q}) = min



min
a∈O(p∧q)

cost(a) + h2(prec(a));

min
a∈O(p|q)

cost(a) + h2(prec(a) ∪ {q});

min
a∈O(q|p)

cost(a) + h2(prec(a) ∪ {p})

(2.6)
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where h2({p}) = min
a∈O(p)

cost(a) + h2(prec(a)) , O(p∧ q) refers to the set of actions

that achieves p and q simultaneously, O(p|q) refers to the set of actions that adds
p and does not add or delete q, and O(q|p) refers to the set of actions that adds q
and does not add or delete p.

The set-additive heuristic

The set-additive heuristic hsa (Keyder and Geffner, 2007) is a modification of the
additive heuristic that produces relaxed plans taking the cost information into
consideration. It can be defined by the following recursive equation:

hsa = πa(p, s)
def
=


{} if p ∈ s

πa(ap, s) otherwise

(2.7)

ap = argmin
a∈O(p)

{
Cost(πa(a, s))

}

πa(a, s) = {a}
⋃ {

∪
q ∈ prec(a)

π(q, s)

}

Cost(πa(a, s)) =
∑

a′∈π(a,s)

cost(a′)

where πa(p, s) refers to a relaxed plan for p from s. During the construction of a
relaxed plan graph for a state s, the additive heuristic is used to propagate the cost
and keep track of the actions that minimize each proposition in the relaxed plan
graph. During the construction of a relaxed plan π(s) in s, actions that minimize
the cost of each subgoal are selected. The estimated relaxed plan for a set of
propositions in s is the union of the relaxed plans for each proposition in s. The
cost approximation is the sum of the costs of the actions in π(s). That is:

hsa(s) =
∑

a∈π(s)

cost(a) (2.8)
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2.2 Goal Recognition

In literature, plan recognition and goal recognition concepts are used interchange-
able. However, there is a subtle difference between them. Specifically, plan recog-
nition aims to infer an actor’s plan and goals from some or all of the actor’s ob-
served (performed) actions, while goal recognition aims to infer an actor’s goals
from some or all of the actor’s observed actions. Therefore, plan recognition can
solve goal recognition problems, but not vice versa. Another related problem
to goal recognition is Goal Recognition Design (Keren et al., 2014, 2015), which
performs off-line analysis of a goal recognition problems given the domain de-
scription and the set of possible goals to (1) evaluate the ability to perform goal
recognition within a problem, and (2) find efficient ways to compute and optimize
such problem.

Plan recognition and goal recognition disciplines have captured the attention
of several computer science communities and have been useful in several areas
such as intelligent personal assistants (Weber and Pollack, 2008), smart environ-
ments (Wu et al., 2007), monitoring user’s needs (Pollack et al., 2003; Kautz et al.,
2002), and for intelligent tutoring systems (Brown et al., 1977). Several differ-
ent techniques have been used to solve plan recognition problems: parsing al-
gorithms (Geib and Goldman, 2009), Bayesian inference (Albrecht et al., 1997;
Bui, 2003), hand-coded action taxonomies (Kautz and Allen, 1986), consistency
graphs (Lesh and Etzioni, 1995), and probabilistic belief networks (Huber et al.,
1994). In early approaches to goal recognition, the actor’s observed actions are
compared against a hand generated library of plans. To overcome this limita-
tion, some authors have proposed the use of machine learning techniques (Bauer,
1998), or more recently automated planning.

Goal recognition may be seen as the inverse of planning since it is concerned
with inferring an agent’s goals given some or all agent’s performed actions. There
are few planning-based approaches for goal recognition, but this paradigm is still
in its infancy. The classical planning techniques and algorithms presented in Sec-
tion 2.1 are the foundations for these approaches. In particular, Pattison (2010)
developed AUTOGRAPH that uses domains encoded in PDDL and then applies
Helmert’s translation (2009) to translate the problem into a SAS+ formalism. This
translation produces a Domain Transition Graph and a Causal Graph that are
used to estimated distance to each fact after action observations and thus deter-
mine potential goal facts. Jigui and Minghao (2007) developed Incremental Plan-
ning Recognition (IPR from now on) that is based on reachability in a plan graph.
Ramı́rez and Geffner (2009; 2010; 2012) developed a more principled approach
for estimating the probability of each possible goal, given the observations that is
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based on heuristic search planners. In this dissertation, we focus on the two latter
approaches so they are reviewed in detail in the next two subsections.

2.2.1 Goal recognition through heuristic planning

Ramirez and Geffner (2009) developed an approach for identifying the goal set
G ∈ G where some optimal plan for G is compatible with the sequence of ob-
served actions. In this work, a goal recognition problem is defined as a tuple
T = 〈P , G , O 〉 where P is a planning domain in the form of P = 〈F , A , I 〉
where F is the set of predicates, A is the set of actions, and I is the set of initial
conditions; G is a set of possible goal sets or hypotheses; and O is an observed
action sequence O = (o1, ..., on) where on is an action in the sequence. The obser-
vation sequence O may be incomplete, but is sequentially ordered. However, the
time step in which the actions have been observed is unknown. The solution to
this goal recognition problem is a set G∗, which consists of all goals subsets G ∈ G
having an optimal plan π consistent with O.

In order to solve a goal recognition problem using planning, the goal recogni-
tion problem T = 〈P , G , O 〉 is transformed into a problem T ′ = 〈P ′ , G′ , O′ 〉,
where O′ is empty and for each of the observed actions oi ∈ O a new set of pred-
icates Fo and a new set of actions Ao are created such that Fo = {po|o ∈ O} and
Ao = {ao|o ∈ O}. Each new action ao has the same preconditions and effects as
its counterpart a except for the new predicate po, which is added to add(ao), and
poi−1 , which refers to the observed action that precedes action a ∈ O and is, there-
fore, added to prec(ao). Hence, in the transformed goals recognition problem T ′,
the planning domain is P ′ = 〈F ′ , A′ , I ′ 〉 where F ′ = F ∪ Fo, A′ = A ∪ Ao, and
I ′ = I , and the set of possible goal sets G′ = {G ∪ Fo |G ∈ G}. The extra goals
Fo can be only achieved by the new actions Ao, which because of the added pre-
conditions can be only applied after all the corresponding preceding oi ∈ O are
executed. Therefore, the transformed problem P ′ along with each G′ ∈ G′ can be
executed in a planner to find a plan π that is consistent with O. The set solution
G∗ consists of each goal set G′ ∈ G′ that gets a consistent plan.

In particular, this approach uses the optimal planner HSP∗f (Haslum and Geff-
ner, 2000) to exactly compute G∗. Although, it gives the optimal solution, it is
computationally expensive. In addition, if there is a non-optimal plan consistent
with the observations, this method fails. To remove both limitations, this work
also considers approximate methods. The first method uses the suboptimal plan-
ner FF (Hoffmann and Nebel, 2001) to approximate the set, while the second is
based on the hsa heuristic, which approximates the solution by computing a re-
laxed plan avoiding planning altogether.
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The limitation of this work is the assumption that agents act optimally, which
limits the theory to the space of optimal plans. Hence, suboptimal plans com-
patible with the observations are not considered. To overcome this limitation,
Ramirez and Geffner (2010) developed a more principled approach for estimat-
ing the probability of each possible goal, based on how much the observed ac-
tions contribute to achieving that goal. This theory is rooted in the space of all
possible plans that might be used to achieve each goal, and defines likelihood of
a goal given a sequence of observations as the cost difference between achieving
the goal complying with the observations, and not complying with them. This
cost is computed by means of two calls to a planner for each possible goal. This
approach defines a goal recognition problem as a tuple T = 〈P,G, O, Pr〉 where
P is a planning domain and initial conditions, G is a set of possible goal set or hy-
potheses, O is the observed action sequence O = (o1, ..., on), and Pr is the prior
probability distribution over the goal sets G ∈ G. The solution to a goal recog-
nition problem is a probability distribution over each goal set G ∈ G giving the
relative likelihood of each goal set. These posterior goal probabilities P (G|O) can
be characterized using Bayes Rule as:

Pr(G|O) = Pr(O|G)Pr(G) (2.9)

where Pr(G) is the prior distribution over G ∈ G, and Pr(O|G) is the likelihood
of observing O when the goal is G. Ramirez goes on to characterize the likeli-
hood Pr(O|G) in terms of cost differences for achieving G under two conditions:
complying with the observations O, and not complying with the observations
O. More precisely, Ramirez characterizes the likelihood, Pr(O|G), in terms of a
Boltzman distribution:

Pr(O|G) = α
exp{−β∆(G,O)}

1 + exp{−β∆(G,O)}
(2.10)

where α is a normalizing constant, β is a positive constant, and ∆(G,O) is the
cost difference between achieving the goal with and without the observations:

∆(G,O) = Cost(G|O)− Cost(G|O) (2.11)

Putting Equations 2.9 and 2.10 together yields:

Pr(G|O) = α
exp{−β∆(G,O)}

1 + exp{−β∆(G,O)}
Pr(G) (2.12)

By computing ∆(G,O) for each possible goal, Equation 2.12 can be used to
compute a probability distribution over those goals. The two costs necessary to
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compute ∆(G,O) can be found by optimally solving the two planning problems
G|O and G|O. Ramı́rez shows how the constraints O and O can be compiled
into the goals, conditions, and effects of the planning problem so that a standard
planner can be used to find plans for G|O and G|O.

To illustrate the Ramı́rez approach, consider the example shown in Figure 2.7,
where an agent can move up, left, and right at cost 1. It has two possible goals, G1

and G2, and O = (o1) as the observed sequence. For goal G1, Cost(G1|O) = 4,
and Cost(G1|O) = 4. (The costs are the same since o1 is on an optimal path to
G1 and there is another optimal path that reaches G1 but does not include o1.)
Hence, ∆(G1, O) = 0, and Pr(G1|O) = α(0.5). In contrast, Cost(G2|O) = 3 and
Cost(G2|O) = 3. This results in ∆(G2, O) = 0, and Pr(G2|O) = α(0.5). This
means that G1 and G2 are the same likely to occur given O = (o1).

G1 G2

o1

Figure 2.7: A 2x3 plan network for goals G1 and G2.

A major drawback to the Ramirez’s approach is the computational expense
of finding two plans for every possible goal. Moreover, the constraints O and
O make the planning problems more difficult to solve. As a result, even for rel-
atively simple problems it can take a significant amount of time to find all the
plans necessary for this computation. This makes the approach impractical to use
for any sort of real-time goal recognition problem.

2.2.2 Incremental plan recognition

Jigui and Minghao (2007) developed IPR, a framework for plan recognition that
narrows the set of possible goal sets by incrementally pruning a plan graph as
actions are observed. (As a plan recognition approach, it can also solves goal
recognition problems.) In this work, a plan recognition problem is defined as a
tuple T = 〈P , G , O 〉 where P is a planning domain and initial conditions, G is
a set of possible goal sets or hypotheses, and O is an observed action sequence
O = (o1, ..., on) where each on is a tuple 〈 an, tn 〉 where an is an observed action
and tn is the time step in which an has been observed. O may be incomplete, but
the time step is known. Therefore, the observed sequence is essentially ordered.
The solution to a plan recognition problem is any plan π = (ai, ..., an) consistent
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with the sequence of actions O. A plan solution π = (a1, ..., an) is consistent
with a sequence of observed actions O = 〈a1, t1〉, ..., 〈an, tn〉, if the time steps
of the observed actions coincide with the time steps in which the actions in the
plan solution occur. For instance, assuming the following sequence of observed
actions O = (〈a, 0〉, 〈b, 2〉 〈c, 3〉), π1 = (a, c, b, c) and π2 = (a, d, b, c) are consistent
with O, but not π3 = (a, b, d, c).

In general, IPR consists of building a plan graph to determine which actions
and which propositions are true (1), false (-1), or unknown (0) given the obser-
vations. The process starts at level zero where it is assumed that the initial state
is true. As a consequence, every proposition has value 1. In addition, when an
action is observed at a level it gets value 1. The process incrementally builds a
plan graph and updates it level by level. The values of propositions and actions
are updated according to the following rules:

1. An action in the plan graph gets value -1 when any of its preconditions or
any of its effects is -1.

2. An action in the plan graph gets value 1 when it is the sole producer of an
effect that has value 1.

3. A proposition in the plan graph gets value -1 when all of its producers are
-1, (noop) included.

4. A proposition in the plan graph gets value 1 when any of its consumers or
any of its producers is 1.

5. An action or proposition in the plan graph gets value -1 when it is mutually
exclusive with an action or proposition that has value 1.

The process results in a plan graph where each proposition and each action
is labeled as 1, -1, or 0. Those propositions and actions identified as -1 can be
ignored for plan recognition purposes, meaning that these are pruned from the
resulting plan graph. The approach backward searches for a plan consistent with
O in the pruned plan graph.

This propagation and pruning technique is also useful to identify potential
goal sets in goal recognition problems using the set of goals remainder in the
plan graph. Each propositions labeled as 1 is considered a known goal and each
propositions labeled as 0 is considered a possible goal, while each propositions
labeled as -1 cannot be a goal.

To illustrate this propagation and pruning technique, consider our simple lo-
gistics problem described in Figure 2.1. Suppose that the sequence of observed
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Figure 2.8: A partial plan graph with status values of propositions and actions.

actions is (verify pkg trk a) at level 1 and (drive trk a b) at level 3. Figure 2.8
shows the plan graph for this problem in the upper half. The numbers above
the propositions and actions are the values for each of them, computed using
the above propagation rules. The lower image shows the resulting pruned plan
graph. As a result of the propagation, (load pkg a trk) must be true (value 1)
at level 0 because its preconditions (at a trk) and (at a pkg) are true (value 1) at
level 0. As a consequence of (load pkg a trk) being true, its effect (in trk pkg) is
also true (value 1) at level 1. At level 2, (verified pkg trk) must be true because
(verify pkg a trk) was observed. Since (verify pkg a trk) and (noop-at a pkg) are
mutually exclusive, action (noop-at a pkg) and its effect (at a pkg) are false (value
-1). As a consequence of (at a pkg) being false, (load pkg a trk) is false at level
2. Action (scan pkg trk) is unknown (value 0) at level 2 since there is not enough
information to determine whether it is true or false. Action (drive trk a b) is true
at level 3 since it was observed. As a result, (at b trk) is true at level 4. Actions
(noop-at a trk) and (unload pkg trk b) are false at level 3 since they are mutually
exclusive with the observed action (drive trk a b). As a consequence of (unload
pkg trk b) being false, (at b trk) is also false at level 3, which makes (drive trk a b)
false at level 2. Likewise, the consequence of (noop-at a trk) being false results in
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(at a trk) being false too. Proposition (scanned pkg trk) is unknown at every level
since there is not enough information to label it.

The propagation technique results in a plan graph where at level 5 (at a trk)
and (at a pkg) are false (value -1), and (in pkg trk), (verified pkg trk), (scanned pkg
trk), (at b trk), and (at b pkg) are unknown (value 0). In terms of goal recognition,
this means that propositions (at a trk) and (at a pkg) are dismissed as a solution,
while (in pkg trk), (verified pkg trk), (scanned pkg trk), (at b trk), and (at b pkg)
are possible goals solutions.

2.3 Probabilistic Planning

Classical planning is based on the assumption of complete knowledge of the ini-
tial conditions and the effects of actions. Significant advances have been made
in recent years in the size and complexity of deterministic problems that can be
solved with these planners. However, in real planning problems (Currie and Tate,
1991; Kingston et al., 1996; Drabble et al., 1997; Bernard et al., 1998; Tate et al.,
2000; Khan et al., 2003; Meuleau et al., 2009; Fox et al., 2011; Castaño et al., 2014;
Bresina, 2015), unexpected events may occur, actions may have unexpected out-
comes and the state of the world may not be known with certainty. If a determin-
istic planner is used to solve such problems, the execution of the plan may fail
because the plan does not take into account the possible contingencies. In order
to address this problem, it is important to develop planners capable of handling
uncertainty in the domain (Bonet and Geffner, 2005; Little and Thiébaux, 2006;
Yoon et al., 2007, 2008, 2010; Keyder and Geffner, 2008b; Kalyaman and Givan,
2008; Buffet and Aberdeen, 2009; Teichteil-Königsbuch et al., 2010; Kolobov et al.,
2012; Keller and Helmert, 2013).

A line of research dealing with planning problems under uncertainty is prob-
abilistic planning, which describes the uncertainty using probability distribu-
tions. Probabilistic planning techniques have been developed to address prob-
lems where the uncertainty is fully observable, partial observable, or not observable.
Probabilistic PDDL (PPDDL) (Younes et al., 2005) is an extension of the PDDL
language capable of representing probabilistic planning problems by allowing
probabilities on initial conditions and on action outcomes. The semantic of a
PPDDL planning problem is given in terms of a discrete-time Markov Decision
Processes (Puterman, 1994). To define probabilistic planning problems, PPDDL
describes probabilistic actions as in PDDL with the addition of probabilistic out-
comes on action definitions:

(probabilistic p1 e1 ... pk ek)
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where each ei is a PDDL effect that occurs with probability pi. A probabilistic
effect represents a distribution over deterministic effects where

∑k
i=1 pi = 1. A

description in PPDDL of a simple probabilistic Logistics domain and problem is
shown in Figure 2.9. The source of uncertainty in this domain is in action drive:

(:action drive

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t)

(verified ?pkg ?t) (not (flattire)))

:effect (and (not (at ?from ?t)) (at ?to ?t) (probabilistic 0.4 (flattire))))

where action effects are (not (at ?from ?t)), (at ?to ?t), and (flattire), but the latest
only happens with a probability of 0.4. This can be seen as two different action
outcomes:

• o1, where (not (at ?from ?t)) and (at ?to ?t) happens with probability 0.6.

• o2, where (not (at ?from ?t)), (at ?to ?t), and (flattire) happens with probabil-
ity 0.4.

There is a second source of uncertainty in action verify:

(:action verify

:parameters (?pkg - package ?t - truck ?l - location ?to - location)

:precondition (and (at ?l ?t) (in ?pkg ?t)

:effect (and (probabilistic 0.8 (verified ?pkg ?t))))

where the action’s effect is (verified ?pkg ?t), but it only happens with a probabil-
ity of 0.8. Otherwise, the action does nothing.

Figure 2.10 shows a simple probabilistic Logistics problem where there is a
package and a truck at location a, and the package needs to be delivered to lo-
cation c. The package can be loaded on the truck. The truck can drive between
locations when it does not have a flat tire and it is verified that the package is
inside the truck. The verification of the package may fail with probability 0.2. In
addition, a tire may go flat during the drive with a probability of 0.4. A flat tire
can be changed, if the truck is at a locations a or d where there is a spare tire.
Finally, before unloading the package from the truck, it must be scanned.

Probabilistic planning is an active research field. Several different techniques
are currently being used to solve probabilistic planning problems. We classify
these techniques in four main groups that are described below.
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Solving Markov Decision Processes

Markov Decision Processes (MDPs) (Puterman, 1994) is a popular family of mod-
els for analyzing probabilistic planning problems. An MDP is defined as a tuple
M = 〈S, A, T, C, G 〉 where S is a finite set of all possible states; A is a finite set
of all actions an agent can take; T : S×A 7→ S′ is a transition probability function

(define (domain logistics)

(:requirements :strips :typing :probabilistic-effects)

(:types truck package location)

(:predicates (connected ?a1 ?a2 - location)

(at ?l - location ?pkg - package)

(at ?l - location ?t - truck)

(in ?pkg - package ?t - truck)

(scanned ?pkg - package ?t - truck)

(verified ?pkg - package ?t - truck)

(flattire) (spare ?l - location) (hasspare))

(:action drive

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t) (verified ?pkg ?t) (not (flattire)))

:effect (and (not (at ?from ?t)) (at ?to ?t) (probabilistic 0.4 (flattire))))

(:action get-tire

:parameters (?l - location ?t - truck)

:precondition (and (at ?l ?t) (spare ?l))

:effect (and (not (spare ?l)) (hasspare)))

(:action change

:precondition (hasspare)

:effect (and (not (hasspare)) (not (flattire))))

(:action load

:parameters (?pkg - package ?l - location ?t - truck)

:precondition (and (at ?l ?t) (at ?l ?pkg))

:effect (and (in ?pkg ?t) (not (at ?l ?pkg))))

(:action verify

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (in ?pkg ?t) (at ?l ?t))

:effect (and (probability 0.8 (verified ?pkg ?t))))

(:action scan

:parameters (?pkg - package ?t - truck)

:precondition (and (in ?pkg ?t) (verified ?pkg ?t))

:effect (and (scanned ?pkg ?t)))

(:action unload

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (at ?l ?t) (scanned ?pkg ?t))

:effect (and (not (in ?pkg ?t)) (at ?l ?pkg)))

(define (problem logistics-p01)

(:domain logistics)

(:objects a b c d e - location trk - truck pkg - package

(:init (connected a b) (connected a d) (connected b c)

(connected d e) (connected e c) (at a trk) (at a pkg)

(spare a) (spare d) (spare e) (not (flattire)))

(:goal (at c pkg)))

Figure 2.9: A PPDDL domain description on the Logistics-Tire Domain.
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Figure 2.10: Initial and goal states for a simple probabilistic Logistics problem.

that returns a new state S′ according to a probability distribution PT (S′|S,A);
C : S × A 7→ R is a cost function that gives a finite numeric cost value C(S,A),
which represents the cost for taking action A in S; and G is the goal state. A solu-
tion to an MDP is a policy π : S 7→ A, which is a mapping from states to actions.
(In other words, a rule for action selection.) The goal is to find a policy that min-
imizes the expected cost. An optimal policy π∗ can be found using a Dynaminc
Programming (DP) algorithm such as Value Iteration (Bellman, 1957) or Policy
Iteration (Howard, 1960).

Value Iteration is a DP method that computes an optimal policy and its value
starting with an initial evaluation function V0 and a parameter ε for detecting con-
vergence to an optimal evaluation function. For each state s ∈ S, the algorithm
first improves f by performing dynamic programming update as follows:

Vn(s) = min
a∈A(s)

{
cs(a) +

∑
s′ ∈S

PT (s′|s, a)Vn−1(s
′)

}
(2.13)

where cs(a) is the expected cost of taking action a in state s, PT (s′|s, a) is the
probability that taking action a in state s results in state s′, and Vn−1(s

′) is the
value of V (s′) at iteration n− 1.

This process is repeated until a convergence is reaches. In other words, when
Vn is less than or equal to ε. Then, a policy can be extracted from f as follows:

π(s) = argmin
a∈A(s)

{
cs(a) +

∑
s′ ∈S

PT (s′|s, a)Vn−1(s
′)

}
(2.14)

Policy Iteration is another DP method that computes an optimal policy start-
ing with an initial policy π. It interleaves policy improvement with policy evalu-
ation. It first computes the evaluation function V πn−1 for policy π by solving the
following linear equation:

V π
n (s) = cs(π(s)) +

∑
s′ ∈S

PT (π(s′|s, a))V π
n−1(s

′) (2.15)
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Then, for each state i ∈ S it improves the policy as follows:

π′(s) = argmin
a∈A(s)

{
cs(a) +

∑
s′ ∈S

PT (s′|s, a)V π
n−1(j)

}
(2.16)

This process is repeated until convergence is reached. In order words, when
π′ is the same as π.

The disadvantage of Value Iteration and Policy Iteration is that they evaluate
the entire state space. For this reason, Barto, Bradke, and Singh (1995) proposed
the real-time dynamic algorithm (RTDP) that minimizes the search space of DP.
The RTDP algorithm involves a sequence of trials to investigate choices of actions
for each state. Each trial consists of (1) selecting the best action a that minimizes
the cost of reaching the goal starting in s, (2) updating the value Vn(s) using Equa-
tion 2.13, and (3) transitioning to a successor state s′ under a. A significant draw-
back to RTDP is the lack of convergence detection. To overcome this problem,
Bonet and Geffner (2003a) developed Labeled RTDP (LRTDP), which works in
the same way as RTDP, but guarantees convergence by labeling visited states.

One feature that almost all approaches share is that all potential action out-
comes in the plan are taken into account. That is, the plan includes a contingency
branch for every possible outcome that may occur, given the actions in the plan.
These approaches generate robust plans, but can be computationally expensive.

Using contingency planning

These approaches use planning graphs to compute estimates of probability that
propositions can be achieved and actions can be performed. This information can
be used to guide a probabilistic planner toward the most likely plan for achiev-
ing the goals. In particular, Blum and Langford (1999) extend the Graphplan
representation to use it for probabilistic planning, and developed PGraphplan
and TGraphplan. PGraphplan is a planner based on a forward-chaining search
through a plan graph. It finds optimal (non-concurrent) contingency plans via dy-
namic programming using the information stored in the plan graph to prune the
search. Since mutual exclusion relations computed in a plan graph are not help-
ful in a forward search, PGraphplan propagates information backwards through
a plan graph to identify states from which the goal is probably unreachable.
TGraphplan is a minor extension of the original Graphplan algorithm. It finds a
non-optimal single path to the goal with highest probability. During the TGraph-
plan backwards search, the probability of the path is determined by recursively
multiplying the probability of a step succeeding by the probability of the partial
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plan already explored. Paragraph (Little and Thiébaux, 2006) is another plan-
ner that also applies probabilistic plan graph, nogood learning, mutex reasoning,
and goal regression techniques to probabilistic planning. It generates an optimal
contingent plan by concatenating sub-trajectories generated by the plan graph.
Bryce, Kambhampati, and Smith (2006) also use a plan graph to compute es-
timates of probability. However, they use an AO* algorithm in seeking a plan
solution.

Translation into deterministic planning problems

These approaches translate the given planning problem into a classical planning
problem that is then solved by a classical planner (Palacios and Geffner, 2009).
Other approaches combine the translation-based technique with replanning (Al-
bore et al., 2009), or replanning and sampling (Brafman and Shani, 2012), getting
better results. It is important to note that these planners deal with uncertainty
in the initial state and conditional effects. Also, for the most part these planners
only deal with disjunctive uncertainty not probabilistic uncertainty.

Determinization-based techniques

Determinization consists of transforming the given probabilistic planning prob-
lem into a deterministic planning problem and using heuristic functions based
on relaxed plans to guide a deterministic planner in the search for a determin-
istic plan. As a result, these planners generate a solution that is executed un-
til the observed state differs from what is expected according to the next step
in the solution. If this happens, replanning is performed to seek another plan
solution. The insight behind this idea is that a deterministic planning problem
can be solved more efficiently than the equivalent probabilistic MDP. The FF-
Replan planner (Yoon et al., 2007) has been the pioneer in this paradigm, and it
has proven very successful on many problems. It proposes two different methods
of determinization:

• single-outcome determinization, which generates a deterministic action for each
probabilistic action by selecting the outcome with the highest probability.
To illustrate this, consider the probabilistic action (drive) in Figure 2.9. The
most likely outcome is that the car successfully drive from one position to
another. This determinization technique generates action (drive-1) for that
outcome:
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(:action drive-1

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t)

(verified ?pkg ?t) (not (flattire)))

:effect (and (not (at ?from ?t)) (at ?to ?t)))

• all-outcomes determinization, which generates a deterministic action for each
outcome of a probabilistic action. To illustrate this, consider again the prob-
abilistic action (drive) in Figure 2.9. The probabilistic actions is determinized
generating action (drive-1), where the car successfully drives from one loca-
tion to another, and action (drive-2), where the car successfully drives from
one location to another, but gets a flat tire:

(:action drive-1

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t)

(verified ?pkg ?t) (not (flattire)))

:effect (and (not (at ?from ?t)) (at ?to ?t)))

(:action drive-2

:parameters (?t - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?t) (in ?pkg ?t)

(verified ?pkg ?t) (not (flattire)))

:effect (and (not (at ?from ?t)) (at ?to ?t) (flattire)))

The first method may neglect important possible effects, while the second
method considers every possible probabilistic outcome and may produce plans
that rely on low probability outcomes.

Despite the success of FF-Replan, it does not make use of the probabilistic in-
formation in the domain description, which may result in frequent replanning.
For this reason, most recent probabilistic planners follow the same line as FF-
Replan, but deal with the probabilities of action outcomes (Kalyaman and Givan,
2008; Keyder and Geffner, 2008b; Wu et al., 2011). In particular, the work done
by Jiménez, Coles, and Smith (2006) turns the probability information into costs.
They make use of all-outcomes-determinization technique and for each new de-
terminized action created, they transform the probability of the outcome into a
cost equal to the negative logarithm of the probability. Then, they search for an
optimal plan using a numeric deterministic planner that minimizes cost.
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These approaches perform fast planning. However, they cannot anticipate
possible deviations from the linear plan that is generated by the deterministic
planner and, therefore, get stuck in dead-end states. FFH+ (Yoon et al., 2008, 2010)
is an improved version of FF-Replan that avoids that problem. It applies Hind-
sight Optimization, and on-line anticipatory strategy, for action selection. Deter-
minization in hindsight samples actions according to their distribution (incorpo-
rates probability information). Then, it solves each determinized problem using
an off-the-self deterministic planner at each step, and analyzes their solutions to
select the action that leads to the best outcome. RFF (Teichteil-Königsbuch et al.,
2010) is another determinized-based probabilistic planner that attempts to avoid
dead-ends states in advance as FFH+. RFF performs all-outcomes-determinization
and then uses this relaxation to compute an off-line policy by generating con-
secutive execution paths leading to the goal from the initial states using the FF
planner. The resulting policy has low probability of failing.

2.4 Summary

This chapter presented a review of several key concepts in classical planning,
planning-based goal recognition, and probabilistic planning mentioned in subse-
quent chapters. In particular, it offered an in-depth review of the planning prob-
lem, the planning technique based on heuristic search, and heuristic estimators
in the state-of-the-art due to the significant influence to the current work. Then,
it introduced the problem of goal recognition, a new active area in automated
planning, which is also addressed in this dissertation. It finally reviewed the
probabilistic planning problem, and mentioned the most remarkable techniques
used to solve probabilistic planning problems.
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Chapter 3

Cost Estimates in a Plan Graph
using Interaction

This chapter starts by describing the classical cost propagation process in a plan
graph and its use for computing cost estimates. Then, it presents a novel tech-
nique to propagate cost through a plan graph that computes more accurate es-
timations of cost. Then, it proposes a family of heuristic functions based on the
mentioned cost plan graph propagation technique. Finally, it shows an accuracy
evaluation of the resulting family of heuristics and their application in classical
planning.

3.1 Classical cost propagation in a plan graph

Simple propagation of cost estimates in a plan graph is a technique that has been
used in a number of planning systems (Bonet et al., 1997; Nguyen et al., 2002;
Do and Kambhampati, 2002). The computation of cost estimates starts from the
initial conditions and works progressively forward through each successive layer
of the plan graph. For level 0 it is assumed that the cost of the propositions at this
level is zero. With this assumption, the propagation starts by computing the cost
of the actions at level zero.

In general, the cost of performing an action a at level l with a set of precondi-
tions Pa is equal to the cost of achieving its preconditions. This may be computed
in two different ways:

1. Maximization: the cost of an action is equal to the cost of reaching its costli-
est precondition:

cost(a) = max
xi∈Pa

cost(xi) (3.1)

37
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2. Summation: the cost of an action is equal to the cost of reaching all its pre-
conditions:

cost(a) =
∑
xi∈Pa

cost(xi) (3.2)

The first method assumes the possibility of dependence among the precondi-
tions of an action. This is an admissible assumption since it underestimates the
cost of an action. On the other hand, the second method assumes independence
among all preconditions of an action. Although this heuristic is non-admissible, it
is typically more informative and compelling in practice. For the purpose of this
thesis, we make use of the Summation technique as in Equation 3.2 for estimating
the cost of an action.

The cost of achieving a proposition x at level l, achieved by the actions Ax at
the preceding level is the minimum cost among all a ∈ Ax. It is defined as:

cost(x) = min
a∈Ax

{cost(a) + Cost(a)} (3.3)

where Cost(a) is the cost of applying action a, and cost(a) is given by Equa-
tions 3.1 and 3.2.

Figure 3.1 shows the first layers of the plan graph for the simple Logistics
problem shown in Figure 2.1. The numbers above propositions and actions are
the costs associated with each one computed during the cost propagation process.
The highlighted costs are the ones computed below as an example. In particular,
at level 0 the cost for action (load pkg a trk) is zero since its preconditions are true
in the initial state, so the cost of its effect (in trk pkg) is one at level 1:

cost(load pkg a trk) = cost(at a pkg) + cost(at a trk) = 0 + 0 = 0

cost(in trk pkg) = cost(load pkg a trk) + Cost(load pkg a trk) = 0 + 1 = 1

In the next actions’ layer, the cost for (verify pkg a trk) is 1, the sum of the cost
of its preconditions, so its effect (verified pkg trk) has a cost of 2:

cost(verify pkg a trk) = cost(at a trk) + cost(in trk pkg) = 0 + 1 = 1

cost(verified pkg trk) = cost(verify pkg a trk) + Cost(verify pkg a trk)

= 1 + 1 = 2

Figure 3.2 shows the continuation of the plan graph in Figure 3.1 for the sim-
ple Logistics problem. At level 2 we know by intuition that the cost of actions
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Figure 3.1: Example of a classical cost propagation in a plan graph.

(scan pkg trk) and (drive trk a b) is two. However, the sum of each action’s pre-
conditions gives a cost of three:

cost(scan pkg trk) = cost(in trk pkg) + cost(verified pkg trk) = 1 + 2 = 3

cost(drive trk a b) =

{
cost(at a trk) + cost(in trk pkg)+

cost(verified pkg trk)

}
= 0 + 1 + 2 = 3
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Figure 3.2: Example of a classical cost propagation in a plan graph (continued).

The problem here is that the proposition (verified pkg trk) is not independent
of the proposition (in trk pkg) since the action (verify pkg a trk) has (in trk pkg)
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as a precondition. Therefore, there is synergy between the two propositions that
is not considered in simple cost propagation using the Summation heuristic.

Continuing with the simple cost propagation for the current example, the cost
of propositions (scanned pkg trk) and (at b pkg) at level 3 is:

cost(scanned pkg trk) = cost(scan pkg trk) + Cost(scan pkg trk) = 3 + 1 = 4

cost(at b pkg) = cost(drive trk a b) + Cost(drive trk a b) = 3 + 1 = 4

This propagation results in (unload pkg trk b) having the cost:

cost(unload pkg trk b) = cost(scanned pkg trk) + cost(at b pkg) = 4 + 4 = 8

Taking the above calculations into consideration, a plan graph is built in the
same way that an ordinary plan graph is created. The construction process fin-
ishes when two consecutive propositions layers are identical and there is quies-
cence in cost. Quiescence is reached when the cost for each proposition and action
in the plan graph no longer changes. On completion, each possible goal proposi-
tion has an estimated cost of been achieved.

In Section 2.1, we show that the optimal cost for the current example is 5.
Using the simple cost propagation approach, the goal proposition (at b pkg) has
a cost of 9 when the propagation finishes. That is:

cost(at b pkg) = cost(unload pkg trk b) + Cost(unload pkg trk b) = 8 + 1 = 9

This cost overestimates the optimal cost because of the assumption of inde-
pendence among all the preconditions of an action. In the next section, we present
a method that estimates the degree of dependence between pairs of propositions
and pairs of actions in a plan graph, and thus computes more accurate estimates
of cost.

3.2 Cost and Interaction propagation in a plan graph

The technique for cost propagation in a plan graph described in the previous sec-
tion starts from the initial conditions and works progressively forward through
each successive layer of the plan graph. The cost of performing an action is equal
to the cost of achieving its preconditions. The cost of achieving a proposition
is the minimum cost among all the actions that produce the proposition. This
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method assumes independence among the preconditions of an action. Therefore,
the cost can be an underestimate if some of the preconditions interfere with each
other, and can be an overestimate if some of the preconditions are achieved by
the same action. For this reason, the technique presented in this chapter for cost
propagation introduces the notion of Interaction (I), which captures the degree
of dependence (positive or negative) between pairs of propositions and pairs of
actions in the plan graph (Bryce and Smith, 2006).

3.2.1 Interaction

Interaction is a value that represents how more or less costly it is that two propo-
sitions or actions are established together instead of independently. This concept
is a generalization of the mutual exclusion concept used in classical plan graphs.
Formally, the optimal Interaction, I∗, considers n-ary Interaction relationships
among propositions and among actions in the plan graph, and it is defined as:

I∗(p0, ..., pn) = cost∗(p0 ∧ p1 ∧ ... ∧ pn)− {cost∗(p0) + ...+ cost∗(pn)} (3.4)

where the term cost∗(p0 ∧ ... ∧ pn) is the minimum cost among all the possible
plans that achieve all the members in the set. Computing I∗ would be computa-
tionally prohibitive. As a result, we limit the calculation of these values to pairs
of propositions and pairs of actions in each level of a plan graph. In other words,
binary Interaction:

I∗(p, q) = cost∗(p ∧ q)− {cost∗(p) + cost∗(q)} (3.5)

It has the following features:

I∗(p, q) is


< 0 if p and q are synergistic
= 0 if p and q are independent
> 0 if p and q interfere
∞ if p and q are mutually exclusive

I provides information about the degree of interference or synergy between
pairs of propositions and pairs of actions in a plan graph. When 0 < I(p, q) <∞
it means that there is some interference between the best plans for achieving p and
q, so it is harder (more costly) to achieve them both than to achieve them inde-
pendently. In the extreme case, I = ∞, the propositions or actions are mutually
exclusive. Similarly, when I(p, q) < 0 the two elements are synergistic, which
means that the cost of establishing both p and q is less than the sum of the costs
for establishing the two independently. However, this cost cannot be less than the
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cost of establishing the most difficult of p and q. As a result I(p, q) is bounded
below by −min{cost(p), cost(q)}, where cost is the estimated cost propagated in
the plan graph. This low bound will be discussed in more detail in Section 3.2.4.

The computation of cost and Interaction information begins at level zero of
the plan graph and sequentially proceeds to higher levels. For level zero it is as-
sumed that (1) the cost of each proposition at this level is 0, and (2) the Interaction
between each pair of propositions at this level is 0, which means independence
between propositions. Neither of these assumptions are essential, but they are
adopted in this work for simplicity.

3.2.2 Computing action cost and Interaction

The cost and Interaction information of a propositions layer at a given level of
the plan graph is used to compute the cost and the Interaction information for
the subsequent actions’ layer. Considering an action a at level l with a set of
preconditions Pa, the estimation of how costly it is to execute an action is the
cost of achieving all its preconditions plus the Interaction between all pairs of
propositions:

cost(a) = cost(Pa) ≈
∑
xi∈Pa

cost(xi) +
∑

(xi, xj)∈Pa
j > i

I(xi, xj) (3.6)

For instance, consider levels 2 and 3 of the plan graph shown in Figure 3.3 for
the simple Logistics problem. At level 2 propositions (in trk pkg) and (verified
pkg trk) have a cost of 1 and 2, respectively, and an Interaction value of -1. This
means that, the cost for actions (scan pkg trk) and (drive trk a b) is two (instead
of three for simple cost propagation):

cost(scan pkg trk) =

{
cost(at a trk) + cost(in trk pkg)+

I(at a trk, verified pkg trk)

}
= 1 + 2− 1 = 2

cost(drive trk a b) =



cost(at a trk)+

cost(in trk pkg)+

cost(verified pkg trk)+

I(at a trk, in trk pkg)+

I(at a trk, verified pkg trk)+

I(in trk pkg, verified pkg trk)


= 0 + 1 + 2 + 0 + 0− 1 = 2



3.2. COST AND INTERACTION PROPAGATION IN A PLAN GRAPH 43

P2

at a trk
0

at a pkg
0

in trk pkg
1

verified pkg trk
2

A2

load pkg a trk
0

verify pkg a trk
1

scan pkg trk
2

drive trk a b
2

P3

at a trk
0

at a pkg
0

in trk pkg
1

verified pkg trk
2

scanned pkg trk
3

at b trk
3

A3

load pkg a trk
0

verify pkg a trk
1

scan pkg trk
2

drive trk a b
2

unload pkg trk b
4

P4

at a trk
0

at a pkg
0

in trk pkg
1

verified pkg trk
2

scanned pkg trk
3

at b trk
3

at b pkg
5

-1

-2

-2

Figure 3.3: Example of cost and Interaction propagation in a plan graph.

The next step is to compute the Interaction between actions. The Interaction
between two actions a and b at level l, with sets of preconditions Pa and Pb re-
spectively, is defined as:

I(a, b) is


∞ if a and b are mutex by inconsistent effects or interference

cost(a ∧ b)− cost(a)− cost(b) otherwise
(3.7)

If the actions are mutex by inconsistent effects or interference, then the Inter-
action is infinity. Otherwise, the cost of the conjunction of a and b, cost(a ∧ b), is
cost(Pa ∪ Pb), i.e., the cost of the union of their preconditions. This is approxi-
mated as in Equation 3.6 by:

cost(Pa ∪ Pb) ≈
∑

xi∈Pa∪Pb

cost(xi) +
∑

(xi,xj)∈Pa∪Pb
j>i

I(xi, xj) (3.8)

where the cost of performing two actions a and b will be the sum of the cost of
achieving all their preconditions plus the Interaction between all pairs of precon-
ditions.

The Interaction above can be simplify. To illustrate that, consider a simple
problem with operator A, which preconditions are x, y, and t, and operator B,
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which preconditions are x, y, and z. Assuming that A and B are not mutually
exclusive, the Interaction between actions A and B will be:

I(A,B) = cost(PA ∪ PB)− cost(A)− cost(B) (3.9)

where:

cost(PA ∪ PB) = cost(t) + cost(x) + cost(y) + cost(z) + I(t, x) + I(t, y) +

I(t, z) + I(x, y) + I(x, z) + I(y, z)

cost(A) = cost(t) + cost(x) + cost(y) + I(t, x) + I(t, y) + I(x, y)

cost(B) = cost(x) + cost(y) + cost(z) + I(x, y) + I(x, z) + I(y, z)

Therefore, the Interaction between A and B can be rewritten as:

I(A,B) = ���
�cost(t) +���

�cost(x) +���
�cost(y) +���

�cost(z) +����I(t, x) +����I(t, y) +

I(t, z) +���
�I(x, y) +���

�I(x, z) +���
�I(y, z)−����cost(t)−����cost(x)−

���
�cost(y)−����I(t, x)−����I(t, y)−����I(x, y)− cost(x)− cost(y)−

���
�cost(z)− I(x, y)−����I(x, z)−����I(y, z)

= I(t, z)− cost(x)− cost(y)− I(x, y)

In general:

I(a, b) ≈
∑

xi∈Pa−Pb
xj∈Pb−Pa

I(xi, xj)−
∑

xi∈Pa∩Pb

cost(xi) +
∑

(xi,xj)∈Pa∩Pb
j > i

I(xi, xj)

where the first term gets the Interaction between unique preconditions for each
action, the second term removes duplicated preconditions, and the third term
gets the Interaction between common pairs of preconditions.

For the example in Figure 3.3, the Interaction between actions (scan pkg trk)
and (drive trk a b) would be:

I(scan pkg trk, drive trk a b) ≈


cost(in trk pkg)+

cost(verified pkg trk)+

I(in trk pkg, verified pkg trk)


= −(1 + 2− 1) = −2
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The fact that I(scan pkg trk, drive trk a b) = −2 means that there is some de-
gree of synergy between actions (scan pkg trk) and (drive trk a b). This synergy
comes from the fact that the two actions have two common preconditions, (in trk
pkg) and (verified pkg trk).

3.2.3 Computing proposition cost and Interaction

The next step consists of calculating the cost of the propositions at the next level.
This cost is calculated in the same way as in Equation 3.3. In this calculation, all
the possible actions at the previous level that achieve each proposition need to be
taken into account. We make the usual optimistic assumption that the least ex-
pensive action can be used. Therefore, the cost of a proposition is the minimum
cost among all the actions that produce the proposition. Formally, for a proposi-
tion x at level l achieved by actionsAx at the preceding level, the cost is calculated
as:

cost(x) = min
a∈Ax

{cost(a) + Cost(a)} (3.10)

In the current example, the cost of propositions (scanned pkg trk) and (at b
pkg) at level 3 is:

cost(scanned pkg trk) = cost(scan pkg trk) + Cost(scan pkg trk) = 2 + 1 = 3

cost(at b pkg) = cost(drive trk a b) + Cost(drive trk a b) = 2 + 1 = 3

Finally, we compute the Interaction between propositions. In order to calcu-
late the Interaction between two propositions x and y at a level l, we need to con-
sider all the possible ways to achieve both propositions. In other words, all the
actions that achieve the pair of propositions and the Interaction between them.
Suppose that Ax and Ay are the sets of actions that achieve propositions x and y

respectively at level l. The Interaction between x and y is then:
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I∗(x, y) = cost∗(x ∧ y)− cost∗(x)− cost∗(y)

= min
a∈Ax
b∈Ay

{
cost(a ∧ b)

}
− cost∗(x)− cost∗(y)

≈ min


min

a∈Ax∩Ay
cost(a) + Cost(a)− cost(x)− cost(y)

min
a∈Ax−Ay
b∈Ay−Ax

cost(a) + Cost(a) + cost(b) + Cost(b) + I(a, b)


−cost(x)− cost(y) (3.11)

where actions are divided into those that accomplish both propositions x and y,
and those that accomplish only one of them.

Returning to the current example, consider the calculation of the Interaction
between (scanned pkg trk) and (at b pkg) at level 3 where the only way to achieve
them both is by performing (scan pkg trk) and (drive trk a b). In this case, the
Interaction is calculated as follows:

I(scanned pkg trk, at b pkg) ≈


cost(scan pkg trk) + Cost(scan pkg trk)+

cost(drive trk a b) + Cost(drive trk a b)+

I(scan pkg trk, drive trk a b)


−cost(scanned pkg trk)− cost(at b pkg)

= {2 + 1 + 2 + 1− 2} − 3− 3 = −2

The fact that I(scanned pkg trk, at b pkg) = −2 means that there is synergy
between having the package scanned and having it at b. This synergy comes
from the fact that the actions (scan pkg trk) and (drive trk a b) have two common
preconditions (in trk pkg) and (verified pkg trk).

Using Equations 3.6, 3.7, 3.10, and 3.11 we can build a plan graph and propa-
gate cost in the same way as for simple cost propagation. The construction pro-
cess finishes when two consecutive propositions layers are identical and there
is quiescence in cost and Interaction for all propositions and actions in the plan
graph. On completion, each possible goal proposition has an estimated cost of
being achieved, and there is an Interaction estimation between each pair of goal
propositions.



3.2. COST AND INTERACTION PROPAGATION IN A PLAN GRAPH 47

In the simple Logistics example, if we keep propagating cost and Interaction
information, we get that the cost of (unload pkg trk b) at level 3 is four as ex-
pected:

cost(unload pkg trk b) =


cost(scanned pkg trk)+

cost(at b pkg)+

I(scanned pkg trk, at b pkg)

 = 3 + 3− 2 = 4

Therefore, the goal proposition (at b pkg) has a cost of 5 when the propagation
finishes. That is:

cost(at b pkg) = cost(unload pkg trk b) + Cost(unload pkg trk b) = 4 + 1 = 5

which is the same as the optimal cost shown in Section 2.1.

3.2.4 Lower bound on cost and Interaction

Because the costs in Equations 3.6 and 3.10 are estimated based on binary Interac-
tion, the resulting calculations can sometimes underestimate cost and Interaction.
Therefore, we can improve estimates by considering lower bounds on action cost,
action Interaction, and propositions Interaction. The reason for these lower bounds
are shown in next subsections.

Lower bounds on action cost

The cost of an action a should be at least the maximum cost among all its precon-
ditions, if they are synergistic among all of them. That is:

cost(a) ≥ max
x∈Pa

cost(x)

To illustrate this, consider a simple problem with the following two unit-cost
operators:

A : p → x, y, z (3.12)

B : x, y, z → t

Figure 3.4 shows a partial planning graph for the operators described in Equa-
tion 3.12. The number next to each proposition and action refers to the estimated
cost computed for each proposition and action during the cost propagation pro-
cess. The number next to red edges refers to the Interaction value between the
pair of propositions that each edge connects. The example in the figure starts at



48 CHAPTER 3. COST ESTIMATES IN A PLAN GRAPH USING INTERACTION

Pi−1 Ai−1 Pi Ai Pi+1

p

1

A

1
y

2

x2

z2

B
���
2

0

t
���
3

1

-2

-2

-2

Figure 3.4: Example of lower bounds on action cost during the propagation of
cost and Interaction information in a plan graph.

level i−1 with propositions layer Pi−1, which contains a single proposition pwith
cost = 1. Therefore, the estimated cost of action A is:

cost(A) = cost(p) = 1

Next step is to compute the estimated costs of propositions at level Pi, which
have the following values:

cost(x) = cost(A) + Cost(A) = 1 + 1 = 2

cost(y) = cost(A) + Cost(A) = 1 + 1 = 2

cost(z) = cost(A) + Cost(A) = 1 + 1 = 2

The computation of the estimated cost of a proposition is followed by the
Interaction computation between pairs of them. The Interactions values are:

I(x, y) = cost(A) + Cost(A)− cost(x)− cost(y) = 1 + 1− 2− 2 = −2

I(x, z) = cost(A) + Cost(A)− cost(x)− cost(z) = 1 + 1− 2− 2 = −2

I(z, y) = cost(A) + Cost(A)− cost(y)− cost(z) = 1 + 1− 2− 2 = −2

Next step is to compute the cost of operator B at layer Ai. B has x, y, and z

as preconditions. However, the estimated cost of action B is the sum of the es-
timated cost of each of its preconditions combined with the Interaction between,
which is zero:

cost(B) = cost(x) + cost(y) + cost(z) + I(x, y) + I(x, z) + I(y, z)

= 2 + 2 + 2− 2− 2− 2 = 0

In this case, the binary Interaction information is underestimating the cost of
B, which should be at least the maximum cost among all its preconditions (if
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they are synergistic among all of them). The optimal cost of B should consider
the Interaction among x, y, and z, which is:

I∗(x, y, z) = cost∗(A) + Cost(A)− cost∗(x)− cost∗(y)− cost∗(z)

= 1 + 1− 2− 2− 2 = −4

Therefore, the optimal cost of B is:

cost∗(B) = cost∗(x) + cost∗(y) + cost∗(z) + I∗(x, y, z) = 2 + 2 + 2− 4 = 2

In this case, by enforcing the lower bounds from Equation 3.2.4 we get that
the probability of B is at least 2.

Lower bounds on action and proposition Interaction

The approximate binary Interaction between two elements should always be bounded
below by −min {cost(x), cost(y)}. That is:

I∗(x, y) = cost∗(x ∧ y)− {cost∗(x) + cost∗(y)}

= max{cost∗(x), cost∗(y)} − cost∗(x)− cost∗(y)

If max {cost(x), cost(y)} = cost(x) , then:

I(x, y) = ���
�cost(x)−����cost(x)− cost(y) = −cost(y)

If max {cost(x), cost(y)} = cost(y) , then:

I(x, y) = ���
�cost(y)− cost(x)−����cost(y) = −cost(x)

Therefore:
I(x, y) ≥ −min {cost(x), cost(y)} (3.13)

Considering these bounds during the Interaction computation result in more
accurate cost estimates. To illustrate this, consider a simple problem with the
following two unit-cost operators:

A : x → p

B : y, z → q (3.14)

Figure 3.5 shows a partial planning graph for the operators described in Equa-
tion 3.14. The number above the propositions and actions refers to the estimated
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cost computed for each proposition and action during the cost propagation pro-
cess. The number next to the edges refers to the Interaction value between the
pair of propositions that each edge connects. The example in the figure starts at
level i with propositions layer Pi, which contains propositions x, y, and z, with
costs 1.28, 1.6, and 1.28 respectively, and I(x, y) = I(x, z) = I(y, z) = −1.28. The
estimated cost of actions A and B is:

cost(A) = cost(x) = 1.28

cost(B) = cost(y) + cost(z) + I(y, z) = 1.6 + 1.28− 1.28 = 1.6

The next step is to compute the estimated Interaction of actions at level Ai.
Using Equation 3.10, we compute the Interaction between actionsA andB, which
is:

I(A,B) = I(x, y) + I(x,w) = −1.28− 1.28 = −2.56

In this case, according to the bounds in Equation 3.13 we know that the Inter-
action between A and B should not be lower than:

−min{cost(A), cost(B)} = −min{1.28, 1.6} = −1.28

Therefore, considering these bounds during the Interaction computation re-
sults in more accurate cost estimates.
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Figure 3.5: Example of lower bounds on action Interaction during the propaga-
tion of cost and Interaction information in a plan graph.
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3.3 A heuristic estimator based on Interactions

The plan graph described in the previous section includes, for each proposition
and action in the plan graph, an approximate cost of being achieved. These cost
estimates may be used as heuristic estimators. The next subsections describe two
different methods that make use of this information to compute heuristic func-
tions. The first method computes the estimated cost using the information given
in the plan graph, while the second one builds a cost-relaxed plan where the
propagated cost information is taken into account.

3.3.1 The hI heuristic

The hI heuristic (E-Martı́n et al., 2015b) is based directly on the cost and Inter-
action information computed in the plan graph. It defines the estimated cost of
achieving a (possibly conjunctive) goal G = { g1, ..., gn} as:

hI = Cost(G) ≈
∑
g∈G

cost(g) +
∑

(gi,gj)∈G
i< j

I(gi, gj) (3.15)

The Interaction information helps to compute more accurate estimates of cost
when subgoals interfere or are synergistic with each other. However, the fact
that the Interaction computation is binary makes the heuristic hI non-admissible.
Therefore, the estimated cost is an approximation of the optimal cost. Essen-
tially, when all the preconditions of each action are independent of each other,
the heuristic hI reduces to the heuristic h+. Otherwise, hI can be greater or less
than h+, if there is ternary Interaction not captured.

3.3.2 The hIrp heuristic

The hIrp (E-Martı́n et al., 2015b) heuristic is based on computing a relaxed plan
using the cost information in the plan graph. It uses the algorithm described in
Figure 2.5. However, the more sophisticated strategy is to make use of cost and
Interaction information in the plan graph when selecting actions for the relaxed
plan, instead of the number of action’s preconditions. In particular, to achieve
a particular subgoal at a level l, the relaxed plan extraction process chooses the
action that minimizes the cost of achieving each individual goal at level l. The
sum of the costs of the actions in the relaxed plan π provides an estimate of cost
for the goal. Therefore, the heuristic is defined as:

hIrp = Cost(π) ≈
∑
a∈π

cost(a) (3.16)
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Like the hI heuristic, the hIrp heuristic is non-admissible.

