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SUMMARY  

 

Automated proximal sensing is a useful tool to acquire spectral information of 

earth covers and vegetation with a high temporal frequency. This information can be 

connected with remote observations as well as with information provided by other field 

sensors, such as those included in the eddy covariance systems. Though initially, simple 

multiband sensors were used in automated systems; in the last years the use of 

hyperspectral sensors is increasing. These provide overdetermined spectral information 

that allows the analysis of specific spectral features, the use of complex models and the 

spectral convolution to other sensors´ bands, improving data integration. However, field 

spectroscopy is subject to multiple sources of uncertainty. On one hand, the 

instrumentation is sensible to environmental variables such as the temperature or signal 

levels among others. On the other hand, radiometric quantities depend on the 

illumination and observation geometry. Automated systems operate continuously and, 

therefore, deal with large ranges of these variables, which can introduce significant 

biases in the measurements. 

Instrumental dependencies can be characterized or prevented in several ways, 

e.g. controlling the instrument temperature or the signal level measured by the sensors. 

In other cases, the parametrization and use of sensor models to correct the data is 

necessary. In this PhD dissertation a complete characterization of a portable field 

spectroradiometer installed in an automated system is presented in chapters 1 to 3. 

Chapters 1 and 2 intensively analyze the sources of nonlinearity of this instrument, one 

of which had not been previously reported in this type of instruments. The third chapter 

shows the complete set of sensor models and the correction chain process.  
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Automated systems measurements also experience strong directional effects 

since measurements are acquired continuously during the daily solar cycle and under 

any sky condition. This maximizes the ranges of illumination angles and diffuse fraction 

of irradiance. Combining this variability in the illumination with simultaneous variation 

of the observation angles can provide the information necessary to characterize the 

directional responses of the observed cover. Automated multi-angular systems have 

been already used to accomplish this characterization by retrieving the Bidirectional 

Reflectance Distribution Function (BRDF) in homogeneous ecosystems. However, this 

has not yet achieved in heterogeneous areas such as tree-grass ecosystems or savannas. 

Also, previous works have not accounted for the effect of diffuse irradiance in the 

retrieval of BRDF. In chapter 4 we propose a methodology to simultaneously unmix 

and characterize the hemispherical-directional reflectance distribution function of the 

two vegetation covers in a tree-grass ecosystem. The effects of the different features of 

the approach are analyzed. Moreover, results are up-scaled and compared with satellite 

global products as the MODIS BRDF product.  

We concluded that further efforts are necessary in the deployment and 

characterization of hyperspectral sensors operating in outdoors automated systems. 

These systems should take multi-angular configurations so that the directional responses 

can be characterized. To do so diffuse radiation must be accounted for, and in some 

cases, scene heterogeneity should be characterized.  
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RESUMEN 

 

Los sistemas automáticos de proximal sensing son una herramienta útil para 

adquirir información espectral de las cubiertas terrestres con una frecuencia temporal 

alta. Esta información puede relacionarse con observaciones remotas o con la 

información suministrada por otros sensores de campo como los incluidos en los 

sistemas de eddy covariance. Si bien inicialmente los sistemas automáticos empleaban 

sensores multi-banda, en los últimos años ha incrementado el uso sensores 

hiperespectrales. Estos ofrecen información espectralmente redundante, que permite el 

análisis de características espectrales específicas, el uso de modelos más complejos y la 

convolución a bandas espectrales de otros sensores, permitiendo una mejor integración 

de la información. Sin embargo la espectroscopia de campo está sujeta a múltiples 

fuentes de incertidumbre. Por un lado, la instrumentación es sensible a variables 

ambientales como la temperatura o el nivel de señal. Por el otro, las magnitudes 

radiométricas son dependientes de la geometría de observación e iluminación.  

Las dependencias instrumentales pueden ser caracterizadas o evitadas de 

diferentes formas, por ejemplo, controlando la temperatura del instrumento o el nivel de 

señal registrado por el sensor. En otros casos, es necesario parametrizar y emplear 

modelos para corregir los datos. En la presente tesis doctoral los capítulos 1 al 3 

presentan la caracterización completa de un espectrómetro de campo instalado en un 

sistema automático. Los capítulos 1 y 2 analizan las fuentes de no linealidad en este 

instrumento, una de las cuales no había sido anteriormente descrita en este tipo de 

instrumentos. El tercer capítulo muestra el conjunto completo de modelos de corrección 

de los efectos instrumentales y la cadena de procesado correspondiente. 
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Por otro lado, los sistemas automáticos se enfrentan a efectos direccionales ya 

que adquieren mediciones continuamente durante el ciclo solar diario y bajo cualquier 

condición de iluminación. Esto maximiza los rangos de los ángulos de iluminación y 

también de la fracción difusa de la irradiancia. Esta variabilidad de condiciones de 

iluminación, combinada con una variación de los ángulos de observación permite 

obtener la información necesaria para caracterizar las respuestas direccionales de la 

cubierta observada. Algunos sistemas automáticos multi-angulares ya han sido 

empleados para realizar esta caracterización mediante la estimación de la Función de 

