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This manuscript contains the research work entitled “Development of Burned Area 

algorithms on a global scale”. This work was developed and funded in the framework of 

the fire_cci project within the European Space Agency’s Climate Change Initiative 

programme. The PhD aim was to obtain an algorithm to retrieve burned areas (BA) on a 

global scale from the MERIS sensor. The document is structured in the following 

chapters:  

 

Chapter 1: Introduction: this chapter aims at putting in context the global relevance of 

fire and of accessing information on burned areas. The methods to characterize fire 

from space and the state of the art are reviewed here.  

 

Chapter 2: Objectives: the aim of this chapter is to introduce the context of the PhD 

research as well as a more detailed description of the thesis objectives.  

 

Chapter 3: BA algorithm development and testing: in this chapter an overview of 

general considerations required to build the algorithm is included. The methods 

developed and tested to obtain the algorithm to detect burned areas will be presented. 

Since results from these tests helped shaping the algorithm final configuration, the 

structure in this thesis is not separated in methods and results. Instead, results from the 

different phases of the algorithm are introduced in this chapter.  

 

Chapter 4: BA product assessment: burned area global estimates for years 2006 to 2008 

obtained with the MERIS algorithm developed are included here. Results analysis, 

validation and inter-comparison with other BA products are introduced in this chapter.  

 

Chapter 5: Discussion: analysis and discussion on the steps taken to develop the 

algorithm, results obtained and limitations found are included in this section. 

 

Chapter 6: Conclusions and perspectives: main outcomes and lessons learned from the 

development of this algorithm as well as the way forward are introduced in this 

chapter. 
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The first two scientific publications result of this work are included in Annex 2 and 

Annex 3. Annex 2 is a paper published in Remote Sensing of Environment containing the 

main algorithm developments. Annex 3 is a paper submitted and accepted with minor 

corrections to Geofocus – Revista Internacional de Ciencia y Tecnología de la 

Información Geográfica. It summarises the main improvements made on version 1 that 

lead to version 2 of the algorithm.  

 

The main achievement of the work carried out within this thesis is the development of 

the first algorithm based on MERIS data to obtain BA on a global scale, at higher 

resolution than the current BA collections, and improving the quality of existing 

European BA collections. Although the algorithm presents some limitations and future 

work is still needed to improve current results, the interest stands now on obtaining a 

longer time series, and on ensuring the continuity of these measurements, to monitor 

BA and to use this information in the context of climate change. In fact, this algorithm 

will be the basis for computing the full MERIS BA time series for the second phase of the 

fire_cci project (2002 to 2012). It will also prepare for the upcoming generations of the 

European Space Agency BA products, particularly for those based on Sentinel-3 OLCI-

SLSTR sensors. The algorithm will also be adapted to other sensors, such as MODIS 

bands 1 and 2, with higher spatial resolution and revisit time. The availability of 

alternative BA time series would complement existing BA products, providing more 

robust estimations and improvements in the uncertainty characterisation of BA inputs 

for climate models. Furthermore, different BA products can provide diverse regional 

accuracies and therefore, merging outputs from global synthesis may greatly improve 

the way BA trends are currently characterised. 
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Este manuscrito contiene el trabajo de investigación titulado “Desarrollo de algoritmos 

de área quemada a escala global”. Este trabajo ha sido desarrollado y financiando en el 

marco del proyecto fire_cci dentro del programa de cambio climático de la Agencia 

Espacial Europea. El objetivo del presente trabajo de tesis doctoral es obtener un 

algoritmo para la caracterización de áreas quemadas (AQ) a escala global a partir de 

información del sensor MERIS. El documento se estructura en los siguientes capítulos:  

 

Capítulo 1: Introducción: este capítulo tiene como objetivo contextualizar la relevancia 

del fuego a escala global y el acceso a información sobre áreas quemadas. Los métodos 

para caracterizar los incendios desde el espacio, así como una revisión bibliográfica del 

estado del arte se detallan aquí.  

 

Capítulo 2: Objetivos: en este capítulo se presenta el contexto en el que se centra este 

trabajo de investigación. Así mismo se detallan los objetivos de esta tesis.  

 

Capítulo 3: Desarrollo y test del algoritmo de área quemada: en este capítulo se realiza 

una revisión de los requisitos necesarios para obtener un algoritmo de detección de 

áreas quemadas a escala global. Los métodos desarrollados y las diferentes pruebas 

realizadas para obtener el algoritmo se detallan. Los resultados de estas pruebas han 

ayudado a obtener la configuración final del algoritmo, por lo que los resultados de 

estos tests a lo largo de las distintas fases del algoritmo se incluyen también en este 

capítulo.  

 

Capítulo 4. Análisis de resultados de AQ: las estimaciones de AQ para los años 2006 a 

2008 obtenidos con el algoritmo MERIS desarrollado se introducen en este capítulo. Así 

mismo se presentan el análisis de resultados, la validación y la intercomparación con 

otros productos de AQ.  

 

Capítulo 5: Discusión: en este capítulo se introducen el análisis y discusión de los pasos 

seguidos para desarrollar el algoritmo, así como de los resultados obtenidos y de las 

limitaciones encontradas.  
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Capítulo 6: Conclusiones y perspectivas: en este capítulo se detallan los hallazgos 

principales, las conclusiones obtenidas del desarrollo del algoritmo, y los posibles 

futuros pasos a seguir.  

 

Los dos primeros artículos fruto del trabajo realizado se incluyen en los anexos 2 y 3. El 

anexo 2 es un artículo publicado en Remote Sensing of Environment, donde se recogen 

los principales pasos del algoritmo. El anexo 3 es un artículo enviado y aceptado con 

correciones menores en Geofocus – Revista Internacional de Ciencia y tecnología de la 

Información Geográfica. En el se recogen las principales mejoras realizadas en la 

versión 1 que dieron lugar a la versión 2 del algoritmo. 

 

El principal logro del trabajo realizado dentro de esta tesis ha sido el desarrollo del 

primer algoritmo de áreas quemada a escala global a partir del sensor MERIS. Esto 

permite obtener productos de AQ a mayor resolución que la proporcionada por las 

colecciones de AQ existentes en la actualidad, y mejorando la calidad de las colecciones 

obtenidas a nivel europeo. Si bien el algoritmo presenta una serie de limitaciones y será 

necesario trabajo futuro para mejorar los resultados actuales, el interés reside 

actualmente en la obtención de largas series temporales de AQ, y en asegurar la 

continuidad de estas medidas, con el objetivo de monitorizar las áreas quemadas y de 

utilizar esta información en el contexto del cambio climático. Siguiendo esta línea, el 

algoritmo desarrollado en esta tesis será la base para obtener una serie temporal 

completa del producto de AQ, a partir de datos del sensor MERIS (2002 a 2012), en el 

contexto de la segunda fase del proyecto fire_cci. A su vez, esto servirá para preparar los 

futuros productos de AQ de la Agencia Espacial Europea, principalmente los basados en 

los sensores OLCI y SLSTR a bordo del Sentinel-3. Podrá también ser adaptado a otros 

sensores como MODIS, haciendo uso de sus bandas 1 y 2, que cuentan además con una 

mejor resolución espacial y temporal. La disponibilidad de series alternativas de AQ 

complementa los productos ya existentes, permitiendo obtener caracterizaciones más 

robustas y con mejoras en la incertidumbre de las medidas utilizadas en modelos 

climáticos. Además, la existencia de diferentes productos de área quemada puede 

proporcionar diferentes precisiones a nivel regional y por tanto, la fusión de los datos 

obtenidos puede mejorar de forma relevante la forma en la que las estimaciones de AQ 

están caracterizadas actualmente.  



 

CHAPTER 1 

INTRODUCTION 
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This chapter aims at introducing the global relevance of fire and of accessing 

information on burned area. A review of the methods to characterize fire from space 

and the state of the art is included in this chapter. 

 

1.1. FIRE AND ITS RELEVANCE ON EARTH 
 

Fire has been burning ecosystems for millions of years, helping to shape global biome 

distribution and to maintain the structure and function of fire-prone communities. 

Fossil charcoal indicates that wildfires began soon after the appearance of terrestrial 

plants in the Silurian (420 million years ago) (Scott and Glasspool 2006). Fire is an 

important element in human history. Its use made huge changes in human evolution. 

Humans have been using fire as a management tool (to facilitate hunting and food 

gathering) since Palaeolithic times (Stewart 1956).  

 

Nowadays fire is still used to manage landscapes and natural resources, but it can also 

create dangerous situations, and affect lives and property, provoking huge losses. Fire is 

highly relevant in certain types of vegetation such as savannah, Mediterranean 

woodland, and boreal forest, but it is being introduced in other ecosystems, severely 

impacting them. Currently, the main areas that burn worldwide are tropical forests 

from Brazil and Indonesia, temperate in USA and Europe, boreal in Siberia, and Canada, 

China and in tropical savannah of Africa and agricultural regions of Northern USA and 

Europe.  

 

The beginning of fire ignition is dual. It can be related to natural events such as 

lightning, but most authors recognize that the majority of fires worldwide have an 

anthropogenic origin. In the tropics and temperate regions, fire is often used as a tool 

for land management, being therefore predominantly human caused. On the opposite, 

boreal regions in Canada have an important share of lightning fires. These various kinds 

of fire activity generate a range of economic, ecological, atmospheric and climatic 

impacts, with magnitudes that are strongly dependent on the areal extent of the burns. 

Current estimations show that around 3.5 million km2 burn every year (Alonso-Canas 

and Chuvieco 2015; Giglio et al. 2010).  
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Fire effects have influence in different domains such as atmosphere, global carbon 

budget and vegetation dynamics (Bowman et al. 2009; Krawchuk et al. 2009). All these 

effects have an impact on the radiation budget. From the thirteen radiative forcing 

terms identified in the IPCC 4th assessment, eight of them are influenced by fire 

emissions (Bowman et al. 2009): long-lived greenhouse gases, ozone, stratospheric 

water vapour from CH4, surface albedo, aerosols (direct and indirect), linear contrails 

and solar irradiance. In more detail, these effects are:  

- Fire shapes vegetation structure and composition. This can therefore modify 

surface albedo and energy balance (López-Saldaña et al. 2015).  

- Interactions between grassland fires and human land use may result in 

ecosystem degradation, hydrologic changes, soil disturbance and shrub 

encroachment (Archer 1994). Fire effects on soil are related to direct losses of 

nutrients during burning and post-fire changes due to low vegetation cover. 

When strategies are not put in place to recover the area affected by the fire, the 

habitat conditions will change. This implies loss of vegetation species, 

diminishing biodiversity and complicating animal survival. 

- Deforestation fires, the most common in the Tropics, reduce tree cover and in 

consequence the ability of terrestrial ecosystems to sequester carbon (Yue et al. 

2014).  

- Biomass burning injects aerosols and trace gases into the atmosphere. The 

impact on the atmosphere varies heavily depending on the type of fire. In the 

case of CO2, deforestation fires, fires in drained peatlands, and fires in areas with 

increasing levels of disturbance are a net source of carbon dioxide to the 

atmosphere (van der Werf et al. 2003). In the case of methane, peat fires, may 

emit almost ten times more CH4 per unit biomass combusted than fires in 

savannah (Andreae and Merlet 2001; Christian et al. 2003; Yokelson et al. 1997). 

First global estimates of fire emissions were made by (Seiler and Crutzen 1980). 

In this study they estimated 2.6 Pg C year−1 (range of 1.7–3.5), being agricultural 

waste burning the largest source of fire carbon emissions (33%), followed by 

shifting agriculture (29%), savannah (21%), deforestation (12%), fires in 

temperate areas (4%) and fires in boreal areas (1%). Later, Crutzen and Andreae 

(1990) revised for the tropics the emissions for deforestation and savannah fires 
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upwards, with savannah burning becoming the main source of emissions. In the 

last decade burned area collections have been derived from satellite information 

at a global scale (Giglio et al. 2013; Gregoire et al. 2003; Plummer et al. 2007; Roy 

et al. 2008; Tansey et al. 2008). This BA information has been used with 

biogeochemical models to estimate emissions (Hoelzemann et al. 2004; Ito and 

Penner 2004; Jain et al. 2006; van der Werf et al. 2006) estimating fire carbon 

emissions to be around 2 Pg C year−1(Giglio et al. 2013; Randerson et al. 2005). 

Fire has ultimately a direct link to climate. Even though the current understanding of 

climate-fire interactions is limited, there is also increasing evidence on their mutual 

influence (Kloster et al. 2012; Krawchuk et al. 2009; Mouillot and Field 2005; Pechony 

and Shindell 2010; Running 2006). Climate has a strong influence on all aspects of the 

fire regime. It is related to seasonal timing temperature and humidity, as well as wind 

(that helps spreading the fire). Climate also influences the nature and availability of fuel, 

through its influence on the productivity and type of vegetation. Expected increases in 

temperature and rainfall changes (dryer vegetation conditions) are likely to increase 

wildfire frequency in some regions, while others may experience decrease in fire 

activity as a result of decreased biomass production (Daniau A.L. et al 2012; Krawchuk 

et al. 2009). Increased fire in response to warming, especially in seasonally cold 

climates, is primarily explained by higher fuel loads resulting from increased vegetation 

productivity (Krawchuk et al. 2009) and a longer fire season (Westerling et al. 2006). 

This mechanism may be enhanced by the influence of temperature changes on fire-

supporting weather. Warming is expected to enhance fire-supporting weather through 

increased storm intensity and lightning ignitions (Price 2009) and through increased 

duration of droughts leading to more rapid fuel drying. Warmer conditions during 

drought periods also accelerate fuel drying. The increment in fuel through higher 

productivity may be further enhanced by rise in tree mortality accompanying rapid 

warming (Adams et al. 2009). In dry environments, increasing precipitation leads to 

greater fuel loads and more fire; in wet environments, increasing precipitation leads to 

wetter fuels and therefore less fire (van der Werf et al. 2008a; van der Werf et al. 

2008b). Therefore, biomass burning is likely to be greatest at intermediate moisture 

levels.  
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GHG emissions contribute to global warming whereas aerosol and albedo effects 

contribution to the overall radiation budget is still not clear. Hicke et al. (2012) and 

Randerson et al. (2006) showed that the impact of increasing boreal forest fires on 

climate warming may be limited or even result in regional cooling because of the 

negative forcing from increased surface albedo following a fire. In the tropics, aerosol 

emissions from fires have been shown to influence the radiation budget at regional 

scales (Duncan et al. 2003). Climate modelling studies suggest these aerosols may 

lengthen or intensify periods of drought in the Amazon (Zhang et al. 2008) and in 

Indonesia (Tosca et al. 2010).  

In addition to climate effects, fire has an important impact on humans’ health. Apart 

from life danger, and possible poisoning from gases directly emitted from the fire 

(especially from CO), some aerosol particles emitted as a result of fires can induce lung 

and heart diseases. The size of particles is directly linked to their potential for causing 

health problems. Particulate Matter (PM) of less than 10 μm in diameter poses the 

greatest problems. From these ones, PM2.5 (2.5 μm or smaller) are found in smoke and 

haze, and can be directly emitted from sources such as forest fires (EPA 2008, 2009). 

Suspended particles can travel long distances, becoming the region affected by those 

particles much larger than the one affected by the fire. For instance, pollutants from the 

July 2002 forest fires in northern Quebec were linked to a major increase in the amount 

of fine particles in Baltimore or Montreal (Sapkota et al. 2005). This effect is also 

relevant in certain areas such as Indonesia, where Sumatran fires emit particles that are 

frequently transported into Malaysia and Singapore.  

For all this, it is highly relevant to be able to monitor fire on a global scale. Remote 

sensing is one of the best means to do it, since it allows for constant monitoring and can 

provide information about areas that are difficult to access on ground. It is highly 

relevant to obtain detailed information on the location, extension and intensity at both 

local and global scale of fires and its consequences. This is necessary to evaluate 

economic losses as well as ecological effects, monitoring land use and land changes, 

modelling atmospheric and ecological impacts derived from biomass burnings and 

estimate post fire consequences at both short and long term. It is important to have BA 

as a way to estimate emissions. These are relevant since improvements in emissions 

estimates are also necessary to calibrate and validate prognostic fire modules in 
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dynamic global vegetation models and climate-carbon models, in order to make better 

predictions about future fire activity (Arora and Boer 2005; Kloster et al. 2010; 

Thonicke et al. 2001). These models can also take advantage of a better understanding 

of the drivers of fires based on new satellite information. Archibald et al. (2009) for 

example, showed that tree cover density, rainfall over the last 2 years, and rainfall 

seasonality explained more than half of the variability in burned area in southern Africa. 

In addition, inter-annual variability in precipitation rates controls part of the variability 

in fire-driven deforestation rates from year to year, with strongest relations in 

Equatorial Asia where annual variability in precipitation is highest (Le Page et al. 2007; 

van der Werf et al. 2008a).  

The relevance of fire has been identified by several international initiatives. Among 

them is the Global Climate Observing System (GCOS), sponsored by the World 

Meteorological Organization (WMO), the Intergovernmental Oceanographic 

Commission (IOC) of the United Nations Educational, Scientific and Cultural 

Organization (UNESCO), the United Nations Environment Programme (UNEP) and the 

International Council of Scientific Unions (ICSU). This initiative has identified a series of 

Essential Climate Variables required to support the work of the UNFCCC (United 

Nations Framework Convention on Climate Change) and the IPCC (Intergovernmental 

Panel on Climate Change). These ECVs are intended to have a systematic and long-term 

record of observations. They are separated by themes: atmospheric, terrestrial and 

oceanic. Fire disturbance is one of the terrestrial ECVs. Other international initiatives 

such as the GOFC-GOLD also aim at joining efforts and promote collaboration and 

international cooperation in order to better characterize, understand and assess fire 

and its impacts. On the European side, the European Space Agency has a dedicated 

programme, the Climate Change Initiative (CCI) that aims at monitoring some of these 

variables. The European Commission has also projected a Copernicus Climate Change 

Service (C3S) where those variables will be monitored on an operational basis. The 

service will ensure long term monitoring and consistency of these variables. Fire 

disturbance is also one of the priorities identified in this service. 

The work developed in this thesis has been funded by ESA’s CCI, in the framework of 

the Fire Disturbance project (fire_cci from now on), which aims at developing and 
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improving tools for estimating burned areas on a global scale from medium resolution 

sensors (fire_cci, 2009).  

 

1.2. SPECTRAL CHARACTERIZATION OF FIRE 
 

Fire can be monitored from space as a result of the changes it introduces in the reflected 

or emitted radiance detected remotely. There are essentially four ways of detecting 

those changes:  

 

 1) Direct radiation from active fires: direct thermal radiation caused by high 

temperatures of fires was the first mean to detect them. Following the Planck’s 

radiation law the most suitable spectral region to detect hot surfaces (such as active 

fires) is the MIR band, between 3 and 5 m, since at this wavelength, radiation emitted 

by a fire is significantly higher than emission from the ground background (Kaufman 

and Justice 1998).  

 

2) Changes in reflected radiation caused by aerosols and gases associated to the 

combustion process: smoke and aerosols can be better detected on the blue region, but 

little information about the burned areas can be inferred, since the quantities emitted 

will depend on the type of vegetation being burned and the intensity of the fire 

(particularly the type of combustion, whether it is flaming or smouldering) (Dubovik et 

al. 2002; Kaufman et al. 2002).  

 

3) Changes in soil and leaf reflectance caused by vegetation combustion: changes in 

vegetation reflectance as a result of fire are more persistent than active fires and can be 

seen in different spectral bands. These changes are mainly noticed in the VIS, NIR, MIR 

and SWIR and microwave regions (Pereira et al. 1999b). Spectral signatures of charcoal, 

green vegetation and dry vegetation can be seen in Figure 1. 

 

4) Long term changes in the vegetation structure: in this case there is a stronger and 

more permanent alteration of the vegetation structure. These changes will also be 

mainly noticed in the VIS, NIR, MIR and SWIR and microwave regions (Pereira et al. 

1999b). 
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Figure 1. Typical spectral reflectance signatures of pure charcoal, green vegetation and dry vegetation 

(Pereira et al. 2014). 

 

When focusing on the spectral changes fire induces in vegetation, some aspects need to 

be considered: time after fire, ash and char, and type and intensity of the fire. 

 
1- Length of the post fire signal (Chuvieco and Congalton 1989). Two clear different 

types of post fire signals can be distinguished (Robinson 1991). The first one is based on 

the deposition of charcoal or surface charring. This is related to vegetation combustion 

and has a short duration, especially if attenuated by other factors such as wind or 

rainfall. This signal will not last longer than weeks or months after the fire. The second 

one is the alteration of vegetation structure and the abundance of remaining vegetation, 

and can be identified as a burned patch. This type of signal tends to be more stable 

compared to the first one in terms of persistence, lasting for 2 or 3 weeks in tropical 

regions up to years in boreal areas. The drawback is that other changes not related to a 

fire, and that imply removal of plant canopies (such as wind storms of forest cuts), will 

also have a similar behaviour.  

 
2- Vegetation combustion produces a spectral response of ash and char with a clear 

change in colour. The ash and char products of combustion are quite different. Ash is 

the result of a complete combustion of high intensity that happens when there is no 
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restriction of oxygen supply. It has a light coloured appearance and is predominantly 

mineral residue (Cope and Chaloner 1985; Riggan et al. 1994). Char on the opposite is 

the result of incomplete combustion of biomass with restriction of oxygen supply. This 

is the product of less severe fires and presents darker colours (Ambrosia and Brass 

1988; Chandler et al. 1983). These two products appear generally on the soil and are 

generally removed by wind and rainfall, exposing again the soil or being covered by 

vegetation.  

 

3- Type and intensity of the fire: it will be also important to consider if the fire happens 

on the crown of the trees, on ground or underground, and also the intensity of the fire, 

since this will vary the quantity of charcoal on ground. Both intensity and height at 

which the fire occurs will vary the ability of the sensor to detect the fire from space. A 

fire happening under the crown will not be detectable from satellite except for the 

increase in temperature, but might not induce clear changes in vegetation reflectance, 

particularly at dense canopy covers.  

Spectral properties of burned surfaces observed from space might be confused with 

other land cover types that have a similar spectral response but that are not affected by 

fire. Most common confusions are related to areas with low reflectivity such as water, 

dark soils, cloud shadows and topographic shadows (Chuvieco and Congalton 1988), 

pixels that mix water and land/vegetation, such as river borders or coastal zones 

(Martín and Chuvieco 2001) and pixels that mix burned and unburned areas or soil 

(Caetano et al. 1994). 

 
It is important to note, especially when developing an algorithm for burned area 

detection on a global scale, that the spectral behaviour of burned areas might not be the 

same, or even not coherent in the variety of ecosystems that exist worldwide. This 

relates to the fact that vegetation type and condition, soil and fire intensity will vary 

depending on the ecosystem. In the NIR region, both green and dry vegetation have 

higher reflectance than recent burns, which normally translates into a darkening after 

the surface. In the SWIR region, the spectral reflectance of vegetation varies depending 

on its water content (green or dry, Figure 1). Therefore, fire induced changes in this 

band will be different depending on the climatic conditions of the ecosystem. The type 

of vegetation will also present different behaviours. For instance, in grasslands and 
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croplands, that are more predominant in temperate ecosystems, near-infrared (NIR) 

and short-wave infrared (SWIR) reflectance tend to decrease as a result of fire. In 

forests and woodlands, more typical of boreal and Northern European regions, SWIR 

and NIR can decrease simultaneously or it is also possible to observe an increase in 

SWIR and a decrease in NIR. The type of soil will also modify the spectral response, 

depending if it is dark or bright surface. Fire intensity will imply more or less exposition 

of the soil, and the presence/absence of green vegetation, as well as different quantities 

of ash or charcoal.  

 

These different behaviours have been reported in literature, finding that the spectral 

bands that better discriminated burned areas in different ecosystems (boreal, template 

and tropical) were not the same (Silva et al. 2004). This information will need to be 

taken into account to perform the best possible discrimination of burned areas on a 

global scale. Many works have studied the adequacy of the different spectral regions to 

identify fire. A review of the behaviour of vegetation in the main spectral bands used for 

BA detection is introduced hereafter, as a way to better understand the impacts of fire 

on pre-fire reflectance, and in order to focus the BA discrimination strategy to follow.  

 

1.2.1. VISIBLE REGION. 

The spectral region covered by the visible goes from 0.4 to 0.7 m. In this region 

vegetation has generally a low spectral response, depending on the chlorophyll content. 

It shows a peak in the 0.55 um. This general behaviour does not apply in certain regions 

such as savannah where vegetation shows a high reflectivity. It is one of the regions 

more extensively used for burned area mapping. Nevertheless, it is not one of the best 

regions for discriminating burns since confusion between recent burns, and other land 

cover types (water, wetlands, conifer forests) can happen in the VIS region. In addition, 

the dynamic range available in EO satellites to discriminate between these surfaces is 

quite narrow. Furthermore, the path radiance, which is an important component of the 

atmospheric effect, is predominant in this region over dark surfaces, causing a decrease 

in contrast between the different land cover types. Several authors indicate that the 

visible spectral range is not very effective for discriminating burns (Koutsias and 

Karteris 1998; López García and Caselles 1991; Pereira et al. 1999b; Pereira and Setzer 
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1993a; Ponzoni et al. 1986; Tanaka et al. 1983). 

1.2.2. NEAR INFRARED REGION 

This region covers the electromagnetic spectrum from 0.7 to 1.2 m. It is one of the 

most used regions for BA mapping since the signal of recent burns is strongest. Green 

vegetation is highly reflective in the NIR and therefore burning will imply a significant 

decrease in this band. Therefore, the detection will be optimal when pre-fire fuel 

loadings are high, and combustion produces large amounts of charcoal deposited on the 

ground. For these reasons, the NIR is considered the best spectral region for BA 

mapping by several authors (Fredericksen et al. 1990; López García and Caselles 1991; 

Pereira and Setzer 1993b; Stroppiana et al. 2003; Tanaka et al. 1983). Phenological 

status of the vegetation is of relative relevance in this band since both green and dry 

vegetation have higher reflectance in the NIR than recent burns. Areas with less dense 

vegetation and lighter soils will have a smaller decrease in this band between pre and 

post fire conditions.  

This region is often combined with the red region (0.45um) to create the Normalised 

Difference Vegetation Index (NDVI) extensively used to discriminate burned areas. This 

was especially used when only AVHRR was available to obtain BA products globally 

(Fernández et al. 1997; Kasischke et al. 1995; Martín and Chuvieco 1995; Domenikiotis 

et al. 2002; Fraser et al. 2000; Kucêra et al. 2005; Li et al. 2000; Roy et al. 1999). 

However, other studies have found that NDVI is not very sensitive to recent burns, as 

the signal tends to be mixed with dark soils or water. Actually, NDVI is more adequate 

to monitor chlorophyll content or vegetation turgor, but it does not provide good 

sensitivity for scorched vegetation or char. Even when only the NIR and red bands are 

available, other non-linear indices such as GEMI have been shown more robust to detect 

burned areas (Chuvieco et al. 2002).  

 

1.2.3. SHORT WAVE INFRARED REGION. 

This region covers the range between 1.2 and 2.5 m. The SWIR region presents some 

advantages for BA detection. First, reflectance is higher than in the VIS, and therefore 
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the bi-spectral NIR/SWIR space is more appropriate than the NIR/VIS for burned area 

detection (Pereira et al. 1999b). Second, it is less affected by aerosols than the VIS and 

NIR ranges (Kaufman and Remer 1994), and third, it is sensible to water. There are 

some contradictions on this region depending on the type of ecosystem, fire severity, 

vegetation moisture and soil colour (Roy and Landmann 2005; Silva et al. 2004). 

Furthermore, temporal fire effects on this band might be less obvious than in the NIR 

region (Silva et al. 2004). Pleniou and Koutsias (2013) also found that this band is more 

sensible to the status of healthy vegetation than the NIR (showing lower mean + 

standard deviation values), being NIR more sensible to burned areas. After MODIS and 

AVHRR -15 launches, the SWIR was also combined with the NIR (Barbosa et al. 1999a; 

Fraser and Li 2002; López García and Caselles 1991; Pereira 1999; Pereira and Setzer 

1993b; Roy et al. 2005; Silva et al. 2005; Silva et al. 2004; Stroppiana et al. 2003; 

Vafeidis and Drake 2005) providing in general better results than the NDVI. 

 

1.2.4. MIDDLE INFRARED REGION 

This region covers the spectral range between 2.5 and 8.0 m. The regions previously 

introduced, VIS, NIR and SWIR, correspond to the reflective spectral range, because 

radiation in those regions is essentially solar radiation reflected from the Earth. From 

the MIR region onwards, the sensors measure mainly the radiation emitted by the 

Earth.  

On the emission side, Planck function indicates that a black body emits spectral 

radiation according to its temperature, and for a given temperature, the emission varies 

as a function of the wavelength. Figure 2 illustrates this concept (Wooster and Xu 2012). 

 



 

 22 

 

Figure 2. Spectral radiance emitted from blackbodies at different temperatures. 

 

Temperatures of 1000K and 600K can be assumed as representative of typical flaming 

and smouldering combustion phases of vegetation fires, respectively (Lobert and 

Warnatz 1993). Earth’s ambient temperature is 300 K. According to Wien’s 

Displacement Law, the peak emission of radiance for flames and smouldering surfaces 

would be located in the middle infrared (MIR), between 3m and 5m. This behaviour 

has been exploited for the identification of active fires, detected when there is an 

increase in the observed radiance in this region, compared to the surrounding areas 

(Arino and Piccolini 2000; Giglio et al. 2006b). For increasingly smaller and cooler fires, 

this contrast is progressively attenuated and becomes difficult to discriminate from 

natural spatial variability of the land surface temperature field. Additional perturbation 

sources for active fire detection may be the presence of atmospheric water vapour, a 
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strong reflection of solar radiation in the 3m – 5m region, or the presence of sub-

pixel clouds (Kaufman and Justice 1998).  

 

For what concerns the reflected energy, spectral behaviour in this region is similar to 

the one observed in the VIS, i.e. burned areas will reflect more than vegetation, and will 

appear darker than senesced vegetation. The mid-infrared spectral region has been 

identified by a few authors, mostly working on temperate ecosystems, as promising for 

detecting burns, since the fire-induced increase in brightness is larger than in the VIS 

range (Koutsias and Karteris 1998; López García and Caselles 1991). Pereira et al. 

(1999b) found that the reflective component of this band was more sensitive than the 

visible bands to recent burns and thus considered the NIR/MIR bi-spectral space more 

appropriate for burned area discrimination and mapping than the classical VIS/NIR 

space used in remote sensing of green vegetation. These studies aimed at exploiting the 

reflective part of the MIR range, present on Channel 3 of the AVHRR series. The 

inclusion of SWIR band from day-time acquisitions of AVHRR-15 onwards helped 

showing the better performance of SWIR band over MIR in detecting burned areas.  

 

1.2.5. THERMAL INFRARED REGION  

This spectral region covers the range between 8 and 14 m. On the emission side, the 

peak of radiance emission at an ambient temperature of 290K (17C) is located in this 

region, at approximately 10m. Active fire detection from remote sensing exploits this 

behaviour, and typically relies on some combination of brightness temperature 

measured in the 3m  - 5m (MIR) and 10m - 12m (TIR) regions. The latter is used to 

obtain background temperature and to remove potential sources of confusions, such as 

warm soils. 

 

1.2.6. MICROWAVE REGION.  

The microwave region covers the region of spectrum for wavelengths > than 1mm. This 

band has not been extensively used in burned area mapping, but some studies have 
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been performed. Main advantage of this spectral region is that it is less influenced by 

clouds. Most studies in this region of the spectrum rely on C-band, and mainly HV and 

VV polarisation. Different authors have reported contradictory results. In certain 

studies a decrease in backscatter intensity was found (Kasischke et al. 1992; Kneppeck 

and Ahern 1989; Landry et al. 1995) whereas other studies (Bourgeau-Chavez et al. 

1995; French et al. 1994; Kasischke et al. 1994; Malingreau and Duchossois 1995) 

observed increases in backscatter intensity induced after the fire. A possible 

explanation for these inconsistencies is related to the alterations induced by the fire in 

the vegetation, vegetation structure and moisture content. The increase in backscatter 

intensity over burn scars could for instance be explained by an increase in soil moisture 

caused by permafrost melting. More recently, Tanase et al (2010) used bands X, C, and L 

backscatter to evaluate the sensitivity of these bands to estimate burn severity in 

Mediterranean pine forests. 

 

1.3. METHODS FOR BURNED AREA DETECTION 

 

Monitoring areas affected by biomass burning has been performed over the last decades 

using a wide variety of sensors, from very high-spatial resolution such as IKONOS for 

fine scales (Kachmar and Sanchez-Azofeifa 2006), to medium resolution sensors such as 

Landsat-TM/ETM+ or SPOT-HRV for regional coverage (Bastarrika et al. 2011; Pu and 

Gong 2004) and to coarse spatial resolution sensors for continental to global studies 

(Chuvieco et al. 2008a; Giglio et al. 2009; Roy et al. 2002; Tansey et al. 2008). 

 

First detections of fire from space started with the work of Dozier (1981) and Matson 

and Dozier (1981), in which the thermal response of the Advanced Very High 

Resolution Radiometer (AVHRR) sensor (on board the NOAA satellites) was analysed. 

The first attempts to globally map burned areas were also based on AVHRR data, mostly 

using multi-temporal changes of vegetation indices (Kasischke et al. 1993), although 

hybrid algorithms based on thermal and optical channels were also developed (Fraser 

et al. 2000; Roy et al. 1999). Since then, a huge variety of sensors has been used to 

detect burned areas on local and global scales. On the global scale, the most relevant 
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ones are ERS-ATSR, NOAA-AVHRR, SPOT-VGT and NASA-MODIS on board AQUA and 

TERRA.  

There are many ways in which the methods for burned area detection can be classified. 

Here we will differentiate between methods based on active fires, methods based on 

post-fire reflectance detection and hybrid methods.  The techniques considered here are 

mostly focused on the development of algorithms on global scale, which is the main 

purpose of this PhD research. Requirements and design of these differ in many aspects 

to the local ones. Main differences are related to the spatial and temporal resolution, 

and also to the spectral bands present in the different sensors.  

 

 

1.3.1. BASED ON ACTIVE FIRES. 

In this approach estimation of BA is based on the initial detection of active fires. Since 

fires have much higher temperatures than other natural surfaces observations in the 

MIR band have been primarily used for detecting them. Thermal radiance (and 

consequently the signal amplification) increases exponentially with temperature, and 

therefore the signal of active fires is easier to detect than that caused by changes in 

reflectance. Parameterisation of the Planck function with typical fire temperatures 

indicate that in the MIR spectral region the spectral emission from a fire can be up to 

four orders of magnitude greater than that from the ambient temperature background. 

Active fire detection methods exploit this behaviour, and use normally information from 

TIR and MIR bands to discriminate active fires. The intense MIR thermal signals emitted 

by the fire make its detection possible even for fires much smaller than the pixel size. 

False alarms due to other increases in the MIR pixel signal (for instance, due to hot bare 

rocks or soil or Sun glint) need to be avoided when implementing these strategies, by 

diminishing them with the use of other spectral criteria.  

The approximation used by most authors to determine the BA from these active fires 

(Eva and Lambin 1998; Giglio et al. 2006b; van der Werf et al. 2003; van der Werf et al. 

2004), assumes that the burned area is proportional to the proportion of the pixel being 

burned and fire temperature.  

Main limitations of this approach are related to the fact that thermal signal lasts very 

shortly (while the fires are active), implying that fires can be missed by the satellite 
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overpass if they last short. Therefore, mapping burned areas from active fires will be 

dependent on spectral sensitivity and acquisition frequency of the sensor used to detect 

fires. Omission errors are more frequent, but false alarms can also occur, especially for 

hot soils, urban areas and gas flares. In summary, detection of active fires provides a 

sampling of the total BA, i.e. what is currently burning when the satellite observes the 

area and therefore other methods need to be used to infer the BA. 

In spite of these problems, several sensors have been used to obtain BA. The most used 

sensors have been NOAA-AVHRR (Grégoire 1993; Malingreau and Belward 1989; 

Martín et al. 1999), ERS and ENVISAT ATSR (Arino and Melinotte 1998), TRMM-VIRS 

(Visible and Infrared Scanner) (Giglio et al. 2003b), and MODIS (Moderate Resolution 

Imaging Spectroradiometer) on the NASA Terra and Aqua EOS satellites (Giglio et al. 

2003a). Geostationary platforms such as VAS/GOES (Prins and Menzel 1992), and 

METEOSAT (particularly the second generation, MSG) are also able to provide active 

fire information (Calle et al. 2006; Cisbani et al. 2002; Costantini et al. 2006; Prins et al. 

1998; Roberts et al. 2005). The advantage of geostationary sensors is the high revisit 

time (data acquired every 15 to 30 min), but the detection in this case is limited by 

lower temporal resolution (3 km) and worse performance over mid latitudes and polar 

regions.  

From these sensors, a series of standard active fire products have been derived and are 

currently available: MODIS 14 (Giglio 2010) and World Fire Atlas (WFA) derived from 

ATSR-2 data (Arino et al. 2001). More recently a new algorithm to derive active fires 

from VIIRS was published (Schroeder et al. 2014).  

A recent paper by Hantson et al. (2013) studied the performance of the MODIS 14 

product, characterizing the omission and commission errors for a series of study sites 

covering different biomes and ecosystems. A study by Mota et al. (2006) screened the 

potential of the ESA’s Wolrd Fire Atlas active fires product derived from ATSR-2.  

 

1.3.2. BASED ON POST-FIRE REFLECTANCE CHANGES. 

This section reviews previous algorithms for BA detection based on reflectance changes. 

The first section gives an overview on the possible treatments given to the bands and 

images coming from the satellite sensors. The other sections describe different options 

to perform the burned area detection on those, based on pixel detection, object 
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detection and multi-phase algorithms. As in many other remote sensing applications 

dealing with imagery, detection of features can be applied to either pixels or objects and 

the combination of them in different phases. This review does not aim at covering all the 

possible techniques available for these types of detection, but more to focus on 

illustrating some of the techniques used up to date to retrieve BA, by giving special 

attention to the ones that aimed at generating global algorithms.  

 

1.3.2.1. Indices. 

Computation of indices has been used in remote sensing to retrieve certain types of 

information such as vegetation health and status, burned areas or fire severity. It is 

based on establishing certain relations between the different spectral bands from the 

satellite sensor. They are useful to estimate several biophysical parameters, enhance 

certain features within the image, and to help monitoring them. One of the reasons why 

indices are preferred to the direct use of reflectance is that normally the formula to 

obtain them includes a ratio. This helps diminishing noise and atmospheric effects. Main 

indices that have been used and developed to detect burned areas are introduced 

hereafter. Once the information is computed and converted into the index form, several 

techniques can be applied to discriminate the BA.  

One of the most used vegetation indices is the NDVI (normalised difference vegetation 

index) (Rouse et al. 1974). It is computed as:  

      
         

         
 

This vegetation index has proven to be very useful for vegetation monitoring. Its values 

go from -1 to 1, being the values close to zero areas with low vegetation. It has also been 

widely used for mapping of burned areas in a variety of studies. One of the first studies, 

developed by Malingreau et al. (1985) used NDVI based on AVHRR time series to map 

Borneo fires during 1982 and 1983. The NDVI index has also been used to map burned 

areas on boreal regions (Kasischke et al. 1993; Kasischke and French 1995) and 

Mediterranean ecosystems (Domenikiotis et al. 2002; Martín and Chuvieco 1993). The 

NDVI index sharply decreases when a fire occurs, as chlorophyll and leaf area are 

reduced. Although it is not the most sensitive to burns, a big advantage of this index is 

that most sensors cover the spectral range needed to compute it (NIR and RED). 
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Nevertheless, it can present confusion with features with similar spectral behaviour to a 

burned area, such as dark soils, water or cloud shadows.  

A variation to this index, called SAVI (Soil adjusted Vegetation Index), was formulated 

by Huete (1988). It was proposed to diminish the sensibility of NDVI to variations 

caused by the soil background. Its formula is as follows:  

      
                 

           
 

where L is a parameter that takes into account the relevance of the soil reflectance 

background. When L=0 the NDVI and SAVI are the same. A common value of 0.5 is used. 

Pinty and Verstraete (1992) proposed a modified vegetation index called GEMI (Global 

Environment Monitoring Index), where the non-linear combination of bands allows to 

minimise atmospheric and soil effects. Its formula is:  

                  
          

       

Where: 

   
       

      
                        

             
 

     
 
The GEMI index enhances discrimination between dark and light surfaces. A decrease in 

its value will appear when a fire occurs. The higher discrimination power of this index 

compared to the NDVI has been shown in several studies (Barbosa et al. 1999b; Pereira 

et al. 1999a; Stroppiana et al. 2003).   

Other indices have been specifically formulated to detect burned areas and to avoid 

some of the limitations of the vegetation indices.  

The BAI (burned area index) (Martín and Chuvieco 2001) was formulated to 

discriminate recently burned areas, by enhancing the char signal of the fire affected 

areas. The formula is as follows:  
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Where pcRED and pcNIR are convergence values for RED and NIR, respectively.  
 
This index will increase its value after the fire. A study performed by Chuvieco et al. 

(2002) compared the discrimination power of BAI, with NDVI, SAVI and GEMI, showing 

the higher ability of BAI to discriminate burned areas, followed by GEMI, but confusion 

with dark areas was also reported.  