3.4 Difference between h2 and hI

Intuitively, hI might seem similar to an additive version of the h2 heuristic (Haslum
and Geffner, 2000), where the max operator is replaced by the summation oper-
ator. However, there are some important subtleties in defining such a heuristic.
The h2 and hI heuristics consider pairs of elements to approximate the cost of
achieving a goal state sg from any state sn. The h2 heuristic is admissible since
it defines costs of sets by the maximum over the elements in the set, while the
hI heuristic is non-admissible since it defines costs of sets by the sum over the
elements in the set and the binary Interaction between them. As previously de-
scribed, the h2 heuristic defines the cost of an action a with set of preconditions
Pa as:

h2(a) = min



h2(x) if |Pa| = 1 and x ∈ Pa

h2(x ∧ y) if |Pa| = 2 and (x, y) ∈ Pa

max
x,y∈Pa

{h2(x ∧ y)} otherwise

where the cost of the conjunction of two propositions x and y is:

h2(x ∧ y) = min



min
a∈O(x,y)

Cost(a) + h2(Pa)

min
a∈O(x|y)

Cost(a) + h2(Pa ∪ {y})

min
a∈O(y|x)

Cost(a) + h2(Pa ∪ {x})

The simplest additive alternative of the h2 heuristic, which we call h2+, is to
simply replace the max operator by the summation operator. That is:

h2+(a) =
∑

(x,y)∈Pa

h2+(x ∧ y) when |Pa| > 2

However, this technique may significantly overestimate costs. To illustrate
this, consider the operator A in Figure 3.6, which has three preconditions x, y,
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and z whose individual costs are 0, 1, and 1, respectively, and pairs costs are
cost(x, y) = 1, cost(x, z) = 1, and cost(y, z) = 1. Given the individual costs we
know that the cost of action a should be at least 1, and at most 2. However, the
cost of a is 3, since it is the summation of the pair costs between all preconditions,
which over counts the cost of the propositions.

x

y

z

A

1

1

1 =⇒ h2+(A) = h2+(PA) = h2+(x, y) + h2+(x, z) + h2+(y, z) = 3

Figure 3.6: An example of the over-counting costs using the simplest additive
alternative to the h2 heuristic.

On the other hand, the hI heuristic defines the cost of an action a with a set of
preconditions Pa as:

when n = |Pa| = 1 :

cost(a) = cost(x)

when n = |Pa| = 2 :

cost(a) = cost(x) + cost(y) + I(x, y)

= ��
��cost(x) +��

��cost(y) + cost(x ∧ y)−����cost(x)−����cost(y)

= cost(x ∧ y)

when n = |Pa| = 3 :

cost(a) = cost(x) + cost(y) + cost(z) + I(x, y) + I(x, z) + I(y, z)

= ��
��cost(x) +���

�cost(y) +���
�cost(z) + cost(x ∧ y)−����cost(x)−����cost(y) +

cost(x ∧ z)− cost(x)−����cost(z) + cost(y ∧ z)− cost(y)− cost(z)

= cost(x ∧ y) + cost(x ∧ z) + cost(y ∧ z)− cost(x)− cost(y)− cost(z)

when n = |Pa| = 4 :

cost(a) = cost(x) + cost(y) + cost(z) + cost(w) + I(x, y) + I(x, z) + I(x,w)

= ���
�cost(x) +���

�cost(y) +���
�cost(z) +���

�cost(w) + cost(x ∧ y)−����cost(x)−

���
�cost(y) + cost(x ∧ z)− cost(x)−����cost(z) + cost(x ∧ w)− cost(x)−

���
�cost(w) + cost(y ∧ z)− cost(y)− cost(z) + cost(y ∧ w)− cost(y)−

cost(w) + cost(z ∧ w)− cost(z)− cost(w)

= cost(x ∧ y) + cost(x ∧ z) + cost(x ∧ w) + cost(y ∧ z) + cost(y ∧ w) +

cost(z ∧ w)− 2cost(x)− 2cost(y)− 2cost(z)− 2cost(w)
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In general:

cost(a) =
∑

(x,y)∈Pa
x 6= y

cost(x ∧ y) −
∑
x∈Pa

(n− 2)cost(x) (3.17)

where the cost of the conjunction of two propositions x and y produced by actions
a and b respectively is:

cost(x ∧ y) = min
a∈O(x|y)
b∈O(y|x)

{cost(a) + Cost(a) + cost(b) + Cost(b) + I(a, b)}

= min
a∈O(x|y)
b∈O(y|x)

{
���

�cost(a) + Cost(a) +���
�cost(b) + Cost(b) + cost(a ∧ b)−

���
�cost(a)−����cost(b)

}
= Cost(a) + Cost(b) + cost(a ∧ b)

= Cost(a) + Cost(b) + cost(Pa ∪ Pb)

The Interaction information is the main key to prevent over-counting cost
while using an additive heuristic. The second term in Equation 3.17 subtracts
propositions’ individual costs as many times as is needed to not duplicate them.
This feature is given by the use of Interaction during cost propagation in a plan
graph and underlines our novel heuristic. The h2+ heuristic that we just defined is
therefore not a sensible candidate for an additive version of h2 because it double-
counts the cost of the preconditions. In the next subsections, we propose three
alternatives that overcome this problem.

3.4.1 Ordered Greedy Covering

The Ordered Greedy Covering alternative, namely h2+g , defines the cost of an
action a with the set of preconditions Pa as the summation of pairs (x, y) ∈ Pa
where pairs (x, y) are chosen according to the order of preconditions Pa, until all
the elements in Pa are covered. That is:

h2+g (Pa) =



∑
i=1,3,...,n−2

h2+g (xi ∧ xi+1) + h2+g (xn) n is odd

∑
i=1,3,...,n−1

h2+g (xi ∧ xi+1) n is even

(3.18)

To illustrate this technique, consider the example from Figure 3.7 that shows
an operator A whose set of preconditions is {x, y, z, t, q}. The h2+g estimation will
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be given by summation of the cost h2+g according to the order of the preconditions
in the set. This technique first takes the pair of preconditions x and y, then the
pair of preconditions z and t, and finally precondition q.

x
y

z
t
q

A

1)

2)

3)

=⇒ h2+
g (PA) = h2+

g (x, y) + h2+
g (z, t) + h2+

g (q)

Figure 3.7: An example of the ordered greedy covering alternative.

This is a simple and inexpensive way to prevent the over-counting problem.

3.4.2 Cost Greedy Covering

The Cost Greedy Covering alternative, namely h2+c , defines the cost of an action a
with set of preconditions Pa as the summation of pairs (x, y) ∈ Pa where, at each
stage, the pair (x, y) with highest cost is chosen, until all the elements in Pa are
covered. That is:

h2+c (Pa) = pn =

{
{xi, xj} = argmax

Pan−1={Pa−pn−1}
(xi,xj)∈Pan−1

i< j

h2+c (xi, xj)

}
(3.19)

To illustrate this technique, consider the example from Figure 3.8 that shows
an operator A whose set of preconditions is {x, y, z, t, q}. First, it selects the pair
of propositions with the highest h2+c value, (y, z) in the example. Then it excludes
the other pairs that contain the previously selected preconditions. This step is
repeated until all the preconditions of A are covered. The h2+c estimation will be
given by summation of the cost h2+c of each selected pair.

This technique is slightly more expensive than the Order Greedy Covering
technique because the cost of all pairs needs to be computed. However, the cost
is still polynomial in the number of actions’ preconditions.

3.4.3 Max Covering

The Max Covering alternative, namely h2+m , defines the cost of an action a with
set of preconditions Pa as the summation of pairs (x, y) ∈ Pa that maximizes the
cost of a. That is:
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x
y

z
t
q

A
1)

2)

3)

=⇒ h2+c (PA) = max


���

��h2+c (x, y),���
��h2+c (x, z), h2+c (x, t), h2+c (x, q)

h2+
c (y, z),���

��h2+c (y, t),���
��h2+c (y, q)

���
��h2+c (z, t),���

��h2+c (z, q)

h2+c (t, q)


h2+c (PA) = max

{
���

��h2+c (x, t),���
��h2+c (x, q)

h2+
c (t,q)

}

h2+(PA) = h2+
c (y, z) + h2+

c (t, q) + h2+
c (x)

Figure 3.8: An example of the ordered greedy covering alternative.

h2+m (Pa) = max
S∈P



∑
i=1,3,...,n−2

h2+m (si ∧ si+1) + cost(sn) n is odd

∑
i=1,3,...,n−1

h2+m (si ∧ si+1) n is even

(3.20)

To illustrate this technique, consider the example from Figure 3.9 that shows
an operatorAwhose set of preconditions is {x, y, z, t, q}. This technique will com-
pute the cost of all possible permutations of the set of preconditions. The h2+m will
be given by the permutation that maximizes the cost.

x
y

z
t
q

A

1)

2)

3)

x
y

z
t
q

A

1)

2) 3)

x
y

z
t
q

A

1)

2)

3) ...

h2+m (PA) = max


(h2+m (x, y) + h2+m (z, t) + h2+m (q)), (h2+m (x, y) + h2+m (z, q) + h2+m (t))

(h2+m (x, y) + h2+m (t, q) + h2+m (z)), (h2+m (y, z) + h2+m (x, t) + h2+m (q))

(h2+m (y, z) + h2+m (x, q) + h2+m (t)), (h2+m (y, z) + h2+m (t, q) + h2+m (x))

...


Figure 3.9: An example of the max covering alternative.

This technique is quite expensive for operators with many preconditions since
the computation is exponential in the number of preconditions for an operator.
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3.5 Cost estimation accuracy evaluation

Sections 3.3.1 and 3.3.2 describe two non-admissible heuristic based on the plan
graph with Interactions described in Section 3.2. Sections 3.4.1, 3.4.2, and 3.4.3
describe three alternatives for an additive version of the h2 heuristic. To eval-
uate the accuracy of these heuristics, we performed an experimental evaluation
by comparing the estimated cost against the optimal cost for a selection of prob-
lems. The optimal cost of each problem was computed using the optimal planner
HSP∗f (Haslum, 2008). In addition to the hI and hIrp heuristics, the evaluation has
been done for h+ and h+rp heuristics, which are the versions of hI and hIrp without
Interaction. In these cases, the plan graph is built using the classical cost propa-
gation. Likewise, the evaluation has been done for the set-additive heuristic hsa.

The following plots and tables show the results of this evaluation on seven
well-known planning domains with fifteen problems each. For each heuristic
technique in each domain, each column shows the following measures:

• r: the ratio of the estimated cost to the optimal cost per problem.

• M: the mean of the ratio among the solved problems.

• σ: the standard deviation of the ratio among the solved problems.

• p-value: Shapiro-Wilk normality test (Shapiro and Wilk, 1965) (to analyze
whether data are normally distributed).

The next subsection shows the results for each tested domain. The symbol “-”
means the HSP∗f does not solve the problem. Bold values symbolize the closest
cost estimates and lowest variance cost estimate.

Blocksword domain

The Blocksword domain is based on the classical Blocksworld domain, but with
six blocks labeled with letters and arranged randomly. The goal is to find the
sequence of actions that appropriately arranges the blocks.

Table 3.1 and Figure 3.10 show the results in this domain. The hI heuris-
tic computes cost estimates that are considerably closer to the optimal, and more
consistent (lower variance) than the estimated costs computed by the other heuris-
tic techniques. The hsa, hIrp, h+rp, h2+g , h2+c , and h2+m heuristics compute the same
cost estimate for these problems, which is always an underestimation of the op-
timal cost. The h+ heuristic overestimates costs significantly. In addition, for all
the heuristic techniques except h+, we do not accept normality with a confidence
level of α = 0.05.
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Table 3.1: Heuristic techniques accuracy evaluation in the Blocksword domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 0.91 1 1 0.89 0.83 1 1 0.83 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*
hI 1 1.12 1 1.1 1.2 1 1 0.75 1 1 1 1 1 1.04 1.15 1.025 0.099 0.003401*
h+ 1.16 1.37 1.35 1.21 1.2 1 1 1.7 0.7 1 1.37 1.37 0.66 1.08 1.15 1.158 0.259 0.5556
hIrp 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*
h+rp 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*
h2+g 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*
h2+c 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*
h2+m 0.91 1 1 0.89 0.83 1 1 0.95 0.7 1 1 1 0.66 0.82 0.87 0.91 0.108 0.003735*

Figure 3.10: Ratio mean and standard deviation in the Blocksword domain.

Campus domain

The Campus domain is about the different activities that a student may perform
at college. The goal is to find the sequence of actions that reaches the set of activ-
ities that the student wants to perform.

Table 3.2 and Figure 3.11 show the results for the Campus domain. The hI and
hIrp heuristics compute cost estimates that are considerably closer to the optimal,
and more consistent than the estimated costs computed by the other heuristics
estimators. The h2+g , h2+c , and h2+c heuristics compute better cost estimates than
the hsa heuristic. The h+ heuristic again badly overestimates. In addition, for
the hI and hIrp heuristics, we do not accept normality with a confidence level of
α = 0.05.

Elevator domain

The Elevator domain consists of a building with n fast elevators that stop in even
floors and have a capacity of x passengers. Furthermore, there are m slow eleva-
tors that stop at all the floors and have a capacity of y passengers. The goal is to
transport the passenger to the appropriate floor.
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Table 3.2: Heuristic techniques accuracy evaluation in the Campus domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 0.85 0.92 0.87 0.81 0.87 0.85 0.75 1 0.85 0.87 1 0.96 0.92 0.92 0.81 0.888 0.068 0.6139
hI 1 0.89 1 1 1 1 1.12 0.92 1 1 0.92 0.89 0.96 0.96 1 0.98 0.055 0.01043*
h+ 2.5 2.67 2.93 2.81 2.68 2.64 2.68 2.81 2.5 2.93 2.81 2.71 2.53 2.53 2.81 2.707 0.141 0.2166
hIrp 1 0.92 1 1 0.93 1 0.87 1 1 1 1 1.1 0.92 0.92 1 0.98 0.051 7.836×10−3∗
h+rp 0.85 0.92 0.87 0.81 1.06 0.85 0.75 1 0.85 0.87 1 1.07 0.92 0.92 0.81 0.907 0.09 0.5029
h2+g 0.85 0.92 0.87 0.81 1.06 0.85 0.75 1 0.85 0.87 1 1.07 0.92 0.92 0.81 0.907 0.09 0.5029
h2+c 0.85 0.92 0.87 0.81 1.06 0.85 0.87 1 0.85 0.87 1 1.07 0.92 0.92 0.81 0.916 0.08 0.08807
h2+m 0.85 0.92 0.87 0.81 1.06 0.85 0.75 1 0.85 0.87 1 1.07 0.92 0.92 0.81 0.907 0.09 0.5029

Figure 3.11: Ratio mean and standard deviation in the Campus domain.

Table 3.3 and Figure 3.12 show the results for the Elevator domain. The hI

heuristic computes cost estimates that are closer to the optimal compared to the
other heuristic techniques. The hsa heuristic computes estimated costs that are
more consistent than the estimated costs computed by the other heuristics esti-
mators. The h2+g , h2+c , h2+m , and hIrp heuristics compute cost estimates that consis-
tently overestimate cost, and the h+ heuristic badly overestimates costs. In addi-
tion, for all the heuristic techniques except h+ and hI , we do not accept normality
with a confidence level of α = 0.05.

Floortile domain

The Floortile domain is about a set of robots that paint floor tiles with two colors.
The robots can move up, down, left, and right, and can paint with one color at a
time the tile that is up or down them. Once the tile is painted, the robot cannot
stand on it. The goal is to paint the floor following the given color pattern.

Table 3.4 and Figure 3.13 show the results for the Floortile domain. The hIrp,
h+rp, hsa, h2+g , h2+c , and h2+m heuristics compute cost estimates that are closer to the
optimal, and more consistent than the estimated costs computed by hI and h+,
which both seems to perform poorly in this particular domain. As before, the h+
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Table 3.3: Heuristic techniques accuracy evaluation in the Elevator domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 0.8 0.8 1.11 0.85 0.9 0.83 - 1 1 0.78 1.06 0.84 0.94 0.95 1 0.922 0.1 1.017×10−4∗
hI 0.7 1.8 1 1.85 0.72 0.75 - 1 1.3 0.73 0.66 0.57 0.94 0.85 0.94 0.99 0.384 0.08806
h+ 2.2 2.8 2.55 3.14 2.45 2.16 - 2.13 2 2.26 5.2 3.52 4 4.71 4.35 3.107 1.031 0.3993
hIrp 1.7 2.2 1.77 1.71 1.72 1.5 - 1.46 1.6 1.42 1.73 1.68 1.68 1.57 1.76 1.681 0.18 5.285×10−5∗
h+rp 1.7 2.4 1.77 1.14 1.72 1.5 - 1.46 1.6 1.42 1.73 1.68 1.68 1.57 1.7 1.651 0.263 7.243×10−4∗
h2+g 1.7 2.4 1.77 1.14 1.72 1.5 - 1.46 1.6 1.42 1.73 1.68 1.631 1.57 1.7 1.647 0.263 7.7×10−4∗
h2+c 1.7 2.4 1.77 1.28 1.72 1.5 - 1.46 1.6 1.42 1.73 1.73 1.631 1.57 1.76 1.665 0.248 5.013×10−4∗
h2+m 1.7 2.4 1.77 1.14 1.72 1.5 - 1.46 1.6 1.42 1.73 1.68 1.68 1.57 1.7 1.651 0.263 7.243×10−4∗

Figure 3.12: Ratio mean and standard deviation in the Elevator domain.

heuristic significantly overestimates costs, while the hI heuristic underestimates
costs on all the problem except for one problem. In addition, for the h+ and hI

heuristics, we do not accept normality with a confidence level of α = 0.05.

Grid domain

The Grid domain is about an agent that moves along a grid and has the task of
transporting keys from some cells to others. The goal is to find the sequence of
actions that transport the keys to the pertinent cells.

Table 3.5 and Figure 3.14 show the results for the Grid domain. The hI heuris-
tic computes cost estimates that are closer to the optimal, and more consistent,
followed by the hsa heuristic, then the h2+g , h2+c , and h2+m heuristics, and finally the
hIrp and h+rp heuristics. All the heuristics generally underestimate cost except h+,
which overestimates on many problems. In addition, for all the heuristic tech-
niques, we do not accept normality with a confidence level of α = 0.05.

Intrusion domain

The Intrusion domain is about a hacker who might try different ways to attack on
a set of servers. The goal is to find the sequence of actions that the hackers have
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Table 3.4: Heuristic techniques accuracy evaluation in the Floortile domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 1.2 1.09 0.92 1 0.88 0.86 0.75 1.01 0.8 1.03 0.86 0.83 1.15 0.91 0.94 0.951 0.125 0.7949
hI 1 1 1.12 0.86 1 1 0.83 0.33 0.66 0.16 0.29 0.09 0.12 0.48 0.25 0.614 0.366 0.03955*
h+ 1.2 1.27 1.04 1.2 1.02 1.02 1 1.28 1.04 1.66 1.18 1.41 1.85 1.19 1.27 1.246 0.233 0.01273*
hIrp 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164 0.1637
h+rp 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164 0.1637
h2+g 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164 0.1637
h2+c 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164 0.1637
h2+m 1 1.36 1.16 1.13 1.05 0.88 0.83 1.03 0.86 0.83 0.76 0.75 0.81 0.92 0.88 0.954 0.164 0.1637

Figure 3.13: Ratio mean and standard deviation in the Floortile domain.

Table 3.5: Heuristic techniques accuracy evaluation in the Grid domain. Heuris-
tics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1 1 1 0.963 0.058 1.41×10−4∗
hI 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 0.995 0.016 9.834×10−8∗
h+ 1 1 1.34 1.38 1.6 1.29 2.76 1.48 1 1 1 1 1 1 1 1.258 0.451 3.455×10−5∗
hIrp 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1 1 1 0.963 0.058 1.41×10−4∗
h+rp 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1 1 1 0.963 0.058 1.41×10−4∗
h2+g 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1.11 1 1 0.971 0.069 0.01059*
h2+c 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1.11 1 1 0.971 0.069 0.01059*
h2+m 1 1 0.91 1 1 0.8 0.86 1 1 1 0.93 0.93 1.11 1 1 0.971 0.069 0.01059*

Figure 3.14: Ratio mean and standard deviation in the Grid domain.
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to perform to attack a set of servers.
Table 3.6 and Figure 3.15 show the results for the Intrusion domain. All the

heuristic techniques, except hI and h+, compute cost estimates equal to the op-
timal cost. The hI produces the optimal value except for one problem where it
is very close. Again, h+ significantly overestimates costs. In addition, for the h+

and hI heuristic techniques, we do not accept normality with a confidence level
of α = 0.05. For the rest of the heuristics, the Shapiro-Wilk test is not applicable.

Table 3.6: Heuristic techniques accuracy evaluation in the Intrusion domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
hI 1 1 1 1 1 1 1 1 0.9 1 1 1 1 1 1 0.993 0.024 9.834×10−8∗
h+ 1 1.33 1.25 1.33 1.25 1.22 1.33 1.25 1.5 1.28 1.25 1.25 1.25 1.25 1.28 1.269 0.097 3.641×10−3∗
hIrp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h+rp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -

Figure 3.15: Ratio mean and standard deviation in the Intrusion domain.

Kitchen domain

The Kitchen domain is about preparing different meals: breakfast, lunch, or din-
ner. The goal is to find out the sequence of actions that prepares the desired meal.

Table 3.7 and Figure 3.16 show the results for the Kitchen domain. All the
heuristic techniques, except hI and hIrp, compute cost estimates equal to the op-
timal cost. The hI and hIrp heuristics produce cost estimates close to the optimal
value. However, hIrp overestimates costs while hI underestimates. In addition,
for the h+ and hI heuristic techniques, we do not accept normality with a confi-
dence level of α = 0.05. For the rest of the heuristics, the Shapiro-Wilk test is not
applicable.
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Table 3.7: Heuristic techniques accuracy evaluation in the Kitchen domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
hI 0.97 0.97 0.97 0.97 1 1 1 1 1 1 1 1 1 1 1 0.994 0.009 1.139×10−5∗
h+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1.139×10−5∗
hIrp 1.06 1.06 1.06 1.06 1 1 1 1 1 1 1 1 1 1 1 1.017 0.028 -
h+rp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
h2+m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -

Figure 3.16: Ratio mean and standard deviation in the Kitchen domain.

Logistics domain

The Logistics domain is about delivering packages using planes and trucks be-
tween cities. The goal is to find the sequence of actions that transports each pack-
age to its final destination.

Table 3.8 and Figure 3.17 show the results for the Logistics domain. The hI

heuristic computes cost estimates that are closer to the optimal, while hIrp com-
putes cost estimates that are a bit more consistent, but overestimates costs. The
h+, h2+g , h2+c , h2+m , and hsa heuristics consistently underestimate costs that are less
closer and consistent. In addition, for all the heuristic techniques except hI , we
do not accept normality with a confidence level of α = 0.05.

Accuracy evaluation summary

The cost estimation accuracy evaluation performed highlights some important
ideas:

1. There is no significant difference among the h2+g , h2+c , and h2+m heuristics.

2. The h2+ family of heuristics does about the same as the h+rp heuristic in all
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Table 3.8: Heuristic techniques accuracy evaluation in the Logistics domain.
Heuristics marked with * do not pass the normality test with α = 0.05.

Heuristic
r

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

hsa 0.71 0.75 1 1 0.71 0.818 1 1 1 1 0.75 1 1 0.7 0.846 0.886 0.126 8.055×10−4∗
hI 0.92 1.08 1 1.08 0.92 0.72 1 1 1 1 1.08 0.88 1 1.2 0.76 0.979 0.116 0.2095
h+ 0.71 1.16 1 1 0.71 0.81 1 1 1 1 1 1 1 1 0.84 0.95 0.118 1.311×10−3∗

hIrp 1 1.16 1 1.16 1 1 1 1 1 1 1.16 1 1 1.2 0.84 1.036 0.092 1.082×10−3∗

h+rp 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126 8.055×10−4∗
h2+g 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126 8.055×10−4∗
h2+c 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126 8.055×10−4∗
h2+m 0.71 0.75 1 1 0.71 0.81 1 1 1 1 0.75 1 1 0.7 0.84 0.886 0.126 8.055×10−4∗

Figure 3.17: Ratio mean and standard deviation in the Logistics domain.

the domains – the h+rp heuristic eliminates the overestimation problem of
the h+ heuristic.

3. The hsa, h+rp, and h2+ heuristics perform similarly in all the domains except
in the Elevator domain where hsa underestimates costs while h+rp and h2+

overestimate them.

4. The h+ heuristic badly overestimates costs in most of the tested domains.

5. The hIrp and hsa heuristics are inconsistent – occasionally perform well, but
often do not.

6. Overall, the hI heuristic is the most consistent and computes cost estimates
that are closer to the optimal.

We assume that the generated data for each heuristic technique are not nor-
mally distributed. This means that we cannot apply parametric statistics. There-
fore, we have performed a non-parametric Kruskal-Wallis (Kruskal and Allen,
1952) test to find statistical significance difference of each heuristic technique
among the different tested domains. In other words, if the domain induces a
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significant difference in the ratio. The Kruskal-Wallis test is performed consider-
ing each heuristic technique as a dependent variable, and the domain as a factor
with 8 levels (domains) with 15 samples (problems). For each heuristic technique,
each column shows χ2 as the test statistic, df as the degrees of freedom of the test
(the number of factors minus 1), and p-value as the Kruskal-Wallis test result.
Table 3.9 shows the results of this test. For each heuristic technique among the
different domains the test assumes that there is significant difference assuming
α = 0.05.

Table 3.9: Kruskal-Wallis test on heuristics functions. Those p-value with signifi-
cant difference are marked with * (α = 0.05).

Heuristic χ2 df p-value
hsa 27.0195 7 3.306×10−4∗
hI 26.1848 7 4.668×10−4∗
h+ 79.7514 7 1.54×10−14∗
hIrp 49.4077 7 1.88×10−8∗
h+rp 46.1926 7 8.019×10−8∗
h2+g 45.8753 7 9.244×10−8∗
h2+c 45.775 7 9.669×10−8∗
h2+m 45.8755 7 9.243×10−8∗

3.6 Evaluation of the hI family of heuristics in planning

As a result of the increased accuracy and stability of the previously described hI

family of heuristics, it is natural to try to use them for planning purposes. The
hI heuristics were compared in the context of progression planning using the
MetricFF planner (Hoffmann, 2003) with an A∗ε search strategy (Pearl and Kim,
1982). The successors evaluation of the current state is based on the cost estimate
computed by the hI or hIrp heuristics, where the best successor is the one with the
lowest cost. We have implemented four variations of the heuristic function in the
MetricFF planner:

• MetricFFI : hI as heuristic function (Equation 3.15), and cost propagation
through the plan graph considering Interaction information.

• MetricFF+: hI as heuristic function (Equation 3.15), and cost propagation
through the plan graph not considering Interaction information.
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• MetricFFIrp: hIrp as heuristic function (Equation 3.16), and cost propagation
through the plan graph considering Interaction information.

• MetricFF+
rp: hIrp as heuristic function (Equation 3.16), and cost propagation

through the plan graph not considering Interaction information.

We have developed another approach using the MetricFF planner again, where
the hI heuristic is used in the first k levels of the search process, and then the h+

heuristic, namely MetricFFIk. The idea behind this strategy is to compute more
accurate, but computational expensive, cost estimates, early in the search process
to guide it towards lower cost plans when the heuristic is less informative. Then,
a faster heuristic is used for the reminder of the search. The MetricFFIk planner
has been tested with k = 1 up to 3.

We compare these eight variants against several satisficing planners that deal
with action costs such as: HSP∗f , LPG (Gerevini et al., 2003), SGPlan6 (Chen et al.,
2006), and MetricFF (Hoffmann, 2003). LPG is run using LPG-speed (LPGs) that
computes the first solution, and LPG-quality (LPGq) that computes the best so-
lution. MetricFF is run under three different approaches that perform cost min-
imization using a weighted A* algorithm (MetricFF3), cost minimization using a
A∗ε algorithm (MetricFF4), and cost minimization using an enforced hill-climbing
algorithm and then A∗ε (MetricFF5).

The following plots and tables show the results of this evaluation on the same
planning domains as before: Blocksword, Campus, Floortile, Intrusion, Kitchen,
and Logistics domains. We do not show results for the Elevator and Grid domains
because most of the planners had difficulties solving them so that we could not
perform the study properly. Again, each domain has fifteen problems each. For
each planning technique in each domain, each column shows the following mea-
sures:

• r: the ratio of the estimated cost to the optimal cost per problem.

• M: the mean of the ratio among the solved problems.

• σ: the standard deviation of the ratio among the solved problems.

• p-value: Shapiro-Wilk normality test (to analyze whether data are normally
distributed).

The next subsection shows the results for each tested domain. Once again, the
symbol “-” means the HSP∗f does not solve the problem. Bold values symbolize
the closest cost estimates and lowest variance cost estimate.
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Blocksword domain

Table 3.10 and Figure 3.18 show the results in this domain. MetricFF+
rp reaches

solutions equal to the optimal. MetricFFI , MetricFFIrp, MetricFFI1 and MetricFFI2
produce the optimal solution except in one problem, where the MetricFFI1 and
MetricFFI2 planners produce the closest solution. MetricFF+ and MetricFFI3 pro-
duce the optimal solution except in two problems. The rest of the planners con-
sistently produce low accurate solutions in most of the problems. In addition,
for all the planners except MetricFF5, we do not accept normality with a confi-
dence level of α = 0.05. The Shapiro-Wilk test is not applicable in the MetricFF+

rp

planner.

Table 3.10: Accuracy evaluation in the Blocksword domain. Heuristics marked
with * do not pass the normality test with α = 0.05.

Planner
Problem

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

LPGs 1.33 1.18 1 1.21 1.08 1 1 1.1 1.15 1 1 1 1.16 1.34 1.53 1.14 0.155 0.01287*
LPGq 1 1 1 1.21 1.25 1 1 1 1 1 1 1 1 1.13 1 1.039 0.081 6.229×10−6∗

SGPlan6 1 1 1 1 1 1 1 1 1 1 1 1 2.33 1 2.68 1.201 0.517 9.624×10−7∗
MetricFF3 1 1 1 1 1.25 1 1 1 1 1 1 1 1 1.26 1.18 1.046 0.094 5.393×10−6∗
MetricFF4 1.08 1 1 1.21 1.37 1 1 1 1.15 1.8 1 1 1.16 1.39 3.5 1.311 0.623 6.978×10−6∗
MetricFF5 1.41 1.75 1.35 1.21 1.45 1.8 1.75 1.1 1.15 1.8 1.37 1.37 1.16 1.47 1.34 1.435 0.231 0.07975
MetricFFI 1 1 1 1 1 1 1 1.25 1 1 1 1 1 1 1 1.016 0.062 9.834×10−8∗
MetricFF+ 1 1 1 1 1 1 1 1.15 1 1.6 1 1 1 1 1 1.05 0.151 3.886×10−7∗
MetricFFIrp 1 1 1 1 1 1 1 1 1 1 1 1 1 1.26 1 1.017 0.065 9.834×10−8∗
MetricFF+

rp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI1 1 1 1 1 1 1 1 1.15 1 1 1 1 1 1 1 1.01 0.037 9.834×10−8∗
MetricFFI2 1 1 1 1 1 1 1 1.15 1 1 1 1 1 1 1 1.01 0.037 9.834×10−8∗
MetricFFI3 1 1 1 1 1 1.26 1 1.15 1 1 1 1 1 1 1 1.027 0.073 9.568×10−7∗

Figure 3.18: Ratio mean and standard deviation in the Blocksword domain.

Campus domain

Table 3.11 and Figure 3.19 show the results in this domain. MetricFF3, MetricFF5,
MetricFFIrp, and MetricFF+

rp reach solutions equal to the optimal. SGPlan6 and
MetricFFI produce the optimal solution except in one problem. The MetricFF+,
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MetricFFI2, and MetricFFI3 planners produce the optimal solution except in two
problems. The rest of the planning techniques, that is, LPGs,LPGq, MetricFF4, and
MetricFFI1, produce less closer and consistent solutions in most of the problems.
In addition, for all the planners except LPGs, we do not accept normality with
a confidence level of α = 0.05. The Shapiro-Wilk test is not applicable in the
MetricFF3, MetricFFIrp, and MetricFF+

rp planners.

Table 3.11: Accuracy evaluation in the Campus domain. Heuristics marked with
* do not pass the normality test with α = 0.05.

Planner
Problem

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

LPGs 1.35 1.1 1.43 1.12 1 1.35 1.18 1.07 1.28 1.25 1.07 1.03 1.21 1.14 1.25 1.193 0.124 0.7519
LPGq 1 1.07 1.12 1 1.12 1.07 1.12 1.07 1.28 1 1.18 1.03 1 1.03 1.31 1.096 0.096 0.017*

SGPlan6 1 1 1 1 1 1.14 1 1 1 1 1 1 1 1 1 1.009 0.035 9.834×10−8∗
MetricFF3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFF4 1.85 1.25 1.37 1.37 1.37 1.71 1.56 1.33 1.85 1.43 1.33 1.07 1.14 1.14 1.37 1.413 0.233 0.1104
MetricFF5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI 1 1 1 1 1 1 1 1 1.07 1 1 1 1 1 1 1.004 0.017 9.834×10−8∗
MetricFF+ 1 1 1 1 1 1 1 1.03 1 1 1.03 1 1 1 1 1.004 0.012 7.525×10−7∗
MetricFFIrp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFF+

rp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI1 1.07 1 1.18 1.12 1 1 1.12 1.03 1 1.18 1.03 1 1 1 1.18 1.063 0.074 1.323×10−3∗
MetricFFI2 1 1 1 1 1 1 1 1.03 1 1 1.07 1 1 1 1 1.007 0.02 7.395×10−7∗
MetricFFI3 1 1 1 1 1 1 1 1.03 1 1 1.03 1 1 1 1 1.004 0.012 7.525×10−7∗

Figure 3.19: Ratio mean and standard deviation in the Campus domain.

Floortile domain

Table 3.12 and Figure 3.20 show the results in this domain. LPGs and SGPlan6

solve all the problems, although it produces low accurate solutions. LPGq solve
all the problems except one, with low accurate solutions. MetricFF3 solves half
of the problems and produces solutions that are close to the optimal in most of
the cases. The rest of the planning techniques solve one-third of problems where
MetricFFI , MetricFF+, MetricFFI1, and MetricFFI3 reach the optimal solution, and
MetricFFIrp, MetricFF+

rp, and MetricFFI2 produce less closer solutions. In addition,
for all the planners except LPGs and SGPlan6, we do not accept normality with a
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confidence level of α = 0.05.

Table 3.12: Accuracy evaluation in the Floortile domain. Heuristics marked with
* do not pass the normality test with α = 0.05.

Planner
Problem

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

LPGs 1 1.36 1.32 1.53 1.76 4.94 2 4.55 5.46 7.65 7.79 5.2 4.74 4.32 4.16 3.855 2.177 0.09062
LPGq 1 1 2.84 1 1.58 1.5 1.16 1.4 1.55 1.44 1.18 1.64 - 1.42 1.13 1.421 0.45 0.01873*

SGPlan6 1 1.36 1.8 2.06 1.52 1.94 1.54 1.5 1.72 1.65 1.37 1.49 1.43 1.78 1.47 1.58 0.252 0.7718
MetricFF3 1 1 1 1.4 1 1 1.29 - 1.09 - - - - - - 1.097 0.148 9.41×10−4∗
MetricFF4 1 1 3.16 1.93 3.08 - - - - - - - - - - 2.036 0.951 7.706×10−5∗
MetricFF5 1 1.72 2.4 1.53 1.64 - - - - - - - - - - 1.661 0.448 1.669×10−4∗
MetricFFI 1 1 1 1 1 1 - - - - - - - - - 1 0 4.904×10−5∗
MetricFF+ 1 1 1 1 1 1 - - - - - - - - - 1 0 4.904×10−5∗
MetricFFIrp 3.4 1.36 1.16 1 1 - - - - - - - - - - 1.584 0.917 4.803×10−5∗
MetricFF+

rp 1 1.36 1.16 1 1 - - - - - - - - - - 1.104 0.143 9.375×10−5∗
MetricFFI1 1 1 1 1 1 1 - - - - - - - - - 1 0 4.904×10−5∗
MetricFFI2 1 1 1.04 1 1 1 - - - - - - - - - 1.006 0.014 5.932×10−5∗
MetricFFI3 1 1 1 1 1 1 - - - - - - - - - 1 0 4.904×10−5∗

Figure 3.20: Ratio mean and standard deviation in the Floortile domain.

Intrusion domain

For the Intrusion domain, all the planning techniques produce solutions equal to
the optimal cost. As a consequence of this, the Shapiro-Wilk test is not applicable.

Kitchen domain

Table 3.13 and Figure 3.21 show the results in this domain. MetricFF3, MetricFF4,
MetricFFI1, MetricFFI2, and MetricFFI3 produce solutions equal to the optimal. The
MetricFF5 and SGPlan6 planners produce less accurate solutions. LPGq and LPGs

find the optimal solution except in one and two problems respectively. MetricFFI

finds the optimal solution except in four problems because the planner does not
solve them. The rest of the planners produce the optimal solution except in one
problem that planners are not able to solve it. In addition, for all the planners, we
do not accept normality with a confidence level of α = 0.05. The Shapiro-Wilk
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test is not applicable in the MetricFFI1, MetriFFI2, and MetricFFI3 planners.

Table 3.13: Accuracy evaluation in the Kitchen domain. Heuristics marked with *
do not pass the normality test with α = 0.05.

Planner
Problem

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

LPGs 1 1 1 1 1 1 1 1 1.3 1.3 1 1 1 1 1.3 1.06 0.12 3.481×10−6∗
LPGq 1.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1.004 0.016 9.834×10−8∗

SGPlan6 1.06 1.06 1.06 1.06 1.13 1.13 1.13 1.13 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.192 0.103 8.669×10−4∗
MetricFF3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 4.252×10−4∗
MetricFF4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1.139×10−5∗
MetricFF5 1.04 1.04 1.04 1.04 1 1 1 1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.104 0.09 9.834×10−8∗
MetricFFI - - - - 1 1 1 1 1 1 1 1 1 1 1 1 0 9.834×10−8∗
MetricFF+ 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 0 9.834×10−8∗
MetricFFIrp 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 0 9.834×10−8∗
MetricFF+

rp 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 0 9.834×10−8∗
MetricFFI1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -

Figure 3.21: Ratio mean and standard deviation in the Kitchen domain.

Logistics domain

Table 3.14 and Figure 3.22 show the results in this domain. MetricFF+
rp produces

solutions equal to the optimal. The rest of the planning techniques produce solu-
tions closer to the optimal. In particular, MetricFF+, MetricFFIrp, and MetricFFI1
produce the same exact solutions among them. The results produce by MetricFFI1
and MetricFFI2 are a bit more closer to the optimal and consistent, followed by
the MetricFFI and MetricFF3 planners. LPGs, LPGq, SGPlan6, MetricFF4, and
MetricFF5 produce low accurate solutions. In addition, for all the planners ex-
cept MetricFF+

rp where the Shapiro-Wilk test is not applicable, we do not accept
normality with a confidence level of α = 0.05.
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Table 3.14: Accuracy evaluation in the Logistics domain. Heuristics marked with
* do not pass the normality test with α = 0.05.

Planner
Problem

M σ p-value
p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15

LPGs 1.14 1.25 1.41 1.58 1.28 1.36 1.08 1.2 1 1.16 2.25 1.77 1 1.4 1.07 1.333 0.321 0.01351*
LPGq 1.21 1.08 1.08 1 1 1.27 1.41 1 1.08 1.16 1.5 1.22 1 1 1.3 1.156 0.156 0.04034*

SGPlan6 1 1 1.16 1.16 1 1.18 1.16 1.2 1 1 1 1.22 1.16 1 1 1.084 0.091 5.484×10−4∗
MetricFF3 1.07 1 1 1.16 1.07 1 1 1 1 1 1 1 1 1 1 1.02 0.045 4.613×10−6∗
MetricFF4 1.35 1.08 2.91 1.83 1.35 1.63 1.08 1 1.75 1.08 1.08 1 1.08 1.3 2.23 1.453 0.525 3.122×10−3∗
MetricFF5 1.14 1.08 1.08 1.08 1.07 1.18 1 1 1.08 1.08 1.08 1.44 1.08 1.6 1.23 1.15 0.158 3.698×10−4∗
MetricFFI 1 1 1 1 1 1.09 1 1 1 1 1 1 1 1.2 1 1.019 0.053 7.793×10−7∗
MetricFF+ 1 1 1 1.08 1 1.18 1 1 1 1 1.08 1.22 1 1 1 1.038 0.07 2.246×10−5∗
MetricFFIrp 1 1 1 1.08 1 1.18 1 1 1 1 1.08 1.22 1 1 1 1.038 0.07 2.246×10−5∗
MetricFF+

rp 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 -
MetricFFI1 1 1 1 1.08 1 1.18 1 1 1 1 1 1.22 1 1 1 1.032 0.07 4.866×10−5∗
MetricFFI2 1 1 1 1 1 1.18 1 1 1 1 1 1 1 1 1 1.012 0.045 9.834×10−5∗
MetricFFI3 1 1 1 1 1 1.18 1 1 1 1 1 1 1 1 1 1.012 0.045 9.834×10−5∗

Figure 3.22: Ratio mean and standard deviation in the Logistics domain.

Accuracy evaluation summary in planning

The cost estimation accuracy evaluation performed highlights some important
ideas:

1. MetricFF+, MetricFFI , and MetricFFI2 have a similar behavior in most of the
domains.

2. MetricFF+
rp and MetricFFIrp have similar behaviors in most the domains ex-

cept in the Floortile domain where MetricFFIrp does not perform well for
one of the problems.

3. The LPGq planner is a bit more consistent and computes better estimates
than the LPGs planner.

4. The MetricFF3, MetricFF4, and MetricFF5 planners are inconsistent – occa-
sionally perform well, but often do not.

5. The LPGs, LPGq, and SGPlan6 planners scale better than the rest of the plan-
ners.
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For computation time, Table 3.15 shows the average time in seconds taken
to solve the problem per domain and planner. For most domains, HSP∗f takes
less time to solve a problem than any MetricFFI and MetricFF+ variations. In
addition, it is noticeable that the use of the hI heuristic in only the first two levels
of the search process benefits the performance in time, and in accuracy for some
cases.

Table 3.15: Time evaluation progression planning in seconds.

Domain Blocks Campus Floortile Intrusion Kitchen Logistics
HSP∗f 8.302 0.054 63010 0.022 2.833 0.169

MetricFFI 76.86 23.46 1658.6 143.53 500.66 79.46
MetricFF+ 9.6 6.4 1132 23.73 27.53 25.93
MetricFFIrp 184.46 17 1862.06 24.93 43.13 82.46
MetricFF+

rp 18.8 10.26 1483.26 20.46 26.46 26.6
MetricFFI1 14.06 9.66 1114.8 32.53 39 29.93
MetricFFI2 17.46 11.26 1115.4 43.4 48.13 34.66
MetricFFI3 21.46 12.66 1115.66 56.66 57.4 38.86

We assume that the generated data for each planning technique are not nor-
mally distributed. This means that we cannot apply parametric statistics. There-
fore, we have performed a non-parametric Kruskal-Wallis test to find statistical
significance of each planning technique among the different tested domains. In
other words, if the domain induces a significant difference in the ratio. The
Kruskal-Wallis test is performed considering each planning technique as a de-
pendent variable, and the domain as a factor with 6 levels (domains) with 15
samples (problems). For each planning technique, each column shows χ2 as the
test statistic, df as the degrees of freedom of the test (the number of factors mi-
nus 1), and p-value as the Kruskal-Wallis test result. Table 3.16 shows the results
of this test. For each planning technique among the different domains the test
assumes that there is significant difference assuming α = 0.05.

3.7 Conclusions

This chapter presented two heuristic techniques, hI and hIrp, based on a plan
graph and Interaction information to compute more accurate cost estimates. This
heuristic provides cost estimates that are generally closer to the optimal value and
have lower variance than cost estimates computed by other cost-based heuristic
estimators such as h+ and hsa. The key to this improvement is the use of Interac-
tion information.
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Table 3.16: Kruskal-Wallis test on planning techniques. Those p with significant
are marked with * (α = 0.05).

Planner χ2 df p-value
LPGs 52.1139 5 5.112×10−10∗
LPGq 34.8267 5 1.629×10−6∗

SGPlan6 57.6051 5 3.794×10−11∗
MetricFF3 11.4905 5 0.04248*
MetricFF4 44.1349 5 2.175×10−8∗
MetricFF5 47.2824 5 4.976×10−9∗
MetricFFI 33.9184 5 2.472×10−6∗
MetricFF+ 35.1789 5 1.286×10−6∗
MetricFFIrp 20.373 5 1.063×10−3∗
MetricFF+

rp 27.5519 5 4.452×10−5∗
MetricFFI1 42.5597 5 4.538×10−8∗
MetricFFI2 30.0312 5 1.454×10−5∗
MetricFFI3 38.2974 5 3.288×10−7∗

As a consequence of the stability and accuracy of the hI heuristic, we ap-
plied it to classical planning. We demonstrated the accuracy/cost trade-off and
its variation over different planning problems. Unfortunately, the computational
overhead of hI is high and usually does not pay off the actual search process.
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Chapter 4

The hI Family of Heuristics in
Goal Recognition

This chapter presents a goal recognition technique based on the hI heuristic. It
first describes the techniques involved in the development of our approach, and
then shows an empirical study. Next, it presents a goal recognition problem that
involves free-flying robots monitoring ISS crew activities where we apply our
goal recognition technique. Finally, it proposes a theoretical framework for goal
recognition problems with uncertain observations.

4.1 Fast Goal Recognition (FGR) based on hI

Ramirez and Geffner (2010) provide a very compelling domain-independent the-
ory of the likelihood of a goal, based on how much the observed actions con-
tribute to achieving that goal. This theory is rooted in the space of all possible
plans that might be used to achieve each goal, and the assumption that less costly
plans are more likely. It does not rely on hand-coded plan libraries or evidence-
style networks. The drawback to this approach is its computational overhead. To
overcome this issue, we develop FGR (E-Martı́n et al., 2015a) where we make use
of Ramirez’s framework presented in Section 2.2.1, but make use of:

1. Cost and Interaction estimates using the plan graph described in Section 3.2.

2. The pruning technique of IPR described in Section 2.2.2.

As previously mentioned, for each goal set G ∈ G Ramirez’s framework com-
putes the difference between Cost(G|O) and Cost(G|O). We can use approxima-
tions to compute these costs. In particular, we can compute Cost(G|O) using IPR
and the hI heuristic. We do that by pruning the plan graph to remove everything

75
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inconsistent with the observations. The cost and Interaction information is then
propagated through the pruned graph. These new cost values are used to esti-
mate Cost(G|O) using Equation 3.15. In order to compute Cost(G|O), we use a
plan graph with cost and Interaction information and the hI heuristic. We do that
by approximating Cost(G|O) as just Cost(G). We can do this because, in most
cases, Cost(G) = Cost(G|O) since there are multiple possible paths to the goal.
In order for the two costs to be different, the observation sequence would need to
consist exclusively of optimal landmarks (Hoffmann et al., 2004).

To illustrate, consider the example shown in Figure 4.1, where an agent can
move up, left, and right at cost 1. It has two possible goals, G1 and G2, and the
observed sequence is O = (o1). For goal G1, Cost(G1|O) = 3, and Cost(G1|O) =

Cost(G1) = 3. (Both costs are the same since o1 is on an optimal path to G1 and
there is another optimal path that reaches G1, but does not include o1.) Hence,
∆(G1, O) = 0, and Pr(G1|O) = α(0.5). For goal G2, Cost(G2|O) = 2 and
Cost(G2|O) = 4 since avoiding o1 requires a suboptimal plan for G2. This results
in ∆(G2, O) = −2, and Pr(G2|O) = α(0.88). This means that G2 is more likely
to occur than G1. This result is somewhat counterintuitive. The fact that the se-
quence of observed actions consists exclusively of optimal action landmarks for
G2 causes Cost(G2|O) to differ from Cost(G2) yielding a higher probability for
G2. However, in most cases, Cost(G|O) = Cost(G) because there are multiple
possible paths to a goal. In order for the two costs to be different, the observa-
tion sequence would need to consist exclusively of optimal landmarks (like the
case for G2 above). For example, if we were to shift G1 and G2 left one column
there would now be multiple optimal paths to G2 so Cost(G2|O) would equal to
Cost(G2). This would result in both ∆(G1, O) = 0 and ∆(G2, O) = 0 yielding the
same probability for both goals.

G1 G2

o1

Figure 4.1: A 3x3 plan network for goals G1 and G2.

As with Ramirez, we define a goal recognition problem as T = 〈P,G, O, Pr〉,
which includes the problem P (planning domain and initial conditions), the set
of possible goals G, a set of observations O, and a prior distribution over the
possible goals G. It is also assumed that the sequence of observed actions may
be incomplete, but is accurate (not noisy). As mentioned previously, this work
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also makes use of the IPR technique that assumes knowledge in the time step in
which each action in the observation sequence happens. This assumption is gen-
erally valid for domains that involve monitoring – for instance, a robotic observer
watching the activities of a person; it may not see or identify every activity, but
it knows the times where it does observe something. However, it may be restric-
tive in other domains. In order to cover both assumptions, this work covers two
different cases. In the first one, the time step for each observed action in O is as-
sumed to be known. In the second one, like in Ramirez’z approach, the time step
for each observed action in O is not required. As a result, IPR is modified to relax
this assumption.

4.1.1 Computing goal probabilities

The combination of the plan graph cost estimation technique described in Sec-
tion 3.2, and the observation pruning technique described in Section 2.2.2 and
Section 4.1.2 allow fast estimation of cost differences ∆(G,O), and as a result
probability estimates for the possible goals G ∈ G.

Figure 4.2 shows the high-level algorithm for FGR used to solve a goal recog-
nition problem, which may be summarized in the following steps:

1. Build a plan graph for the problem P (domain plus initial conditions) and
propagate cost and Interaction information through this plan graph accord-
ing to the technique described in Section 3.2.

2. For each (possibly conjunctive) goal G ∈ G estimate the Cost(G) from the
plan graph using Equation 3.15.

3. Prune the plan graph, based on the observed actions O, using the technique
described in Sections 2.2.2 and 4.1.2.

4. Compute new cost and Interaction estimates for this pruned plan graph,
considering only those propositions and actions labeled 0 or 1.

5. For each (possibly conjunctive) goal G ∈ G:

a. Estimate the Cost(G|O) from the cost and Interaction estimates in the
pruned plan graph, again using Equation 3.15. The pruned plan graph
may discard propositions and/or actions in the plan graph necessary
to reach the goal. This constraint provides a way to discriminate pos-
sible goals. However, it may imply that (1) the real goal is discarded,
or (2) the calculated costs are less accurate. Therefore, computation of
Cost(G|O) has been developed under two strategies:
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i. Cost(G|O) is computed using the pruned plan graph.

ii. Cost(G|O) is computed after the pruned plan graph is expanded
to quiescence again. This will reintroduce any pruned goals that
are still possible given the observations.

b. Compute ∆(G,O) using Equation 2.11, and using Equation 2.12 com-
pute the probability Pr(G|O) for the goal given the observations.

FAST GOAL RECOGNITION (P,O,G)

O ≡ an observed actions sequence

G ≡ a set of possible goals or hypothesis

g ≡ a goal g ∈ G

pg ≡ a plan graph with cost and Interaction

pruned–pg ≡ a pruned plan graph

PR ≡ a probability distribution over G

1. pg ← BUILDPLANGRAPH(P, G)

2. for each g ∈ G

COMPUTECOST(G, pg)

3. pruned–pg ← PRUNEPLANGRAPH(pg, O)

4. UPDATECOSTPLANGRAPH(pruned–pg)

5. for each g ∈ G

a. COMPUTECOST(G, pruned–pg)

b. PR← PR∪COMPUTEPROBABILITY(G)

6. return PR

Figure 4.2: The FGR pseudo-algorithm.

To illustrate this computation, consider the example shown in Figure 2.7.
There are two possible goals, G1 and G2, and O = (o1) as the observed sequence.
For goal G1, Cost(G1|O) = 4 and Cost(G1) = 4. (Both costs are the same since
o1 is on an optimal path to G1 and there is another optimal path that reaches G1,
but does not include o1.) Hence, ∆(G1, O) = 0, and Pr(G1|O) = α(0.5). Sim-
ilarly, Cost(G2|O) = 3 and Cost(G2) = 3. This results in ∆(G2, O) = 0, and
Pr(G2|O) = α(0.5). This means that G1 and G2 are equally likely to occur given
O = (o1). Regardless of the use of Cost(G) instead of Cost(G|O), the result is the
same as in Ramirez’s approach.