Distribución de Reflectividad Bidireccional (BRDF) en ecosistemas homogéneos. Sin 

embargo, esto no se ha conseguido aún en áreas heterogéneas, como es el caso de los 

ecosistemas tree-grass o de sabana. Así mismo, los trabajos previos no han considerado 

los efectos de la radiación difusa en el estudio del BRDF. En el capítulo 4 proponemos 

una metodología que permite desmezclar y caracterizar simultáneamente la función de 

distribución de reflectividad hemisférica-direccional de las dos cubiertas de vegetación 

presentes en el ecosistema, pasto y arbolado. También se analizan los efectos de las 

diferentes características del método. Finalmente, los resultados se escalan y se 

comparan con productos globales de satélite como el producto BRDF de MODIS. 

 La conclusión obtenida es que se requieren más esfuerzos en el desarrollo y 

caracterización de sensores hiperespectrales instalados en sistemas automáticos de 

campo. Estos sistemas deberían adoptar configuraciones multi-angulares de modo que 

puedan caracterizarse las respuestas direccionales. Para ello, será necesario considerar 

los efectos de la radiación difusa; y en algunos casos también la heterogeneidad de la 

escena.  
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1. INTRODUCTION 

1. SPECTRORADIOMETRIC MEASUREMENTS OF EARTH SURFACES AND 

VEGETATION 

1.1 Spectroradiometry and radiometric quantities 

Radiometry is the science of measuring radiant energy. This term is usually 

limited to the optical portion of the electromagnetic spectrum which includes the Ultra-

violet (100 – 400 nm), Visible (400 – 700 nm) and the Infrared (700 – 106 nm). 

Spectroradiometry refers to the radiometric measurements in narrow wavelength 

intervals (Grum and Becherer 1979). In the earth, radiation is reflected below 2,500 nm 

whereas it is emitted in the Thermal Infrared (8 μm to 14 μm) and both phenomena 

occur between these regions (Gerber et al. 2011).  

Radiant energy (Qe) is defined as the energy of the electromagnetic radiation, 

and the corresponding International System of Units (SI) is the joule (J). This quantity 

can be derived by time unit and is defined as the radiant flux (Φe) whose SI unit is the 

watt (W). However, in the study of the earth surface properties, the quantity primarily 

measured is the spectral radiance (Le,Ω,λ) which is the radiant flux per unit area, solid 

angle (Ω) and wavelength (λ), and it is measured in watts per steradian per square meter 

per nanometer (W·sr−1·m−2·nm−1). The spectral radiance emitted by surface unit in all 

the directions is the spectral exitance (Me,λ) and, analogously, the spectral radiance 

reaching the surface unit is the spectral irradiance (Ee,λ). In both cases the SI units are W 

m-2 (Nicodemus et al. 1977). In the study of earth surface properties, relative quantities 

are mostly used (Schaepman-Strub et al. 2006). These are defined as reflectance factors 

since they are the ratio between the radiant flux reflected by a surface and the one 

reflected by a perfectly lossless and Lambertian surface under the same geometric 
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configuration and illumination (Nicodemus et al. 1977). Several of these relative 

quantities can be considered depending on the angular region from where down-welling 

and up-welling radiant fluxes are measured (directional, conical or hemispherical). 

Extensive definitions are provided in Nicodemus et al. (1977) and later in Schaepman-

Strub et al. (2006). All these quantities can be derived from the Bidirectional 

Reflectance Distribution Function (BRDF) which describes the relationship between the 

incoming and the reflected radiance fluxes in two directions of the hemisphere. 

Directional stands for an infinitesimal solid angle where radiant flux is not measurable, 

and therefore, BRDF is, in fact, a conceptual quantity. However, the shape of this 

function can be estimated from directional measurements and is of great importance in 

the study of surface properties because it defines their radiative balance is a surface 

property itself (Schaepman-Strub et al. 2006). 

The terminology relative to spectroradiometric sensors and quantities is 

sometimes loosely used, and must be clarified before continuing. The term 

“radiometric” stands for the quantification of energy and derived quantities in physical 

units. Consequently a radiometer is a sensor that measures a radiant flux within a given 

spectral range and expresses it as a radiometric quantity (e.g. radiance) with the 

corresponding physical units. To do so, a relationship between the digital signal 

generated by the sensor and these physical units is calibrated against a radiation source 

of known properties, the standard. The term “spectral” stands for the separation of 

radiation in different wavelengths. Therefore, a spectrometer is a sensor that digitizes 

radiation as a function of wavelength; but it does not express the measurement as a 

radiometric quantity in physical units. The combination of both is the 
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spectroradiometer, which is the sensor that spectrally resolves and quantifies in physical 

units the measured radiant flux.  