Another option used for BA discrimination based on indices has been to modify the 

vegetation indices already presented by using the SWIR band instead of the red. As 

discussed in the previous section, SWIR band is more sensible than the VIS and 

therefore its use on vegetation indices increases the ability of those to detect BA, 

obtaining better results in the SWIR/NIR space than in the NIR/VIS. For instance the 

VI3 index (Kaufman and Remer 1994) uses the reflective component of the MIR band 3 

of AVHRR instead of the red band in the NDVI formula. In the last years the NBR 

(Normalized Burnt Ratio) (Key and Benson 1999) has been widely used for burn 

severity analysis. The NBR is computed similarly to NDVI but substituting the red band 

by the SWIR. It is the same formulation as the Normalized Difference Infrared (NDII) 

(Hunt and Rock 1989), Normalized Difference Water Index (NDWI) (Gao 1996), Short 

Wave Vegetation Index (SWVI) (Fraser and Li 2002). Other indices used for BA 

detection are the Normalized Difference SWIR (NDSWIR) (Gerard et al. 2003), VI7 

(López García and Caselles 1991), VI3T (Barbosa et al. 1999b) or MIRBI (Trigg and 

Flasse 2001). 

 

1.3.2.2. Thresholds in Pixel based techniques. 

One of the most extended techniques for BA detection based on pixels is the use of 

thresholds, especially when applied to the multi-temporal comparison of pre and post 

burn imagery, and using spectral vegetation indices (Fernández et al. 1997; França and 

Setzer 2001; Kasischke et al. 1995; Kasischke et al. 1993; Martín and Chuvieco 1995). 

The technique focuses on establishing a threshold that will separate the pixels in two 

categories: burned and unburned. It is important to highlight that the selection and use 

of this threshold will have a huge impact on the performance of the algorithm to detect 

BA. There are several ways to identify and classify the criteria used to define the 

threshold, depending on the variables used (statistic, empirical, temporal, fixed). A 
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possible way to separate them is by focusing on the static or dynamic (spatial and 

temporal) nature of the threshold.  

 

1.3.2.2.1. Static thresholds 

This approach has been widely used in several BA detection algorithms. A clear 

advantage is the simple computation. Main drawback is that it is difficult to establish 

thresholds that apply properly to a set of images, and to different biomes, seasons and 

conditions. One of the first studies, based on AVHRR (Kasischke et al. 1993) used NDVI 

pre and post fire composites. The burned areas were identified following the thresholds 

computed as a result of the differences between the two composites. Two thresholds 

were identified, a first one more restrictive (that underestimated BA) and a second one 

less restrictive, that was able to map up to 89,5% of the fires bigger than 2.000 ha. A 

way to improve these results was shown by Kasischke and French (1995), by adding 

information from post –imagery collected from the year after and two years after. They 

added two extra pixel conditions. First, with the use of the new images, only the new 

detections within a three pixels distance of the already classified BA were labelled as 

burned. Second, all pixels within a 4 pixels distance from the already classified and with 

an NDVI lower than a certain value were also classified as burned. Martín et al. (1995) 

applied differences in NDVI to AVHRR to map fires in Spanish Mediterranean areas.  A 

static threshold of 0.2 decrease in the NDVI was used to classify the pixels as burned. 

Overall accuracy with this method was found to be 97,4%. Other studies have mapped 

BA based on thresholds but using other measures different from the NDVI. For instance, 

Fuller and Fulk (2001) mapped BA in Kalimantan (Indonesia) for the fires of 1997 with 

temporal composites of AVHRR images based on minimum albedo and maximum 

temperature. The thresholds in this case were based on NDVI and temperature and 

were adjusted on an iterative process, obtaining an overall accuracy of 80%. Eva and 

Lambin (1998) developed the E1 algorithm based on ATSR-2 imagery used to obtain the 

GLOBSCAR product. The thresholds in this case were based on absolute values for 

several bands: red, NDVI, SWIR and TIR and a relation between NIR and SWIR. Ershov 

and Novik (2001) used a comparison between the NIR of a specific date and the median 

value of the 10 previous days. They established a threshold to classify pixels with a 

certain decrease as burned. Static thresholds have also been used in combination with 

logistic regression (Koutsias and Karteris 1998, 2000). 
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1.3.2.2.2. Contextual spatial thresholds.  

In this approach the thresholds are established considering the values of the 

neighbouring pixels. The procedure is normally based on moving windows. This 

technique helps overcoming some of the limitations of static thresholds but is also more 

demanding computationally. On this line, Piccolini and Arino (2000) developed the K1 

algorithm for the GLOBSCAR project based on ATSR-2 imagery. The algorithm is based 

on an adaptive method that decorrelated possible variations due to atmosphere, 

illumination or other effects that had influence on the reflectance. They computed the 

K1 parameter, proportional to the geometric distance, obtained with a scattergram 

formed by the NIR/TIR bands in the pixel analysed. The convergence point was defined 

as the mean between NIR and TIR and the TIR variance, in a fixed window of 50x30km. 

The K1 value was determined only for pixels that had a specific behaviour in the 

NIR/TIR space. The threshold used for the K1 parameter was 10.5, which was an 

adequate value for different ecosystems. García-Haro et al. (2001), used also contextual 

spatial thresholds in the Mediterranean coast to map BA in 1992. First, mean and 

standard deviation of areas with higher probability of being burned were computed, on 

a moving window of 9x9 pixels. The central pixel of the window was considered burn if 

the absolute difference was higher than the standard deviation.  

 

1.3.2.2.3. Contextual temporal thresholds.  

In this case, temporal information is also considered to compute the contextual 

algorithm. The advantage is that more specific information will be obtained for each 

case, but having again a higher computational cost. An example of this technique can be 

found in Barbosa et al. (1999a), who developed a method to map BA in Africa using 

AVHRR imagery and static temporal and contextual spatial thresholds. First, temporal 

thresholding was used to identify areas where there was a decrease in both GEMI and 

VI3T indices, and an increase in band 3. Five static thresholds were used for GEMI, 

band2 and 3 and VI3T. Contextual spatial thresholds were also applied to the VI3T. 

Nielsen et al. (2002) developed a statistical method based on 10 multi-temporal images 

from AVHRR to map BA in Senegal. The BA was identified when there was a fast change 

in NDVI, temperature and albedo. The threshold was based on the statistics from the 

first image of the temporal series, where little burns had occurred.  Zhang et al. (2003) 

also used static, temporal and spatial contextual thresholds combined to map BA in 
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Russia in 2001. They established the use of 10 thresholds on two composites based on 

VGT imagery. The first were based on the temporal decrease on the NIR, SWIR, NDVI, 

SWVI and red, and on pre and post values of those bands. Riaño et al. (2007) used the 

long temporal series of AVHRR to map burns in Africa from years 1981 to 2000. In 

order to obtain BA, the Barbosa et al. (1999a) method was applied, using a series of 

fixed and temporal thresholds applied to the bands 2, 3, GEMI an VI3T by computing 

median and standard deviation values.  

 

1.3.2.2.4. Time series changes.  

Temporal changes observed in a pixel time series have also been used to map BA. On 

this line, Roy et al. (2005), developed an algorithm that studies temporal changes in 

bands 2 and 5 of the MODIS time series. They compared the difference from 

measurements to the estimated reflectance. The estimated reflectance was obtained by 

inversion of a bidirectional reflectance model (BRDF model) based on a 16-day 

temporal window, considering that certain changes in the temporal series are related to 

fire burns. A statistical measure is used to identify the change between predicted and 

observed reflectance, establishing restrictions to avoid confusions. This algorithm is 

used to obtain the MCD45 product and is further detailed in section 1.4.  

 

Boschetti et al. (2002) developed a similar method using VGT imagery. Individual 

images were used to invert the equation that defines the bi-directional component of 

reflectivity to predict a reflectivity day value, based on the prior evolution of this 

reflectivity. Also in this case, expected and measured values were compared in the NIR 

and TIR spaces. A pixel was classified as burned if criteria related to changes in the 

reflectivity and signal persistence were fulfilled.  

 

1.3.2.3. Object based techniques. 

The basis of object and segmentation level spatial information relies on identification of 

spatial attributes instead of basing it only on the pixel values. This approach first 

segments the image into spatially continuous, disjoint and homogeneous regions. There 

is a wide range of image segmentation types. A simple division of the techniques can be 

to classify them between pixel, edge and region based segmentation methods. Pixel 
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based includes image thresholding and segmentation in feature space. Edge 

segmentation finds edges between regions and determines the segments as regions 

within these edges. Region based segmentation algorithms can be divided into region 

growing, merging and splitting techniques, and their combinations. In this case the 

image is divided into sub-regions and these regions are merged or split based on their 

properties. A few studies have used segmentation techniques to identify BA. The main 

drawback of this technique is that when used on an unsupervised manner the 

classification might create confusion between burned areas and other categories (dark 

vegetation, water bodies, and shadows).  

Object based analysis to detect BA was applied by Mitri and Gitas (2002) to a set of 3 

Landsat TM images in the Mediterranean island of Thasos and also to the Hoya de Buñol 

region in Spain, to check the consistency of the model. Segmentation was applied to the 

images, classified afterwards with fuzzy logic. Each class within the classification 

scheme contained a class description, based on a set of fuzzy expressions. A three level 

scale of segmentation was created in order to obtain different types of information from 

smaller and larger objects. Neighbouring objects with identical structures were merged. 

The study obtained an overall accuracy of 98.85%.  

On the same line, Gitas et al. (2004), applied object based image classification to map BA 

on Creus Cape in Spain, based on AVHRR imagery. The model used spectral and 

contextual object information to obtain the BA, showing an overlap of 90% with the 

official burned area map, and demonstrating the potential use of object based methods 

to map BA with coarse resolution sensors.  

In 2006, Quintano et al. (2006), used spectral mixture analysis (SMA) to map burned 

areas in the Mediterranean using NOAA AVHRR and Landsat TM imagery. A single-post 

fire image was required to perform the analysis. The method was based on the 

contextual classification of the fraction images obtained after applying the SMA. Results 

showed that the proposed method could accurately identify the burned surface area 

with a kappa coefficient of 0.8.  

Later on, Polychronaki and Gitas (2010) developed an operational procedure to map BA 

based on ASTER imagery, by developing the method for an area in Portugal and then 

applying it to another ASTER image to map BA on the island of Rhodes, Greece. The 
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method applied segmentation on three scales and a classification based on intrinsic, 

topological and semantic features. Comparison with official maps showed a level of 

agreement of 92.5%. The same procedure was applied to the Rhodes Island, and 

compared to a perimeter derived from an IKONOS image, showing a level of agreement 

of 80.6%. The authors noted that modifications of thresholds would be necessary if 

applied to other areas.  

In 2014, Dragozi et al. (2014) used the Fuzzy Complementary Criterion (FuzCoC) and 

Support Vector Machine (SVM) to map burns on VHR IKONOS imagery, in the areas of 

Parnitha and Rhodes in Greece. The classification accuracy obtained with the SVM 

object-based scheme was higher than with the pixel-based approach. 

More recently, Shimabukuro et al. (2015), estimated BA in Mato Grosso, Brazil, with the 

help of an object based classification method applied to Landsat imagery. In this case, 

the semiautomatic method was adapted from the one used in the TREES-3 pan-tropical 

deforestation survey (Achard et al, 2014). Results were overlaid with MODIS HS, and 

visual interpretation was used to identify confusion cases. BA estimates were compared 

to a method developed by the Brazilian Institute for Space Research, applied to a wall-

to-wall coverage of Landsat-5 TM imagery and to the MCD64, finding that the object 

based method obtained statistically valid estimates of burned areas for the Brazilian 

State of Mato Grosso in a more efficient manner. Furthermore, it enabled the inclusion 

of small burn scars typically missed by coarse resolution satellites.  

 

1.3.2.4. Multi-phase algorithms 

Multi-phase algorithms have been developed to overcome the limitations of the 

techniques previously reviewed. They are based on the combination of thresholds, 

multi-temporal and spatial analysis. Multiphase algorithms normally identify on the 

first phases the most clearly burned pixels, and then decrease the strict conditions 

applied in these early stages on the later phases of the algorithm, to improve the 

delimitation of burned areas. This approach has proven to give good results, and to offer 

a good way to balance omission and commission errors. This technique was first 

proposed by Martín and Chuvieco (1995) to map BA with AVHRR images. Benvenuti et 

al. (2001), applied this procedure to map BA in Italy using Landsat imagery. On the first 
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phase, pixels more likely to be burned (seeds) were identified, leaving the areas less 

affected by fire not detected in this phase. Afterwards, a region growing algorithm was 

applied. Following the same model, the ITALSCAR project (Paganini et al. 2003) mapped 

BA in Italy using Landsat data for years between 1997 and 2000. Seed pixels were 

identified in this case through time series change detection, applying a series of 

thresholds and a region growing algorithm in the second phase.  

Vafeidis and Drake (2005) used a two-phase approach and combined thresholds on 

indices previously developed by Pereira et al. (1999a) and Barbosa et al. (1999a), and 

sub-pixel detection techniques. On the first phase, thresholds were computed for NDVI, 

VI3 and VI3T based on median and standard deviation values. On the second phase, the 

method developed by Razafimpanilo et al. (1995) and a sub-pixel detection technique 

were applied.  

Chuvieco et al. (2008b) also developed a two-phase method to map BA bigger than 

250ha in South America, using MODIS 32 day composites. The products were obtained 

for year 2004 in the framework of the Area Quemada (AQL) project. The indices used to 

identify BA were BAI and NBR, and combined static thresholds and a multi-temporal 

approach. Chuvieco et al. (2008a) also developed a multiphase approach to map BA on 

the boreal forests of Canada with AVHRR data, obtaining a time series for years 1984 to 

2006. For this, they built 10 days composites, and detected on the first phase the seed 

pixels based on temporal thresholds from BAI and GEMI indices. Then, a contextual 

algorithm was used for the second phase, considering the changes in the GEMI index 

with more relaxed conditions. Bastarrika et al. (2011) used a multiphase technique to 

detect burned areas based on Landsat images. In this case, the BAI index and statistical 

thresholds were applied to identify the seeds. On the region growing, three options 

were tested, concluding that the one using fixed thresholds gave better results.  

 

1.3.3. HYBRID ALGORITHMS 

In this type of algorithms both active fire detection and post fire reflectance detection 

are combined. This implementation makes profit of the advantages of both techniques, 

i.e. the more sensitive thermal characterisation of active fires and the more permanent 
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reflectance changes of burned patches. In general, active fire detections are used to 

identify burned pixels or to select polygons if an object based classification has been 

used.  

One of the first hybrid approaches was presented by Roy et al. (1999) using AVHRR and 

MODIS to obtain BA maps. Active fires from AVHRR were used to identify burned pixels 

and to obtain mean and standard deviation statistics, in order to later classify the rest of 

the pixels. Composites were created to compute the statistics. They were based on the 

difference between maximum and minimum pixel values of the VI3 index. The 

procedure was used to map burned areas in South Africa with a good level of agreement 

compared with visual interpretation of the AVHRR images.  

Fraser et al. (2000) proposed the HANDS (Hotspot and NDVI differencing synergy) 

algorithm using AVHRR data. On a first step, HS were filtered by checking consistency 

with an NDVI difference image. The filtered HS were then used to derive a series of 

regional and local thresholds, based on median and standard deviation statistics, to 

classify the BA. The algorithm was used to map BA in Canada for 1995 and 1996. A 

similar version was used by Fraser and Li (2002), to map Canadian fires in 1998 and 

1999 using SPOT-VGT data. In this case, the index was computed using the SWIR band 

instead of the red. Sukhinin et al. (2004) applied a similar technique to MODIS imagery 

to map BA in Russia. Here, the region growing algorithm was based on the Euclidean 

distance to the active fires and was applied to composites formed by bands 1, 2 and 5. 

Gong et al. (2006) mapped burned areas in California from AVHRR data with a modified 

version of the HANDS algorithm, and used 13 NDVI composites based on 10 days 

images. Pu et al. (2007) also used AVHRR images to map fires in California, for years 

1989 and 2000, based on the HANDS algorithm.  

Soja et al. (2004) combined AVHRR active fires and imagery to map BA in Siberia. Active 

fire detection was based on 5 different tests, and BAs were visually identified, using 

bands 1, 2 and 5. The final BA was computed by adding the BA already identified to the 

active fire detections outside of these BA. Kucêra et al. (2005) combined active fires 

with temporal changes in vegetation indices, and statistic thresholds, to AVHRR imagery 

to detect BA in China and Russia.  

Several studies have combined the active fire product from MODIS (MOD14A1) with 

MODIS imagery. Loboda et al. (2007) used the 8 day composite (MOD09A1) with the 

active fire product to apply the technique developed by Roy et al. (1999). In this case 
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the thresholds were derived from the pixels where there was an active fire detection. 

George et al. (2006) used the 16-day BRDF corrected product (MCD43B4) to map forest 

changes in Siberia between 1992 and 2003. Based on an index computed from bands 2 

and 6 from MODIS, they applied a contextual algorithm to identify the BA, using statistic 

thresholds obtained with the active fire information and individual images. Changes in 

NDVI composites were also used to improve the detection for years 2002 and 2003.  

Giglio et al. (2009), presented an hybrid algorithm that combined active fires and 

MODIS reflectances to obtain a new global BA product. On a first step, seed pixels were 

identified, based on the VI index (obtained from bands 5 and 7) and active fires. 

Thresholds were established based on separability, temporal and probabilistic criteria 

to classify the BA. The technique is further detailed in section 1.4, since this algorithm is 

used to obtain the MCD64 fire product, which is the basis for the burned estimations of 

the global fire emissions database (GFED). According to validation results (Padilla et al. 

2015) this product is the one with better accuracy from the global BA products 

evaluated in this study. It is currently widely used by climate modellers (Mouillot et al. 

2014).  

 

 

1.4. REVIEW OF EXISTING BURNED AREA PRODUCTS 
 

In the last years several global burned area products based on satellite observations 

have been released. They are based on coarse resolution sensors, since these offer a 

better temporal resolution than sensors with higher spatial resolution. Global BA 

products are commonly used in the context of climate modelling and in global dynamic 

vegetation models.  

The sensors that have been mainly used to detect burned areas on a global scale are: 

AVHRR, MODIS, SPOT VGT, ATSR2 and AATSR. Table 1 summarises the existing BA 

products and the sensors used in each case. A summary of the methods to obtain these 

products is available hereafter. Regional scale products are also reviewed as well as fire 

products obtained with the MERIS sensor. 
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Table 1. Global burned area collections. 

 Sensor Time 
series 

Spatial 
res 

Type of algorithm/detection Reference 

MCD 
45 

MODIS 
Aqua 
Terra 

2001-
present 

500m Bi-directional reflectance 
model- based change 
detection approach 

(Roy et al. 2005) 

MCD 
64 

MODIS 
Aqua 
Terra 

2001-
present 

500m HS and multi temporal 
spectral indices changes 

(Giglio et al. 2009) 

GBA 
2000 

SPOT 
VGT 

11/199
9-

12/200
0 

1km Multi temporal changes in 
daily reflectances or 
spectral indices  (IFI and 
UTL algorithms) 

(Ershov and Novik 
2001) (Silva et al. 

2003) (Grégoire et 
al. 2003) 

GBS NOAA 
AVHRR 

1982-
1999 

8 km Multi temporal change 
detection 

(Carmona-Moreno 
et al. 2005) 

GLOB 
SCAR 

ERS2-
ATSR2 

2000 1km K1: contextual algorithm 
based on geometrical 
characteristics of burned 
pixels in the near-infrared 
(NIR, 0.87 µm) / thermal 
infrared (TIR, 11 µm).                                     

E1: series of fixed 
thresholds applied to the 
data from four spectral 
channels. 

(Piccolini and Arino 
2000) 

 

 

(Eva and Lambin 
1998)  

GLOB 
CARB

ON 

ERS2-
ATSR2 
SPOT 
VGT 

AATSR 

1998-
2007 

1km Based on two GBA2000 
algorithms (IFI and UTL) 
and GLOBSCAR (K1 and E1). 

(Plummer et al. 
2007) 

L3JRC SPOT-
VGT 

2000-
2007 

1km Temporal index, based on 
GBA2000 experience.  

(Tansey et al. 2008) 

GEO 
LAND

2 

SPOT-
VGT 

1999-
present 

1km Temporal index and 
thresholds 

(http://www.geolan
d2.eu/) 

 
 
1.4.1. GBS 

Carmona-Moreno et al. (2005) used daily global observations from the Global Area 

Coverage (GAC) version of NOAA/AVHRR images, covering the period between 1982 

and 1999 to create a weekly global burned area product at 8km spatial resolution. The 

algorithm used data from AVHRR channels 1–3, extending the approach of Barbosa et al. 

(1999b). Fire seasonality and fire distribution data sets were integrated as 0.5 degree 

resolution fire probability grid maps. Comparison with independently available fire data 
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indicate that although the time-series is inadequate to make quantitative and accurate 

estimates of global burned area, it is suitable to assess changes in location and season of 

burning at the global scale. It was concluded that the Pathfinder 8km dataset was 

affected by spurious temporal trends, limiting the temporal consistency of burned area 

products. Its low spatial resolution very likely lead to substantial underestimation of 

area burned in extensive areas of the planet.  

 

1.4.2. GBA2000 

The GBA2000 product was an initiative from the European Commission Joint Research 

Centre (JRC). It was based on SPOT VGT imagery and delivered a monthly product at 

1km resolution for the year 2000 (Grégoire et al. 2003; Tansey et al. 2004). A series of 

algorithms were developed by an international network of partners, in order to take 

into account different ecosystems and the variety of climatic conditions worldwide. The 

various continental/regional maps were subsequently patched together to form a global 

product. A total of 11 regional algorithms were developed. The International Forest 

Institute (IFI) developed the IFI algorithm in Russian areas (Ershov and Novik 2001), 

Universidad Técnica de Lisboa (UTL) and Instituto de Investigación Tropical (TRI) 

developed the UTL algorithm for Africa Europe and Asia (Silva et al. 2003; Silva et al. 

2002). The Canadian Centre for Remote Sensing (CCRS) developed the algorithm for 

Canadian regions (Fraser et al. 2003; Fraser et al. 2004). Universidad de Evora with UTL 

and TRI created the Brazilian algorithm (Silva et al. 2002). The JRC developed the 

algorithm for Australia (Stroppiana et al. 2003; Stroppiana et al. 2002). The Greenwich 

University established the algorithm for Eastern South Africa (Boschetti et al. 2002), 

Institute for Electromagnetic Sensing of the Environment (IREA) in Italy developed 

another algorithm for Africa (Brivio et al. 2002). JRC developed an algorithm for Central 

America at JRC (Tansey 2002). Data classification approaches used included change 

detection analysis, multiple logistic regression, Multi-Layer Perceptron (MLP) neural 

networks, expectation-based BRDF model inversion, classification and regression trees, 

and linear discriminant analysis. Overall, more than 3.5 million km2 of burned areas 

were estimated, approximately 80% of which occurred in shrublands and woodlands. 

According to those estimates, about 17% of the burned area affected grasslands and 

croplands, and 3% occurred in forests (Tansey et al. 2004). 
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1.4.3. GLOBSCAR 

The GLOBSCAR product was obtained in the framework of the GLOBSCAR project from 

the European Space Agency. It provided monthly burned area maps at 1km spatial 

resolution using information from the Along Track Scanning Radiometer (ATSR-2) 

instrument on board the ESA ERS-2 satellite. The product was obtained for year 2000. 

The image classification procedure combines two distinct algorithms, K1 and E1. K1 

(Piccolini and Arino 2000) is a contextual algorithm based on the geometrical 

characteristics of the burned pixels in the near-infrared (NIR, 0.87µm) / thermal 

infrared (TIR, 11 µm) space. This algorithm presented systematic errors in some 

ecosystems and it was complemented with a second algorithm, the E1 algorithm (Eva 

and Lambin 1998) that applied a series of fixed thresholds to the data from four 

spectral channels and to the NDVI. A pixel would be classified as burned only if both 

algorithms were detecting it.  

The products were validated against other field and remote sensing data (Simon et al. 

2004). Commission errors were uncommon and affected mostly scattered pixels. The 

only large area of commission errors was due to older burned areas, in the mixed and 

evergreen needle leaf forests of Canada and, probably, also in similar ecosystems across 

Russia. Omission errors were common and very important in some regions, such as the 

United States (open shrubland and grassland areas), Australia (open shrubland), 

Zimbabwe (cropland), and Brazil (broadleaf evergreen forests). 

 

1.4.4. GLOBCARBON 

The European Space Agency GlobCarbon project, under the DUE programme, generated 

a global monthly 1-km burned-area product, using two regional GBA2000 (IFI and UTL) 

algorithms and the GLOBSCAR algorithms (K1 and E1) applied to 1-km SPOT 

VEGETATION and ERS2–ATSR2/ENVISAT AATSR data respectively, covering the period 

between 1998 and 2007. The project was developed in cooperation with the 

International Geosphere-Biosphere Program (IGBP), the International Human 

Dimensions Programme (IHDP) and the World Climate research Programme (WCP). 

The project aimed at obtaining vegetation temporal evolution information to be used in 

Dynamic Global Vegetation Models (DGVM) and Atmospheric Transfer Models (ATM). In 

addition to burned areas, other variables such as FAPAR, LAI and VGC were produced.  
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1.4.5. L3JRC 

This product was developed by the University of Leicester, Catholic University of 

Louvain la Neuve, TRI and JRC. The sensor used to produce the BA was SPOT VGT with 

1km resolution. The product was obtained for years 2000 to 2007. The algorithm was 

based on the one designed by Ershov and Novik (2001) for the GBA 2000, using a 

temporal index in the NIR for the detection (Tansey et al. 2008). Median and standard 

deviation of the index were computed for a moving window of 200 by 200 pixels. The 

pixel would be considered burned if the index was smaller than the median minus two 

times the standard deviation of the regional window. The total area burned each year 

(2000–2007) was estimated to range from 3.5×106 km2 to 4.5×106 km2.  

 

1.4.6. MCD45 

The MCD45 BA product is delivered by NASA as a level 3 standard product. It is 

obtained with the information from the MODIS sensor on board the EOS TERRA and 

AQUA satellites. MODIS bands 2 and 5 were identified to be the ones that better 

discriminate BA (Roy et al. 2002). The algorithm is based on temporal differences of 

observed versus predicted reflectance using the inversion of a bidirectional reflectance 

model (Roy et al. 2005). The model is applied on a sixteenth day temporal window 

where at least seven cloud free observations are needed in this temporal window to be 

able to invert the BRDF model. The algorithm deals with angular variations in multi-

temporal data and uses a statistical measure to detect change from a previous state. 

Large discrepancies between predicted and observed values are attributed to change. A 

temporal consistency threshold is used to differentiate between sporadic changes, 

considered as noise, and persistent changes interpreted as burns. The product is 

delivered at 500 meters resolution, and apart from the BA date of detection, other fields 

are delivered: confidence layer, number of observations used for the BRDF inversion, 

land cover of the pixel and the number of consecutive days where information was not 

available.  

 

1.4.7. MCD64 

The second MODIS product, the MCD64, is part of the Collection 5.1 Direct Broadcast 

products. It is based on an hybrid algorithm combining active fire detections (1km) and 
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multi-temporal changes in spectral indices (500m bands) (Giglio et al. 2009). The 

algorithm is based on several steps. A time series extraction is performed to obtain valid 

pixels (cloud free and not coincident with an active fire detection on the same day). 

Afterwards, a spectral index (VI) based on bands 5 and 7 from MODIS is computed and 

used to create composites of potential pre-and post-burn dates, and obtaining a series 

of statistics (median and standard deviation). A measure of spectral separability is 

based on these values and a measure of temporal texture is also obtained. Burned and 

unburned training pixels are identified using spatial and temporal active fire 

information; to extract conditional probability densities for each land cover class. A 

measure of separability is then computed to ensure the discrimination ability between 

burned and unburned classes. A burned probability is then obtained and an initial 

classification is performed based on a series of rules.  A final classification with a one 

pass filter is applied to the initial classification to obtain the final BA product estimation. 

The product is delivered at 500m resolution. This product is the basis for the BA 

estimation included in the GFED (Global Fire Emissions Database)(Giglio et al. 2013), 

widely used by climate and carbon modellers. GFED v4 is derived from the MCD64A1 

product aggregated to 0.25° spatial resolution for the period 2000-present. Prior to 

2000, GFED BA estimates are obtained by calibrating active fire data from the Tropical 

Rainfall Measuring Mission (TRMM), Visible and Infrared Scanner (VIRS) and Along-

Track Scanning Radiometer (ATSR) with the MCD64A1. 

1.4.8. GEOLAND-2.  

The BA GEOLAND-2 product is derived from the SPOT-VEGETATION information. This 

product is an improvement of the GBA200 and the L3JRC products (Tansey et al. 2008). 

The V1 version of the GEOLAND2 BA product has been improved removing the need to 

use land cover maps, making possible processing the data with a near-real-time 10-day 

product. It uses the daily global atmospherically corrected SPOT/VGT synthesis (S1 

products) and the algorithm detects burned areas using a temporal index in the near 

infrared band. The product provides the date of detection of burned areas at a spatial 

resolution of 1km.  

 



 

 43 

1.4.9. THE EUROPEAN FOREST FIRE INFORMATION SYSTEM (EFFIS). 

In 1999 JRC developed a research group with the aim to develop and implement 

methods to evaluate risk of forest fires and map burned areas on a European Scale. 

These activities led to the creation of the European Forest Fire Information System 

(EFFIS). Its objective is to provide information for European forest protection, by 

treating both pre and post fire conditions. There are two modules within the system: 

FDA and RDA. In the Fire Damage Assessment (FDA), burned area perimeters are 

obtained at the end of each season for fires bigger than 5-10 ha. Initially, the data used 

for this mapping was based on WiFS imagery at 180m. Currently, AWiFS is used, with 

spatial resolution of 56m. A second module, the Rapid Damage Assessment (RDA) was 

created after the extreme fire season of 2003 in Portugal, and aim to map burned areas 

bigger than 50ha on a daily basis. The imagery used for this purpose was coming from 

the MODIS sensor at 250m. The algorithm was based on the identification of active fires, 

with a region growing algorithm and reviewed with a final visual interpretation.  

 

 

1.4.10. MERIS-BASED BURNED AREA STUDIES. 

MERIS was primarily designed to provide quantitative ocean-colour measurements 

(Rast et al. 1999). However, its spectral characteristics make it appropriate to also serve 

applications like land surface and atmospheric characterisation. It is well known that 

one of the major drawbacks of MERIS images for BA identification is the lack of SWIR 

and MIR bands which as discussed in the previous sections, are useful to discriminate 

burned surfaces from water and non-combustible land cover and to detect active fires. 

On the other hand, its multi-spectral imaging capabilities in the VIS/NIR region of the 

spectrum and moderate spatial resolution, may in part circumvent this limitation. 

Moreover, the sensor was especially designed to detect chlorophyll concentration 

having bands in the red edge (located in the maximum of chlorophyll absorption). Such 

bands may be of use for BA detection, since an abrupt decrease in the chlorophyll 

content may be related to a fire. 

Regarding fire applications, very few studies have been conducted using MERIS. Among 

the existing studies, there is one developed by Huang and Siegert (2004), where Level 

1b MERIS RR product was used to identify smoke plumes. The BA detection was 
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achieved combining night time AATSR fire hot spots with BA detected with Advanced 

Synthetic Aperture Radar (ASAR). Another study concerning the estimation of fire 

severity using MERIS FR Level 2 imagery and MODIS daily reflectivity product 

(MOD09GHK) was conducted by Roldan-Zamarron et al. (2006). The BA mapping was 

performed applying the matched filtering method (Boardman et al. 1995) to Landsat 

TM data. Fire severity levels were then estimated through use of different techniques to 

MERIS and MODIS images. The authors concluded that, in general, the fire severity 

estimation performed by MERIS was more accurate than the one performed by the 

global product of MODIS. Gonzalez-Alonso et al. (2007) applied the same technique to 

MERIS FR Level 1b imagery to estimate fire severity levels and BA at a local scale. 

Validation performed comparing obtained results with the ones obtained using SPOT-5, 

showed a fairly high correlation between both sensors. Aiming to evaluate the ability of 

some sensors on the estimation of burn severity levels, Chuvieco et al. (2007) 

performed a comparative study using SPOT-5, Landsat TM, MERIS and MODIS. They 

concluded that Landsat TM was the one presenting the best performance. Nevertheless, 

MERIS proved to be capable of correctly identifying the spatial pattern distribution of 

the severity levels. It is worth noting that the above studies are not specifically oriented 

to burned area mapping, but rather to the analysis of some aspects related to level of 

damage caused by fires.  

Only two works have been found in literature in relation to burned area mapping. The 

first one used Spectral Angle Images (SAI) technique at a regional scale (Oliva et al. 

2011). The SAI methodology makes use of a reference spectrum (end members) 

obtained from the image (SAI-image) and from the field spectral measurements (SAI-

field). The study used MERIS FR Level 2 images and compared BA discrimination using 

traditional vegetation indices (e.g., BAI, GEMI, , NDVI) with SAI technique. Validation 

was carried out using AWiFS images. Results showed that index  (a component of the 

GEMI calculation) and the SAI-image were the ones that presented higher accuracy. 

According to the author, NIR bands in the red edge (bands 9 to 12) region present a 

higher power of burned area discrimination than NIR bands (bands 13 to 15), in the 

spectral region traditionally used by the sensors designed for earth observation (Oliva 

et al. 2011). From these ones, when using only one post-fire image, band 10 (in the 

spectral range 750 nm – 757.5 nm) was the one with the highest discrimination power, 

even though all NIR bands (from band 10 to band 14) presented similar discrimination 



 

 45 

power. On the other hand, when using spectral indices for purposes of burned pixels 

detection, band 10 in the red edge and band 8 in the red region, were the ones with 

highest discrimination power.  

The second study was conducted by González-Alonso et al. (2009). They used MERIS FR 

Level 1b data for burned land discrimination at a regional scale. The method used in a 

synergetic way fire hotspots from MODIS with NIR reflectance values from MODIS and 

MERIS imagery. The algorithm computed a threshold that maximized the agreement 

between the burned areas discriminated using the NIR band of a post-fire image and the 

existence of an active fire as detected by MODIS. Validation was performed using an 

image from AWiFS and obtained results were very similar when using MODIS and 

MERIS reflectance values, although slightly better in the case of MERIS. These studies 

were applied to the Northern Western part of the Iberian Peninsula in summer 2006 

and to the Province of Heilongiang in the North of China, in the framework of the ESA 

DRAGON-2 project (González-Alonso et al. 2009).  

Studies performed at regional scale show the potential of this sensor to detect burned 

areas, especially when using hybrid algorithms. This thesis is the first attempt to use 

MERIS data to obtain a global burned area product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 2 

OBJECTIVES 

 
 
 
 
 
 
 
 
 
 



 

 48 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 49 

Nowadays climate change has become an acknowledged environmental fact. In words of 

the IPCC “scientific evidence for warming of the climate system is unequivocal” (IPCC 4th 

Assessment Report, Synthesis Report, Observed Changes in Climate and their Effects, 

page 1). Its relevance has been recognised in a variety of papers and studies, which are 

summarized in the IPCC reports. In fact, the IPCC first assessment report from 1990, 

gathered some of these facts and favoured the creation of the UNFCCC in 1992. One of 

the main tasks of the UNFCCC was to establish a systematic observation and 

development of data archives to monitor the climate system. In order to do so, the 

GCOS, also created in 1992, was identified as the mechanism to pursue these tasks. In 

2003, on its second report, the GCOS established a list of Essential Climate Variables, 

which are physical, chemical or biological variables, or groups of linked variables, that 

critically contribute to the characterization of Earth’s climate (Bojinski et al. 2014). 

Therefore ECVs are key parameters of the Earth system, needed to monitor climate and 

identify relevant changes. GCOS identified 50 ECVs that could be monitored, comprising 

atmospheric, oceanic and terrestrial domains. The complete list of these ECVs is 

detailed in Table 2.  

 

Table 2. GCOS ECVs. 

Domain GCOS Essential Climate Variables 

Atmospheric 

(over land, sea 

and ice) 

  
Surface: Air temperature, Wind speed and direction, Water 
vapour, Pressure, Precipitation, Surface radiation budget. 
Upper-air:     Temperature, Wind speed and direction, Water 
vapour, Cloud properties, Earth radiation budget (including 
solar irradiance). 
Composition: Carbon dioxide, Methane, and other long-lived 
greenhouse gases, Ozone and Aerosol, supported by their 
precursors. 
  

Oceanic 

  
Surface:       Sea-surface temperature, Sea-surface salinity, Sea 
level, Sea state, Sea ice, Surface current, Ocean colour, Carbon 
dioxide partial pressure, Ocean acidity, Phytoplankton. 
Sub-surface:  Temperature, Salinity, Current, Nutrients, Carbon 
dioxide partial pressure, Ocean acidity, Oxygen, Tracers. 
  

Terrestrial 
  
River discharge, Water use, Groundwater, Lakes, Snow cover, 
Glaciers and ice caps, Ice sheets, Permafrost, Albedo, Land cover 
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(including vegetation type), Fraction of absorbed 
photosynthetically active radiation (FAPAR), Leaf area index 
(LAI), Above-ground biomass, Soil carbon, Fire disturbance, Soil 
moisture. 
  

 

 

In 2006, GCOS established the systematic observation requirements for satellite based 

products for climate (GCOS, 2006). The specifications aim at characterizing the state of 

the global climate system and enabling long term climate monitoring. This document 

enhances the need to use satellite measurements to monitor the Earth. In fact 

observations from space provide a unique way to monitor and gather information about 

the climate system, since they allow obtaining global coverage and continuous 

measurements. 

 

In this context, the European Space Agency set up the Climate Change Initiative (CCI) 

(cci.esa.int last access November 2015) programme to respond to this need for climate 

quality satellite data. The aim of the CCI is to monitor and provide stable and long term 

ECVs data, derived from multiple satellite datasets, and to make this information 

available to the scientific community. The programme has a budget of 75Meuros, with 

two phases identified, running from 2009 to 2017. Thirteen projects have been selected 

as the ECV’s to be monitored within the programme. These projects make use of the 

wide range of satellite data available, as can be seen in Table 3. 
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Table 3. Satellite data used by the 13 ECV projects of ESA’s CCI  

(circle: primary contribution, square: indirect contribution or validation activities)  

(Source http://cci.esa.int/content/cci-projects)  

 

 

One of these projects, the fire_cci project, responds to the need to monitor the identified 

ECV “fire disturbance”. The first phase of the fire_cci project aimed at developing 

algorithms (for the MERIS, VGT and ATSR data) to obtain long-term and consistent time 

series of burned area (BA) information, with proper error and uncertainty 

characterization, and to improve the use of this information by climate modellers.  

 

The work presented in this thesis has been developed within the framework of the 

fire_cci project and has therefore implicitly the aim of contributing to the international 

initiatives and programmes mentioned, by monitoring burned areas on a global scale, in 

http://cci.esa.int/content/cci-projects
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order to study its relation to climate change. More in particular, the main objective of 

this thesis was to develop an algorithm to detect burned areas on a global scale from the 

MERIS sensor. In order to achieve it, several factors were considered, related to the 

study and implementation of the different techniques and approaches required to 

obtain the algorithm. Within this main objective three major aims were identified:  

 

1- First, study the spectral behaviour of burned areas, which will be very diverse on a 

global scale, together with the use of specific MERIS bands and indices optimal for the 

retrieval of burned areas.  

 

2- Second, develop and test different procedures to incorporate the MERIS input data 

into the algorithm (composites, individual images), as well as required auxiliary data 

(MODIS).  

 

3- Third, develop and implement different techniques to obtain a two-phase algorithm. 

Seed and growing phases of the algorithm were tested with different approaches in 

order to identify the optimal configuration for the algorithm.  

 

These objectives were related to the election of MERIS as the main input sensor for 

detecting global BA. This choice was based on the requirements of ESA for the fire_cci 

project, as there was a strong interest in the of use European datasets. In addition to 

this interest, the scientific challenge was also relevant, as the use of MERIS imagery in 

its full resolution mode would allow obtaining a BA collection with higher spatial 

resolution than the existing ones (300m versus the 500m resolution offered by current 

BA collections). It was also foreseen within this thesis to test the impact this resolution 

improvement might have in the detection of fires (especially small fires, which 

according to Randerson et al. (2012) contribute to 35% of the fire emissions), and on 

the fire perimeter characterization.  In order to study the BA estimation results and the 

resolution impact, the product was validated and compared with other BA estimations. 

On the validation side, a complete strategy was put in place within the fire_cci project, 

using Landsat derived fire perimeters (Padilla et al. 2014). An added assessment 

exercise was developed in the framework of this thesis, based on fire perimeters 

obtained from national agencies, and that cover large areas. This exercise would help 
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understanding the size of fires detected. A comparison with the main BA collections that 

currently exist was also foreseen. The objective of this comparison study was to check 

the consistency with other products as well as to highlight and identify areas where the 

products had better and worse performances, in order to diminish the uncertainty 

relative to each one of them.  

 

MERIS (MEdium Resolution Imaging Spectrometer) was an instrument on board 

ENVISAT, launched in 2002 and active until 2012. The use of this sensor has a specific 

interest to make use of European capabilities and to ensure continuity, since its 

successor the OLCI on-board Sentinel 3 (launch date December 2015), will have similar 

characteristics. Therefore an additional interest of this thesis was to test the viability of 

obtaining a semi-operational BA product based on MERIS. Similar sensors could benefit 

from similar approaches to the one used in the MERIS BA algorithm to obtain BA 

products. This way continuous monitoring of fire disturbance from space would be 

ensured.  
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3.1. CHAPTER OVERVIEW.  
 

In this chapter the methods developed and tested to obtain the algorithm to detect BA 

will be presented. At the beginning of the algorithm development a series of tests were 

designed. The results obtained with these tests were used to modify the initial version 

of the algorithm, and to develop other ideas. Although the main aim of this chapter is to 

introduce the methods for the algorithm development, some test results will also be 

introduced, as they are needed to illustrate certain choices and further steps taken.  