As a more complicated example, consider again the simple logistics problem
from Section 2.2.2. Suppose that the possible goals are g1 = {(scanned pkg trk)},
g2 = {(scanned pkg trk), (at b pkg)}, and g3 = {(at a pkg)}. Propagating cost and
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Interaction information through the plan graph results in:

Cost(g1) = Cost(scanned pkg trk) = 3

Cost(g1|O) = Cost(scanned pkg trk) = 4

Cost(g2) ≈

{
Cost(scanned pkg trk) + Cost(at b pkg)+

I(scanned pkg trk, at b pkg)

}
= 2 + 5− 2 = 5

Cost(g2|O) ≈

{
Cost(scanned pkg trk) + Cost(at b pkg)+

I(scanned pkg trk, at b pkg)

}
= 2 + 5− 2 = 5

Thus, the the cost difference is:

∆(g1, O) = Cost(g1|O) − Cost(g2) = 4− 3 = 1

∆(g2, O) = Cost(g1|O) − Cost(g3) = 5− 5 = 0

As a result:

Pr(g2|O) = α
exp{−1}

1 + exp{−1}
= α(0.27)

Pr(g3|O) = α
exp{0}

1 + exp{0}
= α(0.5)

With regard to hypothesis g3 = {(at a pkg)}, the plan graph dismisses this
hypothesis as a solution because once the plan graph is pruned, proposition (at a
pkg) is labeled as -1. Therefore:

Cost(g3|O) ≈ Cost(at a pkg) =∞

As a result:

Pr(g3|O) = α
exp{−∞}

1 + exp{−∞}
=

0

1
= α(0)

Assuming uniform priors, Pr(G), after normalizing the probabilities, this tech-
nique gives as a result Pr(g1|O) = 0.35, Pr(g2|O) = 0.65, and Pr(g3|O) = 0.
Hence, the goal g2 is the most likely goal in this example given the observations
of actions (verify pkg trk a) and (drive trk a b).
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4.1.2 Relaxing the time step assumption in IPR

Jigui and Minghao’s pruning technique can be modified in order to relax the as-
sumption of knowing the time step of each action in the observed sequence. Like
Ramirez and Geffner (2010), the sequence of observed actions is sequential. Ini-
tially, an earlier start time (est) i is assigned to each action o in the observed se-
quence. The est is given by the order of each action in the observed sequence.
To illustrate this, given the sequence of observed actions (o0, o1, ..., oi), the est for
each action would be: est(o0)=0, est(o1)=1, est(o2)=2, etc. Once the pruning pro-
cess starts, an observed action o is possible to be observed at the assigned level i,
if all its preconditions are true (value 1) and/or unknown (value 0) and they are
not mutually exclusive at level i − 1. Otherwise, the action cannot be executed
at that level, which results in an update of the est of each remaining action in the
observed sequence. For instance, consider the initial observed sequence where
est(o0)=0, est(o1)=1, est(o2)=2, and o0 can be executed at level 0. If o1 cannot be
executed at level 1, then est(o1)=2 and est(o2)=3. If necessary, the plan graph will
be expanded until an est is assigned to each observed action in the sequence.

To illustrate this method, consider the simple Logistics example in Figure 2.1
whose plan graph is shown in Figure 2.8. Suppose that the sequence of observed
actions is (verify pkg trk a) and (drive trk a b), with initial est 0 and 1 respectively.
Action (verify pkg trk a) is initially assumed to be at level 0, but this cannot be
the case because its preconditions are not true at level 0. Therefore, the est for
(verify pkg trk a) is updated to 1, and the est for (drive trk a b) is updated to
2. The consequence of this updating is that each observed action is assumed to
occur at the earliest possible time consistent with both the observation sequence
and the constraints found in constructing the plan graph, using the Interaction
information.

4.1.3 Experimental evaluation

This section describes an experimental evaluation on the planning domains used
by Ramı́rez and Geffner: Blocksword, Campus, Grid, Intrusion, Kitchen, and Lo-
gistics. Each domain has 15 problems. The hypotheses set and actual goal for
each problem were randomly chosen with the priors on the goal sets assumed to
be uniform. For each problem in each of the domains, the LAMA planner (Richter
and Westphal, 2010) was run to solve the problem for the actual goal. The ac-
tual plans generated were used to chose the sequences of actions. We selected
the LAMA planner to consider optimal and non-optimal actual plans. The ex-
periments were conducted on an Intel Xeon CPU E5-1650 processor running at
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3.20GHz with 32 GB of RAM.
Ramirez evaluates his technique using HSP∗f (Haslum, 2008), an optimal plan-

ner, and LAMA, a satisficing planner that is used in two modes: as a greedy plan-
ner that stops when it finds the first plan (LAMAG), and as a planner that returns
the best plan found in a given time limit (LAMA). For the purpose of our tests,
Ramirez’s technique is also evaluated using the heuristic goal set estimator hsa,
which requires no search since the cost is given by a heuristic. The goal recogni-
tion technique presented in the previous section is compared against Ramirez’s
technique using those three planners and hsa, on the aforementioned domains,
using a range of time limits from 5 seconds up to 1800 seconds (see Appendix A
for more details). Our technique FGR, is run under eight variations, with and
without observation times, with and without extension of the plan graph after
pruning, with and without Interaction, and with and without relaxed plans. Not
all the combinations make sense. Here are the ones we evaluate (some additional
combinations in Appendix A):

• FGRIT: the propagation of cost information through the plan graph consid-
ers Interaction information, and the time step for each observed action is
known.

• FGRIET: same as above, but the pruned plan graph is expanded until qui-
escence.

• FGRI : the propagation of cost information through the plan graph consid-
ers Interaction information, but observation times are unknown.

• FGRIE: same as above, but the pruned plan graph is expanded until quies-
cence.

• FGR+: the propagation of cost information through the plan graph does not
consider Interaction information, and observation times are unknown.

• FGRFF : builds a simple relaxed plan without utilizing cost information,
and observation times are unknown.

• FGRIrp: builds a cost-relaxed plan using a plan graph that propagates cost
using Interaction information, and observation times are unknown.

• FGR+
rp: builds a cost-relaxed plan using a plan graph that propagates cost

without using Interaction information, and observation times are unknown.

This section is divided into two subsections, each one corresponding to the
test performed. In the first one, the set of observed actions for each recognition
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problem was randomly taken from the subset of the plan solution, ranging from
100% of the actions, down to 10% of the actions. In the second one, the set of
observed actions for each recognition problem was considered to be the prefix of
the plan solution, ranging from 100% of the actions, down to 10% of the actions.
The reason for this test is to model incremental goal recognition as actions are
observed. Priors on the goal sets are assumed to be uniform for both tests.

Results for both tests are summarized in Tables 4.1 and 4.2 where for each
planner, each column shows average performance over the 15 problems in each
domain. The first row in the table represents the optimal solution where HSP∗f
computes ∆(G,O) using Equation 2.11. The second row in the table represents
the optimal solution where HSP∗f computes ∆(G,O) using Cost(G) instead of
Cost(G|O). We denote the latest as gHSP∗f . Both approaches were allowed to run
for an unlimited amount of time. The next rows in the table represent suboptimal
solutions: first, solutions generated by LAMA and LAMAG; second, solutions
generated by FGR with Interaction and time step information; third, solutions
generated by FGR with Interaction and no time step information; and finally,
solutions generated by relaxed plan-based approaches. For each technique, rows
represent different measures of quality and performance:

• T shows the average time taken for solving all the problems.

• Q shows the fraction of times the actual goal was among the goals found to
be the most likely.

• S shows the spread, i.e., the average number of goalsG ∈ G that were found
to be the most likely.

• Q20 and Q50 show the fraction of times the actual goal is in the top 20% and
top 50% of the ranked goals. Although Q might be less than 1 for some
problem, Q20 or Q50 might be 1, indicating that the actual goal was “close”
to the top.

• d is the mean distance between the probability scores produced for all the
goal candidates, and the probability scores produced by gHSP∗f . More pre-
cisely, if the set of possible goals is {G1, ..., Gn}, a method produces proba-
bilities estimates {e1, ..., en} for those goals, and gHSP∗f produces probabil-
ities {p1, ..., pn} for those goals, d is then defined as:

d =
1

n

{
n∑
i=1

|ei − pi|

}
(4.1)
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The ideal result has Q = 1, which means that the actual goal is found with the
highest probability, and S = 1, which means that the tested approach discrimi-
nates among the possible goals very well since there is only one goal set with the
highest probability.

Random observations

Table 4.1 summarizes the results when observations are randomly chosen. In all
the domains except Grid, Kitchen, and Logistics, HSP∗f finds the actual goal with
highest probability (Q = 1). In all the domains except Grid and Logistics, gHSP∗f
also finds the actual goal with highest probability (Q = 1). In Logistics, the value
of Q degrades with lower percentages of observed actions. The spread, S, also
increases as the percentage of observed actions decreases, because there is not
enough information to distinguish among different possible goals. Results for
HSP∗f and gHSP∗f are the same except for the Kitchen and Grid domains where
gHSP∗f has a slightly better quality results since the fraction of times that gHSP∗f
finds the actual goal is higher. In other words, the Q value is higher. As a con-
sequence, S is slightly higher as well. Another key point is that gHSP∗f is sig-
nificantly faster than HSP∗f because it is generally easier to plan for G than for
G|O.

LAMA and LAMAG solve all the problems for the Blocksword domain within
1800 seconds, which is actually slower than gHSP∗f . However, the quality Q is
high, which means that the actual goal is among the most likely goals for most
problems. In the Campus domain, LAMA and LAMAG solve all the problems
within 3 and 0.6 seconds respectively. They generate high quality solution since
they find the actual goal with highest probability (Q = 1) except for low per-
centage of observed actions where it degrades a bit. Both approaches discrimi-
nate very well among the possible goals (S = 1). In the Grid domain, LAMA
and LAMAG solve all the problems within 300 and 80 seconds respectively. (In
both cases, the computation time decreases as the percentage of observed actions
drops.) LAMA finds the same solution as gHSP∗f , that is, the optimal solution,
for all the percentages of observed actions excepts for the 70%. LAMAG finds a
high quality Q solutions. In the Intrusion domain, LAMA solves all the problems
within 1300 seconds. The computation time decreases to 75 seconds as the per-
centage of observed actions drops. It finds the optimal solution (same as gHSP∗f ).
LAMAG solves all the problems in the Intrusion domain within 3 seconds. It
finds the optimal solution for low percentages of observed actions. However the
spread increases along with the percentage of observed actions, which means that
the approach does not discriminate among the possible goals. In the Kitchen do-
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main, LAMA and LAMAG find the optimal solution (same as gHSP∗f ) for all the
problems except for the 100% of observed actions set. However, LAMAG is faster
than LAMA. In the Logistics domains, LAMA solves all the problems, and pro-
duces high quality Q solutions within 42 seconds as long as the percentage of
observed actions is high. The computation time decreases to around 11 seconds
as the percentage of observed actions drops. For LAMAG the problems are solved
within 5 seconds. When the percentage of observed actions is high, the fraction
of times where the approach finds the actual solution among all possible goals is
good. The quality degrades as the percentage of observed actions drops.

The FGRIT and FGRI heuristics solve all the problems within 2 seconds. FGRIE
solves all the problems within 10 seconds, and FGRIET solves them within 12
seconds except for problems in the Grid domain where FGRIT and FGRI solve
them within 115 seconds. FGRIE solves all the problems within 130 seconds,
and FGRIET solves them within 125 seconds. In general, the four approaches
quickly provide high quality Q solutions when the percentage of observed ac-
tions is high, although this degrades a bit as the percentage drops. Comparing
FGRI with and without observation times, FGRIT and FGRITE sometimes pro-
duce slightly higher quality Q solutions than FGRI and FGRIE, where the time
step is unknown. However, this difference is small and only occurs in a few in-
stances for the Blocksword and Logistics domains. Considering the expansion
of the pruned plan graph, it was expected that FGRIET and FGRIE dominated
FGRIT and FGRI , respectively, in terms of goal recognition accuracy. Surpris-
ingly, this is not the case in the studied domains. In some cases, FGRIET and
FGRIE show a small improvement, but in others the quality Q of the solutions
drops. The hypothesis is that the pruned goals are sufficiently unlikely that rein-
troducing them does not significantly impact the resulting probability distribu-
tion. Considering the use of Interaction estimates, FGRI gets higher quality Q

solutions than FGR+, except for some cases of Blocksword and Logistics domains
for 30% and 10% of observed actions sets.

Heuristics based on relaxed plans produce quick solutions. In particular, the
hsa heuristic solves all the problems within a second. In all the domains except
Logistics, the quality Q of the solution is 1, which means that the actual goal is
among the most likely goals for all the problems. However, the spread is very
high, which means that the approach does not discriminate among the possible
goals very well. In Logistics, the quality Q of the solution is very low, although it
improves significantly in the top 20% set of the ranked goals. The FGRFF heuris-
tic produces solutions within a second, while FGRIrp and FGR+

rp heuristics find
solutions within 2 seconds. However, FGRFF solutions have lower quality Q
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compared to FGRIrp and FGR+
rp, with the exception of the Kitchen domain where

it produces better quality Q solutions than FGRIrp. Although we expected FGRIrp
to perform better that FGR+

rp because of the Interaction information, they give al-
most the same results. FGRIrp performs slightly better in the Blocksword domain
when the percentage of observed actions is 50% or lower, and in some cases of the
Logistics domain. The rest of the cases and for the Intrusion domain, their per-
formance is the same, except in the Kitchen domain where the quality Q of the
solutions produced by FGR+

rp increases considerably. As mentioned previously
in Section 3.5, the hypothesis is that while constructing a cost-relaxed plan, the
algorithm only considers the actions that minimize the cost, but not the Interac-
tion between/among them. Those selected actions might be the same as the ones
where the Interaction during cost propagation is not considered. In general, cost-
relaxed plan estimates produce fast quality solutions, although they are slightly
poorer in quality than FGRI .

Sequential observations

Table 4.2 summarizes the results when observations are the prefix of the actual
plan. This produces essentially the same results as the previous test for all the
different techniques. HSP∗f finds the actual goal with highest probability (Q = 1)
for all the cases except in Blocksword and Intrusion when the percentage of ob-
served actions is 70%, and Logistics when the percentage of observed actions is
70% or lower. In all the domains except Logistics, gHSP∗f also finds the actual
goal with highest probability. In Logistics, the value of Q degrades with lower
percentages of observed actions. The spread increases as the percentage of ob-
served actions decreases because there is not enough information to distinguish
among different possible goals. Results for gHSP∗f are slightly better than HSP∗f
in Blocksword and Logistics domains. Like in the previous test, gHSP∗f is sig-
nificantly faster than HSP∗f , because it is generally easier to plan for G than for
G|O.

LAMA and LAMAG solve all the problems for the Blocksword domain within
1800 seconds, which is actually slower than HSP∗f . However, the quality Q is
high, which means that the actual goal is among the most likely goals for most
problems. In the Campus and Grid domains, LAMA finds the optimal solution
(same as gHSP∗f ) within 3 seconds, while LAMAG gets high quality Q solutions
within a second. In the Grid domain, LAMA and LAMAG find the optimal so-
lution within 100 seconds. In the Intrusion domain, LAMA solves all the prob-
lems and produces the optimal solution within 1300 seconds. (The computation
time decreases to around 55 seconds as the percentage of observed actions drops.)
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Table 4.1: Goal recognition with random observations.

Domain Blocks Campus Grid
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2

LAMA

T 1603.24 1522.96 1260.6 1077.62 1082.15 2.74 1.43 0.84 0.52 0.52 294.75 208.70 62.12 20.38 16.52
Q 0.33 0.8 0.8 0.93 1 1 1 1 1 1 1 0.26 0.8 0.93 0.8
S 1 1.13 3.86 10.4 10.93 1 1 1 1 1 1 1.2 2.26 3.86 4.2

Q20 1 1 1 1 1 1 1 1 1 1 1 0.66 0.93 1 0.86
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86

d 0.042 0.017 0.009 0.001 0.002 0.066 0 0 0 0 0 0 0 0 0

LAMAG

T 849.08 840.76 814.95 803.04 809.10 0.57 0.56 0.4 0.38 0.38 81.36 40.27 19.26 10.16 9.76
Q 1 0.8 0.73 0.66 0.46 1 1 1 0.8 0.8 1 0.33 0.73 0.86 0.73
S 2.26 1.2 3 6.20 4.2 1 1 1 1 1 1 1.8 2 3.4 3.73

Q20 1 1 1 1 1 1 1 1 0.8 0.8 1 0.66 0.93 1 0.86
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86

d 0.005 0.02 0.024 0.014 0.015 0.066 4.9×105 0.02 0.19 0.19 6.9×105 0.029 0.012 0.015 0.015

FGRIT

T 0.94 1.07 1.28 1.42 1.43 0.27 0.29 0.33 0.38 0.38 106.84 108.53 112.21 114.01 114.71
Q 1 0.93 0.53 0.13 0.13 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86
S 2.33 2.33 1.53 1.8 1.8 1 1 1 1.06 1.06 1 1.93 3.2 4.2 4.2

Q20 1 0.93 0.66 0.53 0.53 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86
Q50 1 1 0.8 0.86 0.86 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86

d 0.004 0.016 0.035 0.022 0.022 0.066 2.4×105 0.002 0.098 0.098 0.004 0.077 0.07 0.056 0.048

FGRIET

T 12.59 8.94 4.6 3.68 3.67 0.39 0.39 0.4 0.42 0.42 127.22 125.25 124.59 123.92 124.81
Q 0.93 0.73 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86
S 1.06 1.13 1.86 1.73 1.73 1 1 1 1.06 1.06 1 2 3.4 4.2 4.2

Q20 1 0.93 0.66 0.4 0.4 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86
Q50 1 1 0.86 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86

d 7.4×103 0.04 0.03 0.015 0.015 0.066 5.6×105 6.3×103 0.098 0.098 0.004 0.078 0.085 0.056 0.048

FGRI

T 1 1.03 1.25 1.44 1.45 0.27 0.29 0.35 0.39 0.39 107.95 109.83 110.98 115.92 115.77
Q 1 0.93 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86
S 1.06 6.13 2.33 1.73 1.73 1 1.6 1.53 1.13 1.13 1 2.06 3.80 3.93 3.93

Q20 1 0.93 0.6 0.46 0.46 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86
Q50 1 1 0.8 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86

d 1.1×103 0.023 0.035 0.017 0.017 0.066 0.266 0.271 0.09 0.09 0.004 0.071 0.121 0.05 0.041

FGRIE

T 12.55 8.31 6.09 3.67 3.67 0.39 0.44 0.43 0.43 0.43 127.80 130.82 121.87 126.25 125.93
Q 0.93 0.73 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86
S 1.06 1.2 2.53 1.66 1.66 1 1 1.06 1.13 1.13 1 2.2 3.93 3.93 3.93

Q20 1 0.93 0.66 0.33 0.33 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86
Q50 1 1 0.86 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86

d 7.4×103 0.041 0.031 0.014 0.014 0.066 1×101 0.042 0.09 0.09 0.004 0.071 0.121 0.05 0.041

FGR+

T 0.76 0.6 0.64 0.78 0.78 0.23 0.22 0.25 0.26 0.26 33.02 33.47 33.25 35.71 35.91
Q 1 1 0.73 0.46 0.46 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73
S 1 11.33 6.6 2.06 2.06 1 1.66 1.46 1.26 1.26 1 1.53 3.33 3.66 3.86

Q20 1 1 0.86 0.6 0.6 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73
Q50 1 1 0.86 0.73 0.73 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73

d 0.004 0.047 0.045 0.046 0.046 0.066 0.3 0.235 0.2 0.2 1.2×103 0.04 0.113 0.055 0.05

has

T 0.44 0.39 0.37 0.36 0.36 0.05 0.04 0.03 0.03 0.03 0.42 0.33 0.26 0.24 0.24
Q 1 1 1 1 1 1 1 0.86 0.93 0.93 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 2 2 1.8 1.86 1.86 6.66 6.66 6.6 6.4 6.4

Q20 1 1 1 1 1 1 1 0.86 0.93 0.93 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.086 0.08 0.055 0.031 0.031 0.466 0.466 0.495 0.347 0.347 0.252 0.238 0.208 0.132 0.126

FGRIrp

T 1 1.02 1.26 1.45 1.44 0.27 0.29 0.35 0.39 0.39 107.30 109.75 110.72 116.48 113.75
Q 0.86 0.93 0.53 0.4 0.4 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53
S 2.33 4.93 3.2 4.66 4.66 1 1.53 1.53 1.06 1.06 1 3 2.26 2.6 2.66

Q20 0.86 0.93 0.73 0.6 0.6 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53
Q50 0.93 0.93 0.8 0.86 0.86 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53

d 0.017 0.023 0.04 0.033 0.033 0.066 0.3 0.268 0.233 0.233 1.3×104 0.041 0.09 0.068 0.062

FGR+
rp

T 1.33 0.7 0.64 0.78 0.78 0.31 0.26 0.25 0.26 0.26 33.11 33.44 33.10 35.66 35.64
Q 1 1 0.73 0.33 0.33 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6
S 1 11.33 7 4.13 4.13 1 1.8 1.53 1.46 1.46 1 3.06 3.66 2.73 2.8

Q20 1 1 0.8 0.46 0.46 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6
Q50 1 1 0.86 0.6 0.6 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6

d 0.004 0.047 0.04 0.044 0.044 0.066 0.366 0.304 0.267 0.267 1.3×104 0.045 0.094 0.072 0.066

FGRFF

T 0.65 0.54 0.44 0.41 0.44 0.21 0.2 0.19 0.19 0.18 18.21 18.27 17.04 17.19 17.07
Q 1 1 0.73 0.06 0.06 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53
S 1 13.8 9 2.26 2.26 1 1.8 1.4 1.13 1.13 1 1.73 2.73 2.73 2.8

Q20 1 1 0.73 0.33 0.33 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53
Q50 1 1 0.73 0.46 0.46 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53

d 0.004 0.06 0.045 0.053 0.053 0.066 0.366 0.404 0.332 0.332 7×105 0.031 0.086 0.088 0.083
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(continued)

Domain Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

FGRIT

T 0.89 0.77 0.56 0.31 0.31 0.26 0.24 0.2 0.16 0.16 0.88 0.99 1.14 1.25 1.25
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.86 0.73 0.6 0.6
S 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1 1.13 1.73 2.8 2.8

Q20 1 1 1 0.93 0.93 1 1 1 1 1 1 0.93 0.8 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86 0.86

d 1.6×105 0.003 0.048 0.014 0.014 1.14×104 0.011 0.03 0.058 0.058 5.8×104 0.023 0.061 0.045 0.045

FGRIET

T 1.29 1.18 0.99 0.74 0.74 0.28 0.26 0.23 0.19 0.19 8.51 4.36 3 2.83 2.85
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.66 0.66 0.6 0.6
S 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1.13 1.4 1.8 2.8 2.8

Q20 1 1 1 0.93 0.93 1 1 1 1 1 0.86 0.8 0.8 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 0.86 0.86

d 1.6×105 0.003 0.048 0.014 0.014 1.14×104 0.011 0.03 0.058 0.058 0.017 0.054 0.068 0.045 0.045

FGRI

T 0.89 0.49 0.21 0.21 0.21 0.26 0.19 0.14 0.13 0.13 0.88 1.01 1.19 1.26 1.26
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.86 0.53 0.6 0.6
S 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1 1.26 1.6 2.46 2.46

Q20 1 1 1 0.93 0.93 1 1 1 1 1 1 0.93 0.66 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 1.6×105 0.003 0.048 0.014 0.014 1.14×104 0.011 0.03 0.058 0.058 5.8×104 0.025 0.073 0.043 0.043

FGRIE

T 1.28 0.90 0.63 0.63 0.63 0.28 0.22 0.16 0.16 0.16 8.51 3.57 3.08 2.82 2.82
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.66 0.6 0.6 0.6
S 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1.13 1.26 1.73 2.46 2.46

Q20 1 1 1 0.93 0.93 1 1 1 1 1 0.86 0.8 0.66 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 0.93 1 0.73 0.86 0.86

d 1.6×105 0.003 0.048 0.014 0.014 1.14×104 0.011 0.03 0.058 0.058 0.017 0.043 0.072 0.041 0.041

FGR+

T 0.88 0.49 0.19 0.19 0.19 0.25 0.19 0.13 0.12 0.12 0.8 0.4 0.44 0.5 0.5
Q 1 1 1 1 0.93 1 1 1 1 1 1 0.53 0.46 0.6 0.6
S 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1 3 2.13 2.93 2.93

Q20 1 1 1 1 0.93 1 1 1 1 1 1 0.6 0.6 0.66 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 0.66 0.73 0.8 0.8

d 0.011 0.045 0.074 0.02 0.018 1×106 0.011 2×106 0.007 0.007 7.5×104 0.07 0.077 0.052 0.052

has

T 0.46 0.32 0.27 0.25 0.25 0.06 0.05 0.04 0.04 0.04 0.34 0.32 0.3 0.29 0.3
Q 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
S 16.66 16.06 16.66 16.66 16.66 3 3 3 3 3 15 15 14.8 14.66 14.66

Q20 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93

d 0.117 0.117 0.114 0.071 0.07 0.414 0.407 0.274 0.216 0.216 0.115 0.11 0.093 0.068 0.068

FGRIrp

T 0.88 0.49 0.21 0.21 0.2 0.26 0.19 0.14 0.13 0.13 0.88 1 1.19 1.26 1.26
Q 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.33 0.53 0.53
S 1 7.46 2.4 4.6 4.6 1 1.53 1 1 1 1 1.66 2.53 2.86 2.86

Q20 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.53 0.86 0.86
Q50 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.86 0.86

d 0 0.053 0.042 0.024 0.02 4.2×104 0.45 0.19 0.166 0.166 4.8×4 0.05 0.079 0.026 0.026

FGR+
rp

T 0.89 0.51 0.19 0.19 0.19 0.29 0.21 0.13 0.12 0.13 0.97 0.43 0.45 0.5 0.5
Q 1 1 0.93 1 1 1 1 1 1 1 1 0.53 0.4 0.66 0.66
S 1 7.46 2.4 4.6 4.6 1 1.93 1.46 1.4 1.4 1 5.8 2.66 4.00 4.00

Q20 1 1 0.93 1 1 1 1 1 1 1 1 0.6 0.4 0.66 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 0.66 0.53 0.8 0.8

d 0 0.053 0.042 0.024 0.02 3×104 0.262 0.068 0.014 0.014 0.002 0.083 0.08 0.052 0.052

FGRFF

T 0.44 0.26 0.10 0.09 0.08 0.13 0.10 0.08 0.06 0.08 0.67 0.35 0.19 0.27 0.19
Q 1 0.66 0.26 0.2 0.2 0.53 0.53 0.4 0.33 0.33 0.8 0.4 0.33 0.33 0.33
S 16.66 9.93 1.33 2.66 2.66 2.06 1.53 1.26 1 1 1.2 3.86 1.6 2.86 2.86

Q20 1 0.66 0.6 0.26 0.26 0.53 0.53 0.4 0.33 0.33 0.8 0.46 0.4 0.33 0.33
Q50 1 0.73 0.73 0.66 0.66 1 1 0.8 0.86 0.86 0.93 0.53 0.6 0.8 0.8

d 0.117 0.112 0.093 0.07 0.068 0.435 0.381 0.248 0.2 0.2 0.05 0.103 0.092 0.067 0.067
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LAMAG solves all the problems in the Intrusion domain within 3 seconds. The
quality Q of the solutions is very high. However, the spread is high, which means
that it does not discriminate very well among possible goals. In the Kitchen do-
main, the quality Q of solutions given by LAMA are slightly better than the ones
produced by LAMAG. However, LAMAG is faster than LAMA. In the Logistics
domain, LAMA solves all the problems and produces the optimal solution within
770 seconds. (The computation time decreases to around 12 seconds as the per-
centage of observed actions drops.) LAMAG solves all the problems within 5
seconds. When the percentage of observed actions is high, the quality Q of the
solution is good and degrades as the percentage of observed actions drops.

Because the observations are the prefix of the actual plan, the solutions pro-
duced by FGRIT and FGRI , and FGRITE and FGRIE are the same. The reason
for this is that the assigned est to each observed actions, is the same as the actual
time step of the action. Consequently, Table 4.2 only shows the results for FGRI

and FGRIE. The FGRI approach solves all the problems within 1.5 seconds, while
FGRIET solves them within 12 seconds. In general, both approaches quickly pro-
vide high quality Q solutions when the percentage of observed actions is high,
and degrade a bit as the percentage of observed actions drops. Considering the
use of Interaction estimates, FGRI gets higher quality solutions than FGR+ except
for some cases of Blocksword domain for the 30% and 10% of observed actions
sets, and some cases of the Kitchen domain for the 10% of observed actions set.

As noted before, heuristics based on relaxed plans produce quick solutions.
Specifically, the hsa heuristic repeatedly solves all the problems within a second,
producing solutions where the actual goal is among the most likely goals for all
the problems, but with a high spread. This happens for all the domains except in
Logistics, where the quality Q of the solution is very low, but it improves signifi-
cantly in the top 20% set of the ranked goals. The FGRFF heuristic produces solu-
tions within a second, while FGRIrp and FGR+

rp heuristics find solutions within 1.5
seconds. However, FGRFF solutions have lower quality Q compared to FGRIrp
and FGR+

rp with the exception of the Kitchen domain where, again, it produces
better quality Q solutions than FGRIrp. The FGRIrp heuristic performs slightly bet-
ter than FGR+

rp in the Grid domain when the percentage of observed actions is
70% or lower, and in some cases of the Intrusion and Logistics domains. In the
rest of the cases, their performance is the same, except in the Kitchen domain
where the quality of the solutions produced by FGR+

rp increases considerably.
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Table 4.2: Goal recognition with sequential observations.

Domain Blocks Campus Grid
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66

LAMA

T 1596.43 1471.80 1263.15 1085.34 1037.39 2.8 1.39 0.8 0.62 0.51 110.11 69.85 56.61 32.84 20.21
Q 0.73 0.73 0.86 0.93 0.93 1 1 1 1 1 1 1 1 1 1
S 1.06 2.13 2.86 11 13.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66

Q20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.026 0.021 0.005 2.1×103 1.1×103 0 0 0 0 0 0 0 0 0 0

LAMAG

T 860.44 846.22 825.27 817.13 785.30 0.62 0.54 0.44 0.41 0.37 84.9 47.99 36.36 19.21 11.76
Q 0.66 0.86 0.6 0.4 0.46 1 1 1 0.8 0.73 1 1 1 1 1
S 1 1.53 1.6 3.73 5.86 1 1 1 1.06 1.06 6.66 6.66 6.66 6.66 6.66

Q20 1 1 1 1 1 1 1 1 0.8 0.73 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.026481 0.017978 0.028515 0.016922 0.016054 3×106 4.8×104 5.9×103 0.138 0.23 0 0 0 0 0

FGRI

T 1 1.12 1.22 1.41 1.44 0.27 0.32 0.34 0.38 0.41 112.84 116.80 118.43 119.85 120.59
Q 1 0.86 0.8 0.2 0.06 1 1 1 1 1 1 0.8 0.86 0.8 1
S 1.06 3.73 2.46 2.06 1.46 1 1 1 1 1.13 1 1.4 1.53 2.4 4.46

Q20 1 0.93 0.93 0.46 0.33 1 1 1 1 1 1 0.93 0.86 0.8 1
Q50 1 0.93 0.93 0.8 0.66 1 1 1 1 1 1 1 1 0.93 1

d 1.1×103 0.024 0.028 0.021 0.015 2×106 1.8×104 0.001 0.022 0.14 0.22 0.19 0.16 0.096 0.03

FGRIE

T 12.6 5.98 4.4 3.63 3.58 0.39 0.39 0.4 0.42 0.44 133.03 128.05 127.42 129.38 129.83
Q 0.93 0.86 0.8 0.2 0.06 1 1 1 1 1 1 0.8 0.86 0.8 1
S 1.06 1.4 1.33 2 1.4 1 1 1 1 1.13 1 1.4 1.53 2.4 4.46

Q20 1 0.93 0.93 0.4 0.13 1 1 1 1 1 1 0.93 0.86 0.8 1
Q50 1 0.93 1 0.86 0.66 1 1 1 1 1 1 1 1 0.93 1

d 7.4×103 0.023 0.021 0.014 0.011 1×106 6.8×105 6.1×104 0.022 0.14 0.217 0.186 0.156 0.09 0.03

FGR+

T 0.76 0.59 0.61 0.75 0.78 0.23 0.24 0.27 0.25 0.27 33.33 33.54 34.34 35.48 36
Q 1 0.93 0.66 0.46 0.4 1 1 1 1 1 1 0.73 0.73 0.66 0.66
S 1 11.53 5 1.66 1.6 1 1.2 1 1.2 1.2 1 1.53 1.66 2 2.2

Q20 1 0.93 0.86 0.8 0.66 1 1 1 1 1 1 0.73 0.8 0.66 0.66
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.93 0.86 0.86 0.73

d 0.004 0.045 0.042 0.05 0.055 2×106 0.1 9.3×104 0.126 0.093 0.248 0.2 0.181 0.108 0.064

has

T 0.43 0.39 0.39 0.36 0.36 0.05 0.04 0.03 0.03 0.03 0.42 0.32 0.28 0.25 0.24
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 2 2 2 2 2 6.66 6.66 6.66 6.66 6.66

Q20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.086 0.08 0.055 0.031 0.031 0.466 0.466 0.495 0.347 0.347 0.252 0.238 0.208 0.132 0.126

FGRIrp

T 1 1.12 1.22 1.41 1.45 0.27 0.32 0.34 0.38 0.41 112.45 117.33 118.13 119.76 120.72
Q 0.86 0.73 0.66 0.26 0.2 1 1 1 1 0.93 1 0.93 0.93 0.93 0.8
S 2.33 3.86 3.26 4.33 5.66 1 1 1 1 1.13 1 1.53 1.86 2.53 3.4

Q20 0.86 0.73 0.66 0.46 0.46 1 1 1 1 0.93 1 1 0.93 0.93 0.8
Q50 0.93 1 1 0.93 1 1 1 1 1 0.93 1 1 1 1 0.8

d 0.017 0.03 0.044 0.04 0.021 2×106 1.8×104 0.001 0.024 0.134 0.25 0.21 0.193 0.143 0.053

FGR+
rp

T 0.76 0.59 0.61 0.75 0.78 0.23 0.24 0.27 0.25 0.27 33.33 33.54 34.34 35.48 36.00
Q 1 0.93 0.66 0.46 0.4 1 1 1 1 1 1 0.73 0.73 0.66 0.66
S 1 11.53 5 1.66 1.6 1 1.2 1 1.2 1.2 1 1.53 1.66 2 2.2

Q20 1 0.93 0.86 0.8 0.66 1 1 1 1 1 1 0.73 0.8 0.66 0.66
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.93 0.86 0.86 0.73

d 0.004 0.045 0.042 0.05 0.055 2×106 0.1 9.3×104 0.126 0.093 0.248 0.2 0.181 0.108 0.064

FGRFF

T 0.65 0.42 0.41 0.35 0.39 0.21 0.18 0.25 0.18 0.2 18.33 17.31 17.03 16.84 16.58
Q 1 1 0.8 0.2 0.06 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8
S 1 14 8.93 4.13 1.86 1 1.4 1.2 1 1 1 2.2 1.73 2.46 3.53

Q20 1 1 0.8 0.6 0.46 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8
Q50 1 1 0.8 0.66 0.53 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.86

d 0.004 0.053 0.046 0.048 0.048 2×106 0.2 0.238 0.375 0.218 0.25 0.197 0.198 0.14 0.054
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(continued)

Domain Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 1302.52 551.54 213.17 104.16 55.12 357.29 164.37 133.43 107.19 97.92 772.77 400.97 50.44 11.43 11.45
Q 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0 0 3.6×105 0 0 1.8×104 0 0 0 0 0 0 0 0 0

LAMAG

T 3.35 2.63 2.40 2.19 2.02 0.42 0.36 0.34 0.32 2.69 5.53 5.05 4.57 4.39 4.49
Q 1 1 0.93 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 16.66 10 1.86 2.33 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 8×106 0.013 0.026 0.041 0 0.001 7.4×104 5×103 0.037 0 1.3×103 0.045 0.07 0.063 0.063

FGRI

T 0.88 0.5 0.3 0.2 0.2 0.26 0.19 0.16 0.13 0.13 0.88 1.01 1.18 1.26 1.26
Q 1 0.93 0.93 1 1 1 1 1 1 0.73 1 0.86 0.53 0.6 0.6
S 1 1 1 1.2 5 1 1 1 1.4 1.4 1 1.26 1.6 2.46 2.46

Q20 1 1 0.93 1 1 1 1 1 1 0.73 1 0.93 0.66 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 1.6×105 0.004 0.003 1.6×104 0 6.6×105 6×103 0.026 0.034 0.06 5.8×104 0.025 0.073 0.043 0.043

FGRIE

T 1.28 0.91 0.72 0.63 0.63 0.28 0.21 0.18 0.16 0.16 8.51 3.58 3.08 2.82 2.82
Q 1 0.93 0.93 1 1 1 1 1 1 0.73 0.86 0.66 0.6 0.6 0.6
S 1 1 1 1.2 5 1 1 1 1.4 1.4 1.13 1.26 1.73 2.46 2.46

Q20 1 1 0.93 1 1 1 1 1 1 0.73 0.86 0.8 0.66 0.73 0.73
Q50 1 1 1 1 1 1 1 1 1 1 0.93 1 0.73 0.86 0.86

d 1.6×105 0.004 0.003 1.6×104 0 6.6×105 6×103 0.026 0.034 0.06 0.017 0.043 0.072 0.041 0.041

FGR+

T 0.88 0.49 0.3 0.19 0.19 0.25 0.19 0.15 0.12 0.12 0.81 0.4 0.44 0.5 0.5
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.53 0.46 0.6 0.6
S 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1 3 2.13 2.93 2.93

Q20 1 1 1 1 1 1 1 1 1 1 1 0.6 0.6 0.66 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 0.66 0.73 0.8 0.8

d 0.011 0.034 0.043 0.055 0.018 1.7×104 1×106 1×106 1×106 0 7.5×104 0.07 0.077 0.052 0.052

has

T 0.47 0.32 0.3 0.26 0.26 0.06 0.05 0.05 0.04 0.04 0.35 0.32 0.3 0.31 0.3
Q 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
S 16.66 16.06 16.66 16.66 16.66 3 3 3 3 3 15 15 14.8 14.66 14.66

Q20 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93

d 0.117 0.117 0.114 0.071 0.07 0.414 0.407 0.274 0.216 0.216 0.115 0.11 0.093 0.068 0.068

FGRIrp

T 0.88 0.49 0.3 0.2 0.2 0.26 0.19 0.16 0.13 0.13 0.88 1.01 1.19 1.26 1.27
Q 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.33 0.53 0.53
S 1 5.46 9.06 4.8 5.13 1 1.53 1.53 1 1 1 1.66 2.53 2.86 2.86

Q20 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.53 0.86 0.86
Q50 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.86 0.86

d 0 0.042 0.085 0.072 0.004 6×104 0.436 0.361 0.164 0.183 4.8×4 0.05 0.079 0.026 0.026

FGR+
rp

T 0.88 0.49 0.3 0.19 0.19 0.25 0.19 0.15 0.12 0.12 0.81 0.4 0.44 0.5 0.5
Q 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.53 0.46 0.6 0.6
S 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1 3 2.13 2.93 2.93

Q20 1 1 1 1 1 1 1 1 1 1 1 0.6 0.6 0.66 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 0.66 0.73 0.8 0.8

d 0.011 0.034 0.043 0.055 0.018 1.7×104 1×106 1×106 1×106 0 7.5×104 0.07 0.077 0.052 0.052

FGRFF

T 0.44 0.29 0.18 0.09 0.09 0.13 0.11 0.08 0.07 0.07 0.67 0.31 0.19 0.22 0.26
Q 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.4 0.33 0.33 0.33
S 16.66 12.4 2.26 2.26 2.26 2.06 1.53 1.53 1 1 1.2 3.86 1.6 2.86 2.86

Q20 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.46 0.4 0.33 0.33
Q50 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.93 0.53 0.6 0.8 0.8

d 0.117 0.115 0.115 0.105 0.051 0.435 0.373 0.331 0.103 0.155 0.05 0.103 0.092 0.067 0.067



4.2. PRACTICAL GOAL RECOGNITION FOR ISS CREW ACTIVITIES 91

4.2 Practical goal recognition for ISS crew activities

Recognizing an agent’s goals from some or all of the agent’s observed actions
is an important technological capability for applications that involve cooperation
between humans and machines, such as intelligent tutoring systems (Brown et al.,
1977), monitoring user’s needs (Pollack et al., 2003; Kautz et al., 2002), smart en-
vironments (Wu et al., 2007), and intelligent personal assistants (Weber and Pol-
lack, 2008). For human space exploration, there has been increasing interest in the
development of intelligent robots that can assist with astronauts activities. An ex-
ample of this is the use of free-flying robots to assist astronauts aboard the Inter-
national Space Station (ISS). The Smart Synchronized Position Hold, Engage, Re-
orient Experimental Satellites (SPHERES), free-flying robots currently aboard the
ISS, are capable of functioning autonomously, conducting zero gravity robotics
experiments, carrying mobile sensors, and inspecting items using a built in cam-
era. They can also potentially offer supervision, advice, and support for the as-
tronauts. However, goal recognition is essential for this capability, because an
astronaut often doesn’t fully communicate his or her intentions and objectives to
a robotic assistant or to others in the vicinity.

In this section, we describe the ISS Crew Activities Domain (ISS-CAD) that
focuses on maintenance tasks for the Environmental Control and Life Support
System (ECLSS), and present an empirical evaluation of different goal recognition
techniques applied to this domain.

4.2.1 ISS Crew Activities domain

The Environmental Control and Life Support System (ECLSS) is a critical sub-
system aboard the ISS that provides oxygen and potable water, removes carbon
dioxide, distributes cabin air between modules, maintains cabin temperature, hu-
midity, and pressure levels, monitors and controls nitrogen, oxygen, carbon diox-
ide, methane, hydrogen, and water vapor levels, and filters particulates and mi-
croorganisms from the air. Maintaining the ECLSS equipment involves regular
inspection, repair, and replacement of the components, which requires retrieving
and using various tools, measurement instruments, and replacement parts from
stowage in different modules aboard the space station.

The ISS is divided into modules where the ECLSS subsystems are located.
An ECLSS subsystem, such as the Air Revitalization System (ARS), or Water Re-
covery System (WRS), may be present in more than one module. The ISS-CAD
domain is concerned with the maintenance tasks that the astronaut must conduct
for the ECLSS subsystems, and the astronaut’s health. We developed our model
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of activities based on descriptions provided by Bagdigian (2008). The operators
described in the domain involve astronauts moving between modules, taking,
replacing, repairing, or inspecting components, measuring air and humidity lev-
els using different instruments, cleaning modules, exercising, eating, monitoring
brain activity, body radiation, blood pressure, etc. Propositions in the domain
model the connection among modules, the location of astronauts, subsystems,
tools, and components, the availability of instruments and components, the state
of the electrical equipment, and the results of repair, replace, measure, etc, opera-
tors.

The ISS-CAD domain (E-Martı́n et al., 2015c) has a total of 47 operators and
96 goals. The length of a plan solution depends on the number of tasks to be
performed, and the number of astronauts involved. Figure 4.3 shows a simplified
description of an ISS-CAD problem (see Appendix B for the complete domain
description). It consists of three actions (move), (get-replacement), and (replace-
component), and a flight engineer (fe1). There are three ISS modules: Harmony,
Destiny, and Unity (Harmony and Destiny are connected, and Destiny and Unity
are connected). The goal is to replace a sensor in the ARS subsystem located in
the Destiny module. A valid plan for the problem in Figure 4.3 is the following
sequence of actions:

π =


(move fe1 Harmony Destiny),
(move fe1 Destiny Unity),
(get-replacement sensor fe1 Unity),
(move fe1 Unity Destiny)
(replace-component sensor ars Destiny fe1)



4.2.2 Experimental evaluation on the ISS Crew Activities domain

This section shows results on the ISS Crew Activities Domain, which consists
of 30 problems that were automatically generated. The location of astronauts,
subsystems, tools, and components, the state (on, off, enabled, disabled) of the
electrical equipment, and the availability of tools and components at the initial
state for each problem were randomly generated. Connection between locations
are set according to the ISS assembly. The hypotheses file consists of all possible
goals that astronauts can perform. The actual goal for each problem was chosen
at random with the priors on the goal sets assumed to be uniform. As in the
previous section, for each problem we ran the LAMA planner to solve the prob-
lem for the actual goal. We have conducted a test where the observed sequence
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(define (domain ISS-CAD)

(:requirements :strips :typing :action-costs)

(:types crew module system component tool)

(:predicates (connected ?m1 ?m2 - module) (at ?c - crew ?m - module)

(in ?c - component ?s - system ?m - module)

(replacement-in ?t - component ?m - module)

(taken-replacement ?t - component ?c - crew)

(replaced ?cp - component ?s - system ?m - module ?c - crew))

(:functions (total-cost))

(:action move

:parameters (?c - crew ?m1 ?m2 - module)

:precondition (and (at ?c ?m1) (connected ?m1 ?m2))

:effect (and (not (at ?c ?m1)) (at ?c ?m2) (increase (total-cost) 1)))

(:action get-replacement

:parameters (?t - component ?c - crew ?m - module)

:precondition (and (at ?c ?m) (replacement-in ?t ?m))

:effect (and (taken-replacement ?t ?c) (increase (total-cost) 20)))

(:action replace-component

:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (at ?c ?m) (in ?o ?s ?m) (taken-replacement ?o ?c))

:effect (and (replaced ?o ?s ?m ?c) (not (taken-replacement ?o ?c))

(increase (total-cost) 20)))

(define (problem ISS-CAD-1)

(:domain ISS-CAD)

(:objects fe1 - crew Harmony Destiny Unity - module

ars - system sensor - component

(:init (connected Harmony Destiny) (connected Destiny Harmony)

(connected Destiny Unity) (connected Unity Destiny)

(replacement-in sensor Unity) (in sensor ars Destiny)

(at fe1 Harmony) (= (total-cost) 0))

(:goal (replaced sensor ars Destiny fe1))

(:metric minimize (total-cost)))

Figure 4.3: A fragment of a PDDL domain and problem description on the ISS
Crew Activities Domain.

was the prefix of the actual plan, since we assume that the observed action se-
quence is provided by a free-flying robot monitoring the astronaut’s activities. In
this case, the observed sequence ranges from 100% of the actions, down to 50%
of the actions. We did not include a test where the observed sequence is lower
than 50% because the quality of the solutions were poor for all the approaches.
The reason for this is that the first steps of the plan solution only correspond to
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actions where the astronaut moves among the different modules collecting tools
and equipment, which is usually not enough information to discriminate among
the possible goals.

For the purpose of this test, Ramı́rez technique is evaluated using the heuristic
estimator hsa, and the HSP∗f and LAMAG planners.

We have performed two different sets of problems. In the first one, each goal
in the hypotheses set involves a single astronaut in the domain definition. While
in the second each goal in the hypotheses set involves more than one astronaut
whose tasks interfere with each other.

Single astronaut tasks

The hypotheses set includes 96 goals that a single astronaut could potentially
be doing. Table 4.3 shows the results when the sequence of observed actions
is the prefix of actual plan (sequential observations). gHSP∗f finds the actual goal
with the highest probability (Q = 1), and the spread increases as the percentages
of observed actions drops. However, the computation time ranges from 687 to
1058 seconds, which makes the use of this planner impractical in this domain.
LAMAG solves all the problems within 300 seconds and produces high quality
Q solutions, which means that the actual goal is among the most likely goals for
most of the problems. However, the spread increases considerably for lower per-
centages, which means that it does not discriminate well for lower numbers of
observed actions. The hsa heuristic solves all the problems within 55 seconds, and
finds the actual goal with the highest probability for all problems. However, it
does not discriminate among the possible goals very well since the spread is very
high for all the percentages. FGRI and FGR+ solve all the problems within 113
and 46 seconds respectively, and find the actual goal with the highest probability.
In addition, the spread of the solution is very close to the optimal solution com-
puted by gHSP∗f , being slightly better for FGRI . This means that these heuristic
approaches discriminate among the possible goals quite well. FGR+ is faster than
FGRI , and the quality Q of the solutions is only a bit lower. Interaction informa-
tion helps to compute more accurate estimates of cost when subgoals interfere or
are synergistic with each other. It appears that the reason FGR+ works so well for
these problems is that the degree of interference and/or synergy among subgoals
is low.

We have performed a second test where the observed sequence was randomly
taken to be a subset of the plan solution, ranging from 100% of the actions, down
to 30% of the actions, even though it does not exactly fit the ISS-CAD problem
where the free-flying robot is progressively monitoring the astronaut. Table 4.3
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shows the results of this test, which produces essentially the same results as the
previous test for all the different techniques. gHSP∗f finds the actual goal with the
highest probability (Q = 1), but the computation time is high. LAMAG solves
all the problems within 300 seconds. It provides high quality Q solutions that
degrade as the percentage of observed actions decreases. The hsa heuristic solves
all the problems within 54–58 seconds, and finds high quality Q solutions. How-
ever, it does not discriminate among the possible goals very well (high S values).
FGRI solves all the problems within 88–105 seconds. The quality Q of the solu-
tions decreases as the percentage of observed actions drops, and, in general, is
lower than the solutions provided by LAMAG (although the spread is lower for
FGRI ). FGR+ solves all the problems within 30-40 seconds. It finds a high qual-
ity Q solutions, but with relatively high spread for low percentages of observed
actions. In general, when the sequence of observed actions is randomly chosen,
solutions are lower quality Q than when the observed sequence is sequential.

Table 4.3: ISS-CAD Evaluation Single Astronaut Tasks.

Sequential Observations Random Observations
Approach %O 100 90 80 70 60 50 100 70 50 30

gHSP∗f

T 1058.79 919.33 889.02 733.28 692.01 687.14 1039.62 1066.83 937.19 789.86
Q 1 0.96 0.96 0.96 0.93 0.93 1 1 0.96 0.93
S 1.03 7.83 21.96 38.7 43.43 44.56 1.03 5.76 17.8 20.56

LAMAG

T 300.33 301.89 298.26 296.41 294.83 293.58 192.26 188.87 186.56 185.91
Q 1 0.8 0.7 0.8 0.86 0.86 1 0.83 0.76 0.76
S 1.1 4.7 15.63 42.36 68.2 71.86 1.16 6.16 20.1 39.7

Q20 1 0.86 0.8 0.83 0.9 0.86 1 0.93 0.96 0.96
Q50 1 1 0.96 0.96 0.9 0.86 1 1 0.96 0.96

d 0.01 0.012 0.01 0.008 0.004 0.003 0.01 0.011 0.011 0.01

hsa

T 56.93 56.65 56.31 55.71 55.21 55.15 58.15 56.31 54.6 54.23
Q 0.93 0.93 0.93 0.93 0.93 0.93 0.86 0.86 0.86 0.86
S 84.9 84.9 84.9 84.9 84.9 84.9 84.83 84.83 84.83 84.83

Q20 0.93 0.93 0.93 0.93 0.93 0.93 0.86 0.86 0.86 0.86
Q50 0.93 0.93 0.93 0.93 0.93 0.93 0.86 0.86 0.86 0.86

d 0.02 0.015 0.009 0.005 0.004 0.004 0.02 0.017 0.012 0.012

FGRI

T 100.81 103.36 107.58 111.88 112.72 113.01 87.58 93.85 101.51 106.06
Q 1 0.66 0.66 0.56 0.56 0.56 1 0.76 0.5 0.43
S 1.03 7.73 14.86 21.46 20.16 21.6 1.1 4.73 13.16 24.76

Q20 1 0.7 0.7 0.56 0.56 0.56 1 0.76 0.5 0.43
Q50 1 0.96 0.9 0.8 0.8 0.76 1 0.9 0.76 0.7

d 0.0008 0.006 0.006 0.006 0.005 0.005 0.01 0.013 0.015 0.013

FGR+

T 37.4 38.07 40.74 44.56 45.98 46.38 29.02 31.81 36.77 41.11
Q 1 0.96 0.96 0.96 0.96 0.93 1 0.96 1 0.83
S 2.03 15.56 27.8 45.66 47.33 47.33 2.63 13.13 37.26 39.53

Q20 1 0.96 0.96 0.96 0.96 0.96 1 0.96 1 0.86
Q50 1 1 1 0.96 0.96 0.96 1 0.96 1 0.86

d 0.004 0.005 0.005 0.002 0.002 0.002 0.014 0.014 0.012 0.011
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Multiple astronauts tasks

The hypotheses set includes 30 goals that two astronauts could potentially be
doing. The tasks assigned to each astronaut are independent, but interfere with
each other. Table 4.4 shows the results when the sequence of observed actions is
the prefix of the actual plan (sequential observations). gHSP∗f finds the actual goal
with the highest probability (Q = 1), and the spread increases as the percentages
of observed actions drops. However, the computation time is again high enough
that it makes the use of this planner impractical in this domain. LAMAG solves all
the problems within 1400 seconds, which is quite high and makes the approach
impractical when multiple astronauts are involved. Nevertheless, it produces
high quality Q solutions (Q = 1) when the percentage of observed actions is
high, and degrades as the percentage of observed actions decreases. The spread
is low for all the cases, except for the set of 90% of the observations, where the
spread is unexpectedly high. The hsa heuristic solves all the problems within 55
seconds, but does not always find the actual goal with the highest probability.
As before, it does not discriminated among the possible goals since the spread is
very high for all the percentages. FGRI solves all the problems within 300-415
seconds. It finds the actual goal with high probability and Q decreases as the
percentage of observed actions drops. The spread is fairly small, which means
that the technique is able to discriminate among all the possible goals, although
the spread increases as the percentages of observed actions drops. FGR+ solves
all the problems within 100-140 seconds, and finds lower qualityQ solutions than
FGRI as expected for high percentage of observed actions. For lower percentage
of observed actions the qualityQ is better, but the spread is high for all percentage
of actions. Therefore, it does not discriminate among all the possible goals as well
as FGR+. However, it performs better than LAMAG in terms of speed, and better
than hsa in terms of quality Q and spread S.

As before, we performed a second test where the observed sequence was ran-
domly taken to be a subset of this plan solution, ranging from 100% of the ac-
tions, down to 30% of the actions. Table 4.4 shows the results of this test, which
produces essentially the same results as the previous test for all the different tech-
niques. gHSP∗f finds the actual goal with the highest probability (Q = 1), but the
computation time is high. LAMAG solves all the problems within 1470 seconds.
It provides highQ solutions for high percentage of observed actions. The increase
in computational time for LAMAG is noticeable when more that one astronaut is
involved in comparison to the previous test, where there is a single astronaut. The
hsa heuristic solves all the problems within 44–55 seconds, and finds high Q solu-
tions. However, the spread is large so it does not discriminate among the possible
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goals very well. FGRI solves all the problems within 300–400 seconds. The qual-
ity Q of the solutions decreases as the percentage of observed actions drops, and,
in general, is slightly lower than the solutions provided by LAMAG. However,
FGRI is almost three orders of magnitude faster than LAMAG. FGR+ solves all
the problems within 130-170 seconds. It finds a lower quality Q solutions than
FGRI as we expected. This confirms that the use of Interaction information is
beneficial when subgoals interfere with each other.

Table 4.4: ISS-CAD Evaluation Multiple Astronaut Tasks.