 

1.2 Spatial approaches: proximal vs remote sensing  

Spectroradiometric measurements can be acquired using different approaches 

depending on the distance between the sensor and the measured target. According to 

Teillet (2010), in situ measurements are carried out at distances smaller or equal than 

any linear dimension of the sensor. In spectroradiometry this usually involves the use of 

attachments such as probes (Foley et al. 2006) or integrating spheres (Feret et al. 2008) 

which are in contact with the sample surface. The term proximal sensing is 

encompassed by the prior definition and refers to “sensing from the close range”. This, 

in practice, refers to measurements done from a nearby location. Therefore we could 

differentiate between those measurements acquired contacting the sample and those 

taken from a short distance (Teillet et al. 2002). Proximal sensing could refer to hand 

held spectroradiometry, goniometers, poles, towers or terrestrial vehicles (Balzarolo et 

al. 2011; Milton et al. 2009). On the contrary, remote sensing involves a distance 

between target and sensor much greater than any linear dimension of the sensor (Teillet 

et al. 2002). This can be applied to spectral measurements acquired from satellites, 

planes, helicopters or balloons. Some devices can operate in a range of scales between 

the remote and the proximal, such as the Remotely Piloted Aircrafts Systems (RPAS) 

whose use is now increasing. 

The work carried out in this Thesis is focused on the use of a tower-based non-

imager field spectrometer in an automated proximal sensing configuration. Therefore, 
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the following sections would be dedicated to proximal non imaging sensors, though 

some of them could be extended to imagers and remote sensors.  

 

1.3 Spectral configuration of spectroradiometric sensors 

Spectroradiometric sensors can be classified depending on the number of bands 

used to measure radiant flux. These bands are characterized by the spectral resolution, 

which is the minimum spectral feature that the sensor can resolve, usually expressed as 

the Full Width Half Maximum (FWHM); and also by the spectral sampling interval or 

distance between the centers of the bands. Multiband sensors discriminate usually 

between two and about sixteen spectral bands (Porcar-Castell et al. 2015), with FWHM 

about 10 nm or wider and usually not overlapping bands. On the contrary, hyperspectral 

sensors sample a large number of overlapped bands (more than 250) and usually present 

spectral resolutions lower than 10 nm. Among other advantages, hyperspectral sensors 

can detect narrow spectral features of the observed surfaces and the atmosphere; the 

spectral information provided can be convolved to the spectral features of other sensors 

with coarser resolutions; they allow screening the relationships between spectral 

variables and others (Porcar-Castell et al. 2015); and provide overdetermined systems 

for model inversion (Cogliati et al. 2015) and the spectral un-mixing of several classes 

(Schaepman et al. 2009). On the contrary, these instruments are much more expensive, 

more complex and less robust as well as more difficult and expensive to automate than 

multispectral sensors (Balzarolo et al. 2011; Porcar-Castell et al. 2015). 
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1.4 Down and up-welling radiation sampling  

For the computation of reflectance factors, it is necessary to measure the down-

welling spectral radiant flux reaching the target and the up-welling radiant flux leaving 

the surface (Schaepman-Strub et al. 2006). These measurements can be done 

simultaneously in the case of the Dual Beam/Field of View (DFOV) instruments, which 

usually integrate two sensors each dedicated to one of the fluxes. An alternative is the 

acquisition of sequential measurements of the down-welling and the up-welling spectral 

radiation fluxes, under the assumption of no changes of illumination occurring during 

the measurements. In this case Single Beam/Field of View (SFOV) instruments 

equipped with a single sensor are used. Up-welling flux is usually measured using a 

bare optical fiber and/or lens; whereas down-welling flux is measured using the same 

optics and a lossless-like and Lambertian-like reference panel (usually Spectralon®) or a 

hemispherical cosine diffuser (Porcar-Castell et al. 2015; Schaepman 2007). Maybe, the 

simplest method to automatize field spectral measurements is combining a DFOV 

sensor with a diffuse head to measure incoming irradiance. Though other options exist, 

these require the use additional instrumentation as multiplexers (Meroni et al. 2011), 

bifurcated fibers and synchronized shutters (MacArthur et al. 2014), protected reference 

panels (Huber et al. 2014) or moving reference panels (Sakowska et al. 2015). The 

disadvantage of DFOV instruments is that an accurate cross-calibration and temperature 

stabilization of the two sensors is needed in order to avoid instrumental dependencies in 

the derived quantities (Porcar-Castell et al. 2015). 

The optics selected to sample each radiation flux determine the reflectance 

quantity measured. Hemispherical down-welling flux is measured using cosine diffusers 

(Gamon et al. 2006a) or derived from Lambertian-like reference panels (Huber et al. 
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2014; Sakowska et al. 2015). Up-welling flux is commonly measured using conical 

optics (Foley et al. 2006), though in some cases, has been measured using hemispherical 

diffusers (Meroni et al. 2011). Therefore, the Hemispherical-Conical Reflectance Factor 

(HCRF) is the most usually quantity measured by field spectroradiometers and optical 

sensors (Balzarolo et al. 2011; Porcar-Castell et al. 2015).  