 

The first part of the chapter gives an overview of general considerations and aspects 

required and needed to build the algorithm. This includes the product to be obtained, as 

well as the study sites used to perform the algorithm tests, the validation sites, the pre-

processing, the main characteristics of the sensor used, and the auxiliary input data.  On 

the second part of the chapter, the main aspects to be taken into account for the 

algorithm design are presented, introducing the bands to be used, the compositing 

criteria and the seed and growing phases of the algorithm. At the end of the chapter, a 

wrap-up of the final algorithm configuration is introduced. 

 

3.2. BA PRODUCT REQUIREMENTS. 
 

The product obtained with the MERIS algorithm has the purpose to contribute to the 

monitoring of the ECV fire disturbance as well as providing the users (climate, 

atmospheric and vegetation modellers) with a product that would satisfy their needs. 

GCOS three target requirements expressed in 2006 (GCOS 2006) are as follows: 

• Accuracy: 5% (maximum error of omission and commission) 

• Spatial resolution: 250m horizontal resolution 

• Temporal resolution: daily observing cycle. 

• Stability: 5%. 

 

User consultations were performed at the beginning of the project to determine product 

requirements (Mouillot et al. 2014). Main specifications are (Schultz et al. 2011): 

• Accuracy: ideal = 5% error, reasonable = 15%, minimum = 25% error, with 

demonstrated systematic and adequate validation using internationally agreed 

validation protocol. 
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• Unbiased product. 

• Temporal resolution:  

- daily data with original spatial resolution of the sensor. 

- weekly, 10-day or monthly basis on grid scale. 

• Spatial resolution: originally 250 m (or minimum 500 m), horizontal resolution 

1km acceptable, 0.5 degree or higher resolution on grid scale. 

• Error traceability and uncertainty characterisation: in a manner that can be 

easily understood and utilised by users in various applications. 

• Temporal stability and consistency: highest standard 5% (temporal stability in 

annual continental-scale averages), 15% acceptable. 

• Long-term series data: 

- understanding the long-term fire, climate and vegetation interaction. 

- can be made from various sensors but temporal consistency is essential. 

• Easy access to data: standard formats (Netcdf preferably). 

• Auxiliary information and metadata: vegetation cover; burn severity... 

 

It is important to note that these GCOS and user requirements are difficult to reach. 

Some of these requirements can be considered unrealistic with current technologies. 

For instance, a recent accuracy assessment of several global BA products found that 

none meet the commission and omission error limits (Padilla et al, 2015). Nevertheless, 

they can be seen as guidelines, and reachable purposes in some cases.  

The internal climate users of the fire_cci project helped to define the variables that 

should be included in the BA product. These recommendations were the basis for the 

Product Specifications (Chuvieco et al, 2014). Following these specifications, two 

products were generated from the output of the BA algorithm: pixel and grid. The 

former includes the date of burn detection, the confidence level and the burned cover. It 

is delivered in geotiff monthly files, at 300m resolution.  From the pixel product, the grid 

product variables were generated every 15 days, in netcdf format with a resolution of 

0.5x0.5 degrees and 22 layers. They include total burned area, standard error, observed 

area, burned patches and burned land cover in 18 categories as defined by the 

Globcover product (Arino et al. 2007). 

In order to obtain these output layers, the MERIS BA algorithm had to compute extra 

layers apart from the BA detection date. These layers were: date of the year of burn 
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(from 1 to 366), confidence level, number of valid images per month, total observations 

per month, number of observations with clouds, and last valid observation before the 

date of burn.  

 

3.3. STUDY SITES.  
 

The algorithm was developed and tested in ten study sites. These sites were selected 

taking into account the different biome types and fire regime conditions. The different 

algorithm configurations were tested on those study sites. Several years were processed 

on those areas, in order to study the temporal stability and adequacy of the algorithm to 

the conditions varying through the years.  

The biomes used to define the study sites were a simplification of the ones defined in 

Olson et al. (2001). Seven categories of biomes were used: temperate grasslands, 

savannah and shrublands, mediterranean forest, temperate forest, tropical and 

subtropical forest, tropical savannah, boreal and others. Figure 3 shows this biomes 

distribution as well as the location of the study sites.  

 

 

Figure 3. Olson biomes simplification and study sites location. 
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Fire activity was also taken into account for the study sites selection. In order to do so a 

map derived from GFED version 3 (Giglio et al. 2013) emissions was used. Figure 4 

shows this emission activity and the study sites location.  

 

 

Figure 4. GFED v3 emissions and study sites location. 

 

Therefore, the ten study sites covering the criteria of different biomes and fire activity 

were selected. They were located in: Canada, Colombia, Brazil, Portugal, Angola, South 

Africa, Russia, Kazakhstan, Borneo and Australia. All have an approximate size of 

500x500 km. 

 

3.4. VALIDATION AND ASSESSMENT SITES.  
 

Two strategies were developed to assess the BA product. The first one, named properly 

validation, was developed within the fire_cci project, and aimed to verify the BA product 

obtained with the MERIS BA algorithm as well as other BA collections. The second 

strategy, named fire perimeter assessment, was used to assess the products while the 

algorithm was under development. The sites selected for the validation and the fire 

perimeter assessment are illustrated in Figure 5, together with the study sites. 

 



 

 61 

 

Figure 5. Validation, fire perimeter assessment and study sites location. 

 

 

3.4.1. VALIDATION SITES. 

The validation of the different BA products was performed using a statistically selected 

global sample of reference BA sites. The year 2008 was selected as the reference for 

validation following a CCI programmatic decision. Stratified random sampling was used 

to select 105 non-overlapping Thiessen scene areas (TSA), considering both ecosystem 

variation and historical fire occurrence (Padilla et al. 2014). Reference fire perimeters 

were generated by a semi-automatic BA algorithm developed by Bastarrika et al. (2011) 

applied to two multi-temporal Landsat TM/ETM+ images for each sampled TSA. The 

reference files followed the standard protocol defined by the CEOS Cal-Val 

(http://lpvs.gsfc.nasa.gov/fire_home.html). Whenever the input images were ETM+, 

only the central strip of the images was processed, to avoid the impacts of the SLC-off 

gaps. 

The validation metrics were derived from fuzzy error matrices to account for the 

different pixel size of TM/ETM and MERIS sensors. Six accuracy measures were 

computed (overall accuracy, omission error, commission error, Dice coefficient, bias 

and relative bias) to satisfy criteria specified by end-users of burned area products. 

More details on the validation strategy can be found in Padilla et al. (2014) and Padilla 

et al. (2015).  

http://lpvs.gsfc.nasa.gov/fire_home.html
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3.4.2. EXTERNAL FIRE PERIMETERS. 

Since the validation sites were extracted from short periods of time (in between two 

Landsat acquisitions) and small areas, the assessment of the final BA product was 

complemented by comparing the MERIS BA results with fire perimeters produced by 

external sources. This comparison complements the strict validation by considering 

within each site a much larger territory (>150.000 km2 versus < 34.000 km2), which 

would help the analysis of large burn patches. Additionally, these selected sites included 

fires occurring during a complete year, thus reducing the impact of temporal reporting 

errors in the actual assessment of BA accuracy. Since the Landsat-based validation 

protocol restricts the analysis of BA pixels to those occurring between the two satellite 

acquisitions, pixels properly classified as burned, but labelled a few days later, might be 

considered as commission errors (if they truly occur a few days before the first Landsat 

acquisition), or as omission errors (if they are labelled a few days after the second 

Landsat acquisition). Temporal reporting errors are more relevant in the case of MERIS 

than in other global sensors, since the temporal coverage and the number of available 

observations with this sensor are quite limited in some regions. This comparison was 

performed for the 3 years when global MERIS BA products were obtained (2006 to 

2008) and was based on four selected areas where reference burned area perimeters 

were available. These sites (Figure 5) cover different ecosystems (Boreal, Temperate 

and Tropical).  

The sources of reference data were: 

- Canada: burned area perimeters were downloaded from the Canadian Wildland 

Fire information System (cwfis.cfs.nrcan.gc.ca/ha/nfdb/ last access November 

2015), which includes the Canadian National Fire Database (CNFDB). The CNFDB 

is a collection of forest fire data provided by different Canadian fire management 

agencies (provinces, territories, and Parks Canada). From this database the 

region selected covered 1.150.000 km² including the Boreal Forest of Alberta 

and Saskatchewan. 

- Australia: perimeters for the Australian site (located in the Northern Territories) 

were downloaded from the North Australian Fire Information database (NAFI) 

(http://www.firenorth.org.au /nafi3/, last access November 2015). The area 

covered a region of 750.000 km² mainly including savannah and Tropical forest. 
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NAFI burned patches were processed by the Darwin Centre for bushfires 

research at Charles Darwin University (for Northern and Western fire patches) 

and Cape York Peninsula sustainable futures (for Queensland). They were 

obtained from multi-temporal comparison of 250 m MODIS imagery, using 

segmentation and visual interpretation. 

- California: Californian perimeters were downloaded from the Fire and Resource 

Assessment programme (FRAP) webpage (frap.fire.ca.gov last access November 

2015). The validation site covers an area of 150.000 km2 including California and 

neighbour states.  

- Portugal: perimeters were obtained from the European Forest Fire Information 

System (EFFIS) (http://forest.jrc.ec.europa.eu/effis/applications/data-and-

services/ last access November 2015). The area was selected to include part of 

the Iberian Peninsula and France, covering an area of 500.000 km2.  

Errors and overall accuracy were obtained following the same scheme for both the 

validation and the fire perimeter assessment exercises. This scheme was based on the 

concept of confusion matrix (Congalton and Green 1999) where columns represent the 

reference data (either the Landsat or fire perimeters in our case) and rows represent 

the BA classification. In this confusion matrix Pij represents the proportion of area of 

agreement (diagonal cells) or disagreement (off diagonal cells) between the BA product 

(map) class and the reference class, where ∑Pij=1 and the row and column margins are 

the sum of the cell entries in that row or column. The confusion matrix is defined in 

Table 4.  

Table 4. Confusion matrix. 

  Reference data 

Algorithm estimate Burned Unburned Row total 

Burned P11 P12 P1+ 

Unburned P21 P22 P2+ 

Column total P+1 P+2 1 

 

 

 

http://forest.jrc.ec.europa.eu/effis/applications/data-and-services/
http://forest.jrc.ec.europa.eu/effis/applications/data-and-services/
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In this context commission error, omission error and overall accuracy of the BA 

category are defined as follows: 

- Commission error: CE= P12/P1+ 

- Omission error: OE= P21/P+1 

- Overall accuracy of the BA category: OA = P11+P22 

It is important to note that in the case of burned areas only two classes exist in the error 

matrix: burned and unburned. Normally the number of unburned pixels is higher than 

the number of burned pixels. This implies that the overall accuracy is strongly 

influenced by the number of correctly classified pixels from the unburned class, leading 

to high values in the overall accuracy. In order to put in context the relevance of this 

measure, the Burned area proportion is also computed for each case.  

 

3.5. MERIS CHARACTERISTICS 

 

MERIS (MEdium Resolution Imaging Spectrometer) is a 15 band programmable 

spectrometer that was launched on board ENVISAT (Environmental Satellite) in 2002 

(Rast et al. 1999). The satellite describes a sun synchronous polar orbit at 800km. It 

orbits the Earth in about 101 minutes with a repeat cycle of 35 days. MERIS was mainly 

designed for ocean colour applications, and provides high spectral resolution (Table 5) 

in the range of the blue to the near infrared regions (Gower and Borstad 2004). The 

total field of view of MERIS is 68.5 degrees around nadir, covering a swath width of 

1150 km, and yielding to a 3 day revisit time for equatorial regions. The spatial 

resolution is 300 m in the full resolution mode (FR) and 1200m in the Reduced 

Resolution (RR) mode.  The use of MERIS data to fire applications is scarce: 

identification of smoke plumes (Huang and Siegert 2004) and discrimination of burn 

severity (Chuvieco et al. 2007; Roldan-Zamarron et al. 2006). Mapping BA with MERIS 

was performed only at regional level by Oliva et al. (2011) using different vegetation 

indices, while González-Alonso (2009) combined fire hotspots from MODIS and near 

infrared (NIR) reflectance values from MODIS and MERIS imagery.  

 

 

http://en.wikipedia.org/wiki/Degree_%28angle%29
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Table 5. MERIS spectral bands and bandwidths (ESA 2006). 

Band Band centre       
(nm) 

Bandwidth 
(nm) 

Region Application 

1 412.5 10 
Blue Yellow substance and detrital 

pigments 

2 442.5 10 
Blue Chlorophyll absorption 

maximum 

3 490 10 
Blue Chlorophyll and other 

pigments 

4 510 10 
Green Suspended sediment, red 

tides 

5 560 10 
Green Chlorophyll absorption 

minimum 

6 620 10 Red Suspended sediment 

7 665 10 
Red Chlorophyll absorption and 

fluorescence reference 

8 681.25 7.5 
Red Chlorophyll fluorescence 

peak 

9 705 10 
Red edge Fluorescence reference, 

atmospheric corrections 

10 753.75 7.5 
Red edge Vegetation, cloud, O2-

absorptionband reference 

11  760  2.5   Red edge O2-R branch absorption band 

12  775   15   Red edge Atmospheric correction 

13  865   20   NIR Atmospheric corrections 

14  890   10   
NIR Vegetation, water vapour 

reference 

15  900   10   NIR Water vapour 

 

MERIS presents some challenges for mapping burned areas. Spectral and temporal 

resolutions are not ideal for BA discrimination. In fact, MERIS spectral range covers the 

400 to 905 nm spectral region where as other sensors previously used for BA 

discrimination have wider ranges (MODIS 620nm-14.4μm, VGT 430nm-1.75μm), 

covering the SWIR and MIR spectral ranges (in the case of MODIS) which are useful 

bands for BA retrieval as previously discussed. Nevertheless, MERIS presents multiple 

spectral narrow bands in the RED-NIR space, which make it also interesting for BA 

mapping purposes. It includes four bands in the red edge, which might be particularly 

useful for burned surface retrieval. The red-edge region is defined as the position of 

main inflexion point of the RED-NIR slope. It is located between 670 and 780nm, where 

there is a sharp rise in reflectance of green vegetation. As pointed out by Clevers et al. 

(2001) imaging spectrometers (such as MERIS) might provide additional information in 

the red-edge region, not covered by the information derived from a combination of NIR 

and VIS broad spectral bands.   

On the temporal side, MERIS global coverage of the Earth is obtained every three days. 

The number of images available is a factor to consider when building a strategy for 
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detecting burned areas. In the case of MERIS, implementations based on temporal series 

detection changes will be limited, since there will be few images to perform the 

detection. Figure 6 shows the number of valid observations in 2008 for four areas: 

Canada, Australia, California and Portugal. The number of images is highly variable 

depending on the region. Canada, for instance, has a very low number of images, up to 

40, whereas Portugal or Australia can have 100 valid images per year in certain areas. 

This is due to the number of satellite passes, sun coverage, gaps in data reception but 

also to cloud coverage. Cloud obscuration effect is quite clear in the case of the 

Portuguese study site, where Northern region of Spain and Western of France have a 

lower number of valid images compared to other regions of Spain or Portugal, due to 

the cloud persistence in those areas. When considering maximum number of images 

available per area results are also quite different depending on the region and period of 

the year. This is illustrated in Figure 7. Canada can have up to 17 images between June 

and October, and none in December or January, whereas Portugal will not have more 

than 10 valid images per month during the whole year. The number is also highly 

variable for California, whereas it remains more stable in Australia. 

 

Figure 6. MERIS valid observations for 2008 in Canada, Australia, California and Portugal. 
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Figure 7. MERIS maximum valid observations in Canada, Australia, California and Portugal.  

 

In terms of algorithm development this already suggests that the strategy designed will 

need to be flexible enough to cope with these differences, since the algorithm will be 

designed to obtain results globally. 

Even though there are some challenges in terms of spectral and temporal resolution, the 

potential of MERIS for improving current information of BA relies on its greater spatial 

resolution in the FR mode, thus potentially providing better detection of small burn 

patches than coarser resolution sensors, and its multiple bands in the RED-NIR space. 

Furthermore, this sensor has a follow up version on the OLCI (Ocean and Land Colour 

Instrument) sensor, and will be complemented with the SLSTR (Sea and Land Surface 

Temperature Radiometer), both payloads on board Sentinel 3, scheduled for launch in 

2015 within the EC Copernicus programme (www.sentinel.esa.int last access November 

2015). The OLCI will include 6 more bands than MERIS (covering the range between 

385nm and 1040nm). Revisit time will also be higher (less than 2 days when both 

satellites are launched), allowing for possible improvements in the algorithm 

implementation, and leading to longer and semi-operational monitoring of BA.  

 

http://www.sentinel.esa.int/
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3.6. PRE-PROCESSING. 
  
Several studies have acknowledged the relevance of pre-processing on the accurate and 

reliable detections performed in land change estimations (Jensen 2005; Lu et al. 2004; 

Scheidt et al. 2008). This is also applicable to fire detection, since a fire also implies a 

change in the land cover. Pre-processing includes activities such as data selection, co-

registration, radiometric calibration, normalization, atmospheric correction and BRDF 

correction. As noted by Justice et al. (2006) time series changes in NIR reflectance due 

to BRDF effects can have important effects in wide field of view sensors, and can imply a 

drop in NIR reflectance as relevant as the one caused by a fire effect.  

For this reason there was a special interest in treating the data properly according to 

the needs of the BA algorithm development. Two pre-processing chains were evaluated 

and tested. The first one developed by DLR (Bachmann et al. 2014) had a special focus 

on the atmospheric correction. The second one, developed by BC (Kirches et al. 2013), 

had a simpler approach but faster processing times. In both cases output files were 

gridded into tiles of 10x10° (3600x3600 pixels at MERIS FR). 

The DLR pre-processing scheme main steps were: 

- Geometric correction based on the AMORGOS software (Accurate MERIS Ortho 

Rectified Geo-location Operational Software, (Bourg 2011). 

- Land water masking: based on the use of a static mask, and further identification 

of pixels using the Dynamically Self-Learning Evaluation Method (DySLEM) 

- Snow/Ice, cloud and haze classification: based on brightness, NDSI indices 

followed by soft or fuzzy classification as introduced by Ackerman et al. (1998).  

- Cloud and topographic shadow identification: based on spectral relationships 

and geometric approach. The use of the GETASSE DEM model was introduced for 

the topographic shadow identification.  

- Atmospheric correction: based on the ATCOR code (Richter 1997). 

 

The surface directional reflectances were delivered as floats between 0 and 1. The 

images included Sun and satellite zenith and azimuth angles. Layers with cloud, snow, 

static and dynamic water masks, and haze were provided. A quality status layer was 

also included.  
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The BC pre-processing scheme main steps were: 

- Geometric correction: based on the AMORGOS SW and improving MERIS FR 

geolocation (RMS < 70 m). 

- Radiometric and smile correction. The smile effect is related to the way 

measurements are performed in the MERIS sensor. MERIS is composed of 5 

cameras. Each camera is equipped with a spectrometer and a two-dimensional 

CCD array installed at the optics focal plane. Ideally, a row on the detector array 

should correspond to a constant wavelength across the field-of-view, but optics 

characteristics and slight misalignments of the sub-systems generally induce 

small variations. These small variations are often referred to as the “smile effect” 

(Bourg et al. 2008). The correction applied is based on two steps. First, the 

irradiance correction is performed using per pixel in-band equivalent irradiance 

in the conversion of radiance into top-of-atmosphere (TOA) reflectance. Second, 

the reflectance correction is performed, correcting TOA reflectance from pixel 

wavelength to the nominal one, using a first order Taylor expansion.  

- Cloud, water and snow identification: based on the Multi Sensor Pixel 

Identification approach which classifies each pixel to be processed according to a 

series of pixel categories: cloud, clear land, clear water and clear snow. The 

classification is based on probabilistic combination of a series of features 

(pressure, NDVI, brightness, glint risk, radiometric land value, radiometric water 

value, a priori land value, a priori water value). 

- Atmospheric correction based on inverse modelling of radiative transfer 

simulations using artificial neural network (ANN) techniques and on Globalbedo 

(Muller et al., 2011) processing chain .  

 

The BC pre-processing scheme was based on the chain developed for the Landcover CCI 

project (lc_cci). The fire_cci and lc_cci pre-processing chains differ on the type of 

aggregation obtained at the end of the chain. The fire-cci one obtained daily reflectances 

instead of weekly composites (required by the lc_cci). The surface directional 

reflectances were delivered as floats between 0 and 1. In addition to corrected 

reflectances, the images included a standard error associated to each band, as well as 

the Sun and satellite zenith and azimuth angles. A status layer was provided as well, 

with values 1 (clear land), 3 (snow/ice), or 0 (i.e. water, cloud, no observation).  
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In order to evaluate the performance of both pre-processing chains, temporal stability 

analysis was performed in a series of extracted pixels for different fire seasons and 

areas. Temporal series over different areas were also plotted, to evaluate the temporal 

series stability. Figure 8 shows the temporal evolution for a pixel in Australia relative to 

a case with no fires. BAI and GEMI indices are plotted. BC time series shows a higher 

stability in comparison to the DLR one. The number of valid observations is lower in the 

case of BC’s (39) compared to DLR’s case (46). 

 

Figure 8. Temporal evolution for a pixel in the Australian study site with the DLR and BC pre-processing 

chains. 

 

Temporal stability was based on the standard deviation computed for BAI and GEMI 

indices, in four different fire scenarios: early season, middle season, late season and no 

fires. Results are shown in Table 6.  
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Table 6. Standard deviation for BAI and GEMI indices in different fire scenarios for the DLR and BC 

processing chains.  

 

  DLR BC 

  BAI GEMI BAI GEMI 

Late 
season 22.792 0.040 20.257 0.032 

Early 
season 27.112 0.047 26.889 0.058 

Middle 
season 36.543 0.061 24.669 0.049 

No fires 35.579 0.092 29.156 0.081 
 

From these two data sets, the DLR pre-processing showed higher temporal stability on 

the BAI and GEMI indices (except for early season fires with the GEMI index). On the 

other side, DLR’s showed more sensitivity, particularly for the day of burning. Results 

were similar with both pre-processing chains, having BC’s shorter processing times. In 

fact, the processing time required to obtain data of DLR’s quality was too high for the 

purpose of obtaining a global pre-processing with MERIS for a long-term time series. 

Furthermore, the BC chain was also used by the lc_cci project, and using this data pre-

processing chain would help ensuring consistency between these products. Therefore it 

was decided to use the BC pre-processing scheme as the basis for the input data into the 

MERIS BA algorithm.  

 

3.7. ALGORITHM MAIN SCHEME. 
 

After literature review and initial study of the pre-processed MERIS data a general 

scheme on the initial algorithm configuration was defined. Three main lines were 

drawn:  

- Auxiliary data: as already mentioned, MERIS does not provide information in 

some bands that are useful for burned area detection, and therefore the use of 

auxiliary information was already foreseen. MODIS HS product was chosen for 

this purpose. The use of a fuel mask, to map out non-burnable areas was also 

included. 
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- Type of algorithm: it was also decided that the algorithm would be based on a 

two-phase approach (seed and growing phases). It was concluded from the 

literature review that this configuration would give better results than other 

implementations, as it would be more flexible to address the spatial 

heterogeneity of BA conditions in different regions.  

- Type of BA identification: the basis to perform BA detections would be the 

creation of a series of composites and identification of indices that would better 

identify the burns. Pixel and object based strategies would be tested on these 

composites.  

 

The general scheme of the algorithm is shown in Figure 9. 

 

 

Figure 9. Algorithm main scheme definition. 
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3.8. AUXILIARY DATA. 
 
In order to obtain the BA maps the MERIS BA algorithm makes use of two auxiliary data 

products: active fires and a fuel mask.  

 

3.8.1. ACTIVE FIRES.  

The active fires or hotspots (HS) product used is generated by combining the 

information from the MIR and TIR bands of the MODIS sensor using a contextual 

algorithm. On a first step fixed thresholds are applied to the MIR and TIR channels and 

then false detections are excluded by analysing the brightness temperature in 

neighbouring pixels (Giglio et al. 2003a). Information available from MODIS in both 

TERRA and AQUA satellites (10.30 and 13.30 Equatorial cross time respectively) was 

used. The product was downloaded from the Fire Information for Resource 

Management System (FIRMS) (Davies et al. 2009). The product reports fires that are 

burning at the time of the satellite overpass at 1km resolution. The product has been 

used in other global BA algorithms (Giglio et al. 2009). A recent study by Hantson et al. 

(2013) showed that the product has a tendency towards omission, having low 

commission error rates. The behaviour of the product in different regions was also 

identified. The low commission reported in this study made its use interesting in the 

MERIS algorithm for the seed phase, since the aim is to avoid commission errors at this 

stage of the retrieval. Other products such as the World Fire Atlas, VIIRS active fires or 

SLSTR fire product (in the upcoming Sentinel 3) could be used in a similar way to feed 

the BA algorithm.  

 

3.8.2. FUEL MASK. 

A fuel mask is introduced as auxiliary data into the algorithm for two reasons. Firstly, it 

will improve processing time of the algorithm since pixels that are already masked as 

not burnable will not be processed. Secondly, it will avoid commission errors in areas 

that are not burnable but that for different reasons could be mapped as burned by the 

algorithm.  

The fuel mask is a binary mask with two classes: burnable/not burnable. It was derived 

from the Globcover 2005 map (Arino et al. 2007), by converting into the burnable class 
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all vegetation classes, whereas urban areas, deserts and water were considered non-

burnable class. 

 

 

3.9. SELECTION OF MERIS INPUT BANDS FOR BURNED AREA 
DISCRIMINATION.  

 

 
MERIS has 15 bands covering the VIS to NIR electromagnetic region of the spectrum. 

Eight of these bands are in the visible region, four in the red-edge and three in the NIR. 

As mentioned, the NIR region has been identified in several studies as being the most 

suitable region of the spectrum to detect BA. Furthermore, the red-edge bands have the 

potential to increase this BA discrimination. Therefore there is a need to identify the 

most adequate bands in the MERIS sensor for BA discrimination. A separability study 

was designed to perform this analysis. In addition, there are different possibilities to 

use these bands in indices and composites. An analysis on these different options was 

also performed. These two studies are shown in the following sections. 

 

3.9.1. SEPARABILITY ANALYSIS.  

An analysis is performed to evaluate the adequacy of the different bands to discriminate 

burned areas, by obtaining the separability between the burned and unburned classes. 

The sensitivity of a band will be higher if there is a high variance between the classes, 

i.e. a high external contrast, and low variance within the classes (high internal 

homogeneity). This strategy has been used in several studies (Chuvieco et al. 2002; 

Lasaponara 2005; Roy et al. 2002) to discriminate the most adequate bands to retrieve 

BA. First, a variety of scenarios needs to be created to evaluate how the different 

variables perform in different cases (simulation framework section). Second, a measure 

of this performance needs to be obtained in order to identify the most suitable variables 

for the two classes discrimination (statistical analysis section). 

 

3.9.1.1. Simulation framework.  

 
In this simulation framework, the aim is to test the separability between the burned and 

unburned classes for the different MERIS bands. More specifically, what needs to be 
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evaluated is how much the reflectance in those bands changes when there is a fire, in 

comparison to the pre-fire situation. Therefore, a set of pre and post fire scenarios 

should be defined.  

These pre and post fire scenarios were simulated with the GEOSAIL and PROSPECT 

canopy reflectance models. In GEOSAIL, the SAIL (Scattering from Arbitrarily Inclined 

Leaves) model was combined with the Jasinski geometric model to simulate canopy 

spectral reflectance and absorption of photosynthetically active radiation for 

discontinuous canopies. The SAIL model was developed by Verhoef (1984). The code is 

a modified version of the code written by Alexander (1983). The geometric part of the 

model is based on Jasinski's geometric model (Jasinski and Eagleson 1990). A complete 

description of GEOSAIL is in Huemmrich (2001). GEOSAIL uses the SAIL model to 

calculate canopy spectral reflectance and transmittance. Shadowed background 

reflectance is the product of the background reflectance and the transmission from 

SAIL. The component reflectances: illuminated canopy, illuminated background, 

shadowed canopy, and shadowed background are then used as inputs into a geometric 

model.  The geometric model determines the fraction of each of the components in a 

scene, given a crown shape, the canopy coverage, and the sun angle.  In this model tree 

crowns are assumed to be identical and do not overshadow each other. For the leaf 

properties of the simulation analysis, the well-known PROSPECT model (Jacquemoud 

1990; Jacquemoud et al. 2009) was used, assuming two situations: green leaves for pre-

fire conditions, and scorched leaves for surface fires. The parameters related to foliage 

simulation are based on data from Chuvieco et al. (2006) using the cases of dry 

(scorched)/ green leaves (pre-fire) (0 and 100).  

 

The pre-fire and post-fire scenarios parameters and values were defined as shown in 

Table 7.  
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Table 7. Pre and post fire scenarios parameter values used in the GEOSAIL model. 

 PRE-FIRE SCENARIO POST-FIRE SCENARIO 

SHAPE OF THE LEAVES Cone or cylinder Cone or cylinder 

TYPE OF SOIL Alfisol, aridisol or entisol Dark charcoal 

CANOPY TYPE Erectophile or plagiophile Erectophile or plagiophile 

TYPE OF FIRE  Surface or crown 

LAI 0.5 TO 12 Surface: up to 4 

Crown: 0.1 & 0.3 

HEIGHT TO WIDTH 

RATIO OF CROWN 

0.5 to 8 0.5 to 8 (simplifying the 

cases of 2, 4 and 6) 

SOLAR ZENITH ANGLE 10-70 10-70 

CROWN COVERAGE 0.2 to 0.8 Surface: 0.2 to 0.8 

Crown: 0.2 

N (structural parameter) 1.4 Surface: 1.4 

Crown: 3 

WATER CONTENT 

(g/cm2) 

0.0075 Surface: 0.0075 

Crown: 0.0006 

CHLOROPHYL CONTENT 

(μg/ cm2) 

42 Surface: 42 

Crown: 28 

DRY MATTER CONTENT 

(g/cm2) 

0.0006 0.0006 

 

A total of 60000 scenarios were defined, simulated and evaluated. For each scenario 

reflectance values were obtained every 5 nm in the spectral range between 405 and 905 

nm. These values were filtered with the correspondent MERIS spectral response 

function (SRF) (ESA Cal/Val Portal calvalportal.ceos.org), in order to obtain the 

response that the sensor will actually provide. An example of all MERIS SRFs with a 

simulated pre and post fire (surface and crown) spectra is shown in Figure 10.  
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Figure 10. SRFs from MERIS 15 bands and simulated spectra for pre and post fire surface and crown 

scenarios.  

 

3.9.1.2. Statistical analysis.  

The statistical measure used to estimate the separability of each band was the 

Bhattachariyya distance, which measures the similarity of two distributions. It is 

defined as (Kailath 1967): 

                 

where the Bhattacharyya coefficient (BC) is: 
 

        ∑√        

   

 

In the case of multivariate normal distributions, where               being ui and vi 

the means and covariances of the distributions, the Bhattachariyya distance is defined 

as:  
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Higher values of DB imply better separation between classes. This measure has been 

used in a variety of remote sensing studies to measure the separability between classes 

(Roy et al. 2002, Bastarrika et al., 2011).  
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3.9.2. SPECTRAL INDICES AND BANDS ANALYSIS.  

Spectral indices are a useful way to retrieve certain characteristics of the surface. In the 

case of burned areas some of them have proven to be a good way to detect the changes 

associated to a fire. They present certain advantages respect to the direct use of the 

bands such as the ability to have less influence from atmospheric, soil or BRDF effects.  

3.9.2.1. Indices and bands identification. 

The indices and bands chosen to test in the algorithm are the BAI, GEMI and NIR. The 

BAI index was specifically designed for BA discrimination and has shown to be effective 

in several studies (Martín and Chuvieco 2001, Chuvieco et al. 2002). From the 

vegetation indices, GEMI is the one that has been identified more often in the literature 

as performing better to detect BA (Pereira et al, 1999b). Furthermore, this index was 

specifically designed to diminish the influence of atmospheric and soil effects (Pinty and 

Verstraete 1992). The NIR band has been identified in several studies to be the one 

(together with the SWIR) that performs better when detecting burned areas. All of them 

present advantages and drawbacks, and therefore the three will be compared in 

different scenarios, to determine how these indices and bands should be used in the 

algorithm.  

A study based on the generation of monthly composites and annual reference trends 

was performed. Two types of composites were built: monthly and annual. The monthly 

composites are post fire composites. The composite concept is already introduced here 

since they were used as means to group the information to identify the selection of 

bands and indices. The detailed analysis and strategy followed to build the monthly 

composites is detailed in section 3.10. The annual composites were based on the 

difference between the monthly composites, and the annual pixel values that would be 

close to the period when vegetation had a maximum productivity. Therefore, the 

expected change between that maximum (for GEMI and NIR) or minimum (for the BAI) 

value and the post-fire value would be highest, thus emphasising post-fire spectral 

changes. Three alternatives were used to build the reference composites: 

- Min BAI: this composite was obtained by selecting the minimum BAI value per pixel 

and year. As the BAI index is related to the proximity to char signal, minimum BAI 

values should select the brightest soil conditions (either snow-vegetation or bare soil). 
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- Max GEMI: this composite was obtained by selecting the maximum GEMI value per 

pixel and year. The maximum GEMI value should be the period of the maximum 

vegetation cover. 

- Max NIR: this composite is obtained by selecting the maximum NIR value per pixel and 

year. The maximum NIR value should be the period of the maximum vegetation cover. 

 

Subtraction of these 3 reference composites to the post-fire composites was performed. 

For the GEMI and NIR, the difference was computed from the reference and the post-fire 

value (DifGEMI = MaxGEMI-GEMIHS, and DifNIR= MaxNIR-NIRHS), while for BAI, the 

difference was from the post-fire values and the reference (difBAI = BAIHS-BAIMin) to 

always use positive numbers. An example of these composites for the GEMI index is 

shown in Figure 11.  

 

 

Figure 11. Maximum GEMI for 2005, GEMI in October 2005 and DifferenceGEMI composites in the 

Australian study site.  

 
 
3.9.2.2. Statistical analysis 

In order to determine which bands and indices were more adequate for retrieving 

burned areas a separability test using Bhattachariyya distance was performed. A sample 

of burned and unburned pixels was extracted from four study sites: Canada, 

Kazakhstan, Australia and Portugal. These four study sites were chosen because they 

were representative of the different biomes and fire regimes. The burned pixels were 

identified with the HS, while for unburned areas a random sample of 10 % of all pixels 

within the limiting area of 10 km to any HS was extracted. The extraction was done by 
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previously removing all pixels that were considered burned in the MODIS MCD45 BA 

product. Sample sizes were between 4500 and 23000 for burned pixels (depending on 

the fire occurrence in the four study sites), while for unburned pixels the sample size 

was between 45000 and 92000 pixels. Bhattachariyya distance was computed for 6 

composites: post-fire composites (GEMI, NIR and BAI) and three temporal differences 

(DifGEMI, DifBAI, DifNIR). 

 

3.9.3. RESULTS. 

Results from the separability analysis and from the spectral indices and bands analysis 

are shown in these sections.  

3.9.3.1. Separability analysis. 

From all the different scenarios, the type of fire (surface or crown) was used to separate 

and interpret the results. The reason for this is that from space the sensitivity to these 

fires will be different. Crown fires will be more evident and easier to detect from space. 

In the surface fires, only the cases where LAI was going up to 4 were considered, since 

for higher LAI values the difference from space will be negligible. Results are shown in 

Table 8 for crown fires, surface fires, and considering both types of fire combined.  

Table 8. Bhattaacharyya distance values for the 15 MERIS bands in the crown and surface fire scenarios. 

Band Crown fire Surface fire Total 

1 0.0361 0.3305 0.0350 

2 0.1130 0.0066 0.1103 

3 0.1926 0.0310 0.1894 

4 0.2201 0.0509 0.2168 

5 0.3442 0.1392 0.3408 

6 0.4110 0.2734 0.4076 

7 0.4334 0.3452 0.4302 

8 0.3945 0.3245 0.3922 

9 0.3805 0.2412 0.3780 

10 0.6085 0.1201 0.5907 

11 0.5546 0.1050 0.5382 
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12 0.6559 0.1391 0.6358 

13 0.6975 0.2192 0.6783 

14 0.6002 0.1896 0.5845 

15 0.6008 0.1902 0.5853 

GEMI 0.4220 0.0738 0.4063 

 
Band 13 located in the NIR region, is the one that gives better total separability, being 

the Bhattacharyya distance the biggest for this band. It also presents the higher 

separability for crown fires. The second and third bands that perform better are 10 and 

12, located in the red edge. Bands that present smaller Bhattacharyya distances are the 

ones in the blue region. The use of the GEMI index, computed here with bands 8 and 10, 

provides a better separation than the use of single band 8. Band 7 is the one that gives 

better separation in the red region.  

The results from this study are still preliminary. A more comprehensive version of these 

results is in preparation, and will be combined with the same methodology applied to 

the OLCI sensor bands.  

3.9.3.2. Spectral indices 

Selection of the most sensitive bands to use in the seed and growing phases of the 

algorithm was based on the Bhattachariyya distance. The single band composite (NIR, 

GEMI or BAI) and the annual differences were selected as having the bigger distance. 

Table 9 includes the results for the bands evaluated.  

Table 9. Bhattaacharyya distance values in 4 study sites for the 6 composites analysed, between burned 

and unburned pixels. 

 Australia  Canada Portugal  Kazakhstan 

GEMI 1.1645     0.2853     0.4490     0.7809 

BAI  0.7488     0.2457     0.6031     0.5636 

NIR 1.5739     0.3394     0.5420     0.8363 

DifGEMI 0.8631     0.1343     0.3697     0.3223 

DifBAI 0.8774     0.0062     0.6317     0.2999 

DifNIR 1.0314     0.0113     0.2557     0.5711   
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The post fire composite chosen is the NIR one as it is the most sensitive in three of the 

four cases analysed, except for Portugal, where the BAI index performs better (Table 9). 

In the case of the temporal differences DifNIR performs better in Australia and 

Kazakhstan, DifGEMI in Canada and DifBAI in Portugal.  

Correlation matrices between the composites were also computed, in order to identify 

which composites should be combined, in case more than one of them was used for the 

detections. These matrices are shown in Table 10. 

 

Table 10. Correlation matrices between the composites for burned and unburned scenarios in 4 study 

sites. 

 
BURNED PIXELS 

 
UNBURNED PIXELS 

AUSTRALIA 
 

AUSTRALIA 

 
GEMI BAI NIR 

Dif Dif Dif 

  
GEMI BAI NIR 

Dif Dif Dif 

GEMI BAI NIR GEMI BAI NIR 

GEMI 1.000 
      

GEMI 1.000 
     

BAI -0.124 1.000 
     

BAI -0.671 1.000 
    

NIR 0.915 -0.287 1.000 
    

NIR 0.809 -0.734 1.000 
   

DifGEMI -0.048 0.481 -0.255 1.000 
   

DifGEMI -0.549 0.436 -0.518 1.000 
  

DifBAI -0.158 0.980 -0.317 0.506 1.000 
  

DifBAI -0.638 0.980 -0.710 0.529 1.000 
 

DifNIR -0.067 0.485 -0.342 0.949 0.512 1.000 
 

DifNIR -0.417 0.461 -0.631 0.869 0.551 1.000 

               

CANADA 
 

CANADA 

 
GEMI BAI NIR 

Dif Dif Dif 

  
GEMI BAI NIR 

Dif Dif Dif 

GEMI BAI NIR GEMI BAI NIR 

GEMI 1.000 
      

GEMI 1.000 
     

BAI -0.598 1.000 
     

BAI -0.616 1.000 
    

NIR 0.952 -0.565 1.000 
    

NIR 0.934 -0.599 1.000 
   

DifGEMI -0.546 0.402 -0.370 1.000 
   

DifGEMI -0.511 0.364 -0.301 1.000 
  

DifBAI -0.549 0.973 -0.482 0.548 1.000 
  

DifBAI -0.546 0.957 -0.485 0.553 1.000 
 

DifNIR -0.468 0.367 -0.315 0.968 0.522 1.000 
 

DifNIR -0.455 0.352 -0.271 0.969 0.547 1.000 

               

PORTUGAL 
 

PORTUGAL 

 
GEMI BAI NIR 

Dif Dif Dif 

  
GEMI BAI NIR 

Dif Dif Dif 

GEMI BAI NIR GEMI BAI NIR 

GEMI 1.000 
      

GEMI 1.000 
     

BAI -0.412 1.000 
     

BAI -0.687 1.000 
    

NIR 0.946 -0.494 1.000 
    

NIR 0.850 -0.759 1.000 
   

DifGEMI -0.762 0.321 -0.746 1.000 
   

DifGEMI -0.414 0.334 -0.462 1.000 
  

DifBAI -0.403 0.980 -0.485 0.335 1.000 
  

DifBAI -0.634 0.980 -0.729 0.429 1.000 
 

DifNIR -0.608 0.303 -0.664 0.911 0.326 1.000 
 

DifNIR -0.175 0.288 -0.423 0.813 0.408 1.000 
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KAZAKHSTAN KAZAKHSTAN 

 
GEMI BAI NIR 

Dif Dif Dif 

  
GEMI BAI NIR 

Dif Dif Dif 

GEMI BAI NIR GEMI BAI NIR 

GEMI 1.000 
      

GEMI 1.000 
     

BAI -0.380 1.000 
     

BAI -0.584 1.000 
    

NIR 0.977 -0.405 1.000 
    

NIR 0.947 -0.634 1.000 
   

DifGEMI -0.602 0.132 -0.629 1.000 
   

DifGEMI -0.482 0.323 -0.554 1.000 
  

DifBAI -0.373 0.980 -0.401 0.175 1.000 
  

DifBAI -0.559 0.980 -0.617 0.388 1.000 
 

DifNIR -0.618 0.166 -0.667 0.931 0.209 1.000 
 

DifNIR -0.435 0.342 -0.564 0.911 0.406 1.000 

 

After analysing these results, and taking into account the noise in the time series (see 

section 3.10.3.1) the following bands were selected: 

- Seed phase: it was decided to use only one band. The reason for it was that this 

phase was mainly based on statistics and extraction of pixels and therefore the 

interest was in using only the band that gave better separation between classes, 

therefore the post fire composite based on the NIR was chosen.  