Sequential Observations Random Observations
Approach %O 100 90 80 70 60 50 100 70 50 30

gHSP∗f

T 11171.51 9992.57 10705.45 7504.84 5121.11 3244.15 11173.52 10473.08 7832.33 4013.13
Q 1 1 1 0.7 0.9 0.7 1 1 1 0.7
S 1 1 1 2.6 17.9 24.6 1 2 3.7 9.2

LAMAG

T 1480.08 1480.41 1475.46 1475.15 1471.17 1470.05 1482.15 1478.54 1475.43 1471.8
Q 1 1 0.8 0.8 0.5 0.3 1 1 1 0.3
S 1 20.2 5.8 1.7 4.3 7.3 1 10.7 16.2 5.2

Q20 1 1 0.9 1 0.8 0.5 1 1 1 0.7
Q50 1 1 1 1 0.9 0.9 1 1 1 0.8

d 0 0.016 0.014 0.011 0.016 0.017 0 0.011 0.014 0.017

hsa

T 54.5 51.84 49 46.17 45.29 44.74 54.62 48.77 44.9 43.59
Q 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.5
S 38.4 38.6 38.6 38.8 38.8 38.6 38.4 38.3 37.1 34.3

Q20 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.5
Q50 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.6

d 0.036 0.036 0.034 0.028 0.019 6.2×10−3 0.036 0.034 0.033 0.022

FGRI

T 316.52 305.51 337.33 383.03 412.55 415.92 291.53 312.61 375.35 409.17
Q 1 0.8 0.8 0.6 0.6 0.5 1 0.9 0.8 0.7
S 1.2 4 1.2 3.2 3.7 7.6 1 6.6 2.2 10.6

Q20 1 0.8 0.9 0.6 0.6 0.6 1 0.9 0.8 0.7
Q50 1 0.8 0.9 0.7 0.8 0.7 1 0.9 0.8 0.8

d 0 9.5×10−3 0.013 0.012 0.021 0.021 0 0.012 0.015 0.013

FGR+

T 99.19 96.54 96.14 109.31 142.07 136.02 132.96 116.98 140.4 169.17
Q 0.9 0.7 0.7 0.8 0.8 0.9 0.9 0.6 0.9 0.8
S 5.8 10.7 6.7 8.9 22.3 34.1 5.8 6.4 2.2 15.2

Q20 0.9 0.7 0.7 0.8 0.8 1 0.9 0.6 0.9 0.8
Q50 0.9 0.7 0.7 0.8 0.9 1 0.9 0.6 0.9 0.8

d 4×10−3 0.014 0.018 0.011 0.012 9×10−3 4×10−3 0.02 0.013 0.015

4.3 Uncertain Observations in Goal Recognition

Previously, we solved goal recognition problems where observations were as-
sumed to be perfect. In practice, this is not very realistic. An important extension
is to investigate goal recognition problems that involve uncertain observations.
As an illustration of this problem, consider the ISS-CAD problem described in
Figure 4.3, where a free-flying robot is observing an astronaut doing a task. There
might be different sources of uncertainty in the robot observations because of
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different reasons such as: (1) there is an obstacle between the robot and the astro-
naut, (2) some actions may be hard to identify, (3) the robot is engaged in other
tasks that do not allow continuous observation of the astronaut, etc.

Ramirez (2010) defines a classical goal recognition problem as a tuple T =

〈P,G, O, Pr〉 where P is a planning domain and initial conditions, G is a set of
possible goal sets or hypotheses, O is the observed action sequence O = o1, ..., on,
and Pr is the prior probability distribution over the goal sets G ∈ G. The ob-
servation sequence O may be incomplete, but is sequentially ordered. The solu-
tion to a goal recognition problem is a probability distribution over each goal set
G ∈ G giving the relative likelihood of each goal set. Ramirez later work (2011)
introduces an approach to solve goal recognition problems with uncertain action
outcomes, but it does not consider uncertain observations. Here, we introduce
an extension that includes uncertain observations, but we are still considering
deterministic actions. The syntax we propose for expressing uncertainty in the
observability of actions is the inclusion of an observability expression in the PDDL
action definition:

(:observability (p1 p2))

where p1 is the default probability that if the action happens, the robot observes it
(true positive), and p2 is the default probability that if the action does not happen,
the robot observes it (false positive). For instance, consider the action move from
the ISS-CAD domain, and a probability 0.9 considered as true positive (the false
negative probability would be 1 − 0.9 = 0.1); and a probability 0.2 considered as
false positive (the true negative probability would be 1− 0.2 = 0.8). That is:

(:action get-replacement

:parameters (?t - component ?c - crew ?m - module)

:precondition (and (at ?c ?m) (replacement-in ?t ?m))

:effect (and (taken-replacement ?t ?c) (increase (total-cost) 20))

:observability (0.9 0.2))

However, action observability can be a function of parameters. In other words,
the observability of an action depends on the parameters. For instance, consider
an astronaut opening a drawer to get a replacement component such as a filter
or a screw. In this case, it would be more difficult for the robot to identify that
the astronaut is getting a screw than a filter since the screw is smaller and thinner
than the filter. For this reason, we allow specific grounded statements (overriding
the defaults) of the following form in the problem definition:

(observable (get-replacement screw fe1 Unity) (0.7 0.3))
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where the action of an astronaut fe1 getting a screw in the module Unity is ob-
served by the robot with a probability of 0.7, if it happens, and with a probability
of 0.3, if it does not happen.

4.3.1 Optimal solution

In theory, we could again use Ramirez’s framework to solve this goal recogni-
tion problem with uncertain observations. Ramirez characterizes the likelihood
Pr(O|G) in terms of cost differences for achieving G under two conditions: com-
plying with the observations O, and not complying with the observations O.
The optimal solution to this problem uses optimal planners to compute an ac-
curate likelihood of the possible goals. As previously mentioned, for each goal
set G ∈ G Ramirez’s framework computes the difference between Cost(G|O) and
Cost(G|O). The latter is affected by the uncertain observation, but, as before, it
can be approximated as just Cost(G), which is not affected. Therefore, it can be
computed by solving the planning problem using an optimal planner, making its
computation the same as before. However, Cost(G|O) is affected by the uncertain
observations, so it is necessary to introduce some changes in order to compute it.
In the new problem formulation, the set O of uncertain observed actions is a set
of observed action sequences. To illustrate this, consider the ISS-CAD problem
where the observed sequence is:

O =

 (move fe1 Harmony Destiny),
(move fe1 Destiny Unity),
(get-replacement sensor fe1 Unity)


where:

(observable (move fe1 Harmony Destiny) (1.0 0.0))

(observable (move fe1 Destiny Unity) (0.8 0.1))

(observable (get-replacement sensor fe1 Unity) (0.7 0.3))

The uncertain observed sequence is then a set S of all possible combinations of
observed sequences si. In our example, the set S consists of the following subsets
si:
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s1 =

 move fe1 Harmony Destiny,

move fe1 Destiny Unity,

get-replacement sensor fe1 Unity

 with pr(s1) = 1(0.8)(0.7) = 0.56

s2 =

(
move fe1 Harmony Destiny,

move fe1 Destiny Unity

)
with pr(s2) = 1(0.8)(0.3) = 0.24

s3 =

(
move fe1 Harmony Destiny,

get-replacement sensor fe1 Unity

)
with pr(s3) = 1(0.2)(0.7) = 0.14

s4 = {move fe1 Harmony Destiny} with pr(s4) = 1(0.2)(0.3) = 0.06

s5 =

(
move fe1 Destiny Unity,

get-replacement sensor fe1 Unity

)
with pr(s5) = 0(0.8)(0.7) = 0

s6 = (move fe1 Destiny Unity) with pr(s6) = 0(0.8)(0.3) = 0

s7 = (get-replacement sensor fe1 Unity) with pr(s7) = 0(0.2)(0.7) = 0

s8 = (∅) with pr(s8) = 0(0.2)(0.3) = 0

that is, S = (s1, s2, s3, s4). Subsets s5, s6, s7, and s8 can be ignored because they
have probability equal to zero.

The set S is needed to compute Cost(G|O) because it contains all the possible
sequences potentially performed by the agent and observed by the robot. This
means that the problem needs to be solved for each observed action sequence
s ∈ S. Therefore, Cost(G|O) would be:

Cost(G|O) = Cost(G|S) =
∑
si∈S

Cost(G|si) pr(si) (4.2)

Once we have estimated Cost(G|O) ≈ Cost(G) and Cost(G|O), we can pro-
ceed to compute Pr(G|O).

The proposed algorithm may be summarized in the following steps:

1. For each (possibly conjunctive) goalG ∈ G approximateCost(G|O) asCost(G)

by solving the planning problem using the standard planner HSP∗f .

2. Build the set S that consists of all the possible combinations of observed
action sequences.
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3. For each (possibly conjunctive) goal G ∈ G, compute Cost(G|S) as in Equa-
tion 4.2.

4. For each (possibly conjunctive) goal G ∈ G, compute ∆(G,O) as in Equa-
tion 2.11.

5. For each (possibly conjunctive) goal G ∈ G, compute Pr(G|O) as in Equa-
tion 2.12.

This solution provides a probability distribution over the set of possible goals.
However, it is computationally prohibitive because of the explosion in the num-
ber of possible observation sequences. For this reason, in the next section we
present a faster approximate solution to this problem.

4.3.2 Approximate solution

As before, we assume a goal recognition problem T = 〈P,G, O, Pr〉, which in-
cludes the problem P , i.e., a planning domain and initial conditions with observ-
ability information, the set of possible goal sets G ∈ G, a set of observations O,
and a prior distribution Pr over the possible goal sets G ∈ G. It is also assumed
that the sequence of observed actions may be incomplete, but we know the time
step in which each action in the observation sequence happens.

The proposed approximate solution uses Bayesian networks (Pearl, 1988) to
infer the probability of different actions and propositions in a plan graph given
the observations. The Bayesian network (BN) essentially serves as the probabilis-
tic version of the IPR technique used earlier. We then combine this with the plan
graph cost estimation technique described in Section 3.2 to allow fast estimation
of cost differences ∆(G,O), and as a result probability estimates for the possible
goals G ∈ G.

As in FGR, Cost(G|O) is approximated as just Cost(G). As previously men-
tioned, the latter cost is not affected by the uncertain observations, so we use the
plan graph with cost and Interaction information and the hI heuristic to compute
it. On the other hand, to compute Cost(G|O) we first use the BN to estimate the
probability of the actions and propositions in the plan graph. Then, we use this
information as we did with IPR to estimate Cost(G|O) in the plan graph. We now
define the BN and show how we use it. Then we present the algorithm used to
compute Cost(G|O).

Pearl (1988) defines a BN as a directed acyclic graph in which nodes represent
variables and arcs represent the existence of direct casual influence between the
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linked variables. The strengths of these influences are expressed by forward con-
ditional probabilities, also called Conditional Probability Tables (CPT), which de-
scribe the probability of being within a variable state given a combination of val-
ues of its predecessors’ states. This model provides complete information about
variables and their relationships and, therefore, it can be used to perform proba-
bilistic queries about them. A BN is also widely used to infer posterior probabil-
ities of the variables when other variables, called evidence, are observed. We take
advantage of this capability to solve our goal recognition problem with uncertain
observations.

A plan graph can be translated into a BN by including variables for each ac-
tion and proposition, and connecting them together in the way preconditions and
effects are connected to actions in a plan graph. An action variable represents a
plan graph action node. A proposition variable represents a plan graph proposi-
tion node. Those proposition variables that represent the initial state in the plan
graph are given as true in the BN.

Figure 4.4 shows an example of the form of the BN. Blue nodes represents evi-
dence nodes that are known as true beforehand, for instance, variable (atHarmony-
0) that represents the proposition in the initial state of the plan graph. Green
nodes represent those variables for which state is unknown.

atHarmony-0

MoveHC-0

MoveHD-0

atHarmony-1

atColumbus-1

atDestiny-1

MoveHC-1

MoveHD-1

MoveCU-1

MoveDU-1

atHarmony-2

atColumbus-2

atDestiny-2

atUnity-2

Figure 4.4: An incomplete Bayesian network for the ISS-CAD problem.

A plan graph, however, has more complicated details such as mutex relation-
ships, noop operators, and, in this particular case, observed actions. In order to
model a mutex relationship between two actions A and B, we need to create a
mutex variable and connect both actions to it. To illustrate, consider the example
in Figure 4.5(a), where there are two action variables A and B and a mutex vari-
able AxB representing the mutex relationship between A and B. Mutex variables
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are given as true in the BN for all mutex relationships in the plan graph. In order
to model noop operators, we define a noop variable. To illustrate, consider the
example in Figure 4.5(b), where there is a proposition variable x and a noop vari-
able noop-x. The noop variable has a single incoming arc from x at the previous
level i, and a single outgoing arc to x at the next level i + 1. Finally, we define
an observation variable to represent an observed action. To illustrate, consider the
example in Figure 4.5(c), where there is an action variable A and an observation
variable obs-A. Each action variable is connected to its observed variable. If the
action is observed, its observation variable is assigned as true in the BN.

A

B

AxB

(a) mutex variable

xi−1 noop-x xi

(b) noop variable

A obs-A

(c) observation variable

Figure 4.5: Graphical description of mutex, noop, and observation variables in a BN.

Figure 4.6 shows an example of the completed form of the BN. Again, blue
nodes represent evidence nodes that are known as true beforehand – initial state
propositions, mutex relations, and observed actions. Green nodes represent those
variables for which state is unknown.

Each variable in the BN has an associated Conditional Probability Table (CPT)
that gives the distribution of the variable for each combination of predecessor
values. Those proposition variables without predecessors represent propositions
in the initial state, and their CPTs only contain the prior probability of the variable
being true or false. For simplicity, we assume that the initial state is observed to
be true, although it is possible to make it uncertain. Table 4.5 illustrate the CPT of
the proposition variable (atHarmony-0) in Figure 4.6, which is in the initial state.
It is true with probability 1 and, therefore, is false with probability 0.

Table 4.5: Conditional probability table of a proposition variable (atHarmony-0).

Pr(atHarmony-0=True) Pr(atHarmony-0=False)
1 0

An action variable is taken to be:

• False: if any of its preconditions is false.
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atHarmony-0 noop-atHarmony-0

MoveHC-0

MoveHD-0

MoveHCxMoveHD-0

obs-MoveHD-0

obs-MoveHC-0

atHarmony-1

atColumbus-1

atDestiny-1

noop-atHarmony-1

MoveHC-1

noop-atColumbus-1

MoveHD-1

noop-atDestiny-1

MoveCU-1

MoveDU-1

MoveHCxMoveHD-1

MoveHCxMoveCU-1

MoveHCxMoveDU-1

MoveHDxMoveCU-1

MoveHDxMoveDU-1MoveCUxMoveDU-1

obs-MoveHC-1

obs-MoveHD-1

obs-MoveCU-1

obs-MoveDU-1

atHarmony-2

atColumbus-2

atDestiny-2

atUnity-2

Figure 4.6: An incomplete Bayesian network for the ISS-CAD problem.

• Unknown: if all its preconditions are true.

Figure 4.7 shows this rule for defining the CPT of an action variable A with
set of preconditions {x1, x2, . . . , xn}. In general, if one of more of the action’s
preconditions are false, the action is false. If an action’s preconditions are true, the
action is uncertain. This is because we cannot guarantee that an action happens
just because its preconditions are true.

x1

x2

...
xn

A =⇒ pr(A) is


0 if any xi = 0

0.5 if all xi = 1

Figure 4.7: CPT rules for an action variable.

Table 4.6 illustrates the CPT of the action variable (moveHC-0) in Figure 4.6
whose precondition is (atHarmony-0). When (atHarmony-0) is true, the proba-
bility that (moveHC-0) is true or false is equal to 0.5. Otherwise, the probability
that (moveHC-0) is true is equal to 0, and the probability that (moveHC-0) is false
is equal to 1.



4.3. UNCERTAIN OBSERVATIONS IN GOAL RECOGNITION 105

Table 4.6: Conditional probability table of an action variable (moveHC-0) with
precondition (atHarmony-0).

atHarmony-0 Pr(moveHC-0=True) Pr(moveHC-0=False)
True 0.5 0.5
False 0 1

A proposition variable is taken to be:

• True: if there is an action that is true that adds it.

• False: if there is an action that is true that deletes it.

However, a proposition variable with one or more predecessors has a more
complex CPT. In order to generate this CPT, we need to consider (1) the actions
that can produce (producers) or delete (deleters) the proposition, (2) the mutex re-
lationships, and (3) whether or not the proposition can persist. In general, a CPT
for a proposition variable x with a set of producers A is defined as:

• True: if any of the producers is true and all of the deleters are false.

• False: if any of the deleters is true and all of the producers are false.

• Unknown: if both a producer and deleter are true.

Figure 4.8 shows this rule for defining the CPT of a proposition variable x
with set of producers {P1, . . . , Pn} and set of producers {D1, . . . , Dn}. In general
when any of the producers is true and all of the deleters are false, x is true with
probability 1. Conversely, when any of the deleters is true and all of the producers
are false, x is true with probability 0. Finally, when both a deleter is true and a
producer is true, x has an equal probability of 0.5 of being true or false.

P1
...
Pn
D1
...

Dn

x =⇒ pr(x) is



1 if any Pi = 1 and no Di = 1

0 if any Di = 1 and no Pi = 1

0.5 if some Pi = 1 and some Di = 1

Figure 4.8: CPT rules for a proposition variable.
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Table 4.7 illustrates the CPT of the proposition variable (atDestiny-2) in Fig-
ure 4.6 whose predecessors are (MoveHD-1), (MoveDU-1), and (noop-atDestiny-
2). When (MoveHD-1) and (MoveDU-1) are true, (atDestiny-2) is unknown and,
therefore, it has an equal probability of 0.5 of being true or false. This is be-
cause the two actions are mutually exclusive. When (MoveHD-1) is true and
(MoveDU-1) is false, (atDestiny-2) is true with probability 1 and, therefore, false
with probability 0. This is because (atDestiny-2) belongs to (MoveHD-1) add ef-
fects. Conversely, when (MoveHD-1) is false and (MoveDU-1) is true, (atDestiny-
2) is true with probability 0 and, therefore, false with probability 1. This is because
(atDestiny-2) belongs to (MoveDU-1) delete effects. Finally, when (MoveHD-1)
and (MoveDU-1) are false and (noop-atDestiny-1) is true, (atDestiny-2) is true
with probability 1. Otherwise, it is false with probability 1.

Table 4.7: Conditional probability table of a proposition variable (atDestiny-2).

MoveHD-1 MoveDU-1 noop-atDestiny-1 Pr(atDestiny-2=True) Pr(atDestiny-2=False)
True True True 0.5 0.5
True True False 0.5 0.5
True False True 1 0
True False False 1 0
False True True 0 1
False True False 0 1
False False True 1 0
False False False 0 1

A mutex variable between two actions A and B is defined as:

• False: if both A and B are true.

• Unknown: if at least one of A and B is false.

Figure 4.9 shows this rule for defining the CPT of a mutex variableAxB for ac-
tions A and B. In general, when both actions are true, the mutex variable is false.
Otherwise, the mutex variable may be true or false (unknown) with probability
0.5.

A
B

AxB =⇒ pr(AxB) is


0 if A = 1 and B = 1

0.5 if A = 0 or B = 0

Figure 4.9: CPT rules for a mutex variable.
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By setting all mutex variables to true in the BN, we prevent mutex actions
from occurring in a symmetric way.

Table 4.8 illustrates the CPT of the mutex variable (MoveHCxMoveHD-0) in
Figure 4.6, which represents the mutex relation between actions (MoveHC-0) and
(MoveHD-0). When both actions (MoveHC-0) and (MoveHD-0) are true, the mu-
tex variable is false with probability 1. Otherwise, the mutex variable is equally
likely with probability 0.5.

Table 4.8: Conditional probability table of a mutex variable (MoveHCxMoveHD-
0) for actions (MoveHC-0) and (MoveHD-0).

MoveHC-0 MoveHD-0 Pr(MoveHCxMoveHD-0=True) Pr(MoveHCxMoveHD-0=False)
True True 0 1
True False 0.5 0.5
False True 0.5 0.5
False False 0.5 0.5

It might seen that we could just model noop variables as ordinary actions and
add mutex relationships between the noop and all other actions that influence the
proposition variable. However, this is not enough. We also need to force the noop
to be true when all other actions that affect the variable are false. A noop variable
of a proposition is, therefore, defined as:

• True: if the proposition is true in the previous level and all other actions that
affect the proposition are false.

• False: if the proposition is not true in the previous level or there is another
action that affects the proposition.

Figure 4.10 shows this rule for defining the CPT of a noop variable noop-x
for proposition x with set of producers Pi and set of deleters Di. A proposition
variable will remain unchanged if there is no action that modifies it.

Pi Di

x noop-x =⇒ pr(noop-x) is


1 if xi−1 = 1 and Pi = 0 and Di = 0

0 if xi−1 = 0 or some Pi = 1 and some Di = 1

Figure 4.10: CPT rules for a noop variable.
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Table 4.9 illustrates the CPT of the action variable (noop-atHarmony-0) in Fig-
ure 4.6 whose precondition is (atHarmony-0). There are two other actions that
produce (atHarmony-0), (MoveHC-0) and (MoveHD-0), which must be consid-
ered in the CPT. In our example, when (MoveHC-0) and (MoveHD-0) are false,
and (atHarmony-0) is true, then (noop-atHarmony-0) is true. Otherwise, (noop-
atHarmony-0) is false.

Table 4.9: Conditional probability table of a noop variable (noop-atHarmony-0)
with precondition (atHarmony-0).

MoveHC-0 MoveHD-0 atHarmony-0 Pr(noop-atHarmony-0=True) Pr(noop-atHarmony-0=False)
True True True 0 1
True True False 0 1
True False True 0 1
True False False 0 1
False True True 0 1
False True False 0 1
False False True 1 0
False False False 0 1

Finally, the CPT of an observation variable is generated using the probability
information given by the observable statement in the goal recognition problem def-
inition. Figure 4.11 shows the rule for defining the CPT of an observable variable
obs-A for an action A.

A obs-A =⇒ pr(obs-A) is


true positive if A = 1

false positive if A = 0

Figure 4.11: CPT rules for an observation variable.

Table 4.10 shows the CPT of the observation variable (obs-MoveDU-1) in Fig-
ure 4.6, which is observed at time 1 with a probability of 0.8 of being observed if
true, and a probability of 0.1 of being observed if false.

Once we generate the BN of the problem, we can query the posterior prob-
ability of each variable given all evidence variables – that is, the actions in the
observed sequence. In our example, we know by intuition that the probabil-
ity of (atDestiny-1) should be higher than the probability of (atHarmony-1) and
(atColumbus-1); and that the probability of (atUnity-2) should be higher than the
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Table 4.10: Conditional probability table of an observation variable (obs-
MoveDU-1) of the observed action (MoveDU-1).

MoveDU-1 Pr(obs-MoveDU-1=True) Pr(obs-MoveDU-1=False)
True 0.8 0.1
False 0.2 0.9

probability of (atDestiny-2) because actions (MoveHD-0) and (MoveDU-1) are ob-
served with probabilities 1 and 0.8 respectively. In particular, when we query
variables (atHarmony-1), (atColumbus-1), and (atDestiny-1), we get the follow-
ing posterior probability:

Pr(atHarmony-1=True | evidence) = 0

Pr(atColumbus-1=True | evidence) = 0

Pr(atDestiny-1=True | evidence) = 1

Pr(atDestiny-2=True | evidence) = 0.015

Pr(atUnity-2=True | evidence) = 0.985

If, for instance, we considered the case where the robot only observed action
(MoveHD-0), then (atDestiny-2) and (atUnity-2) would have a 0.5 posterior prob-
ability of being true. This is because there is not enough information or evidence
to infer the astronaut behavior, and, therefore, both locations would have the
same probability of being true.

We can use these posterior probabilities values to approximate the new cost
and Interaction information. In particular, we follow the algorithm described in
Section 3.2, where the computation begins at level zero of the plan graph and
proceeds sequentially to higher levels. At level zero, the cost of each proposition
is zero as well as the Interaction between each pair of propositions. The cost of
an action is the cost of achieving its preconditions plus the Interaction between
all pairs of preconditions. This is computed using Equation 3.10. The Interaction
between a pair of actions is infinity if the two actions are mutually exclusive,
otherwise it will depend on the relationships between their preconditions. This is
computed using Equation 3.11. Now we need to compute the cost of propositions,
which we defined as the minimum cost among all the actions that achieve the
proposition. However, it is possible that a costly action has a high probability of
being true given the sequence of uncertain observed actions. For this reason, we
make use of the posterior probabilities given by the BN to make a choice among
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all the actions that produce the proposition. In particular, the chosen action is the
one that minimizes the ratio between action cost and probability. That is:

argmin
a∈Ax

{
cost(a) + Cost(a)

pr(a)

}
(4.3)

where pr(a) is the posterior probability of action a, computed in the BN.
Once we have chosen the action that minimizes the expression in Equation 4.3,

we can compute the cost of the proposition as in Equation 3.10. This tends to
prefer actions with low cost and high probability.

Similarly, to compute the Interaction between two propositions we choose the
pair of actions that minimize the ratio between action cost and probability. That
is:

argmin
a∈Ax, b∈Ay

{
cost(a) + Cost(a) + cost(b) + Cost(b) + I(a, b)

pr(a) pr(b)

}
− cost(x)− cost(y)

(4.4)

where pr(a) and pr(b) are the posterior probabilities of actions a and b, computed
in the BN. Once we have chosen the pair of actions that minimizes the ratio be-
tween action cost and probability, we can compute the Interaction between two
propositions. It will be infinity if all pair of actions are mutually exclusive. Oth-
erwise, the Interaction is computed as in Equation 3.11.

Taking these decision rules into consideration, we can build a plan graph and
propagate cost and Interaction information. The construction process finishes
when two consecutive propositions layers are identical and there is quiescence in
cost and Interaction for all propositions and actions in the plan graph. On com-
pletion, each possible goal proposition has an estimated cost of being achieved,
considering the observed sequence.

Figure 4.12 shows the high-level algorithm used to solve a goal recognition
problem with uncertain observations, namely uFGR, which may be summarized
in the following steps:

1. Build a plan graph for the problem P (domain plus initial conditions) and
propagate cost and Interaction information through this plan graph accord-
ing to the technique described in Section 3.2.

2. For each (possibly conjunctive) goal G ∈ G estimate the Cost(G) from the
plan graph using Equation 3.15.
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3. Build a BN, using the technique previously described. Use this BN to esti-
mate probability for actions and propositions in the plan graph.

4. Compute new cost and Interaction estimates for this pruned plan graph,
considering the posterior probabilities given by the BN using Equations 3.11.

5. For each (possibly conjunctive) goal G ∈ G:

a. Estimate the Cost(G|O) from the cost and Interaction estimates in the
pruned plan graph, again using Equations 3.6, 3.7, 3.10, and 3.11.

b. Compute ∆(G,O) using Equation 2.11, and compute the probability
Pr(G|O) for the goal given the observations using Equation 2.12.

uFGR (P,O,G)

O ≡ a sequence of observed actions

G ≡ a set of possible goals or hypothesis

g ≡ a goal g ∈ G

pg ≡ a plan graph with cost and Interaction

BN ≡ a pruned Bayesian network

PR ≡ a probability distribution over G

1. pg ← BUILDPLANGRAPH(P, G)

2. for each g ∈ G

COMPUTECOST(G, pg)

3. BN← BUILDBAYESIANNETWROK(pg, O)

4. UPDATECOSTPLANGRAPH(BN)

5. for each g ∈ G

a. COMPUTECOST(G, pruned–pg)

b. PR← PR∪COMPUTEPROBABILITY(G)

6. return PR

Figure 4.12: The uFGR pseudo-algorithm.

4.4 Conclusions

This chapter presented a fast technique for goal recognition (FGR). This technique
computes cost estimates using a plan graph, and uses this information to infer
probability estimates for the possible goals. This technique provides fast, high
quality solutions when the percentage of observed actions is relatively high, and
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degrades as the percentage of observed actions decreases. In terms of speed,
this approach yields results two orders of magnitude faster than Ramirez ap-
proach using HSP∗f , and an order of magnitude faster than Ramirez approach
using greedy LAMA. The solutions are comparable or better in quality than those
produced by greedy LAMA. This technique can be used with or without informa-
tion about the times for observed actions. The produced ranking could be used
to select the highest probability goals, and then feed this set to the Ramı́rez ap-
proach to provide further refinement to the probabilities. While this does reduce
the amount of computation time required by the Ramı́rez approach, in our exper-
iments the ranking only improved occasionally, and the computation time was
still large for the more difficult domains and problems. When the top goals are
fed to the Ramı́rez approach with the LAMA planner, the overall ranking occa-
sionally improves for higher time limits. For low time limits, it doesn’t improve
or decreases the solution quality.

We also presented a real-world application for goal recognition that involves
free-flying robots tracking ISS crew member’s daily routines to maintain a safe,
clean, and healthy environment aboard the International Space Station. We show
that current state-of-the-art optimal goal recognition approaches are not effective
to solve this problem, and suboptimal and heuristic goal recognition approaches
provide low accuracy solutions. However, we showed that the hI and h+ heuris-
tics provide high quality Q results with low spreads. Specifically, when each goal
in the hypotheses set involves a single astronaut, then the h+ heuristic performs
better than the hI heuristic because of the low degree of interference among sub-
goals. However, when the hypotheses set involves more than one astronaut, and
the astronauts’ tasks interfere with each other, the hI heuristic works better than
the h+ heuristic because of the use of the Interaction information.

Finally, we outlined an approach to solve goal recognition problems with un-
certain observations that uses the Ramirez framework and combines a Bayesian
network and a plan graph to find a solution. This approach has not yet been em-
pirically validated, in part due to the extreme computational cost of comparison
with the optimal approach.



Chapter 5

The hI Family of Heuristics in
Probabilistic Planning

Converting probability information into costs makes possible the use of the hI

heuristic to guide a deterministic planner towards low-cost (high-probability)
plans. For this reason, in this chapter we present work that involves the use
of probability information in a heuristic function to guide deterministic planning
search towards high-probability plans. These plans can be used in a system that
handles unexpected outcomes by runtime replanning. These plans can also be in-
crementally augmented with contingency branches for critical action outcomes.
This chapter first introduces an overview of the approach and describes the de-
tails of each of the involved techniques. Finally, it shows an empirical study.

5.1 Probabilistic planning through Determinization and Re-
planning using hI

Determinization consists of transforming a probabilistic planning domain into a
deterministic planning domain. Therefore, the Determinization and Replanning
method uses deterministic planners to solve a probabilistic planning problem,
and runtime replanning to deal with unexpected states. The FF-Replan planner
has been the pioneer in this paradigm, but it does not make use of the probabilistic
information in the domain description, which may result in frequent replanning.
To overcome this issue, Jiménez, Coles, and Smith developed an approach that
follows the same line as FF-Replan, but turns the probability information into
costs. Then, they search for a lowest cost plan using a deterministic optimizing
planner.

The fact of converting probability information into costs makes possible the

113
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use of the hI heuristic introduced in Chapter 3 to guide a deterministic planner.
For this reason, in this section we present work that adopts the Determinization
and Replanning approach with the aim of producing plans that are less likely to
get stuck in dead-ends states. We do that by adopting the hI heuristic for the
purpose of quickly search towards high-probability plans. This approach has
been implemented in the Parallel Integrated Planning and Scheduling System
(PIPSS) (Plaza et al., 2008). Figure 5.1 shows the architecture of the new plan-
ner, namely PIPSSI (E-Martı́n et al., 2014), and highlights the key features of the
system: PPDDL-PDDL Conversion, Plan Graph Estimator, and Heuristic Computa-
tion modules. Given a PPDDL problem, the system initially transforms the prob-
abilistic problem into a deterministic one using the technique explained in the
next section. Then, the Analysis & Processing module processes and loads all the
information given in the domain, and encodes the strings as numbers to decrease
the computation time. The system builds a plan graph estimator as described in
Section 3.2. After this step, the search process starts. The system performs an A∗

search when it is looking for a solution. For each state, the plan graph is updated
and a relaxed plan is created to estimate the cost (probability) of achieving the
goals from that state. This estimation is called a Completion Cost Estimate (CCE).

PPDDL-PDDL
Conversion

Analysis &
Processing

Plan Graph
Estimator

Heuristic
Computation

Search

Current
Node

CCE
PDDLPPDDL

Plan/Fail

Figure 5.1: PIPSSI System Architecture.

In the next section, we describe the conversion technique from PPDDL to
PDDL that we use. Then, we present the heuristic technique that we apply. Fi-
nally, we present an extended example of how our technique works.

5.1.1 Conversion from PPDDL to PDDL

To convert from PPDDL to PDDL we follow the approach of Jiménez, Coles, and
Smith (2006). In general, the process consists of generating a deterministic action
for each probabilistic effect of a probabilistic action. For each new action created,
the probability of its outcomes is transformed into an additive cost equal to the
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negative logarithm of the probability:

Ci = −Ln(Pi) (5.1)

More precisely, if a is a probabilistic action with outcomes o1, ..., oi with prob-
abilities p1, ..., pi respectively, we create a new deterministic action for each out-
come. Each deterministic action ai has all the preconditions of a. If the outcome
oi is conditional, ai will also have additional preconditions corresponding to the
conditions of oi. The effects of ai are the effects in the outcome oi, and the cost
of ai is given by equation (5.1). Figure 5.2 shows an example of the conversion
strategy. Figure 5.2(a) shows the probabilistic action (drive) that has two out-
comes leading to two deterministic actions. The most likely action outcome is
that the car successfully drives from one position to another. However, in the
second outcome the car reaches the destination, but it gets a flat tire. The con-
version process builds the two deterministic actions shown in Figures 5.2(b) and
5.2(c), one for each possible outcome, and generates the following additive costs
Cost(drive-1) = − ln(0.6) ≈ 0.511 and Cost(drive-2) = − ln(0.4) ≈ 0.916.

5.1.2 Heuristic search guidance

This section describes the probabilistic plan graph heuristic that guides the plan-
ner toward lower cost (higher probability) plans. In order to do that, the planner
performs an A∗ search where the evaluation function is the sum of the cost from
the starting node to the current node n plus an estimation of the cost of going
from the current node to the goals, which we call the Completion Cost Estimate
(CCE). That is:

f(n) = cost(n) + CCE(n) (5.2)

The CCE is computed using the plan graph estimator. For each state in the
search the plan graph is updated and we compute a relaxed plan to estimate the
probability of achieving the goals from that state. The relaxed plan is computed
by performing regression on the plan graph developed in Chapter 3, where we
propagate cost and Interaction information to compute more accurate estimates
of cost. This algorithm makes use of the cost and Interaction information to make
better choices for actions. In particular, the algorithm orders the goals at each
level according to cost, and chooses the operator used to achieve each goal based
on cost. More precisely:

• Arrange goals: the goals at each level are arranged from the highest cost to
the lowest. In this way, we begin analyzing the most expensive (least prob-
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(:action drive

:parameters (?trk - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?p) (in ?pkg ?p)

(verified ?pkg ?p) (not (flattire)))

:effect (and (not(at ?from ?p)) (at ?to ?p) (probabilistic 0.4 (flattire))))

(a) Probabilistic action in PPDDL

(:action drive-1

:parameters (?trk - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?p) (in ?pkg ?p)

(verified ?pkg ?p) (not (flattire)))

:effect (and (not (at ?from ?p)) (at ?to ?p) (increase (risk) 0.511)))

(b) Deterministic action a

(:action drive-2

:parameters (?trk - truck ?from - location ?to - location ?pkg - package)

:precondition (and (connected ?from ?to) (at ?from ?p) (in ?pkg ?p)

(verified ?pkg ?p) (not (flattire)))

:effect (and (not (at ?from ?p)) (at ?to ?p) (flattire)

(increase (risk) 0.916)))

(c) Deterministic action b

Figure 5.2: Determinization of a probabilistic action.

able) proposition to try to solve the most difficult goals first. In addition, as
we solve more expensive goals, other cheaper goals might be also solved.

• Choose operators: if there is more than one operator that achieves a par-
ticular goal at a level, we choose the operator with the lowest cost (highest
probability) given the other operators that have already been chosen at that
level. Suppose that O is the set of operators selected in level l, and Ag is
the set of actions that achieve the current goal g at level l. The operator we
choose is:

argmin
a∈Ag

{
cost(a) + Cost(a) +

∑
b∈O

I(a, b)

}
(5.3)
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The intent here is to greedily choose a more synergistic and less costly set of
operators.

Figure 5.3 shows the high-level algorithm used in the relaxed plan regression
phase.

Function COSTESTIMATE (G,l)

Gl ≡ the set of goals at level l in the relaxed plan graph

g ≡ a goal proposition

l ≡ number of levels in the relaxed plan graph

Al ≡ the set of actions at level l for an specific goal

a ≡ an action

Ol ≡ the set of operators selected at level l

π ≡ the set of actions selected

CCE ≡ the completion cost estimate of the current node

1. while l > 0

2. Ol ← ∅

3. Gl−1 ← ∅

4. while Gl 6= ∅

5. g ← argmax
g∈Gl

{Cost(g)}

6. Al ← {a : g ∈ eff+(a)}

7. a← argmin
a∈Al

{
Cost(a) + Cost(g|a) +

∑
b∈Ol

I(a, b)

}
8. Ol ← ∪{a}

9. π ← π ∪ {a}

10. Gl−1 ← Gl−1 ∪ prec(a)

11. Gl ← Gl − {g}

12. l← l − 1

13. CCE(currentNode)←
∑

i=1..n

Cost(πi)

14. return CCE

Figure 5.3: The relaxed plan regression pseudo-algorithm.

An extended example

Consider the Logistics problem shown in Figure 2.10 where there is a package
and a truck at location a, and the package needs to be delivered to location c. The
package can be loaded on the truck. The truck can drive between locations when
it does not have a flat tire and it is verified that the package is inside the truck.
In addition, a tire may go flat during the drive with a probability of 0.4. A flat
tire can be changed, if the truck is at locations a or d where there is a spare tire.
Finally, before unloading the package from the truck, it must be scanned.

To solve this problem, our system gets the PPDDL Logistics domain shown
in Figure 2.9 as input. The probabilistic domain is then translated into a deter-
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ministic one using the determinization technique explained in Section 5.1.1. In
other words, those probabilistic actions in the domain description are converted
into deterministic actions. In our example, action drive is a probabilistic action
that, as is shown in Figure 5.2, is split into the following two deterministic ac-
tions: drive-1, where a truck successfully drives from one location to another with
an approximate cost of − ln(0.6) ≈ 0.51, and drive-2, where a truck successfully
drive from one location to another, but gets a flat tire with an approximate cost
of − ln(0.4) ≈ 0.91. In addition, action verify splits into two deterministic ac-
tions: verify-1, where the verification of the package is successfully done with an
approximate cost of − ln(0.8) ≈ 0.22, and verify-2, where the action does not ver-
ify the package with an approximate cost of − ln(0.2) ≈ 1.61, although, it is not
considered for planning purposes because it does not have any effects. The rest
of the actions in the domain description are deterministic, and have an implicit
probability of 1 and, therefore, a cost equal to − ln(1) = 0.

After the determinization of the PPDDL domain, our system builds a plan
graph estimator as described in Section 3.2. To illustrate that, consider that the
current state consists of propositions (at a trk), (in trk pkg), (verified pkg trk),
(scanned pkg trk), (¬flattire), and (spare d). In other words, the truck is at location
a and does not have a flat tire, the package is already in the truck, verified, and
scanned, and there is a spare tire at location d. Figure 5.4 shows a partial plan
graph for this problem, where every operator and action in the fragment has an
associated cost value.

Using Equation 3.6, we compute the cost for actions (scan pkg trk) and (drive-
1 a d trk) at level 0 as:

cost(scan pkg trk) =

{
cost(in trk pkg) + cost(verified pkg trk)+

I(in trk pkg, verified pkg trk)

}
= 0 + 0.22 + 0 = 0.22

cost(drive-1 a d trk) =



cost(at a trk) + cost(¬flattire) + cost(in trk pkg)+

cost(verified pkg trk) + I(at a trk, ¬flattire)+

I(at a trk, in trk pkg) + I(at a trk, verified pkg trk)+

I(¬flattire, in trk pkg) + I(¬flattire, verified pkg trk)+

I(in trk pkg, verified pkg trk)


= 0 + 0.22 + 0 = 0.22

Using Equation 3.7, we compute the Interaction between actions (scan pkg
trk) and (drive-1 a d trk) at level 0 as:
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I(scan pkg trk, drive-1 trk a d) =


0− cost(in trk pkg)−
cost(verified pkg trk)−
I(in trk pkg, verified pkg trk)


= 0− 0− 0.22− 0 = −0.22

The fact that I(scan pkg trk, drive-1 trk a d) = −0.22 means that there is some
degree of synergy between both actions that comes from the fact that the two
actions have two common preconditions, (in trk pkg) and (verified pkg trk).
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0

in trk pkg
0
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Figure 5.4: Fragment of a plan graph with cost and Interaction information.

Using Equation 3.10, we can compute the cost of propositions (at d trk), (flat-
tire), and (scanned pkg trk) at level 1 as:
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cost(at d trk) = min

{
cost(drive-1 trk a d) + Cost(drive-1 trk a d),

cost(drive-2 trk a d) + Cost(drive-2 trk a d)

}
= min { 0.22 + 0.51, 0.22 + 0.91 }

= min { 0.73, 1.13 } = 0.73

cost(flattire) = min

{
cost(drive-2 trk a b) + Cost(drive-2 trk a b),

cost(drive-2 trk a d) + Cost(drive-2 trk a d)

}
= min { 0.22 + 0.91, 0.22 + 0.91 }

= min { 1.13, 1.13 } = 1.13

cost(scanned pkg trk) = cost(scan pkg trk) + Cost(scan pkg trk)

= 0.22 + 0 = 0.22

Using Equation 3.11, we can compute the Interaction between propositions
(at d trk) and (scanned pkg trk) as:

I(at d trk, scanned pkg trk) = min

{
cost(drive-1 trk a d ∧ scan pkg trk),

cost(drive-2 trk a d ∧ scan pkg trk)

}
−cost(at d trk)− cost(scanned pkg trk)

where:

cost(drive-1 trk a d ∧ scan pkg trk) =



cost(drive-1 trk a d)+

Cost(drive-1 trk a d)+

cost(scan pkg trk)+

Cost(scan pkg trk)+

I(drive-1 trk a d, scan pkg trk)


= 0.22 + 0.51 + 0 + 0.22− 0.22 = 0.73

cost(drive-2 trk a d ∧ scan pkg trk) =



cost(drive-2 trk a d)+

Cost(drive-2 trk a d)+

cost(scan pkg trk)+

Cost(scan pkg trk)+

I(drive-2 trk a d, scan pkg trk)


= 0.22 + 0.91 + 0 + 0.22− 0.22 = 1.13
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Therefore:

I(at d trk, scanned pkg trk) = min {0.73, 1.13}

−cost(at d trk)− cost(scanned pkg trk)

= 0.73− 0.73− 0.22 = −0.22

The fact that I(at d trk, scanned pkg trk) = −0.22 means that there is synergy
between having the package scanned and having it at location b. This synergy
comes from the fact that actions (drive trk a d) and (scan pkg trk) have two com-
mon preconditions (in trk pkg) and (verified pkg trk).

Once the plan graph is built until quiescence, the search process starts. The
system performs an A∗ search when it is looking for a solution. For each state,
the plan graph is updated and a relaxed plan is created to estimate the CCE. To
illustrate that, consider the plan graph in Figure 5.4. The relaxed plan construc-
tion starts at level 3 and performs a backwards search starting from the goal state
until the initial state is reached. In the current example, the goal state is com-
posed of proposition (at c pkg) with an estimated cost of 1.24. The system selects
the cheapest action at level 2 that achieves it, which in this example is (unload
pkg trk c) since it is the only one that achieves it. Its preconditions (at c trk) and
(scanned pkg trk) form the new set of subgoals at level 2.

At level 2, the procedure first deals with (at c trk), which has the higher cost.
It is achieved by actions in A(at c trk) at level 1. In order to know which is the best
choice, we perform the following calculations:

argmin
a∈A(at c trk)

{cost(a) + Cost(a)}

cost(drive-1 b c) + Cost(drive-1 b c) = 1.24 + 0.51 = 1.75

cost(drive-2 b c) + Cost(drive-2 b c) = 1.24 + 0.91 = 2.15

cost(drive-1 d c) + Cost(drive-1 d c) = 1.24 + 0.51 = 1.75

cost(drive-2 d c) + Cost(drive-2 d c) = 1.24 + 0.91 = 2.15

therefore:

argmin
a∈A(at c trk)

{cost(a) + Cost(a)} = drive-1 d c

In this case, the action chosen is (drive-1 d c) because has the lowest cost. (We
could have also selected (drive-1 b c) since it has the same cost as (drive-1 d c).)
In this case, action (drive-1 d c) sets propositions (¬flattire), (at d trk), (in trk pkg),
and (verified pkg trk) as subgoals at level 1.
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Next subgoal, (scanned pkg trk), it is achieved by actions in A(scanned pkg trk) at
level 2. In order to know which is the best choice, the cost of achieving (scanned
pkg trk) must be computed for actions in A(scanned pkg trk) assuming (drive-1 d
c). Considering the action cost values shown in Figure 5.4 and the following
Interaction values:

I(scan pkg trk, drive-1 d c) = −0.22

I(noop-scanned pkg trk, drive-1 d c) = −0.22

the best choice is calculated as follows:

argmin
a∈A(scanned pkg trk)

{cost(a) + Cost(a) + I(a,drive-1 d c)}


cost(noop-scanned pkg trk) + Cost(scan pkg trk)+

I(noop-scanned pkg trk, drive-1 d c) =

0.22 + 0− 0.22 = 0

{
cost(scan pkg trk) + Cost(scan pkg trk)+

I(scan pkg trk, drive-1 d c) = 0.22 + 0− 0.22 = 0

}
therefore

argmin
a∈A(scanned pkg trk)

{cost(a) + Cost(a) + I(a,drive-1 d c)}

= (noop-scanned pkg trk)

Either (noop-scanned pkg trk) or (scan pkg trk) can be chosen. In this case, we
pick action (noop-scanned pkg trk), which sets proposition (scanned pkg trk) as
subgoals at level 1.

The same technique is applied for the rest of the layers until the initial state is
reached. At level 1, the procedure first deals with subgoal (at d trk), followed by
(scanned pkg trk), (verified pkg trk), (in trk pkg), and (¬flattire), with estimated
costs 1.13, 0.22, 0.22, 0, and 0 respectively. In this way, starting with (at d trk), it
is achieved by actions in A(at d trk) at level 1. In order to know which is the best
choice, we perform the following calculations:

argmin
a∈A(at c trk)

{cost(a) + Cost(a)}

cost(drive-1 a d) + Cost(drive-1 a d) = 0.73 + 0.51 = 1.24

cost(drive-2 a d) + Cost(drive-2 a d) = 0.73 + 0.91 = 1.64

therefore:

argmin
a∈A(at a trk)

{cost(a) + Cost(a)} = drive-1 a d
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In this case, the selected action is (drive-1 trk a d) because it has the lowest
cost. Action (drive-1 trk a d) sets propositions (at a trk), (¬flattire), (in trk pkg)
and (verified pkg trk) as subgoals at level 0.

Next subgoal, (scanned pkg trk), it is achieved by action (scan pkg trk), which
is selected because it is the only achiever of (scanned pkg trk) at level 0. Action
(scan pkg trk) sets propositions (in trk pkg) and (verified pkg trk) as subgoals at
level 0, but it was already set by (drive-1 trk a d).

Next subgoal, (verified pkg trk), it is achieved by actions in A(verified pkg trk) at
level 1. The cost of achieving (verified pkg trk) must be computed for actions in
A(verified pkg trk) assuming operators (drive-1 trk a d) and (scan pkg trk), and the
following Interaction values:

I(verify pkg trk, drive-1 trk a d) =∞
I(verify pkg trk, scan pkg trk) = −0.22

I(noop-verified pkg trk, scan pkg trk) = −0.22

I(noop-verified pkg trk, drive-1 trk a d) = −0.22

That is:

argmin
a∈A(verified pkg trk)

{
cost(a) + Cost(a)+

I(a, scan pkg trk) + I(a,drive-1 trk a d)

}


cost(verify pkg trk) + Cost(verify pkg trk)+

I(verify pkg trk, scan pkg trk)+

I(verify pkg trk, drive-1 trk a d) =

0 + 0.22− 22 +∞ =∞



cost(noop-verified pkg trk)+

Cost(noop-verified pkg trk)+

I(noop-verified pkg trk, scan pkg trk)+

I(noop-verified pkg trk, drive trk a d) =

0.22 + 0− 022− 0.22 = −0.22


therefore:

argmin
a∈A(verified pkg trk)

{
cost(a) + Cost(verified pkg trk|a)+

I(a, scan pkg trk) + I(a,drive-1 trk a d)

}
= noop-verified pkg trk

In this case, the selected action is (noop-verified pkg trk) because it has the
lowest cost when (drive-1 trk a d) and (scan pkg trk) have already been chosen.
Action (noop-verified pkg trk) sets proposition (verified pkg trk), but it was al-
ready set by (drive-1 trk a d).
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Next subgoal, (in trk pkg), it is achieved by (load pkg a trk) and (noop-in trk
pkg) at level 0. The cost of achieving (in trk pkg) must be computed for both of
these assuming (scan pkg trk), (drive-1 trk a d), and (noop-verify pkg trk). In this
case, the selected action is (noop-in trk pkg) because it is not mutually exclusive
with any of the already chosen actions, while (load pkg a trk) is mutex with all of
them.

The last subgoal, (¬flattire), it is only achieved by (¬flattire), which has no
mutual exclusions with (scan pkg trk), (drive-1 trk a d), (noop-verify pkg trk),
and (noop-in trk pkg). Therefore, it is selected.

Once the plan is extracted, we compute the heuristic estimation, which is the
sum of the costs of every action outcome selected in the relaxed plan regression
algorithm. In this way, we are considering the cost and Interaction information
that has been computed previously in the relaxed plan extraction. Continuing
with the example, suppose that the plan solution selected is composed of opera-
tors A and B, the CCE value would be:

CCE(n) =

{
Cost(drive-1 a d) + Cost(scan pkg trk)+

Cost(drive-1 d c) + Cost(unload pkg trk c)

}

= 0.22 + 0.22 + 0.73 + 1.24 = 2.41

This indicates that the estimated cost to reach the goal from that state is 2.41,
i.e., a probability of exp{−2.41} = 0.089.

5.2 Experimental evaluation

We have conducted an experimental evaluation on IPPC-06 (Bonet and Given,
2006) and IPPC-08 (Buffet and Bryce, 2008) fully-observable-probabilistic plan-
ning (FOP) domains. We have also conducted it on the probabilistically interesting
domains introduced by Little and Thiebaux (2007), which consist of a number of
very simple problems that explore the issue of probabilistic planning versus re-
planning. These problems lead to dead-ends. The domains vary by: 1) the num-
ber of dead-end states where the goal is unreachable, 2) the degree to which the
probability of reaching a dead-end state can be reduced through the choice of ac-
tions, 3) the number of distinct trajectories from which the goal can be reached
from the initial state, and 4) the presence of mutually exclusive choices that pre-
vent alternative courses of actions.

The test consists of running the planner and using the resulting plan in the
MDP Simulator (Younes et al., 2005). The planner and the simulator communi-
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cate by exchanging messages. The simulator first sends the planner the initial
state. Then, the Interaction between planner and simulation consists of the plan-
ner sending an action and the simulator sending the next state to the planner.
Since the simulator is stochastic, each plan is run many times to get an expected
value. The experiments were conducted on an Pentium dual core processor at
2.4 GHz running Linux. For the rest of the planners, given that we were not able
to obtain and run them ourselves, data are collected from work done by Yoon,
Ruml, Benton, and Do (2010).

Below is a brief description of the domains used for the experimental evalua-
tion.

IPPC-06

For IPPC-06 we are concerned with the probabilistic planning domains having
full observability and probabilistic action outcomes (FOP track):

• Blocksworld: similar to the classical Blocksworld, but with additional ac-
tions. A gripper can hold a block or a tower of blocks or be empty. When
trying to perform an action, there is a chance of dropping a block on the
table.

• Exploding-Blocksworld: a dead-end version of the Blocksworld domain de-
scribed above where additionally the blocks can explode. The explosion
may affect the table or other blocks.

• Elevators: this domain consists of a set of coins arranged on different levels.
To collect them, the elevators can move among the levels. The movements
can fail if the elevator falls down the shaft and finishes on a lower level.

• Random: this domain is randomly generated with random preconditions
and effects. A special reset-action can lead any state to the initial state, mak-
ing it dead-end free.

• Tireworld: in this domain a car has to move between two locations. When
the car drives a segment of the route, there is the chance of getting a flat
tire. When this occurs the tire must be replaced. However, spare tires are
not available in all locations.

• Zenotravel: this domain has actions to embark and disembark passengers
from an aircraft that can fly at two alternative speeds between locations.
The actions have a probability of failing without causing any effects. So,
actions must sometimes be repeated.
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IPPC-08
For IPPC-08 we are again concerned with the probabilistic planning domains

having full observability and probabilistic action outcomes (FOP track):

• Blocksworld: similar to the IPPC-06 Blocksworld Domain.

• Exploding-Blocksworld: similar to the IPPC-06 Exploding-Blocksworld Do-
main.

• Triangle-tireworld: similar to the IPPC-06 Tire World Domain but with slight
differences in the definition to permit short but dangerous paths.

• Rectangle-tireworld: this domain is inspired by Triangle-tireworld, except
that there are no spare tires available. However, the domain defines an
action that when the car gets a flat tire it can still go everywhere but at low
probability.

• Zenotravel: similar to the IPPC-06 Zenotravel Domain.

Probabilistically Interesting Domains
Little and Thiébaux (Little and Thiébaux, 2007) have created a number of very

simple problems that explore the issue of probabilistic planning versus replan-
ning. These problems lead to dead-ends. The domains vary by 1) the number of
dead-end states where the goal is unreachable, 2) the degree to which the proba-
bility of reaching a dead-end state can be reduced through the choice of actions,
3) the number of distinct trajectories from which the goal can be reached from
the initial state, and 4) the presence of mutually exclusive choices that prevent
alternative courses of actions.

• Climb: this domain consists of a person who is stuck on a roof because the
ladder they used to climb up has fallen down. There are two options to get
down: climbing down without the ladder but with a certain risk of injury
or death, or calling for help from someone below to bring the ladder and
then climb down with the ladder, which has no risk.