 

1.5 Optical sensors in automated systems  

Multispectral optical sensors are most usually installed in micro-meteorological 

towers were ecosystem-atmosphere exchanged fluxes are measured using the eddy 

covariance technique (Balzarolo et al. 2011; Gamon et al. 2010; Gamon et al. 2006b). 

These are automated systems sampling reflectance factors in a continuous basis; though 

they can be also operated hand-held. Automated multispectral sensors typically operate 

in a fixed position, aiming always at the same area of the ecosystem (Balzarolo et al. 

2011).  

Commercial field hyperspectral instruments are not designed to be readily 

automated, and are mostly used hand held (Milton et al. 2009). However, in the last 

years the number of automated hyperspectral systems operating in a continuous basis 

has increased (Porcar-Castell et al. 2015). These systems usually include one or more 

spectrometers or spectroradiometers which are controlled by an external computer 

programmed to acquire measurements automatically. However the approaches, designs 

and applications are still quite unique (Porcar-Castell et al. 2015).  
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2. INSTRUMENTAL DEPENDENCIES OF THE RADIOMETRIC 

MEASUREMENT 

2.1 Instrumental artifacts and dependencies 

The measurement of spectral radiation is a process technically complex, and can 

suffer of large uncertainties, especially in the field (Kostkowski 1997). First, radiation 

coming from a desired solid angle or incoming from a radiation source must be 

sampled. In the case of field spectroradiometers and spectrometers different fore optics 

are commonly used with these purposes, usually cosine diffusers and lenses. These can 

be attached directly to the instrument or via an optical fiber which facilitates the 

handling. In other occasions, bare optical fibers are used to sample radiation within a 

limited solid angle. These transmit light through a single core of fiber or through a 

bundle of several fibers. Lambertian reference panels are used to derive the total 

incoming flux in SFOV instruments, (Schaepman-Strub et al. 2006) and to cross-

calibrate the two sensors of DFOV instruments (Gamon et al. 2006a). Reflections and 

absorptions produced by the fore optics and optical fibers cause a decrease of the 

radiation sampled. Therefore, the radiometric calibration of each instrument is 

unavoidably specific of the fore optics used and its attachment to the instrument. In 

addition, the contribution of energy to signal is no homogeneous in the solid angle of 

the measurement. MacArthur et al. (2012) characterized the directional responses of the 

fore optics of some commercial field spectroradiometers and proved that, especially in 

the case of the fiber optic bundle, these can be largely heterogeneous. They also showed 

how deviations are not only directionally, but also spectrally dependent due to 

chromatic aberration of the lenses and also to magnifications or attenuations produced 

in the optical paths within the instrument. In the case of cosine diffusers and also 
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reference panels, radiation sampled should decrease as a function of the cosine of the 

zenith illumination; however, deviations from this response occur are and also 

spectrally dependent (Julitta 2015; Meywerk and Ramanathan 1999). In addition, 

reference panels are actually not lossless, and they must be calibrated. 

When sampled radiation reaches the sensor´s spectrograph, it passes through the 

entrance slit and reaches the diffraction grating or the monochromator. These devices 

reflect the radiation with different angles as a function of its wavelength. Several 

artifacts can affect this process, such as second order effects of the diffraction (Lerner 

2006), stray light reflected inside the spectrograph (Zong et al. 2006) or instrument 

changes due to thermal expansion of the components of the spectrograph (Markham et 

al. 1995), among others. The diffracted light reaches the sensor, usually an array of 

photodiodes, each of them illuminated by radiation comprehended within a different 

range of wavelengths. The width of these ranges can vary as a function of the 

illumination angle. Several types of sensors can be found in commercial field 

spectrometers and artifacts related with the different technologies would require an 

extensive analysis. However, some of these artifacts are more or less common to most 

of these sensors, e.g. temperature dependence, nonlinearity... In all the cases, photons 

received must be converted to an electrical signal that is accumulated until readout. This 

signal can be amplified and, eventually, an analogical-to-digital converter transforms it 

into digital values. Several factors can bias the linearity of the relationships between the 

three types of signals, light, electrical and digital. These can operate at photodiode level 

(Ferrero et al. 2006; Ferrero et al. 2005; Stevens 1991) or in the succeeding electronics 

(Smith 1998). Moreover, the sensitivity of the sensors to radiation also varies as a 

function of temperature and wavelength (Saber et al. 2011; Starks et al. 1995), 



Introduction 

9 
 

Electronics also add an electrical random noise, the dark current, which varies with the 

temperature and the integration time (Kuusk 2011). Another characteristic of sensors is 

the quantum efficiency, which is the fraction of photons converted to charge carriers, 

electrons in this case. This feature together with the radiation flux impinging each pixel, 

primarily determine the total signal measured at each waveband. 