- Growing phase: it was decided to use two bands, the one that gave better 

separability results (NIR), and one band that would take into account inter-

annual variations (DiffGEMI, DiffNIR and DiffBAI). The correlation between the 

NIR and the DiffGEMI, DiffNIR and DiffBAI was analysed. In Australia, the lowest 

correlation for the NIR band was with the DiffGEMI for both burned and 

unburned pixels. In Canada, the highest correlation was with DiffBAI, for 

unburned and burned, being lower for DiffNIR and DiffGEMI. In Portugal, the 

lowest correlation was found with DiffBAI for the burned pixels. On the opposite, 

for unburned pixels the highest correlation with NIR was found with DiffBAI. The 

same behaviour was observed for Kazakhstan. Taking into account these results 

it was decided to use the DiffGEMI band. The correlation analysis showed that 

correlation between diffGEMI and NIR is lower than between the diffBAI and NIR 

in most cases. Correlation between NIR and DiffNIR and DiffGEMI showed 

similar behaviours, but DiffNIR was finally excluded since it was decided that 

there would be more benefit in adding information from another index. 

Furthermore, GEMI was specifically designed to reduce soil and atmospheric 

effects, being also less affected by the noise in the time series. An example of this 

noise is shown in Figure 12. A temporal series extraction is represented for the 

NIR, GEMI and BAI for a random pixel in Portugal. In comparison, BAI is less 
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robust to the noise in the time series giving lower stability than the GEMI time 

series.  

 

Figure 12. Temporal evolution of NIR BAI and GEMI for a pixel in Portugal. 

 
 

3.10. COMPOSITING CRITERIA. 
 

Composites are generally built to reduce noise in the time series and to fill the temporal 

gaps when observations are not available. Two aspects need to be defined when 

creating composites. First, which bands will be used for compositing. Second, which 

criterion will be used to select the pixel that will be kept in the compositing. 

Compositing techniques have been widely used as means to group the information 

acquired and to overcome temporal discontinuities in the context of burned area 

detection. Kasiscke et al. (1995; 1993) created NDVI 15 day composites based on 

AVHRR series to detect burned areas in the boreal forests of Alaska during 1990 and 

1991. In a similar way, Fernández et al. (1997) mapped large fires in Spain during years 

1993 and 1994 using AVHRR 10 day composites looking for maximum NDVI in the time 

series. Later on, efforts were made to select criteria that would enhance the BA 

detection, since the NDVI ones enhanced the vegetation response. Fraser and Li (2002) 

used SPOT-VGT data in Canada, to create 10 days composites of NDVI to perform the BA 

detection. On this line, Chuvieco et al. (2005) compared different compositing 

techniques and found that maximum brightness temperature was enhancing the BA. 
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More recently, Giglio et al. (2009)  used ten days composites of VI index (relation 

between MODIS bands 5 and 7) as the basis for the MCD64 BA algorithm.  

As mentioned previously MERIS temporal resolution does not provide daily coverage. 

Furthermore, taking into account cloudy regions a composite strategy was envisaged to 

be able to retrieve consistent information on burned areas. The aim is to obtain a spatial 

and temporal consistent picture of the area to analyse. Different compositing techniques 

were considered. They can be divided in two main categories: annual and monthly 

composites. Two main criteria need to be considered when building a composite: 

temporal and spatial consistency.  

 

3.10.1. TEMPORAL CRITERIA  

Considering the number of valid observations in MERIS for the different areas and 

months (Figure 6 and 7), the initial approach was to build an annual composite. The 

minimum NIR value per pixel and year was selected to create this annual composite. 

The day when this minimum occurred was also kept for further analysis. Low NIR 

values are expected in areas where char or scorched leaves are present, although they 

can also be caused by water or dark soils. Therefore, in case of a fire event, the NIR 

value should decrease, presenting significantly lower values on the days after the fire 

event. Following this logic, the day of the minimum NIR value per year should be the 

date of the fire event.  

A second test that could help minimising potential errors was to use the 2nd NIR minima 

instead of the first one. This strategy would avoid potential problems not detected in 

the pre-processing such as cloud shadows. The 2nd NIR minima should still be 

representative of the fire event.  

In order to test the consistency of this method, and analyse its performance, a series of 

extractions were performed. The date from MERIS detection was compared with the 

date of MODIS HS detection. Three scenarios were considered: HS and MERIS, HS only, 

MERIS only. The purpose of these extractions was to evaluate how the algorithm was 

performing at its earlier stages in terms of spatial and temporal consistency in 

comparison with the HS product. As already mentioned, since this product has low 

commission errors it could therefore be used to evaluate the adequacy of the MERIS 

detections for the pixels where a HS was also present. 
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3.10.2. SPATIAL CRITERIA. 

The temporal criteria tests aimed at obtaining the possible burn date for the different 

pixels over the temporal period selected. It is also important to obtain a good spatial 

consistency in the composite, in order to be able to retrieve the total extent of the 

burned area. The use of HS to create this spatial consistency was envisaged. Different 

strategies were tested. In all of them the basic spatial criteria was based on the use of 

Thiessen polygons (Brassel and Reif 1979) to extend the HS. A first composite, named 

the Thiessen matrix assigned to each pixel the value of the closest HS. Afterwards, the 

aim was to build a NIR post-fire composite guided from this Thiessen matrix, relying 

therefore on the accuracy of HS to describe sampling points within fire perimeters. It is 

well known that HS do not provide a full description of fire-affected areas, as satellite 

sensors only detect those fires that are active when the satellite overpasses the fires. 

However, the high thermal contrast between burning and background pixels and the 

sensitivity of MODIS thermal channels, ensures a high confidence in detecting actual 

fires, avoiding commission errors. Hantson et al. (2013) performed an exploratory 

analysis of HS performance to detect burned perimeters by comparing HS with fire 

reference data extracted from Landsat TM/ETM+. Commission errors found were very 

low (<3 %) for all study sites, but omission errors (burned patches undetected) were 

relatively high (>25%) particularly for small BA patches. However, considering the 

limitations of MERIS data for detecting a strong BA signal, HS were used to establish the 

most appropriate date for the post-fire temporal compositing. The technique of using 

HS for labelling fire dates has been proposed by other authors (Boschetti et al. 2010). 

 

Different tests to build the Thiessen matrix and the post fire NIR composite were 

implemented. The options tested are detailed in the following sections.  

 

3.10.2.1. Thiessen (50%, 100%, 11.4 km and extended) + value after 

 
In this case the first valid image after the date indicated in the HS matrix would be used 

to keep the NIR value in order to build the composite. If no data existed for that day or 

the data was considered not valid (it was filtered by the mask thresholds) the next day 

available was used to compute the spectral index. A maximum range of 45 days between 

the data used to compute the index and the date of the HS was established, to avoid 
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selecting a date when the BA signal was already blurred. This value was selected as a 

compromise between post-fire vegetation recovery in some ecosystems, where fire 

signal lasts shortly, and the number of valid images available. In case no data was 

available in 45 days the value assigned to the pixel was -4, and that pixel was 

considered unobserved. 

Different strategies were also tested to build the HS Thiessen matrix.  

- Input HS: two sub-options were tested, the first one using all HS detected, and 

the second one using only those HS with a confidence higher than 50 and 70 

percent.  

- Distance pixel – HS: two sub-options were tested, in one the date of the closer HS 

would be assigned to the pixel independently of the distance between this pixel 

and the HS. On the second case this distance was limited to a radius of 38 pixels 

(11.4 km) to any HS. This value was computed from an exploratory analysis 

performed in different study sites with grassland fires, by comparing fire 

perimeters extracted from Landsat TM/ETM data and HS distribution (Hantson, 

personal communication). The maximum distance between a HS and a Landsat 

perimeter was obtained, and this distance was never bigger than 10 km. A 

similar value was suggested by Giglio et al. (2009) to limit the growing of burned 

areas. In case pixels did not have a HS at shorter distance than 11.4 km, the value 

assigned to the resulting composite image was 0, as it was assumed the 

likelihood of being burned should be very low.  

 
3.10.2.2. Thiessen with 3 NIR minima (over 2 months).  

 
This strategy aimed at obtaining a higher spatial and temporal consistency, combining 

the benefits from the minima approach (3.10.1) with the HS Thiessen matrix one 

(3.10.2.1.). For this test, 3 NIR minima after the HS were obtained over two months, and 

the one closer to the HS was selected. If no values were available after the HS then the 

2nd minima before the HS date was selected.  
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3.10.3. RESULTS.   

Results from the different tests performed for the temporal and spatial compositing 

criteria are shown in the following sections.  

 
3.10.3.1. Temporal criteria.  

A graphical visualisation of the NIR and Julian date annual composites in the Australian 

study site is shown in Figure 13.  

 

Figure 13. First minimum NIR composite and Julian dates associated for the annual test in Austalia 2008. 

 
Dark regions can be identified from the NIR composite, as well as a certain level of 

aggregation in the Julian dates associated to these NIR values. In order to further 

evaluate the results obtained a series of extractions were performed for the 10 study 

sites. Three cases were defined in the study: agreement between the MODIS HS product 

and MERIS, only MERIS detection, and only HS detection. This analysis was proven to be 

useful to understand the commission and omission errors in the MERIS images using 

the HS product as reference. When analysing the extractions many inconsistencies were 

found. An example of this is shown in Figure 14. In this case MERIS and HS product 

agreed on detecting a burned pixel. Nevertheless, the fire according to the HS product 

occurred on day 260 (grey arrow), whereas MERIS was mapping a burn on day 228, 

more than 30 days prior to this date. On day 228 (blue arrow) the minimum NIR and 

GEMI values of the time series were found, classifying the pixel as burned. These values 

could correspond to a cloud shadow not properly masked, since the values of NIR and 

GEMI become higher again for the following days. In fact, the second minima in the NIR 
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and GEMI values is found on the same date indicated by the HS (grey arrow), finding 

also low NIR and GEMI values on the following days. 

 

 

Figure 14. Bands 8 and 10 for a pixel in Kazakhstan in 2005, the date of fire is 260. 

 
The main conclusion from these extractions was that the MERIS time series presented 

noise instability and that this lead to most of the errors (commission and omission but 

also date errors). The noise in the time series affects the composite in two ways:  

- The date of the fire (as extracted from HS) was, in several cases, different from the 

date of the minimum NIR value, up to more than 100 days earlier or later in the worse 

cases, as exemplified by Figure 14. Similar cases were reported in other sites, such as 

Portugal (Figure 12), where the minimum NIR values were observed at the beginning of 

Spring, which is a very unlikely season for burnings in this region. In this case, the 

criterion of the minimum NIR value labelled a fire at the beginning of the Spring season 

(day 100), which is more than 150 days earlier than when the fire occurs (date of burn 

is 261). Similar issues were found in other sites. Although seasonality patterns could be 

used to discard some of the false positives, noise in the data still remains, making 

difficult the correct fire date identification. 

- Spatial inconsistency: if a fire occurs and pixels in the same region are burned, the date 

related to the minimum NIR should be equal or at least similar. When applying this 

method to the MERIS data, minimum NIR values in neighbour pixels did not correspond 

to similar dates. Therefore when a growing algorithm was applied, the dates related to 

the same fire event were not consistent. A detail of this dates for the region highlighted 

in the red box in Australia (Figure 15) is shown in Table 11.  
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Figure 15. Region for dates extraction related to the minimum NIR composite. Red box indicates pixels 

shown in Table 11. 

 

Table 11. Detail of Julian dates from red window (pixels from 11 rows and 11 columns) in Figure 15. 

326 326 329 113 113 348 348 113 113 113 329 
91 326 300 224 224 113 113 113 329 240 329 
81 74 74 224 224 227 329 221 326 329 326 
81 329 240 240 43 43 329 326 326 326 240 
116 81 240 240 43 224 300 326 52 326 348 
52 224 240 240 167 167 224 167 326 227 329 
224 224 224 240 224 167 167 167 326 326 81 
224 224 326 218 224 211 43 43 227 326 167 
224 326 326 224 208 2 211 43 329 81 52 
218 326 326 221 221 227 211 43 329 81 52 
300 148 300 329 148 148 148 91 329 329 81 

 

Analysing these results it can be seen that some neighbouring pixels are more than 150 

days apart. Therefore in many cases no temporal relation exists between pixels. This 

effect was particularly noticeable at the borders of the fire areas. This behaviour is also 

related to the noise in the time series. 
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In light of these results some modifications to the initial configuration were made:  

- It was decided to test the use of monthly composites, since this would minimise 

the noise effects found in the annual test. Applying the same method on a 

monthly basis increased spatial consistency but the temporal consistency was 

not ensured due to the noise in the time series. Therefore, other options for 

building the composite were needed.  

- It was decided to use the HS dates to guide MERIS detections. A Thiessen matrix 

based on the HS dates would be computed. The date of the closest HS would be 

assigned to each pixel within the matrix. The NIR values of the MERIS images 

that correspond to the dates obtained in the Thiessen matrix (or the first image 

available posterior to those dates) would be used to build the NIR composite.  

- It was decided to use the second NIR minima since the first one would not get rid 

of potential cloud shadows and the second one would minimise this effect, while 

keeping a good retrieval of the burned area. A comparison between the 1st and 

the 2nd minimum NIR is shown in Figure 16. As it can be seen darker areas 

(burned patches) remain while cloud shadow presence is reduced. This effect is 

particularly noticeable on the coastal areas, where speckle effects are clearly 

reduced. This way also higher spatial consistency is obtained.  

 

 

Figure 16. First and second annual NIR minima for 2008 in Australia. 
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3.10.3.2. Spatial criteria.  

 
Spatial and temporal consistencies were obtained by computing a Thiessen matrix 

based on the HS dates. For each pixel the date of the closest HS was assigned. It was 

decided to use all HS independently of their confidence level since the commission 

errors from this product are low (Hantson et al. 2013) and further tests and filtering 

were applied in the next steps of the algorithm to help avoiding these errors.  

 

3.10.3.2.1. Thiessen (50%, 100%, 11.4 km and extended) + value after 
 
Results for the test that used the MERIS first valid observation after the HS date are 

available hereafter. It was decided to keep the distance to its maximum and not to the 

11.4 km limit since results did not vary significantly and completing the Thiessen matrix 

guarantees a higher spatial consistency.  

 

Figure 17 shows on the left side the Thiessen polygons matrix associated to the HS 

dates for October 2008. On the right, the dates of the first MERIS image available after 

the date indicated by the HS are plotted. It is important to highlight the date difference 

between the HS detection and the first MERIS valid observation, which can go up to 20 

or 30 days (light blue polygons on the right side figure). This gives also an idea on the 

reporting accuracy of the MERIS observations.  

 

 

Figure 17. Australian HS and MERIS Thiessen matrices in October 2008. 
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This method guarantees a higher spatial consistency, and reduces the temporal errors. 

Temporal consistency was found higher with this method. Nevertheless, some artificial 

structures that follow the Thiessen polygons and that do not correspond to natural fire 

patterns were still present in the composites. These artificial structures associated to 

the use of the Thiessen matrix are illustrated in Figure 18, where the NIR of the MERIS 

images associated to the MERIS Julian dates Thiessen matrix is shown for October 2008 

in the Australian study site.  

 

 

Figure 18. NIR composite using the Thiessen criterion of the HS dates. 

 

3.10.3.2.2. Thiessen +3 NIR minima. 

The strategy to diminish these artificial structures was based on combining the benefits 

of both the 2nd minimum NIR (spatial consistency) and Thiessen + value after (temporal 

consistency) approaches. Thiessen + 3minNIR is the approach that combines these two. 

Results from this implementation are shown in Figure 19. As it can be seen the NIR 

composite from the Thiessen + 3minNIR approach (top right corner) does not present 

the strong features that were observed on the Thiessen + value after, while keeping the 

temporal consistency, as shown in the Julian dates matrix of this method (bottom right 

corner).   

 



 

 94 

 

Figure 19. Thiessen+value after and 2
nd

 minNIR approaches, combined in the Thiessen+3minNIR final 

approach. 

 

In order to increase the spatial consistency it was decided to extend the compositing 

time. Composites were built for each month by selecting images from a bi-monthly time 

series (Figure 20) to mitigate the impact of low MERIS temporal resolution. This 

strategy decreases the effects of low number of valid observations for cloudy regions 

and helps detecting fire burned areas that occurred at the end of the monthly period.  

 

 

Figure 20. Monthly composites generation based on MERIS information from two consecutive months. 
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3.10.4. COMPOSITE FINAL CONFIGURATION.  

NIR and Julian date composites were obtained with the method detailed in this section. 

As mentioned previously (3.9.2), in addition to the monthly post-fire composites, an 

annual reference composite was created for the contextual phase of the algorithm.  This 

annual reference composite was obtained as the difference between the annual 

maximum GEMI value and the monthly GEMI composite. The annual composite 

maximised the GEMI value to account for the maximum seasonal greenness of each 

pixel. The difference with the monthly GEMI indices was obtained as it was assumed 

that the change between the annual maximum and the post-fire value (included in the 

GEMI monthly composite) should be the highest for burned pixels, thus emphasising 

post-fire spectral changes. The GEMI monthly composite is obtained by computing the 

GEMI index for the dates from the Julian composite, derived from the method described 

in the previous section.  

The steps to build the monthly composites are illustrated in Figure 21. Final composites 

(NIR, Julian dates and DiffGEMI) are highlighted in green. The first two will be used in 

the seed and growing phases of the algorithm, while diffGEMI will be used only in the 

growing phase of the algorithm.  

 

 

Figure 21. Steps to build the final composites. 
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3.11. SEED PHASE 
 

3.11.1. GENERAL CONSIDERATIONS.  

The seed concept is based on the identification of some pixels where there is a high 

confidence on those pixels having burned. There is a variety of techniques used to 

implement this phase. They can go from user identification and training algorithms, to 

the use of automatic methods. The bottom line is to have little omission in this phase 

(detection of maximum number of perimeters), while keeping a low commission rate. In 

the MERIS BA algorithm, the starting point is based on the definition of two different 

classes (burned and unburned). The purpose is to maximise the distance between these 

two classes to identify a threshold that could reasonably separate them. In addition, 

these thresholds should be dynamically (spatially and temporally) adapted to the fire 

characteristics of each region and season, as fire characteristics change both spatially 

and temporally. 

 

For doing so, a series of rules were needed to identify the set of pixels that would help 

defining the burned and unburned classes. The approach was based on the use of HS to 

identify potential burned pixels, and by contrast the unburned ones. Those pixels that 

fulfilled a set of requirements were used to build the cumulative distribution functions 

(CDFS), used to represent the burned and unburned classes. From these functions, a 

threshold was established to identify seed pixels. Those threshold values were chosen 

to minimise the confusion between the two classes and were computed for each tile of 

the input MERIS reflectances (10°x10° or 3600x3600 pixels at MERIS FR). Figure 22 

aims at illustrating the distributions and CDFs concept. On the left side two normal 

distributions are plotted. The top left one shows the case where the two distributions 

are closer, and therefore more confusion between the classes existed, since more values 

were shared between them. This translated also into closer CDFs (top right). On the 

bottom, the opposite case is represented, with a much clearer separation between 

classes, i.e. the distributions shared less values and therefore the confusion was lower.  
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Figure 22. Normal distributions and CDFs showing the poor and better separation between classes. 

 

The 10°x10° tiles that were the output of the BC pre-processing chain were used to 

obtain the statistics and CDF values. It was decided to keep them as input to the 

algorithm and to obtain the CDFs as this division offered a good balance between 

regional diversity and processing time. A series of tests were envisaged to obtain the 

best configuration to build the CDFs and to identify the final seed pixels. Other 

configurations were developed to optimise the results obtained.  

 

It is important to note that the seed phase has a big impact on the final BA results, and it 

was very relevant to avoid commission errors in this phase since applying a growing 

algorithm to a commission seed pixel could lead to large commission errors (for 

instance in areas with dark soils). At the same time, omission errors should be kept to a 

minimum, since perimeters not detected in this phase would not be detected in the 

growing phase, and therefore would become omission errors in the final product. When 

developing the algorithm it was acknowledged that in order to optimise this phase, 

results from the growing phase would need to be taken into account to obtain the final 

Normal	distribu on	 CDF	

1st	class	
2nd	class	
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configuration. Furthermore, the statistics obtained in the seed phase were used to 

obtain some of the conditions for the growing phase.  

  

3.11.2. THRESHOLDING APPROACHES. 

 
3.11.2.1. Fixed thresholds.  

 
Once the burned and unburned CDFs were built there were different ways to identify 

the threshold to be applied in each tile. A simple option was to determine a fixed 

relative threshold (for instance, using percentile 80 of the burned CDF) and use this 

value for all regions to be covered by the algorithm. Clearly this was a simple method 

and had also a big advantage in terms of processing time, which is an important point to 

consider when building a global algorithm. On the other hand, this way of determining 

the threshold was less flexible, and may not well adapt to the different conditions that 

exist worldwide and to the seasonality in the different regions, leading to large omission 

and commission errors. Nevertheless, due to its simplicity a test was performed with 

this approach to evaluate its performance.  

 
3.11.2.2. Regional thresholds. 

 
In this approach regionally-oriented NIR thresholds were obtained. They were adapted 

to different post-fire reflectance conditions. The CDFs and thresholds selected were 

computed for each tile and period. It was expected that this approach would better 

tackle the spatial and temporal variations of BA, obtaining a more tailored approach to 

the great diversity of fire conditions worldwide. The drawback was the required time to 

calculate regionally the thresholds, longer than when using fixed ones. These regional 

thresholds were determined using both the burned and unburned CDF value. Since the 

purpose was to minimise commission errors, the unburned distribution values 

determined which values were valid from the burned curve. When the curves were 

closer, more risk of confusion existed. Therefore, the NIR threshold value of the burned 

category (TB) was computed by selecting the immediately lower decile of the burned 

pixels’ CDF that intersected the first decile of the unburned pixels’ CDF. This criterion 

implies having as much as 10% commission error.  Figure 23 illustrates this concept. In 

fact decile 1 of the unburned curve implies that all values below that decile could be 
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considered burned, when values of the unburned distribution will fall in the range 

between 0 and decile 1. The omission error in the seed phase would be estimated by the 

selected decile of the burned CDF, being higher when the curves are closer.  

 

 

Figure 23. CDFs of burned and unburned classes. Decile 1 of the unburned class is identified with the 

black line. 

 

3.11.3. DETERMINATION OF POTENTIAL ACTIVE FIRES. TESTS FOR 
THRESHOLD SELECTION.  

The tests performed were designed with the objective of selecting the conditions to 

build the CDFs on a way that would maximise the separation between the burned and 

unburned classes. The pixels that were considered to build the burned CDFs were called 

Potential Active Fires (PAF). The different tests performed to identify the method to 

build the burned and unburned CDFs were:  

 

a) Use of all HS. 

In this approach all HS as obtained from the MOD14 active fires product were 

considered PAFs and were used to obtain the burned CDF. This approach does not take 

into account the potential commission errors associated to the product. However, since 

Hantson et al. (2013) did not find significant commission errors, even for low 
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confidence levels, it was decided to keep all HS and to filter the possible errors in 

further steps during the different phases of the algorithm. Furthermore, the Thiessen 

matrix built to obtain the monthly composites was also based on all HS, so it was 

decided to maintain all HS at this stage to ensure consistency between the different 

steps of the algorithm. 

 

b) HS with decrease in NIR reflectance. 

A simple way to filter out HS was to keep only the ones that had a decrease in NIR 

reflectance compared to the previous month observed. Those pixels were used to 

extract the burned CDF. 

 

c) Unburned CDF. 

Unburned pixels were extracted from areas without a single HS in the vicinity. This 

neighbour criterion was defined by different matrix sizes: 9x9, 16x16 and 64x64 MERIS 

pixels. Values below 9x9 would not be considered since they would be too close to the 

MODIS HS pixel size. Values bigger than 64x64 could give problems in areas with very 

high fire activity, or in areas where the proportion of land in the tile is low (water or 

non-burnable pixels).  

 

d) Minimum NIR with decrease in NIR reflectance. 

The spatial resolution is different between a HS (1km) and a MERIS pixel (300m). 

Therefore, 9 MERIS pixels will fall within a single HS. Up to now the MERIS centroid of 

these 9 pixels was used to identify the HS NIR value. In this test it was decided to study 

from the 9 MERIS pixels within the HS pixel which one had the lowest NIR value, 

identifying this one as more representative of the burning. In this test the pixels with 

minimum NIR showing a decrease in NIR reflectance compared to the previous month 

were identified as PAFs and used to build the burned CDF. Figure 24 illustrates this 

concept. The 9 MERIS pixels that fall within a HS are represented, with the centre of the 

HS being the red dot. The minimum NIR pixel is highlighted in blue. This pixel would be 

selected as PAF, if it also fulfilled the requirement of decrease in NIR.  
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Figure 24. Selection of PAF within a MERIS 3x3 window with a HS. 

 
 
3.11.4. DETERMINATION OF SEED BURNED PIXELS. TESTS FOR SEED 

EXTENSION.  

Once the threshold was identified, PAF and the surrounding pixels were analysed to 

obtain the final burned pixel seeds. Four conditions were established to accept a pixel as 

a burned seed: 

- Maximum distance to a PAF should be below a certain value.  The options tested 

were PAF in a 3x3, 9x9 and 16x16 matrices around the pixel analysed. In the 

results section the results from this test are called 1PAF 3x3, 1PAF 9x9, 1PAF 

16x16. 

- Number of PAFs: the number of PAFs (within a distance around the pixel 

analysed) required to classify the pixel as seed will be studied. 1PAF or 2PAFs 

within the distance matrix were tested. The requirement of 2 PAFs is more 

restrictive but can be more robust against commission errors from the HS, as 

more than one HS is needed. The drawback is that this restriction diminishes the 

detection of smaller fires (since they will not have more than one HS associated). 

In the results section the results from this test are called 1PAF 9x9 and 2PAF 9x9. 

- NIR decrease: Three options were tested: 

o The pixel should show a decrease in NIR value compared to the previous 

temporal composite. This option was implemented in the tests 1PAF 3x3, 

1PAF 9x9, 1PAF 16x16 and 2PAF 9x9.   

o Median: instead of using a single pre and post-fire NIR reflectance, in this 

case the median of the NIR reflectance for 5 daily values before and after 

the HS date was computed. This criterion tried to mitigate the potential 
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impact of noise in the time series. This test is called median in the results 

section.  

o Median with restriction: the number of pixels resultant from the filtering 

of HS with the median technique provides an idea on the number of 

commission errors that exist in that area for the MOD14 product. 

Therefore, this information could also be used to define more or less 

restrictive conditions to classify the pixels as seed. The ratio between HS 

and PAFs (filtered after applying the median technique) was computed. If 

this relation was bigger than 2, the number of PAFs per matrix required 

to classify a pixel as burned increased. This test is called 

median_restriction in the results section. 

- NIR value lower than the threshold identified from the CDF.  

 

 

Main previous steps (from section 3.11.3) together with the new conditions to test 

(highlighted in yellow) are illustrated in the diagram in Figure 25.  

 

Figure 25. Conditions to verity to classify a pixel as seed. 
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3.11.5. RESULTS. 

Two types of criteria were used to determine which tests were giving the best results. 

For the threshold selection methods (section 3.11.3.) the selection was based in 

maximising the distance between the burned and unburned CDFs. For the seed 

extension (3.11.4.) the number of reference perimeters detected in 4 study areas 

(Australia, Canada, Portugal and California) and selected global results were the criteria 

used to determine the method. Reference perimeters are the ones detailed in section 

3.4.2 

 

3.11.5.1. Results from tests for threshold selection.  

 

Fixed threshold:  

Figure 26 represents the CDFs obtained for Portugal in January 2008 (left) and 

Australia in January 2008 (right). The black line represents the threshold relative to the 

fixed decile 7th of the burned CDF. 

 

Figure 26. CDFs of burned and unburned using a fixed threshold, based on decile 7
th

 of the burned CDF. 

 

As it can be seen from the figure interpretation, in the case of Australia, the decile 7th 

gives a good separation between the burned and unburned curves, since few values 

from the unburned distribution will fall within the threshold limits. This is not the case 

for Portugal, where the same decile sets up a threshold that implies higher confusion 

between the burned and unburned classes, since more values from the unburned curve 
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are included. Therefore the fixed threshold does not give an optimal separation 

between classes for the seed phase.  

 

Regional thresholds:  

a) HS: in this case all HS as delivered by the MOD14 product are used to build the 

burned CDF. The results of this test can be seen in Figure 27. As in the previous example 

(fixed thresholds) the study sites are Portugal and Australia, in January 2008. In this 

case, the first decile of the unburned class will be chosen to define the threshold. This 

will establish the threshold correspondent on the burned curve of decile 3 in Portugal 

and decile 6 in Australia, represented by green arrows in the figure. This approach gives 

for both cases lower confusion and therefore lower commission errors.  

 

Figure 27. CDFs and associated deciles and thresholds when using the regional approach. 

 

b) HS with decrease in NIR reflectance: results of this test are shown in Figure 28, 

where January and December 2008 CDFs are computed for Australia. The CDF built 

with all HS is plotted in red, whereas the CDF in green represents the one built with only 

the HS that have a decrease in NIR reflectance with respect to the previous month. The 

change is not obvious in January but shows a clear decrease in December. This tendency 

was verified in all study sites and showed that a filtering of HS with the decrease in NIR 

reflectance criteria would help improving the definition of the burned CDF and 

therefore of the threshold.  
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Figure 28. CDFs of all HS and HS filtered (decrease in NIR from the previous month) for January and 

December 2008 in the Australian study site. 

 
c) Unburned CDF: results from this test are shown in Figure 29 for Australia in 

December 2008. The unburned CDFs are computed for matrices not having any HS. The 

matrix size considered was 9x9 (green), 16x16 (red) and 64x64 (blue). As can be 

concluded from the figure, the CDF obtained with the matrix not having any HS in 64x64 

pixels gives the best result since it will lead to a clearer separation from the burned CDF 

than the other two unburned curves. Therefore less confusion between classes should 

be obtained in this case.  

 

 

Figure 29. Example of unburned CDFs with matrices not having any HS in 9x9, 16x16 and 64x64 pixels, 

for Australia in December 2008. 
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d) Minimum NIR with decrease in NIR reflectance: results for this test are shown in 

Figure 30 for Australia in January and February 2008.  

 

Figure 30. CDFs of unburned, burned with HS filter and minimum NIR, in January and February 2008 

for Australia. 

 

The unburned CDF computed with the 64x64 matrix is plotted in blue. The red curve 

represents the burned CDF computed with the HS filtered (decrease in NIR, case b). The 

green curve is the CDF computed with the pixels selected with the minimum NIR 

method, and that had a decrease in NIR reflectance compared to the previous month. 

This last test shows a higher separation between the burned and unburned CDFs. This 

effect is more obvious in January but is also present in February. The minimum NIR 

with decrease in NIR reflectance was therefore chosen as the final configuration to 

compute the CDFs, and to select the threshold to separate between burned and 

unburned classes.  The threshold will be selected from the immediate lower decile of 

the burned curve that corresponds to the first decile of the unburned curve.  

 

An example to illustrate this final procedure to select the threshold is shown in Figure 

31. The plots represent the CDFs for Canada (a) and South Africa (b) for May and June 

2008 respectively. Here the deciles are represented as steps. The purpose is to illustrate 

the fact that the threshold (black arrow) will be chosen as the immediate inferior value 

that intersects the first decile of the unburned curve, corresponding to the step right 

under the intersection.  
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Figure 31. Threshold based on decile 1 of the unburned CDF for cases with worse (a) and better (b) 

discrimination between classes, correspondent to May 2008 in tile L03C07 (Canada) and June 2008 in 

L11C20 (South Africa) respectively. 

 
 
3.11.5.2. Results from tests for seed extension. 

 
Fire perimeters derived from national agencies have been used to compare with the 

burned areas obtained in four study sites when developing the algorithm, and to extract 

conclusions from the different options tested. The study sites and fire perimeter 

information are detailed in section 3.4. Table 12 summarizes the results for the different 

tests. Results are separated by study site, fire size, and represent the percentage of fire 

perimeters detected according to the fire size. Omission and commission errors are also 

shown in the table. It is important to note that these errors are presented as a way to 

estimate how each test is performing, but they do not give a proper estimation on the 

omission and commission errors on burned area in these sites, since only seed pixels 

are being evaluated. It should be noted as well that the commission error shown has a 

higher relevance than the omission error for two reasons. First, because commission 

errors introduced in this phase will propagate into the growing phase. Second, the fact 

that the omission error is smaller in one case or another, if the same number of 

perimeters is detected, is of low relevance. It is not necessary to detect all burned pixels 

at this stage of the algorithm, since those pixels can be detected in the growing phase. 
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Table 12. Fire perimeters detected and omission and commission errors, for the different seed extension 

tests in four study sites: Australia, Canada, Portugal and California. 

Study site 
 

Fire size (ha) 
 

O.E. C.E. 

AUSTRALIA <100 <1000 <10000 >10000 
  Total nº of per. 12174 4652 1373 209 

  % of per. detected 
    

  1PAF 3x3 14% 56% 94% 100% 0.8386 0.1520 

1PAF 9x9 35% 72% 95% 100% 0.5409 0.1752 

1PAF 16x16 47% 81% 97% 100% 0.4341 0.2119 

2PAF 9X9 21% 52% 91% 100% 0.6745 0.14 

Median 37% 74% 96% 100% 0.5245 0.1752 

Median_restriction 36% 72% 94% 100% 0.5500 0.1670 

              

CANADA <100 <1000 <10000 >10000     

Total nº of per. 30 20 28 34     

% of per. detected             

1PAF 3x3 0% 30% 57% 88% 0.8886 0.1120 

1PAF 9x9 0% 35% 57% 88% 0.7191 0.1257 

1PAF 16x16 0% 35% 57% 88%  0.6605 0.1523 

2PAF 9X9 0% 25% 54% 88%  0.7809 0.1022 

Median 3% 45% 75% 94% 0.6028 0.1007 

Median_restriction 3% 45% 75% 94% 0.6028 0.1075 

              

PORTUGAL <100 <1000 <10000 >10000     

Total nº of per. 24 19 4 0     

% of per. detected             

1PAF 3x3 46% 68% 50% - 0.8541 0.8949 

1PAF 9x9 50% 79% 50% - 0.6509 0.9254 

1PAF 16x16 50% 79% 50% - 0.5829 0.9561 

2PAF 9X9 33% 68% 50% -  0.7482 0.8475 

Median 54% 79% 50% -  0.6416 0.9446 

Median_restriction 33% 58% 50% - 0.7675 0.8106 

              

CALIFORNIA <100 <1000 <10000 >10000     

Total nº of per. 98 48 25 5     

% of per. detected             

1PAF 3x3 4% 8% 68% 80% 0.5913 0.1111 

1PAF 9x9 4% 13% 68% 80%  0.4247 0.2254 
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1PAF 16x16 4% 13% 68% 80% 0.4037 0.3466 

2PAF 9X9 4% 8% 60% 80% 0.4479 0.0996 

Median 6% 29% 80% 100% 0.3793 0.2090 

Median_restriction 4% 21% 80% 100% 0.3829 0.1117 

 

 

From the first set of options: 3x3, 9x9 and 16x16, the third one detects more perimeters 

in Australia, where as the number of perimeters detected for the other 3 areas is the 

same. The omissions in this case are probably due to an omission error from the HS 

product or by an omission error created during the seed selection (because the pixels 

that had a HS associated did not satisfy the other conditions and were therefore not 

classified as PAFs). Since the purpose was to increase the number of seeds with this 

extension, the first option 3x3 did not provide the best results. The 16x16 option 

increased the number of perimeters detected in Australia, which is something desirable, 

but at the same time did not increase the number of perimeters detected in the other 3 

areas, while it largely increased the commission errors. Therefore from the 3 matrix 

tests performed, the 9x9 option was selected. Nevertheless, tests performed globally in 

areas that could be problematic showed in effect large errors due to commission related 

to the HS. An example of these errors is shown in Figure 32. These results let to the 

implementation of a new test, which required having more than 1HS per matrix. This 

test was called 2PAF 9x9. This strategy managed to avoid commission errors in the 

problematic regions. On the other hand, increasing the number of PAFs required per 

matrix, implied a decrease in the number of perimeters detected. Figure 32 shows the 

different BA detected when implementing the option of 9x9 1 PAF (left) and 9x9 2PAFs 

(right) for two tiles L04C29, located in China, and L03C21 located in Russia. On the 

upper left part of the figure a big burned area patch in orange is noticeable. This 

corresponds to a commission error, largely increased after applying the growing phase. 

There is also a properly detected fire on the top left corner (blue). In comparison, the 

right side of the figure, which corresponds to the 9x9 2PAF implementation, shows the 

detection of the top left corner fire (blue), whereas the big commission error has 

disappeared using this method. Similarly on the area L03C21, on the left side blue and 

red perimeters correspond to large commission errors. These ones are avoided using 

the 2PAF9x9 method shown on the right side.  
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Figure 32. Test results for two different tiles (L04C29 and L03C21) located in China and Russia 

respectively, for year 2008, with the 1PAF 9x9 and 2PAF 9x9 implementations. 

 

In order to avoid these large commission errors it was decided that the 9x9 2 PAFs 

implementation would be the best compromise between detecting number of 

perimeters versus diminishing commission errors.    

 

Results shown in Chapter 4 of this thesis were obtained with this implementation. 

These results were analysed for the 3 years that were obtained with the global 

processing. The validation exercises showed that the algorithm had a tendency towards 

omission. Therefore it was decided that an approach based on the previous 

developments but that would increase the detection of perimeters needed to be 

developed. This led to the definition of the other two tests: median and median with 
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restriction. Taking into account the results shown in Table 12 the median with 

restriction method was selected as a compromise between the more restrictive 2PAF 

9x9 and the less restrictive 1PAF 9x9. The median with restriction approach combines 

the benefits of lower commission and omission errors in most cases, maintaining the 

number of perimeters detected. In the study sites analysed the median with restriction 

method detects more perimeters than the previous options selected (1 PAF 9x9 and 

2PAF 9x9), while keeping a similar commission error, in three of the four areas: 

Australia, Canada and California. In the case of Portugal a decrease in the commission 

error was observed but also in the number of perimeters detected. As already 

mentioned, the balance between omission and commission errors will always be a 

compromise when building a global burned area algorithm. It was considered that the 

commission error in this area was too high, and therefore the focus was on diminishing 

it, even if this implied increasing the omission error. Another important thing to note is 

that the Burned Area proportion (BAp) in Portugal was very low (<0.001) compared to 

the BAp in the other three regions (Australia = 0.181, Canada = 0.026 and California 

0.013) and therefore its influence is minor. Furthermore, from the Hantson et al. (2013) 

study, Portugal was one of the areas identified where commission errors in the HS were 

higher and therefore an effort to restrict errors in this region was needed.  

 

3.11.6. SEED FINAL CONFIGURATION OVERVIEW.  

The tests designed and implemented produced a series of results that helped obtaining 

the final configuration of the algorithm. The selection of the different steps was first 

based on maximising the separation between the burned and unburned classes, and 

second on minimizing commission errors while keeping the number of perimeters 

detected to the maximum possible. The seed implementation designed and used to 

obtain the global BA product for years 2006 to 2008 (version 1) is summarised in 

Figure 33. Results obtained with this version are the ones presented in Chapter 4. 
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Figure 33. Seed pixel algorithm version 1 configuration. 

 

The final configuration (version 2), which will be used to process the MERIS full time 

series, is shown in Figure 34. More details on this configuration are available in Annex 3. 

There are two main differences between the seed implementation of the final version of 

the algorithm and the previous one. The first difference is that in version 1 PAFs (used 

to build the CDFs) were identified as the HS that had a decrease in NIR compared to the 

previous month. In version 2 PAFs are identified as the HS where the median NIR of the 

5 previous observations is bigger than the median of the 5 posterior observations. This 

way a more robust strategy is built against the noise in the time series. The second 

difference is that in version 2 the ratio between HS and PAFs filtered (after the 5 median 

pre and post values) is computed. If the ratio is lower than 2 only one PAF will need to 

be found in the 9x9 matrix around the pixel analysed. If the ratio is higher than 2, at 

least 3 PAFs will need to be found in the 9x9 matrix around the pixel. In contrast, in 

version 1 PAFs needed to be found in the 9x9 matrix for all cases, independently on the 

ratio between HS and PAFs. This new condition helps identifying areas where there is a 
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higher rate of commission errors in the HS product, becoming more restrictive in the 

conditions applied to classify a pixel as seed, and therefore creating a more robust 

strategy against those errors. On the other hand, when commission errors in the HS are 

not high, the number of PAFs needed in the 9x9 matrix around the pixel is lower (1PAF 

vs 2PAFs) in version 2 than in version 1. This allows detecting smaller fires, where only 

one HS is present.  

 

 

Figure 34. Seed pixel algorithm version 2 configuration. 
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3.12. GROWING PHASE.  
 