• River: in this domain a person on one side of the river needs to cross to the
other side. There are three ways to achieve the goal with different chances
of success.

• Tire1 & Tire10: domains based on the Tireworld domain, with different lev-
els of difficulty to reach the final location without getting a flat tire.

The following planners have been used for the experimental evaluation:
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• FF-Replan (Yoon et al., 2007): an online probabilistic planner that converts
the probabilistic domain definitions into a deterministic domain using all-
outcomes determinization. It then uses FF to compute a solution plan. Dur-
ing the execution, each time the planner leads to a state that is not expected,
the planner searches for a new plan from the current unexpected state to the
goal. FF-Replan won the 2004 International Probabilistic Planning Compe-
tition.

• FFH (Yoon et al., 2008): an FF-Replan planner that handles unexpected
states by an online anticipatory strategy based on hindsight optimization.

• FFH+ (Yoon et al., 2010): an improved FFH that uses methods to detect
potentially useful actions and to reuse relevant plans. These methods allow
the planner to reduce its computational cost.

• FPG (Buffet and Aberdeen, 2009): considers the planning problem as an op-
timization problem, and solves it using stochastic gradient ascent through
the OLpomdp Algorithm (Baxter and Bartlett, 1999). The search is per-
formed in policy space. This planner won the 2006 International Proba-
bilistic Planning Competition.

• RFF (Teichteil-Königsbuch et al., 2010): uses the determinized problem gen-
erated by FF-Replan and then computes a policy by generating successive
execution paths leading to the goal from the initial states by using FF. The
generated policy has a low probability of failing during execution. This
probability is computed by using a Monte-Carlo simulation. This planner
won the 2008 International Probabilistic Planning Competition.

We compare these with four variants of the PIPSS planner:

• PIPSSc: a PIPSS planner where the propagation of cost information through
the plan graph does not consider Interaction estimates. During execution,
the planner does not perform any further action when an unexpected state
occurs.

• PIPSSI : a PIPSS planner where the propagation of cost information through
the plan graph considers Interaction estimates. Like PIPSSc, during execu-
tion the planner does not perform any further action when an unexpected
state occurs.

• PIPSScr: a PIPSS planner where the propagation of cost information through
the plan graph does not consider Interaction estimates. To deal with unex-
pected states at execution time, the planner does runtime replanning.
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• PIPSSIr : a PIPSS planner where the propagation of cost information through
the plan graph considers Interaction estimates. Like PIPSScr, to deal with
unexpected states at execution time, the planner does runtime replanning.

This section is divided into four subsections. The first one shows the tests per-
formed with the different versions of our PIPSS planner. We explain the benefits
of considering Interaction estimates and runtime replanning, and the CPU time
for the four variants of PIPSS introduced. The other three subsections correspond
to the set of domains used for experimental purposes. For these three, we show a
table that represent the number of successful rounds. The results have been com-
pared to those shown in (Yoon et al., 2010), given that we were not able to obtain
and run them ourselves.

Test of the PIPSS planner versions

As mentioned above, the tests are performed in a simulation environment. Since
PIPSSc and PIPSSI do not perform replanning when unexpected outcomes hap-
pen, we have evaluated the following strategies to consider a failure during run-
time:

• state approach: fail when the state is not as expected. That is, the state given
by the simulator is different from the state that the planner predicted during
the search process.

• prec approach: fail when the state does not satisfy regressed preconditions.
That is, the state given by the simulator does not satisfy the necessary pre-
conditions to continue the remaining plan.

To illustrate the difference between these approaches consider the simple prob-
abilistic Logistics domain, where there is a truck trk located at warehouse, and has
a package pkg inside that has been already verified and has to be delivered to store.
In order to accomplish this, the package needs to be scanned before it can be de-
livered, and the truck needs to be at the store. A tire may go flat during the trip.
However, if this event happens, the truck reaches the store anyway. Figure 5.5
shows the plan generated by the planner. When the simulation starts, the plan-
ner sends the action (drive warehouse store) to the simulator. The performance
of this action may give either a flat tire or not. If the outcome causes (flattire) and
the simulation is working using state, then the process will stop and consider it as
a failure. This is because the state was not that expected by the planner. On the
other hand, using prec we can check that even though the car gets a flat tire, the
preconditions for the remaining plan (scanned pkg) and (at store trk) are covered



5.2. EXPERIMENTAL EVALUATION 129

because the (flattire) fact does not affect the remaining plan. Thus, the plan can
continue without causing a failure in the simulation.

drive trk warehouse store scan pkg trk unload pkg trk store

flattire

goal


if state =⇒ FAIL

if prec: (scanned pkg, at store trk) =⇒ NOT FAIL

0.6

0.4

1 1

Figure 5.5: Example that shows the difference between the state and prec simula-
tion approaches.

For all the planners, 500 trials per problem were performed with a total time
limit of 500 minutes for the 500 trials. There are 15 problems for each domain. So,
the maximum number of successful rounds for each domain is 15 × 500 = 7500.
However, Triangle-tireworld domain on IPPC-08 only has 10 problems so that the
total rounds in this case is 10× 500 = 5000.

Tables 5.1, 5.2 and 5.3 show the number of successful rounds for the differ-
ent versions of PIPSS in each domain. Results show us that the versions with
a higher number of successful rounds are those that consider runtime replan-
ning: PIPSScr and PIPSSIr . According to these tables, we can also confirm that
failing during execution when the current state does not satisfy regressed pre-
conditions (prec) works better than failing if the given state is not in the plan
(state). Figure 5.6 shows the number of unsuccessful rounds that PIPSSIs and
PIPSSIp found while performing the previous test. We can observe that using
prec, the number of failures is usually lower than performing state in the domains
Blocksworld, Exploding-Blocksworld, Elevator, Random and Triangle-Tireworld,
where the plan’s actions have fewer inter-dependences. This means that, if the
system is doing runtime replanning, the replanning times will be lower. Because
of this, we have performed PIPSScr and PIPSSIr versions by applying the approach
in which the planner performs replanning only when the state does not satisfy
regressed preconditions. By using this strategy, we can deduce in advance if the
remaining plan could be completely performed so that it would avoid replanning
calls.

When we compare PIPSScr and PIPSSIr , PIPSSIr holds a slight advantage over-
all. In general, in those domains where there are several mutex or non-mutex
ways from which the goal can be reached from the initial state, Interaction es-
timates should find a plan with higher probability. In Figure 5.7, the generated
plans for the two approaches have nearly identical probability except in one prob-
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Table 5.1: Total number of successful rounds on the IPPC-06 using different ver-
sions of the PIPSS system.

IPPC-06
DOMAINS PIPSScs PIPSScp PIPSSIs PIPSSIp PIPSScr PIPSSIr

Blocksworld 140 133 147 168 2762 2951
Exploding-Blocksworld 2386 4139 2357 4137 4038 4018

Elevators 4349 4414 4183 4235 6455 6524
Random 0 592 0 415 1508 1511

Tireworld 4393 4372 4392 4391 5548 5614
Zenotravel 500 500 500 500 2285 2207

TOTAL 11768 14150 11579 13846 22596 22825

Table 5.2: Total number of successful rounds on the IPPC-08 using different ver-
sions of the PIPSS system.

IPPC-08
DOMAINS PIPSScs PIPSScp PIPSSIs PIPSSIp PIPSScr PIPSSIr

Blocksworld 134 106 112 132 2358 2493
Exploding-Blocksworld 1461 3021 1469 3083 3001 3025

Triangle-Tireworld 335 327 363 340 338 343
Rectangle-Tireworld 288 0 346 0 314 320

Zenotravel 0 0 0 0 1730 2000

TOTAL 2218 3454 2290 3769 7741 8181

Table 5.3: Total number of successful rounds on Probabilistically Interesting Do-
mains using different versions of the PIPSS system.

PROBABILISTICALLY INTERESTING DOMAINS

DOMAINS PIPSScs PIPSScp PIPSSIs PIPSSIp PIPSScr PIPSSIr
Climb 500 500 500 500 500 500
River 257 248 255 271 254 263
Tire1 266 253 255 263 251 266
Tire10 0 0 0 0 0 0

TOTAL 1023 1001 1010 1034 1005 1029

lem where the plan generated by PIPSSIr has significantly higher probability. For
instance, in Figure 5.7(a) we can see that the probability generated by PIPSSIr
in problem number six is higher than that found by PIPSScr. In the case of the
Rectangle-tireworld domain (Figure 5.7(c)), PIPSSIr generates a plan with higher
probability than PIPSScr for problem number three. In the case of the Elevator do-
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main (Figure 5.7(b)), PIPSSIr generates a plan with higher probability than PIPSScr
in problem number ten.

(a) IPPC-06 Domains

(b) IPPC-08 Domains

(c) Probabilistically Interesting Domains

Figure 5.6: Comparison between state and prec simulation approaches in number
of failed rounds.

For Interaction alone, without any replanning, the number of problems with
higher probability solutions is not large, but for the combination of Interaction es-
timates and runtime replanning the system’s behavior improves considerably. In
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(a) Blocksworld IPPC-06 Domain

(b) Elevator IPPC-06 Domain

(c) Rectangle-Tireworld IPPC-08 Domain

Figure 5.7: Comparison between the plan probability obtained by PIPSSc and
PIPSSI in different domains.

this case, although the advantage of PIPSSI over PIPSSc is small for any individ-
ual planning episode, it compounds over the course of many replanning cycles,
resulting in a more substantial advantage for PIPSSIr over PIPSScr.

Figure 5.8 shows the distribution of the time required to find the plan for
PIPSSc and PIPSSI over all of the problems. The curves are very similar with a
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Figure 5.8: Distribution of Time for generating the plans.

distinct large peak and two other smaller but noticeable peaks. Most problems
are solved in less than 5 seconds; however, the second peak shows that there are
cases in which the planner requires 6–100 seconds. These cases correspond to
the most difficult problems in Blocksworld-08, a single case in Blocksworld IPPC-
06, and a few cases in Exploding-Blocksworld IPPC-06, Elevator and Rectangle-
Tireworld. The third peak corresponds to the hardest problems in Exploding-
Blocksworld IPCC-08 and Elevator, and with a single case in Random, Rectangle-
Tireworld and Zenotravel IPPC-08. Problems whose time exceeds 1800 seconds
are instances in which the planner does not find a solution within the allotted
search time.

Figure 5.9 shows the total average time for simulation per domain while per-
forming the previous test with the variants PIPSSIs , PIPSSIp and PIPSSIr . In general,
we can observe that using the approach prec the time is slightly higher than ap-
plying state in some of the domains. However, as we have shown in Tables 5.1,
5.2 and 5.3, by performing prec the planner has a higher number of successful
rounds. According to the graph, we also see a significant increase in the total
time for PIPSSIr . This is largely due to the runtime replanning that this variant
performs. However, the difference in number of successful rounds between the
variants that do not use runtime replanning and the ones that do, is extremely
large. So we think that the additional time is a worthwhile penalty.

The 2006 IPPC

This subsection is concerned with the IPPC-06, and specifically with the fully
observable probabilistic domains (FOP), which were described at the beginning
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(a) IPPC-06 Domains

(b) IPPC-08 Domains

(c) Probabilistically Interesting Domains

Figure 5.9: Comparison between the total time required by PIPSSIs , PIPSSIp and
PIPSSIr .

of the section. For all the planners, 30 trials per problem were performed (as in
the competition) with a total time limit of 30 minutes for the 30 trials. There are
15 problems for each domain. So, the maximum number of successful rounds for
each domain is 15× 30 = 450.

Table 5.4 shows the number of successful rounds for FFH, FFH+, FPG, PIPSScr
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and PIPSSIr planners in each domain. PIPSSIr gets good results in three of the
five domains. The highest success rates are obtained in the domains Exploding-
Blocksworld, Elevators, and Tireworld that have dead-end states even though
PIPSS cannot recover from dead-end states. In fact, PIPSSIr is the planner that
achieves the highest rate in the Elevator domain. This is evidence that we are
generating relatively low-cost (high-probability) plans. However, in domains like
Blocksworld or Zenotravel, PIPSS performs poorly. Although we get good results
in problems with dead-end states, we were somewhat surprised that in prob-
lems with no dead-ends (like the Blocksworld domain) we obtain worse results,
since domains with no dead-ends are well suited to the replanning technique (a
planner using a replanning strategy always finds a solution in a domain without
dead-ends). Tables 5.5 shows information about the behavior of PIPSSIr in the
Blocksworld domain. For the smaller problems in this domain, PIPSS works per-
fectly by achieving all the rounds successfully. However, as the complexity of the
problem increases, the performance of PIPSS is worse. We note that, the number
of replanning calls during a simulation is related to the length of the plan gener-
ated. The greater the length of the plan, the greater the chance of failure. Accord-
ing to the data shown in Table 5.5, for the most difficult problems the replanning
technique requires a significant amount of time to get a new plan. One reason for
the large amount of time consumed for PIPSS is that it is being overwhelmed by
the number of determinized ground actions in the domain. To corroborate this,
Figure 5.10 shows the number of instantiated actions for each problem in each do-
main. The non-dead-end domains such as Blocksworld, Random or Zenotravel
are those with the highest number of instantiated actions, which corresponded to
the domains with low rates. In the Blocksworld domain, PIPSS only finds solu-
tions for the first ten problems because for the rest of the problems the planner
does not find a solution within the given time limit. We found additional ev-
idence for this by performing the test for problems six and nine with the time
limit increased by a factor of ten. This resulted in 100% successful rounds. We
performed the same test for problems seven and eight getting 10 and 14 success-
ful rounds. The total amount of time needed to achieve all the successful rounds
for these two problems was 824 and 549 minutes respectively. We have found
the same behavior in Zenotravel and Random domains; however, in these cases
the planner only finds a solution for the first five problems within the given time
limit.

All of this suggests that the performance of PIPSS could be improved by pay-
ing greater attention to minimizing the number of ground actions and improving
the efficiency of plan graph construction and calculations.
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Table 5.4: Total number of successful rounds on the IPPC-06.

PLANNERS

DOMAINS FFH FFH+ FPG PIPSScr PIPSSIr
Blocksworld 256 335 283 160 162

Exploding-Blocksworld 205 265 193 233 239
Elevators 214 292 342 379 396
Random 301 357 292 83 62

Tireworld 343 364 337 342 360
Zenotravel 0 310 121 115 123

TOTAL 1319 1923 1568 1312 1342

Table 5.5: Execution Information Blocksworld IPPC-06 Domain using PIPSSIr .

BLOCKSWORLD

Problem
Length Time Seed Plan Replanning Average Replanning Successful

Seed Plan (seconds) Calls Time (seconds) Rounds
1 16 0.198 188 0.282 30
2 14 0.197 137 0.254 30
3 10 0.194 110 0.270 30
4 14 0.24 117 0.281 30
5 10 0.222 129 0.256 30
6 24 1.344 82 22.18 7
7 32 10.45 11 176.7 0
8 24 0.776 16 113.8 0
9 20 0.398 78 23.84 5
10 28 1.476 6 365.2 0

Figure 5.10: Number of instantiated actions in each domain of IPPC-06.

The 2008 IPPC

This subsection is concerned with the IPPC-08, and specifically with the fully ob-
servable probabilistic domains (FOP), which were described at the beginning of
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the section. For all the planners, 30 trials per problem were performed with a total
time limit of 30 minutes for the 30 trials. There are 15 problems for each domain.
So, the maximum number of successful rounds for each domain is 15× 30 = 450.
The results in Table 5.6 show that again PIPSS has a low success rate in those
domains without dead-end states like Blocksworld. As is shown in Table 5.7,
the behavior of our planner in this Blocksworld domain is the same as the pre-
vious section. The time consumed by replanning in the most difficult problems
exhausted the given time. We can also confirm by Figure 5.11, that the number of
determinized ground actions for this domain is large, and this fact influences the
runtime replanning. In the Exploding-Blocksworld domain, PIPSS obtains better
results than the winning RFF planner, although it has a low number of success-
ful rounds compared to FFH+. In the 2-Tireworld domain, PIPSS does poorly
because this domain leads to a high number of dead-end states that it cannot re-
cover from. PIPSS is unable to solve problems in SysAdmin-SLP and Search and
Rescue domains from the 2008 IPPC, because it cannot parse PDDL imply and
exists expressions.

Table 5.6: Total number of successful rounds on the IPPC-08.

PLANNERS

DOMAINS FFH FFH+ RFF PIPSScr PIPSSIr
Blocksworld 185 270 364 101 141

Exploding-Blocksworld 131 214 58 174 171
2-Tireworld 420 420 382 17 21

TOTAL 736 904 804 292 333

Table 5.7: Execution Information Blocksworld IPPC-08 Domain.

BLOCKSWORLD

Problem
Length Time Seed Plan Replanning Average Replanning Successful

Seed Plan (seconds) Calls Time (seconds) Rounds
1 12 0.213 115 0.245 30
2 12 0.208 123 0.247 30
3 12 0.216 151 0.234 30
4 12 0.198 0 0 30
5 26 19.66 65 28.45 6
6 26 19.15 55 33.93 5
7 26 19.33 51 35.35 6
8 26 22.05 61 29.70 4
9 28 1.307 4 442.9 0
10 28 1.276 4 437.5 0
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Figure 5.11: Number of instantiated actions in each domain of IPPC-08.

Probabilistically Interesting Domains

This subsection is concerned with the Probabilistically Interesting Domains, which
were described at the beginning of the section. For all the planners, 30 trials per
problem were performed with a total time limit of 30 minutes for the 30 trials.
There is one problem for each domain so, the maximum number of successful
rounds for each domain is 30. Runtime replanning does not result in any im-
provement in these domains due to the way that they are designed. However,
we can see in Table 5.8 that both PIPSScr and PIPSSIr get good results in almost
all problems. In the Climb domain, both variants of PIPSS achieve the maximum
number of successful rounds.This subsection is concerned with the Compared to
FF-Replan, which only performs replanning as PIPSS does, we are performing
better due to the higher probability plans. In the River domain, PIPSSIr achieves
the highest rate. However, for the Tireworld domains as the number of tires in-
creases, PIPSS does not work as well due to the inability to deal with dead-end
states in advance. Nevertheless, the result achieved by PIPSS in the other do-
mains demonstrates the power of the heuristic.

5.3 Conclusions

This chapter presents an alternative for probabilistic planning under the Deter-
minization and Replanning paradigm. This alternative uses a heuristic function
that makes use of the probability information given in the domain definition to
propagate cost and Interaction information through a plan graph. This heuristic
estimator is used to guide the search toward high-probability plans. The result-
ing plans are used in a system that handles unexpected outcomes by runtime
replanning.

According to the results of the 2006 IPPC and 2008 IPPC, the combination of



5.3. CONCLUSIONS 139

Table 5.8: Total number of successful rounds on Probabilistically Interesting
Benchmarks.

PLANNERS

DOMAINS FF-Replan FFH FFH+ FPG PIPSScr PIPSSIr
Climb 19 30 30 30 30 30
River 20 20 20 20 16 23
Tire1 15 30 30 30 16 21
Tire10 0 6 30 0 0 0

TOTAL 54 86 110 80 62 74

deterministic planning and replanning seems to work well. Although our plan-
ner does not deal with dead-end states in advance, the results dealing with prob-
abilistic planning problems have high success rates in several cases. This is evi-
dence that we are generating relatively high-probability plans. Unfortunately, the
system does not get good results under some large domains with no dead-end
states because of performance issues. A natural enhancement involves optimiz-
ing plan graph generation and calculation.

Of course, runtime replanning is not enough to deal with cases where there
are dead-end states. That is why in the next chapter we present work that in-
volves analyzing the generated plans to find potential points of failure that can
be identified as recoverable or unrecoverable. Recoverable failures will be left
in the plan and will be repaired through replanning at execution time. For each
unrecoverable failure, we attempt to improve the chances of recovery, by adding
precautionary steps such as taking along extra supplies or tools that would allow
recovery if the failure occurs.
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Chapter 6

Incremental Contingency
Planning for Recovering from
Uncertain Outcomes

This chapter presents a framework to improve probability of success of plans
while retain scalability of the probabilistic solver presented in the previous chap-
ter. Firstly, it introduces the idea of Precautionary Planning, on which our work
is based. Then, it describes our framework for recovering uncertain outcomes.
Finally, it presents an experimental evaluation.

6.1 Introduction

Incremental contingency planning is a framework that considers all potential fail-
ures in a plan and attempts to avoid them (Dearden et al., 2003). The classical
approach to incremental contingency planning constructs a seed plan and incre-
mentally adds contingency branches to the plan in order to improve the overall
probability of it. This approach is practical in simple domains, but it is less useful
when there are a large number of uncertainty sources. In those cases, the planner
should focus on those outcomes that are unrecoverable or have low probability
of recovery. Precautionary planning (Foss et al., 2007) is a form of incremental
contingency planning. This interleaved planning and execution framework takes
advantage of the speed of replanning, but only considers the unrecoverable out-
comes in the plan and attempts to avoid them.

In this chapter, we present work inspired by precautionary planning. We
describe an approach to incrementally generating contingency branches to deal
with uncertain outcomes. The main idea is to first generate a high-probability
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non-branching seed plan, which is then augmented with contingency branches
to handle the most critical outcomes of the actions in the plan. Any remaining
outcomes are handled by runtime replanning. Figure 6.1 shows the architecture
of our approach. It first generates a non-branching seed plan that is analyzed
to find potential unexpected outcomes, which we generate by using PIPSSI , the
progressive heuristic planner introduced in Chapter 5. For the most critical out-
comes, an attempt will be made to improve the chances of recovery by adding
(1) a conformant solution that achieves the goal by using a different path, or (2)
precautionary steps that allow recovery if the failure occurs . Both strategies will
increase the overall probability of the plan. The process is repeated until (1) the
resulting contingent plan achieves at least a given probability threshold, (2) the
available time is exhausted, or (3) a certain number of branches are added. By
critical outcomes, we mean that they are both likely and with poor chances of
recovering.

Execution

Selecting
Outcome

Repairing
Outcome

PIPSSI
Analyzing
Outcomes

Adding
Branch

Adding Plan
Solution

PPDDL

success

failure

next outcome

failure

precautionary

plan

conformant

plan

seed plan outcomes

next outcome

contingency

plan

Figure 6.1: Precautionary Planning Architecture in the PIPSSI System.

In the next section, we introduce our incremental approach. In Section 6.2, we
define the heuristic function used to identify points of failure that potentially im-
prove the total probability of the plan. In Section 6.3, we detail the different tech-
niques we can apply to improve the chances of recovery if the failure occurs. In
Section 6.4, we present an empirical study of these new techniques within PIPSSI

and compare with some other probabilistic planners.

6.2 Recognizing outcomes

Once a non-branching seed plan has been generated, we want to analyze all its
potential unexpected outcomes, and estimate how much utility could be gained
by inserting a branch at each given point of failure. A way to do this is by comput-
ing an estimate of how much the total probability could be potentially increased
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by using precautionary planning. We call this estimation Gain, and it is basically
an estimate of how easy is to recover from a branch, if it happens. This measure
is based on the CCE estimations and the hI heuristic. A higher Gain, a higher
chance of recovery.

To illustrate this approach consider that we are given the probabilistic plan-
ning problem shown in Figure 2.10, where there is a package pkg and a truck
trk at location a, and the package needs to be delivered to location c. The truck
can move between different locations, and it may have a flat tire during the trip
with 0.4 probability. Assume that the pkg is inside the truck and it has been
verified already. Figure 6.2 shows the non-branching seed plan generated by
the planner, which has an estimated probability of reaching the goal equal to
exp{−CCE(seedPlan)} = exp{−1.427115} = 0.24. Action (drive trk a b) has an
alternative outcome o1 with probability 0.4 and an estimated probability of reach-
ing the goal equal to exp{−CCE(o1)} = exp{∞} = 0, which means that there is
no chance of completing the objective, if this outcome actually happens – the tire
goes flat and the truck cannot reach the goal. Action (drive trk b c) has an alter-
native outcome, o2, with probability 0.4 and an estimated probability of reaching
the goal equal to exp{−CCE(o2)} = exp{0} = 1 because even though the tire goes
flat, the truck still arrives to location c, and the remainder of the plan succeeds.

drive trk a b drive trk b c scan pkg trk unload pkg trk c

o1

CCE=0

o2

CCE=1

0.6 0.6 1

0.4 0.4

Figure 6.2: Example of a non-branching seed plan with potential outcomes to be
repaired

If no contingency planning is performed and just rely on replanning when o2
or o1 occurs, we would get the following total probability:

Pr = 0.6(0.6)(1) + 0.4(0) + 0.6(0.4)(1) = 0.6

If contingency planning works perfectly for branch o1, namely o′1, we assume
a CCE(o′1) = 0.24. That is, the value of CCE(seedPlan) because this is the best value
that we can get. This is the case where the truck gets a spare tire before driving
from location a to location b, and we change it when o1 occurs. Considering this
assumption, the total probability that we would get is:

Pr(o1) = 0.6(0.6) + 0.4(0.24) + 0.6(0.4)(1) = 0.696
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In the case of outcome o2, we already estimate that contingency planning
works perfectly since its CCE is equal to 1. If we added a contingency branch
for o2, the probability of success of the plan would increase. However, it would
not do better than just use the seed plan and rely on replanning.

For an alternative outcome (or branch) x of action a, the optimistic possible
gain from precautionary planning will be the difference between the estimated
cost with repair and the estimated cost without repair. We compute the latest using
the CCE estimation as describes in Chapter 5. That is, the probability of reaching
the goal from that state. On the other hand, to compute the estimated cost with
repair, we propagate cost and Interaction in the plan graph only considering the
outcome x and not taking into account other action outcomes. By doing this, we
force outcome x to be in the plan, and, therefore, the new cost and Interaction
information can be used to compute the probability estimated of reaching the
goals when outcome x happens. We call this estimation Probability Estimated (PE)
and is computed using Equation 3.15. More formally, for a branch x the gain is
a measure of how much the total plan probability could potentially be increased
by precautionary planning and is computed by the difference between the PE of
branch x′ when it actually happens and the CCE of x:

Gain(x) = exp{−PE(x′)} − exp{−CCE(x)} (6.1)

Following the previous example, for branches o1 and o2, the gains from pre-
cautionary planning are:

Gain(o′1) = exp{−PE(o′1)} − exp{−CCE(o1)} = 0.36− 0 = 0.36

Gain(o′2) = exp{−PE(o′2)} − exp{− < CCE(o2)} = 0.36− 1 = −0.64

This means that by repairing branch o1, the total plan probability will improve
more than through branch o2. Therefore, we would prefer to recover o1 since it
seems that it is possible to gain more probability mass, and o2 might be recover-
able by using replanning.

The calculation of gains allows us to create a ranking to start the recovery of
alternative paths.

6.3 Repairing outcomes

Given the recognized undesirable outcomes ranking, the next step is to repair the
plan in order to increase the overall probability of success. For each outcome,
the idea is to look for the best improvement. In the next subsections, we present
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three methods to do that. The first method is called Confrontation, which tries
to find a plan that avoids the problematic action’s outcome when its execution
depends on a condition. The second method is called Precautionary Steps, which
adds precautionary actions before the problematic action to increase the proba-
bility of recovery it in case it happens. The third method is called Conformant
Planning, which increases the total probability by adding conformant steps to the
contingency plan solution.

6.3.1 Confrontation

A probabilistic outcome of an action may be subject to different conditions. In
our example, it might be that for the action (unload pkg trk c), proposition ¬(at
c pkg) occurs when, for instance, the store in c where the package needs to be
delivered is closed. Confrontation on this condition will avoid ¬(at c pkg) by
ensuring that the store is open before the start of driving. Figure 6.3 shows the
high-level algorithm used.

Function CONFRONTATION (a,o,p)

a ≡ action causing the failure

c ≡ condition on the unrecoverable outcome of a occurs

o ≡ problem operators set

p ≡ PDDL problem espacification

g ≡ set of goals

plan ≡ new plan solution

1. a′ ← copy(a)

2. prec(a′) ← prec(a′) ∪ (¬c)

3. eff(a′) ← eff(a′) ∪ (unique-effect)

4. o ← {o} ∪ a′

5. g ← {g} ∪ (unique-effect)

6. plan← deterministicPlanner(o, p)

7. return plan

Figure 6.3: The confrontation pseudo-algorithm.

The overall idea is to find a new plan that avoids or reduces the probability
of getting to that branch, and then replace the old seed plan with the new plan.
More precisely, suppose that a is the action in the seed plan with an unrecoverable
outcome conditioned by c. We force the planner to find a new seed plan that
achieves ¬c to prevent the failure from occurring. The way that we do that is
by creating a new version of the action a, a’, that keeps its original preconditions
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plus a new additional precondition ¬c, and its original effects plus an additional
unique effect. The unique effect is also added to the set of goals. We then add
the new action to the set of operators and call the deterministic planner to find a
plan for the goals. If a new plan is found and it has higher probability than the
old seed plan, the new plan replaces the old seed plan.

In our example, suppose that the package pkg needs to be delivered in a store
s at location c. The action of delivering the package, unload, has a conditional ef-
fect (not-close s), which will deliver the package if the store is not close. Figure 6.4
shows the new action unload’. It includes ¬(not-close s), the negation of the condi-
tional effect, in its preconditions, and the proposition (unique-effect) in its effects.
In addition, the new problem is defined and includes the proposition (unique-
effect) in the goal set. The deterministic planner would return a plan with action
(unload’) on it to guarantee that the store is open before the star of the driving.

(:action unload

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (at ?l ?t) (scanned ?pkg ?t))

:effect (and (not (in ?pkg ?t)) (at ?l ?pkg) (when (and (not-close s) (delivered pkg c))))

(:action unload’

:parameters (?pkg - package ?t - truck ?l - location)

:precondition (and (at ?l ?t) (scanned ?pkg ?t) (not (not-close s)))

:effect (and (not (in ?pkg ?t)) (at ?l ?pkg) (delivered pkg c) (unique-effect)))

(define (problem logistics-p01)

(:domain logistics)

(:objects a b c d e - location trk - truck pkg - package

(:init (connected a b) (connected a d) (connected b c) (connected d e)

(connected e c) (at a trk) (at a pkg) (spare d) (spare e) (not (flattire)))

(:goal (and (delivered pkg c) (unique-effect))))

Figure 6.4: Confrontation: new action and new problem definitions.

6.3.2 Precautionary Steps

Precautionary Steps consists of repairing an undesirable action’s outcome by add-
ing precautionary actions to the plan before the problematic action. This method
improves the chance of recovery, if the seed plan fails, and makes possible to
reach the goal when the unexpected outcome of the problematic action happens
during runtime. Figure 6.5 shows the high-level algorithm used. The idea is to
force the planner to find a plan that uses each alternative outcome, but does not
lose any precondition needed to reach the goal when the action has the desired
outcome. In other words, for each alternative outcome o of action a, the method:

1. Divides the initial seed plan into two parts: a prefix, which contains all ac-
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tions preceding a, and a suffix, which contains all actions following a.

2. Creates a new action a′ that keeps its original preconditions and effects.

3. Analyzes the causal structure of the suffix to collect all the preconditions
needed by the suffix, and adds them to the set of preconditions of a′.

4. Adds a unique effect to a′, which is added to the goal state to force a′ into
the plan.

5. Adds a′ to the set of operators and calls the deterministic planner to find a
plan for the new goal state. If a plan is found, the prefix is replaced with the
prefix of the new plan and the suffix is added to it. Otherwise, we classify
the outcome as unrecoverable.

Function PRECAUTIONARYSTEP (a,o,p)

a ≡ action causing the failure

o ≡ problem operators set

p ≡ PDDL problem especification

g ≡ set of goals

suffix ≡ plan containing the action’s seed plan following a

newPlan ≡ precautionary plan

plan ≡ plan solution

1. a′← copy(a)

2. preconditions(a′)← preconditions(a) ∪ causalStructure(suffix)

3. effects(a′)← effects(a) ∪ unique-effect

4. o← {o} ∪ a′

5. g← {g} ∪ unique-effect

6. newPlan← deterministicPlanner(o,p)

7. plan← addBranch(newPlan,suffix)

8. return plan

Figure 6.5: The precautionary steps pseudo-algorithm.

Returning to our example, assume that we are repairing outcome o1. Fig-
ure 6.6 shows the new action created to repair o1. It includes the proposition
(unique-effect) in its effects. Its preconditions set remains the same because it al-
ready has all the preconditions necessary to enable the suffix. In addition, the
new problem definition includes the proposition (unique-effect) in the goals set.
The deterministic planner returns a new plan that has the precautionary action
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(get-tire), which increases chances of recovery in case the unexpected outcome o1
occurs.

(:action drive’

:parameters (?from - location ?to - location ?p - person)

:precondition (and (at ?from) (road ?from ?to) (not (flattire)))

:effect (and (at ?to) (not (at ?from)) (flattire) (unique-effect)))

(define (problem logistics-p01)

(:domain logistics)

(:objects a b c d e - location trk - truck pkg - package

(:init (connected a b) (connected a d) (connected b c)

(connected d e) (connected e c) (at a trk) (at a pkg)

(spare d) (spare e) (not (flattire)))

(:goal (and (at c pkg) (unique-effect))))

Figure 6.6: Precautionary steps: new action and new problem definitions.

Figure 6.7 shows the contingency plan once outcome o1 have been repaired
by adding a revised suffix that includes the action (get-tire), and a contingency
branch where the tire is changed after the outcome happens and the car gets a flat
tire. On the other hand, o2 does not need to be repair since it can be handled by
runtime replanning.

get-tire a trk drive trk a b drive trk b c load pkg c trk

change drive trk b c load pkg c trk

recoverable outcome

1 0.6 0.6

0.4

1 0.6

0.4

Figure 6.7: Recovering action outcomes by adding a precautionary step for alter-
native outcome o1.

6.3.3 Conformant Plan

It is possible that there are several plans that reach the goal, which are not ini-
tially generated because they have lower probability. In some cases, one or more
of these plans may be executable with the original seed plan and will raise the
probability of the plan. Conformant plans may happen when the Precautionary
Steps method is applied. This is the case where the plan that is generated contains
action a’ (the one forced to be in the plan), but it is only in the plan to achieve the
unique effect. If this does not happen naturally during Precautionary Steps, then
we can search for a conformant plan by calling the deterministic planner with the
problematic action disabled.
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As an example of this technique, consider the unrecoverable outcome of ac-
tion (drive trk b c) shown in Figure 6.8. We can increase the overall probability of
reaching the goal by simultaneously sending a second truck trk2 to pick the pack-
age up. During execution time, both plans would be executed simultaneously.
However, since the conformant plan generated might interfere with actions in
the tail of the contingency plan, we need to find all the potential execution condi-
tions and consider them during the execution of the plan. An execution condition
is a proposition that determines which plan keeps being executed. If the execu-
tion condition is true, then the execution continues with the contingency plan.
Otherwise, the execution continues with the conformant plan. In our example,
only one of the trucks can pick the package up at location c. Therefore, during
execution time, we need to consider the execution condition (at c trk), to disable
either the conformant plan, if the proposition becomes true, or the contingency
plan, if the proposition becomes false.

get-tire a trk drive trk a b drive trk b c

change drive trk b c

unrecoverable outcome

at c trk? load pkg c trk

recoverable outcome

1 0.6

0.6
0.4

1 0.6

0.4

0.4

drive trk2 a d drive trk2 d e drive trk2 e c load pkg c trk20.6 0.6

0.6

True

False

Figure 6.8: Recovering action outcomes by adding a conformant plan for the un-
recoverable outcome of action (drive trk b c).

It may happen that the resulted conformant plan requires a suffix different to
the suffix of the seed plan in order to be compatible with the seed plan. This re-
vised suffix may decrease the probability of the seed plan. This is the case where,
for instance, the truck trk2 in the conformant plan is a large truck that requires
a driver with a specific license. The logistic company only has a driver with that
license, and it was first assigned to drive truck trk. As a consequence, the revised
suffix would content the necessary actions that (1) assign that driver to trk2 and
(2) assign a new driver to trk. The actions in the revised suffix may have some
probability of failure (for instance, the driver gets sick and cannot drive), and as
a consequence of that, the overall probability of the seed plan may decrease.
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6.4 Experimental evaluation

We have conducted an experimental evaluation on IPPC-06 (Bonet and Given,
2006) and IPPC-08 (Buffet and Bryce, 2008) fully-observable-probabilistic plan-
ning (FOP) domains, as well as on the probabilistically interesting domains intro-
duced by Little and Thiebaux (Little and Thiébaux, 2007). The test consists of
running the planner and using the resulting plan in the MDP Simulator (Younes
et al., 2005). The planner and the simulator communicate by exchanging mes-
sages. The simulator first sends the planner the initial state. Then, the Interaction
between planner and simulation consists of the planner sending an action and
the simulator sending the next state to the planner.

FF-Replan, FHH, FHH+, FPG, RFF planners described in Chapter 5 have been
used for the experimental evaluation. We compare these with two variants of the
PIPSS planner:

• PIPSSIr : a PIPSS planner where the propagation of cost information through
the plan graph considers Interaction estimates. To deal with unexpected
states at execution time, the planner does runtime replanning.

• C-PIPSSIr : a PIPSS planner where the propagation of cost information through
the plan graph considers Interaction estimates. To deal with unexpected
states, the plan solution has been incrementally augmented with confronta-
tion, precautionary steps, and conformant plans. To deal with unexpected
states at execution time, the planner does runtime replanning.

The experiments were conducted on a Pentium dual core processor at 2.4 GHz
running Linux. For the rest of the planners, given that we were not able to ob-
tain and run them ourselves, data are collected from work done by Yoon, Ruml,
Benton, and Do (2010).

The 2006 IPPC

For the IPPC-06, we are concerned with the fully observable probabilistic do-
mains (FOP), which were described in Chapter 5. For all the planners, 30 trials
per problem were performed with a total time limit of 30 minutes for the 30 trials.
There are 15 problems for each domain. So, the maximum number of successful
rounds for each domain is 15× 30 = 450.

Table 6.1 shows the number of successful rounds for FFH, FFH+, FPG, PIPSSIr ,
and C-PIPSSIr planners in each domain. C-PIPSSIr gets good results in two of the
three domains. The highest success rates are obtained in Exploding-Blocksworld
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Table 6.1: Total number of successful rounds on the IPPC-06 using Incremental
Contingency Planning.

PLANNERS

DOMAINS FFH FFH+ FPG PIPSSIr C-PIPSSIr
Exploding-Blocksworld 205 265 193 239 262

Elevators 214 292 342 396 382
Tireworld 343 364 337 360 356

TOTAL 762 921 872 995 1000

and Tireworld domains. In fact, C-PIPSSIr is the planner that achieves the high-
est rate in the Exploding-Blocksworld domain. We expected that C-PIPSSIr would
perform better than PIPSSIr . However, in the Elevator domain, C-PIPSSIr performs
much poorer than PIPSSIr , and it is only slightly better in the Tireworld domain.
Figure 6.9 shows data about the plan solution after applying Incremental Contin-
gency Planning to the initial non-branching seed plan. The left column presents
a plot for each domain in the IPPC-06 that shows the increase in probability after
repairing the plan outcomes, and if a conformant branch has been added on the
plan solution. The right column presents a scatter plot for each domain in the
IPPC-06, where each dot in the plot represent the relationship between the total
number of outcomes in the plan and the number of recoverable outcomes, and the total
number of outcomes in the plan and the number of unrecoverable outcomes.

For the Exploding-Blocksworld domain, from Figure 6.9(a) we can see that
the overall probability of the plan increases in all the problems. The reason for
that is the high number of recoverable outcomes, which is shown in Figure 6.9(b).
Therefore, the performance of C-PIPSSIr is better than the performance of PIPSSIr .

For the Elevator domain, from Figure 6.9(c) we can see that the overall proba-
bility of the plan does not increase in any of the problems, but a conformant plan
is added to each of them. Figure 6.9(d) shows that the number of unrecoverable
outcomes is higher than the number of recoverable outcomes. This is why the
overall probability does not increase. Although each problem has a conformant
plan added, this additional plan has lower probability than the initial plan. There-
fore, during execution the chances of failure are higher. However, the success rate
of C-PIPSSIr is higher than FFH and close to FFH+.

For the Tireworld domain, from Figure 6.9(e) we can see that the overall prob-
ability of the plan increases in half of the problems, and a conformant plan is
added to each of them. Figure 6.9(d) shows that the number of recoverable out-
comes is higher than the number of unrecoverable outcomes. However, C-PIPSSIr
performs just a bit better than PIPSSIr , where we expected a better performance.
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(a) Probability difference in the Exploding-
Blocksworld Domain

(b) Recoverable and unrecoverable outcomes in
the Exploding-Blocksworld Domain

(c) Probability difference in the Elevator Domain (d) Recoverable and unrecoverable outcomes
in the Elevator Domain

(e) Probability difference in the Tireworld Domain (f) Recoverable and unrecoverable outcomes in
the Tireworld Domain

Figure 6.9: Comparison between initial and final plan probability (left column),
and recoverable and unrecoverable plan outcomes (right column) of IPPC-06.

The success rate of C-PIPSSIr is higher than FFH and FPG. FFH+ performs slightly
better.

The 2008 IPPC

For the IPPC-08, we are again concerned with the fully observable probabilistic
domains (FOP), which were described in Chapter 5. For all the planners, 30 trials
per problem were performed with a total time limit of 30 minutes for the 30 trials.
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There are 15 problems for each domain. So, the maximum number of successful
rounds for each domain is 15× 30 = 450.

Table 6.2: Total number of successful rounds on the IPPC-08 using Incremental
Contingency Planning.

PLANNERS

DOMAINS FFH FFH+ RFF PIPSSIr C-PIPSSIr
Exploding-Blocksworld 131 214 58 171 176

2-Tireworld 420 420 382 21 68

TOTAL 551 634 440 192 244

Table 6.2 shows the number of successful rounds for FFH, FFH+, FPG, PIPSSIr ,
and C-PIPSSIr planners in each domain. C-PIPSSIr has a lower success rate than we
expected. For the Exploding-Blocksworld domain, the success rate of C-PIPSSIr
does not improve, even though from Figure 6.10(a) we can see the overall proba-
bility increase for some of the problems. For the 2-Tireworld domain, the success
rate of C-PIPSSIr increases considerably compare to PIPSSIr , but it is still very low.

(a) Probability difference in the Exploding-
Blocksworld Domain

(b) Recoverable and unrecoverable outcomes in
the Exploding-Blocksworld Domain

(c) Probability difference in the 2-Tireworld Do-
main

(d) Recoverable and unrecoverable outcomes
in the 2-Tireworld Domain

Figure 6.10: Comparison between initial and final plan probability, and recover-
able and unrecoverable plan outcomes of IPPC-08.
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Probabilistically Interesting Domains

Table 6.3 shows the number of successful rounds for FFH, FFH+, FPG, PIPSSIr ,
and C-PIPSSIr planners in each domain. From Figure 6.11 we can see that sur-
prisingly there is no improvement in the overall probability for any of the tested
domains. PIPSSIr , and C-PIPSSIr have relatively high success rates in the Climb
and River domain. However, we expected some improvement in the Tire1 and
Tire10 domains after Incremental Contingency Planning was applied.

Table 6.3: Total number of successful rounds on the Probabilistically Interesting
Benchmarks.

PLANNERS

DOMAINS FF-Replan FFH FFH+ FPG PIPSSIr C-PIPSSIr
Climb 19 30 30 30 30 30
River 20 20 20 20 23 20
Tire1 15 30 30 30 21 19
Tire10 0 6 30 0 0 0

TOTAL 54 86 110 80 74 69

Figure 6.11: Probability difference on the Probabilistically Interesting Bench-
marks.

6.5 Conclusions

In general, Incremental Precautionary Planning provides little additional benefit.
In a few domains, Incremental Precautionary Planning can help; the success rates
are higher, which means that the planner has been able to reach the goal in a
larger percentage of problems. However, we expected that the combination of
Incremental Precautionary Planning and runtime replanning would increase the
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success rate for all the tested domains. Our hypothesis for the bad performance
of our framework is the classical all-outcomes determinization approach.

Our approach consists of generating a deterministic planning domain from
a probabilistic planning domain, turning the probability information into costs.
These costs are used in a heuristic function that propagates cost and Interaction
information through a plan graph. This heuristic estimator is used to guide the
search toward high-probability non-branching seed plans. The resulting plans
are then analyzed to find potential points of failure that can be identified as re-
coverable or unrecoverable. Recoverable failures will be left in the plan and will
be repaired through replanning at execution time. For each unrecoverable fail-
ure, we attempt to incrementally improve the chances of recovery by applying
confrontation, adding precautionary steps, and adding conformant plans. The
final plan is a contingency plan that has a higher probability of success during
execution time. However, we observed that the cost and Interaction information
underestimates the actual cost of propositions and actions in the plan graph, and
therefore, the probability of each state in the search space.

To illustrate this, consider the simple probabilistic Logistics domain defined
in Figure 2.10. Assume we use all-outcomes determinization, then the proba-
bilistic domain results in a deterministic domain with two deterministic actions
created from the probabilistic action drive. Figure 6.12 shows that determinization
process. The most likely outcome of the action implies that the car successfully
drives between locations with probability 0.6. This results in action drive-1. For
the other outcome, the car achieves the destination, but it gets a flat tire with a
probability of 0.4. This results in action drive-2.

(at a trk)
(¬flattire)

drive trk a b
(¬at a trk, at b trk)

(¬at a trk, at b trk, flattire)

(at a trk)
(¬flattire)

drive-1 trk a b (¬at a trk, at b trk)

(at a trk)
(¬flattire)

drive-2 trk a b (¬at a trk, at b trk, flattire)

0.6

0.4

0.6

0.4

Figure 6.12: Example of all-outcomes determinization of a probabilistic action.

Figure 6.13 shows the plan solution that is generated by our planner. If we
compute the probability of the resulting state after performing (drive-1 trk a b),
the probability of (at b trk) and ¬(flattire) is 0.6. As a result, the probability of per-
forming (drive b c) is equal to the product of the probability of its preconditions.
That is, pr(at b trk) pr(¬flattire) = 0.6(0.6) = 0.36. As a consequence, the proba-
bility of (at c trk) is the product of the probability of performing (drive b c) and the
probability of achieving (at c trk) through (drive b c). That is, 0.36(0.6) = 0.216.
This means that the probability of success of the plan is 0.216.
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pr(at a trk) = 1
pr(¬flattire) = 1

drive-1 trk a b
1 pr(¬at a trk) = 0.6

pr(at b trk) = 0.6
pr(¬flattire) = 0.6

drive-1 trk b c
0.36

pr(¬at b trk) = 0.216
pr(at trk c) = 0.2160.6 0.6

Figure 6.13: Plan solution probability using Determinization.

However, both outcomes of the probabilistic action (drive trk a b) result in
the car at the next location. This means that, the probability of achieving (at b
trk) is dependent of the outcome. The all-outcomes determinization technique
does not consider the dependence between propositions and outcomes since it
does not consider the overall probability of those propositions that are common
in all the outcomes. Therefore, by considering propositions individually instead
of as a result of an action’s outcome, we can compute more accurate probability
estimates.

To illustrate this, consider the example in Figure 6.14 that shows the same
plan solution as before. In this case, the probability for each state is computed by
considering probabilistic actions and propositions individually. Therefore, after
(drive trk a b) is performed, there is a probabilistic state where ¬(at a trk) and (at
b trk) have a probability of 1 (since both propositions are in both outcomes of the
action), ¬(flattire) has a probability of 0.6, and (flattire) has a probability of 0.4. As
a consequence of this, the probability of (drive trk b c) is 0.6, instead of 0.36 for
the all-outcomes determinization. This results in (at c trk) having a probability of
0.6. Consequently, the probability of success of the plan is 0.6 where before was
0.216.

pr(at a trk) = 1
pr(¬flattire) = 1

drive trk a b

pr(¬at a trk) = 1
pr(at b trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4

drive trk b c

pr(¬at b trk) = 0.6
pr(at trk c) = 0.6
pr(¬flattire) = 0.36
pr(flattire) = 0.24

Figure 6.14: Plan solution probability considering the overall probability of
propositions across action outcomes.

The underestimation that is caused by the all-outcomes determinization tech-
nique is, therefore, harmful to our cost propagation, yielding seed plans that do
not have high probability of success. To illustrate this, consider the simple proba-
bilistic Logistic problem in Figure 2.10. It has two possible paths that achieve the
goal:

π1 = {(drive trk a b), (drive trk b c)}

π2 = {(drive trk a d), (drive trk d e), (drive trk e c)}
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As previously explained, π1 has a probability of 0.6 of reaching the goal. On
the other hand, π2 has a probability of 1 of reaching the goal since both locations
d and e have a spare tire. Therefore, if the truck got a flat tire in any of those loca-
tions, it would be able to change the tire and successfully continuing the drive.

The fact that we are not generating high probability of success plans means
that the contingency branches added to the initial seed plan have low probability
of success. For this reason, the number of successful rounds does not improve
after applying Incremental Contingency Planning. In addition, the conformant
plans added to the initial seed plan have even lower probability of success, which
reduces the chances of achieving the goal.

Therefore, in the next chapter we present a new approach to compute esti-
mates of probability , which considers the overall probability of each proposition
across all of the action’s outcomes, and the dependence between those proposi-
tions in the different outcomes. This new technique benefits the probability prop-
agation in plan graphs and generates plans with higher probability of success.
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Chapter 7

Probability Estimates without
Determinization

In Chapter 5, we used action determinization and probability propagation in a
plan graph to compute probability estimates, which are then used to guide the
search towards high-probability plans. Unfortunately, this did not work as well
as we expected. The reason is that multiple outcomes of an action may have
the same proposition, so the actual probability of a proposition given an action is
higher than the probability we can get from a single determinized action. To over-
come this issue, in this chapter we introduce a technique to compute estimates of
probability without determinization that are then used to guide the search to-
wards high probability of success plans.

7.1 Introduction

All-outcomes determinization generates a deterministic action for each outcome
of a probabilistic action. Considering each individual outcome might underesti-
mate costs of propositions. In other words, for any single outcome of an action,
the probability of a proposition may be lower than considering the probability
across all the outcomes. As a result, action determinization as we did in Chapter 5
may mislead the planner into picking the wrong outcome or action. To illustrate
this, consider the simple action A shown in Figure 7.1, which has three outcomes:
outcome o1 that produces x and y with a probability 0.3; outcome o2 that produces
x with a probability 0.3; and outcome o3 that produces z with a probability 0.4.
Outcomes o1 and o2 have a common proposition x, while outcome o3 produces a
different proposition that does not occur in any other outcome. Suppose that the
three outcomes lead the planner to the goal with equal probability. The outcome

159
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o3 has a probability of 0.4, which is higher than the probability of either o1 or
o2. Therefore, the planner may rely on outcome o3. However, the combination of
outcomes o1 and o2 will lead to a higher probability, and, therefore, it results in a
better plan. (The true probability of x is a combination of outcomes o1 and o2.) If
instead of considering each individual outcome, it would sum everything up, it
would overestimate costs because it is not considering the dependence between
propositions in the different outcomes.

A

o1 : x, y

o2 : x

o3 : z

0.3

0.3

0.4

Figure 7.1: Example of a probabilistic action and its outcomes.

To overcome this issue we could use a determinization approach in which
we created a new deterministic action for each possible proposition combination
across all of the action’s outcomes. To illustrate, consider the probabilistic action
A in Figure 7.2. We could create deterministic actions A1 for proposition x with
probability 0.6 because x is in outcomes o1 and o2; A2 for proposition y with prob-
ability 0.3 because y is only in outcome o1; A3 for proposition z with probability
0.4 because z is only in outcome o3; and A4 for the pair of propositions (x, y)

from outcome o1 with probability 0.3. There is no outcome that contains y and z

or all three x, y, and z, so these possibilities do not need to be considered. These
new deterministic actions would be mutually exclusive, and we can use them in
probability propagation as we did in Chapter 5. However, this would signifi-
cantly increase the number of actions in the plan graph and, therefore, increase
propagation time.

A

o1 : x, y

o2 : x

o3 : z

0.3

0.3

0.4

A1

A2

A3

A4

x
y

z
x y

0.6

0.3

0.4

0.3

Figure 7.2: Example of a potential determinization technique.

For these reasons, we present a new way to estimate probabilities that we call
Probability Estimates without Determinization (PEWD), which does not rely on de-
terminization. This novel approach uses the probabilistic problem without trans-
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forming it into a deterministic one. Given a PPDDL problem, we initially process
and load all the information given in the domain. Then, we build a probabilistic
plan graph estimator as will be described in Section 7.4. This propagation tech-
nique is moderately different from the technique presented in Chapter 5 because
it considers the dependence among propositions in action outcomes to avoid the
reliance on individual outcomes. After this step, the search process starts. The
system performs an A∗ search when it is looking for a solution. This search is not
as usual since it is performed in a space of probabilistic states. For each proba-
bilistic state, the plan graph is updated and the system estimates the probability
of achieving the goals from that state. This estimation is called a Completion Proba-
bility Estimate (CPE). The result is more accurate estimates of probability that help
to guide the search towards high probability of success plans.

The next section explains the Interaction concept in terms of probability. Sec-
tion 7.3 describes the search in the space of probabilistic states. Section 7.4 de-
scribes the probabilistic plan graph heuristic used to guide the probabilistic search
towards high-probability plans. Finally, Section 7.5 presents an empirical study
of this technique and compares with some other probabilistic planners.