 

2.2 Sensor models and corrections 

Instrumental artifacts can be characterized as long as variables responsible of the 

artifacts can be measured. This way sensor models can be parametrized to allow the 

correction of operational measurements. In example, directional responses of cosine 

diffusers or white reference panels can be estimated by acquiring measurements under 

different illumination angles (Bais et al. 2005). Directional responses of other optics can 

also be characterized (MacArthur et al. 2012), thought understanding their effects 

requires knowing the contents of the observed surface. Temperature readings of the 

instrument can be, in some cases, obtained simultaneously to radiometric 

measurements. In those cases, temperature dependences of the sensor and dark current 

can be characterized and derived for correction by acquiring radiation and dark current 

measurements under different temperatures (Kuusk 2011; Saber et al. 2011). In other 

cases, dark current can be measured by closing the optical path with a shutter and 

directly removed from the radiation measurements.  

The center wavelength corresponding to each spectral band can be inferred using 

emission lines from lamps filled with noble gases (Natalia 2009). However, determining 

the band width requires measuring radiation contained in bands thinner than those of the 

spectral resolution of the pixel, which can be achieved using monochromators 
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(Hopkinson et al. 2004; Zhang et al. 2011). Though sensor models can be parametrized 

in the laboratory under controlled conditions, these might lose accuracy in the field 

(Anderson et al. 2006) under different temperature, moisture and radiation conditions.  

 

3. DIRECTIONAL DEPENDENCIES OF THE RADIOMETRIC 

MEASUREMENT. INTRODUCTION TO BRDF MODELS  

When a given surface is observed, the illumination and observation angles 

determine the fractions of the different components of the scene that are viewed and that 

are illuminated (Roujean et al. 1992). Thus the illumination-observation geometry 

determine the amount of radiance sampled by a sensor, and therefore the value of the 

radiometric quantity measured. This represents a challenge for the study of earth 

surfaces since in order to determine the properties of the observed pixel, it is necessary 

disentangling the variance in the signal that is explained by the directional effects 

(Lucht and Roujean 2000). On the contrary, this represents also an opportunity since in 

addition to the spectral signatures; the BRDF provides information about the intrinsic 

pixel properties (Lucht and Roujean 2000).  

The BRDF can be estimated from measurements acquired with different 

illumination-view geometries over the same surface using empirical (Walthall et al. 

1985) semi-empirical (Wanner et al. 1995) or physical (Gastellu-Etchegorry et al. 2004; 

Verhoef 1984) models. The acquisition of multi-angular measurements in the field is 

complex and resource consuming; and therefore the nadir view configuration is 

preferred in order to minimize directional effects (Milton et al. 2009). However, 

illumination geometry does not only depend on the solar angle, but also on the diffuse 

component of the incoming radiation flux and its distribution over the hemisphere 
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(Lyapustin and Privette 1999). In the field no control of the illumination is possible, and 

consequently, though observation geometry can be standardized directional effects are 

always included in the measurements.  

Goniometers (Sandmeier and Itten 1999), RPAS (Burkart et al. 2015) and tower-

based automated systems (Hilker et al. 2010) have been used in the field to measure and 

model the BRDF of vegetation and other surfaces. However, further research is needed 

to overcome the uncertainties related with the sampling of the up and down-welling 

fluxes, and with the modeling of the BRDF. 

 

4. AUTOMATED HYPERSPECTRAL PROXIMAL SENSING. REVIEW OF 

CASES AND APPLICATIONS 

Automated proximal sensing is closely related to the analysis of atmosphere-

ecosystem gas exchanges. In this context, the number of spectrometers and 

spectroradiometers that have been installed in automatic systems has increased (Porcar-

Castell et al. 2015). One of the pioneer systems developed was set up on a robotic tram 

carrying a DFOV spectrometer (Gamon et al. 2006a). This system was used to acquire 

HCRF at temporal and spatial scales similar to those where gas exchanges were 

measured by an eddy covariance tower. Data acquired by the system allowed the 

analysis of the relationships between optical signals and vegetation physiology (Claudio 

et al. 2006; Gamon et al. 2013; Sims et al. 2006) and the upscaling of water and carbon 

fluxes (Cheng et al. 2006; Fuentes et al. 2006; Stow et al. 2004). However, most of 

current systems are not moving instruments but are fixed on towers at different heights. 

Some of them have been dedicated to the study of vegetation sun induced fluorescence 

emission related to the photosynthetic activity. Thought sometimes a single 
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spectroradiometer has been used (Drolet et al. 2014), in most cases, two or more 

spectroradiometers were combined: one dedicated to the measurement of reflectance 

factors in the Visible and Near Infrared regions (VNIR) and the other, with a higher 

spectral resolution, dedicated to the measurement of the fluorescence emission into 

atmospheric absorption lines (Cogliati et al. 2015; Middleton et al. 2013; Daumard et al. 