 
3.12.1. ALTERNATIVES FOR GROWING.  

Once the seed pixels were identified, this phase aimed to improve the spatial 

characterization of the burned patches, by analysing pixels around those detected as 

seeds. Many contextual methods are available for this purpose. They can be grouped 

into two large categories: pixel or object identification techniques. In the first case, the 

region grows around the pixel based on a series of conditions. The second approach 

defines a number of objects delimited by different spectral and spatial characteristics 

and these objects are classified as burned or not based on the seed location that will 

help selecting them. In pixel based techniques certain criteria need to be fulfilled by 

each pixel to be classified as burned. Generally, these criteria are based on thresholds 

that can be obtained statically or dynamically. In the case of object-based approaches 

also several implementations exist, but the basis for all of them is to first segment pixels 

into objects based on spectral and spatial similarity.  

3.12.2. TESTED ALGORITHMS. 

From the variety of options to carry out region growing approaches, the following were 

selected to implement the second phase of the BA algorithm. The selection was based on 

different criteria, such as characteristics of the input data, performance in other BA 

collections, and processing time. Five approaches were selected. Three of them were 

pixel-based (neighbour value, neighbour median and edge detection) and two of them 

were object based (OTSU and watershed). In the object based algorithms the seeds will 

be used to select the objects. Description of each algorithm is detailed hereafter.  

 

3.12.2.1. Neighbour value. 

 
In this region growing approach the pixels around the seeds are analysed. For each one 

of them a series of criteria are checked and if they are fulfilled the pixel will become a 

new seed. In this case, also the pixels around it will also be analysed. Normally the 

criteria to classify are based on thresholds. Different criteria were tested, all based on 

the composite and seeds obtained in the previous phases of the algorithm. A wide 
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variety of tests was performed but only the configuration that gave better results is 

introduced here for simplicity. This configuration was based on three criteria:  

- NIR threshold: the threshold value used in the seed phase was selected from the CDF, 

as in the seed phase, but reviewing the decile chosen. In case there was a high 

separation between classes the conditions on the growing phase would be less 

restrictive. Assuming a normal distribution, if the burned decile used to define the seed 

threshold was 7 or higher, the burned/unburned curves intersect after at least one 

standard deviation of the mean burned values. In those cases the ability to distinguish 

between burned and unburned classes was considered high. Therefore, the new 

threshold condition for the growing phase was raised up to the decile 9 of the burned 

pixels curve, obtaining a higher NIR value (and a less restrictive condition). If the 

burned decile used to define the seed threshold was lower than 7 then the ability to 

discriminate burned and unburned classes was considered low. In this case, in order to 

ensure less commission errors in the growing phase, the threshold was kept with the 

value defined in the seed phase.  

- The diffGEMI annual composite had to verify a decreasing threshold between seed and 

neighbour pixels. Pixels were classified as burned if the neighbours to a seed pixel had 

higher values than the threshold. The threshold was defined from the diffGEMI value 

found in the seed pixel multiplied by 0.9.  

- The third condition relied on a minimum drop that had to be verified for each pixel. 

The decrease in the NIR values (DNIR) between t and t-1 for each candidate BA pixel 

had to be higher than the decrease observed for unburned areas. The aim when 

introducing this criterion was to avoid neighbour areas to the seeds that might have 

fire-unrelated changes.  

The main advantage of this technique is that it is based on the values of the pixels 

themselves, having the possibility to tailor the thresholds more specifically in each case. 

Main drawbacks are that computationally it is less efficient than other methods, and 

that in case there is a commission error in the seeds located in a dark surface it can lead 

to large commission errors.  
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3.12.2.2.  Neighbour median.  

 
In this region growing approach only the NIR value needed to be lower than the median 

+ the standard deviation of the burned pixels (already classified as burned). This 

technique was based on the findings by Libonati et al. (2014), who applied a similar 

procedure to MODIS images. Two cases were tested. In the first one, a matrix of 5x5 

pixels around the pixel analysed was studied. If at least 3 pixels were burned in the 

matrix, mean and standard deviation from these 3 pixels was computed. If the addition 

of mean and standard deviation was bigger than the NIR value of the pixel analysed 

then it would be classified as burned.  

In the second test the matrix analysed was of 3x3 pixels and the number of burned 

pixels was reduced to two. In order to avoid large processing times (and excessive 

growing) a maximum number of ten iterations per pixel were allowed. Therefore after 

10 iterations, the next seed pixel would be analysed.  

 

3.12.2.3. Edge detection. 

This technique was used to detect the boundaries of objects in the images, based on 

discontinuities in brightness. The idea when implementing this test was to limit the 

growing on the neighbour value approach, by establishing those limits with already 

defined simple edge detection functions. In this case a threshold was needed to 

establish the boundaries between regions. The threshold identified in the seed phase 

was used for this purpose. Several edge detection techniques exist, the most popular 

ones include Sobel, Canny, Prewitt, Roberts, and fuzzy logic methods. The Canny 

method was chosen since it has a good performance balancing noise (it improves the 

signal to noise ratio) and preserving edges (with the use of the threshold) (Shrivakshan 

2012).  

3.12.2.4. Otsu method.  

 
In this case the objective is to set a threshold that separates the two classes by 

minimizing the combined spread between classes, i.e. the within-class variance, 

therefore maximizing the between class variance. This option was chosen as it had a 

similar theoretical approach to the one chosen to obtain the seed pixels. This 
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segmentation strategy was preferred to others such as the K-means clustering. The K-

means aims at minimizing the error between the burned and unburned classes but this 

method gives good results when the spreads of the distributions are approximately 

equal, i.e when the distributions have similar variances, which is not the case for burned 

and unburned classes (unburned has higher variance).  

 

3.12.2.5. Watershed.  

 
This method is based on the concept of finding peaks (local maxima) and valleys (local 

minima) in the image. The definition of regions was based on the gradient of an image. 

In the NIR space, the burned areas will correspond to minimum or at least the lower 

values in the monthly composite, while the unburned areas will represent the maximum 

values. The advantage of this method is that it in terms of processing time it can be 

faster than a pixel based analysis. The difficulties are related to the way the regions are 

defined, and the size of these regions, which might not be the same worldwide and 

might not adapt in the same way to the different types of fire and fire sizes. The first 

step in this method is to use the gradient magnitude as the segmentation function. Then, 

some pre-processing steps will need to be considered to separate the minima and 

maxima. Since the composite may be noisy, it can have too many local minima and 

maxima, this is why the histogram is normally smoothed (to create flat maxima inside 

each object) before finding the minima and maxima, in order to avoid over-

segmentation. Foreground and background markers will also be computed and the 

gradient magnitude image will be modified, so that regional minima and maxima exist 

only on certain locations. This way also the object size is defined. On the last step the 

watershed function itself is applied to the treated data, obtaining the regions of the 

image with unique identifiers. Once these regions are defined they will be intersected 

with the seed pixels in order to obtain the final burned areas. 

 

 

3.12.3. RESULTS 

Results are presented in the following sections, giving attention to the ones that showed 

better performance in detecting the burned areas. First, results from each case are 

shown, illustrating with figures the BA obtained in each case and study site. In the 
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method selection section (3.12.3.6.) omission and commission errors obtained for each 

test are compared.  

 

3.12.3.1. Neighbour value.  

This technique gave good results for the four study sites. Results are shown for 

Australia in Figure 35. Fire perimeters for the same region derived from NAFI are 

shown in Figure 36. There is a good level of agreement between the two figures. 

Temporal and spatial consistency between fires is achieved. Some omission errors can 

be noticed with this method especially at the end of the year.  

 

 

Figure 35. Neighbour value BA detection for Australia in 2008. 
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Figure 36. NAFI fire perimeters for the Australian study site in 2008. 

 
Temporal and spatial consistency for the other 3 study sites was also observed. In the 

Canadian and Californian study sites omission was predominant whereas commission 

was more relevant on the Portugal study site. Results from these 3 study sites can be 

seen in Figure 39, 40 and 41. 

 

3.12.3.2. Neighbour median.  

 
The first test, named 5x5 3HS, implemented with this technique gave too large 

commission errors. The second option, 3x3 2HS, provided better results observing the 

same tendency as in the neighbour value test, where Australia, Canada and California 

showed a tendency towards omission in contrast with Portugal that had larger 
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commission errors. This method was the fastest between the ones tested. Results can be 

seen in Figure 39, 40 and 41 for Canada, Portugal and California respectively. 

 

3.12.3.3. Edge detection.  

 
The test that combined the edge detection method with the neighbour value showed 

very little variation with the results obtained with the neighbour value method tested 

individually. Omission errors increased in 5%, 0.1%, 0.1% and 0.2%, respectively for 

the Australian, Canadian, Portuguese and Californian study sites and commission errors 

decreased in 0.1%, 0.1%, 0.05% and 0.1%. Therefore no advantages were found by 

applying this method. 

 

3.12.3.4. OTSU method.  

 
This method did not give acceptable results, the areas identified were too big in most of 

the cases, and did not correspond to any of the burned areas delimited. No intersection 

with seeds was performed since too large perimeters were identified and the 

intersection with the seeds would have led to very large commission errors. 

 

3.12.3.5. Watershed. 

 
In this case seeds were the pixels that had at least 3 PAFS in a 9x9 pixels matrix around 

and the minimum NIR verified a decrease compared to the previous month. In the 

watershed segmentation case there is no need to extend the seeds (as it is done for the 

pixel strategies), since the purpose of using them is to select the segments, not to be the 

basis to a growing around a seed. Using all the seeds obtained in the seed phase of the 

algorithm would have resulted in an increase of the commission errors. This method is 

faster than the neighbour value method. Results are shown for Australia in Figure 37. 

Direct comparison with NAFI perimeters shows similar trends in time and space but 

omission is noticeable for the fires from the middle until the end of the year. Some 

commission errors in certain regions (top right) are also noticeable. 
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Figure 37. Watershed BA detection for Australia in 2008. 

 

In the Canadian study site the use of this method gave better fire perimeter 

characterization than the other methods, as reported in Figure 39. Some commission 

errors were found in California at the end of the season (Figure 41). The performance of 

this method in the Portuguese study site was particularly low (Figure 40). Commission 

errors in this site were higher with this method, obtaining proper fire perimeter 

detections but with an overestimation on the areas burned on those fires. This is related 

to the object size used for the tests, which does not allow to obtain fire sizes as small as 

they are in this area. 

A study based on the use of NIR composite combined with two other bands (bands 8 

and 5) was developed. The purpose was to add some additional information from these 
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bands. Figure 38 illustrates this test. Commission errors can be noticed if compared to 

the NAFI perimeters (Figure 36) especially on the upper left corner, where there is a big 

patch at the end of the year (red colours) that does not appear in the fire perimeters 

case. OE and CE obtained with this method were 0.4287 and 0.3935 respectively. When 

compared to the results obtained when using one band (Table 13) it can be seen that 

the inclusion of bands 5 and 8 does not ameliorate the burned area detection, compared 

to the individual use of the NIR composite, since both omission and commission errors 

increase in this case.  

 

Figure 38. Watershed method applied to 3 bands in Australia for 2008.  

 

The next figures show the results obtained for the Canadian, Portuguese and Californian 

sites with the 3 methods that performed better, i.e the neighbour value, neighbour 
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median 3x3 2HS, and the watershed. Fire perimeters are included in order to compare 

the results.  

 

 

 

Figure 39. Results for neighbour value, neighbour median, watershed and fire perimeters for the 

Canadian study site in 2008. 
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Figure 40. Results for neighbour value, neighbour median, watershed and fire perimeters for the 

Portuguese study site in 2008. 
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Figure 41. Results for neighbour value, neighbour median, watershed and fire perimeters for the 

Californian study site in 2008. 

 
 
 
 
 
3.12.3.6. Method selection 

A comparison with the fire perimeters was performed for the different methods tested. 

Omission and commission errors were obtained for each study site.  Table 13 

summarizes these results. 
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Table 13. Omission and commission errors for the growing methods tested in the four study sites. 

TESTED ALGORITHM ERROR STUDY SITE 

  
Australia Canada Portugal California 

Neigbour pixel C.E. 0.1756 0.1022 0.8512 0.1437 

 
O.E. 0.4441 0.7530 0.6429 0.4379 

Median + std  5x5 3HS C.E. 0.4180 0.1795 0.9798 0.5010 

 
O.E. 0.1804 0.5178 0.5476 0.2759 

Median + std 3x3 2HS C.E. 0.2023 0.1028 0.9296 0.1754 

 
O.E. 0.4770 0.6269 0.6203 0.3970 

Watershed 3HS C.E. 0.3204 0.3571 0.9697 0.4654 

 
O.E. 0.4265 0.5124 0.7162 0.3554 

 

The two techniques that performed better were neighbour value and watershed since 

OE and CE were lower than for the median cases. OE was significantly lower in 1 of the 

four cases in the watershed, whereas commission error was significantly lower in the 4 

study sites for the neighbour value pixel strategy. Overall OE were smaller in watershed 

technique than in the neighbour median, but at the cost of increasing too much the CE. 

This, in combination with the knowledge acquired while developing these techniques 

lead to the decision of choosing the neighbour pixel strategy. It is more time consuming 

than watershed but does guarantee a higher control of the burned areas. When different 

regimes are present, and with very different fire sizes, it is more difficult to control how 

an algorithm of these characteristics will perform with the watershed technique. Region 

growing offers several advantages over conventional segmentation techniques. Unlike 

gradient and Laplacian methods, the borders of regions found by region growing are 

perfectly thin (since we only add pixels to the exterior of our region) and connected. 

The pixel based region growing algorithms are also very stable with respect to noise 

(Kamdi and Krishna 2012).  

In the final neighbour value pixel implementation, an extra condition was applied once 

the burned area was retrieved. The purpose was to avoid large commission errors in a 

few areas with dark covers, where the region growing process might not perform 

properly (specific regions of Australia, China and India, for instance). Large polygons 

were filtered out when the number of burned pixels exceeded largely the number of 

hotspots. An empirical value of 30 times (MERIS BA pixels/HS) was established, based 

on previous findings from Hantson et al. (2013), who compared the distribution of HS 
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and Landsat derived burned patches in the same study sites used to develop this 

algorithm.  

The general scheme of the algorithm version 1 is shown in Figure 42.  

 

Figure 42. Region growing final configuration scheme. 

 
The configuration introduced is version 1 of the algorithm, since results for the 3 years 

processed and introduced in Chapter 4 are obtained with this configuration. A paper 

summarising the main steps of the algorithm was recently published (Alonso-Canas and 

Chuvieco 2015). The complete paper is available in Annex 2. Nevertheless, some 

changes were applied afterwards to this configuration, once global results were 

available. The changes in the growing phase were based on the use of individual images 

instead of composites, using similar conditions to the ones presented here. Commission 

and omission errors of versions 1 and 2 for the four assessment sites will be shown in 

section 4.2.2. of the product assessment (Chapter 4). Version 2 of the algorithm is the 
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one that will be used to process the full MERIS time series (2002-2012). Some of the 

modifications to obtain this version are summarised in a paper accepted (with minor 

corrections) to Geofocus. The preliminary version of this paper is available in Annex 3.  

 
 

3.13. BA MERIS OUTPUT PRODUCT.  
 

 

The MERIS BA product delivered to the users included other layers apart from the Julian 

date of burn. Some of them required to generate auxiliary information from the MERIS 

algorithm, such as the confidence level, which was obtained based on the Bayes 

theorem:  

P(B / NIR) =
100*P(NIR/ B)*PB

P(NIR/ B)*PB+ P(NIR/U)*PU
 

Where : 
- P(B/NIR) = probability of having burned given the fact that it has a particular 

NIR value 
- P(NIR/B) = probability of observing a certain value of NIR knowing that it has 

burned  
- P(NIR/U) = probability of observing a certain NIR value knowing that it has not 

burned 
- PB = 0.5 = a priori probability of burning 
- PU = 0.5 =  a priori probability of not burning 

 

The other 4 layers are the last valid observation before the date of burn, number of valid 

images, number of images with clouds and total number of images. All these layers are 

computed after obtaining the BA Julian date and the confidence level, directly from the 

MERIS images used to obtain the composite.  
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3.14. VERSION 1 ALGORITHM CONFIGURATION OVERVIEW.  

 

A flowchart diagram showing the main steps of the algorithm version 1 is shown in 

Figure 43 to summarise the main findings of this chapter. The two phases of the 

algorithm, seed and growing, are presented with the main steps present in each one of 

them.  

 

 

Figure 43. MERIS BA algorithm final configuration. 
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In this chapter the results from the processing of three years of MERIS data will be 

presented. A global validation on the 2008 results will be introduced as well as the fire 

perimeter assessment for four study sites. Inter-comparison with other products will 

also be presented, identifying spatial and temporal behaviours. 

 
 
4.1. SPATIAL AND TEMPORAL VARIATIONS OF BA.  
 
Three years of data were processed with the MERIS BA algorithm: 2006 to 2008 at GMV 

facilities (GMV was the system engineering partner for the first phase of the fire_cci 

project). The total BA obtained for the three years was 3.6, 3.8 and 3.6 km2 respectively. 

Gridded BA for these three years is shown in Figures 44 to 46.  

 

In terms of spatial distribution, the three years present little variation between them. 

The most extensive burnings occurred in the Tropical regions, particularly in the 

African continent, followed by the Northern regions of Australia, Central Brazil, 

Venezuelan and Colombian Llanos, and SE Asia. A second belt of burned regions is 

noticeable in the temperate grasslands and croplands of central Asia, and SE USA. The 

boreal forests of Russia and Canada have also a substantial role in global biomass 

burnings. 2006 presents more BA in Eastern Europe and Australia, where as for 2007 

more BA is identified in Brazil. 2008 presents less BA in North America, especially in the 

Eastern region, compared to the other years. Northern and Southern parts of Africa 

have very similar BA for the three years. 

 

In terms of temporal distribution, the date of detection (used also to compute the BA) 

showed seasonal trends of fire activity, with predominant January-March fires in the 

Northern Tropical belt, July-September in the Southern Tropical fringe, Northern Boreal 

and Temperate Regions of America and Eurasia. Figure 47 illustrates these tendencies 

for 2008. The seasonality shows the same trends for the three years and is in good 

agreement with results estimated from other authors (Csiszar et al. 2005; Giglio et al. 

2006a; van der Werf et al. 2006). 

 

 



 

F
ig

u
re

 4
4

. 
G

lo
b

a
l 

B
A

 o
b

ta
in

ed
 w

it
h

 t
h

e 
M

E
R

IS
 a

lg
o

ri
th

m
 f

o
r 

2
0

0
6

 

  
 

 
 

 
 

 
   

   
   

   
   

   
   

   
   

   
   

  1
3

4



 

F
ig

u
re

 4
5

. 
G

lo
b

a
l 

B
A

 o
b

ta
in

ed
 w

it
h

 t
h

e 
M

E
R

IS
 a

lg
o

ri
th

m
 f

o
r 

2
0

0
7

. 

 
 

 
 

 
 

 
 

 
   

   
  

   
   

 1
3

5
 



 

F
ig

u
re

 4
6

 G
lo

b
a

l 
B

A
 o

b
ta

in
ed

 w
it

h
 t

h
e 

M
E

R
IS

 a
lg

o
ri

th
m

 f
o

r 
2
0

0
8

. 

  
 

 
 

 
 

 
 

 
   

   
   

 1
3

6



 

F
ig

u
re

 4
7

. 
J

u
li

a
n

 d
a

te
 o

f 
b

u
rn

 f
o

r 
2

0
0

8
. 

 
 

 
 

 
 

 
 

 
   

   
 1

3
7

 
 



 

 138 

A detail of these burns is shown in figure 48 for Africa, the continent where more burns 

occurred (>70% from these results and other sources). Seasonal trends can be clearly 

identified for this case, with the fire peaks associated to the central months of the dry 

season, at the beginning of the year for the Northern part, and in the middle of the year 

for the Southern fires. Most of the burnable areas of the African continent present fire 

events at a certain point during the year. As illustrated in Figure 49 the extent of these 

burns is more relevant in the Central African Republic for the Northern part, and in 

Angola, South of Congo, Zambia and Mozambique for the Southern belt. This behaviour 

is verified for the three consecutive years, being these areas the ones that burn the most 

(more than 2400 km2). These areas are mainly covered by Tropical savannah.  

 

Figure 48. Julian dates of burn for Africa in 2008 

 

Figure 49. BA in km
2 
in Africa for 2008. 
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4.2. VALIDATION AND PERIMETER ASSESSMENT RESULTS.  
 

In this section, two exercises will be introduced to assess the performance of the BA 

product obtained. First, the complete validation strategy developed with Landsat 

perimeters will be presented for 2008. Second, a fire perimeter assessment in four 

larger areas and for years 2006 to 2008 will be shown. In this case, also fire perimeter 

size obtained with the MERIS product will be identified.  

 
4.2.1. VALIDATION RESULTS.  

Table 14 shows the results of the validation metrics computed from the 105 global 

validation sites. They were divided in two subsamples, based on the proportion of 

burned area. The vast majority (100) had less than 10% of burned area, while the rest 

had more than that threshold. Overall accuracy was high in both cases (>87%). 

Omission and commission errors were higher for those areas with very low burned area 

proportion than for those with more fire occurrence. The Dice coefficient (DC) (see 

Padilla et al., 2015), which combines the omission and commission errors, was also 

higher for the sites with more BA proportion (0.48). Error balance (over and 

underestimation) was close to 0 for areas with larger BA, but showed underestimation 

for the overall sample and for those areas with minor BA. In relative terms (relB) the 

overall sample showed underestimation by 34%.  

 

Table 14. Estimated accuracy metrics for MERIS BA estimates (courtesy of Padilla, M. personal 

communication). 

OA DC Ce Oe B relB BA proportion 

0.9581 0.312 0.597 0.745 -0.0137 -0.3657 <0.1 

0.879 0.486 0.517 0.510 0.0018 0.0157 >0.1 

0.996 0.290 0.640 0.760 -0.12 -0.34 All 

 

 

Table 15 shows the MERIS validation metrics, with no distinction of burned area 

proportion (Padilla et al., 2015). Validation metrics are also shown for other three 

products evaluated: MODIS MCD45, MCD64 and GEOLAND2. These results were also 

obtained for 2008.  
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Comparison with existing BA products showed that MERIS BA and GEOLAND2 results 

have similar overall accuracy than the two MODIS BA products (MCD45 and MCD64) 

(OA>0.99). However, MERIS showed significantly higher commission and omission 

errors (CE=0.64; OE=0.76), than MCD64 (CE=0.42; OE=0.68), and higher commission 

error than MCD45 (0.46 vs 0.64). The errors found with the MERIS product were 

significantly lower than the ones from GEOLAND-2, particularly for the OE (Padilla et al. 

2015). In terms of error balance, an overall trend towards underestimation was 

observed. The relative balance of errors of MERIS showed better results than MCD64 

and MCD45 with a 34% of underestimation for MERIS, versus 44 % for MCD64 and 48% 

for MCD45.  

 

Table 15. OA, OE, CE, DC, B and relB of several BA products: MODIS MCD 45 and MCD64, Geoland 

and MERIS (Padilla et al. 2015). 

PRODUCT OA (%) CE (%) OE (%) DC (%) B (%) relB(%) 

MCD64 99.6 42 68 42 -0.17 -44 

MCD45 99.7 46 72 37 -0.17 -48 

GEOLAND-2 99.6 74 91 16 -0.23 -68 

MERIS_CCI 99.6 64 76 29 -0.12 -34 

 

 

4.2.2. FIRE PERIMETERS ASSESSMENT.  

Table 16 shows the cross tabulation results between MERIS BA estimations and those 

derived from external fire perimeters, in four study sites: Australia, Canada, Portugal 

and California. In this case, errors should be better considered as disagreements 

between the two sources, since the sample was not derived with the standard CEOS Cal-

Val protocol (based on two-date satellite images), but from fire perimeters obtained 

from national forest services. Nevertheless, those external perimeters have also their 

own validation and therefore can be considered reliable. In addition, as previously said, 

they complement the temporal validation, as they cover BA during the whole year. The 

Australian site had the largest BA for the three years, with a BA proportion between 

0.18 and 0.45. Portugal had the lowest fire occurrence (<0.001), while in the Californian 
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and Canadian sites BA varied from 0.007 to 0.013 and 0.013 to 0.027, respectively.  

Total burned area in the four sites ranged from 97.410 to 146.894 km2.  

 

Table 16. Cross tabulation of MERIS results and assessment sites for 2006 to 2008. CE = Commission 

error, OE = omission error, OA = overall accuracy, BAp = BA Proportion of total site 

 2006 2007 2008 

 CE OE OA BAp  CE OE OA BAp CE OE OA BAp 

Australia 0.085 0.425 0.789 0.447 0.111 0.429 0.808 0.250 0.176 0.444 0.850 0.181 

Canada 0.306 0.467 0.981 0.027 0.032 0.560 0.993 0.013 0.102 0.753 0.981 0.026 

Portugal 0.440 0.236 0.998 0.002 0.655 0.395 0.999 0.001 0.851 0.642 0.999 <0.001 

California 0.326 0.341 0.997 0.007 0.354 0.333 0.996 0.010 0.144 0.438 0.996 0.013 

TOTAL 0.117 0.424 0.966 0.029 0.125 0.431 0.971 0.025 0.147 0.472 0.975 0.019 

 

 

Overall agreement was high, above 0.9 for most sites and years, with lower values for 

the Australian site (close to 0.8). This area showed the lowest commission errors, 

particularly in 2006, that was the most severely burned. Omission errors were higher 

than commission errors (>0.4), but still lower than those estimated by the validation 

sample. The Portuguese study site showed the highest overall accuracy, but also the 

highest errors of the burned category, particularly commission errors in some years, 

when the proportion of burned area was very low. The Californian and Canadian sites 

presented intermediate values, with omission and commission errors in the range of 

0.17 to 0.46 for California, and 0.03 to 0.7 in Canada. Overall accuracies in both cases 

were above 98%. When considering the four areas together, covering around 1.6 million 

km2 and the three target years, the overall accuracies were above 96%. Commission 

was lower than omission, with values ranging from 0.12 to 0.15 for the former and 0.42-

0.47 for the latter.  
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A comparison between the errors obtained with version 1 and version 2 (modifications 

in the seed and growing phases of the algorithm) is shown in Table 17. According to the 

fire perimeter assessment, new results show that OE diminishes while there is little 

increase in the commission errors for the four study sites.  

Table 17. Omission and commission errors for version 1 (Chapter 4, Annex 2) and version 2 (Annex 3). 

 

  
Version 1 Version 2 

Australia CE 0.18 0.21 

  OE 0.44 0.40 

Canada CE 0.10 0.12 

  OE 0.75 0.51 

Portugal CE 0.85 0.84 

  OE 0.64 0.61 

California CE 0.14 0.15 

  OE 0.44 0.33 

 

Significant reduction of the OE is obtained in the regions of Canada and California. 

Figure 50 illustrates the differences between version 1 and 2 in the number of 

perimeters detected as well as in the characterization of BA in Canada. Version 2 is the 

one that will be used to process the full MERIS time series (2002-2012).  

 

 

Figure 50. BA detected in Canada with version 1 and version 2 of the algorithm. 
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In terms of fire size, Table 18 shows the perimeters detected in 2008 with the MERIS BA 

version 1 of the algorithm, versus the perimeters obtained from the four assessment 

sites. They are separated by fire size in four categories. Percentage of detected fire 

perimeters is shown for each case. In the case of fires bigger than 10.000 ha the 

algorithm detected more than 80 % of the fires (except in the case of Portugal, where no 

fires of this size exist for 2008), identifying the totality of fires of this type in Australia 

(which was the area that showed higher BAp). For fires between 1000 and 10.000 ha at 

least 50% of the fires were detected, increasing this value up to 92% for Australia. In 

the case of fires between 100 and 1000 ha detection rates were still high for Portugal 

and Australia (74% and 62% respectively), whereas lower detection rates were 

obtained for Canada and California (25% and 8% respectively). For fires smaller than 

100ha detection rates were below 38%. When considering the total number of 

perimeters, Portugal is the study site where more fires were detected (53%), followed 

closely by Australia (46%) and Canada (45%), whereas the number of perimeters 

identified in California was 15% of the total.  

 

Table 18. Fire perimeters detected in the four assessment sites separated by size. 

 

Study site   Fire size (ha)   ALL 

  <100 <1000 <10000 >10000 
46% of total 
nº of per. det  

AUSTRALIA           

Total nº of per. 12174 4652 1373 209 18408 

% detected 34% 62% 92% 100% 46% 

CANADA           

Total nº of per. 30 20 28 34 112 

% detected 0% 25% 54% 88% 45% 

PORTUGAL           

Total nº of per. 24 19 4 0 47 

% detected 38% 74% 50% - 53% 

CALIFORNIA           

Total nº of per. 98 48 25 5 176 

% detected 4% 8% 60% 80% 15% 

 

  



 

 144 

4.3. INTER-COMPARISON WITH OTHER BA COLLECTIONS. 
 

In order to obtain the inter-comparison, the products were converted into grid format 

at 0.5 degrees resolution, which is the resolution at which the MERIS grid product was 

delivered (following product specifications agreed within the project consortium). The 

products used for the inter-comparison were MDC45, GFED v4 (derived from the 

MCD64A1 product aggregated at 0.25° spatial resolution) and the GEOLAND2 product, 

which is part of the Land Copernicus Services component. Table 19 includes total BA 

estimations from these 3 products and from MERIS, for the three years when global 

outputs were available.  

 

Table 19. GFED v4, MCD45, MERIS and GEOLAND BA in km
2 
for years 2006 to 2008. 

 

 GFED v4 MCD45 MERIS_CCI 

 
GEOLAND2 

2006 3.417.863 3.374.125 3.652.355 

 
2.546.002 

2007 3.644.122 3.523.728 3.773.855 

 
2.379.485 

2008 3.307.377 3.308.200 3.624.146 

 
2.047.937 

 

 

MERIS BA estimates are 3 to 9% higher than GFED v4, 7-9% higher than MCD45 and 30-

43% higher than GEOLAND2. MERIS presents a good agreement with the two MODIS 

collections, also showing the same increase identified in those products for 2007.  

GEOLAND2 provides significantly lower estimations than the other BA products. 

 

In terms of BA spatial distribution, Figure 52 illustrates the GFED v4, MCD45, 

GEOLAND2 and MERIS_CCI BA products in 2008 separated by eco-region (following the 

geographical eco-regions defined by Giglio et al. (2006b). These ecoregions are 

illustrated in Figure 51. 
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Figure 51. Ecoregions as defined by Giglio et al. 2006. AUST: Australia, BOAS: Boreal Asia, BONA: 

Boreal North America, CEAM: Central America, CEAS: Central Asia, EQAS: Equatorial Asia, EURO 

Europe, MIDE: Middle East, NHAF: Northern Hemisphere Africa, NHSA: Northern Hemisphere South 

America, SEAS: Southeast Asia, SHAF: Southern Hemisphere Africa, SHSA: Southern Hemisphere 

South America, TENA: Temperate North America. 

 

 

 

Figure 52. BA 2008 estimations for MCD45, GFED v4, GEOLAND2 and MERIS_CCI for the 14 

ecoregions defined in Giglio et al. ( 2006b) 

 
 
The four products show that the vast majority of BA occurred in the two African 

hemispheres (NHAF, SHAF, summing both 70 % of total), followed by Australia, Central 

Asia, South America and Boreal Asia. For nine regions (CEAM, EQAS, EURO, MIDE, 
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NHAF, SEAS, SHAF, SHSA, and TENA) MERIS estimates were higher or in the same order 

as the GFED v4 and MCD45 ones. GEOLAND2 reported higher values in boreal and 

temperate regions (BOAS, BONA, CEAS and TENA) and significantly lower in tropical 

areas (NHAF and SHAF). Overall, a high level of agreement was found between MERIS, 

GFED v4 and MCD45 (r2>0.99), when total areas of the different eco-regions were 

compared.  

 

A more in depth comparison with the GFED product follows, as this collection is widely 

used in the modelling community, and validation results showed its better performance 

over the other products (Padilla et al., 2015). Mean burned area of the three years of 

MERIS and GFED products, expressed as fraction of burned area per 0.5 degrees is 

shown in Figure 53. The agreement between the average values is quite high. In order to 

better illustrate the differences, the ratio between the two products is shown in Figure 

54. The differences when comparing the grid products of MERIS and GFED 4 are lower 

than +-10% for most areas, except for the regions of Angola, Zambia and Botswana 

where GFED estimates are higher, and Namibia, where they are lower.  
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Figure 53. MERIS and GFED mean annual burned area (Ramo et al, 2014). 

 

 

Figure 54. Ratio between MERIS and GFED4 products (Ramo et al, 2014). 
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Regression lines were computed for the two products separating them by eco-region 

and year. Results are shown in Figure 55. A high level of agreement between the two 

products is also found in this case. When comparing the results by eco-region, 

correlation coefficients between the two products were 0.974, 0.9986 and 0.9969 

respectively for years 2006 to 2008.  

 
 

 

Figure 55. Correlation  between MERIS and GFED 4 for 2006 to 2008. 
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When looking at seasonal trends, a comparison was made between the MERIS BA extent 

found for each month of the 3 years and the GFED values. A high level of agreement was 

found between the two time series.  Figure 56 includes these global monthly BA 

estimations by MERIS and GFED v4 from 2006 to 2008. According to the figure, the 

trend between products was consistent in terms of magnitude through the temporal 

series. GFED v4 underestimates when compared to MERIS, except for October and 

November 2006, and August and September 2007 and 2008.  

 

 

Figure 56. Monthly global BA in 2006 to 2008 for MERIS_CCI and GFED v4. 
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5.1. ON THE ALGORITHM DESIGN 
 

In this research, the analysis of the different steps to obtain a BA algorithm from MERIS 

data, as well as the analysis and assessment of a three year time series of global BA 

outputs have been performed. MERIS temporal and spectral characteristics are not 

optimal for BA detection for mainly two reasons. First, temporal coverage is achieved 

every three days, which might not provide enough information to detect certain types of 

fires. Second, the sensor does not include some of the useful bands to detect fires (SWIR 

and MIR), complicating the detection or possibility to diminish confusion with other 

surfaces that might behave similarly in certain cases. On the positive side, MERIS 

presents higher spatial resolution than other sensors used to obtain global BA products, 

such as MODIS and VEGETATION. Furthermore, it has a high number of bands in the red 

edge and NIR (Pereira et al. 1999b) space that make it potentially interesting to retrieve 

BA. The developments performed, which helped enhancing these characteristics and 

circumvent the sensor’s limitations, show that MERIS images complemented with HS 

information can provide reliable estimations of BA. 

 

5.1.1.  INPUT DATA 

MERIS input data characteristics and sensor bands have been analysed to obtain a 

proper algorithm configuration. Pre-processing steps and prior data corrections are 

important for the retrieval of BA. Several authors have reported the impact pre-

processing has in mapping land changes (Jensen 2005; Lu et al. 2004; Scheidt et al. 

2008). Other effects such as BRDF have been identified as potential misleading factors, 

since these effects introduce changes in the temporal series as relevant as the ones 

caused by a fire (Justice et al. 2006). On the input data side, two processing chains have 

been analysed. Even though the atmospheric correction of DLR’s pre-processing chain 

gave more accurate results, temporal stability was better achieved with the BC pre-

processing chain. Furthermore, the processing times needed to obtain the input data 

were much lower with the latter. This is an important factor to consider when building 

a global algorithm, since the actual generation of the global products is very demanding 

in terms of computing resources. Therefore the BC chain was chosen. The noise present 

in the time series, as well as the number of MERIS observations, were limiting factors 

that already pointed the algorithm configuration towards a certain direction. Time 
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series change strategies, used by several authors to retrieve BA (Roy et al. 2005; 

Boschetti et al. 2002) were discarded, since not enough information could be extracted 

from them, and since the unexpected NIR minima values would have led to detection 

errors if a strategy of that type was chosen. Some treatment could have been performed 

on the time series to diminish its noise. The low number of observations complicates 

the inclusion of BRDF correction, which might explain part of the noise (Roy et al. 

2005). A smoothing applied to the time series could have been another approach to 

reduce the noise in the time series, but very little information could have been inferred 

after that type of treatment, since the smoothing would have obscured the post-fire 

decrease in NIR reflectance. These limitations already pointed out in the direction of a 

composite strategy to perform the BA detection.  

 

From what respects the bands analysis, the NIR band has been used in both phases of 

the MERIS algorithm. This band has been identified by several authors (Fredericksen et 

al. 1990; López García and Caselles 1991; Pereira and Setzer 1993b; Stroppiana et al. 

2003; Tanaka et al. 1983) as the most adequate to retrieve BA.  Previous findings from 

Oliva et al. (2011) on MERIS data showed that regionally the most sensitive bands to 

detect BA regionally were band 10, and bands 8 and 10 when combined in the GEMI 

index. This configuration was used to obtain the BA results for years 2006 to 2008. A 

more in depth study on the sensitivity of the bands was performed latter; to identify the 

bands sensitivity characteristics on a more generic scale. Simulations using the 

PROSPECT and GEOSAIL models were performed to obtain pre and post fire scenarios. 

The aim was to identify the most adequate bands on the MERIS sensor to perform BA 

discrimination from unburned areas. In fact, the interest in using MERIS, besides the 

spatial resolution, stands on the semi-hyperspectral characteristics of its bands, as well 

as on the big number of bands on the VIS-NIR space. Furthermore, the presence of 4 

bands in the red-edge makes the sensor potentially interesting for vegetation 

applications (Clevers et al. 2001) but also for fire applications. The Bhattacharyya 

distance was used to determine the separability of each band between pre and post fire 

conditions. This strategy has been used by several authors to identify the most adequate 

bands in different studies (Chuvieco et al. 2002; Lasaponara 2005; Roy et al. 2002). 

Findings from this study are still in an early stage, but preliminary results showed that 

band 13 located in the NIR region, was the one with bigger Bhattacharyya distance, 
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having therefore more power to differentiate between the burned and unburned 

classes, followed by bands 10 and 12 located in the red edge. Band 7 was the one that 

gave better separation in the red region, whereas bands in the blue region had less 

power to discriminate burned area. A similar procedure will be applied to the OLCI 

bands in order to identify which ones are more suitable for detecting BA in this new 

sensor. The results obtained with this study are more generic than the ones obtained 

with the analysis from Oliva et al. (2011), since they cover a wider range of scenarios.  

 

5.1.2. COMPOSITING STRATEGY 

It was decided to perform the detections on composites, since this approach gives 

higher spatial consistency when little information is available. Composites have been 

used in several BA mapping studies, as means to group the information (Fernández et 

al. 1997; Fraser and Li 2002; Kasischke et al. 1995; Kasischke et al. 1993; Chuvieco et al. 

2005; Giglio et al. 2009; Souza et al. 2005). Different composites were created using NIR 

and the GEMI and BAI indices. Results were evaluated in the study sites. Battacharyya 

distance was used to perform the separability analysis between the pre and post fire 

cases, in order to discriminate which indices performed better to detect the BA. Monthly 

and annual configurations were tested, finding that the former provided better results.  

 

Generally, methods to build composites are based on minimum or maximum values 

found in a time series (Chuvieco et al. 2005; Fernández et al. 1997; Fraser et al. 2000). 

In this thesis, a new method was developed to build the composite, in order to ensure 

higher spatial and temporal stability. The method was based on the use of a Thiessen 

matrix, built with the HS product dates, to help guiding the approximate possible date of 

burning, and the identification of 3 NIR minima close to this date. This strategy helped 

minimising the time series instability, while ensuring spatial consistency in the BA. 

Since the composites were obtained on a monthly basis, but retrieving information in a 

two-month period, the detection of fires that occurred at the end of the month was also 

considered. NIR and GEMI were the band and index used to perform the detections, as 

the separability analysis indicated the adequacy of these bands to retrieve BA, already 

identified by several authors (Barbosa et al. 1999b; Pereira et al. 1999a; Pereira et al. 

1999b; Stroppiana et al. 2003). On the seed phase only the NIR composite was used to 
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identify the seed pixels. NIR and GEMI monthly and annual composites were used on 

the growing phase of the algorithm. 

 

5.1.3. ALGORITHM STRUCTURE.  

 

The algorithm proposed was based on a two-step process, since results introduced by 

other authors showed that this approach could give good performance, obtaining a good 

balance between omission and commission errors (Barbosa et al. 1999a; Chuvieco et al. 

2008b; Pereira et al. 1999a; Vafeidis and Drake 2005).  

 

An hybrid approach combining information from MERIS reflectances and from the 

MOD14 active fires product was chosen. This approach has been followed by several 

authors (Fraser and Li 2002; Fraser et al. 2000; Giglio et al. 2009; Gong et al. 2006; Pu et 

al. 2007; Roy et al. 1999) obtaining good results. Furthermore, a study by Hantson et al. 

(2013) showed an estimation of omission and commission errors in the HS product. 

These results can give an idea on the adequacy and limitations of the MOD14 when used 

as an auxiliary product that would help overcoming some of MERIS limitations.  

 

Different strategies were implemented. Processing time, and spatial and temporal 

consistency were the main parameters used to define the final configuration. The 

advantages of using a two-phase algorithm were identified. This is illustrated in Table 

20 where OE and CE are shown after the seed and growing phases of the algorithm for 

the four study sites. 

Table 20. OE and CE in the seed and growing phases of the algorithm. 

  AUSTRALIA CANADA PORTUGAL CALIFORNIA 

C.E. 
SEED 0.14 0.1022 0.8475 0.0996 

GROWING 0.1756 0.1036 0.8512 0.1437 

O.E. 
SEED 0.6745 0.7809 0.7482 0.4479 

GROWING 0.4441 0.7530 0.6429 0.4379 

 

The use of the growing phase reduces OE in the four study sites, particularly in Australia 

(which is also the area with bigger Burned Area proportion), and Portugal. Commission 
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errors increase after the growing phase, but in a lower proportion than the decrease in 

the omission errors, except for California, where the algorithm does not have a good 

performance on the growing phase. This indicates that California is one of the areas 

where more commission introduced in the seed phase might exist, since there is little 

decrease in the OE, while the CE increases significantly. The OE reduction in Canada is 

small, while the CE remains stable. This indicates that the growing phase is not 

providing the expected results in this area, either because the conditions might be too 

restrictive for this region, or because the composite strategy is not appropriate for this 

area. This behaviour was improved with version 2 of the algorithm, showing a decrease 

in OE while CE remained similar. 