7.2 Translation from Cost Interaction to Probability Inter-
action

In Chapter 3, we define cost Interaction, I , between two elements as the cost
of the conjunction minus the individual costs. I can be directly translated into
probability Interaction, Ip, as the probability of the conjunction divided by the
individual probabilities. Ip is a value that represents how more or less likely it
is that two propositions or actions are established together instead of indepen-
dently. Formally, the optimal Interaction, I∗p , considers n-ary Interaction relation-
ships among propositions and among actions in the plan graph. It is defined as:

I∗p (p0, p1, ..., pn) =
pr∗(p0 ∧ p1 ∧ ... ∧ pn)

pr∗(p0) pr∗(p1) ... pr∗(pn)
(7.1)

where the term pr∗(p0 ∧ p1 ∧ ... ∧ pn) is the maximum probability among all the
possible plans that achieve all the members in the set. Computing I∗p would be
computationally prohibitive. As a result, we limit the calculation of these values
to pairs of propositions and pairs of actions in each level of a plan graph. In other
words, binary Interaction:

I∗p (p, q) =
pr(p ∧ q)
pr(p) pr(q)

(7.2)
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For this definition, Ip has the following features:

I∗p (p, q) is


> 1 if p and q are synergistic
= 1 if p and q are independent
< 1 if p and q interfere
= 0 if p and q are mutually exclusive

Ip provides information about the degree of interference or synergy between
pairs of propositions and pairs of actions in a plan graph. When 0 < Ip(p, q) < 1

it means that there is some interference between the best plans for achieving p and
q, so it is less likely to achieve them both than to achieve them independently. In
the extreme case, I = 0, the propositions or actions are mutually exclusive. Sim-
ilarly, when Ip(p, q) > 1 the two elements are synergistic, which means that the
probability of establishing both p and q is higher than the product of the probabil-
ities for establishing the two independently. However, this probability cannot be
higher than the probability of establishing the most difficult of p and q. As a re-
sult, Ip(p, q) is a positive number ranging between zero and 1/max{pr(p), pr(q)}.
That is:

Ip(p, q) ≤ min

{
pr(p)

pr(p) pr(q)
,

pr(q)

pr(p) pr(q)

}
=

1

max{pr(p), pr(q)}

This upper bound will be discussed in more detail in Section 7.4.2.

7.3 Search in the space of probabilistic states

A probabilistic state s is a set of propositions where propositions have a proba-
bility of being true and there is Interaction between them. This means that, for
each proposition p in s we need to compute the probability of p being true in that
particular probabilistic state s. In addition, there might be Interaction between
propositions in s. Therefore, we also need to compute the Interaction between
each pair of propositions. This state s serves as a compact approximation for
the probability distribution over the individual states in the Markov space. More
formally, a probabilistic state s consists of a set of propositions with individual
probabilities Pr(x) together with a probability Interaction Ip(x, y) for all pairs x
and y in s.

The following subsections describe in detail how to compute the probability
and Interaction information in a probabilistic state.
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7.3.1 Calculating probabilities for a probabilistic state

Consider a probabilistic state s and let s′ be the new state after attempting to per-
form action a in s. The probability of a proposition x′ in s′ is given by the proba-
bility of getting the proposition when the action succeeds plus the probability of
getting the proposition when the action fails. That is:

Pr(x′) = pr(x′|a) pr(a) + pr(x′|¬a) pr(¬a)

= pr(x′|a) pr(a) + pr(x|¬a) pr(¬a) (x was true before a given ¬a)

= pr(x′|a) pr(a) + pr(x) pr(¬a|x) (applying Baye’s rules)

= pr(x′|a) pr(a) + pr(x) (1− pr(a|x))

= pr(x′|a) pr(a) + pr(x) (1− pr(Pa|x))

= pr(x′|a) pr(a) + pr(x)− pr(x) pr(Pa|x)

= pr(x′|a) pr(a)︸ ︷︷ ︸
T1

+ pr(x)− pr(x ∧ Pa)︸ ︷︷ ︸
T2

(7.3)

The first term T1 can be rewritten in terms of the action’s outcomes as:

pr(a) pr(x′ | a) = pr(a)
∑

o∈O(a)

pr(o) pr(x′ | o, a)

where the conditional probability of x given an outcome o of action a is defined
as:

pr(x|o, a) is


1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x|Pa) if (x,¬x /∈ o)

In other words, if the outcome o produces the proposition x, then the con-
ditional probability is 1 (the outcome is considered). If o produces ¬x, then the
conditional probability is 0 (the outcome is not considered). Finally, if o does not
produce either x or ¬x, then it is necessary to compute the probability that x per-
sists through a, which depends on the probability of x given the preconditions of
a:

pr(x|Pa) is


1 if (x ∈ Pa)
0 if (¬x ∈ Pa)
pr(x)

∏
pi∈Pa

Ip(x, pi) if (x,¬x /∈ Pa)

In other words, if the proposition x belongs to the action’s preconditions, the
conditional probability is 1 (the outcome is considered). If ¬x belongs to the ac-
tion’s preconditions, the conditional probability is 0 (the outcome is not consid-
ered). If x and ¬x do not belong to the action’s preconditions, then it is necessary
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to compute the probability that x holds given the preconditions of a, which is the
probability of x times the Interaction of x with the preconditions of a.

The second term T2 in Equation 7.3 computes the probability of the proposi-
tion assuming that the action fails. The first term in T2 refers to the probability of
the proposition before the action is applied. The second term in T2 refers to the
probability that x is consistent with the preconditions of a, which is given as:

pr(x ∧ Pa) is


pr(a) if (x ∈ Pa)

pr(a) pr(x)
∏
p∈Pa

Ip(p, x) if (x /∈ Pa)

In other words, if the proposition x belongs to the action’s preconditions, the
term reduces to the probability of the action. Otherwise, it is necessary to consider
the relationship between x and the action’s preconditions.

Figure 7.3 shows a simple probabilistic Tire domain and problem where there
is a truck at location a that needs to drive to location c. The truck can drive be-
tween locations when it does not have a flat tire since a tire may go flat during
the drive with a probability of 0.4. In addition, there is a spare tire at location d.
A flat tire can be changed, if the truck has picked up a spare tire.

Figure 7.4 shows the transition process from a probabilistic state S0 to a prob-
abilistic state S1 for the simple probabilistic Logistics problem in Figure 7.3. The
probabilistic state S0 is the initial state, where each proposition has probability
equal to 1. The probabilistic state S1 is the result of applying (drive trk a b) to S0.
The probability of (at b trk) in S1 after applying (drive trk a d) is:

Pr((at b trk)’) = pr((at b trk)’|drive trk a d) pr(drive trk a d) + pr(at b trk)−

pr(at a trk ∧ ¬flattire ∧ at b trk)

where pr(at b trk) and pr(at a trk∧¬flattire∧at b trk) are equal to 0 since (at b trk)
is not present in S0. Therefore, pr(at b trk) reduces to pr((at b trk)’|drive trk a d)

times pr(drive trk a d), where:

pr((at b trk)’|drive trk a d) = pr(o1) pr((at b trk)’ | o1, drive trk a d) +

pr(o2) pr((at b trk)’ | o2, drive trk a d)

= 0.6 (1) + 0.4 (1) = 1

and:

pr(drive trk a d) = pr(at a trk) pr(¬flattire) Ip(at a trk, ¬flattire)

= 1 (1) (1) = 1
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(:action drive

:parameters (?trk - truck ?from - location ?to - location)

:precondition (and (connected ?from ?to) (at ?from ?trk) (not (flattire)))

:effect (and (not (at ?from ?trk)) (at ?to ?trk)

(probabilistic 0.4 (flattire))))

(:action get-tire

:parameters (?trk - truck ?l - location)

:precondition (and (at ?l ?trk) (spare ?l))

:effect (and (not (spare ?l)) (hasspare)))

(:action change

:precondition (hasspare)

:effect (and (not (hasspare)) (not (flattire))))

(a) Logistics domain

Init Goal

a b c

d

spare

trk a b c

d

trk

(b) Logistics problem

Figure 7.3: A PPDDL domain and problem description on the Tire domain.

pr(at a trk) = 1
pr(¬flattire) = 1
pr(spare d) = 1

S0 pr(¬at a trk) = 1
pr(at b trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4
pr(spare d) = 1

S1

pr(drive trk a b)=1

Figure 7.4: Example of the transition from a probabilistic state to another proba-
bilistic state.

So the result is equal to 1 since both outcomes produce the proposition. As a
result:

Pr((at b trk)’) = pr(at b trk|drive trk a d) pr(drive trk a d) = 1 (1) = 1
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This means that, after performing (drive trk a d), (at b trk) has probability 1
regardless of the action’s outcomes.

Another example is to calculate the probability of ¬(flattire) in S2 after apply-
ing (drive trk a d). This is calculated as follows:

Pr(¬flattire’) = pr(¬flattire’|drive trk a d) pr(drive trk a d) + pr(¬flattire)−

pr(at a trk ∧ ¬flattire)

where pr(¬flattire) is given in S0 and is equal to 1; pr(at a trk∧¬flattire’) is equal to
1 since ¬(flattire) belongs to the preconditions of (drive trk a d); pr(drive trk a d)

was previously computed and is equal to 1; and pr(¬flattire’|drive trk a d) is com-
puted as:

pr(¬flattire’|drive trk a d) = pr(o1) pr(¬flattire’ | o1, drive trk a d) +

pr(o2) pr(¬flattire’ | o2, drive trk a d)

= 0.6 (1) + 0.4 = 0.6

where o2 produces (flattire), the counterpart proposition of ¬(flattire), and there-
fore, o2 is not considered. For o1, it does not produce either ¬(flattire) or (flattire)
so it is necessary to compute how ¬(flattire) interferes with (drive trk a d) precon-
ditions at the previous state. In this example, ¬(flattire) belongs to the (drive trk
a d) preconditions. Therefore, the probability is:

pr(P(drive trk a d) ∧ ¬flattire) = pr(at a trk ∧ ¬flattire)

= pr(at a trk) pr(¬flattire) Ip(at a trk,¬flattire)

= 1 (1) (1) = 1

As a result:

Pr(¬flattire’) = pr(¬flattire’|drive trk a d) pr(drive trk a d) + pr(¬flattire)−

pr(at a trk ∧ ¬flattire) = 0.6 (1) + 1− 1 = 0.6

This means that, after performing (drive trk a d), ¬(flattire) has probability 0.6
of being true.

7.3.2 Calculating Interaction information for a probabilistic state

Considering the new probabilistic state s′, the Interaction for each pair of propo-
sitions in s′ is:

Ip(x′, y′) =
pr(x′ ∧ y′)
pr(x′) pr(y′)

≤ 1

max{pr(x), p(y)}
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where the conjunction probability of x′ and y′ is given by the probability of get-
ting both when the action succeeds plus the probability of getting both when the
action fails. That is:

pr(x′ ∧ y′) = pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y|¬a) pr(¬a)

= pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y|¬a) pr(¬a)

= pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y) pr(¬a|x ∧ y)

= pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y) (1− pr(a|x ∧ y))

= pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y)− pr(x ∧ y) pr(a|x ∧ y)

= pr(x′ ∧ y′|a) pr(a) + pr(x ∧ y)− pr(x ∧ y) pr(x ∧ y ∧ a)

= pr(x′ ∧ y′|a) pr(a)︸ ︷︷ ︸
T1

+ pr(x ∧ y)− pr(x ∧ y ∧ Pa)︸ ︷︷ ︸
T2

(7.4)

The term T1 in Equation 7.4 can be rewritten in terms of the action’s outcomes
as:

pr(x′ ∧ y′|a) pr(a) = pr(a)
∑
o∈Oa

pr(o) pr(x′ ∧ y′|o, a)

where the conditional probability of x′ and y′ given an outcome o of action a is
given as:

pr(x′ ∧ y′|o, a) is



1 if (x, y ∈ o)
0 if (¬x ∈ o ∨ ¬y ∈ o)
pr(y|Pa) if (x ∈ o ∧ y,¬y /∈ o)
pr(x|Pa) if (x,¬x /∈ o ∧ y ∈ o)
pr(x ∧ y|Pa) if (x,¬x, y,¬y /∈ o)

In other words, if the outcome o produces propositions x and y, then the con-
ditional probability is 1 (the outcome is considered). If o produces ¬x or ¬y, then
the conditional probability is 0 (the outcome is not considered). If o produces x
and does not produce y or ¬y, then it is necessary to compute the probability that
y persists through a, which depends on the probability of y given the precondi-
tions of a. If o produces y and does not produce x or ¬x, then it is necessary to
compute the probability that x persists through a, which depends on the proba-
bility of x given the preconditions of a. If o does not produce x, ¬x, y, or ¬y, then
it is necessary to compute the probability that x and y both persist through a,
which depends on the probability of x and y given the preconditions of a, which
is given as:



168 CHAPTER 7. PROBABILITY ESTIMATES WITHOUT DETERMINIZATION

pr(x ∧ y|a) is



1 if (x, y ∈ Pa)
0 if (¬x ∈ Pa ∨ ¬y ∈ Pa)
pr(x)

∏
p∈Pa

Ip(x, p) if (x /∈ Pa ∧ y ∈ Pa)

pr(y)
∏
p∈Pa

Ip(y, p) if (x ∈ Pa ∧ y /∈ Pa)

pr(x)pr(y)
∏
p∈Pa

Ip(x, p) Ip(y, p) if (x,¬x, y,¬y /∈ Pa)

In other words, if propositions x and y belong to the action’s preconditions,
the conditional probability is 1 (the outcome is considered). If ¬x or ¬y belongs
to the action’s preconditions, the conditional probability is 0 (the outcome is not
considered). If x does not belong to the action’s preconditions, but y does, it is
necessary to compute the relation at the previous probabilistic state between x

and the action’s preconditions as in Equation 7.5. If y does not belong to the
action’s preconditions, but x does, it is necessary to compute the relation at the
previous probabilistic state between y and the action’s preconditions as in Equa-
tion 7.5. If x, ¬x, y, and ¬y do not belong to the action’s preconditions, it is
necessary to compute the relation at the previous probabilistic state between x

and y, and the action’s preconditions as in Equation 7.5.

The term T2 in Equation 7.4 computes the probability of the conjunction x

and y assuming that the action fails. The first term in T2 refers to the conjunction
probability of x and y before a is applied. The second term in T2 refers to the
probability that x and y are consistent with the preconditions of a, which is given
as:

pr(x∧y∧Pa) is



pr(a) if (x, y ∈ Pa)
pr(a) pr(x)

∏
p∈Pa

Ip(p, x) if (x /∈ Pa ∧ y ∈ Pa)

pr(a) pr(y)
∏
p∈Pa

Ip(p, y) if (x ∈ Pa ∧ y /∈ Pa)

pr(a) pr(x) pr(y)
∏
p∈Pa

Ip(p, x) Ip(p, y) if (x, y /∈ Pa)

In other words, if propositions x and y belong to the action’s preconditions,
the term reduces to the probability of the action. If x does not belong to the
action’s preconditions, but y does, it is necessary to compute the Interaction be-
tween x and the action’s preconditions as in Equation 7.5. If y does not belong
to the action’s preconditions, but x does, it is necessary to compute the Interac-
tion between y and the action’s preconditions as in Equation 7.5. If neither x nor
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y belong to the action’s preconditions, it is necessary to compute the Interaction
between x and y and the action’s preconditions as in Equation 7.5.

Returning to the current example, consider the calculation of the Interaction
between (at b trk) and ¬(flattire) at S2 after performing (drive trk a d). In this case,
the Interaction is:

Ip((at b trk)’, ¬flattire’) = pr((at b trk)’ ∧ ¬flattire’|drive trk a b) pr(drive trk a b) +

pr((at b trk)’ ∧ ¬flattire’|¬drive trk a b) pr(¬drive trk a b)

= pr((at b trk)’∧¬flattire’|drive trk a b) pr(drive trk a b) +

pr(at b trk∧¬flattire)− pr(at b trk∧¬flattire∧ at a trk)

where pr(at b trk∧¬flattire) and pr(at b trk∧¬flattire∧ at a trk) are equal to 0
since (at b trk) is not present in the previous state S0. Therefore, the Interaction
between (at b trk) and ¬(flattire) reduces to the conjunction probability of (at b
trk) and ¬(flattire) given (drive trk a d) times the probability of (drive trk a d).
That is:

pr((at b trk)’∧¬flattire’|drive trk a b) = pr((at b trk)’∧¬flattire’| o1, drive trk a b) +

pr((at b trk)’∧¬flattire’| o2, drive trk a b)

= 0.6(1) + 0.4(0) = 0.6

where o2 produces (at b trk) and (flattire). Therefore, o2 is not considered – the
conditional probability is 0. For o1, it produces (at b trk), but it does not produces
either ¬(flattire) or (flattire) so it is necessary to compute how ¬(flattire) interferes
with (drive trk a b) preconditions at the previous state. In this example, ¬(flattire)
belongs to (drive trk a b) preconditions. Therefore, as before, the probability is 1.

As a result:

Ip((at b trk)’, ¬flattire’) = pr((at b trk)’∧¬flattire’|drive trk a b) pr(drive trk a b)

= 0.6 (1) = 0.6

An Interaction value of 0.6 means that there is some kind of interference be-
tween propositions. This interference comes from the fact that one of the action’s
outcomes, o2, produces (flattire).

7.4 Probability Estimates without Determinization (PEWD)

In the previous section, we described the concept of probabilistic state and how
to compute them. In searching for a plan, we also need a heuristic estimate to
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help the planner decide what state to expand next. In order to do this, we need
an estimate of how likely the state is of leading to the goals. In this section, we
describe an approach to computing more accurate estimates of probability that
allows the planner to search towards non-branching seed plans with high proba-
bility of success. We first describe how we do this propagation in the probability
computation considering the overall probability of each proposition across all of
the action’s outcomes and the dependencies between those propositions in the
different outcomes. Then, we propose a heuristic function that makes use of this
probability propagation to guide a planner towards high probability of success
plans.

7.4.1 Computing probability and Interaction

As we did in Chapter 5, probability and Interaction information can be estimated
using a plan graph. Just as with the propagation of cost Interaction, the compu-
tation of probability and Interaction information begins at level zero of the plan
graph and assumes that (1) the probability of each proposition at this level is 1,
and (2) the Interaction between each pair of propositions at this level is 1. Again,
neither of these assumptions are essential, but they are adopted in this work for
simplicity.

Computing action probability and Interaction

The probability and Interaction information of a proposition’s layer at a given
level of the plan graph is used to compute the probability and the Interaction in-
formation for the subsequent actions’ layer. In particular, considering an action
a at level l with a set of preconditions Pa, the estimation of how likely it is to
execute an action is the product of achieving all its preconditions times the Inter-
action between all pairs of propositions:

pr(a) ≈
∏
x∈Pa

pr(x)
∏

(xi, xj)∈Pa
j > i

Ip(xi, xj) ≤ max pr(x) (7.5)

The Interaction between two actions a and b at level l, with sets of precondi-
tions Pa and Pb is defined as:

Ip(a, b) is


0 if a and b are mutex by inconsistent effects or interference

pr(a∧ b)
pr(a) pr(b) otherwise

(7.6)
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If the actions are mutex by inconsistent effects or interference, then the Inter-
action is zero. Otherwise, pr(a∧ b) is pr(Pa ∪Pb), i.e., the probability of the union
of their preconditions. This is approximated as in Equation 7.5 by:

pr(Pa ∪ Pb) ≈
∏

x∈Pa∪Pb

pr(x)
∏

(xi,xj)∈Pa∪Pb
j > i

Ip(xi, xj)

where the probability of performing two actions a and bwill be the product of the
probability of achieving all their preconditions times the Interaction between all
pairs of preconditions.

The Interaction above can be simplified. To illustrate that, consider a simple
problem with operator A that has preconditions x, y, and t, and operator B that
has preconditions x, y, and z. Assuming thatA andB are not mutually exclusive,
the Interaction between actions A and B will be:

Ip(A,B) =
pr(PA ∪ PB)

pr(A) pr(B)
(7.7)

where:

pr(PA ∪ PB) = pr(t) pr(x) pr(y) pr(z) Ip(t, x) Ip(t, y) Ip(t, z) Ip(x, y) Ip(x, z) Ip(y, z)

pr(A) = pr(t) pr(x) pr(y) Ip(t, x) Ip(t, y) Ip(x, y)

pr(B) = pr(x) pr(y) pr(z) Ip(x, y) Ip(x, z) Ip(y, z)

Therefore, the Interaction between A and B can be rewritten as:

Ip(A,B) = ��
�pr(t)��

�pr(x)��
�pr(y)��

�pr(z)���
�Ip(t, x)��

��Ip(t, y)Ip(t, z)���
�Ip(x, y)���

�Ip(x, z)���
�Ip(y, z)

�
��pr(t)��

�pr(x)��
�pr(y)���

�Ip(t, x)���
�Ip(t, y)���

�Ip(x, y)��
�pr(z)pr(x) pr(y)���

�Ip(z, x)���
�Ip(z, y)Ip(x, y)

=
Ip(t, z)

pr(x) pr(y) Ip(x, y)

In general:

Ip(a, b) '

∏
xi∈Pa−Pb
xj∈Pb−Pa

Ip(xi, xj)

∏
x∈Pa ∩Pb

pr(x)
∏

(xi,xj)∈Pa ∩Pb
j > i

Ip(xi, xj)
(7.8)
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where the numerator is the Interaction between unique preconditions for each
action, and the denominator is the probability of common preconditions and the
Interaction between them.

Computing proposition probability

The next step consists of estimating the probability of the propositions at the next
level. In this calculation, all the possible actions at the previous level that achieve
each proposition need to be taken into account. Just as before, we are choosing
the action that maximizes the probability, but we are considering the action as a
whole. The probability of a proposition is the maximum probability among all
the actions that produce the proposition, but this is where the calculation differs
from before. We must consider all outcomes of the action that contribute to the
proposition. More formally, for a proposition x at level l, achieved by actions Ax
at the preceding level, the probability is calculated as:

pr(x) = max
a∈A(x)

{
pr(a)

∑
o∈OA(a,x)

pr(o) pr(x | o, a)

}
(7.9)

where OA(a, x) is the set of outcomes of action a that produce x. Therefore, the
second term in the equation gives information about the total probability of x
given the action a. This information is given by the conditional probability of x
given o, which is defined as:

pr(x | o, a) is


1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x | Pa) if (x,¬x /∈ o)

(7.10)

where Pa is the set of preconditions of a. If the outcome o produces the propo-
sition x, then the conditional probability is 1 (the outcome is considered). If o
produces ¬x (deletes x), then the conditional probability is 0 (the outcome is not
considered). Finally, if o does not produce either x or ¬x, then we need to com-
pute the probability that x persists through the action. This requires considering
the relationship between x and the action’s preconditions at the previous level.
If x belongs to the action’s preconditions, then the conditional probability is 1 (x
is necessary for the action and the outcome is considered). If ¬x belongs to the
action’s preconditions, the conditional probability is 0 (x is inconsistent with the
action so the outcome is not considered). If x or ¬x do not belong to the action’s
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preconditions, then it is necessary to consider whether the proposition was there
in the previous layer given the preconditions of the action. Formally:

pr(x | Pa) is


1 if (x ∈ Pa)
0 if (¬x ∈ Pa)
pr(x)

∏
p∈Pa

Ip(x, p) if (x,¬x /∈ Pa)
(7.11)

Figure 7.5 shows a partial plan graph for the problem in Figure 7.3. The num-
bers above the propositions and actions are the probabilities associated with each
one computed during the probability propagation process (those highlighted are
the probabilities that we will compute).

P0

at a trk
1

¬flattire
1

spare d
1

A0

drive trk a b
1

drive trk a d
1

P1

at a trk
1

¬flattire
1

flattire
0.4

at b trk
1

at d trk
1

spare d
1

A1

drive trk a b
1

drive trk a d
1

drive trk b c
0.6

drive trk d c
0.6

get-tire d
1

P2

at a trk
1

¬flattire
1

flattire
0.4

at b trk
1

at d trk
1

at c trk
0.6

hasspare
1

spare d
1

0.6

1 0.6

Figure 7.5: A partial plan graph with probability values of propositions and ac-
tions.

The probability of proposition (at c trk) at level 2 is (o1 is the outcome of action
drive that achieves the location without a flat tire, and o2 is the outcome that gets
the flat tire):

pr(at c trk) = max {pr(drive d c), pr(drive b c) }

= max

{
pr(drive b c) [ pr(o1) pr(at c trk, o1) + pr(o2) pr(at c trk, o2) ],

pr(drive d c) [ pr(o1) pr(at c trk, o1) + pr(o2) pr(at c trk, o2) ]

}

= max{0.6 [ 0.6(1) + 0.4(1) ], 0.6 [ 0.6(1) + 0.4(1) ]} = 0.6
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where (drive b c) and (drive d c) actions produce (at c trk), and both of their
outcomes o1 and o2 reach it.

The probability of proposition (flattire) at level 2 is:

pr(flattire) = max {pr(drive a b), pr(drive a d) pr(drive b c) pr(drive d c) }

= max


pr(drive a b) [ pr(o1)pr(flattire, o1) + pr(o2)pr(flattire, o2) ],

pr(drive a d) [ pr(o1)pr(flattire, o1) + pr(o2)pr(flattire, o2) ],

pr(drive b c) [ pr(o1)pr(flattire, o1) + pr(o2)pr(flattire, o2) ],

pr(drive d c) [ pr(o1)pr(flattire, o1) + pr(o2)pr(flattire, o2) ]


= max

{
1 [ 0.6 + 0.4(1) ], 1 [ 0.6 + 0.4(1) ],

0.6 [ 0.6 + 0.4(1) ], 0.6 [ 0.6 + 0.4(1) ]

}
= 0.4

where actions (drive a b), (drive a d), (drive b c), and (drive d c) produce (flattire),
and their outcome o2 reaches it. For the case of outcome o1, neither (flattire) nor
its counterpart ¬(flattire) belongs to o1. Therefore, it is necessary to determine
the probability that (flattire) will persist, which requires considering the Interac-
tion between (flattire) and each action precondition. For all the actions, ¬(flattire)
belongs to the action’s preconditions so the outcome is not considered.

Computing proposition Interaction

Finally, we compute the Interaction between propositions. In order to calculate
the Interaction between two propositions x and y at a level l, we need to con-
sider all the possible ways to achieve both propositions. In other words, all the
actions that achieve the pair of propositions and the Interaction between them.
Suppose that Ax and Ay are the sets of actions that achieve propositions x and y

respectively at level l. The Interaction between x and y is then:

Ip(x, y) ≈

max



max
a∈Ax∩Ay
a /∈ noop

pr(a) pr(x ∧ y|a),

max
a∈Ax, b∈Ay

a /∈ noop, b /∈ noop
a6=b

pr(a ∧ b) pr(x ∧ y|a ∧ b),

pr(x) pr(y) Ip(x, y)


pr(x) pr(y)

(7.12)
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The first term in the max expression corresponds to those actions that accom-
plish both propositions x and y. It is computed as:

max
a∈Ax∩Ay
a /∈ noop

{pr(a) pr(x ∧ y|a)} = max
a∈Ax∩Ay
a /∈ noop

{
pr(a)

∑
o∈Oa

pr(o) pr(x ∧ y|o, a)

}

where Oa is the set of outcomes of action a. The conditional probability of x and
y given an outcome o is given as:

pr(x ∧ y | o, a) is



1 if (x, y ∈ o)
0 if (¬x ∈ o ∨ ¬y ∈ o)
pr(x | Pa) if (y ∈ o ∧ x,¬x /∈ o)
pr(y | Pa) if (x ∈ o ∧ y,¬y /∈ o)
pr(x ∧ y | Pa) if (x,¬x, y,¬y /∈ o)

In other words, if o produces x and y, the probability is 1 (the outcome is
considered). If o produces ¬x or ¬y, the probability is 0 (the outcome is not con-
sidered). If o produces x, but does not produces y or ¬y, then the probability is
the probability that y persists through a, which depends on the probability of y
given the preconditions of a. Likewise, if o produces y, but does not produce x
or ¬x, then the probability is the probability that x persists through a, which de-
pends on the probability of x given the preconditions of a. We compute these two
using Equation 7.11. Finally, when o does not produce x, ¬x, y, or ¬y, then the
probability is the probability that x and y both persist through a, which depends
on the probability of x and y given the preconditions of a – in other words, it is
the probability of x times the probability of y times the Interaction of x with the
preconditions of a and b times the Interaction of y with the preconditions of a and
b.

Similarly, the second term in the max expression corresponds to those actions
that accomplish only one proposition each. It is given as:

max
a∈Ax, b∈Ay

a /∈ noop, b /∈ noop

{pr(a ∧ b)pr(x ∧ y|a ∧ b)}

which is equal to:

max
a∈Ax, b∈Ay

a /∈ noop, b /∈ noop

pr(a ∧ b) ∑
oi∈Oa

pr(oi) pr(x|oi, a, b)
∑
oj∈Ob

pr(oj) pr(y|oj , a, b)


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whereOa is the set of outcomes of action a, andOb is the set of outcomes of action
b. The conditional probabilities pr(x|oi, a, b) and pr(y|oj , a, b) are given as:

pr(x|o, a, b) is


1 if (x ∈ o)
0 if (¬x ∈ o)
pr(x | Pa ∧ Pb) if (x,¬x /∈ o)

In other words, if o produces x, the probability is 1 (the outcome is consid-
ered). If o produces ¬x, the probability is 0 (the outcome is not considered). If
o does not produces x and ¬x, then the probability is the probability that x per-
sists through a and b, which depends on the probability of x before a given the
preconditions of both a and b, which is:

pr(x | Pa ∧ Pb) is


1 if (x ∈ Pa ∪ Pb)
0 if (¬x ∈ Pa ∪ Pb)
pr(x)

∏
p∈Pa∪Pb

Ip(x, p) if (x,¬x /∈ Pa ∪ Pb)

In other words, if the proposition x belongs to the union of the actions’ pre-
conditions, then the conditional probability is 1 (the outcome is considered). If ¬x
belongs to the actions’ preconditions, the conditional probability is 0 (the outcome
is not considered). If x and ¬x do not belong to the actions’ preconditions, then
the probability that x holds given the preconditions of a and b is the probability
of x times the Interaction of x with the preconditions of a and b.

Finally, the third term in the max expression corresponds to the case where
both propositions persist through the noop action. This is given as the product
of the probability of each individual proposition at the previous level and the
Interaction between them.

Returning to the current example, consider the calculation of the Interaction
between (at c trk) and (¬flattire) at level 2 is:
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Ip(at c trk, ¬flattire) ≈
max

{
pr(drive b c) pr(at c trk, ¬flattire|drive b c),

pr(drive d c) pr(at c trk, ¬flattire|drive d c)

}
pr(at c trk) pr(¬flattire)

≈

max


pr(drive b c)

∑
o∈(drive b c)

pr(o) pr(at c trk, ¬flattire),

pr(drive d c)
∑

o∈(drive d c)
pr(o) pr(at c trk, ¬flattire)


pr(at c trk) pr(¬flattire)

≈

max



pr(drive b c)

{
pr(o1) pr(at c trk, ¬flattire|o1)+

pr(o2) pr(at c trk, ¬flattire|o2)

}
,

pr(drive d c)

{
pr(o1) pr(at c trk, ¬flattire|o1)+

pr(o2) pr(at c trk, ¬flattire|o2)

}


pr(at c trk) pr(flattire)

Actions (drive b c) and (drive d c) produce (at c trk) in both outcomes o1 and
o2, but it does not produce (¬flattire). Therefore, for outcome o1 it is necessary to
determine the probability of (¬flattire), which requires considering the Interaction
between (¬flattire) and each action precondition. For all the actions, ¬(flattire)
belongs to the action’s preconditions so the probability reduces to the probability
of the action. Outcome o2 it is not considered because it produces the proposition
(flattire), the opposite of (¬flattire). The Interaction is then:

Ip(at c trk, ¬flattire) ≈
max

{
pr(drive b c) pr(o1) pr(at c trk, ¬flattire|o1),
pr(drive d c) pr(o1) pr(at c trk, ¬flattire|o1)

}
pr(at c trk) pr(flattire)

≈ max {0.6(0.4)(0.6), 0.6(0.4)(0.6)}
0.6(0.4)

=
0.6(0.4)(0.6)

0.6(0.4)
= 0.6

The fact that Ip(at c pkg, ¬flattire) = 0.6 means that there is interference be-
tween having the package at location c and not having a flat tire, which comes
from the fact that action (drive b c) has (flattire) as effect.
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7.4.2 Upper bounds on probability and Interaction

Because the probabilities in Equations 7.5 and 7.9 are estimated based on bi-
nary Interaction, the resulting calculations can sometimes overestimate proba-
bility and Interaction. Therefore, we can improve estimates by considering upper
bounds on action probability, action Interaction, and propositions Interaction. The
reason for these upper bounds are shown in next subsections.

Upper bounds on action probability

The probability of an operator a should be at most the minimum probability
among all its preconditions, if they are completely synergistic. That is:

pr(a) ≤ min
x∈Pa

pr(x) (7.13)

To illustrate this, consider a simple problem with the following two operators
with probability 1:

A : p → x, y, z

B : x, y, z → t (7.14)

Figure 7.6 shows a partial planning graph for the operators described in Equa-
tion 7.14. The number above the propositions and actions refers to the estimated
probability computed for each proposition and action during the probability prop-
agation process. The number next to red edges refers to the Interaction value
between the pair of propositions that each edge connects. The example in the
figure starts at level i − 1 with propositions layer Pi−1, which contains a single
proposition p with pr = 0.5. Therefore, the estimated probability of action A is:

pr(A) = pr(p) = 0.5

The next step is to compute the estimated probabilities of propositions at level
Pi, which have the following values:

pr(x) = pr(A) pr(x|A) = 0.5(1) = 0.5

pr(y) = pr(A) pr(y|A) = 0.5(1) = 0.5

pr(z) = pr(A) pr(z|A) = 0.5(1) = 0.5

The computation of the estimated probability of a proposition is followed by
the Interaction computation between pairs of propositions. The Interaction val-
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Figure 7.6: Example of upper bounds on action probability during the propaga-
tion of probability and Interaction information in a plan graph.

ues are:

Ip(x, y) =
pr(A) pr(x ∧ y|A)

pr(x) pr(y)
=

0.5(1)

0.5(0.5)
= 2

Ip(x, z) =
pr(A) pr(x ∧ z|A)

pr(x) pr(z)
=

0.5(1)

0.5(0.5)
= 2

Ip(z, y) =
pr(A) pr(y ∧ z|A)

pr(y) pr(z)
=

0.5(1)

0.5(0.5)
= 2

The next step is to compute the probability of operator B at layer Ai. B has
x, y, and z as preconditions. The estimated probability of action B is the prod-
uct of the estimated probability of each of its preconditions combined with the
Interaction between them, which is:

pr(B) = pr(x) pr(y) pr(z) Ip(x, y) Ip(x, z) Ip(y, z) = 0.5(0.5)(0.5)(2)(2)(2) = 1

In this case, the binary Interaction information is overestimating the probabil-
ity of B, which should be less or equal to the minimum probability among pre-
conditions of B (if they are synergistic among all of them). The true probability
of B should consider the Interaction among x, y, and z, which is:

I∗p (x, y, z) =
pr∗(A) pr∗(x ∧ y ∧ z|A)

pr∗(x) pr∗(y) pr∗(z)
=

0.5(1)

0.5(0.5)(0.5)
= 4

Therefore, the true probability of B is:

pr∗(B) = pr∗(x) pr∗(y) pr∗(z) I∗p (x, y, z) = 0.5(0.5)(0.5)(4) = 0.5



180 CHAPTER 7. PROBABILITY ESTIMATES WITHOUT DETERMINIZATION

In this case, by enforcing the upper bounds from Equation 7.13 we get that the
probability of B is at most 0.5, which is a more accurate estimate.

Upper bounds on action and proposition Interaction

The approximated binary Interaction between two elements should always be
bounded by 1/max{pr(x), pr(y)}. That is:

I∗p (x, y) =
pr∗(x ∧ y)

pr∗(x) pr∗(y)
≤ min{ pr∗(x), pr∗(y)}

pr∗(x) pr∗(y)

If min{pr(x), pr(y)} = pr(x), then Ip(x, y) = �
��pr(x)

��
�pr(x)pr(y)

=
1

pr(y)

If min{pr(x), pr(y)} = pr(y), then Ip(x, y) = ��
�pr(y)

pr(x)��
�pr(y)

=
1

pr(x)

Therefore:
Ip(x, y) ≤ 1

max{pr(x), pr(y)}
(7.15)

Considering these bounds during the Interaction computation results in more
accurate probability estimates. To illustrate this, consider a simple problem with
the following two operators with probability 1:

A : x → p

B : y, z → q (7.16)

Figure 7.7 shows a partial planning graph for the operators described in Equa-
tion 7.16. The number above the propositions and actions refers to the estimated
probability computed for each proposition and action during the probability prop-
agation process. The number next to the edges refers to the Interaction value
between the pair of propositions that each edge connects. The example in the
figure starts at level i with propositions layer Pi, which contains propositions x,
y, and z, with probabilities 0.56, 0.75, and 0.56 respectively, and I(x, y) = 1.33,
I(x, z) = 1.78, and I(y, z) = 1. The estimated probability of actions A and B is:

pr(A) = pr(x) = 0.56

pr(B) = pr(y) pr(z) I(y, z) = 0.75 (0.56) (1) = 0.42

The next step is to compute the estimated Interaction of actions at level Ai.
Using Equation 7.8, we compute the Interaction between actions A and B, which
is:

I(A,B) = I(x, y) I(x, z) = 1.33 (1.78) = 2.36
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In this case, according to the bounds in Equation 7.15 we know that the Inter-
action between A and B should not be higher than:

1

max{pr(A) pr(B)}
=

1

max{0.56, 0.42}
=

1

0.56
= 1.78

Therefore, considering these bounds during the Interaction computation re-
sults in more accurate probability estimates.

Pi Ai Pi+1

y
0.75

x
0.56

z
0.56

A
0.56

B
0.42

p
0.56

q
0.42

1.33

1

1.78

���:
1.78

2.36

Figure 7.7: Example of upper bounds on action Interaction during the propaga-
tion of probability and Interaction information in a plan graph.

7.4.3 Probabilistic heuristic estimator

Using Equations 7.5, 7.6, 7.9, and 7.12 we can build a plan graph and propagate
probability and Interaction information. The construction process finishes when
two consecutive propositions layers are identical and there is quiescence in prob-
ability and Interaction for all propositions and actions in the plan graph. On
completion, each possible goal proposition has an estimated probability of being
achieved, and there is an Interaction estimation between each pair of goal propo-
sitions. Therefore, using the probability and Interaction information computed in
the probabilistic plan graph we can compute an estimated probability of achiev-
ing a (possibly conjunctive) goal G = { g1, ..., gn} from a particular state n, which
we call the Completion Probability Estimate (CPE), as:

CPE(n) ≈
∏
g∈G

pr(g)
∏

(gi,gj)∈G
j > i

Ip(gi, gj) ≤ min
g∈G

pr(g) (7.17)

Figure 7.8 shows the high-level algorithm for computing the CPE used to com-
pute the probability estimation of reaching the goal from a particular state, which
may be summarized in the following steps:
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1. For each proposition p in the probabilistic state S compute the probability
of p in S using Equation 7.3.

2. For each each pair of propositions p and q in the probabilistic state S com-
pute the Interaction between p and q in S using Equation 7.4.

3. Initialize the probabilistic plan graph with the probability and Interaction
information of the current state and compute the new probability and Inter-
action estimates using Equations 7.5, 7.6, 7.9, and 7.12 .

4. Compute the CPE of the current state S by estimating the probability of G
from the probability and Interaction estimates in the updated probabilistic
plan graph using Equation 7.17.

Function PROBABILITYESTIMATE (s)

s ≡ the current probabilistic state

p ≡ a proposition p ∈ s

q ≡ a proposition q ∈ s

G ≡ the set of goals

g ≡ a goal proposition

CPE ≡ the completion probability estimate

1. for each p ∈ s

prs(p) ← COMPUTEPROBABILITY(p)

2. for each (p, q) ∈ s

Ips(p, q) ← COMPUTEINTERACTION(p, q)

3. UPDATEPRPLANGRAPH(s)

4. CPE(s) ←
∏
g∈G

pr(g)

5. return CPE

Figure 7.8: The CPE calculation pseudo-algorithm.

An extended example

Consider the progress of the probabilistic search process shown in Figure 7.9 that
finds a path for the simple probabilistic Logistic problem in Figure 7.3. S0 is the
initial state. Actions (drive trk a b) and (drive trk a d) are the applicable actions
in S0, and generate the probabilistic states S1 and S2 respectively. The path to the
goal through (drive trk a d) and state S2 has a higher probability than the path
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through (drive trk a b) and state S1 because of the fact that location d has a spare
tire, while location b does not. The heuristic function for each state is:

CPE(S1) = 0.6

CPE(S2) = 1

Therefore, the next node to be expanded is S2 where (drive trk d c) and (get-
tire d) are the applicable actions, and generate states S3 and S4 respectively.

The path to the goal through (get-tire d) has a higher probability than the path
through (drive trk d c). The fact that pr(¬flattire) = 0.6 at S2 harms the probability
of (drive trk d c). On the other hand, the spare tire at location d benefits the
probability of (get-tire d). The heuristic function for each state is:

CPE(S3) = 0.6

CPE(S4) = 1

Therefore, the next node to be expanded is S4 where (drive d c) and (change)
are the applicable actions, and generate states S5 and S6 respectively. Again,
pr(¬flattire) = 0.6 at S4 harms the probability of (drive trk d c), while the spare
tire at location d benefits the probability of (change). The heuristic function for
each state is:

CPE(S5) = 0.6

CPE(S6) = 1

pr(at a trk) = 1
pr(¬flattire) = 1
pr(spare d) = 1

S0

pr(¬at a trk) = 1
pr(at b trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4
pr(spare d) = 1

CPE = 0.6S1

pr(¬at a trk) = 1
pr(at d trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4
pr(spare d) = 1

CPE = 1S2

pr(¬at d trk) = 0.6
pr(at c trk) = 0.6
pr(¬flattire) = 0.36
pr(flattire) = 0.64
pr(spare d) = 1

CPE = 0.6S3

pr(¬at a trk) = 1
pr(at d trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4
pr(spare d) = 0
pr(hasspare) = 1

CPE = 1S4

pr(¬at d trk) = 0.6
pr(at c trk) = 0.6
pr(¬flattire) = 0.36
pr(flattire) = 0.64
pr(hasspare) = 1

CPE = 0.6S5

pr(¬at a trk) = 1
pr(at d trk) = 1
pr(¬flattire) = 1
pr(hasspare) = 0

CPE = 1S6

pr(¬at d trk) = 1
pr(at c trk) = 1
pr(¬flattire) = 0.6
pr(flattire) = 0.4

CPE = 1S7

pr(drive trk d c)=1

pr(drive trk a b)=1

pr(drive trk a d)=1

pr(drive trk d c)=0.6

pr(get-tire d)=1

pr(drive trk d c)=0.6

pr(change)=1

Figure 7.9: Search progress using Proposition Determinization solving a simple
probabilistic Logistics problem.
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Therefore, the next node to be expanded is S6 where (drive d c) is the single ap-
plicable action, and generate the state S7. It is important to note that pr(¬flattire)

in S6 increases from 0.6 to 1 after applying (change). Therefore, pr(drive d c) also
increases to 1. S7 contains the goal state and it has the highest probability of suc-
cess. As a consequence, it is not necessary to keep exploring the search space.

For this particular problem, the heuristic leads to a maximum search probabil-
ity, and finds the following plan solution with the highest probability of success:

π = {(drive trk a d) (get-tire d) (change) (drive d c)}

7.5 Experimental evaluation

We have conducted an experimental evaluation on IPPC-06 (Bonet and Given,
2006) and IPPC-08 (Buffet and Bryce, 2008) fully-observable-probabilistic plan-
ning (FOP) domains, as well as on the probabilistically interesting domains intro-
duced by Little and Thiebaux (2007). The test consists of running the planner and
using the resulting plan in the MDP Simulator (Younes et al., 2005). The plan-
ner and the simulator communicate by exchanging messages. The simulator first
sends the planner the initial state. Then, the Interaction between planner and
simulation consists of the planner sending an action and the simulator sending
the next state to the planner.

FF-Replan, FHH, FHH+, FPG, RFF, and PIPSSIr planners described in Chap-
ter 5, and the C-PIPSSIr planner described in Chapter 6 have been used for the
experimental evaluation. We compare these with our approach, namely PIPSSIP .
Figure 7.10 shows the PIPSSIP architecture and highlights the key features of the
system: Probabilistic Plan Graph Estimator, Probabilistic State Information Update,
and Heuristic Computation modules. Given a PPDDL problem, the system ini-
tially processes and loads all the information given in the domain, and encodes
the strings as numbers to decrease the computation time in the Analysis & Pro-
cessing module. Then, the system builds a probabilistic plan graph estimator as
is described in Section 7.4. The system performs an A∗ search when it is looking
for a solution. This search is not as usual since it is performed in a space of prob-
abilistic states. For each probabilistic state, the plan graph is updated and the
system estimates the probability of achieving the goals from that state or Comple-
tion Probability Estimate (CPE).

We use two variants of the PIPSSIP planner:

• PIPSSIP : a PIPSS planner that uses probabilistic states rather than action de-
terminization, where the propagation of probability through the plan graph
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Figure 7.10: PIPSSIP System Architecture.

considers Interaction estimates. During execution, the planner does not per-
form any further action when an unexpected state occurs.

• PIPSSIPr : a PIPSS planner that uses probabilistic states rather than action de-
terminization, where the propagation of probability through the plan graph
considers Interaction estimates. To deal with unexpected states at execution
time, the planner does runtime replanning.

The experiments were conducted on a Pentium dual core processor at 2.4 GHz
running Linux. For the rest of the planners, given that we were not able to ob-
tain and run them ourselves, data are collected from work done by Yoon, Ruml,
Benton, and Do (2010).

We have chosen those domains where simple replanning fails because some
of the actions’ outcomes yield dead-end states. Thus, we can evaluate if our novel
PEWD approach is guiding the search towards high probability of success plans.
Below is a brief description of the domains used for the experimental evaluation.

• Exploding-Blocksworld: a dead-end version of the Blocksworld domain de-
scribed above where additionally the blocks can explode. The explosion
may affect the table or other blocks.

• Triangle-tireworld: similar to the IPPC-06 Tire World Domain but with slight
differences in the definition to permit short but dangerous paths.

• Tireworld: in this domain a car has to move between two locations. When
the car drives a segment of the route, there is the chance of getting a flat
tire. When this occurs the tire must be replaced. However, spare tires are
not available in all locations.

• Climb: this domain consists of a person who is stuck on a roof because the
ladder they used to climb up has fallen down. There are two options to get
down: climbing down without the ladder but with a certain risk of injury
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or death, or calling for help from someone below to bring the ladder and
then climb down with the ladder, which has no risk.

• River: in this domain a person on one side of the river needs to cross to the
other side. There are three ways to achieve the goal with different chances
of success.

• Tire1 & Tire10: domains based on the Tireworld domain, with different lev-
els of difficulty to reach the final location without getting a flat tire.

Table 7.1 shows the number of successful rounds for FFH, FFH+, FPG, PIPSSIr ,
C-PIPSSIr , PIPSSIP , and PIPSSIPr planners in each domain. For all the planners,
30 trials per problem were performed (as in the competition) with a total limit of
30 minutes for the 30 trials. Exploding-Blocksworld-06, Exploding-Blocksworld-
08, and Tireworld domains have 15 problems for each domain. So, the maximum
number of successful rounds for each domain is 15×30 = 450. However, Triangle-
tireworld domain has 10 problems so that the total rounds in this case is 10×30 =

300. Climb, River, Tire1, and Tire10 domains have one problem for each domain,
so the maximum number of successful rounds for each domain is 30.

Table 7.1: Total number of successful rounds using PEWD.

PLANNERS

DOMAINS FFH FFH+ FPG PIPSSIr C-PIPSSIr PIPSSIP PIPSSIPr
Exploding-Blocksworld-06 205 265 193 239 266 132 158

Tireworld-06 343 364 337 360 362 352 365
Climb 30 30 30 30 30 30 30
River 20 20 20 23 21 18 20
Tire1 30 30 30 21 18 30 30
Tire10 6 30 0 0 0 0 0
TOTAL 624 739 610 663 697 562 603

FFH FFH+ RFF PIPSSIr C-PIPSSIr PIPSSIP PIPSSIPr
Exploding-Blocksworld-08 131 214 58 171 170 85 103

Triangle-Tireworld-08 420 420 382 21 67 210 210
TOTAL 551 634 440 192 237 295 313

For the Exploding-Blocksworld-06 domain, C-PIPSSIr gets the highest rate
of successful rounds closely followed by FFH+, PIPSSIr , FFH, FPG, and finally
PIPSSIP and PIPSSIPr . There is the same trend for the Exploding-Blocksworld-
08 domain, where FFH+ stands out against the rest of the planners, followed by
PIPSSIr , C-PIPSSIr , FFH, PIPSSIP , and PIPSSIPr . The planner with the lowest rate
of successful rounds is RFF, the competition winner. For the Tireworld domain,
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all the approaches get a similar number of successful rounds, where PIPSSIP has
the highest rate. For the Triangle-Tireworld domain, FFH+ and FFH get the high-
est rate followed by RFF. PIPSSIP and PIPSSIPr perform much better than PIPSSIr
and C-PIPSSIr . This is because PEWD is finding plans that avoid dead-end states,
and thus manages to solve more rounds. Climb, River, Tire1, and Tire10 are prob-
lems with dead-ends and a small likelihood of simple paths. Results shows that
all the approaches solve all the rounds for the Climb domain. For the River do-
main, PIPSSIr achieves the highest rate of successful rounds. However, the other
approaches are very close. For the Tire1 domain, all the approaches solve all the
problems, except PIPSSIr and C-PIPSSIr . This fact shows that PEWD is finding
high probability of success plans. For the Tire10 domain, FFH and FHH+ are the
only planners that solve the problem and are able to complete 6 and 30 rounds
respectively.

With regard to the difference in performance between PIPSSIP and PIPSSIPr ,
the successful rate is only slightly higher in PIPSSIPr that performs replanning
compare to PIPSSIP that does not. This means that runtime replanning does not
make a big difference because the technique is generating high probability of suc-
cess plans.

It appears that PIPSSIr and C-PIPSSIr perform much better than PIPSSIP and
PIPSSIPr in most of the domains. The issue here is that PIPSSIr and C-PIPSSIr scale
much better that PIPSSIP and PIPSSIPr in term of the amount of time taken to
solve the problem. PIPSSIP and PIPSSIPr were unable to solve all the problems
for the hardest domains such as Blocksword and Tire because they run out of
time due to the complexity caused by the update of the plan graph for each prob-
abilistic state. In particular, for the Exploding-Blocksworld-06, PIPSSIP solves
only 40% of the problems, while PIPSSIr solves 66% of them. For this reason, the
number of successful rounds for both approaches is lower than for PIPSSIr and
C-PIPSSIr . For the Tireworld-06 domain, PIPSSIP solves the 86% of the problems,
while PIPSSIr solves all of them. However, it still gets a high number of success-
ful rounds, which is evidence that we are generating high probability of success
plans. For the Triangle-Tireworld-08, PIPSSIP and PIPSSIPr only solve 46% of the
problems, compared to PIPSSIr and C-PIPSSIr that solve 66% of them.

In order to confirm that this is a problem of efficiency and, therefore, the
PEWD technique is generating high probability of success plans, we have given
PIPSSIP and PIPSSIPr unlimited amount of time to solve problems for the Blocks-
word and Tireworld domains. Table 7.2 shows the results of this test. We com-
pare the number of successful rounds for PIPSSIP and PIPSSIPr given 30 min-
utes against the number of successful rounds for their counterparts uPIPSSIP and
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uPIPSSIPr respectively given unlimited amount of time.

Table 7.2: Total number of successful rounds using PEWD given unlimited
amount of time.

PLANNERS

DOMAINS PIPSSIP PIPSSIPr uPIPSSIP uPIPSSIPr
Exploding-Blocksworld-06 132 158 180 180
Exploding-Blocksworld-08 85 103 156 161

Tireworld-06 352 365 391 423
Triangle-Tireworld-08 210 210 300 300

TOTAL 779 836 1027 1064

For the Exploding-Blocksworld-06 domain, uPIPSSI and uPIPSSIr are able to
solve almost 60% of the problems versus 40% given 30 minutes. The remainder
of the problems are not solved because uPIPSSI and uPIPSSIr run out of memory.
Regardless of this, the number of successful rounds increases for both uPIPSSI

and uPIPSSIr . For the Exploding-Blocksworld-08 domain, uPIPSSI and uPIPSSIr
are able to solve almost 66% of the problems versus 46% given 30 minutes. Again,
the remainder of the problems are not solved because uPIPSSI and uPIPSSIr run
out of memory, and the number of successful rounds increases for both uPIPSSI

and uPIPSSIr . For the Tireworld domain, uPIPSSIP and uPIPSSIPr solve all the
problems. As a consequence, the number of successful rounds increases consid-
erably. In particular, uPIPSSIPr gets 423 of 450 successful rounds. For the Triangle-
Tireworld domain, uPIPSSIP and uPIPSSIPr solve all the problems and gets the
highest rate of successful rounds. All of this suggest that PEWD is finding plans
that avoid dead-end states, and its performance could be dramatically improved
by improving the efficiency of the PEWD technique.

7.6 Conclusions

In this chapter, we investigated a way to compute estimates of probability with-
out action determinization for probabilistic planning. This technique uses the
PPDDL domain definition as is and performs search in the space of probabilis-
tic states. The probability information provided in the domain definition is used
to propagate probability and Interaction information through a plan graph. This
propagation technique considers the overall probability of each proposition across
all of the action’s outcomes and the dependencies between those propositions in
the different outcomes. The resulting probabilities are then used to compute a
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heuristic function that guides the search toward high probability of success plans.
The resulting plans are used in a system that handles unexpected outcomes by
runtime replanning.

According to the results, the approach suffers from poor scalability for large
domains. However, the results dealing with probabilistic planning problems
have high success rates considering the number of solved problems. This is evi-
dence that we are generating relatively high probability of success plans.

This appears to be a promising technique, but more effort is required to im-
prove efficiency and memory usage of the probability plan graph computation in
order to improve scalability.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the main conclusions of this dissertation and briefly
considers some ways in which the work presented here may be extended.

8.1 Conclusions

Heuristic search is the dominant technique in solving automated planning prob-
lems. Improvements in the performance of heuristic search comes from two fac-
tors: improvements in search algorithms, and improvements in heuristic func-
tions. This dissertation focused on the later, motivated by the need for a non-
admissible domain-independent heuristic that quickly computes more accurate
estimates of cost and more accurate estimates of probability.