2010; Meroni et al. 2011; Rascher et al. 2009). These systems have provided vegetation 

indices and estimates of sun induced fluorescence; and their covariance with vegetation 

gas exchange and light use efficiency have been analyzed. However, due to their mono-

angular configuration, directional effects were always mixed in the signals measured. 

Nonetheless, variations of fluorescence estimates related with photosynthetic activity 

have still been noticeable (Cogliati et al. 2015; Daumard et al. 2010; Meroni et al. 

2011).  

Other automated systems were focused on the analysis of the directional effects. 

In this case they included a pan-tilt system or rotatory mirrors allowing the acquisition 

of multi-angular measurements (Hilker et al. 2007; Hilker et al. 2010; Huber et al. 2014; 

Leuning et al. 2006). Multi-angular observations provide much richer information about 

the observed scene allowing the estimation of the BRDF and disentangling directional 

and physiological changes in optical signals (Hilker et al. 2008), the analysis of the 

anisotropy factor (Huber et al. 2014) or the comparison with radiative transfer models 

(Leuning et al. 2006). These systems have mainly operated in homogeneous ecosystems 

or in scenes where the different covers could be observed separately (Hilker et al. 2009) 

or some of them not observed (Huber et al. 2014). 
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Thought most of these systems are limited to the VNIR region, lately two 

systems have included spectroradiometers that also measure radiation in the Short Wave 

Infrared (SWIR) (Huber et al. 2014; Sakowska et al. 2015). 
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2. OBJECTIVES 

 The research aim of this PhD dissertation is the characterization of the 

Bidirectional Reflectance Function Factor of the different vegetation covers within a 

Mediterranean tree-grass ecosystem through the implementation, characterization and 

operation of an automated multi-angular spectrometric system (the AMSPEC-MED). 

This system is based on the AMSPEC-II (Hilker et al. 2010), but new features and 

modeling approaches have been developed. 

 To achieve this objective, it is necessary to overcome limitations related with 1) 

the hyperspectral instrumentation and 2) with the BRDF models commonly used in 

remote sensing applications. This has been done by addressing the following specific 

objectives: 

1. To identify and characterize the main sources of nonlinearity in the field 

spectrometer and analyze their effects. 

2. To characterize the thermal dependencies of the sensors sensitivity and the dark 

signal.  

3. To calibrate the sensors wavelength functions and analyze the impacts of 

temperature. 

4. To characterize the directional response functions of the sensor optics, and 

correct the down-welling radiation flux measurements.  

5. To understand the effects of instrumental and environmental dependencies on 

the HCRF. 

6. To analyze and design the field deployment of an AMSPEC system in Las 

Majadas del Tiétar site (Cáceres, Spain), considering the resources available and 

the modeling needs. 
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7. To define a BRDF model capable to represent the tree-grass ecosystem scene at 

proximal observation scale. 

8. To define a BRDF model capable to account for the effects of diffuse radiation. 

9. To determine a methodology suitable for the robust retrieval of the BRDF of the 

different vegetation covers (trees and grass) observed under different 

illumination conditions. 

10. Validate BRDF retrievals by up-scaling and comparing with remote sensing 

BRDF products. 

 

The first group of objectives (1 to 5) is related with the characterization of the 

spectroradiometer and the parametrization of sensor models that allow the computation 

of HCRF independent of environmental and instrumental artifacts. The lack of 

temperature control and shutters jeopardize, among other reasons, the quality of the 

quantities derived, which led to the establishment of these objectives. These are 

addressed in the three first chapters of the thesis. The second group of objectives (6 to 

10) is related with the modeling of BRDF in a Mediterranean tree-grass ecosystem and 

the inclusion of diffuse component of the down-welling flux in the BRDF model. 

Spatial heterogeneity is specific of the observed scene and, therefore, is modeled ad-

hoc. Diffuse radiation effects are a common issue that more severely affects automated 

proximal sensing than remote sensing measurements, where cloudy situations are 

usually discarded. The outcomes of the new model are finally compared with satellite-

based BRDF estimates. These objectives are tackled in the fourth chapter of the Thesis. 
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3. INTRODUCTION TO THESIS CHAPTERS AND STRUCTURE 

 This Thesis is divided in four chapters; the first three have been already 

published in international indexed journals and address the instrumental characterization 

necessary to provide corrected spectral reflectance factors in response to objectives 1 to 

5. The fourth chapter presents an extensive analysis and modeling of the BRDF related 

with objectives 6 to 10. A fourth paper will be derived from this chapter.  

 Chapter 1 focuses on the detection and characterization of a nonlinear response 

related with the gray level measured by Unispec DC spectrometer used in this study. 