 

5.1.3.1. SEED PHASE 

 
In this phase the most clearly burned pixels need to be identified. For the MERIS BA 

algorithm, two procedures were tested, in order to obtain the final seed pixels: tests for 

threshold identification and tests for seed extension. 

Firstly, tests were identified and formulated to obtain the option that would better 

separate between burned and unburned CDFs. First of all, the strategy to define burned 

and unburned pixels was determined. The basis was to use criteria that would help 

maximising the distance between the CDFs of the burned and unburned classes. The 

unburned CDF was therefore built with values found in areas of 64x64 pixels where no 

HS were detected. The burned CDF was built with the minimum value of the 9 MERIS 

pixels covered by one HS detection and where there was a drop in NIR reflectance. 

Later, the identification of a threshold that would help separating between the two 

classes was performed. Once these curves were built the threshold was identified by 

intersecting the curves, choosing the immediate lower decile of the burned curve that 

would correspond to the first decile of the unburned curve. This criterion implies 

accepting as much as 10% commission error inherent in the seed phase, while the 

omission error would be estimated by the selected decile of the burned CDF, being 

higher when the curves are closer. The aim of this strategy is to be more restrictive 

when there is a higher confusion between classes, and rather have higher omission than 

commission errors in that case, since the aim in this phase is to minimise commission 

errors, while omission errors can be reduced in the growing phase of the algorithm.  
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Secondly, tests were also performed to extend the seeds. Version 1, defined seeds as the 

pixels that had 2 HS in a 9x9 matrix around the pixel, with a drop in NIR reflectance and 

with a NIR value lower than the threshold identified. This method to define the seeds 

was selected based on the number of perimeters detected in the four study sites where 

perimeters were available versus commission errors. This seed configuration was used 

to process the 3 years of MERIS data globally.  

 

Fire perimeter assessment and validation revealed a tendency towards omission and 

therefore the strategy to detect seeds was revised. The new configuration obtained in 

version 2, helped detecting more perimeters, and was based on filtering the number of 

HS with the median NIR values of pre and post fire individual images, combined with a 

restriction if the ratio between the number of HS and the number of PAFS was bigger 

than two. This configuration makes profit of the HS but filters them by using a longer 

period of MERIS data instead of only one pre-fire value, which is less robust considering 

the noise in the time series. Moreover, this strategy will be less or more restrictive 

according to the number of HS filtered with the median process, which adapts to the fact 

that the HS product presents a tendency towards commission in certain regions more 

than in others.  

 

Version 2 of the algorithm is more robust and at the same time helps detecting more 

perimeters. In fact, an increase of 12% in the number of perimeters detected is found 

with this configuration (58% of total number of perimeters detected) in comparison to 

the 9x9 2HS one (46% of total number of perimeters detected) in the four study sites 

analysed.  

 

Different techniques can be used to identify the seed pixels, as shown by several 

authors. For instance, in the ITALSCAR project (Paganini et al. 2003) seed pixels were 

identified through time series change detection, applying a series of thresholds. Vafeidis 

et al. (2005) identified seed thresholds from computed for NDVI, VI3 and VI3T based on 

median and standard deviation values. Chuvieco et al. (2008b) combined static 

thresholds from BAI and NBR and a multi-temporal approach. Chuvieco et al. (2008a) 

selected the seed pixels through the definition of temporal thresholds from BAI and 

GEMI indices. Giglio et al. (2009) based the identification of seeds on a series of training 
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pixels for the burned and unburned classes. Bastarrika et al. (2011) identified the seeds 

using the BAI index and statistical thresholds.  

The main advantage of the strategy developed for the MERIS BA algorithm stands on the 

fact that the thresholds to select the seeds are regionally oriented. This is a key concept 

when developing a global burned area algorithm since conditions are very different 

worldwide and static conditions that adapt adequately to a certain region might 

perform poorly in other regions. Instead, the MERIS BA algorithm adapts to the 

conditions and data available in each area, and for each period of the year. In fact, it has 

an important statistical component, and therefore does not assume prior values in the 

distributions; those values are computed on a monthly basis for each tile, tailoring the 

thresholds by region and period.  

Another advantage of this method is that it becomes more or less restrictive according 

to the confusion that exists between the burned and unburned classes. In fact, the 

definition of the burned class limits (the threshold) is based on the unburned class 

limits (decile 1 of the unburned CDF). This implies that commission errors will be 

limited and criteria will be stricter when more confusion exists between classes, since a 

lower decile of the burned class will be chosen as threshold limit. Furthermore, in 

version 2, an estimation of the potential commission errors in the HS is performed for 

each region and month. The ratio between the HS and the PAFs (obtained after applying 

the median pre and post fire criteria) is computed, giving an idea of the amount of 

commission errors in each region. According to this ratio, the conditions to identify the 

seeds will be more or less restrictive, becoming more robust against the errors inherent 

to the HS product.  

Other criteria still need to be developed to decrease the number of perimeters that 

remain undetected in the seed phase, since there are no chances of detecting them in 

the second phase of the algorithm. A possible approach would be to identify, with some 

of the criteria already defined (NIR threshold, decrease in NIR…), other potential 

burned areas on the region analysed, or implementing a time series change detection 

approach if more data become available (for instance with the use of the future OLCI). 

Another option would be to use other sources of information to help determining which 

pixels can also be considered seeds. The inclusion of other HS information coming from 
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geostationary satellites could be considered for this purpose, since the temporal 

resolution of these sensors is much better than the MODIS ones. Even if the spatial 

resolution is coarser, these sensors have more chances to detect active fires than the 

low orbit ones, since the number of images is significantly higher.  

 

A limitation found with the computation of statistics on the 10x10° tiles was that in 

certain cases (where fire behaviour, number of HS and vegetation conditions might 

differ between tiles) the thresholds computed and the growing in two neighbouring 

tiles might vary heavily. This can translate in some cases in discontinuities between the 

tiles, having fires that cover the intersection between two tiles and where the fire grows 

more in one tile than in the other one. Results obtained for two adjacent tiles are 

illustrated in Figures 57 and 58 for two different areas. Figure 57 shows the BA 

retrieved in the area of Thailand and Myanmar (covered by the tiles v06h27 and 

v07h27) in 2006. Figure 58 shows BA results for the African region of Mali, Burkina 

Faso, Cote d’Ivoire and Ghana (covered by tiles v07h17 and v08h17) in 2008. As 

illustrated in the figures, the problem is partially solved in version 2 since the way the 

seeds are computed differs from version 1 (median filtering and HS restriction). An 

extra condition was applied to reinforce this improvement. The statistics in the tiles 

where fires were not growing adequately were analysed. It was found that the decile 

used to obtain the NIR threshold in some of these cases was decile 1. This meant that 

there was a poor separation between classes, and therefore a very restrictive threshold 

was used to define the seeds. Nevertheless, in practice, the poor growing in these cases 

illustrated that there was no need to use such a restrictive threshold for certain tiles. It 

was decided that in cases where decile 1 was identified, the number of HS in that tile 

would be considered in order to modify this decile. If the number of HS was higher than 

500, the decile to obtain the threshold would be increased to decile 3. In cases where 

the number of HS was below 500, the threshold would still be defined from decile 1. 

These values were set empirically. As illustrated in Figures 57 and 58, these strategies 

diminish the discontinuity between tiles, but some edges are still noticeable. 

A possible strategy to diminish these discontinuities would be to apply smoothing 

criteria between the tiles once the BA is computed. In order to further limit these 

discontinuities, and to tailor in a more specific way the thresholds obtained 

dynamically, the curves that are generated on a 10°x10° basis could be computed by 
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type of vegetation. In fact, this could help discriminating better different cases (for 

instance darker or lighter vegetation). This possibility should be considered carefully, 

since errors on the type of vegetation would be introduced by the errors inherent to the 

land cover map. Furthermore, the separation in vegetation types could also lead to 

other spatial discontinuities (for instance in the limits of different types of vegetation). 

This option was not included in the algorithm since it was decided that on a first 

approach it would be more convenient to maintain the development independent from 

another source of information, since inherent errors to the LC map would have an 

impact also on the quality of the BA detections.  

 

 

Figure 57. Discontinuities between adjacente tiles (L06C27, L07C27) in version 1 and 2 (with extra 

condition). 
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Figure 58. Discontinuities between adjacente tiles (L07C17, L08C17) in version 1 and 2 (with extra 

condition). 

 

5.1.3.2. GROWING PHASE 

On a global scale, algorithms developed to obtain BA are generally based on pixel 

approaches (Ershov and Novik 2001; Giglio et al. 2009; Roy et al. 2005; Silva et al. 2003; 

Carmona-Moreno et al. 2005; Eva and Lambin 1998; Grégoire et al. 2003; Piccolini and 

Arino 2000; Plummer et al. 2007; Tansey et al. 2008).  

In this work, different strategies were tested in order to develop the growing phase of 

the algorithm. The main lines of research were based on retrieving the BA on pixel and 

object based strategies. Pixel-based approaches are more stable to noise (Kamdi and 

Krishna 2012) and are more tailored to each pixel. Object based approaches were used 

in regional studies, showing the potential of this technique to map BA (Dragozi et al. 

2014; Gitas et al. 2004; Mitri and Gitas 2002; Polychronaki and Gitas 2010; Quintano et 

al. 2006; Shimabukuro et al. 2015). Tests performed in different sites, as well as 
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assessment from the fire perimeters in four areas, showed the better performance of 

the pixel based strategy. This was therefore the method selected for processing the 3 

years of MERIS data. Object based techniques performed well in some cases, but it was 

found that there was an increased difficulty in defining a set of conditions systematically 

that would give good results on a global scale.  

Other possible implementations such as neural networks or SVMs could also be 

considered, as well as further implementations based on OBIA techniques. Nevertheless, 

all these implementations will encounter the same limitations found with the object-

based methods tested, i.e. defining the object size and threshold parameters used to 

determine the burned/unburned, or the training sets that would potentially work on a 

global scale. Object based approaches might have higher probabilities of leading to 

larger commission errors in the BA product due to a HS or seed commission error than 

pixel based approaches. On the pixel based approach, a HS commission error that was 

not filtered in the seed phase can lead to errors in the growing phase, but the conditions 

to classify the pixels around this one will be checked again, and need to be fulfilled to 

classify that pixel as burned. On the object based approaches, if seeds are used to 

determine objects, commission coming from the seeds will already become a 

commission error for a complete object, having a higher number of pixels classified as 

burned, without any other conditions checked. Ideally a fusion of these techniques 

should be considered. This way combining the advantages of the two techniques should 

be possible.  

 

Once the 3 year results were analysed with the validation exercise and the perimeters 

assessment, omission errors were found from poor growing in some regions. This 

indicated that further developments needed to be performed on this line. It was decided 

to test the use of individual daily images to perform the growing phase detections. Once 

the seed phase is performed, individual images can be used again, since the noise in the 

time series does not affect the threshold and statistics extraction of the growing phase 

in each individual image. In fact, individual images showed more contrast between 

burned and unburned areas than the composite built. Therefore the composite was kept 

for the seed phase, but the growing phase was performed on individual images, 

improving the detection since the degree of detail and the separability between burned 
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and unburned was found higher in those cases. The main drawback of this change is 

that if the image did not cover the full extent of the fire some BA might not be detected, 

but still having the chance of detecting it in the following days. The use of individual 

images in the growing phase is implemented in version 2 of the algorithm, to obtain the 

long term BA time series from MERIS.  

The difference between the use of the composite and the individual images for the 

growing phase is illustrated in Table 21 where OE and CE are shown. In both cases the 

seeds were obtained with the 9x9 and 2HS strategy. 

 

Table 21. OE and CE when using individual images and composite for the growing phase of the 

algorithm. 

  AUSTRALIA CANADA PORTUGAL CALIFORNIA 

C.E. 
COMPOSITE 0.1756 0.1022 0.8512 0.1437 

SINGLE IMAGE 0.2066 0.1315 0.9434 0.2372 

O.E. 
COMPOSITE 0.4441 0.7530 0.6429 0.4379 

SINGLE IMAGE 0.4135 0.5491 0.5483 0.3427 

 

There is a reduction on the OE in the four sites when the growing is performed on the 

individual images. This decrease in the OE is more relevant in Canada and California, 

which were the two areas previously identified where the growing in the composite was 

not performing properly. An important decrease in Portugal exists as well, but with the 

same proportion of increase in the CE. Nevertheless, the purpose of these results is to 

show the interest in performing the growing part of the algorithm on the individual 

images. The use of the seed option based on the median with restrictions will limit the 

commission errors that appear in this table.  

 

5.2. ON THE GLOBAL OUTPUT. 
 

Three years of MERIS data were processed with the BA algorithm. The BA obtained for 

the three years varied between 3.6 and 3.8 million km2. These estimations are in good 

agreement with findings from other authors (Csiszar et al. 2005; Giglio et al. 2006a; van 

der Werf et al. 2006), in spatial and temporal terms. When comparing MERIS results 

with existing BA products, the estimations can be considered very consistent, both in 
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terms of total BA values, and geographical and temporal distribution, with better 

estimations (according to validation results) than existing European BA products, 

particularly in Tropical regions. Further comparison of the MERIS results with GFED v4, 

one of the most widely used by climate modellers, showed similar spatial and temporal 

trends for the 3 years processed. Global estimations were 3 to 9% higher than GFED v4 

for the three years computed, while geographical and monthly trends showed high 

correlation values.  

 

The validation results (Padilla et al. 2015) confirmed that MERIS algorithm provided 

acceptable results. When estimating total BA in the statistically designed validation 

sample, MERIS provided lower but comparable accuracy metric values to the MODIS-

based BA products (MCD45 and MCD64). Overall accuracy was high (OA>0.99) but the 

BA category of the MERIS product showed higher commission errors (CE=0.64) than 

MCD64 and MCD45 and similar omission errors (OE=0.76) to the MCD45. The relative 

balance of errors showed better results than MCD64 and MCD45 with a 34% of 

underestimation. Errors were lower for the areas with higher proportion of burned area 

(OE=0.51 and CE=0.52). MERIS BA results showed some detection problems, 

particularly in temperate regions, where fires are unusual and commission errors were 

found by misclassification with agricultural areas. In Tropical regions, omissions were 

higher, which may be caused by the omission errors included in HS detections, 

becoming more relevant in areas with small fires (Hantson et al. 2013). The use of HS 

also implies a certain contribution to overall BA error. HS have proven very reliable to 

detect active fires, with very low commission error, but they are not frequent or 

sensitive enough to detect all active fires, and therefore omission errors are higher 

(Csiszar et al. 2005; Giglio et al. 2006a; Hantson et al. 2013). This omission error 

inherent to HS is also included in other BA products based on HS (such as the GFED-

MCD64). Some of the possible improvements to overcome these limitations have been 

discussed in the previous paragraphs, and some improvements have already been 

included in version 2 of the algorithm.  

 

Since the MERIS BA algorithm relies on MODIS HS and MERIS reflectance information, 

the results cannot be considered fully independent from MODIS products, particularly 

from MCD64, which uses a hybrid approach as well. However, the structure of the 
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algorithm is quite different from the Giglio et al. (2009) one, and it is built on the 

particular spectral space detected by the MERIS sensor. Spatial variations between 

MERIS BA results and GFED v4 for instance, show that HS input does not fully 

determine the output results.  

 

Estimations of errors obtained with the validation exercise, may be considered 

pessimistic, as some of these errors are caused by the low temporal frequency of the 

MERIS sensor, and therefore include both classification and temporal reporting errors. 

Temporal reporting accuracy of the MERIS product was computed by obtaining the 

difference between MERIS BA detection dates and HS dates. It was observed that 50% 

of the MERIS detections occurred with a difference of 4, 22, 12 and 8 days from the HS 

date for the Australian, Californian, Canadian and Portuguese sites, respectively, 

whereas 75% occurred within 9, 30, 19 and 15 days for the same sites respectively. The 

temporal accuracy is therefore lower in these cases than the one obtained globally by 

Boschetti et al. (2010) for the MCD45 product (50% within one day and 75% within 

four days). The MERIS reporting accuracy increases the likelihood of reporting omission 

and commission errors even for correctly detected pixels, particularly when the two 

Landsat images used to obtain the reference perimeters are close in time (as it is the 

case of Tropical ecosystems where most validation pairs of images were separated by 

32 days or less). According to the fire perimeter assessment, when using a full year of 

fire perimeters in four very large study sites, the omission error in fact decreased to 

0.47 and the commission error to 0.15 in the worst value of the three years. This 

reduction of detection errors compared to the Landsat validation sample should be 

related to the longer period included in the assessment sites (which covers the full 

year), when dating errors are expected to affect marginally the accuracy estimations.  

 

A potential interest in retrieving BA from MERIS relies on its higher spatial resolution 

compared to existing BA collections and therefore the possibility of detecting smaller 

perimeters. These fires are especially relevant because some authors estimate that they 

account for almost 35% of total emissions (Randerson et al. 2012). Consequently, there 

is an interest in better detecting them from space, since it is one of the difficult tasks to 

achieve with coarse resolution sensors. Results on the number of perimeters detected 
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with version 1 (used to obtain the 3 years of BA data), version 2, and with the MCD45 

product are available in Table 22. 

 

Table 22. Percentage of perimeters detected by fire size with MERIS version 1 and 2 and MCD45. 

Study site  Fire size (ha)  

 <100 <1000 <10000 >10000 

AUSTRALIA     

Total nº of per. 12174 4652 1373 209 

% detected MERIS v1 34% 62% 92% 100% 

%detected MCD45 34% 67% 94% 99% 

%detected MERIS v2 46% 78% 95% 100% 

CANADA     

Total nº of per. 30 20 28 34 

% detected MERIS v1 0% 25% 54% 88% 

%detected MCD45 3% 15% 86% 100% 

%detected MERIS v2 7% 45% 75% 94% 

PORTUGAL     

Total nº of per. 24 19 4 0 

% detected MERIS v1 38% 74% 50% - 

%detected MCD45 8% 63% 100% - 

%detected MERIS v2 38% 63% 50% - 

CALIFORNIA     

Total nº of per. 98 48 25 5 

% detected MERIS v1 4% 8% 60% 80% 

%detected MCD45 2% 23% 24% 100% 

%detected MERIS v2 4% 21% 80% 100% 

 

The detection of small perimeters increases significantly with version 2 of the MERIS 

algorithm. For perimeters smaller than 100ha the detection rate is 46%, 7%, 38% and 
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4% for the Australian, Canadian, Portuguese and Californian study sites respectively. 

These detection rates should be considered acceptable in the case of Australia and 

Portugal, if we consider that one MERIS pixel covers 9ha and one MODIS HS pixel covers 

100ha. This explains partially the lower number of detections in the case of small 

perimeters. Furthermore, small fires are likely to burn for shorter periods of time, 

therefore it is more probable that the satellite will not be covering the area when those 

fires are burning. In fact, for fire perimeters of size between 100 and 1000 ha the 

detection rate increases up to 78%, 45%, 63% and 21% for the four study sites 

respectively. Results obtained with version 2 show that in Australia and Canada an 

increase in the number of perimeters detected for all fire sizes is achieved, compared to 

version 1. In California there is an increase for fires bigger than 100 ha. In Portugal the 

number of perimeters detected remains the same as in version 1, except for fires of size 

between 100and 1000ha, where there is a decrease of 11%. This result was expected 

since this area was identified as one of the regions with higher HS commission errors in 

the Hantson et al. (2013) study, and therefore, the more restrictive conditions applied in 

version 2 for those cases was expected to diminish the number of perimeters detected.  

 

When compared to the MCD45 product, version 2 of the algorithm detects the same 

number (2 cases) or more (9 cases) fire perimeters except for four cases: Canada for 

fires <10000 and >10000 ha, Portugal for fires between 1000 and 10000ha and 

California for fires between 100 and 1000ha. These results highlight the interest in 

obtaining BA collections from different methods and sensors (with better spatial 

resolution), since the results obtained can be complementary in some cases, enhancing 

the quality obtained by each product individually. 

 

5.3. ON THE RELEVANCE OF OBTAINING A NEW BA PRODUCT 
 

BA characterization is relevant from a climatic and atmospheric point of view. Currently 

a number of BA products exist, but at this stage it is relevant to ensure measurements 

continuity with the use of sensors on operational missions, as well as to fit certain user 

requirements, such as uncertainty characterization, or higher spatial resolution. 

Furthermore, the development of different BA collections helps identifying areas where 

BA is properly characterized, diminishing uncertainty, and also to better understand 
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where each product is having better performance, identifying strengths and weaknesses 

of each one of them.  

 

The users of the fire_cci project assessed the MERIS BA product. A complete report is 

available in the Climate Assessment Report (Yue et al. 2014) and the Product 

Intercomparison Report (Ramo et al. 2014). A summary of their conclusions is included 

hereafter.  

 

It was found that MERIS is in good agreement with GFED, in terms of total amount of 

burned area, spatial and temporal distribution of fires. Some differences were also 

reported between the products, which highlights the interest in obtaining different BA 

collections. For example, across Europe, except for the Kazakhstan steppe region, 

fire_cci estimates are 2 to 5 times higher than those from GFED4. Across agricultural 

India, fire_cci estimates are typically more than 4 times higher than in GFED4. An 

example of these differences is shown in Figure . In spring 2006, an important fire event 

took place in Eastern Europe. The event caused high air pollution in the European 

Arctic, as documented by Stohl et al. (2007). The predominantly agricultural fires show 

up as strong increase of MODIS active fire detections between April and May (Figure ). 

While the fires are well reflected in the MERIS BA product, they are largely missed by 

GFED3 and GFED4. The figure also shows that GFAS, the Global Fire Assimilation System 

from EC’s Operational Copernicus Atmosphere Monitoring Service (CAMS), also 

recorded this event. This highlights the fact that each fire product has different 

commission and omission characteristics dependent upon the region and the period 

selected. 
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Figure 59. BA from MERIS, GFED and GFAS in April and May 2006 in Eastern Europe (Ramo et al. 

2014). 

 
 
 

 

Figure 60. MODIS active fire detections in the period from 21
st
 of April to 5

th
 of May 2006, indicating the 

type of vegetation for each detection (Ramo et al. 2014). 
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The users also found that the quality improvement with the MERIS BA data was 

significant compared to previous European products (Globcarbon, L3JRC, GEOLAND) in 

terms of correctly capturing the spatial and temporal distribution of fires. 

 

CO2 and CO emission from biomass burning, as derived by the ORCHIDEE model being 

forced with MERIS BA data yield similar seasonal patterns and magnitudes than GFED 

v3.1 (Yue et al, 2014). This suggests that MERIS data are well suitable for atmospheric 

applications related with the trace gas emissions from fires (Chuvieco et al. 2015).  

 

Comparison with national statistics pointed out that there is a generic underestimation 

of BA from remote sensing collections, mostly of small fires. MERIS version 1 and GFED 

performed equally in this comparison, showing an accurate inter-annual variability.  

 

The MERIS BA pixel product analysis showed that characterising path structure is 

feasible from this dataset. The BA information retrieved on the pixel level can be used 

on a global scale to obtain a comprehensive description of patch complexity, elongation 

and direction, which are some key variables for global fire spread/intensity modelling.  

 

In general, the user assessment reported on the potential interest of having a longer 

time series of this product, having obtained promising results with the processing of 

years 2006 to 2008.  
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The growing interaction between fire and climate highlights the relevance of accessing 

global burned area (BA) information, particularly for climate and dynamic vegetation 

models (Mouillot et al. 2014). This need was identified with the ECV fire disturbance 

and consequently in the ESA’s fire_cci project, which aimed at monitoring burned areas 

on a global scale, in order to study its relation to climate change. The work presented in 

this thesis has been developed within the framework of the fire_cci and has therefore 

implicitly the objective of contributing to these international efforts. 

 

The main aim of this work was to develop for the first time a global algorithm to detect 

burned areas on a global scale from MERIS data. The sensor had some features that 

made it potentially interesting to map BA. It presented a high number of bands in the 

red edge and NIR space, and a higher spatial resolution than the sensors used up to date 

to obtain BA on a global scale. On the other hand, the challenge in mapping BA with 

MERIS was that temporal coverage was not optimal, and the sensor did not include 

SWIR and MIR bands, which are useful to detect fires.  

 

Considering these limitations, and after analysing the results of the MERIS BA 

algorithm, it can be concluded that the aim of the thesis was achieved, as the algorithm 

developed within this research provided reliable global BA products from MERIS data. 

The developments discussed in this document, which aimed to benefit from MERIS 

spatial and spectral bands characteristics, while mitigating its limitations, show that 

MERIS images, complemented with HS information, provide fair estimations of global 

BA.  

 

MERIS input data characteristics and sensor bands were analysed. BC pre-processing 

data chain was selected as input data to ingest into the algorithm. A study on the MERIS 

most suitable bands to discriminate BA was performed. Simulations using the 

PROSPECT and GEOSAIL models were performed to obtain pre and post fire scenarios. 

Results showed that band 13 located in the NIR region, was the one with more power to 

differentiate between the burned and unburned classes, followed by bands 10 and 12 

located in the red edge. Band 7 was the one that gave better separation in the red 

region, whereas bands in the blue region had less power to discriminate burned area. 

NIR and GEMI index were selected as the most adequate to identify BA. BA detections 
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were performed on composites, that helped obtaining higher spatial and temporal 

consistency.  

 

The algorithm proposed was based on a two-step process, divided in seed and growing 

phases. On the first phase, cumulative distribution functions were computed to 

discriminate the most clearly burned pixels, using regionally-oriented NIR thresholds 

and choosing criteria that would maximise the distance between the CDFs of the burned 

and unburned classes. Final configuration of version 1, defined the seeds as the pixels 

that would have 2 HS in a 9x9 matrix around the pixel, with a drop in NIR reflectance 

and with a NIR value lower than the threshold identified. This seed configuration was 

used to process 3 years of MERIS data globally. On the second phase, different strategies 

were tested to obtain the region growing. Main lines of research were based on pixel 

and object based strategies. Tests performed in different sites, as well as assessment 

from the fire perimeters showed the better performance of the pixel-based strategy, 

which was used for version 1 of the algorithm.  

 

Fire perimeter assessment and validation revealed a tendency towards omission. This 

indicated that further developments were needed. Seed and growing phases strategies 

were revised. For the seed phase, version 2 was based on filtering the number of HS 

with the median NIR values of 5 pre and post fire individual images and a ratio 

restriction based on the relation between HS and PAFs. This configuration was more 

robust than the previous one, detecting 12% more fire perimeters. In version 2, it was 

decided to reconsider the use of individual daily images for the growing phase. 

According to the fire perimeter assessment, the use of daily images instead of monthly 

composites, diminished omission errors with little increase in the commission errors, 

for the four study sites. Version 2 of the algorithm will be used to process the full MERIS 

time series (2003-2012) to obtain a longer BA collection. This will provide a 

complementary view on the existing knowledge of BA trends. 

 

Three years of MERIS data were processed with version 1 of the BA algorithm. BA found 

for the three years varied between 3.6 and 3.8km2. Patterns of fire activity were 

identified (African Tropical regions, Northern regions of Australia, Central Brazil, 

Central and South East Asia, Russia, Canada and South East USA) as well as seasonal 
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trends. MERIS BA estimates showed similar although lower accuracy than existing 

MODIS BA products, based on a validation dataset produced from multi-temporal 

Landsat images. Some of the observed errors were related to temporal reporting 

problems associated to the MERIS coverage frequency. In fact, errors were found much 

lower when results were compared with external fire perimeters that consider the full 

fire season. Global estimations were 3 to 9% higher than GFED v4 for the three years 

computed, while geographical and monthly trends showed high correlation values. 

Results indicated that there was a significant improvement in BA characterization 

compared to previous European BA datasets.  

 

Number of perimeters detected by fire size with the MERIS product was computed. In 

the four assessment sites, BA estimated from version 2 of the algorithm detected 58% of 

the total number of fire perimeters.  

 

The algorithm developed presents some limitations in terms of dependency from active 

fire information and temporal reporting accuracy. MERIS BA results showed some 

detection problems, particularly in temperate regions, where fires are unusual and 

commission errors were found by misclassification with agricultural areas. In Tropical 

regions, omissions were higher, which may be caused by the omission errors included 

in HS detections, becoming more relevant in areas with small fires (Hantson et al. 

2013).  

 

Future developments are needed in order to overcome the limitations identified. An 

improved seed procedure in which very clear fire-related reflectance changes may be 

included in future versions, ensuring also more independency from the thermal 

information. Additional research is also needed to build more robust time series from 

MERIS reflectance data. This could be achieved also from its successor, the OLCI, or by 

using MODIS data. The seed phase could benefit from the inclusion of information 

coming from other sources. The use of active fire information from geostationary 

satellites should also be investigated for this purpose. The growing phase could 

combine object and pixel based approaches to overcome the limitations of the latter.  
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The use of land cover maps should be tested in future developments, in order to obtain 

statistical thresholds more tailored to each type of vegetation, and to overcome the 

discontinuities found between tiles. Special care would need to be taken with this 

approach, since inherent errors to the LC map would have an impact also on the quality 

of the BA detections.  

 

A longer BA time series is needed to obtain information on climate behaviour and 

interactions between climate and fires, as well as to infer and understand which areas 

will be more affected by changes in their fire regimes.  

 

The MERIS algorithm could be adapted to the OLCI sensor, on board the future Sentinel-

3 (expected launch December 2015). This satellite will also have a thermal sensor (the 

SLSTR), with active fire detection capabilities. Therefore, the methods developed in this 

work could be implemented without the need of using data from other satellites. The 

algorithm developed could also be adapted to other sensors that are constrained to the 

red-near infrared space, as it is the case of the higher spatial resolution (250 m) bands 

of MODIS. In fact, the adaptation of the MERIS BA algorithm to MODIS bands 1 and 2 and 

to OLCI is foreseen for the second phase of the fire_cci project, ensuring continuous 

monitoring of fire disturbance from space. 
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AATSR    Advanced Along Track Scanning Radiometer  
AMORGOS   Accurate MERIS Ortho Rectified Geo-location Operational Software 
ANN    Artificial Neural Network 
AQL    A rea  uemada En Latinoame rica 
ASAR    Advanced Synthetic Aperture Radar 
ASTER    Advanced Spaceborne Thermal Emission And Reflection Radiometer  
ATCOR   Atmospheric and Topographic Correction 
ATSR    Along Track Scanning Radiometer 
AVHRR   Advanced Very High Resolution Radiometer 
AVIRIS    Airborne Visible/Infrared Imaging Spectrometer 
AWiFS    Advanced Wide Field Sensor 
BA     Burned Area 
BAI    Burned Area Index 
BAp    Burned Area proportion 
BC    Brockmann Consult 
BRDF    Bi-Directional Reflectance Distribution Function 
CEOS    Committee of Earth Observation Satellites 
CCI    Climate Change Initiative 
CDF    Cumulative Distribution Function 
CE    Commission Error 
CNFDB   Canadian National Fire Database 
C3S    Copernicus Climate Change Services 
DEM    Digital Elevation Model 
DLR    Deutsches Zentrum für Luft- und Raumfahrt 
EC    European Commission 
ECV    Essential Climate Variable 
EFFIS    European Forest Fire Information System 
ENVISAT   Environmental Satellite 
EOS    Earth Observing System 
EPA    Environmental Protection Agency 
ERS    European Remote Sensing 
ESA    European Space Agency 
ETM+    Landsat Enhanced Thematic Mapper 
ETRS89   European Terrestrial Reference System 1989 
fAPAR    Fraction Of Absorbed Photosynthetically Active Radiation 
FDA    Fire Damage Assessment 
FIRMS    Fire Information for Resource Management System 
FR    Full Resolution 
FRAP    Fire and Resource Assessment programme 
GBA2000   Global Burnt Area 2000 
GCOS    Global Climate Observing System 
GEMI    Global Environmental Monitoring Index 
GESAVI   Generalized Soil-Adjusted Vegetation Index 
GFED    Global Fire Emissions Database 
GHG    Green House Gases 
GLOBCARBON   Global Land Products For Carbon Model Assimilation 
GLOBSCAR   ATSR Global Burned Forest Mapping 
GOES    Geostationary Operational Environmental Satellite 
GOFC    Global Observation Of Forest Cover 
GOFC/GOLD   Global Observations Of Forest And Land Cover Dynamics 
HANDS   Hotspot And NDVI Differencing Synergy  
HS    HotSpot 
ICSU    International Council of Scientific Unions  
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IGBP   International Geosphere-Biosphere Program 
IHDP    International Human Dimensions Programme 
IOC    Intergovernmental Oceanographic Commission  
IPCC    Intergovernmental Panel on Climate Change 
JRC    Joint Research Centre 
Landsat   Land Satellite 
LAI    Leaf Area Index 
LC    Land Cover 
MERIS    Medium Resolution Imaging Spectrometer 
MIR    Mid-Infrared 
MIRBI    Mid-Infrared Burn Index 
MLP    Multi-Layer Perceptron 
MODIS    Moderate Resolution Imaging Spectroradiometer 
MSG    Meteosat Second Generation 
NAFI    North Australian Fire Information 
NASA    National Aeronautics And Space Administration  
NBR    Normalized Burnt Ratio 
NDII    Normalized Difference Infrared 
NDSWIR   Normalized Difference SWIR 
NDVI    Normalized Difference Vegetation Index  
NDWI    Normalized Difference Water Index 
NIR    Near InfraRed 
NOAA    National Oceanic And Atmospheric Administration OPS Optical Sensor 
OE    Omission Error 
OLCI    Ocean Land Colour Instrument 
PAF    Potential Active Fire 
PM    Particulate Matter 
RDA    Rapid Damage Assessment 
RR    Reduced Resolution 
SAI    Spectral Angle Images 
SAVI    Soil adjusted vegetation index 
SLSTR    Sea and Land Surface Temperature Radiometer 
SPOT    Système Pour l’Observation De La Terre 
SRF    Spectral Response Function 
SWIR    Short Wave Infrared 
SWVI    Short Wave Vegetation Index 
TSA    Thiessen scene areas 
TIR    Thermal Infrared 
TM    Landsat Thematic Mapper 
TRMM    Tropical Rainfall Measurement Mission 
UNESCO   United Nations Educational, Scientific and Cultural Organization 
UNEP    United Nations Environment Programme  
UNFCCC   United Nations Framework Convention on Climate Change 
VISSR-VAS   Visible-Infrared Spin-Scan Radiometer Atmospheric Sounder 
VIRS    Visible and Infrared Scanner 
VGT    Vegetation 
WCP    World Climate research Programme 
WFA    World Fire Atlas 
WGS84   World Geodetic System 1984 
WiFS    Wide Field Sensor 
WMO    World Meteorological Organization  
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We present the development of a global burned area (BA) algorithm based on MERIS imagery along with the
assessment of the global BA results for three years (2006–2008). Thisworkwas developedwithin the Fire Distur-
bance project under the European Space Agency Climate Change Initiative programme, which aimed to generate
long-term BA information for climate models. Our algorithm combined temporal series of MERIS reflectances
with thermal information fromMODIS HS (hotspot) product. The algorithm included two-steps. Firstly, cumula-
tive distribution functions were computed to discriminate the most clearly burned pixels using regionally-
oriented near infrared reflectance thresholds. Secondly, a contextual criterion improved the spatial detection of
the burned patches from the seed pixels. BA estimates for the three target years range from 3.6 to 3.8 million
km2. Results were validated from a statistically designed sample of fire perimeters generated from Landsat
multi-temporal imagery. Intercomparison with existing BA products was also carried out. Results from global
validation datasets provided an average overall accuracy higher than 0.95. The accuracy of the BA category was
lower than the accuracy of the unburned one. Within the former, average omission and commission errors
were lower for areas where the proportion of burned area was higher (for pixel-based error matrices, commis-
sion error (CE) was 0.52 and omission error (OE) was 0.51), than for those areas with very low BA proportion
(CE=0.60 and OE=0.74). In terms of total BA estimation, errors were generally well balanced, with a tendency
towards underestimation (34%). Relevant impact of temporal reporting accuracy was found for these validation
datasets. Intercomparison with other existing BA datasets pointed out similar spatial and temporal trends, with
high correlation with GFED v4 BA estimations for the three years (r2 N 0.974).

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Fire is a key component of the carbon cycle, related to greenhouse
gases and aerosol emissions to the atmosphere (Andreae & Merlet,
2001; van derWerf et al., 2010). Biomass burning has a critical relevance
for global vegetation dynamics (Kloster, Mahowald, Randerson, &
Lawrence, 2012; Thonicke et al., 2010), increasingly affecting human
lives and property (Bowman et al., 2009).

Even though the current understanding of climate–fire interactions
is limited, there is also increasing evidence on their mutual influence
(Kloster et al., 2012; Krawchuk, Moritz, Parisien, Van Dorn, & Hayhoe,
2009; Mouillot & Field, 2005; Pechony & Shindell, 2010; Running,
2006). Expected temperature and rainfall changes are likely to increase
wildfire frequency in some regions,while othersmayexperiencedecrease
in fire activity as a result of decreased biomass production (Daniau A.L.,
Bartlein P.J., Harrison S.P., Prentice I.C., Brewer S., Friedlingstein P., et al.,
2012; Krawchuk et al., 2009).
as), emilio.chuvieco@uah.es
The growing interaction between fire and climate highlights the rel-
evance of accessing global burned area (BA) information, particularly
for climate and dynamic vegetation models (Mouillot et al., 2014). The
extended use of these models emphasises the need to have long-term
and consistent time series of BA information, with proper error and un-
certainty characterisation. This is the main goal of the Fire Disturbance
(fire_cci) project (http://www.esa-fire-cci.org/ last accessed November
26, 2014). Fire is one of the Essential Climate Variables (ECV)within the
European Space Agency Climate Change Initiative (ESA-CCI). The ESA-CCI
is part of the European contribution to the Global Climate Observing
System (GCOS) programme. Currently, the ESA CCI programme includes
13 ECVs that involve atmospheric (ozone, greenhouse gases, aerosols
and clouds), oceanic (ocean colour, sea ice, ocean height and tempera-
ture), and terrestrial products (fire, glaciers, ice sheets, soil moisture and
land cover) (Hollmann et al., 2013). The objective of the fire_cci project
was to improve global mapping of BA and the use of this information in
global vegetation and atmosphericmodels. This project aimed at develop-
ing burned area (BA) information from European medium resolution
sensors: (A)ATSR (Advanced Along Track Scanning Radiometer) on
board ERS (European Remote Sensing) and ENVISAT (Environmental
Satellite), VEGETATION (VGT) on board the SPOT (Satellite Pour

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2015.03.011&domain=pdf
http://www.esa-fire-cci.org/
http://dx.doi.org/10.1016/j.rse.2015.03.011
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l'Observation de la Terre) and MERIS (MEdium Resolution Imaging
Spectrometer) on board ENVISAT. Following user recommendations,
BA information should be offered at pixel level (monthly products at
full resolution: 1000 m for VGT and ATSR and 300 m for MERIS) and
grid level (fortnightly products at 0.5° cell resolution) retaining in
both cases the date of detection. Both products included a set of auxilia-
ry variables to facilitate their use by the climate modelling community
(http://www.esa-fire-cci.org/webfm_send/771 last accessedNovember
26, 2014).

Monitoring areas affected by biomass burning has been per-
formed over the last decades using a wide variety of sensors, from
very high-spatial resolution such as Ikonos for fine scales (Kachmar &
Sanchez-Azofeifa, 2006), to medium resolution sensors such as Landsat-
TM/ETM+ or SPOT-HRV for regional coverages (Bastarrika, Chuvieco, &
Martin, 2011b; Pu & Gong, 2004) and to coarse spatial resolution sensors
for continental to global studies (Chang & Song, 2009; Chuvieco et al.,
2008; Giglio et al., 2010; Roy, Boschetti, & Justice, 2008; Tansey et al.,
2008). The latter are the most relevant within the context of climate
modelling and they are commonly offered in coarser resolution grids
(0.25 to 0.5° cell).

The first attempts to globally map burned areas were based on
NOAA (National Oceanic and Atmospheric Administration)-AVHRR
(Advanced Very High Resolution Radiometer) data, mostly using
multi-temporal changes of vegetation indices (Kasischke et al., 1993),
although hybrid algorithms based on thermal and optical channels
were also developed (Fraser, Li, & Cihlar, 2000; Roy, Giglio, Kendall, &
Justice, 1999). Extensive regions were mapped from AVHRR HRPT
(High Resolution Picture Transmission) (1.1 km at nadir) temporal
series, especially in the boreal forest of Russia (Sukhinin et al., 2004)
and Canada (Fraser et al., 2000). A few studies were also undertaken
to map global BA using degraded spatial resolution AVHRR products,
such as the 8 km PAL (Pathfinder Land) or LTDR (Long Term Data
Record) series (Carmona-Moreno et al., 2005; Riaño, Ruiz, Isidoro,
Ustin, & Riaño, 2007).

More recently, other sensors with greater sensitivity for mapping
burned patches have been used to create global inventories of BA
(Table 1). The GBA2000 was produced from VGT data of the year
2000, using a set of regional algorithms based onmulti-temporal changes
in daily reflectances or spectral indices (Tansey et al., 2004). This product
was later extended to the 2000–2007 series and named L3JRC, still based
on VGT data (Tansey et al., 2008). The ESA promoted another global BA
product, named GLOBSCAR (Simon, Plummer, Fierens, Hoelzemann, &
Arino, 2004), based on day time ATSR-2 images. Later, the approaches
of these two European projects were combined within the Globcarbon
project, which produced a 1998–2007 BA product based on both ATSR
and VGT data (Plummer et al., 2007). More recently, the Copernicus
Table 1
Summary of existing BA products.