We improved accuracy in cost estimation by developing a novel heuristic
framework based on cost propagation in a plan graph. This approach, namely
hI , computes more accurate estimates because it makes use of Interaction infor-
mation during cost propagation. Effectively, the use of Interaction information
captures the degree of dependence between pairs of propositions and pairs of ac-
tions in a plan graph. It can be used across different automated planning areas,
such as deterministic and probabilistic planning, and planning-based goal recog-
nition. In particular, computing more accurate estimates of cost has a significant
impact in solving goal recognition problems. A major weakness to this approach
appears to be the high computational overhead in classical planning given by the
plan graph update at each state. It seems to be possible that efforts to improve the
efficiency of the plan graph computation would make this technique more com-
petitive, particularly for problems where low-cost plans are important. However,
for doing goal recognition, the accuracy of this heuristic pays off because it allows
planning to be avoided altogether. We presented the ISS-CAD domain, a real time

191
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goal recognition problem concerned with maintenance tasks that astronauts must
conduct for the Environmental Control and Life Support System aboard de Inter-
national Space Station. We showed that our FGR approach is practical for this
real time goal recognition problem. The reason for this is that the Interaction in-
formation helps to compute more accurate estimates of cost when the degree of
interference and/or synergy among subgoals is high. Additionally, we outlined
an approach to solve goal recognition problems with uncertain observations that
combines a Bayesian network and a plan graph to find a solution.

We improved accuracy in probability estimation by developing PEWD, a novel
probability estimation technique for probabilistic planning. This technique is
based on propagation of probability and Interaction information in a plan graph
without action determinization. In particular, this technique considers probabilis-
tic actions as a whole, which results in the consideration of the overall probability
of each proposition across all of the action’s outcomes and the dependencies be-
tween those propositions in the different outcomes. As a result, this technique
generates high probability of success seed plans. Again, the main weakness of
this technique appears to be the high computational overhead when the plan
graph is updated at each state during the planning search. Additional efforts
to improve the time and space efficiency of this heuristic computation are needed
to make this technique practical for larger domains.

8.2 Future work

The work described in this dissertation suggests a number of extensions and di-
rections for future work. Here, we review some possibilities.

Improving Efficiency in Propagation of Probability in a Plan Graph

In Chapter 7, we introduced a heuristic function that computes more accurate
estimates of probability. This heuristic is used to guide heuristic search for prob-
abilistic planning. Results show evidence of the generation of high probability
of success seed plans. However, the computational overhead of this technique is
high. It would clearly be valuable to investigate techniques for improving both
the space and time efficiency of the propagation. Some possible ways to do this
are (1) minimizing the propagation by propagating only significant changes, (2)
performing a lazy evaluation, and (3) using more sophisticated data structures.



8.2. FUTURE WORK 193

Temporal Goal Recognition

In Chapter 4, we introduced our FGR goal recognition system that computes cost
estimates using a plan graph, and uses this information to infer probability esti-
mates for the possible goals. Simple goal recognition problems consist of a clas-
sical planning domain and problem, a set of possible goals, and a sequence of
observed actions. An important avenue of further research is to investigate goal
recognition problems that involve durative actions and concurrency. This is the
case where the agent is doing a sequence of tasks that involve the use of temporal
constraints.

Ramirez formulation of planning-based goal recognition solves two planning
problems for each possible goal. If we applied this formulation to temporal goal
recognition problems, it would require solving two temporal planning problems
for each possible goal. This is likely to be computationally prohibitive since the
best temporal planner is much slower than a classical planner. An approximate
solution would be a better option to solve temporal planning problems. It seems
to be possible to easily extend FGR to deal with temporal goal recognition. FGR
is based on a plan graph, which is a structure that has been adapted to manage
temporal planning (Smith and Weld, 1999; Garrido et al., 2002; Long and Fox,
2003). A temporal plan graph assumes the time in which actions happen. It is
easy to adapt the FGR approach to use the time at which observations take place.
This makes FGR a relatively easy approach to adapt to temporal goal recognition.

Uncertain Observations in Goal Recognition

In Chapter 4, we presented a theoretical approach to solve goal recognition prob-
lems with uncertain observations. In particular, we make use of Ramirez for-
mulation and introduce two techniques to solve goal recognition problems with
uncertain observations. The first technique computes optimal solutions. It uses
an optimal planner to solve the problem. The second technique computes ap-
proximate solutions. It uses a hybrid solution that combines a Bayesian network
and a plan graph to solve the problem. While we have done some preliminary
evaluation of this approach with the optimal technique, the computation time is
prohibitive (days to weeks for each solution). We could instead use our approx-
imate FGR approach for solving these problems. This would allow us to further
investigate the accuracy of our heuristic-based hybrid approach.
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Oversubscription in Probabilistic Planning

In Chapter 2, we defined a classical planning problem as Π =< P, O, I, G >

where P is a set of predicates; O is a set of actions where each action has the
form < prec(O), add(O), del(O) >; I ⊆ P is a set of initial state predicates; and
G ⊆ P is a set of goal state predicates. In over-subscription planning, a problem
has the same definition where goals g ∈ G also have a utility value V (g) > 0 that
represents how much the goal is worth to the user, and actions a ∈ O have an
associated cost Cost(a) > 0 that represents how costly it is to execute it. Over-
subscription planning aims to achieve a subset of goals that maximize the trade-
off between the maximum achievable benefit and the cost of the plan solution.
Nigenda and Kambhapati (2005) developed a technique that makes use of cost
propagation in a plan graph and mutex analysis for goal set selection. Do, Ben-
ton, van den Briel and Kambhapati (2007) developed a heuristic technique that
uses a combination of cost propagation over a relaxed planning graph and In-
teger Programming to capture goal achievement cost and goal utility. However,
none of these works consider probabilistic actions.

A possible avenue of further research is to investigate probabilistic oversub-
scription planning problems that involve PPDDL problems where action out-
comes are probabilistic. In Chapters 3 and 7 we show that it is easy to propa-
gate cost and probability in a plan graph. The challenge here is to estimate utility
information in an uncertain environment since cost and probability are not inde-
pendent of each other. The lowest cost approach might have low probability of
success; the highest probability approach might have high cost.



Appendix A

Extended Experimental Results
for Goal Recognition

A.1 Random Observations

Table A.1: Goal recognition with random observations in 5s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 0.19 0.2 0.18 0.18 0.17 1.73 1.43 0.82 0.53 0.52 1.11 1.1 0.93 0.84 0.84 0.16 0.41 0.12 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.17 0.17 0.17 0.16 0.16
Q 1 1 1 1 1 1 1 1 1 1 0.73 0.66 0.73 0.73 0.73 1 1 1 1 1 0.26 0.26 0.26 0.26 0.26 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1 5.33 5.33 5.33 5.33 5.33 16.66 16.06 16.66 16.66 16.66 1 1 1 1 1 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 1 1 0.73 0.66 0.73 0.73 0.73 1 0.93 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.73 0.66 0.73 0.73 0.73 1 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LAMAG

T 0.19 0.19 0.19 0.18 0.19 0.58 0.57 0.41 0.38 0.38 0.86 0.77 0.69 0.66 0.66 0.15 0.15 0.12 0.11 0.12 0.11 0.1 0.1 0.1 0.1 0.17 0.17 0.17 0.16 0.17
Q 1 1 1 1 1 1 1 1 0.8 0.8 0.73 0.66 0.73 0.73 0.73 1 1.06 1 1 1 0.26 0.26 0.26 0.26 0.26 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1 5.33 5.33 5.33 5.33 5.33 16.66 16.73 16.66 16.66 16.66 1 1 1 1 1 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 0.8 0.8 0.73 0.66 0.73 0.73 0.73 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.73 0.66 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.2: Goal recognition with random observations in 10s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 0.19 0.2 0.18 0.18 0.18 2.68 1.43 0.82 0.53 0.52 6.30 6.35 5.54 5.21 5.23 2.09 2.01 1.88 1.07 1.04 3.32 3.19 2.49 2.34 2.34 0.17 0.17 0.17 0.17 0.17
Q 1 1 1 1 1 1 1 1 1 1 0.53 0.4 0.6 0.73 0.66 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1 3.33 3.33 3.4 3.53 3.6 15 15 15 15 15 1.53 1 1.33 1.4 1.4 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 1 1 0.6 0.46 0.6 0.73 0.66 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.6 0.66 0.6 0.73 0.66 0.86 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LAMAG

T 0.19 0.19 0.19 0.19 0.18 0.59 0.55 0.4 0.37 0.37 4.86 4.67 4.23 4.03 4.02 0.49 0.37 0.37 0.36 0.36 0.42 0.36 0.32 0.32 0.32 0.17 0.17 0.18 0.17 0.17
Q 1 1 1 1 1 1 1 1 0.8 0.8 0.33 0.4 0.53 0.53 0.6 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1 2.33 2.33 2.4 2.66 2.6 15 14.73 15 15 15 1.53 1.26 1.33 1.4 1.4 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 0.8 0.8 0.4 0.6 0.53 0.53 0.6 0.8 0.73 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.6 0.8 0.73 0.8 0.8 0.86 0.8 0.86 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.3: Goal recognition with random observations in 20s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 12.96 12.96 12.96 12.94 12.94 2.71 1.45 0.82 0.52 0.53 13.94 13.19 11.66 10.38 10.36 13.56 13.27 12.86 6.55 6.47 8.11 7.98 6.48 6.33 6.33 10.26 10.05 8.39 5.96 5.96
Q 0.4 0.4 0.4 0.4 0.4 1 1 1 1 1 0.4 0.46 0.6 0.66 0.73 0.46 0.46 0.46 0.46 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
S 7.66 7.66 7.66 7.66 7.66 1 1 1 1 1 2 1.93 1.8 2.53 2.53 8.86 8.26 7.66 8.33 8.46 1.53 1 1.33 1.4 1.4 8.0 8.0 8.0 8.0 8.0

Q20 1 1 1 1 1 1 1 1 1 1 0.4 0.66 0.66 0.73 0.8 0.46 0.46 0.46 0.46 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
Q50 1 1 1 1 1 1 1 1 1 1 0.8 0.86 0.86 0.86 0.86 0.46 0.46 0.46 0.46 0.46 1 1 1 1 1 0.66 0.66 0.73 0.86 0.86

d 0.08 0.073 0.062 0.063 0.063 0.066 0 0 0 0 0.194 0.11 0.092 0.028 0.026 0.058 0.057 0.054 0.034 0.034 0 0 0 0 0 0.114 0.108 0.09 0.067 0.067
Solve 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

LAMAG

T 8.55 8.56 8.55 8.56 8.55 0.59 0.57 0.4 0.38 0.38 10.43 9.38 8.46 7.51 7.63 2.27 1.87 1.63 1.54 1.55 0.42 0.36 0.32 0.31 0.31 2.89 2.69 2.51 2.44 2.43
Q 0.33 0.33 0.33 0.33 0.33 1 1 1 0.8 0.8 0.26 0.46 0.46 0.6 0.66 0.4 0.4 0.4 0.4 0.4 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
S 7.66 7.66 7.66 7.66 7.66 1 1 1 1 1 1.66 1.66 1.73 2.13 2.13 10 8.8 7 7.66 7.8 1.53 1 1.33 1.4 1.4 8.0 8.0 8.0 8.0 8.0

Q20 0.8 0.8 0.8 0.8 0.8 1 1 1 0.8 0.8 0.53 0.66 0.66 0.73 0.8 0.4 0.4 0.4 0.4 0.4 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
Q50 1 1 1 1 1 1 1 1 1 1 0.8 0.86 0.8 0.86 0.86 0.4 0.4 0.4 1 1 1 1 1 1 1 0.93 0.86 0.73 0.6 0.6

d 0.081 0.075 0.061 0.052 0.052 0.066 5.3×10−5 0.02 0.19 0.19 0.201 0.14 0.095 0.04 0.034 0.06 0.06 0.058 0.034 0.034 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 0.112 0.107 0.09 0.067 0.067
Solve 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.4: Goal recognition with random observations in 60s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 54.36 54.36 54.42 54.43 54.45 2.7 1.42 0.83 0.53 0.53 36.33 31.65 24.49 17.37 16.30 44.89 44.48 37.99 12.72 12.63 26.33 26.20 20.45 20.3 20.3 45.17 41.71 26.53 11.38 11.39
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.46 0.33 0.66 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1 1.73 1.73 1.73 3.86 4.2 1.6 1 1.06 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 0.66 0.53 0.66 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 0.86 0.8 0.86 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.081 0.057 0.04 0.04 0.066 0 0 0 0 0.136 0.1 0.036 0 0 1×10−6 9×10−6 1.9×10−5 0 0 0 0 0 0 0 0 2×10−6 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 39.63 39.62 39.61 39.63 39.62 0.6 0.58 0.4 0.39 0.38 28.15 22.42 16.30 9.98 9.43 3.32 2.63 2.2 2.08 2.08 0.42 0.36 0.32 0.31 0.31 5.47 4.95 4.50 4.33 4.36
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.8 0.46 0.4 0.66 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 1.4 1 1 1 1 1 1.66 1.66 1.4 3.4 3.73 16.66 10.4 1.13 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.8 0.6 0.53 0.8 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 0.8 0.86 0.86 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.081 0.058 0.042 0.042 0.066 5.3×10−5 0.02 0.2 0.2 0.127 0.111 0.042 0.015 0.015 1.2×10−5 1×10−3 5×10−3 0 0 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 1×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.5: Goal recognition with random observations in 120s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 120.41 120.39 120.38 120.39 120.38 2.69 1.44 0.83 0.52 0.53 61.95 50.22 35.49 18.71 16.50 92.85 89.01 64.97 17.57 17.48 52.14 51.83 40.4 40.25 40.25 87.71 75.02 33.38 11.4 11.4
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.73 0.33 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1 1.6 1.46 2.33 3.86 4.2 1.6 1 1.06 4.46 4.6 1.13 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 0.73 0.53 0.86 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 0.86 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.081 0.057 0.04 0.04 0.066 0 0 0 0 0.075 0.072 0.01 0 0 1×10−6 5×10−6 2×10−6 0 0 0 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 87.34 87.33 87.34 87.41 87.33 0.58 0.57 0.39 0.38 0.38 45.96 34.43 20.26 10.01 9.80 3.32 2.63 2.22 2.08 2.08 0.42 0.36 0.32 0.32 0.31 5.47 4.98 4.54 4.36 4.37
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.8 0.6 0.26 0.73 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 1.4 1 1 1 1 1 1.6 1.4 2.13 3.4 3.73 16.66 10.4 1.13 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.8 0.8 0.6 0.86 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.081 0.058 0.042 0.042 0.066 4.9×10−5 0.02 0.19 0.19 0.073 0.068 0.02 0.015 0.015 6×10−6 1×10−3 5×10−3 0 0 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 1×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.6: Goal recognition with random observations in 240s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 228.49 228.61 228.51 228.62 228.66 2.71 1.45 0.81 0.54 0.52 104.28 81.43 47.80 20.06 16.53 184.06 173.21 96.9 25.56 25.47 98.11 93.35 72.98 71.31 71.34 166.61 132.48 40.23 11.39 11.39
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.66 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1 1.26 1.13 2.33 3.86 4.2 1.6 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 0.86 0.66 0.86 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.081 0.057 0.04 0.04 0.066 0 0 0 0 0.055 7.1×10−3 6.5×10−3 0 0 1×10−6 2×10−6 2×10−6 0 0 0 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 184.15 184.14 184.16 184.17 184.17 0.59 0.59 0.39 0.37 0.38 63.59 40.33 21.2 10.11 9.38 3.32 2.62 2.21 2.08 2.07 0.42 0.36 0.32 0.31 0.32 5.46 4.99 4.54 4.38 4.35
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.8 0.73 0.26 0.73 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 1.4 1 1 1 1 1 1.33 1.8 2 3.4 3.73 16.66 12.93 1.2 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.8 0.86 0.6 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.081 0.058 0.042 0.042 0.066 4.9×10−5 0.02 0.2 0.2 0.05 0.055 0.012 0.015 0.015 6×10−6 1×10−3 7×10−3 0 0 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 1×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.7: Goal recognition with random observations in 360s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 333.97 333.6 333.87 334.09 334.03 2.69 1.42 0.84 0.53 0.53 133.33 104.96 52.11 20.11 16.42 274.74 252.25 118.13 33.53 33.45 131.92 117.14 90.25 83.24 83.35 240.34 180.41 44.67 11.39 11.39
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.8 0.26 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1 1.2 1.2 2.26 3.86 4.2 1.6 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 1 0.66 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.081 0.057 0.04 0.04 0.066 0 0 0 0 0.04 0 0 0 0 0 0 2×10−6 0 0 0 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 280.91 280.9 280.9 280.91 280.9 0.6 0.56 0.4 0.38 0.38 73.46 40.7 21.16 9.82 9.83 3.32 2.62 2.21 2.08 2.08 0.41 0.36 0.32 0.31 0.32 5.47 4.99 4.54 4.36 4.35
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.8 0.86 0.33 0.73 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 1.4 1 1 1 1 1 1.2 1.8 2 3.4 3.73 16.66 10.4 1.2 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.8 0.93 0.66 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.6
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.081 0.058 0.042 0.042 0.066 5.3×10−5 0.02 0.19 0.19 0.022 0.029 0.012 0.015 0.015 8×10−6 1×10−3 7×10−3 0 0 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 1×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.8: Goal recognition with random observations in 1800s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

LAMA

T 1603.24 1522.96 1260.6 1077.62 1082.15 2.74 1.43 0.84 0.52 0.52 294.75 208.70 62.12 20.38 16.52 1303.14 778.67 200.47 76.59 75.54 359.71 221.22 116.66 92.17 92.23 772.76 401.79 50.26 11.39 11.39
Q 0.33 0.8 0.8 0.93 1 1 1 1 1 1 1 0.26 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1 1.13 3.86 10.4 10.93 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

Q20 1 1 1 1 1 1 1 1 1 1 1 0.66 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.042 0.017 9×10−3 1×10−3 2×10−3 0.066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 849.08 840.76 814.95 803.04 809.1 0.57 0.56 0.4 0.38 0.38 81.36 40.27 19.26 10.16 9.76 3.33 2.62 2.21 2.07 2.08 0.42 0.36 0.32 0.32 0.32 5.43 4.95 4.54 4.37 4.36
Q 1 0.8 0.73 0.66 0.46 1 1 1 0.8 0.8 1 0.33 0.73 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 2.26 1.2 3 6.2 4.2 1 1 1 1 1 1 1.8 2 3.4 3.73 15.4 11.66 1.2 4.46 4.6 1.53 1 1.33 1.4 1.4 1 1.2 1.8 2.93 2.93

Q20 1 1 1 1 1 1 1 1 0.8 0.8 1 0.66 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.6
Q50 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 5×10−3 0.02 0.024 0.014 0.015 0.066 4.9×10−5 0.02 0.19 0.19 6.9×10−5 0.029 0.012 0.015 0.015 6×10−6 1×10−3 7×10−3 0 0 8.6×10−4 1×10−3 5×10−3 4×10−3 4×10−3 1×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.9: Goal recognition with random observations for relaxed plan heuristics

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

has

T 0.44 0.39 0.37 0.36 0.36 0.05 0.04 0.03 0.03 0.03 0.42 0.33 0.26 0.24 0.24 0.46 0.32 0.27 0.25 0.25 0.06 0.05 0.04 0.04 0.04 0.34 0.32 0.3 0.29 0.3
Q 1 1 1 1 1 1 1 0.86 0.93 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
S 20.26 20.26 20.26 20.26 20.26 2 2 1.8 1.86 1.86 6.66 6.66 6.6 6.4 6.4 16.66 16.06 16.66 16.66 16.66 3 3 3 3 3 15 15 14.8 14.66 14.66

Q20 1 1 1 1 1 1 1 0.86 0.93 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93

d 0.086 0.08 0.055 0.031 0.031 0.466 0.466 0.495 0.347 0.347 0.252 0.238 0.287 0.132 0.126 0.117 0.117 0.114 0.071 0.07 0.414 0.407 0.274 0.216 0.216 0.115 0.11 0.093 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpT

T 1 1.07 1.28 1.43 1.43 0.27 0.29 0.33 0.38 0.38 107.06 109.03 112.48 114.42 115.41 0.88 0.77 0.56 0.31 0.31 0.26 0.24 0.2 0.16 0.16 0.88 0.99 1.15 1.24 1.25
Q 0.86 0.93 0.46 0.46 0.46 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.86 0.53 0.33 0.33
S 2.33 3.66 2.33 5.26 5.26 1 1 1 1.13 1.13 1 1.2 1.6 2.66 2.73 1 8.73 4.26 12.6 12.6 1 1.53 1 1 1 1 1.33 2.06 2.33 2.33

Q20 0.86 0.93 0.66 0.66 0.66 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.93 0.73 0.8 0.8
Q50 0.93 1 0.73 0.86 0.86 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 1 1 1 1 1 0.93 0.73 0.86 0.86

d 0.017 0.025 0.038 0.033 0.033 0.066 2.2×10−5 2.2×10−3 0.112 0.112 1.35×10−4 1.94×10−4 0.017 0.068 0.062 0 0.06 0.054 0.057 0.055 4.25×10−4 0.45 0.24 0.213 0.213 4.88×10−4 0.026 0.061 0.05 0.05
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpET

T 6.01 5.43 4.16 3.69 3.68 0.31 0.33 0.39 0.42 0.42 118.91 119.85 122.44 124.18 124.99 1.29 1.18 0.99 0.73 0.73 0.28 0.26 0.23 0.19 0.19 7.61 3.70 2.82 2.83 2.83
Q 0.93 0.73 0.46 0.46 0.46 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.53 0.33 0.33
S 3.66 2.46 2.33 5.26 5.26 1 1 1 1.13 1.13 1 1.2 1.6 2.66 2.73 1 8.73 4.26 12.6 12.6 1 1.53 1 1 1 1 1.26 2.06 2.26 2.26

Q20 0.93 0.73 0.66 0.66 0.66 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.73 0.73 0.8 0.8
Q50 1 0.86 0.73 0.86 0.86 1 1 1 0.93 0.93 1 0.13 0.8 0.73 0.53 1 1 1 1 1 1 1 1 1 1 1 1 0.73 0.86 0.86

d 0.016 0.035 0.038 0.033 0.033 0.066 2.4×10−5 3.4×10−3 0.106 0.106 1.35×10−4 1.94×10−4 0.017 0.068 0.062 0 0.06 0.054 0.057 0.055 4.25×10−4 0.45 0.24 0.213 0.213 7.58×10−4 0.038 0.061 0.044 0.044
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpT

T 0.76 0.7 0.7 0.76 0.76 0.23 0.23 0.25 0.28 0.28 33.30 33.37 34.41 35.62 35.73 0.88 0.77 0.56 0.29 0.29 0.25 0.23 0.2 0.16 0.16 0.8 0.54 0.46 0.49 0.49
Q 1 0.86 0.66 0.4 0.4 1 1 0.93 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.6 0.2 0.4 0.4
S 1 7.53 6.86 4.6 4.6 1 1.33 1.13 1.46 1.46 1 1.26 2.13 2.8 2.86 1 8.73 4.26 12.6 12.6 1 1.93 2.2 2.33 2.33 1 3.86 1.46 2.2 2.2

Q20 1 0.86 0.73 0.53 0.53 1 1 0.93 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.66 0.26 0.6 0.6
Q50 1 0.86 0.73 0.66 0.66 1 1 0.93 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.73 0.73

d 4.4×10−3 0.049 0.05 0.044 0.044 0.066 0.166 0.152 0.214 0.214 1.35×10−4 4.2×10−3 0.013 0.071 0.065 0 0.06 0.054 0.057 0.055 3×10−4 0.262 0.175 0.138 0.138 1.9×10−3 0.058 0.087 0.06 0.06
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpET

T 6.43 5.18 2.71 2.37 2.36 0.28 0.27 0.31 0.32 0.32 139.34 74.26 49.58 46.59 45.97 1.28 1.18 0.98 0.72 0.72 0.28 0.26 0.22 0.18 0.18 6.91 5.81 2.32 2.04 2.04
Q 1 0.73 0.53 0.4 0.4 1 1 1 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.6 0.33 0.4 0.4
S 1.06 1.13 3.13 4.6 4.6 1 1 1.06 1.46 1.46 1 1.26 2.26 2.8 2.86 1 8.73 4.26 12.6 12.6 1 1.93 2.2 2.33 2.33 1 2 1.66 2.2 2.2

Q20 1 0.73 0.73 0.53 0.53 1 1 1 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.73 0.46 0.6 0.6
Q50 1 0.8 0.86 0.66 0.66 1 1 1 0.93 0.93 1 0.13 0.8 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.8 0.73 0.73 0.73

d 1.1×10−3 0.03 0.04 0.044 0.044 0.066 2.4×10−5 0.052 0.214 0.214 1.35×10−4 4.2×10−3 0.023 0.072 0.066 0 0.06 0.054 0.057 0.055 3×10−4 0.262 0.175 0.138 0.138 2.6×10−3 0.047 0.074 0.06 0.06
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp T

T 0.65 0.56 0.42 0.34 0.34 0.21 0.19 0.18 0.17 0.17 17.98 17.81 17.48 17.01 16.95 0.44 0.38 0.29 0.15 0.15 0.13 0.11 0.1 0.08 0.08 0.67 0.41 0.25 0.17 0.17
Q 1 0.86 0.73 0.13 0.13 1 1 0.66 0.53 0.53 1 0.2 0.8 0.73 0.53 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.26 0.26 0.8 0.33 0.06 0.33 0.33
S 1 10 9.06 3.33 3.33 1 1.73 1.13 1.13 1.13 1 1.73 2.33 2.6 2.73 16.66 12.4 2.46 3.06 3.06 2.06 1.53 1.13 1 1 1.2 2 1.46 3 3

Q20 1 0.86 0.73 0.46 0.46 1 1 0.66 0.53 0.53 1 0.2 0.8 0.73 0.53 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.26 0.26 0.8 0.53 0.2 0.33 0.33
Q50 1 0.86 0.73 0.53 0.53 1 1 0.66 0.53 0.53 1 0.2 0.8 0.8 0.53 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.93 0.6 0.4 0.66 0.66

d 4.4×10−3 0.061 0.048 0.053 0.053 0.066 0.333 0.355 0.332 0.332 7×10−5 0.025 0.064 0.068 0.07 0.117 0.115 0.12 0.072 0.071 0.435 0.382 0.181 0.23 0.23 0.05 0.095 0.105 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp ET

T 8.54 6.13 3.31 1.14 1.14 0.27 0.26 0.21 0.17 0.17 135.78 113.56 64.66 34.46 25.10 0.49 0.43 0.33 0.19 0.19 0.14 0.12 0.1 0.09 0.09 3.75 4.38 3.3 0.26 0.26
Q 0.06 0.13 0.53 0.33 0.33 0.66 0.73 0.53 0.53 0.53 0.73 0.6 0.73 0.86 0.6 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.26 0.26 0.33 0.8 0.66 0.33 0.33
S 1.66 1.73 3.86 3.66 3.66 1.2 1.4 1.2 1.13 1.13 2.8 4.46 5.53 4.73 4.26 16.66 12.4 2.46 3.06 3.06 2.06 1.53 1.13 1 1 2.46 9.66 10.66 3 3

Q20 0.26 0.26 0.53 0.53 0.53 0.66 0.73 0.53 0.53 0.53 0.8 0.6 0.73 0.86 0.6 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.26 0.26 0.4 0.8 0.73 0.33 0.33
Q50 0.6 0.66 0.6 0.53 0.53 0.66 0.73 0.53 0.53 0.53 0.93 0.6 0.73 0.86 0.6 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.46 0.8 0.86 0.66 0.66

d 0.083 0.078 0.066 0.056 0.056 0.438 0.466 0.41 0.332 0.332 0.224 0.233 0.226 0.155 0.152 0.117 0.115 0.12 0.072 0.071 0.435 0.382 0.181 0.23 0.23 0.114 0.108 0.091 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrp

T 1 1.02 1.26 1.45 1.44 0.27 0.29 0.35 0.39 0.39 107.30 109.75 110.72 116.48 113.75 0.88 0.49 0.21 0.21 0.2 0.26 0.19 0.14 0.13 0.13 0.88 1 1.19 1.26 1.26
Q 0.86 0.93 0.53 0.4 0.4 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.33 0.53 0.53
S 2.33 4.93 3.2 4.66 4.66 1 1.53 1.53 1.06 1.06 1 3 2.26 2.6 2.66 1 7.46 2.4 4.6 4.6 1 1.53 1 1 1 1 1.66 2.53 2.86 2.86

Q20 0.86 0.93 0.73 0.6 0.6 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.53 0.86 0.86
Q50 0.93 0.93 0.8 0.86 0.86 1 0.93 1 0.73 0.73 1 0.4 0.8 0.73 0.53 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.86 0.86

d 0.017 0.024 0.04 0.024 0.024 0.066 0.3 0.27 0.233 0.233 1.36×10−4 0.041 0.09 0.068 0.063 0 0.053 0.042 0.024 0.02 4.25×10−4 0.45 0.19 0.166 0.166 4.88×10−4 0.051 0.08 0.026 0.026
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpE

T 5.97 4.44 3.59 3.68 3.67 0.31 0.36 0.41 0.43 0.43 118.46 120.98 118.37 122.9 123.36 1.28 0.9 0.63 0.63 0.64 0.28 0.22 0.16 0.16 0.16 7.61 3.12 2.8 2.82 2.83
Q 0.93 0.73 0.53 0.4 0.4 1 1 1 0.73 0.73 1 0.4 0.93 0.73 0.53 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.73 0.26 0.53 0.53
S 3.66 2.4 3.2 4.66 4.66 1 1.53 1.53 1.06 1.06 1 3 3.60 2.6 2.66 1 7.46 2.4 4.6 4.6 1 1.53 1 1 1 1 1.66 1.8 2.86 2.86

Q20 0.93 0.8 0.73 0.6 0.6 1 1 1 0.73 0.73 1 0.4 0.93 0.73 0.53 1 1 0.93 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.46 0.86 0.86
Q50 1 0.86 0.8 0.86 0.86 1 1 1 0.73 0.73 1 0.4 0.93 0.73 0.53 1 1 1 1 1 1 1 1 1 1 1 0.86 0.6 0.86 0.86

d 0.016 0.034 0.04 0.024 0.024 0.066 0.266 0.269 0.233 0.233 1.36×10−4 0.041 0.098 0.068 0.063 0 0.053 0.042 0.024 0.02 4.25×10−4 0.45 0.19 0.166 0.166 7.58×10−4 0.051 0.073 0.026 0.026
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rp

T 1.33 0.7 0.64 0.78 0.78 0.31 0.26 0.25 0.26 0.26 33.11 33.44 33.10 35.66 35.64 0.89 0.51 0.19 0.19 0.19 0.29 0.21 0.13 0.12 0.13 0.97 0.43 0.45 0.5 0.5
Q 1 1 0.73 0.33 0.33 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 0.93 1 1 1 1 1 1 1 1 0.53 0.4 0.66 0.66
S 1 11.33 7 4.13 4.13 1 1.8 1.53 1.46 1.46 1 3.06 3.66 2.73 2.8 1 7.46 2.4 4.6 4.6 1 1.93 1.46 1.4 1.4 1 5.8 2.66 4 4

Q20 1 1 0.8 0.46 0.46 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 0.93 1 1 1 1 1 1 1 1 0.6 0.4 0.66 0.66
Q50 1 1 0.86 0.6 0.6 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.66 0.53 0.8 0.8

d 4.4×10−3 0.047 0.041 0.044 0.044 0.066 0.366 0.305 0.267 0.267 1.35×10−4 0.045 0.095 0.073 0.067 0 0.053 0.042 0.024 0.02 3×10−4 0.262 0.068 0.014 0.014 1.9×10−3 0.083 0.08 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpE

T 6.45 4.79 2.17 2.37 2.36 0.28 0.28 0.3 0.29 0.29 138.84 70.40 46.41 46.69 45.92 1.28 0.97 0.61 0.62 0.62 0.28 0.24 0.16 0.15 0.15 6.95 5.88 2.03 2.06 2.07
Q 1 0.8 0.53 0.33 0.33 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 0.93 1 1 1 1 1 1 1 1 0.6 0.4 0.66 0.66
S 1.06 1.13 3 4.13 4.13 1 1.6 1.53 1.46 1.46 1 3.06 3.66 2.73 2.8 1 7.46 2.4 4.6 4.6 1 1.93 1.46 1.4 1.4 1 3 2.06 4 4

Q20 1 0.8 0.66 0.46 0.46 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 0.93 1 1 1 1 1 1 1 1 0.73 0.4 0.66 0.66
Q50 1 0.8 0.86 0.6 0.6 1 1 1 0.86 0.86 1 0.4 0.93 0.8 0.6 1 1 1 1 1 1 1 1 1 1 1 0.8 0.46 0.8 0.8

d 1.1×10−3 0.03 0.043 0.044 0.044 0.066 0.3 0.305 0.267 0.267 1.35×10−4 0.045 0.095 0.073 0.067 0 0.053 0.042 0.024 0.02 3×10−4 0.262 0.068 0.014 0.014 2.6×10−3 0.061 0.081 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp

T 0.65 0.54 0.44 0.41 0.44 0.21 0.2 0.19 0.19 0.18 18.21 18.27 17.04 17.19 17.07 0.44 0.26 0.1 0.09 0.08 0.13 0.1 0.08 0.06 0.08 0.67 0.35 0.19 0.27 0.19
Q 1 1 0.73 0.06 0.06 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53 1 0.66 0.26 0.2 0.2 0.53 0.53 0.4 0.33 0.33 0.8 0.4 0.33 0.33 0.33
S 1 13.8 9.00 2.26 2.26 1 1.8 1.4 1.13 1.13 1 1.73 2.73 2.73 2.8 16.66 9.93 1.33 2.66 2.66 2.06 1.53 1.26 1 1 1.2 3.86 1.6 2.86 2.86

Q20 1 1 0.73 0.33 0.33 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53 1 0.66 0.6 0.26 0.26 0.53 0.53 0.4 0.33 0.33 0.8 0.46 0.4 0.33 0.33
Q50 1 1 0.73 0.46 0.46 1 1 0.66 0.53 0.53 1 0.26 0.8 0.73 0.53 1 0.73 0.73 0.66 0.66 1 1 0.8 0.86 0.86 0.93 0.53 0.6 0.8 0.8

d 4.4×10−3 0.06 0.045 0.053 0.053 0.066 0.366 0.404 0.332 0.332 7×10−5 0.031 0.086 0.088 0.083 0.117 0.112 0.093 0.07 0.068 0.435 0.382 0.248 0.198 0.198 0.05 0.103 0.091 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp E

T 8.55 5.26 2.57 0.96 0.96 0.27 0.26 0.23 0.18 0.17 136.55 118.74 64.55 34.63 24.82 0.49 0.34 0.14 0.13 0.13 0.14 0.11 0.07 0.07 0.07 3.77 4.72 2.25 0.26 0.26
Q 0.06 0.13 0.46 0.33 0.33 0.66 0.93 0.73 0.53 0.53 0.2 0.46 0.66 0.66 0.4 1 0.66 0.26 0.2 0.2 0.53 0.53 0.4 0.33 0.33 0.33 0.86 0.73 0.33 0.33
S 1.66 1.46 3.4 3.53 3.53 1.2 1.6 1.53 1.13 1.13 1 2.53 4.8 4 3.60 16.66 9.93 1.33 2.66 2.66 2.06 1.53 1.26 1 1 2.46 10 8.93 2.86 2.86

Q20 0.26 0.26 0.46 0.53 0.53 0.66 0.93 0.73 0.53 0.53 0.2 0.46 0.66 0.66 0.4 1 0.66 0.6 0.26 0.26 0.53 0.53 0.4 0.33 0.33 0.4 0.86 0.8 0.33 0.33
Q50 0.6 0.6 0.53 0.53 0.53 0.66 0.93 0.73 0.53 0.53 0.6 0.53 0.66 0.73 0.46 1 0.73 0.73 0.66 0.66 1 1 0.8 0.86 0.86 0.46 0.86 0.93 0.8 0.8

d 0.083 0.082 0.066 0.056 0.056 0.438 0.466 0.436 0.332 0.332 0.23 0.238 0.232 0.173 0.17 0.117 0.112 0.093 0.07 0.068 0.435 0.382 0.248 0.198 0.198 0.114 0.11 0.088 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.10: Goal recognition with random observations in FGR given the time-
step

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

FGRIT

T 0.94 1.07 1.28 1.42 1.43 0.27 0.29 0.33 0.38 0.38 106.84 108.53 112.21 114.01 114.71 0.89 0.77 0.56 0.31 0.31 0.26 0.24 0.2 0.16 0.16 0.88 0.99 1.14 1.25 1.25
Q 1 0.93 0.53 0.13 0.13 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.86 0.73 0.6 0.6
S 2.33 2.33 1.53 1.8 1.8 1 1 1 1.06 1.06 1 1.93 3.2 4.2 4.2 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1 1.13 1.73 2.8 2.8

Q20 1 0.93 0.66 0.53 0.53 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86 1 1 1 0.93 0.93 1 1 1 1 1 1 0.93 0.8 0.73 0.73
Q50 1 1 0.8 0.86 0.86 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86 0.86

d 4.4×10−3 0.016 0.035 0.022 0.022 0.066 2.4×10−5 2.5×10−3 0.098 0.098 4×10−3 0.077 0.071 0.056 0.048 1.6×10−5 2.7×10−3 0.048 0.014 0.014 1.14×10−4 0.011 0.03 0.058 0.058 5.8×10−4 0.022 0.061 0.046 0.046
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

FGRIET

T 12.59 8.94 4.6 3.68 3.67 0.39 0.39 0.4 0.42 0.42 127.22 125.25 124.59 123.92 124.81 1.29 1.18 0.99 0.74 0.74 0.28 0.26 0.23 0.19 0.19 8.51 4.36 3 2.83 2.85
Q 0.93 0.73 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.66 0.66 0.6 0.6
S 1.06 1.13 1.86 1.73 1.73 1 1 1 1.06 1.06 1 2 3.4 4.2 4.2 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1.13 1.4 1.8 2.8 2.8

Q20 1 0.93 0.66 0.4 0.4 1 1 1 0.93 0.93 1 0.2 0.86 0.93 0.86 1 1 1 0.93 0.93 1 1 1 1 1 0.86 0.8 0.8 0.73 0.73
Q50 1 1 0.86 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 0.86 0.86

d 7.4×10−3 0.04 0.03 0.015 0.015 0.066 5.6×10−5 6.4×10−3 0.098 0.098 4×10−3 0.078 0.085 0.056 0.048 1.6×10−5 2.7×10−3 0.048 0.014 0.014 1.14×10−4 0.011 0.03 0.058 0.058 0.017 0.054 0.068 0.045 0.045
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+T

T 0.76 0.7 0.7 0.76 0.76 0.23 0.23 0.25 0.28 0.28 33.24 33.36 34.31 35.67 36.06 0.88 0.77 0.56 0.29 0.29 0.25 0.23 0.2 0.16 0.16 0.8 0.55 0.46 0.49 0.49
Q 1 0.86 0.6 0.46 0.46 1 1 0.86 0.93 0.93 1 0.13 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 1 0.66 0.46 0.53 0.53
S 1 7.53 5.2 2.13 2.13 1 1.33 1.06 1.13 1.13 1 1.4 2.86 3.8 4 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1 2 1.86 3 3

Q20 1 0.86 0.66 0.66 0.66 1 1 0.86 0.93 0.93 1 0.13 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 1 0.73 0.46 0.6 0.6
Q50 1 0.86 0.66 0.73 0.73 1 1 0.86 0.93 0.93 1 0.13 0.8 0.93 0.73 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.73 0.73

d 4.4×10−3 0.049 0.054 0.043 0.043 0.066 0.166 0.17 0.158 0.158 1.2×10−3 0.031 0.056 0.057 0.053 0.011 0.045 0.074 0.021 0.018 1×10−6 0.011 2×10−6 7.4×10−3 7.4×10−3 7.5×10−4 0.042 0.075 0.053 0.053
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+ET

T 6.43 5.18 2.7 2.36 2.36 0.27 0.27 0.3 0.31 0.31 139.24 74.07 49.56 46.73 46.23 1.28 1.18 0.98 0.72 0.72 0.28 0.25 0.22 0.18 0.18 6.90 5.81 2.31 2.04 2.04
Q 1 0.86 0.53 0.46 0.46 1 1 0.93 0.93 0.93 1 0.26 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 0.86 0.73 0.53 0.53 0.53
S 1.06 1.13 1.53 2.13 2.13 1 1 1 1.13 1.13 1.66 2.13 3.26 4 4.06 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1.13 1.26 2 2.86 2.86

Q20 1 0.93 0.73 0.66 0.66 1 1 0.93 0.93 0.93 1 0.26 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 0.86 1 0.6 0.6 0.6
Q50 1 0.93 0.86 0.73 0.73 1 1 0.93 0.93 0.93 1 0.26 0.8 0.93 0.73 1 1 1 1 1 1 1 1 1 1 1 1 0.86 0.73 0.73

d 0.012 0.031 0.041 0.043 0.043 0.066 2.4×10−5 0.073 0.158 0.158 0.06 0.117 0.082 0.064 0.057 0.011 0.045 0.074 0.021 0.018 1×10−6 0.011 2×10−6 7.4×10−3 7.4×10−3 0.016 0.04 0.068 0.053 0.053
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.11: Goal recognition with random observations in FGR not given the
time-step

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 1080.6 729.06 529.04 405.1 405.14 1.78 1.11 0.55 0.28 0.28 224.67 144.5 79.83 41.47 37.42 588.34 414.3 214.2 4.25 4.22 694.67 243.5 60.65 33.3 33.31 44.93 42.02 18.94 9.18 9.18
Q 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.2 0.66 0.86 0.73 1 1 1 1 1 1 1 0.86 0.86 0.86 1 0.93 0.66 0.8 0.8
S 1.06 1.13 3.73 9.33 9.33 1 1 1 1 1 1 1.06 1.93 3.6 3.93 1 1 1.06 4.46 4.6 1 1 1.2 1.26 1.26 1.06 1.06 2.26 3.6 3.6

gHSP∗f

T 531.26 446.26 379.81 357.94 357.94 1.22 0.8 0.5 0.32 0.32 114.12 79.76 52.92 39.20 38.8 447.41 281.11 151.37 3.58 3.55 480.39 171.08 49.62 37.93 37.92 36.26 32.46 14.8 7.04 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 0.2 0.8 0.93 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 1.13 4.06 11.46 11.46 1 1 1 1 1 1 1.2 2.26 3.86 4.2 1 1 1.06 4.46 4.6 1 1 1.33 1.4 1.4 1 1.13 2.26 3.6 3.6

FGRI

T 1 1.03 1.25 1.44 1.45 0.27 0.29 0.35 0.39 0.39 107.95 109.83 110.98 115.92 115.77 0.89 0.49 0.21 0.21 0.21 0.26 0.19 0.14 0.13 0.13 0.88 1.01 1.19 1.26 1.26
Q 1 0.93 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.86 0.53 0.6 0.6
S 1.06 6.13 2.33 1.73 1.73 1 1.6 1.53 1.13 1.13 1 2.06 3.8 3.93 3.93 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1 1.26 1.6 2.46 2.46

Q20 1 0.93 0.6 0.46 0.46 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 1 0.93 0.93 1 1 1 1 1 1 0.93 0.66 0.73 0.73
Q50 1 1 0.8 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 1.1×10−3 0.023 0.035 0.017 0.017 0.066 0.266 0.271 0.09 0.09 4×10−3 0.071 0.121 0.049 0.041 1.6×10−5 2.7×10−3 0.048 0.014 0.014 1.14×10−4 0.011 0.03 0.058 0.058 5.8×10−4 0.025 0.073 0.043 0.043
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIE

T 12.55 8.31 6.09 3.67 3.67 0.39 0.44 0.43 0.43 0.43 127.80 130.82 121.87 126.25 125.93 1.28 0.9 0.63 0.63 0.63 0.28 0.22 0.16 0.16 0.16 8.51 3.57 3.08 2.82 2.82
Q 0.93 0.73 0.46 0.13 0.13 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.66 0.6 0.6 0.6
S 1.06 1.2 2.53 1.66 1.66 1 1 1.06 1.13 1.13 1 2.2 3.93 3.93 3.93 1 1 1 4.4 4.53 1 1 1.2 1.26 1.26 1.13 1.26 1.73 2.46 2.46

Q20 1 0.93 0.66 0.33 0.33 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 1 0.93 0.93 1 1 1 1 1 0.86 0.8 0.66 0.73 0.73
Q50 1 1 0.86 0.8 0.8 1 1 1 0.93 0.93 1 0.26 0.86 0.93 0.86 1 1 1 1 1 1 1 1 1 1 0.93 1 0.73 0.86 0.86

d 7.4×10−3 0.041 0.031 0.014 0.014 0.066 1.1×10−4 0.042 0.09 0.09 4×10−3 0.071 0.121 0.049 0.041 1.6×10−5 2.7×10−3 0.048 0.014 0.014 1.14×10−4 0.011 0.03 0.058 0.058 0.017 0.043 0.072 0.042 0.042
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+

T 0.76 0.6 0.64 0.78 0.78 0.23 0.22 0.25 0.26 0.26 33.02 33.47 33.25 35.71 35.91 0.88 0.49 0.19 0.19 0.19 0.25 0.19 0.13 0.12 0.12 0.8 0.4 0.44 0.5 0.5
Q 1 1 0.73 0.46 0.46 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 1 0.53 0.46 0.6 0.6
S 1 11.33 6.6 2.06 2.06 1 1.66 1.46 1.26 1.26 1 1.53 3.33 3.66 3.86 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1 3 2.13 2.93 2.93

Q20 1 1 0.86 0.6 0.6 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73 1 1 1 1 0.93 1 1 1 1 1 1 0.6 0.6 0.66 0.66
Q50 1 1 0.86 0.73 0.73 1 1 1 0.93 0.93 1 0.2 0.8 0.93 0.73 1 1 1 1 1 1 1 1 1 1 1 0.66 0.73 0.8 0.8

d 4.4×10−3 0.047 0.045 0.046 0.046 0.066 0.3 0.235 0.2 0.2 1.2×10−3 0.04 0.113 0.055 0.05 0.011 0.045 0.074 0.021 0.018 1×10−6 0.011 2×10−6 7.4×10−3 7.4×10−3 7.5×10−4 0.071 0.077 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+E

T 6.46 4.65 2.16 2.52 2.49 0.27 0.28 0.29 0.32 0.29 139.00 70.46 46.53 46.78 46.20 1.28 0.99 0.61 0.68 0.62 0.28 0.24 0.16 0.39 0.15 6.93 5.94 2.02 2.24 2.16
Q 1 0.8 0.53 0.46 0.46 1 1 1 0.93 0.93 0.86 0.26 0.66 0.8 0.73 1 1 1 1 0.93 1 1 1 1 1 0.86 0.73 0.53 0.6 0.6
S 1.06 1.13 2.66 2.06 2.06 1 1.4 1.26 1.26 1.26 1.6 2.13 2.93 2.8 2.93 1 1.13 1.13 4.06 3.93 1 1 1.33 1.4 1.4 1.13 1.26 1.8 2.93 2.93

Q20 1 0.86 0.8 0.6 0.6 1 1 1 0.93 0.93 0.86 0.26 0.66 0.8 0.73 1 1 1 1 0.93 1 1 1 1 1 0.86 1 0.6 0.66 0.66
Q50 1 0.93 0.8 0.73 0.73 1 1 1 0.93 0.93 0.93 0.26 0.66 0.93 0.73 1 1 1 1 1 1 1 1 1 1 1 1 0.86 0.8 0.8

d 0.012 0.035 0.043 0.046 0.046 0.066 0.2 0.135 0.2 0.2 0.056 0.102 0.112 0.057 0.05 0.011 0.045 0.074 0.021 0.018 1×10−6 0.011 2×10−6 7.4×10−3 7.4×10−3 0.016 0.04 0.071 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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A.2 Sequential Observations

Table A.12: Goal recognition with sequential observations in 5s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 0.2 0.19 0.19 0.19 0.19 1.75 1.38 0.8 0.62 0.52 0.97 0.91 0.89 0.88 0.79 0.15 0.14 0.14 0.12 0.13 0.12 0.12 0.12 0.12 0.12 0.17 0.17 0.17 0.17 0.16
Q 1 1 1 1 1 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 0.26 0.26 0.26 0.26 0.26 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1.13 5.33 5.33 5.33 5.33 5.33 16.66 16.66 16.66 16.66 16.66 1 1 1 1 1 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LAMAG

T 0.19 0.19 0.2 0.19 0.2 0.65 0.55 0.45 0.42 0.36 0.83 0.75 0.74 0.74 0.7 0.16 0.14 0.13 0.13 0.12 0.11 0.11 0.11 0.11 0.1 0.17 0.17 0.17 0.17 0.16
Q 1 1 1 1 1 1 1 1 0.8 0.73 0.73 0.73 0.73 0.73 0.8 1 1 1 1 1 0.26 0.26 0.26 0.26 0.33 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1.06 1.06 5.33 5.33 5.33 5.33 5.46 16.66 16.66 16.66 16.66 16.66 1 1 1 1 1 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 0.8 0.73 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.13: Goal recognition with sequential observations in 10s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 0.2 0.19 0.19 0.2 0.19 2.72 1.4 0.8 0.62 0.52 5.94 5.68 5.62 5.52 5.10 2.10 2.04 2.02 1.82 0.95 3.33 3.17 2.47 2.35 2.33 0.17 0.17 0.17 0.16 0.17
Q 1 1 1 1 1 1 1 1 1 1 0.53 0.6 0.66 0.6 0.66 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1 1.13 4.4 4.73 5 4.73 5 15 15 15 15 15 1.53 1 1 1.4 1.66 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 1 1 0.73 0.73 0.73 0.73 0.73 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 0.86 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LAMAG

T 0.2 0.19 0.19 0.19 0.18 0.61 0.55 0.44 0.42 0.37 4.93 4.65 4.52 4.83 4.53 0.5 0.43 0.4 0.38 0.36 0.43 0.36 0.34 0.33 0.44 0.17 0.17 0.16 0.17 0.17
Q 1 1 1 1 1 1 1 1 0.8 0.73 0.53 0.6 0.66 0.53 0.73 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
S 20.26 20.26 20.26 20.26 20.26 1 1 1 1.06 1.06 3.73 4.06 4.33 3.8 4.6 15 15 15 15 15 1.53 1.13 1 1.4 1.66 15 15 15 15 15

Q20 1 1 1 1 1 1 1 1 0.8 0.73 0.73 0.73 0.73 0.73 0.66 0.8 0.8 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 1 1

Solve 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table A.14: Goal recognition with sequential observations in 20s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.52 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 1.06 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 6 4.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 13.00 12.99 12.99 12.99 12.98 2.79 1.38 0.8 0.62 0.52 13.39 12.27 12.13 11.78 10.71 13.61 13.34 13.30 11.82 5.43 8.12 7.96 6.46 6.34 6.32 10.31 10.1 8.42 6.02 6.01
Q 0.66 0.66 0.66 0.66 0.66 1 1 1 1 1 0.66 0.66 0.66 0.73 0.73 0.46 0.46 0.4 0.4 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
S 16.6 16.6 16.6 16.6 16.6 1 1 1 1 1.13 4 4.06 4.06 4.33 4.2 8.86 8.26 7.73 7.66 8.26 1.53 1 1 1.4 1.66 8 8 8 8 8

Q20 0.66 0.66 0.66 0.66 0.66 1 1 1 1 1 1 1 1 1 1 0.46 0.46 0.46 0.46 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
Q50 0.66 0.66 0.66 0.66 0.66 1 1 1 1 1 1 1 1 1 1 0.46 0.46 0.46 0.46 0.46 1 1 1 1 1 0.66 0.66 0.73 0.86 0.86

d 0.086 0.078 0.064 0.03 0.02 0 0 0 0 0 0.012 0.01 0.01 8×10−3 3×10−3 0.058 0.057 0.066 0.058 0.024 1.8×10−4 0 2×10−6 0 0 0.114 0.108 0.09 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 8.58 8.57 8.57 8.58 8.87 0.63 0.52 0.45 0.42 0.37 10.41 9.29 9.1 8.78 8.37 2.31 1.89 1.76 1.65 1.52 0.42 0.36 0.34 0.33 0.7 2.93 2.72 2.54 2.46 2.46
Q 0.4 0.4 0.4 0.4 0.4 1 1 1 0.8 0.73 0.66 0.73 0.73 0.73 0.8 0.4 0.4 0.4 0.4 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.53
S 13.00 13.00 13.00 13.00 13.6 1 1 1 1.06 1.06 3.73 4.06 4.33 4.33 4.8 10 8.20 7.66 7.46 7.20 1.53 1.13 1 1.4 1.66 8 8 8 8 7.53