This artifact was first noticed during an inter-comparison experiment where different 

commercial spectrometers acquired simultaneous measurements of different targets 

(Anderson et al. 2013). The Unispec DC instrument was characterized using a 

methodology frequently used with other commercial field spectroradiometers. Monte 

Carlo simulation was applied to predict the uncertainties related with the 

characterization. Moreover, the impact of this artifact on the Photochemical Reflectance 

Index (PRI) (Gamon et al. 1992) commonly used as an estimator of light use efficiency 

was discussed. One of the bands of this index happened to be largely affected by 

nonlinearity since under sun irradiance achieved the largest digital values. This resulted 

in false responses of vegetation to radiation. To the best of our knowledge, this artifact 

had not been previously reported in this instrument, which has been extensively used for 

the study of vegetation. 

Chapter 2 goes deeper than the first in the characterization of nonlinearity. 

Inconsistencies found in nonlinearity models parametrized for the same Unispec DC 

instrument led to the discovery of a second source of nonlinearity that had not been 

reported in commercial field spectroradiometers. This second nonlinearity was related 
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with the integration time set in the sensor. The two sources of nonlinearity identified 

could be characterized thanks to the specific readout technology of the sensors used. 

Therefore the methodology propose might not be directly applicable to other sensors, 

but the issue has been reported so that it can be considered and avoided. The effect of 

this second source of nonlinearity might not be large under field conditions, but it 

proved to significantly bias the characterization of the gray-level-related nonlinearity in 

the laboratory. The results also stressed the need of using laboratory radiance sources 

powers that could be comparable to outdoors levels. 

Chapter 3 summarizes the complete characterization of the spectrometer and the 

parametrization of the different sensor models used to correct HCRF. In this work, the 

temperature sensitivity and the directional response function of the cosine diffuse 

models were parametrized. Spectral calibration of sensors wavelength was performed 

under different temperatures to discard the detection of spectral shifts. Moreover, the 

nonlinearity and dark current models presented in previous chapters were included. 

Also, the spectral diffuse-to-global radiation ratio was estimated using data from a 

broadband pyranometer. The operational chain process of the spectral data used to 

compute HCRF was defined and applied to real data acquired from the AMSPEC-MED 

system in the field. These data were used to assess the impact of each correction and of 

all the corrections together. No large changes in HCRF were found, both due to the 

instrument configuration and to the cancellation of the different effects during the 

computation of the reflectance factors.  

 In chapter 4 we propose a methodology to unmix the directional responses of the 

two vegetation covers present in the Mediterranean savanna where AMSPEC-MED 

operates. On one hand, diffuse radiation was accounted for modeling the 
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Hemispherical-Directional Reflectance Distribution Function (HDRDF) rather than 

BRDF. On the other hand, spatial heterogeneity of the ecosystem was tackled by the 

development of a 3D model of the scene and a ray casting model. These allowed the 

estimation of the contributions of each vegetation type (trees and grass) and their 

respective shadow fractions within the FOV. The HDRDF model was based on a linear 

combination of kernel functions, but in this case, the geometric-optical kernels were 

substituted by estimates provided by the 3D model. Moreover, diffuse radiation was 

included in the model adding irradiance to shaded areas and via hemispherical 

integration of kernel functions. Changes introduced in the models were assessed 

including the use of time windows to select data and the use of regularization for model 

inversion. HDRDF estimates were up-scaled using a 3D reconstruction of the scene and 

a simulation of remote observations and these were compared with operational remote 

sensing products such as the MODIS MCD43A1 BRDF product.  
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ABSTRACT 

We report the characterization and correction of nonlinear responses of a 

commercial field portable spectroradiometer intended to be used to monitor vegetation 

physiology. Calibration of photoresponse allowed the successful correction of spectral 

data and the modeling of biases in reflectance at different levels of the dynamic range. 

Finally, the impact of nonlinearities on a spectral estimator of photosynthetic status, the 

Photochemical Reflectance Index (PRI) is discussed. Significance of the biases proved 

that, although nonlinearity can potentially affect reflectance along most of the dynamic 

range of the instrument, experimental uncertainties can limit its impact. Nonlinearity 

biased PRI by affecting the reference band of the index and suggested unreal changes 

on plant physiology. Results show that nonlinearity could be a significant problem in 

field spectroscopy, especially in the case of spectroradiometers integrated in unattended 

systems to monitor vegetation responses to radiation. An automatic adjustment of 

integration time to reach only a certain level of the dynamic range may reduce 

nonlinearity effects, though may not always avoid them. We conclude that linearity 

characterization is necessary to understand impacts and correct potential biases. 

 

Keywords: Nonlinearities, spectroscopy. 