Sensor Time series Spatial
res

Type of algorithm/

MCD 45 MODIS Aqua Terra 2001–present 500 m Bi-directional reflec
MCD 64 MODIS Aqua Terra 2001–present 500 m HS and multi temp
GBA 2000 SPOT VGT 11/1999–12/2000 1 km Multi temporal cha

spectral indices (IF

GBS NOAA AVHRR 1982–1999 8 km Multi temporal cha
GLOB SCAR ERS2 ATSR2 2000 1 km K1: contextual algor

characteristics of bu
(NIR, 0.87 μm)/ther
E1: series of fixed th
four spectral channe

GLOB
CARBON

ERS2 ATSR2 SPOT VGT
ENVISAT AATSR

1998–2007 1 km Based on two GBA2
GLOBSCAR algorith

L3JRC SPOT VGT 2000–2007 1 km Temporal index,
based on GBA2000

GEO
LAND2

SPOT VGT 1999–present 1 km Temporal index an
land product services has released the Geoland BA variable, based on
SPOT-VGT. In addition to European products, MODIS (MOderate Reso-
lution Imaging Spectroradiometer) data on board the NASA (National
Aeronautics and Space Administration) Terra and Aqua satellites have
shown great potential for global mapping of BA. Currently, two MODIS
global BA products are available. The standard one, named MCD45A1,
is based on temporal differences of observed versus predicted reflec-
tance using the inversion of a bidirectional reflectance model (Roy, Jin,
Lewis, & Justice, 2005). The second one, theMCD64, is part of the Collec-
tion 5.1 Direct Broadcast products, and it is based on a hybrid algorithm
combining active fire detections andmulti-temporal changes in spectral
indices (Giglio, Loboda, Roy, Quayle, & Justice, 2009). This product is the
basis for the BA estimation included in the GFED (Global Fire Emissions
Database) (Giglio et al., 2010), widely used by climate and carbon
modellers.

All these global products have strengths and weaknesses and have
been used in a wide range of modelling efforts (Mouillot et al., 2014).
A proper validation and inter-comparison of all these products are still
to be done, although regional comparisons have already been published
(Boschetti, Eva, Brivio, & Gregoire, 2004; Roy & Boschetti, 2009). Recent
papers have shown the use of statistical design frameworks for valida-
tion of global BA products (Padilla, Stehman, & Chuvieco, 2014; Padilla
et al., 2015).

The goal of this paper is to present a global BA algorithm specifically
tailored for the ENVISAT MERIS sensor in the context of the fire_cci
project. MERIS was mainly designed for ocean colour applications, and
provides high spectral resolution (Table 2) in the range of the blue to
the near infrared regions (Gower & Borstad, 2004). The spatial resolu-
tion is 300 m in the full resolution mode (FRS) and 1200 m in the
Reduced Resolution (RR) mode. The total field of view of MERIS is
68.5° around nadir, covering a swath width of 1150 km, and yielding to
a 3 day revisit time for equatorial regions. The application of MERIS
data to fire applications is scarce: identification of smoke plumes
(Huang & Siegert, 2004) and discrimination of burn severity (Chuvieco,
De Santis, Riaño, & Halligan, 2007; Roldan-Zamarron, Merino-De-
Miguel, Gonzalez-Alonso, Garcia-Gigorro, & Cuevas, 2006). Mapping BA
with MERIS was performed only at regional level (Oliva, Martin, &
Chuvieco, 2011) using different vegetation indices, while González-
Alonso et al. (2009) combinedfire hotspots fromMODIS andnear infrared
(NIR) reflectance values fromMODIS and MERIS imagery.

MERIS presents some challenges for mapping burned areas. Spectral
and temporal resolutions are not ideal for BA discrimination, as the
sensor does not include short-wave infrared bands and global coverage
of the Earth is obtained every three days. However, the potential of
MERIS for improving current information of BA relies on its greater
spatial resolution in the FRS mode (used throughout this paper), thus
detection Reference

tance model-based change detection approach Roy et al. (2005)
oral spectral indices changes Giglio et al. (2009)
nges in daily reflectances or
I and UTL algorithms)

Ershov and Novik (2001) Silva et al.
(2003) Grégoire,
Tansey, and Silva (2003)

nge detection Carmona-Moreno et al. (2005)
ithm based on geometrical
rned pixels in the near-infrared
mal infrared (TIR, 11 μm).
resholds applied to the data from
ls.

Piccolini and Arino (2000)
Eva and Lambin (1998)

000 algorithms: IFI and UTL and two
ms: K1 and E1.

experience.
Tansey et al. (2008)

d thresholds (http://www.geoland2.eu/
last accessed November 26, 2014)

http://www.esa-fire-cci.org/webfm_send/771
http://www.geoland2.eu/


Table 2
MERIS bands characteristics.

Band Band centre (nm) Bandwidth (nm)

1 412.5 10
2 442.5 10
3 490 10
4 510 10
5 560 10
6 620 10
7 665 10
8 681.25 7.5
9 705 10
10 753.75 7.5
11 760 2.5
12 775 15
13 865 20
14 890 10
15 900 10
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potentially providing better detection of small burn patches than coarser
resolution sensors. Furthermore, this sensor has a follow up version on
the OLCI (Ocean and Land Colour Instrument) sensor, and will be
complemented with the SLSTR (Sea and Land Surface Temperature
Radiometer), both payloads on board Sentinel 3, scheduled for launch
in 2015 within the EC Copernicus programme.

2. Methods

2.1. Framework

The design of a global BA algorithm requires considering the great
diversity of biomass burning conditions worldwide. Themost extended
approaches for mapping BA can be classified in two groups: those that
use the thermal contrast of active fires (commonly named hot spots,
HSs) from the surrounding background (Giglio et al., 2006b), and
those based on reflectance changes caused by burning effects (changing
of leaf and soil colour, leaf losses, char background, etc.) (Bastarrika,
Chuvieco, & Martin, 2011a; Roy et al., 2005). The former approach is
more reliable because thermal radiance (and consequently the signal
amplification) increases exponentially with temperature, while fire-
related reflectance changes are more subtle. However, thermal signal
lasts very shortly (minutes to hours) while the fires are active, whereas
post-fire reflectance changes last much longer (days to years). In addi-
tion, BA mapping based on active fires only implies a sample of the
total area burned (what is actually burning when the satellite observes
the area), while reflectance changes are noticeable in the whole area
affected by the fire (providing the impact of fire is severe enough).

Several authors have proposed hybrid algorithms to overcome the
limitations of each approach. These algorithms commonly use HS infor-
mation either to guide the characterisation of BA statistics or to confirm
potential burned pixels. The use of thermal anomalies helps avoiding
commission errors related to reflectance changes caused by non-fire
events (such as crop harvest, seasonal flooding, or topographic shades),
which are not associated to sharp increases of temperature. This hybrid
approach was initially proposed for the AVHRR sensor (Fraser et al.,
2000; Roy et al., 1999), with partial success, as the AVHRR thermal
channel was not particularly suitable for detecting active fires. More
recently, hybrid algorithms have been used to generate the MCD64
product (Giglio et al., 2009).

Considering the spectral and temporal limitations of MERIS, it
was decided to develop the BA algorithm from a hybrid approach,
using a combination of HS information derived from MODIS data
(http://modis-fire.umd.edu/ last accessed January 27, 2015) and
temporal trends of MERIS reflectance bands. In order to consider a
proper balance between omission and commission errors, the algorithm
included two different phases (Chuvieco, Englefield, Trishchenko, & Luo,
2008). First, a seed identification phase, which aimed to minimise
commission by applying a series of criteria to determine those pixels
thatweremost likely to be burned. Second, a contextual phase, which ap-
plied region growing analysis to improve the delimitation of burned
patches. These two phase algorithms have been successfully used in pre-
vious BA studies (Bastarrika et al., 2011a; Chuvieco et al., 2008; Martín,
Gómez, & Chuvieco, 2005). The algorithm was developed and tested in
10 different study sites, whichwere selected to take into account the di-
versity of burning conditions worldwide, including different biomes
and fire regimes (Fig. 1).

2.2. Generation of corrected reflectances and spectral indices

Corrected MERIS reflectances were received from Brockmann
Consult (http://www.brockmann-consult.de/ last accessed November
26, 2014). The pre-processing chain was based on the one developed
for the Landcover CCI project, with modifications to obtain daily reflec-
tances instead ofweekly composites (as it was required by that project).
Geometric correction was obtained through the AMORGOS software
(Accurate MERIS Ortho Rectified Geo-location Operational Software,
Bourg, 2011), improving MERIS FR geolocation (RMS b 70 m). Calibra-
tion and smile correction were also performed, as well as land water
delineation, cloud screening and atmospheric correction (more details
of these processes in http://www.esa-landcover-cci.org/?q=webfm_
send/75 last accessed November 26, 2014). The surface directional
reflectances were delivered as floats between 0 and 1. In addition to
corrected reflectances, the images included a standard error associated
to each band, as well as the Sun and satellite zenith and azimuth angles.
A status layer was provided as well, with values 1 (clear land), 3
(snow/ice), or 0 (i.e. water, cloud, no observation). Output files were
gridded into tiles of 10 × 10° (3600 × 3600 pixels at MERIS FRS spatial
resolution). These tiles were the input files for all processes of our BA
algorithm.

The NIR region was selected as main input for the algorithm, since
this spectral band is highly sensitive to recent burns, as both green veg-
etation and dry vegetation have substantially higher reflectance than
recent burns in the NIR (Chuvieco, Englefield, Trishchenko and Luo,
2008; Chuvieco, Martín, & Palacios, 2002; Koutsias & Karteris, 2000;
Trigg & Flasse, 2001). In addition to the NIR band, we computed the
Global Environmental Monitoring Index (GEMI) (Pinty & Verstraete,
1992), which was proven the best performing index to detect burned
areas among the spectral indices based on the red-NIR space (Barbosa,
Grégoire, & Pereira, 1999; Chuvieco, Englefield, Trishchenko and Luo,
2008; Chuvieco et al., 2002; Martín et al., 2005; Pereira, 1999). GEMI
was computed as follows:

GEMI ¼ η 1−0:25ηð Þ− ρR−0:125ð Þ
1−ρRð Þ

η ¼
2 ρNIR

2−ρR
2

� �
þ 1:5ρNIR þ 0:5ρR

ρR þ ρNIR þ 0:5ð Þ ;

where ρNIR is the reflectance in theNIR (in our caseMERIS band 10) and
ρR is the reflectance in the red (MERIS Band 8). The selection of MERIS
bands 8 (673.75 nm to 688.75 nm), and 10 (746.25 nm to 761.25 nm),
was based on the results from Oliva et al. (2011), which showed that
short NIR bands (bands 9 to 12) had better sensitivity than long NIR
bands (bands 13 to 15) to discriminate BA (Table 2).

2.3. Temporal compositing

Temporal resolution of input data is an important aspect to consider
when building a global BA algorithm, since the analysis of post-fire
reflectance may be easily contaminated by clouds or weaken by quick
vegetation recovery. Therefore, the number of observations is a limiting
factor for detecting fires, particularly in Tropical regions, where

http://modis-fire.umd.edu/
http://www.brockmann-consult.de/
http://www.esa-landcover-cci.org/?q=webfm_send/75
http://www.esa-landcover-cci.org/?q=webfm_send/75


Fig. 1. Study and validation sites.

Fig. 2.Maximumnumber ofMERIS valid observations permonth in 2008. The areas selected
are tiles of 10 × 10° located in Canada (L03C07), Brazil (L09C20), Portugal (L05C17), and
Australia (L10C31).
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vegetation recovery is quite quick after fire. The MERIS sensor has a
temporal resolution of 3 days at the Equator. In practice, taking into ac-
count cloud contamination and potential gaps in data reception, the
temporal resolution becomes lower. Fig. 2 shows themaximumnumber
of valid observations per month in 2008 for sample study sites of
10 × 10° in different biomes.

Considering that some areas had little spatial continuity,we generated
monthly composites of NIR to fill the potential gaps in day-to-day images,
therefore improving the spatial coherence for BA detection. These com-
posites were the basis for the two phases of the algorithm.

Different compositing techniques have been proposed in previous
BA studies, most commonly maximising or minimising a certain input
band to enhance the burned signal (Chuvieco, Ventura, Martín, &
Gomez, 2005; Sousa, Pereira, & Silva, 2003). The criteria for generating
the monthly NIR-GEMI composites were chosen as to emphasise the
sensitivity of the outputs to the burned signal. Two criteria were used:
maximise the proximity to fire dates and minimise the NIR signal.
Both criteria aimed to select the most clearly burned pixel in the time
series.

Since HS provide a very accurate estimation of burning dates
(Boschetti, Roy, Justice, & Giglio, 2010), we first generated an auxiliary
file selecting for each location the closest date to the closest HS. For
doing so, a Thiessen matrix (Brassel & Reif, 1979) was created for each
temporal composite labelling each pixel with the date of the closest HS.
The Thiessen matrix was computed considering also those HS located
within a buffer of 0.5° outside the edges of each tile. This optionmitigated
potential continuity problems between tiles, when for instance a fire
occurred at the border of two tiles.

The second compositing criterion impliedminimising theNIR reflec-
tance values of the temporal series, as reflectance from a BA is expected
to have a very low NIR value. However, since low NIR values can also be
caused by other factors (cloud or topographic shadows, for instance),
instead of selecting the minimum NIR of the period, we chose the first
minimum after the date stored in the Thiessen HS file, as this would
select a more immediate value to the post-fire burn reflectance. If no
minima existed after that date, then the second minimum of the times
series was chosen. Once the most suitable date for each pixel of the
compositewas obtained, twofileswere created, onewith theNIR reflec-
tance and the other one with the GEMI index for that particular date.

Composites were built for each month by selecting images from a
bi-monthly time series (Fig. 3) to mitigate the impact of low MERIS
temporal resolution, which is especially relevant for cloudy regions
and for fires occurring at the end of the monthly period.

In addition to themonthly post-fire composites, an annual reference
composite was created for the contextual phase of the algorithm.
This annual composite maximised the GEMI value to account for
the maximum seasonal greenness of each pixel. We assumed that the
change between the annualmaximumand the post-fire value (included
in the GEMI monthly composite) should be the highest for burned
pixels, thus emphasising post-fire spectral changes.
2.4. Seed selection phase

The first part of the seed selection focused on generating statistics of
burned andunburned areas for each tile, based on themonthly composite
NIR values and on the distribution of HS in the samemonth. Since burned
conditions are very diverse worldwide, we aimed to obtain regional-



Fig. 3. Monthly composites generation based on MERIS information from two consecutive months.
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oriented NIR thresholds, based on the 10 × 10° tiles, which should be
adapted to different post-fire reflectance conditions. Cumulative distribu-
tion functions (CDFs) were created for each tile to establish regionally-
oriented thresholds of NIR values, in order to emphasise discrimination
between burned and unburned categories. Thresholds selected changed
in each tile and period, and therefore it was expected that they would
better tackle the spatial and temporal variations of BA. The 10 × 10 tiles
are the direct output from the pre-processing chain. It was decided to
keep them as input to obtain the CDFs as this division offered a
good balance between considering regional diversity and pro-
cessing time. Use of land cover maps may have been helpful,
but they would have also incorporated the inherent errors to
any land cover product. Future versions would consider including
this information in the algorithm, based on collaboration with
the landcover_cci team.

The burned pixels to obtain the CDF of BA were obtained from the
information provided by the MODIS HS. Since HS have an original reso-
lution of 1000 × 1000 m, instead of assuming that all nine MERIS pixels
covered by the HS pixel were active fires, we considered that the poten-
tial active fire (PAF) was more likely located at the minimum NIR value
of the 3 × 3window covered by the HS. To avoid commission errors, we
introduced an additional temporal change constraint, and accepted as
PAF only pixels that showed a NIR reflectance decrease in time t from
the previous period (t− 1). The CDF of the unburned categorywas gen-
erated from the values of those pixels that did not have any HS in a
64 × 64 pixel matrix and that were not detected by the BA algorithm
in the previous months.
Fig. 4. Threshold based on decile 10 of the unburned CDF for cases with worse (a) and better (b
June 2008 in L11C20 (South Africa) respectively. In a) TB for seed and growing phases remains t
TB for the growing phase corresponds to decile 9 (right arrow).
The NIR threshold value of the burned category (TB) was defined by
selecting the immediately lower decile of the burned pixels' CDF that
intersected the first decile of the unburned pixels' CDF. This criterion
implies in fact that we accepted to have as much as 10% commission
error. The omission error would be estimated by the selected decile of
the burned CDF. This omission was expected to be higher as the burned
and unburned CDFs were closer, but it should be reduced in phase 2
(contextual analysis) of the algorithm.

Fig. 4 shows two examples of the CDFs to illustrate the computation
of TB. In Fig. 4a) the CDFs of the burned and unburned classes are closer
(implying poorer separation between both categories), while in Fig. 4b)
the CDFs have better discriminability. In both cases, the criterion to
select the TB was the same, but the actual TB value changed following
the CDFs. In the former case, the TB was 0.108, corresponding to the
NIR value of the fourth decile of the burned CDF, which was the lower
close to the first decile of the unburned CDF. In the latter case, the TB
value was 0.115, corresponding to the eight decile of the burned CDF.
Therefore, the probability of omission would be lower than in the first
case. This illustrates that the more separated the CDFs between burned
and unburned categories were, the less chances of confusion. On the
opposite, the closer the CDFs the more pixel values were shared by
the burned and unburned distributions, and therefore more omission
errors should be expected. For this reason, the decile used to define
the TB was taken into account for phase 2 of the algorithm.

Once the TB was defined, pixels were considered BA seeds and
therefore used for the contextual phase of the algorithm when three
criteria were met:
) discrimination between classes, correspondent to May 2008 in tile L03C07 (Canada) and
he same (single arrow). In b) TB for the seed phase corresponds to decile 8 (left arrow) and



145I. Alonso-Canas, E. Chuvieco / Remote Sensing of Environment 163 (2015) 140–152
a) The NIR valuewas lower than the computed TB of that tile and period.
b) At least one PAF should be found in a neighbour 9 × 9 matrix;
c) The NIR value for month t should be lower than the NIR value of

month t− 1.

Fig. 5 includes a diagram that illustrates the main steps of seed and
growing phases.

2.5. Region growing phase

Contextual algorithms have been previously used for BA mapping
(Bastarrika et al., 2011b; Pu et al., 2007). The goal of these algorithms
is to reduce omission errors that may result from the seed phase,
while avoiding the increase of commission errors. One of the critical
issues to obtain a good performance of these algorithms for BAmapping
relies on obtaining a sound method to stop the region growing process
(Zhang et al., 2005). Otherwise the iterative process may create severe
overestimation.

For the MERIS BA algorithm only pixels surrounding the BA seeds
were analysed for contextual analysis. This second phase of the BA algo-
rithm included three growing conditions, which accounted for a proper
balance between reducing omission errors (by extending the incom-
plete burned patches around seed pixels), while avoiding commission
errors. Pixels around each seed were analysed recursively until they
did not meet the growing conditions, which implied the end of the
process (Fig. 5). If the criteria were met, the pixel was considered as a
new seed and also its surrounding pixels were analysed.

The first condition implied that NIR values should be below TB, but
the TBwas less strict than in phase 1 if the CDFs of burned and unburned
pixels were well separated. The criterion to increase or not the TB of the
seed phase was based on which decile was used to establish the TB.
When this value came from decile seventh or higher, the new TB was
increased to the ninth decile of the burned CDF (Fig. 4b). Otherwise it
was kept to the TB of the seed phase (Fig. 4a).

The second condition aimed to assure that the decrease in the NIR
values (DNIR) between t and t − 1 for each candidate BA pixel was
higher than the decrease observed for unburned areas.With this criterion,
we tried to avoid neighbour areas to the seeds that might have fire-
unrelated changes.
Fig. 5.Main steps of the algorithm
Finally, the third condition was based on detecting the vegetation
loss as a result of fire, based on the differences in GEMI values between
the target monthly composite and the annual GEMI composites. This
criterion was defined as 0.9 times the difference found in the GEMI
value between the target pixel and those labelled as burned (either
original or new seeds).

A final test was applied to avoid large commission errors in a few
areas with dark covers, where the region growing process did not
perform properly (specific regions of Australia, China and India, for
instance). In this case, we filtered out large polygons when the number
of burnedpixels largely exceeded the number of hotspots.We established
an empirical value of 30 times (MERIS BA pixels/HS), based on previous
findings from Hantson, Padilla, Corti, and Chuvieco (2013), who com-
pared the distribution of HS and Landsat-derived burned patches in the
same study sites used to develop this algorithm (Fig. 1).

2.6. Product assessment

Two assessmentswere performedwith theMERIS BA results. Thefirst
one was based on a set of global validation sites, and the second one was
an intercomparison with existing BA products. The methodology for the
two approaches is introduced hereafter.

A complete global and temporal validation strategy has been devel-
oped within the Fire-CCI project (http://www.esa-fire-cci.org/webfm_
send/779 last accessed November 26, 2014). The validation of the
different BAproductswas performed using a statistically selected global
sample of reference BA sites. The year 2008 was selected as the refer-
ence for validation following a CCI programmatic decision. Stratified
random sampling was used to select 105 non-overlapping Thiessen
scene areas (TSA), considering both ecosystem variation and historical
fire occurrence (Padilla et al., 2014). Reference fire perimeters were
generated by a semi-automatic BA algorithm developed by Bastarrika
et al. (2011b, 2014) applied to two multi-temporal Landsat TM/ETM+
images for each sampled TSA. The reference files followed the standard
protocol defined by the CEOS Cal-Val (http://lpvs.gsfc.nasa.gov/fire_
home.html, last accessed November 26, 2014). Whenever the input im-
ages were ETM+, only the central strip of the images was processed, to
avoid the impacts of the SLC-off gaps.

The validation metrics were derived from fuzzy error matrices to
account for the different pixel size of TM/ETM and MERIS sensors. Six
: seed and growing phases.

http://www.esa-fire-cci.org/webfm_send/779
http://www.esa-fire-cci.org/webfm_send/779
http://lpvs.gsfc.nasa.gov/fire_home.html
http://lpvs.gsfc.nasa.gov/fire_home.html
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accuracy measures were computed (overall accuracy, omission error,
commission error, Dice coefficient, bias and relative bias) to satisfy
criteria specified by end-users of burned area products. More details
on the validation strategy can be found in Padilla et al. (2014) and
Padilla et al. (2015).

The second assessmentwas based on intercomparison of spatial and
temporal trends of our results with existing global BA products available
for the same time series (2006–2008): GEOLAND-2,MCD45A1, andGFED
v4. GEOLAND-2 was selected as representative of BA products based on
European sensors, since the precursors (L3JRC and GlobCarbon) were
not available for 2008, the key year for global validation. The two
MODIS-based BA products (MCD45 and GFED v4) are currently the
most broadly used in modelling studies (Mouillot et al., 2014).

2.7. Uncertainty

Uncertainty characterisation of the fire_cci products was based on a
sample of study sites from 2006 to 2008 not used in the validation. A
total of 23 pairs of Landsat TM/ETM+ images were processed to gener-
ate these reference fire perimeters. For theMERIS pixel product (300m),
uncertainty was estimated in probabilistic terms (% confidence), based
on regression analysis using as inputs the confidence level of the
classification, the number of neighbour burned pixels, and the land
cover. For the grid product, similar models were used, and the output
was expressed as a standard error of the total burned area for each
grid cell, following approaches of existing products (Giglio et al.,
2010). Further details of the procedure can be found in the fire_cci pro-
ject documentation (https://www.esa-fire-cci.org/webfm_send/791
last accessed November 26, 2014)

3. Results

3.1. Spatial and temporal trends

Three years of MERIS data (2006 to 2008) were processed with our
algorithm. Total BA obtained with the MERIS algorithm ranges from
3.6 to 3.8 million km2. In terms of spatial variability, Fig. 6 shows
the gridded burned area obtained for 2008. Themost extensive burn-
ings occurred in the Tropical regions, particularly in the African con-
tinent, followed by the Northern regions of Australia, Central Brazil,
Venezuelan and Colombian Llanos, and SE Asia. A second belt of burned
regions is noticeable in the temperate grasslands and croplands of
central Asia, and SE USA. The boreal forests of Russia and Canada have
also a substantial role in global biomass burnings. Similar trends were
obtained for 2006 and 2007.

The basic information used to compute BAwas the date of detection,
which showed seasonal trends of fire activity, with predominant
January–March fires in the Northern Tropical belt, July–September in
the Southern Tropical fringe, Northern Boreal and Temperate Regions
of America and Eurasia. Fig. 7 includes the Julian dates of burn in
Africa for 2008. The seasonal trends can be clearly identified for this
case, with the fire peaks associated to the central months of the dry
season.

Fig. 8 shows the estimation of uncertainty values for the same area,
with a spatial variation associated mainly to the omission error, related
to the availability of input images, with lower values for cloudy regions.

3.2. Validation

Table 3 shows the results of the validation metrics computed from
the 105 global validation sites. They were divided in two subsamples,
based on the proportion of burned area. The vast majority (100) had
less than 10% of burned area, while only a few had more than that
threshold. Overall accuracy was high in both cases (N87%), but BA accu-
racy was lower. Omission and commission errors were higher for those
areas with very low burned area proportion than for those with more
fire occurrence. The Dice coefficient (DC), which combines the omission
and commission errors, was also higher for the sites with more BA pro-
portion (0.48). Error balance (over and underestimation)was close to 0
for areas with larger BA, but showed underestimation for the overall
sample and those areaswithminor BA. In relative terms (relB) the over-
all sample showed BA underestimation by 34%.

Comparison with existing BA products showed that MERIS BA
results have similar overall accuracy than the two MODIS BA prod-
ucts (MCD45 and MCD64) (OA N 0.99), but it showed significantly
higher commission and omission errors than MCD64 (CE = 0.42;
OE = 0.68), and higher commission error than MCD45 (CE = 0.46;
OE=0.72) (Padilla et al., 2015). The errors foundwith theMERIS prod-
uct were significantly lower than the ones from existing European BA
products. In terms of error balance, the estimations showed different
trends for areas with very small BA and for those with higher BA pro-
portion, but an overall trend towards underestimation was observed.
The relative balance of errors showed better results than MCD64 and
MCD45 with a 34% of underestimation for MERIS, versus 44% for
MCD64 and 48% for MCD45 (Padilla et al., 2015).

3.3. Intercomparison with existing products

Table 4 includes total BA estimations from theMERIS BA product and
from the MODIS-based (MCD45 and MCD64) products for the three
years when global outputs were available. GFED v4 is derived from
the MCD64A1 product aggregated to 0.25° spatial resolution for the
period 2000–present. Prior to 2000, GFED BA estimates are obtained by
calibrating active fire data from the Tropical Rainfall Measuring Mission
(TRMM), Visible and Infrared Scanner (VIRS) and Along-Track Scanning
Radiometer (ATSR) with the MCD64A1. MERIS BA estimates are 3 to 9%
higher than GFED v4 and 7–9% higher than MCD45.

In terms of spatial distribution of BA Fig. 9 illustrates the GFED v4,
MCD45, GEOLAND2 and MERIS_CCI BA products in 2008 separated by
ecoregion (following the geographical ecoregions defined by Giglio,
van derWerf, Randerson, Collatz, & Kasibhatla, 2006). The vastmajority
of BA occurred in the two African hemispheres (NHAF, SHAF, summing
both 70% of total), followed by far by Australia, Central Asia, South
America and Boreal Asia. For nine regions (CEAM, EQAS, EURO, MIDE,
NHAF, SEAS, SHAF, SHSA, and TENA) MERIS estimates were higher or
in the sameorder as theGFED v4 andMCD45 ones. GEOLAND2 reported
higher values in boreal and temperate regions (BOAS, BONA, CEAS and
TENA) and significantly lower in Tropical areas (NHAF and SHAF). Overall,
a high level of agreement was found between MERIS, GFED v4 and
MCD45 (r2 N 0.99).

When looking at seasonal trends, a high level of agreement was also
found betweenMERIS and existing BAproducts. Fig. 10 includesmonthly
estimations by MERIS and GFED v4 of global BA from 2006 to 2008.
According to the figure, the trend between products was consistent in
terms of magnitude through the temporal series. GFED v4 underesti-
mates when compared to MERIS, except for October, November 2006
and July and August 2007 and 2008.

4. Discussion

This paper presents the first global algorithm to detect burned areas
from MERIS ENVISAT imagery. Even though the sensor's temporal and
spectral characteristics are not optimal for BA detection, we have
shown that MERIS images complementedwith HS information can pro-
vide reliable estimations of BA. Certainly, MERIS is no longer available
(as ENVISAT mission ended in 2012). However, a long time series
(2003 to 2012) could be computed from this algorithm, thus providing
a complementary view on the existing knowledge of BA trends. In addi-
tion, the future ESA Sentinel-3 satellite (to be launched in 2015) will in-
clude a similar sensor (OLCI), which could benefit fromour algorithm to
build a semi-operational BA product. As this satellite will also incorporate
a thermal sensor (the SLSTR), with active fire detection capabilities, the

https://www.esa-fire-cci.org/webfm_send/791
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Fig. 7.MERIS burn detection dates for Africa in 2008.
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methods presented in this paper could be implementedwithout the need
of using data from other satellites. On the other hand, our hybrid ap-
proach can also be useful for other sensors that are constrained to the
red-near infrared space, as it is the case of the higher spatial resolution
(250 m) bands of MODIS.

Since our algorithm relies onMODISHS andMERIS reflectance infor-
mation, the results cannot be considered fully independent fromMODIS
products, particularly from MCD64, which uses a hybrid approach as
well. However, the structure of the algorithm is quite different from
Giglio et al. (2009), and it is built on the particular spectral space detect-
ed by theMERIS sensor. Spatial variations between our results andGFED
v4 for instance, show that HS input does not fully determine the output
results.

Our hybrid approach takes advantage from both the more sensitive
thermal characterisation of active fires and the more permanent reflec-
tance changes of burned patches. HS information helped establishing
regional thresholds for BA discrimination, while mitigating potential
commission errors. However, the use of HS also implies a certain contri-
bution to overall BA error (not yet fully assessed in our results). HSs
have proven very reliable to detect activefires,with very low commission
error, but they are not frequent or sensitive enough to detect all active
fires, and therefore omission errors are higher (Csiszar, Denis, Giglio,
Justice, & Hewson, 2005; Giglio, Csiszar, & Justice, 2006; Hantson et al.,
2013). Alternative criteria based on change detection techniques to
complement HS informationwere considered in our project, particular-
ly in those regions where omissions are more relevant, but could not
finally be implemented due to the low temporal frequency of MERIS ac-
quisitions (Fig. 2). This omission error inherent to HS is also included in
other BA products based on HS (such as the GFED-MCD64). An im-
proved seed procedure with very clear fire-related reflectance changes
may be included in future versions, ensuring also more independency
from the thermal information. However, additional research is needed
to build more robust time series from MERIS reflectance data. This
could be achieved also from its successor, the OLCI on board Sentinel
3, since temporal coverage will improve (revisit time will be 2.2 days
with one satellite and 1.1 day when both satellites are launched).

The two assessment exercises presented in this paper confirmed
that MERIS algorithm provided acceptable results. When estimating
total BA in the statistically designed validation sample, MERIS provided
lower but comparable accuracy metric values to the MODIS-based BA
products (MCD45 and MCD64). Overall accuracy showed very high
values (OA N 0.95), but the product showed higher commission errors
(CE = 0.64) than MCD64 and MCD45 and similar omission errors
(OE=0.76) to theMCD45. The relative balance of errors showed better
results than MCD64 and MCD45 with a 34% of underestimation. Errors
were lower for the areas with higher proportion of burned area
(OE = 0.51 and CE = 0.52; Table 3). MERIS errors were significantly
lower than the ones obtained with other European BA products
(Padilla et al., 2015).

These estimations of errors may be considered pessimistic, as some
of these errors are in fact caused by the low temporal frequency of the
MERIS sensor. We computed the temporal reporting accuracy of our re-
sults by obtaining the difference betweenMERIS BA detection dates and
HSdates.We observed that 50% of theMERIS detections occurredwith a
difference of 4 to 22 days from the HS in four test sites (N250,000 km2)
located in Tropical (Australia), Temperate (California and the Iberian
Peninsula) and Boreal (Canada) ecosystems, reaching up to 9–30 days
when the threshold was increased to 75%. The temporal accuracy was
therefore lower than the values obtained globally by Boschetti et al.
(2010) for the MCD45 product (50% within one day and 75% within
four days). The low MERIS reporting accuracy increases the likelihood
of omission and commission errors, particularly when the two Landsat



Fig. 8. Uncertainty relative to MERIS BA estimates for Africa in 2008.
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images used to obtain the reference perimeters were close in time (as it
was the case of Tropical ecosystems where most validation pairs of im-
ageswere separated by 32 days or less). In fact, when comparing our re-
sults for 2008 with existing fire perimeters in the four test sites where
temporal accuracy was tested (Australia, California, Iberian Peninsula
and Canada), we found that both commission and omission errors de-
creased to 0.47 and 0.15 respectively. This reduction of detection errors
compared to the Landsat validation sample should be related to the lon-
ger period included in the test sites (which covers the full year), when
dating errors are expected to affectmarginally the accuracy estimations.

Our results showed similar estimations to existing BA products, both
in terms of total BA values, and geographical distribution, with better
estimations (according to validation results) than existing European
BA products, particularly in Tropical regions. Further comparison of
theMERIS results with GFED v4, one of themostwidely used by climate
modellers, showed similar temporal trends for the 3 years processed.
Global estimations were 3 to 9% higher than GFED v4 for the three
years computed, while geographical and monthly trends showed high
correlation values.

However, our MERIS results still show some detection problems,
particularly in temperate regions, where fires are unusual and com-
mission errors were found by misclassification with agricultural
areas. In Tropical regions, omissions were higher, which may be
Table 3
Estimated accuracy metrics for MERIS BA.

OA DC Ce Oe B relB Burned area proportion

0.9581 0.312 0.597 0.745 −0.0137 −0.3657 b0.1
0.879 0.486 0.517 0.510 0.0018 0.0157 N0.1
0.996 0.290 0.640 0.760 −0.12 −0.34 All
caused by the errors associated to the HS detections, becoming
more relevant in areas with small fires (Hantson et al., 2013). In ad-
dition, the conditions for contextual analysis should be reviewed for
future versions of the algorithm, particularly in relation to fragmen-
tation of fires and in cloudy areas that caused temporal gaps in the
MERIS time series.
5. Conclusions

A hybrid algorithm to estimate burned areas on a global scale
from MERIS reflectance and MODIS HS time series was developed
within the framework of the Climate Change Initiative of the
European Space Agency. This algorithm makes use of thermal, NIR and
visible information to detect burned pixels. It is based on a two-step
process: seed and growing phases. Results were obtained for three
years of data, estimating a total BA from 3.6 to 3.8 million km2. Patterns
of fire activity were also identified (African Tropical regions, Northern
regions of Australia, Central Brazil, Central and South East Asia, Russia,
Canada and South East USA) as well as seasonal trends. MERIS BA esti-
mates showed similar although lower accuracy than existing MODIS
BA products, based on a validation dataset produced from multi-
temporal Landsat images. Some of the observed errors were related
Table 4
GFED v4, MCD45 and MERIS BA in km2 for years 2006 to 2008.

GFED v4 MCD45 MERIS_CCI

2006 3,417,863 3,374,125 3,652,355
2007 3,644,122 3,523,728 3,773,855
2008 3,307,377 3,308,200 3,624,146



Fig. 9. BA 2008 estimations for MCD45, GFED v4, GEOLAND2 andMERIS_CCI for the 14 ecoregions defined in Giglio, van derWerf, Randerson, Collatz and Kasibhatla (2006) (BONA= Boreal
North America, TENA= Temperate North America, CEAM= Central America, NHSA= Northern Hemisphere South America, SHSA Southern Hemisphere South America, EURO = Europe,
MIDE=Middle East Africa, NHAF=Northern Hemisphere Africa, SHAF= Southern Hemisphere Africa, BOAS= Boreal Asia, CEAS= Central Asia, SEAS= Southeast Asia, EQAS= Equatorial
Asia, AUST = Australia).
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to temporal reporting problems associated to the MERIS coverage
frequency.

This algorithmwill be the basis for computing a full BA time series for
the second phase of the fire_cci project (2003 to 2012), while preparing
the upcoming generations of the European Space Agency burned area
products, particularly those based on Sentinel-3 OLCI-SLSTR sensors.
The availability of alternative BA time series would complement existing
BA products, providing more robust estimations and improvements
in the uncertainty characterisation of BA inputs for climate models
(Mouillot et al., 2014). On the other hand, different BA products can
provide diverse regional accuracies and therefore, merging outputs
from global synthesis may greatly improve how BA trends are currently
characterised.
Fig. 10.Monthly global BA in 2006 to
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RESUMEN 

 

En este artículo se presentan los avances recientes en el desarrollo de un 

algoritmo para cartografiar área quemada a partir de imágenes MERIS. El trabajo se ha 

desarrollado en el ámbito del programa de cambio climático de la ESA. El análisis de 

resultados de la primera versión del algoritmo condujo a implementar una serie de tests 

para mejorar la configuración. Se probaron estos tests en 4 zonas: Australia, Canadá, 

California y Península Ibérica, cubriendo un área total de 2.500.000 km2. Los resultados 

obtenidos para los distintos tests se compararon con los perímetros de área quemada 

generados por los gestores de incendios en cada zona, identificando mejoras 

sustanciales respecto a la primera versión del algoritmo. Para el año 2008, se obtuvo 

una fiabilidad global de 0,982 (frente al 0,975 de la versión anterior). Esta nueva 

versión del algoritmo se utilizará para procesar la serie completa de datos MERIS 

(2002-2012).  

 

                                                        
1 Alonso-Canas, I. y Chuvieco, E. (2015): “Desarrollo de un algoritmo de área quemada para imágenes del 
sensor ENVISAT-MERIS”, Geofocus (Artículos), en revisión.  
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DEVELOPMENT OF A GLOBAL BURNED AREA ALGORITHM FROM ENVISAT-MERIS 

IMAGERY 

 

ABSTRACT 

In this paper we present the recent developments of an algorithm to detect 

burned areas from MERIS imagery. This work has been developed in the framework of 

ESA’s climate change initiative. The analysis of the results obtained in the first phase led 

to the implementation of a series of tests to improve the algorithm configuration. The 

tests were applied to 4 areas: Australia, Canada, California and Iberian Peninsula, 

covering an area of 2.500.000 km2. The results obtained for the different tests were 

compared to burned area perimeters generated by fire managers in each area. 

Improvements compared to the first version of the algorithm were identified. For 2008, 

an overall accuracy of 0.982 was obtained (compared to the 0.975 from the previous 

version). This new version of the algorithm will be used to process the complete MERIS 

archive (2002-2012).  

 

Keywords: burned area, MERIS, fires, biomass burning. 

 

1. Introducción.  

 

1.1. Contexto. 

 

La necesidad de conocer los efectos que los incendios tienen tanto a nivel regional 

como global, así como a las pérdidas económicas y el riesgo de pérdida de vidas 

humanas que conlleva, supone que este fenómeno sea objeto de un creciente interés por 

parte de la comunidad científica (Bowman et al 2009). Por otro lado, se observa que la 

interacción entre clima e incendios es cada vez mayor (Kloster et al 2012). Los cambios 

en el clima tienen el potencial de influir en los regímenes de incendios, principalmente a 

través de los cambios en el régimen térmico y en las precipitaciones, que afectan no solo 

a la extensión de la estación de incendios, sino que también aumentan su severidad y 

extensión (Daniau et al 2012, Krawchuck et al 2009). Por otro lado, a su vez estos 
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incendios contribuirán a un mayor calentamiento global, debido a la emisión de gases 

de efecto invernadero (Van der Werf et al 2010), así como a la modificación de uso de 

suelo que puede darse a raíz de estos eventos.  A su vez, los aerosoles emitidos pueden 

contribuir de forma negativa en el balance radiativo.  

 

Para poder evaluar estos efectos es necesaria una adecuada caracterización de los 

incendios así como de la superficie quemada (Mouillot et al 2014). La obtención de 

registros de área quemada (AQ) a escala global mediante sensores de baja resolución 

para largos períodos de tiempo es el objetivo principal del proyecto fire_cci  que se 

engloba dentro de la Iniciativa de Cambio Climático (Climate Change Initiative - CCI) de 

la Agencia Espacial Europea. El objetivo de esta iniciativa es responder a una serie de 

requisitos expresados por GCOS (Global Climate Observing System), que identifica 

algunas variables como climáticas esenciales (ECV). De las que lista GCOS, la ESA 

(European Space Agency) ha seleccionado para este programa 13 variables, afectando al 

océano, la atmósfera y las tierras emergidas (Hollman et al 2013). Cada una de esas 

variables, se aborda por un proyecto en el que participan expertos en observación de la 

Tierra, junto a modeladores del clima.  

 

En este contexto, el proyecto fire_cci se orienta a cartografiar área quemada a 

escala global para una serie larga de años. También se incluye el pre-proceso de los 

datos, la validación de los resultados y la integración de los mismos en modelos de 

emisiones y dinámica global de la vegetación. En el marco del proyecto fire_cci, nuestro 

grupo ha desarrollado el algoritmo para la detección de AQ a partir de imágenes del 

sensor ENVISAT-MERIS, que es el objeto principal de este artículo. 