Q20 0.4 0.4 0.4 0.4 0.4 1 1 1 0.8 0.73 1 1 1 1 0.93 0.4 0.4 0.4 0.4 0.46 1 1 1 1 1 0.53 0.53 0.53 0.53 0.6
Q50 0.4 0.4 0.4 0.4 0.4 1 1 1 1 1 1 1 1 1 0.93 0.4 0.4 0.4 0.53 1 1 1 1 1 1 0.93 0.86 0.73 0.6 0.66

d 0.087 0.078 0.066 0.031 0.021 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 0.014 0.01 8×10−3 8×10−3 2×10−3 0.06 0.06 0.072 0.076 0.024 1×10−3 7.4×10−4 5×10−3 0.037 0 0.112 0.024 0.09 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.15: Goal recognition with sequential observations in 60s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.52 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 1.06 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 6 4.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 54.37 54.41 54.42 54.41 54.39 2.76 1.38 0.8 0.61 0.52 33.51 29.81 27.29 23.22 18.28 44.92 44.40 41.49 25.47 10.06 26.34 22.03 20.43 20.31 20.29 45.19 41.66 26.55 11.43 11.44
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.73 0.73 0.8 0.8 0.93 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1.13 4.33 4.4 4.73 4.86 6.06 1.6 1.6 1.46 1.26 5 1.13 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.076 0.062 0.038 0.035 0 0 0 0 0 8×10−3 6×10−3 4.9×10−3 2.1×10−3 5.3×10−4 1×10−6 1.8×10−4 0.013 8.1×10−3 0 1.8×10−4 0 0 0 0 0 2×10−6 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 39.63 39.61 39.62 39.62 40.43 0.61 0.52 0.44 0.41 0.36 27.58 23.69 20.54 16.25 11.68 3.35 2.63 2.39 2.19 2.02 0.42 0.35 0.34 0.32 1.63 5.53 5.03 4.58 4.38 4.49
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.73 0.73 0.73 0.8 0.8 1 1 0.93 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 2.53 1 1 1 1.06 1.06 4.26 4.4 4.66 4.8 6.66 16.66 10 1.93 2.26 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.076 0.063 0.04 0.038 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 0.01 6×10−3 6×10−3 2×10−3 0 6×10−6 0.016 0.023 0.036 0 1×10−3 7.4×10−4 5×10−3 0.037 0 1.3×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.16: Goal recognition with sequential observations in 120s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.52 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 1.06 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 6 4.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 120.3 120.37 120.37 120.36 120.36 2.76 1.39 0.8 0.61 0.51 50.31 41.70 35.87 30.22 21.08 92.85 88.06 73.91 33.42 14.72 52.14 41.97 40.38 40.26 40.24 87.67 75.07 33.38 11.42 11.43
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.8 0.8 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1.13 4.66 4.73 4.86 6.66 6.66 1.6 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.076 0.062 0.038 0.035 0 0 0 0 0 6×10−3 4.9×10−3 2.1×10−3 0 0 1×10−6 9.1×10−5 6.9×10−3 2.2×10−3 0 1.8×10−4 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 87.32 87.32 87.38 87.39 89.14 0.61 0.5 0.44 0.4 0.36 45.81 35.12 28.69 19.70 12.14 3.34 2.63 2.39 2.19 2.03 0.42 0.36 0.33 0.32 2.34 5.53 5.02 4.57 4.39 4.48
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.73 0.8 0.8 0.86 1 1 1 1 0.93 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 2.53 1 1 1 1.06 1.06 4.66 4.8 5.4 6.66 6.66 16.66 10 2 2.33 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.076 0.063 0.04 0.038 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 6×10−3 2×10−3 2.2×10−3 0 0 6×10−6 0.013 0.033 0.041 0 1×10−3 7.4×10−4 5×10−3 0.037 0 1.3×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.17: Goal recognition with sequential observations in 240s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.52 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 1.06 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 6 4.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 228.43 228.58 228.47 228.53 228.55 2.75 1.38 0.8 0.62 0.52 75.62 63.24 47.92 33.23 20.25 18 4.6 166.57 115.08 41.45 22.7 98.3 77.16 73.57 73.53 72.23 166.7 132.6 40.21 11.45 11.43
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.8 0.86 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1.13 4.8 5.46 6.06 6.66 6.66 1.6 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.076 0.062 0.038 0.035 0 0 0 0 0 2×10−3 1×10−3 1×10−3 0 0 1×10−6 2.4×10−5 6.9×10−3 2.2×10−3 0 1.8×10−4 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 184.13 184.14 184.15 184.15 187.55 0.64 0.53 0.43 0.42 0.36 67.60 48.2 33.28 19.78 12.24 3.36 2.63 2.39 2.19 2.02 0.42 0.36 0.34 0.32 2.7 5.55 5.04 4.58 4.4 4.48
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 0.8 0.73 0.73 0.86 0.93 1 1 1 0.93 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 2.53 1 1 1 1.06 1.06 4.53 5.4 6.06 6.66 6.66 16.66 10 2.06 2.2 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.076 0.063 0.04 0.038 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 2×10−3 3.8×10−3 1×10−3 0 0 6×10−6 0.015 0.03 0.038 0 1×10−3 7.4×10−4 5×10−3 0.037 0 1.3×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.18: Goal recognition with sequential observations in 360s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.52 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 1.06 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 6 4.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 333.81 333.69 333.95 333.84 334.02 2.75 1.39 0.8 0.62 0.52 86.76 73.93 56.12 34.16 20.28 274.73 233.95 140.99 49.58 30.68 131.92 95.17 93.54 93.33 86.64 240.42 180.3 44.66 11.45 11.43
Q 0.06 0.06 0.06 0.06 0.06 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.26 1.26 1.26 1.26 1.26 1 1 1 1 1.13 6.06 6.66 6.66 6.66 6.66 1.6 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 0.13 0.13 0.13 0.13 0.13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.085 0.076 0.062 0.038 0.035 0 0 0 0 0 1×10−3 0 0 0 0 0 4×10−6 1.7×10−3 3.2×10−4 0 1.8×10−4 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 280.91 280.89 280.89 280.89 285.22 0.6 0.53 0.44 0.41 0.37 81.35 49.05 37.94 19.16 12.03 3.35 2.63 2.39 2.19 2.02 0.42 0.36 0.34 0.32 2.7 5.51 5.04 4.58 4.4 4.49
Q 0.06 0.06 0.06 0.06 0 1 1 1 0.8 0.73 0.86 0.86 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1.4 1.4 1.4 1.4 1.46 1 1 1 1.06 1.06 5.46 5.46 6.06 6.66 6.66 16.66 11.26 2 2.46 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 0.26 0.26 0.26 0.26 0.26 1 1 1 0.8 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 0.73 0.73 0.73 0.73 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.085 0.076 0.064 0.04 0.038 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 1.6×10−3 1×10−3 1×10−3 0 0 6×10−6 0.017 0.027 0.043 0 1×10−3 7.4×10−4 5×10−3 0.037 0 1.3×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.19: Goal recognition with sequential observations in 1800s

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

LAMA

T 1596.43 1471.80 1263.15 1085.34 1037.39 2.8 1.39 0.8 0.62 0.51 110.11 69.85 56.61 32.84 20.21 1302.52 551.54 213.17 104.16 55.12 357.29 164.37 133.43 107.19 97.92 772.77 400.97 50.44 11.43 11.45
Q 0.73 0.73 0.86 0.93 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.13 2.86 11 13.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

Q20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 1 1
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

d 0.026 0.021 5×10−3 2.1×10−3 1.1×10−3 0 0 0 0 0 0 0 0 0 0 0 0 3.6×10−5 0 0 1.8×10−4 0 0 0 0 0 0 0 0 0
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LAMAG

T 860.44 846.22 825.27 817.13 785.3 0.62 0.54 0.44 0.41 0.37 84.9 47.99 36.36 19.21 11.76 3.35 2.63 2.4 2.19 2.02 0.42 0.36 0.34 0.32 2.69 5.53 5.05 4.57 4.39 4.49
Q 0.66 0.86 0.6 0.4 0.46 1 1 1 0.8 0.73 1 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 0.8 0.4 0.46 0.46
S 1 1.53 1.6 3.73 5.86 1 1 1 1.06 1.06 6.66 6.66 6.66 6.66 6.66 16.66 10 1.86 2.33 5 1.53 1.13 1 1.4 1.66 1 1.2 1.8 2.93 2.93

Q20 1 1 1 1 1 1 1 1 0.8 0.73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.66 0.6 0.66
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86

d 0.026 0.018 0.028 0.017 0.016 3×10−6 4.8×10−4 5.9×10−3 0.138 0.23 0 0 0 0 0 8×10−6 0.013 0.026 0.041 0 1×10−3 7.4×10−4 5×10−3 0.037 0 1.3×10−3 0.045 0.07 0.063 0.063
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table A.20: Goal recognition with sequential observations for relaxed plan heuris-
tics

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

has

T 0.43 0.39 0.39 0.36 0.36 0.05 0.04 0.03 0.03 0.03 0.42 0.32 0.28 0.25 0.24 0.47 0.32 0.3 0.26 0.26 0.06 0.05 0.05 0.04 0.04 0.35 0.32 0.3 0.31 0.3
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
S 20.26 20.26 20.26 20.26 20.26 2 2 2 2 2 6.66 6.66 6.66 6.66 6.66 16.66 16.06 16.66 16.66 16.66 3 3 3 3 3 15 15 14.8 14.66 14.66

Q20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93
Q50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.93 0.93

d 0.086 0.08 0.055 0.031 0.031 0.466 0.466 0.495 0.347 0.347 0.252 0.238 0.208 0.132 0.126 0.117 0.117 0.114 0.071 0.07 0.414 0.407 0.274 0.216 0.216 0.115 0.11 0.093 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpT

T 1 1.12 1.23 1.41 1.44 0.27 0.32 0.34 0.38 0.41 112.2 116.52 118.15 120.2 120.9 0.88 0.49 0.3 0.2 0.21 0.26 0.19 0.16 0.13 0.13 0.88 0.98 1.15 1.25 1.25
Q 0.86 0.73 0.66 0.26 0.2 1 1 1 1 0.93 1 0.93 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.86 0.53 0.33 0.33
S 2.33 3.86 3.26 4.33 5.66 1 1 1 1 1.13 1 1.6 1.53 2.4 3.4 1 5.46 9.06 4.8 5.13 1 1.53 1.53 1 1 1 1.33 2.06 2.33 2.33

Q20 0.86 0.73 0.66 0.46 0.46 1 1 1 1 0.93 1 1 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.93 0.73 0.8 0.8
Q50 0.93 1 1 0.93 1 1 1 1 1 0.93 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 0.93 0.73 0.86 0.86

d 0.017 0.03 0.044 0.04 0.021 2×10−6 1.8×10−4 1.4×10−3 0.024 0.133 0.25 0.21 0.193 0.143 0.053 0 0.042 0.085 0.072 4.4×10−3 6×10−4 0.436 0.361 0.164 0.183 4.88×10−4 0.026 0.061 0.05 0.05
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpET

T 6.00 4.4 3.64 3.64 3.61 0.31 0.36 0.39 0.42 0.44 125.25 126.61 127.25 129.48 129.93 1.29 0.9 0.72 0.63 0.63 0.28 0.22 0.18 0.16 0.16 7.61 3.72 2.81 2.83 2.83
Q 0.93 0.73 0.6 0.26 0.2 1 1 1 1 0.93 1 0.93 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.53 0.33 0.33
S 3.66 1.4 2.06 4.33 5.66 1 1 1 1 1.13 1.06 1.66 1.53 2.4 3.4 1 5.46 9.06 4.8 5.13 1 1.53 1.53 1 1 1 1.26 2.06 2.26 2.26

Q20 0.93 0.73 0.66 0.46 0.46 1 1 1 1 0.93 1 1 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.73 0.73 0.8 0.8
Q50 1 0.86 1 0.93 1 1 1 1 1 0.93 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 1 0.73 0.86 0.86

d 0.016 0.026 0.046 0.04 0.021 2×10−6 1.8×10−4 1.5×10−3 0.023 0.133 0.25 0.21 0.193 0.143 0.053 0 0.042 0.085 0.072 4.4×10−3 6×10−4 0.436 0.361 0.164 0.183 7.58×10−4 0.038 0.061 0.044 0.044
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpT

T 0.76 0.59 0.61 0.75 0.78 0.23 0.24 0.26 0.25 0.27 33.03 33.42 34.14 35.44 36.03 0.88 0.49 0.3 0.19 0.19 0.25 0.19 0.15 0.12 0.12 0.8 0.54 0.46 0.49 0.49
Q 1 1 0.73 0.2 0.13 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.6 0.2 0.4 0.4
S 1 11.6 5.66 3.66 5.53 1 1.2 1 1.26 1.33 1 1.53 1.6 2.4 3.66 1 5.46 9.06 4.8 5.13 1 1.93 1.93 1.66 1.66 1 3.86 1.46 2.2 2.2

Q20 1 1 0.73 0.46 0.33 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.66 0.26 0.6 0.6
Q50 1 1 1 0.73 0.66 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.8 0.4 0.73 0.73

d 4.4×10−3 0.041 0.04 0.048 0.038 2×10−6 0.1 3.6×10−3 0.158 0.092 0.25 0.211 0.196 0.137 0.048 0 0.042 0.085 0.072 4.4×10−3 1.6×10−4 0.248 0.22 0.094 0 1.9×10−3 0.058 0.087 0.06 0.06
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpET

T 6.45 3.64 2.85 2.35 2.32 0.27 0.27 0.3 0.28 0.3 137.71 52.39 46.36 45.28 45.14 1.29 0.9 0.72 0.61 0.62 0.28 0.21 0.18 0.15 0.15 6.91 5.83 2.32 2.04 2.04
Q 1 0.73 0.53 0.2 0.13 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.6 0.33 0.4 0.4
S 1.06 1.4 2 3.6 5.53 1 1.2 1 1.26 1.33 1.13 1.53 1.4 2.4 3.66 1 5.46 9.06 4.8 5.13 1 1.93 1.93 1.66 1.66 1 2 1.66 2.2 2.2

Q20 1 0.73 0.6 0.46 0.33 1 1 1 1 1 1 1 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.73 0.46 0.6 0.6
Q50 1 0.93 0.73 0.73 0.66 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.8 0.73 0.73 0.73

d 1.1×10−3 0.03 0.042 0.05 0.038 2×10−6 0.1 3.6×10−3 0.158 0.092 0.25 0.211 0.187 0.135 0.048 0 0.042 0.085 0.072 4.4×10−3 1.6×10−4 0.248 0.22 0.094 0 2.6×10−3 0.047 0.074 0.06 0.06
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp T

T 0.65 0.41 0.36 0.33 0.33 0.21 0.17 0.17 0.17 0.17 18.01 17.22 16.99 16.73 16.53 0.44 0.26 0.17 0.08 0.08 0.13 0.09 0.08 0.06 0.06 0.67 0.41 0.25 0.17 0.17
Q 1 1 0.8 0.2 0.06 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.33 0.06 0.33 0.33
S 1 14 8.93 4.13 1.86 1 1.4 1.2 1 1 1 2.2 1.73 2.46 3.53 16.66 12.4 2.26 2.26 2.26 2.06 1.53 1.53 1 1 1.2 2 1.46 3 3

Q20 1 1 0.8 0.6 0.46 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.53 0.2 0.33 0.33
Q50 1 1 0.8 0.66 0.53 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.86 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.93 0.6 0.4 0.66 0.66

d 4.4×10−3 0.053 0.046 0.048 0.048 2×10−6 0.2 0.238 0.375 0.218 0.25 0.197 0.198 0.14 0.054 0.117 0.115 0.113 0.105 0.051 0.435 0.373 0.331 0.103 0.155 0.05 0.095 0.105 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp ET

T 8.59 4.62 3.09 1.09 0.45 0.27 0.23 0.21 0.17 0.17 136.64 74.08 46.45 22.60 18.48 0.49 0.31 0.21 0.13 0.13 0.14 0.1 0.08 0.07 0.07 3.75 4.38 3.29 0.26 0.26
Q 0.06 0.13 0.2 0.2 0.06 0.66 0.66 0.66 0.4 0.4 0.86 0.86 0.86 0.86 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.33 0.8 0.66 0.33 0.33
S 1.66 1.46 2.6 3.4 1.86 1.2 1.2 1.4 1 1 4.46 5.73 4.66 3.73 3.53 16.66 12.4 2.26 2.26 2.26 2.06 1.53 1.53 1 1 2.46 9.66 10.66 3 3

Q20 0.26 0.2 0.26 0.46 0.46 0.66 0.66 0.66 0.4 0.4 0.93 0.86 0.86 0.86 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.4 0.8 0.73 0.33 0.33
Q50 0.6 0.53 0.53 0.53 0.53 0.66 0.66 0.66 0.4 0.4 0.93 0.86 0.86 0.86 0.86 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.46 0.8 0.86 0.66 0.66

d 0.083 0.08 0.071 0.051 0.048 0.438 0.466 0.404 0.375 0.218 0.054 0.017 0.031 0.047 0.054 0.117 0.115 0.113 0.105 0.051 0.435 0.373 0.331 0.103 0.155 0.114 0.108 0.091 0.068 0.068
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrp

T 1 1.12 1.22 1.41 1.45 0.27 0.32 0.34 0.38 0.41 112.45 117.33 118.13 119.76 120.72 0.88 0.49 0.3 0.2 0.2 0.26 0.19 0.16 0.13 0.13 0.88 1.01 1.19 1.26 1.27
Q 0.86 0.73 0.66 0.26 0.2 1 1 1 1 0.93 1 0.93 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.66 0.33 0.53 0.53
S 2.33 3.86 3.26 4.33 5.66 1 1 1 1 1.13 1 1.53 1.86 2.53 3.4 1 5.46 9.06 4.8 5.13 1 1.53 1.53 1 1 1 1.66 2.53 2.86 2.86

Q20 0.86 0.73 0.66 0.46 0.46 1 1 1 1 0.93 1 1 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.53 0.86 0.86
Q50 0.93 1 1 0.93 1 1 1 1 1 0.93 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.86 0.86

d 0.017 0.03 0.044 0.04 0.021 2×10−6 1.8×10−4 1.4×10−3 0.024 0.133 0.25 0.21 0.193 0.143 0.053 0 0.042 0.085 0.072 4.4×10−3 6×10−4 0.436 0.361 0.164 0.183 4.88×10−4 0.051 0.08 0.026 0.026
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIrpE

T 6.04 4.35 3.63 3.63 3.59 0.31 0.37 0.39 0.42 0.44 126.60 127.23 127.41 128.86 130.02 1.29 0.9 0.72 0.63 0.63 0.28 0.22 0.18 0.16 0.16 7.73 3.12 2.81 2.82 2.82
Q 0.93 0.73 0.6 0.26 0.2 1 1 1 1 0.93 1 0.93 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.73 0.26 0.53 0.53
S 3.66 1.4 2.06 4.33 5.66 1 1 1 1 1.13 1 1.53 1.86 2.53 3.4 1 5.46 9.06 4.8 5.13 1 1.53 1.53 1 1 1 1.66 1.8 2.86 2.86

Q20 0.93 0.73 0.66 0.46 0.46 1 1 1 1 0.93 1 1 0.93 0.93 0.8 1 1 1 1 1 1 0.26 0.26 0.26 0.26 1 0.8 0.46 0.86 0.86
Q50 1 0.86 1 0.93 1 1 1 1 1 0.93 1 1 1 1 0.8 1 1 1 1 1 1 1 1 1 1 1 0.86 0.6 0.86 0.86

d 0.016 0.026 0.046 0.04 0.021 2×10−6 1.8×10−4 1.5×10−3 0.023 0.133 0.25 0.21 0.193 0.143 0.053 0 0.042 0.085 0.072 4.4×10−3 6×10−4 0.436 0.361 0.164 0.183 7.58×10−4 0.051 0.073 0.026 0.026
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rp

T 0.85 0.6 0.61 0.75 0.78 0.23 0.24 0.27 0.25 0.27 33.27 33.74 34.36 35.50 36.11 0.93 0.49 0.3 0.19 0.19 0.26 0.19 0.15 0.12 0.12 0.9 0.4 0.45 0.5 0.5
Q 1 1 0.73 0.2 0.13 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.53 0.4 0.66 0.66
S 1 11.6 5.66 3.66 5.53 1 1.2 1 1.26 1.33 1 1.53 1.86 2.53 3.66 1 5.46 9.06 4.8 5.13 1 1.93 1.93 1.66 1.66 1 5.8 2.66 4 4

Q20 1 1 0.73 0.46 0.33 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.6 0.4 0.66 0.66
Q50 1 1 1 0.73 0.66 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.66 0.53 0.8 0.8

d 4.4×10−3 0.041 0.04 0.048 0.038 2×10−6 0.1 3.6×10−3 0.158 0.092 0.25 0.211 0.196 0.137 0.048 0 0.042 0.085 0.072 4.4×10−3 1.6×10−4 0.248 0.22 0.094 0 1.9×10−3 0.083 0.08 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+
rpE

T 6.46 3.66 2.85 2.35 2.31 0.29 0.27 0.3 0.28 0.3 138.71 52.95 46.69 45.37 45.32 1.31 0.9 0.72 0.61 0.62 0.28 0.21 0.18 0.15 0.15 7.59 5.22 2.03 2.07 2.07
Q 1 0.73 0.53 0.2 0.13 1 1 1 1 1 1 0.93 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.6 0.4 0.66 0.66
S 1.06 1.4 2 3.6 5.53 1 1.2 1 1.26 1.33 1 1.53 1.86 2.53 3.66 1 5.46 9.06 4.8 5.13 1 1.93 1.93 1.66 1.66 1 3 2.06 4 4

Q20 1 0.73 0.6 0.46 0.33 1 1 1 1 1 1 1 0.93 0.93 0.86 1 1 1 1 1 1 1 1 1 1 1 0.73 0.4 0.66 0.66
Q50 1 0.93 0.73 0.73 0.66 1 1 1 1 1 1 1 0.93 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.8 0.46 0.8 0.8

d 1.1×10−3 0.03 0.042 0.05 0.038 2×10−6 0.1 3.6×10−3 0.158 0.092 0.25 0.211 0.187 0.135 0.048 0 0.042 0.085 0.072 4.4×10−3 1.6×10−4 0.248 0.22 0.094 0 2.6×10−3 0.061 0.081 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp

T 0.65 0.42 0.41 0.35 0.39 0.21 0.18 0.25 0.18 0.2 18.33 17.31 17.03 16.84 16.58 0.44 0.29 0.18 0.09 0.09 0.13 0.11 0.08 0.07 0.07 0.67 0.31 0.19 0.22 0.26
Q 1 1 0.8 0.2 0.06 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.4 0.33 0.33 0.33
S 1 14 8.93 4.13 1.86 1 1.4 1.2 1 1 1 2.2 1.73 2.46 3.53 16.66 12.4 2.26 2.26 2.26 2.06 1.53 1.53 1 1 1.2 3.86 1.6 2.86 2.86

Q20 1 1 0.8 0.6 0.46 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.8 0.46 0.4 0.33 0.33
Q50 1 1 0.8 0.66 0.53 1 1 0.73 0.4 0.4 1 1 0.93 0.93 0.86 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.93 0.53 0.6 0.8 0.8

d 4.4×10−3 0.053 0.046 0.048 0.048 2×10−6 0.2 0.238 0.375 0.218 0.25 0.197 0.198 0.14 0.054 0.117 0.115 0.113 0.105 0.051 0.435 0.373 0.331 0.103 0.155 0.05 0.103 0.091 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRFFrp E

T 8.58 5.17 3.09 1.1 0.45 0.27 0.25 0.21 0.17 0.17 136.89 74.76 46.55 22.72 18.56 0.49 0.31 0.22 0.13 0.13 0.14 0.1 0.08 0.07 0.07 3.78 4.79 2.26 0.26 0.26
Q 0.06 0.13 0.2 0.2 0.06 0.66 0.66 0.66 0.4 0.4 0.33 0.26 0.46 0.66 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.33 0.86 0.73 0.33 0.33
S 1.66 1.46 2.6 3.4 1.86 1.2 1.2 1.4 1 1 1.66 1.53 1.8 2.53 3.53 16.66 12.4 2.26 2.26 2.26 2.06 1.53 1.53 1 1 2.46 10 8.93 2.86 2.86

Q20 0.26 0.2 0.26 0.46 0.46 0.66 0.66 0.66 0.4 0.4 0.4 0.33 0.53 0.66 0.8 1 0.73 0.13 0.13 0.13 0.53 0.53 0.53 0.53 0.53 0.4 0.86 0.8 0.33 0.33
Q50 0.6 0.53 0.53 0.53 0.53 0.66 0.66 0.66 0.4 0.4 0.66 0.6 0.66 0.8 0.86 1 0.73 0.6 0.6 0.6 1 1 1 1 1 0.46 0.86 0.93 0.8 0.8

d 0.083 0.08 0.071 0.051 0.048 0.438 0.466 0.404 0.375 0.218 0.067 0.04 0.047 0.054 0.054 0.117 0.115 0.113 0.105 0.051 0.435 0.373 0.331 0.103 0.155 0.114 0.11 0.088 0.067 0.067
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



204 APPENDIX A. EXTENDED EXPERIMENTAL RESULTS FOR GOAL RECOGNITION

Table A.21: Goal recognition with sequential observations in FGR given the time-
step

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

FGRIT

T 1 1.12 1.22 1.41 1.44 0.27 0.32 0.34 0.38 0.41 112.26 117.05 118.43 120.41 121.15 0.88 0.49 0.3 0.2 0.2 0.26 0.19 0.16 0.13 0.13 0.88 0.99 1.15 1.25 1.25
Q 1 0.86 0.8 0.2 0.06 1 1 1 1 1 1 1 1 0.86 1 1 0.93 0.93 1 1 1 1 1 1 0.73 1 0.86 0.73 0.6 0.6
S 1.06 3.73 2.46 2.06 1.46 1 1 1 1 1.13 1 1.93 2.13 2.73 4.46 1 1 1 1.2 5 1 1 1 1.4 1.4 1 1.13 1.73 2.8 2.8

Q20 1 0.93 0.93 0.46 0.33 1 1 1 1 1 1 1 1 0.86 1 1 1 0.93 1 1 1 1 1 1 0.73 1 0.93 0.8 0.73 0.73
Q50 1 0.93 0.93 0.8 0.66 1 1 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.86 0.86 0.86

d 1.1×10−3 0.024 0.028 0.021 0.015 2×10−6 1.8×10−4 1.4×10−3 0.022 0.14 0.218 0.188 0.155 0.094 0.03 1.6×10−5 4.3×10−3 3×10−3 1.64×10−4 0 6.6×10−5 6.1×10−3 0.026 0.034 0.06 5.8×10−4 0.022 0.061 0.046 0.046
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIET

T 12.74 5.91 4.42 3.63 3.59 0.39 0.39 0.4 0.42 0.44 132.34 128.18 127.55 129.55 130.8 1.29 0.9 0.72 0.63 0.64 0.28 0.22 0.18 0.16 0.16 8.53 4.36 3.02 2.83 2.83
Q 0.93 0.86 0.8 0.2 0.06 1 1 1 1 1 1 1 1 0.86 1 1 0.93 0.93 1 1 1 1 1 1 0.73 0.86 0.66 0.66 0.6 0.6
S 1.06 1.4 1.33 2 1.4 1 1 1 1 1.13 1 1.93 2.13 2.73 4.46 1 1 1 1.2 5 1 1 1 1.4 1.4 1.13 1.4 1.8 2.8 2.8

Q20 1 0.93 0.93 0.4 0.13 1 1 1 1 1 1 1 1 0.86 1 1 1 0.93 1 1 1 1 1 1 0.73 0.86 0.8 0.8 0.73 0.73
Q50 1 0.93 1 0.86 0.66 1 1 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.86 0.86 0.86

d 7.4×10−3 0.023 0.021 0.014 0.011 1×10−6 6.8×10−5 6.18×10−4 0.022 0.14 0.217 0.185 0.152 0.086 0.03 1.6×10−5 4.3×10−3 3×10−3 1.64×10−4 0 6.6×10−5 6.1×10−3 0.026 0.034 0.06 0.017 0.054 0.068 0.045 0.045
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+T

T 0.76 0.59 0.61 0.75 0.78 0.23 0.24 0.26 0.25 0.27 32.93 33.4 34.13 35.29 36.03 0.88 0.49 0.3 0.19 0.19 0.25 0.19 0.15 0.12 0.12 0.8 0.54 0.46 0.49 0.49
Q 1 0.93 0.66 0.46 0.4 1 1 1 1 1 1 1 1 1 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.66 0.46 0.53 0.53
S 1 11.53 5 1.66 1.6 1 1.2 1 1.2 1.2 1 2 2.86 4.4 4.2 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1 2 1.86 3 3

Q20 1 0.93 0.86 0.8 0.66 1 1 1 1 1 1 1 1 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.73 0.46 0.6 0.6
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 0.86 1 1 1 1 1 1 1 1 1 1 1 0.86 0.66 0.73 0.73

d 4.4×10−3 0.045 0.042 0.05 0.055 2×10−6 0.1 9.37×10−4 0.126 0.093 0.25 0.2 0.176 0.101 0.056 0.011 0.034 0.043 0.055 0.018 1.79×10−4 1×10−6 1×10−6 1×10−6 0 7.5×10−4 0.042 0.075 0.053 0.053
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+ET

T 6.42 3.64 2.84 2.35 2.31 0.27 0.27 0.3 0.28 0.3 141.52 52.44 46.32 45.30 45.28 1.28 0.9 0.72 0.61 0.62 0.28 0.21 0.18 0.15 0.15 6.92 5.82 2.31 2.04 2.04
Q 1 0.73 0.53 0.46 0.4 1 1 1 1 1 1 1 1 1 0.86 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.73 0.53 0.53 0.53
S 1.06 1.26 1.33 1.66 1.6 1 1.2 1 1.2 1.2 1.46 2.53 3.4 4.4 4.2 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1.13 1.26 2 2.86 2.86

Q20 1 0.93 0.8 0.8 0.66 1 1 1 1 1 1 1 1 1 0.86 1 1 1 1 1 1 1 1 1 1 0.86 1 0.6 0.6 0.6
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 1 1 1 0.86 1 1 1 1 1 1 1 1 1 1 1 1 0.86 0.73 0.73

d 0.012 0.034 0.043 0.045 0.055 2×10−6 0.1 9.37×10−4 0.126 0.093 0.186 0.186 0.15 0.088 0.056 0.011 0.034 0.043 0.055 0.018 1.79×10−4 1×10−6 1×10−6 1×10−6 0 0.016 0.04 0.068 0.053 0.053
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table A.22: Goal recognition with sequential observations in FGR not given the
time-step

Domain Blocks Campus Grid Intrusion Kitchen Logistics
Approach %O 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10 100 70 50 30 10

HSP∗f

T 908.52 677.66 612.36 432.56 321.31 1.77 1.03 0.66 0.45 0.27 259.53 164.18 121.34 87.53 33.94 591.93 147.18 40.68 7.21 1.38 694.32 178.74 105.86 57.87 37.56 63.54 51.24 20.34 9.46 9.47
Q 1 1 1 0.66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.46 0.33 0.33
S 1.06 2.2 3.13 8.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.4 1 1.13 1.46 1.46 1.46

gHSP∗f

T 531.02 427.78 402.37 369.21 358.32 0.94 0.58 0.41 0.31 0.23 119.23 82.18 64.6 50.97 40.64 450.05 113.91 29.56 4.56 1.24 256.74 64.89 52.46 38.93 32.49 36.3 32.48 14.82 7.05 7.04
Q 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.66 0.8 0.8
S 1.06 2.2 3.13 11.86 14.73 1 1 1 1 1.13 6.66 6.66 6.66 6.66 6.66 1 1 1.06 1.2 5 1 1 1 1.4 1.66 1 1.13 2.26 3.6 3.6

FGRI

T 1 1.12 1.22 1.41 1.44 0.27 0.32 0.34 0.38 0.41 112.84 116.80 118.43 119.85 120.59 0.88 0.5 0.3 0.2 0.2 0.26 0.19 0.16 0.13 0.13 0.88 1.01 1.18 1.26 1.26
Q 1 0.86 0.8 0.2 0.06 1 1 1 1 1 1 0.8 0.86 0.8 1 1 0.93 0.93 1 1 1 1 1 1 0.73 1 0.86 0.53 0.6 0.6
S 1.06 3.73 2.46 2.06 1.46 1 1 1 1 1.13 1 1.4 1.53 2.4 4.46 1 1 1 1.2 5 1 1 1 1.4 1.4 1 1.26 1.6 2.46 2.46

Q20 1 0.93 0.93 0.46 0.33 1 1 1 1 1 1 0.93 0.86 0.8 1 1 1 0.93 1 1 1 1 1 1 0.73 1 0.93 0.66 0.73 0.73
Q50 1 0.93 0.93 0.8 0.66 1 1 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 1 0.93 0.8 0.86 0.86

d 1.1×10−3 0.024 0.028 0.021 0.015 2×10−6 1.8×10−4 1.4×10−3 0.022 0.14 0.218 0.19 0.16 0.096 0.03 1.6×10−5 4.3×10−3 3×10−3 1.64×10−4 0 6.6×10−5 6.1×10−3 0.026 0.034 0.06 5.8×10−4 0.025 0.073 0.043 0.043
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGRIE

T 12.6 5.98 4.4 3.63 3.58 0.39 0.39 0.4 0.42 0.44 133.03 128.05 127.42 129.38 129.83 1.28 0.91 0.72 0.63 0.63 0.28 0.21 0.18 0.16 0.16 8.51 3.58 3.08 2.82 2.82
Q 0.93 0.86 0.8 0.2 0.06 1 1 1 1 1 1 0.8 0.86 0.8 1 1 0.93 0.93 1 1 1 1 1 1 0.73 0.86 0.66 0.6 0.6 0.6
S 1.06 1.4 1.33 2 1.4 1 1 1 1 1.13 1 1.4 1.53 2.4 4.46 1 1 1 1.2 5 1 1 1 1.4 1.4 1.13 1.26 1.73 2.46 2.46

Q20 1 0.93 0.93 0.4 0.13 1 1 1 1 1 1 0.93 0.86 0.8 1 1 1 0.93 1 1 1 1 1 1 0.73 0.86 0.8 0.66 0.73 0.73
Q50 1 0.93 1 0.86 0.66 1 1 1 1 1 1 1 1 0.93 1 1 1 1 1 1 1 1 1 1 1 0.93 1 0.73 0.86 0.86

d 7.4×10−3 0.023 0.021 0.014 0.011 1×10−6 6.8×10−5 6.18×10−4 0.022 0.14 0.217 0.186 0.156 0.09 0.03 1.6×10−5 4.3×10−3 3×10−3 1.64×10−4 0 6.6×10−5 6.1×10−3 0.026 0.034 0.06 0.017 0.043 0.072 0.042 0.042
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+

T 0.76 0.59 0.61 0.75 0.78 0.23 0.24 0.27 0.25 0.27 33.33 33.54 34.34 35.48 36.00 0.88 0.49 0.3 0.19 0.19 0.25 0.19 0.15 0.12 0.12 0.81 0.4 0.44 0.5 0.5
Q 1 0.93 0.66 0.46 0.4 1 1 1 1 1 1 0.73 0.73 0.66 0.66 1 1 0.93 0.93 0.93 1 1 1 1 1 1 0.53 0.46 0.6 0.6
S 1 11.53 5 1.66 1.6 1 1.2 1 1.2 1.2 1 1.53 1.66 2 2.2 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1 3 2.13 2.93 2.93

Q20 1 0.93 0.86 0.8 0.66 1 1 1 1 1 1 0.73 0.8 0.66 0.66 1 1 1 1 1 1 1 1 1 1 1 0.6 0.6 0.66 0.66
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.93 0.86 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 0.66 0.73 0.8 0.8

d 4.4×10−3 0.045 0.042 0.05 0.055 2×10−6 0.1 9.37×10−4 0.126 0.093 0.25 0.2 0.181 0.108 0.064 0.011 0.034 0.043 0.055 0.018 1.79×10−4 1×10−6 1×10−6 1×10−6 0 7.5×10−4 0.071 0.077 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

FGR+E

T 7.31 3.66 3.07 2.62 2.57 0.29 0.27 0.3 0.32 0.32 139.81 52.91 46.51 45.48 45.36 1.37 0.9 0.8 0.8 0.7 0.32 0.21 0.2 0.15 0.15 7.31 5.21 2.14 2.41 2.21
Q 1 0.73 0.53 0.46 0.4 1 1 1 1 1 0.73 0.73 0.6 0.66 0.66 1 1 0.93 0.93 0.93 1 1 1 1 1 0.86 0.73 0.53 0.6 0.6
S 1.06 1.26 1.33 1.66 1.6 1 1.2 1 1.2 1.2 1.2 1.66 1.73 2 2.2 1 1 1.2 1.06 3.66 1 1 1 1.4 1.66 1.13 1.26 1.8 2.93 2.93

Q20 1 0.93 0.8 0.8 0.66 1 1 1 1 1 0.73 0.73 0.6 0.66 0.66 1 1 1 1 1 1 1 1 1 1 0.86 1 0.6 0.66 0.66
Q50 1 1 0.86 0.86 0.86 1 1 1 1 1 1 0.93 0.86 0.86 0.73 1 1 1 1 1 1 1 1 1 1 1 1 0.86 0.8 0.8

d 0.012 0.034 0.043 0.045 0.055 2×10−6 0.1 9.37×10−4 0.126 0.093 0.19 0.188 0.155 0.095 0.064 0.011 0.034 0.043 0.055 0.018 1.79×10−4 1×10−6 1×10−6 1×10−6 0 0.016 0.04 0.071 0.052 0.052
Solve 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



Appendix B

ISS Crew Activities Domain
Definition

(define (domain ISS-CAD)

(:requirements :strips :typing :negative-preconditions :action-costs)

(:types crew module system component tool)

(:constants cdr fe1 fe2 fe3 - crew

Harmony Columbus Destiny Kibo Unity Leonardo Tranquility - module

wrs ars stw galley she fdss epm mares hrf pfs ared cevis colbert altea

padles - system

food-warmer toilet filter distiller sensor cdl meemm ultrasound crew-laptop

breathing-equipment torso sck laptop slammd helmet treadmill - component

battery anemometer hygrometer tool-box headlight vacuum-cleaner utensils food

cleaning-products holter dosimeter spectrometer catheter sphygmomanometer

pulse-oximeter stethoscope electroencephalograph - tool

(:predicates (connected ?m1 ?m2 - module)

(at ?c - crew ?m - module)

(taken ?t - tool ?c - crew)

(available ?t - tool ?m - module)

(taken-replacement ?t - component ?c - crew)

(replacement-in ?t - component ?m - module)

(on ?c - component ?s - system ?m - module)

(enable ?c - component ?s - system ?m - module)

(in ?c - component ?s - system ?m - module)

(inspected ?cp - component ?s - system ?m - module ?c - crew)

(replaced ?cp - component ?s - system ?m - module ?c - crew)

(airflow-cleaned ?c - crew)
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(airflow-measured ?c - crew)

(humidity-measured ?c - crew)

(wrs-repaired ?c - crew)

(wrs-inspected ?c - crew)

(fdss-inspected ?m - module ?c - crew)

(fdss-repaired ?m - module ?c - crew)

(vacuumed ?m - module ?c - crew)

(food-heated ?c - crew)

(toilet-cleaned ?c - crew)

(food-eaten ?c - crew)

(heart-rate-measured ?c - crew)

(blood-pressure-measured ?c - crew)

(brain-activity-measured ?c - crew)

(muscle-measured ?c - crew)

(skeletal-measure ?c - crew)

(tD-image ?c - crew)

(mass-measured ?c - crew)

(breath-stream-analyzed ?c - crew)

(radiation-measured ?cr - crew)

(high-pressure-calibrated ?cr - crew)

(resistive-exercise-done ?c - crew)

(aerobic-exercise-done ?c - crew)

(brain-radiation-measured ?c - crew)

(body-radiation-measured ?c - crew)

(health-checked ?c - crew)

(oxygen-measured ?c - crew)

(brain-wavees-measured ?c - crew)

(health-data-sent ?c - crew)

(:functions (total-cost))

(:action move

:parameters (?c - crew ?m1 ?m2 - module)

:precondition (and (at ?c ?m1) (connected ?m1 ?m2))

:effect (and (not (at ?c ?m1)) (at ?c ?m2) (increase (total-cost) 1)))

(:action get

:parameters (?t - tool ?m - module ?c - crew)
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:precondition (and (available ?t ?m) (at ?c ?m))

:effect (and (taken ?t ?c) (not (available ?t ?m)) (increase (total-cost) 20)))

(:action put-away

:parameters (?t - tool ?m - module ?c - crew)

:precondition (and (at ?c ?m) (taken ?t ?c) (not (available ?t ?m)))

:effect (and (not (taken ?t ?c)) (available ?t ?m) (increase (total-cost) 20)))

(:action get-replacement

:parameters (?t - component ?c - crew)

:precondition (and (at ?c Leonardo) (replacement-in ?t Leonardo))

:effect (and (taken-replacement ?t ?c) (increase (total-cost) 20)))

(:action power-up

:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (at ?c ?m) (not (on ?o ?s ?m)) (in ?o ?s ?m))

:effect (and (on ?o ?s ?m) (increase (total-cost) 10)))

(:action power-off

:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (at ?c ?m) (on ?o ?s ?m) (in ?o ?s ?m))

:effect (and (not (on ?o ?s ?m)) (increase (total-cost) 10)))

;; SPACECRAFT MAINTENANCE

(:action repair-component

:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (taken headlight ?c) (taken tool-box ?c) (at ?c ?m)

(in ?o ?s ?m) (not (enable ?o ?s ?m)) (not (on ?o ?s ?m)))

:effect (and (enable ?o ?s ?m) (increase (total-cost) 25)))

(:action replace-component

:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (taken headlight ?c) (taken tool-box ?c) (at ?c ?m)

(taken-replacement ?o ?c) (in ?o ?s ?m) (not (on ?o ?s ?m)))

:effect (and (replaced ?o ?s ?m ?c) (not(taken-replacement ?o ?c))

(increase (total-cost) 20)))

(:action inspect-component
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:parameters (?o - component ?s - system ?m - module ?c - crew)

:precondition (and (in ?o ?s ?m) (not (on ?o ?s ?m)) (at ?c ?m) (taken headlight ?c)

(taken tool-box ?c))

:effect (and (inspected ?o ?s ?m ?c) (increase (total-cost) 10)))

;; LAB EXPERIMENTS

(:action body-oxygen-monitoring

:parameters (?c - crew)

:precondition (and (taken pulse-oximeter ?c))

:effect (and (oxygen-measured ?c) (increase (total-cost) 10)))

(:action brain-monitoring

:parameters (?c - crew)

:precondition (and (taken electroencephalograph ?c))

:effect (and (brain-wavees-measured ?c) (increase (total-cost) 10)))

(:action health-monitoring

:parameters (?c - crew)

:precondition (and (oxygen-measured ?c) (blood-pressure-measured ?c)

(heart-rate-measured ?c) (brain-wavees-measured ?c))

:effect (and (health-checked ?c)))

(:action send-health-data

:parameters (?c - crew)

:precondition (and (at ?c Kibo) (on laptop padles Kibo) (health-checked ?c))

:effect (and (health-data-sent ?c) (increase (total-cost) 30)))

;; EPM - European Physiology Module

(:action blood-heart-monitoring

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on cdl epm Columbus))

:effect (and (blood-pressure-measured ?c) (heart-rate-measured ?c)

(increase (total-cost) 50)))

(:action blood-heart-monitoring-holter

:parameters (?c - crew)

:precondition (and (taken holter ?c) (at ?c Kibo))

:effect (and (heart-rate-measured ?c) (blood-pressure-measured ?c)
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(increase (total-cost) 50)))

(:action blood-heart-manual-monitoring

:parameters (?c - crew)

:precondition (and (taken stethoscope ?c) (taken sphygmomanometer ?c))

:effect (and (blood-pressure-measured ?c) (increase (total-cost) 40)))

(:action brain-activity-measuring

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on meemm epm Columbus))

:effect (and (brain-activity-measured ?c) (increase (total-cost) 10)))

;; MARES - Muscle Atrophy Research Exercise System

(:action microgravity-study

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on laptop mares Columbus))

:effect (and (muscle-measured ?c) (skeletal-measure ?c) (increase (total-cost) 15)))

;; HRF - Human Resource Facilicty

(:action sonography

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop hrf Destiny) (on ultrasound hrf Destiny))

:effect (and (tD-image ?c) (increase (total-cost) 15)))

(:action dosimetric-mapping-HRF

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (taken dosimeter ?c) (on laptop hrf Destiny))

:effect (and (radiation-measured ?c) (increase (total-cost) 15)))

(:action high-pressure-calibration-D

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (taken spectrometer ?c) (on laptop hrf Destiny)

(not (on sensor hrf Destiny)))

:effect (and (high-pressure-calibrated ?c) (increase (total-cost) 20)))

(:action high-pressure-calibration-C

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (taken spectrometer ?c) (on laptop pfs Columbus)
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(not (on sensor pfs Columbus)))

:effect (and (high-pressure-calibrated ?c) (increase (total-cost) 20)))

(:action breath-stream-analysis-D

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop hrf Destiny) (on sensor hrf Destiny)

(taken catheter ?c) (high-pressure-calibrated ?c))

:effect (and (breath-stream-analyzed ?c) (increase (total-cost) 15)))

(:action breath-stream-analysis-C

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on laptop pfs Columbus) (on sensor pfs Columbus)

(taken catheter ?c) (high-pressure-calibrated ?c))

:effect (and (breath-stream-analyzed ?c) (increase (total-cost) 15)))

(:action measure-mass

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop hrf Destiny) (on slammd hrf Destiny))

:effect (and (mass-measured ?c) (increase (total-cost) 15)))

;; CEVIS - Cycle Ergometer with Vibration Isolation System

(:action aerobic-exercise

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop cevis Destiny))

:effect (and (aerobic-exercise-done ?c) (increase (total-cost) 10)))

;; COLBERT - Combined Operational Load Bearing External Resistive Exercise Treadmill

(:action resistive-exercise

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop colbert Destiny)

(on treadmill colbert Destiny))

:effect (and (resistive-exercise-done ?c) (increase (total-cost) 10)))

;; ALTEA - Anomalous Long Term Effects in Astronaut’s Central Nervous System

(:action dosimetric-mapping-AD

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on laptop altea Destiny))

:effect (and (radiation-measured ?c) (increase (total-cost) 10)))
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(:action dosimetric-mapping-AC

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on laptop altea Columbus))

:effect (and (radiation-measured ?c) (increase (total-cost) 10)))

(:action measure-brain-radiation-AD

:parameters (?c - crew)

:precondition (and (at ?c Destiny) (on helmet altea Destiny)

(on laptop altea Destiny))

:effect (and (brain-radiation-measured ?c) (brain-activity-measured ?c)

(increase (total-cost) 10)))

(:action measure-brain-radiation-AC

:parameters (?c - crew)

:precondition (and (at ?c Columbus) (on laptop altea Columbus)

(on helmet altea Columbus))

:effect (and (brain-radiation-measured ?c) (brain-activity-measured ?c)

(increase (total-cost) 10)))

;; PADLES - PAssive Dosimeter for Lifescience Experiments in Space

(:action dosimetric-mapping-P

:parameters (?c - crew)

:precondition (and (at ?c Kibo) (on laptop padles Kibo))

:effect (and (radiation-measured ?c) (increase (total-cost) 15)))

(:action measure-body-radiation-P

:parameters (?c - crew)

:precondition (and (at ?c Kibo) (taken dosimeter ?c) (on laptop padles Kibo))

:effect (and (body-radiation-measured ?c) (increase (total-cost) 15)))

;; water control

(:action repair-wrs-distiller

:parameters (?c - crew)

:precondition (and (at ?c Tranquility) (on distiller wrs Tranquility)

(replaced distiller wrs Tranquility ?c))

:effect (and (wrs-repaired ?c)))
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(:action repair-wrs-filter

:parameters (?c - crew)

:precondition (and (at ?c Tranquility) (on filter wrs Tranquility)

(replaced filter wrs Tranquility ?c))

:effect (and (wrs-repaired ?c)))

(:action wrs-inspection

:parameters (?c - crew)

:precondition (and (at ?c Tranquility) (inspected filter wrs Tranquility ?c)

(inspected distiller wrs Tranquility ?c))

:effect (and (wrs-inspected ?c)))

;; airflow levels measure

(:action airflow-measuring

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (taken battery ?c) (taken anemometer ?c))

:effect (and (airflow-measured ?c) (increase (total-cost) 15)))

;; airflow cleaning

(:action airflow-cleaning

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (airflow-measured ?c) (on filter ars ?m)

(replaced filter ars ?m ?c) )

:effect (and (airflow-cleaned ?c) ))

;; fire detector system

(:action fdss-repair-sensor

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (on sensor fdss ?m) (replaced sensor fdss ?m ?c))

:effect (and (fdss-repaired ?m ?c)))

(:action fdss-repair-extinguisher

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (replaced extinguisher fdss ?m ?c))

:effect (and (fdss-repaired ?m ?c)))

(:action fdss-repair-breathing-equipment

:parameters (?c - crew ?m - module)
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:precondition (and (at ?c ?m) (replaced breathing-equipment fdss ?m ?c))

:effect (and (fdss-repaired ?m ?c)))

(:action fdss-inspection

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (inspected sensor fdss ?m ?c)

(inspected extinguisher fdss ?m ?c)

(inspected breathing-equipment fdss ?m ?c))

:effect (and (fdss-inspected ?m ?c)))

;; housekeeping activities

(:action food-warming

:parameters (?c - crew)

:precondition (and (at ?c Unity) (taken food ?c) (enable food-warmer galley Unity))

:effect (and (food-heated ?c) (increase (total-cost) 20)))

(:action eating-snack

:parameters (?c - crew)

:precondition (and (at ?c Unity) (taken food ?c) (taken utensils ?c))

:effect (and (food-eaten ?c) (increase (total-cost) 20)))

(:action eating-meal

:parameters (?c - crew)

:precondition (and (at ?c Unity) (food-heated ?c) (taken utensils ?c))

:effect (and (food-eaten ?c) (increase (total-cost) 20)))

(:action vacuum-module

:parameters (?c - crew ?m - module)

:precondition (and (at ?c ?m) (taken vacuum-cleaner ?c))

:effect (and (vacuumed ?m ?c) (increase (total-cost) 10)))

(:action toilet-cleaning

:parameters (?c - crew)

:precondition (and (at ?c Tranquility) (in toilet she Tranquility)

(taken cleaning-products ?c))

:effect (and (toilet-cleaned ?c) (increase (total-cost) 15)))
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Little, I. and Thiébaux, S. (2007). Probabilistic planning vs replanning. In Proceed-
ings of the ICAPS’07 Workshop on Planning Competitions, Providence, RI, USA.

Long, D. and Fox, M. (2003). Exploiting a Graphplan Framework in Temporal
Planning. In Proceedings of the International Conference on Artificial Intelligence
Planning and Scheduling, Trento, Italy.

McDermott, D. V. (1996). A Heuristic Estimator for Means-Ends Analysis in Plan-
ning. In Proceedings of the International Conference on AI Planning Systems, Edin-
burgh, Scotland.

McDermott, D. V. (1998). PDDL the Planning Domain Definition Language. Tech-
nical report, Yale University, Center for Computational Vision and Control.

Meuleau, N., Plaunt, C., Smith, D. E., and Smith, T. (2009). An emergency landing
planner for damaged aircraft. In Proceedings of the Annual Conference on Innova-
tive Applications of Artificial Intelligence, Pasadena, CA, USA.

Nguyen, X., Kambhampati, S., and Nigenda, R. S. (2002). Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP search.
Artificial Intelligence, 135(1-2):73–123.

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Tioga Publishing Company,
Palo Alto, CA, USA.

Palacios, H. and Geffner, H. (2009). Compiling uncertainty away in conformant
planning problems with bounded width. Journal of Artificial Intelligence Re-
search, 35:623–675.

Pattinson, D. (2010). Domain independent goal recognition. In Proceedings of the
International Conference on Artificial Intelligence Planning and Scheduling, Toronto,
Canada.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Pearl, J. and Kim, J. H. (1982). Studies in semi-admissible heuristics. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 4(4):392–399.

Penberthy, J. S. and Weld, D. (1992). UCPOP: a sound, complete, partial order
planner for ADL. In Proceedings of the International Conference on Knowledge Rep-
resentation and Reasoning, Cambridge, MA, USA.



BIBLIOGRAPHY 223

Penberthy, J. S. and Weld, D. (1994). Temporal planning with continuous change.
In Proceedings of the AAAI Conference on Artificial Intelligence, Seattle, WA, USA.

Plaza, J., R-Moreno, M. D., Castaño, B., Carbajo, M., and Moreno, A. (2008). PIPSS:
Parallel Integrated Planning and Scheduling System. In Proceedings of the Work-
shop of the UK Planning and Scheduling Special Interest Group, Edinburgh, Scot-
land.

Pollack, M. E., Brown, L., Colbry, D., McCarthy, C. E., Orosz, C., Peintner, B.,
Ramakrishnan, S., and Tsamardinos, I. (2003). Autominder: an intelligent cog-
nitive orthotic system for people with memory impairment. Robotics and Au-
tonomous Systems, 44(3-4):273–282.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, USA.

Ramı́rez, M. (2012). Plan Recognition as Planning. PhD thesis, Universitat Pompeu
Fabra, Barcelona, Spain.

Ramı́rez, M. and Geffner, H. (2009). Plan recognition as planning. In Proceedings
of International Joint Conference on Artificial Intelligence, Pasadena, CA, USA.

Ramı́rez, M. and Geffner, H. (2010). Probabilistic plan recognition using off-the-
shelf classical planners. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, Atlanta, GA, USA.

Ramı́rez, M. and Geffner, H. (2011). Goal recognition over POMDPs. In Proceed-
ings of the International Conference on Artificial Intelligence Planning and Schedul-
ing, Freiburg, Germany.

Richter, S., Helmert, M., and Westphal, M. (2008). Landmarks revisited. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, Chicago, IL, USA.

Richter, S. and Westphal, M. (2010). The LAMA planner: guiding cost-based any-
time planning with landmarks. Journal of Artificial Intelligence Research, 39:127–
177.

Rintanen, J. (2004). Evaluation strategies for planning as satisfiability. In Proceed-
ings of European Conference on Artificial Intelligence, Valencia, Spain.

Rintanen, J. (2006). Planning as satisfiability: parallel plans and algorithms for
plan search. Artificial Intelligence, 170(12):1031–1080.

Rintanen, J. (2011). Planning with SAT, admissible heuristics and A∗. In Proceed-
ings of International Joint Conference on Artificial Intelligence, Barcelona, Spain.



224 BIBLIOGRAPHY

Rintanen, J. (2012). Planning as satisfiability: heuristics. Artificial Intelligence,
193:45–86.

Robinson, N., Gretton, C., Pham, D.-N., and Sattar, A. (2009). SAT-basd parallel
planning using a split representation of actions. In Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning and Scheduling, Thessaloniki,
Greece.

Sanchez Nigenda, R. and Kambhampati, S. (2005). Planning graph heuristic for
selecting objectives in over-subscription planning problems. In Proceedings of
the International Conference on Automated Planning and Scheduling, Monterey, CA,
USA.

Shapiro, S. and Wilk, M. (1965). An analysis of variance test for normality (com-
plete samples). Biometrika, 53(3-4):591–611.

Smith, D. E. and Weld, D. (1999). Temporal Graphplan with mutual exclusion
reasoning. In Proceedings of International Joint Conference on Artificial Intelligence,
Stockholm, Sweden.

Tate, A. (1974). INTERPLAN: a plan generation system which can deal with in-
teractions between goals. Technical report, Memo MIP-R-109, Machine Intelli-
gence Research Unit, University of Edinburgh.

Tate, A., Dalton, J., and Levine, J. (2000). P-Plan: a web-based AI planning agent.
In Proceedings of the AAAI Conference on Artificial Intelligence, Austin, TX, USA.

Teichteil-Königsbuch, F., Kuter, U., and Infantes, G. (2010). Incremental plan ag-
gregation for generating policies in MDPs. In Proceedings of the Autonomous
Agents and Multiagent Systems, Toronto, Canada.
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