 

1.2. Productos de área quemada. 

 

La obtención de productos de área quemada se realiza desde principios de los 

años 90, utilizando para ello imágenes del sensor AVHRR a bordo de uno de los satélites 

NOAA (Kasischke et al 1993).  Para realizar la detección se empleaban principalmente 

cambios multi-temporales de índices espectrales. También en este periodo se 

desarrollaron algoritmos que utilizaban la información de los canales térmico y óptico 

(Fraser et al 2000, Roy et al 1999). 
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Actualmente existen varias iniciativas que buscan obtener productos de este tipo, 

tanto a escala global como regional. Por lo que respecta a la escala global, cabe destacar 

los productos MCD45 (Roy et al 2005a) y MCD64 (Giglio et al 2009), que utilizan datos 

provenientes del sensor MODIS. El producto MCD45 se basa en la detección de 

diferencias temporales observadas respecto a las predichas mediante un modelo de 

reflectancia bidireccional. El MCD64 se basa en un algoritmo que combina las 

detecciones de incendios activos con cambios multi-temporales en índices espectrales. 

Además de estos dos productos  de área quemada, se han elaborado otros proyectos en 

la misma línea, como los generados a partir del sensor SPOT-VGT. El primero se 

denominó GBA2000 (Tansey et al 2004), que estimaba el AQ mediante una serie de 

algoritmos regionales basados en cambios multi-temporales en la reflectividad o en 

índices espectrales. Como continuación de este producto se generó el L3JRC (Tansey et 

al 2008) que extendió la serie temporal para los años 2000 a 2007. Además, dentro de 

un proyecto ESA, se creó el producto GLOBSCAR (Eva y Lambin 1998, Piccolini y Arino 

2000) basándose en los datos del sensor ATSR-2. Posteriormente, el proyecto 

GlobCarbon (Plummer et al 2007), también de la ESA, combinó los algoritmos 

desarrollados para VGT y ATSR para crear un producto de AQ que cubriese el periodo 

1998 a 2007 basado en datos de VGT y ATSR-2.  

 

El producto fire_cci continúa esta línea de la ESA, pero en este caso los datos de 

partida se adquirieron por el sensor MERIS (Medium Resolution Imaging 

Spectrometer), a bordo del satélite ENVISAT (Environmental Satellite), con mejor 

resolución espacial (300 m) que los anteriores productos de la ESA. El presente trabajo 

se basa en los datos de este sensor.  

 

1.3. Técnicas para detección de área quemada. 

 

De forma general la detección de AQ puede realizarse basándose en dos medidas: 

en la primera se tiene en cuenta el contraste térmico producido por los incendios 

activos, mientras que en la segunda se consideran los cambios en la reflectividad 

producidos por el fuego. Estas técnicas se pueden combinar dando lugar a los 

algoritmos híbridos que permiten aunar las ventajas de estas dos técnicas, es decir un 
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mayor cambio detectable en el térmico y una permanencia en el tiempo detectable en la 

reflectividad, además de la posibilidad de obtener superficies quemadas completas, 

mientras que con el contraste térmico solo se conoce la situación del fuego en el 

momento en que se adquiere la imagen.  

 

Una metodología bastante habitual a la hora de crear algoritmos de AQ se basa en 

la combinación de dos fases: semillado y crecimiento (Bastarrika et al 2011, Chuvieco et 

al 2008). El objetivo de estas dos fases es en primer lugar obtener píxeles semilla en los 

que la probabilidad de quemado es muy alta y después crecer alrededor de estos píxeles 

semilla. Posteriormente, se aplica un crecimiento alrededor de estos píxeles semilla, 

verificando las condiciones de los píxeles vecinos. Otras formas de detección de AQ 

pueden basarse en detección de objetos y segmentación, redes neuronales o SVM 

(Support Vector Machine). 

 

1.4. Algoritmos de área quemada para el sensor MERIS. 

 

MERIS es un espectrómetro programable con 15 bandas que cubren el rango de 

los 390 a los 1040 nm. Se instaló a bordo del satélite ENVISAT de la ESA, lanzado en 

2002 y operativo hasta 2012. Se trata de un equipo de exploración por empuje (push-

broom), que observa la superficie terrestre con un ángulo de visión de ±34.2 grados 

alrededor de nadir, cubriendo una franja de 1150 km y con una resolución espacial de 

300m en el nadir en el modo de resolución completa (FR - full resolution) y de 1200 

metros en el modo de resolución reducida (RR - reduced resolution). 

 

El sensor MERIS se había empleado para algunos estudios de área quemada, pero 

únicamente a escala regional utilizando distintos índices de vegetación (Oliva et al 

2011), o mediante la combinación del producto HotSpot (HS) de MODIS con imágenes 

MERIS y MODIS (González-Alonso et al 2009b).  Para todo el planeta, el primer producto 

generado es el que formó parte del proyecto fire_cci (Alonso-Canas y Chuvieco 2015). 

Este algoritmo puede clasificarse dentro de la categoría de  algoritmo híbrido,  ya que 

combina la información obtenida del contraste térmico (proporcionada por el producto 

MODIS HS) y de los cambios temporales en las reflectividades de los datos MERIS. Para 

mejorar la estabilidad temporal y espacial de los datos se decidió crear compuestos 
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mensuales de infrarrojo cercano (NIR) y GEMI (Pinty y Verstraete 1992). Estos 

compuestos se basaron en una matriz de Thiessen (Brassel y Reif 1979) en la que cada 

píxel se etiquetó con la fecha del HS más cercano. El algoritmo consta de dos fases: 

semillado y crecimiento. En la primera fase, se identificaron los píxeles semilla, es decir 

los puntos más claramente clasificables como quemados. Para ello se obtuvieron curvas 

de quemado y no quemado, mediante estadísticas locales (basadas en regiones de 

10x10 grados) obtenidas de forma mensual. Estas curvas permitieron definir un umbral 

de quemado, en el que los píxeles con NIR inferior a este umbral se consideraron 

posibles semillas. Además de presentar un NIR por debajo del valor umbral, los píxeles 

analizados debían mostrar una caída en el NIR respecto al mes anterior y tener al menos 

un HS a una distancia menor de 5 píxeles para ser clasificados como semillas. Si los 

píxeles cumplían los 3 criterios se clasificaban como semilla. A partir de ellos se realizó 

el crecimiento de regiones, analizando los píxeles vecinos a estas semillas de forma 

recursiva. En esta segunda fase se aplicaron de nuevo 3 condiciones. En primer lugar el 

NIR del píxel examinado debía ser menor que un umbral (más relajado que el de la 

primera fase). En segundo lugar debía existir una caída respecto al mes anterior. En 

tercer lugar, tras obtener la diferencia entre el GEMI mensual y la referencia de GEMI 

del máximo anual, se examinó si esta diferencia era de al menos 0.9 veces la diferencia 

encontrada en el píxel semilla. Los píxeles que cumplieron estas tres condiciones se 

clasificaron como quemados, y se comprobó de nuevo si los píxeles inmediatamente 

vecinos a estos cumplían los criterios a su vez. La descripción completa de estos pasos 

puede verse en Alonso-Canas  y Chuvieco (2015). 

 

El algoritmo descrito se utilizó para generar un producto global de área quemada 

para el periodo 2006 a 2008. Se obtuvieron estimaciones de área quemada que varían 

entre 3.6 y 3.8 millones de km2. Los patrones espaciales y de estacionalidad son 

consistentes entre estos 3 años y con otros productos de área quemada. La comparación 

con los tres años de datos derivados de GFED mostró una gran correlación entre este 

producto y el obtenido mediante el algoritmo MERIS. Los resultados de validación, 

obtenidos a partir de más de 100 pares de imágenes Landsat (Padilla et al 2015) 

indicaron una fiabilidad global mayor de 0.95. Los errores de omisión y comisión 

(OE,CE) fueron menores para las zonas con mayor proporción de área quemada (OE = 

0.51, CE  = 0.52) siendo algo mayores en zonas con muy baja proporción de área 
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quemada (OE=0.74, CE = 0.60). Agrupando estos dos resultados se obtuvo una fiabilidad 

del 0.996, un error de comisión de 0.64 y un error de omisión de 0.76.  

 

Una de las limitaciones principales del sensor MERIS para este tipo de estudios es 

su resolución temporal, particularmente cuando se trabaja con la versión alta 

resolución.  A modo de ejemplo en la figura 1 se muestran las observaciones válidas 

anuales que se obtienen para las 4 zonas de interés. Se puede observar que en latitudes 

altas el número de observaciones puede no sobrepasar las 30 imágenes por año. 

También el número de observaciones válidas será menor en zonas con alta cobertura 

nubosa.  

 

 

Figura 1. Número de imágenes válidas en el 2008 para 4 zonas de interés: Canadá, Australia, 

California y Península Ibérica. 

 

MERIS presenta una serie de bandas estrechas en el NIR, útiles para la detección 

de áreas quemadas. Sin embargo, otras bandas útiles como puede ser el SWIR el TIR no 

están presentes en este sensor, lo que puede dificultar la capacidad de detección en 

determinadas regiones.  

 

Además, las series temporales presentaban una variabilidad. Esto puede dar lugar 

a errores de comisión u omisión. Un ejemplo de la variabilidad de estas series se puede 

ver en la figura 2. En ella vemos las bandas 10 y 8 de MERIS para un píxel de Angola en 

el año 2008. Se resalta también la fecha de posible quemado indicada por el HS en rojo. 

Obs.	
válidas	

Agua	
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Se puede ver como en el primer caso el ruido no afecta a la detección mientras que en el 

segundo estaríamos frente a un posible error de omisión, además de presentar una 

caída en el NIR en el día 90 mucho mayor que la presentada en la fecha del posible 

incendio.  

 

 

Figura 2. Evolución temporal de la reflectividad para las Bandas 8 y 10 del MERIS en dos píxeles 

quemados en Angola (datos de 2008) 

.  

El algoritmo fue diseñado para minimizar estos efectos, así como posibles 

confusiones con sombras de nubes, con regiones con suelos oscuros o que pudiesen 

sufrir inundaciones. 

 

2. Objetivos.  

 

En el estudio presentado en este artículo se buscó analizar en detalle a que se 

debían los errores de omisión y comisión en relación con las fases de la primera versión 

global del algoritmo de áreas quemadas para datos MERIS, así como mejorar estos 

resultados incluyendo modificaciones en ambas fases, dando lugar a la segunda versión 

del algoritmo. Se pretendía reducir los errores de omisión y comisión encontrados en 

los resultados de la primera versión. Para ello, se analizaron las dos fases del algoritmo 

teniendo en cuenta las técnicas utilizadas (formación del compuesto, condiciones en las 
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semillas, condiciones de crecimiento). De cara a abordar este problema, se realizó una 

comparación en áreas más extensas que las utilizadas en la validación en las que se 

pretendía comparar los resultados de MERIS de forma anual. Este ejercicio buscaba 

complementar la validación realizada con las imágenes Landsat ya que los perímetros 

derivados de estas imágenes solo permitían obtener resultados para las fechas de estas 

imágenes, pudiendo inducir a errores de omisión y comisión que en realidad estaban 

relacionados con el fechado, y no con la detección en si.  Por esta razón, se seleccionaron 

cuatro zonas de comparación: Australia, Canadá, California y Península Ibérica (figura 

3), donde existían perímetros de áreas quemadas obtenidos por autoridades locales.  

 

Figura 3. Localización de las 4 zonas seleccionadas para la comparación del producto MERIS con 

perímetros de incendios. 

 

3. Metodología. 

 

3.1. Problemas detectados en la primera versión del algoritmo MERIS. 

 

En relación con los resultados obtenidos mediante la validación (Padilla et al 

2015) se observó como la versión 1 del algoritmo de MERIS tenía tendencia a la 

subestimación de las áreas quemadas. También a partir de la comparación de 

perímetros (tabla 1 en la sección de resultados) se pudo ver que para los tres años de 

datos analizados, en tres de las cuatro zonas de interés los errores de omisión 

superaban a los de comisión. Esto se debe principalmente a dos motivos: por un lado un 

número de incendios no estaba siendo detectado en la fase de semillado y por otro lado 
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las condiciones de crecimiento eran demasiado estrictas no llegando a identificar la 

totalidad de la mancha de quemado y dando lugar a incendios fragmentados. Un 

ejemplo de fragmentación de incendio en California se puede ver en la figura 4. 

 

 

Figura 4. Fragmentación de incendio en la zona de estudio de California. A la izquierda el producto 

de AQ de MERIS para el año 2008, con una ampliación del incendio principal. A la derecha los 

perímetros de CALFIRE con una ampliación del mismo incendio. 

 

Además, el crecimiento se veía dificultado por la presencia de estructuras 

geométricas en el compuesto, derivadas de la matriz de Thiessen y de la agrupación de 

las distintas imágenes en la formación del compuesto. Un ejemplo de estas estructuras 

geométricas puede verse en la figura 5.  

 

 

Figura 5. A la izquierda matriz de fechado (día Juliano) para Australia en enero de 2008. Esta 

matriz se obtiene mediante las imágenes MERIS, y se basa en la matriz de Thiessen obtenida 

mediante los HS. A la derecha compuesto NIR asociado a la matriz de fechado. En rojo se resalta la 

presencia de estructuras geométricas en ambos compuestos. 
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Para mejorar los resultados obtenidos con la primera versión del algoritmo se 

buscaba aumentar la detección de píxeles quemados, tanto en la fase de semillado como 

en la de crecimiento. Para ello, se realizaron modificaciones sobre las condiciones 

generales en la forma de generar las semillas y el crecimiento, estudiando el impacto de 

estas variaciones sobre la detección.  

 

3.2. Áreas de validación preliminar. 

 

Las distintas pruebas realizadas sobre el algoritmo MERIS se aplicaron a cuatro 

zonas de estudio en las que se realizó una comparación frente a una serie de perímetros 

de referencia  disponibles, y que además cubrían distintos tipos de ecosistemas (boreal, 

templado y tropical) (figura 3). Se consideraron zonas mucho más amplias  (> 2.500.000 

km2 frente a los < 34.000 km2 de las escenas Landsat), lo que permitió realizar un mejor 

análisis de las zonas en las que el área quemada era grande. Además en este caso se 

compararon los productos de AQ para todo el año, pudiendo así hacer frente a algunos 

problemas derivados de las zonas Landsat de validación, que únicamente tienen en 

cuenta períodos cortos de tiempo. Las fuentes de las que se obtuvieron los perímetros 

de área quemada se detallan a continuación:   

 

- Canadá: Los perímetros se obtuvieron del sistema de Incendios Canadiense. Este 

sistema incluye los incendios de la base de datos de incendios nacionales 

canadienses (Canadian National Fire Database (CNFDB)). Es una colección que 

agrupa datos provenientes de distintas agencias de gestión de incendios 

Canadienses (provincias, territorios y Parks Canada). De esta base de datos se 

seleccionó una región de 1.150.000 km² cubriendo los bosques boreales de 

Alberta y Saskatchewan.  

 

- Australia: se seleccionó una región situada al norte de Australia para realizar la 

comparación de perímetros. Estos se descargaron de la base de datos de 

incendios del Norte de Australia (North Australian Fire Information database 

(NAFI)). La zona seleccionada cubre 750,000 km² y está cubierta principalmente 

por sabana y bosque tropical. Los perímetros de AQ de NAFI fueron procesados 

por el Centro de investigación de la Universidad Charles Darwin. Estos 
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perímetros se obtuvieron mediante comparación multi-temporal de imágenes 

MODIS a 250m, utilizando segmentación e interpretación visual.  

 

- California: los perímetros para esta región se obtuvieron del Fire and Resource 

Assessment programme (FRAP). La región de validación es de 150.000 km2 

incluyendo California y los estados vecinos.  

 

- Península Ibérica: los perímetros se obtuvieron del sistema europeo de 

información de incendios forestales (European Forest Fire Information System 

(EFFIS)). EFFIS utiliza también imágenes MODIS para obtener los perímetros de 

AQ. La región utilizada incluye parte de la península ibérica, cubriendo un área 

de 500,000 km2.  

 

Estas zonas pueden considerarse idóneas para una primera evaluación de la 

calidad de la detección del área quemada, al cubrir un periodo anual completo, de zonas 

bastante grandes, y en cuatro ecosistemas bastante impactados por el fuego. No 

obstante, la comparación de nuestros resultados con esta información de referencia no 

puede considerarse como una validación estricta, ya que se trata de una muestra 

seleccionada sin criterios estadísticos, y los perímetros proceden de distintas 

metodologías. En cualquier caso, puede considerarse como una comparación 

preliminar, en la línea del análisis de otros autores trabajando con algoritmos globales 

(Chang y Song 2009, González-Alonso y Merino-de-Miguel 2009a, Pu et al 2007, Giglio et 

al 2003, Roy y Boschetti 2009). Los datos facilitados por estas cuatro bases de datos 

fueron proyectados a coordenadas geográficas, para así poder compararlos con los 

datos de AQ del producto MERIS. 

 

3.3. Mejoras propuestas a raíz del análisis de resultados. 

 

3.3.1. Mejoras en el semillado. 

 

Se consideró que una buena forma de abordar el problema consistía en aumentar 

el número de perímetros detectados en esta fase sin que esto modificase de forma 

sustancial los errores de comisión al aplicar las condiciones de crecimiento de regiones. 
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Para evaluar como afectaban las modificaciones introducidas al rendimiento del 

algoritmo se decidió evaluar cuantos perímetros se detectaban en cada uno de los casos 

evaluados. Para ello se realizó una clasificación de los incendios en función del tamaño 

(<100ha, entre 100 y 1000ha, entre 1000 y 10000 ha y mayor que 10000ha). Esto 

permitió también hacernos una idea del tipo de incendios que se estaban omitiendo, 

pudiendo ver que parte era inherente a las características del sensor y que parte estaba 

relacionada con el algoritmo. Se obtuvieron los resultados para la versión 1 separando 

entre incendios  detectados y no detectados. Se probaron distintas modificaciones en la 

fase de semillado para ver como afectaban al número de perímetros detectados. Las 

pruebas realizadas son las siguientes:  

 

- Test 1: en esta prueba se mantuvieron las condiciones de la primera fase pero 

extendiendo la distancia a la que podría encontrarse un HS, es decir pasando de una 

matriz de 9x9 píxeles a una matriz de 16x16. Esta opción permitiría aumentar el 

número de píxeles semilla que se encuentran cercanos a un HS. El uso de una matriz de 

16x16 cubriría una zona alrededor del HS relativamente cercana al incendio, 

considerando así que los píxeles a esta distancia que cumpliesen el resto de condiciones 

serían también semillas de ese mismo incendio. Esto permitiría analizar en la fase de 

semillado píxeles algo más alejados del HS y que podrían haberse quemado, pero que 

podrían no haberse detectado como HS al no tratarse de incendios activos en ese 

momento, o haber sido omitidos por el sensor. Esta condición no permitiría detectar un 

mayor número de incendios, pero sí tener un muestreo mayor de los incendios ya 

detectados, lo que ayudaría a mejorar la detección final una vez aplicado el crecimiento, 

disminuyendo la fragmentación.  

 

- Test 2: en esta prueba se mantuvieron las condiciones de la primera fase pero se 

eliminó la restricción de tener para cada píxel una caída en el valor del NIR respecto al 

mes anterior. Esta opción se probó para analizar como afectaba el ruido de las series 

temporales de MERIS a la fase de semillado. Es decir, podría darse el caso de que la serie 

temporal de MERIS afectada por el ruido (figura 2), no permitiese ver la caída en un 

píxel que realmente se hubiera quemado. Es una prueba intermedia al filtrado posterior 

que se aplica mediante las medianas (tests 4 y 5). Al ser menos restrictivos con esta 
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condición el número de perímetros detectados podría aumentar, así como el número de 

píxeles semilla dentro de cada incendio.  

 

- Test 3: este test es una modificación del test 2. Dado que no se estaba exigiendo 

que existiera una caída en el NIR para clasificar un píxel como semilla, se estaba siendo 

menos restrictivo con las condiciones de semillado y eso podría dar lugar a errores de 

comisión no deseables. Para contrarrestar esto, se buscó que en la matriz de 9x9 

alrededor del píxel analizado existieran dos HS en lugar de uno solo como se hacía en la 

primera versión del algoritmo. Esto permitiría evitar en parte los errores de comisión 

debidos a los HS, ya que tendría que existir más de una detección de incendio activo en 

las inmediaciones del píxel para que éste fuese clasificado como semilla. Por lo tanto 

con esta condición se buscó ampliar el número de incendios detectados, así como el 

número de semillas por incendio, ya que no se aplicó la restricción de que existiera una 

caída en el NIR, pero siendo algo más restrictivos que en el caso anterior (test 2), 

limitando así en mayor medida los errores de comisión. Como contrapunto esta 

restricción podría limitar el número de incendios detectados en las regiones en que la 

densidad de HS fuera menor.  

 

- Test 4: para esta prueba se eliminó también la condición de que existiese una 

caída del valor del NIR entre el mes analizado y el mes anterior. En su lugar se probó a 

buscar esta tendencia de caída en el NIR en la serie de datos, es decir en una ventana 

temporal más amplia. Para ello se comprobó si la mediana de los valores del NIR de los 

3 meses anteriores a la posible fecha de quemado era mayor que la mediana de los 

valores del NIR posteriores a la fecha de quemado, en cuyo caso el píxel podría ser 

clasificado como semilla si cumplía el resto de condiciones de la versión 1. Por lo tanto 

con esta modificación se buscaba hacer frente a los posibles errores de comisión de los 

HS, analizando el comportamiento temporal de los datos MERIS en una ventana mayor a 

la utilizada previamente, pudiendo así disminuir un filtrado erróneo de los HS debido al 

ruido inherente a los datos MERIS. Esto permitiría ampliar el número de incendios 

detectados, así como el número de semillas por incendio.  

 

- Test 5: en este caso al igual que en el anterior (Test 4) se buscaba hallar una 

tendencia temporal en los valores del NIR pero en períodos de tiempo más cortos. El 
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objetivo era por tanto realizar un filtrado de los HS para evitar errores de comisión. 

Para ello se calculó la mediana pre y post incendio con los valores obtenidos a partir de 

las imágenes individuales, no de los compuestos. En lugar de utilizar únicamente 3 

valores como en el caso anterior se extendió hasta 5 valores pre y post incendio, ya que 

al tratarse de imágenes individuales y no de compuestos la permanencia del incendio 

debería mantenerse para este período de tiempo. Esta nueva medida era, respecto a la 

anterior, más sensible a la detección de incendios en los que la señal de quemado post 

incendio no permaneciese mucho en el tiempo (zonas tropicales). Respecto a la versión 

1 permitía obtener un filtrado más robusto, pudiendo aumentar el número de incendios 

detectados y el número de semillas por incendio.  

 

 

3.3.2. Mejoras en la fase de crecimiento. 

 

También se probaron distintas opciones para el crecimiento. Los errores de la fase 

de crecimiento de la primera versión del algoritmo estaban relacionados con la forma 

en la que se generaba el compuesto mensual (creando algunas estructuras geométricas 

derivadas de la matriz de Thiessen - figura 5) y también con las condiciones demasiado 

restrictivas de crecimiento para algunos incendios. Las pruebas realizadas se diseñaron 

para poder modificar estas dos características y así reducir la omisión relacionada con 

el crecimiento. Se detallan a continuación las pruebas realizadas para las 4 zonas de 

interés:  

 

- Test 6: se utilizaron las mismas condiciones de crecimiento de la versión 1 pero 

aplicadas a las imágenes individuales del sensor MERIS en lugar de al compuesto 

obtenido en la primera fase del algoritmo. En este caso, se buscó para cada semilla la 

primera imagen disponible de ese mismo día, o la primera inmediatamente posterior y 

se aplicó el crecimiento sobre esta imagen. El objetivo de esta prueba era analizar el 

funcionamiento de las condiciones de crecimiento en las imágenes individuales, en las 

que el incendio podía ser más fácilmente identificable al existir un mayor contraste 

entre el quemado y el no quemado respecto al compuesto. Además, se asumía que las 

imágenes individuales estarían libres de las estructuras geométricas derivadas de la 

matriz de Thiessen utilizada para crear el compuesto.  
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- Test 7: en el caso de las imágenes individuales, éstas pueden no cubrir de forma 

completa el incendio. Además, al no realizarse ningún tipo de agrupación, podrían 

existir muy pocos datos válidos en la imagen en el caso de que hubiese nubes en el 

momento de paso del sensor. Para hacer frente a esto, se obtuvo un nuevo compuesto, 

que cubría un período temporal menor que el utilizado en la versión 1, con lo que la 

permanencia de la señal de quemado sería más fácilmente identificable, y libre de 

estructuras geométricas. Este compuesto se obtuvo con el mínimo de NIR cada diez días 

y agrupando las semillas de 10 en 10 días. Se aplicó el crecimiento sobre este nuevo 

compuesto. 

 

- Test 8: se observó en determinadas regiones que los compuestos de diez días 

podrían seguir  teniendo pocos  datos (debido a una mayor persistencia de nubes o peor 

cobertura del sensor), por lo que en esta prueba se agruparon imágenes en períodos de 

20 días para generar el compuesto, buscando las mismas ventajas que en el test 7. 

 

- Test 9: el objetivo de esta prueba era testar el funcionamiento de otras 

condiciones de crecimiento distintas a las utilizadas en la versión 1. Se buscó un método 

en el que el crecimiento estuviese adaptado a cada incendio, en lugar de utilizar las 

estadísticas generales para la zona de 10x10 grados halladas en la versión 1, que se 

adaptaban en menor medida a cada incendio dentro de esta zona de 10x10 grados. Para 

esta prueba se aplicó la condición de que el píxel se considerase quemado si su NIR era 

menor que la mediana + la desviación estándar de los píxeles vecinos quemados. Las 

estadísticas se calcularon para los píxeles quemados en la matriz de 5x5 alrededor del 

píxel analizado y únicamente en el caso de que hubiese al menos 3 píxeles ya 

clasificados como quemados dentro de esta matriz.  

 

- Test 10: se aplicaron las condiciones del test 9 de crecimiento a las imágenes 

diarias, buscando por lo tanto el mayor contraste existente en las imágenes 

individuales, así como evitar las estructuras geométricas del compuesto. 
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4. Resultados. 

 

4.1. Comparación con los perímetros para las 4 zonas analizadas.  

 

En la tabla 1 se muestra la comparación entre los perímetros de nuestras cuatro 

zonas de referencia y los resultados de la versión 1 del algoritmo (Alonso-Canas y 

Chuvieco 2015), del que partimos para elaborar este artículo. Se puede ver como los 

valores de omisión y comisión son más bajos que los obtenidos por Padilla et al (2015) 

mediante un muestreo estadístico global basado en datos Landsat. En nuestra opinión, 

esta divergencia puede explicarse porque nuestros datos están menos afectados por la 

fiabilidad en la detección temporal, que afecta más cuando los periodos de referencia 

que se comparan son más cortos (pocas semanas en el caso de las imágenes Landsat, 

frente a todo el año en este caso), y una superficie más grande (frente a la zona 

abarcada por los pares de imágenes Landsat).  

 

Se observa que la zona de Australia es la que más se quema para los 3 años, con 

una proporción de área quemada (BAp) que varía entre 0.18 y 0.45. La Península 

Ibérica tiene la menor ocurrencia de incendios (<0.001), mientras que las zonas de 

California y Canadá varían entre 0.007 - 0.013 y 0.013-0.027, respectivamente.  

 

Tabla 1. Tabulación cruzada del producto de área quemada de MERIS con 

perímetros de incendios para 4 regiones en los años 2006 a 2008. CE = error de 

comisión, OE = error de omisión, OA = fiabilidad global, BAp = proporción de área 

quemada. 

  

 2006 2007 2008 

 CE OE OA BAp CE OE OA BAp CE OE OA BAp 

Australia 0.085 0.425 0.789 0.447 0.111 0.429 0.808 0.250 0.176 0.444 0.850 0.181 

California 0.326 0.341 0.997 0.007 0.354 0.333 0.996 0.010 0.144 0.438 0.996 0.013 

Canada  0.306 0.467 0.981 0.027 0.032 0.560 0.993 0.013 0.102 0.753 0.981 0.026 

Pení nsula 

Ibe rica 

0.440 0.236 0.998 0.002 0.655 0.395 0.999 0.001 0.851 0.643 0.999 <0.001 

TOTAL 0.117 0.424 0.966 0.029 0.125 0.431 0.971 0.025 0.147 0.472 0.975 0.019 
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4.2. Resultados semillado. 

 

Se detallan los resultados de las pruebas realizadas en la tabla 2. Se muestra el 

porcentaje de perímetros detectados con cada Test en función del tamaño del incendio. 

 

Tabla 2. Número total de perímetros y porcentaje de perímetros detectados para 

las 4 zonas de interés en la versión 1 y con las distintas modificaciones (tests 1 a 

5) realizadas en la fase de semillado, para el año 2008. 

 

 Zona de estudio Tamaño del incendio  (has) 

AUSTRALIA <100 <1000 <10000 >10000 

Perímetros 

detectados 
Nº total de perímetros 12174 4652 1373 209 

 v1 21% 52% 90% 99% 

Test 1 46% 80% 96% 100% 

Test 2 74% 99% 100% 100% 

Test 3 25% 59% 93% 100% 

Test 4 22% 57% 92% 100% 

Test 5 37% 73% 94% 100% 

 
    CANADÁ <100 <1000 <10000 >10000 

Nº total de perímetros 30 20 28 34 

v1 0% 25% 54% 88% 

Test 1 0% 35% 57% 88% 

Test 2 17% 95% 100% 100% 

Test 3 3% 50% 82% 100% 

Test 4 3% 50% 68% 94% 

Test 5 3% 45% 75% 94% 

 

 
    

PENINSULA IBÉRICA <100 <1000 <10000 >10000 

Nº total de perímetros 24 19 4 0 

v1 33% 68% 50% 0% 
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Analizando los resultados de la tabla 2 se puede ver como cualquiera de las 

pruebas realizadas en este trabajo aumenta el número de incendios detectados respecto 

a la versión 1 del algoritmo. Aun así es importante remarcar que conviene no elegir la 

opción que más incendios detecta, si no aquella que combina un aumento en la 

detección limitando a la vez los posibles errores de comisión. Teniendo en cuenta los 

resultados obtenidos aplicando el crecimiento de regiones a las distintas opciones, las 

características de los datos MERIS y el número de perímetros detectados se decidió 

elegir como nueva condición de semillado la mediana diaria con 5 imágenes pre y post 

(test 5).  Esta configuración es más robusta al ruido de los datos que la que se había 

elegido en la versión 1 del algoritmo, permitiendo detectar un mayor número de 

incendios sin aumentar la comisión de forma excesiva.  

 

4.3. Resultados crecimiento. 

 

Los resultados de estas pruebas se detallan en la tabla 3. Se analizan los errores de 

omisión y comisión para cada uno de estos casos para las 4 zonas de interés en el año 

2008.  

 

Test 1 50% 79% 50% 0% 

Test 2 100% 100% 100% 0% 

Test 3 42% 68% 50% 0% 

Test 4 33% 68% 50% 0% 

Test 5 54% 79% 50% 0% 

     
CALIFORNIA <100 <1000 <10000 >10000 

Nº total de perímetros 98 48 25 5 

v1 4% 8% 60% 80% 

Test 1 5% 29% 88% 100% 

Test 2 7% 46% 92% 100% 

Test 3 5% 27% 88% 100% 

Test 4 4% 8% 60% 80% 

Test 5 6% 29% 80% 100% 
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Tabla 3. Errores de comisión y omisión del área quemada obtenidos para las 4 

zonas de estudio en el año 2008 con las distintas versiones de crecimiento. 

  

Australia Canadá Portugal California 

Versión 1 Comisión 0,1756 0,1022 0,8512 0,1437 

 

Omisión 0,4441 0,7529 0,6429 0.4379 

      Test 6 Comisión 0.2243 0.1833 0.9708 0.2804 

 

Omisión 0.3881 0.5107 0.5370 0.3187 

      Test 7 Comisión 0.1820 0.1556 0.9866 0.3872 

 

Omisión 0.5192 0.4563 0.5050 0.3067 

      Test 8 Comisión 0.2720 0.1540 0.9880 0.4174 

 

Omisión 0.3570 0.4450 0.5021 0.3022 

      Test 9 Comisión 0.4715 0.2718 0.9935 0.6194 

 

Omisión 0.1102 0.3524 0.4910 0.1695 

      Test 10 Comisión 0.3757 0.1955 0.9912 0.4400 

 

Omisión 0.2607 0.3825 0.5163 0.2698 

 

Se puede ver como en todos los casos los errores de omisión disminuyen y los de 

comisión aumentan respecto a la versión 1. El crecimiento sobre imágenes individuales 

(test 6) permite reducir en gran medida los errores de omisión para las regiones de 

Australia, Canadá y California. Las técnicas de compuesto a 10 y 20 días (Test 7 y 8 

respectivamente) obtienen resultados similares para las regiones de Australia y Canadá, 

pero aumenta mucho la comisión para la región de California. El nuevo crecimiento 

(Test 9 y 10), utilizando la técnica de la media y desviación estándar, disminuye los 

errores de omisión de forma sustancial pero aumenta en la misma proporción los 

errores de comisión.  

 

A través del análisis de estos resultados se concluyó que el crecimiento sobre 

imágenes individuales (test 6) aplicando el mismo tipo de crecimiento desarrollado en 

la primera fase sería elegido para la versión 2 del algoritmo. Un ejemplo del impacto de 
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estos cambios en las detecciones se puede ver en la figura 6. En ella se presentan para la 

zona de estudio de Canadá en 2008, los resultados de la versión 1 respecto a los de la 

versión 2. Se puede observar como el número de incendios detectados es mayor y 

también como la detección de cada mancha mejora ya que éstas se detectan de forma 

más compacta, teniendo menos fragmentación en cada incendio.  

 

 

Figura 6. AQ con las versiones 1 (izquierda) y 2 (derecha) del algoritmo MERIS para Canadá 2008. 

 

 

5. Discusión. 

 

Mediante las pruebas realizadas se ha buscado mejorar los errores de omisión del 

algoritmo AQ MERIS, evitando aumentar los errores de comisión. Es importante 

destacar que algunas de las posibles limitaciones a la hora de mejorar estos resultados 

están relacionadas con las características del propio sensor. La baja frecuencia temporal 

no permite una implementación de técnicas de series temporales y las bandas presentes 

en este sensor aún siendo adecuadas presentan una serie de limitaciones. En efecto la 

región espectral del NIR es aquella en la que la señal de incendios recientes es más 

clara. Aún así la utilización de otras bandas ha demostrado ser útil especialmente en 

algunos casos. Por ejemplo el SWIR puede utilizarse en combinación con el NIR por 

medio de índices que permiten discernir mejor las superficies quemadas que los 

obtenidos mediante la combinación de VIS/NIR (Roy y Landmann 2005b). Los 

resultados aquí presentados buscan mejorar los ya obtenidos en la primera fase, 



 240 

teniendo en cuenta las limitaciones inherentes al sensor MERIS, que no dispone de 

bandas en el SWIR. 

 

La nueva técnica de semillado identificada (test 5) permite aumentar la detección 

de perímetros en las regiones de interés en un 16% para las regiones de Australia y 

Península Ibérica, un 11% en California y un 12% en Canadá. Esta nueva 

implementación es más robusta que la utilizada previamente ya que al obtener una 

mediana de los 5 valores pre y post incendio, estamos haciendo frente al ruido presente 

en los datos. La comprobación de una caída en el NIR en la fecha de quemado respecto 

al día anterior es menos robusta frente a este ruido, ya que podría darse el caso de que 

este valor no fuese mayor debido al ruido de la serie, aun tratándose de un píxel 

quemado, mientras que mediante el cálculo de la mediana el impacto de este efecto 

quedaría mitigado. Cabe destacar también que el semillado estará influenciado por los 

errores de omisión y comisión del producto HS. En efecto, podemos comprobar que la 

región de la Península Ibérica presenta unos errores de comisión mayores que las otras 

3 zonas estudiadas. Estos resultados concuerdan con el análisis realizado por Hantson 

et al (2013), en el que se identifica la región de Portugal como una de las regiones en las 

que los errores de comisión de los HS son más elevados (no hay que olvidar que nuestro 

algoritmo se apoya sustancialmente en la detección de puntos de calor que hace el 

producto MODIS). Se espera obtener resultados similares en regiones como África del 

Sur o Brasil, ya que estas también presentaron unos mayores errores de comisión en 

este estudio. 

 

En cuanto a las opciones de crecimiento probadas se ha decidido elegir el 

crecimiento de la versión 1 aplicado sobre las imágenes diarias (test 6) como la 

configuración a utilizar en la segunda versión del algoritmo. Se considera que esta es la 

mejor opción como compromiso entre los errores de omisión y comisión obtenidos y en 

comparación con las otras opciones testadas. Esta configuración ofrece la posibilidad de 

ser más exacta en la detección de incendios que la utilizada en la primera fase, ya que 

las imágenes individuales presentan unas características más claras para la 

identificación de los incendios. Además no presentarán las estructuras geométricas 

derivadas de la matriz de Thiessen y de la agrupación de las distintas imágenes en la 

formación del compuesto (figura 5), que dificultaban la detección sobre el compuesto 
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mensual obtenido en la primera versión del algoritmo. Como contrapunto es necesario 

señalar que una importante limitación de esta configuración está relacionada con la 

imagen a analizar en cada caso. En los casos en los que las imágenes adquiridas no 

cubran toda la zona de interés del incendio, o en el caso de que la cobertura nubosa sea 

muy elevada, la detección de incendios sobre imágenes individuales empeorará la 

realizada a partir de compuestos, ya que no se buscará la continuación de ese incendio 

en las imágenes sucesivas (salvo que existiesen nuevos HS en los días posteriores). Las 

pruebas realizadas agrupando los HS de 10 en 10 días y obteniendo compuestos de 

mínimo NIR  de 10 o 20 días (tests 7 y 8) se consideraron como una posible alternativa 

de mejora a estas limitaciones, pero los errores de omisión obtenidos en el primer caso, 

y de comisión obtenidos en el segundo, indicaron que no era la opción más adecuada. 

Estos cambios se deben en  parte a que el compuesto creado no es suficientemente 

estable debido al ruido de las imágenes MERIS y a que la agrupación de semillas puede 

dar lugar a crecimientos en regiones en las que el incendio ya no puede ser detectado, 

obteniendo como resultado importantes errores de comisión. Se probó también una 

nueva técnica de crecimiento, modificando el presentado por Libonati et al (2014). Esta 

implementación (Tests 9 y 10) que calculaba la mediana y desviación estándar de cada 

incendio se consideró potencialmente interesante ya que permitía por medio de estos 

estadísticos adecuarse de forma más concreta a las condiciones particulares de cada 

evento, en lugar de utilizar las estadísticas obtenidas para las regiones de 10x10 grados. 

Mientras los errores de omisión disminuyen de la forma esperada, los resultados 

obtenidos mostraron unos errores de comisión elevados respecto a las otras pruebas 

realizadas. 

 

Además de los resultados presentados en la sección anterior, fueron probadas 

otras opciones de crecimiento, como los filtros de bordes y segmentación, tanto sobre 

compuestos NIR como utilizando también las bandas 5 y 8 de MERIS. Los resultados de 

estas pruebas no permitieron mejorar los ya obtenidos con la versión 1 del algoritmo 

por lo que estas posibles implementaciones fueron descartadas. El motivo por el que se 

considera que estas opciones de crecimiento no fueron satisfactorias está relacionado 

con el número de imágenes disponibles y  con las variaciones que éstas sufren en el 

tiempo, así como por la imposibilidad de hallar condiciones que funcionasen 

adecuadamente para estas implementaciones a nivel global. El uso de las mismas 
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condiciones aplicadas a nivel global disminuye la posibilidad de obtener resultados 

exactos en todas las regiones, ya que los ecosistemas y dinámicas son muy distintos a 

nivel global. Para obtener sucesivas mejoras en la detección de incendios se necesitarán 

series de datos más completas y también tratar el ruido inherente a estas series 

mediante mecanismos de filtrado o suavizado.  

 

El algoritmo MERIS ha sido desarrollado buscando sacar provecho de la mayor 

resolución proporcionada por este sensor, respecto a otros productos de área quemada 

actualmente existentes. Se ha visto como mediante este producto de área quemada es 

posible realizar la detección de incendios más pequeños, siendo esto de gran relevancia 

(Randerson et al 2012). Además, el instrumento OLCI a bordo del satélite Sentinel 3, 

presenta características similares a las de MERIS, pero con una resolución temporal 

mayor, por lo que los desarrollos que estamos realizando para MERIS podrían ser de 

gran interés para el programa Sentinel-3, que tiene vocación de servir como una misión 

operativa y, por tanto, tiene garantizada una mayor continuidad. 

 

 

6. Conclusiones. 

 

En este artículo se han mostrado los avances para una nueva versión de un 

algoritmo global para la  detección de áreas quemadas con datos MERIS.  Se han 

presentado los resultados de validación, así como la comparación con otros productos y 

con perímetros en 4 zonas de estudio. El análisis de estos resultados permitió 

identificar los puntos en los que se podía mejorar este algoritmo. Mediante un nuevo 

estudio de estos errores y de las condiciones tanto en las fases de semillado como de 

crecimiento, se realizaron una serie de modificaciones que permitieron obtener nuevos 

mapas de área quemada y caracterizar los errores con cada una de las opciones 

probadas. Se identificaron las nuevas condiciones que permitían mejorar los resultados 

obtenidos hasta la fecha, disminuyendo los errores de omisión en un 5.6%, 24%, 11% y 

12% para las zonas analizadas de Australia, Canadá, Península Ibérica y California 

respectivamente. Estos avances formarán parte de la segunda versión del algoritmo 

MERIS. Esta nueva versión se utilizará para procesar la serie completa de 10 años de 

MERIS (2002-2012) al inicio de la segunda fase del proyecto fire_cci. 
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