 

1. INTRODUCTION 

Laboratory and field spectroscopy have a key role in Earth monitoring to 

characterize surface optical properties and to calibrate and downscale airborne and 

satellite sensor observations (Gamon et al. 2006b; Milton et al. 2009). In the context of 

carbon cycle monitoring, spectroscopy is being widely used by the scientific community 
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to track plant physiology in Eddy Covariance (EC) sites and connect this information 

with remote observations. The most current advances in the monitoring of carbon 

uptake are related to the recent development of unattended continuous hyperspectral 

systems, which among other advantages provide optical information at the same 

temporal scale than the EC systems (Balzarolo et al. 2011; Gamon et al. 2006b; Hilker 

et al. 2007; Hilker et al. 2010; Meroni et al. 2011; Sims et al. 2006). International 

networks such as SpecNet (www.specnet.info) (Gamon et al. 2006b) and Cost Action 

ES0903 - EUROSPEC (www.cost-es0903.fem-environment.eu) have emerged to focus 

efforts done in this field and try to improve the comparability of optical data, which 

would allow for the compilation of global estimates of carbon uptake (Balzarolo et al. 

2011; Gamon et al. 2006b; Milton et al. 2009). However, despite advances achieved in 

field spectroscopy over the last decades, it is still described as one of the least reliable of 

all physical measurements (Kostkowski 1997). Comparability and reproducibility of 

spectral data can be compromised by different factors (Anderson et al. 2011; Jung et al. 

2012; Milton et al. 2009), including the instrumentation. Spectroradiometers can 

introduce biases and uncertainties in the resulting signal due to stray light, dark current 

(DC) drift, diffraction orders, sensor linearity, or harmonic interferences, among others 

(ASD 1999; James 2007; Kostkowski 1997; MacArthur et al. 2006; Salisbury 1998; 

Schaepman and Dangel 2000). 

In this paper, we focus specifically on sensor linearity and its potential impact on 

reflectance in the visible and Near Infrared regions. Linearity is the proportional 

relationship between the amount of light that a sensor receives and the resulting 

photocurrent; a high linear photoresponse is desirable so that the instrument’s output is 

directly proportional to the magnitude of energy measured. However, this linear 
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relationship can be affected by factors related to both the electronics and/or the detector 

elements themselves (Hamamatsu 2011a, b, c; James 2007; PP Systems 2005). 

Normally, when the sensor is close to saturation, the anti-blooming structures (designed 

to drain the overflow off the saturated photodiodes before this reaches the adjacent 

ones) start draining part of the charge before saturation, reducing the sensor’s response 

to incident light at high levels of energy (Hamamatsu 2011a; Stevens 1991). 

Two different strategies are usually adopted by the manufacturers to overcome 

the problems caused by photoresponse nonlinearity. The first one is avoiding the region 

where linearity is low through automatic adjustment of integration time, so that the 

maximum output signal is fixed at a given percentage of the dynamic range (e.g., 

Analytical Spectral Devices Inc., Boulder, CO, USA; Spectra Vista Corporation, 

Poughkeepsie, NY, USA; PP Systems, Amesbury, MA, USA). The second strategy 

consists in characterizing each sensor’s photoresponse and correcting the data in a post-

processing stage (e.g., Ocean Optics Inc., Dunedin, FL, USA; Avantes, Apeldoorn, The 

Netherlands). Though instruments usually adjust integration time automatically, in some 

cases, it can be also manually set (ASD 1999; Spectra Vista Corporation 2008), which 

would require a full understanding of the sensor photoresponse. Unattended 

hyperspectral systems typically use double beam (dual detector) spectroradiometers, 

such as the Unispec DC (PP Systems), due to their capacity to simultaneously measure 

up-welling and down-welling radiation (Gamon et al. 2006a; Hilker et al. 2007; Hilker 

et al. 2010). In these systems, integration time can be fixed looking for an equilibrium, 

which allows avoiding saturation and obtaining an adequate signal-to-noise ratio (SNR) 

under different illumination conditions (Hilker et al. 2010). 
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We present here the results obtained with a Unispec DC spectroradiometer 

affected by a nonlinear photoresponse, which had not been previously reported for this 

instrument. The instrument photoresponse was characterized to correct the data in a 

post-processing stage. Then differences between the original and the corrected spectral 

reflectance and derived spectral indexes were assessed. Moreover, biases due to 

nonlinearity were compared with those uncertainties introduced by the correction 

model, as well as with experimental uncertainties of field measurements. 

 

2. METHODOLOGY 

2.1 Instrumentation 

All experiments described in this paper were undertaken using a Unispec DC 

(SN 2038), a double beam field portable spectroradiometer (PP Systems) with two 

synchronized spectrometers, which simultaneously sample radiance and irradiance 

using an optical fiber (channel B) and a cosine receptor (channel A). Radiometric 

resolution is 16 bits [65535 Digital Numbers (DN)], nominal bin size, spectral 

resolution (full width at half maximum), and spectral range are 3.3 nm, < 10 nm, and 

300–1100 nm, respectively.  

The two spectrometers inside the Unispec DC are monolitical miniature 

spectrometer 1, manufactured by Carl Zeiss, Inc., (Thornwood, NY, USA) equipped 

with a silicon diode array S3904-256Q sensor each (Hamamatsu Photonics K.K., 

Tokyo, Japan). This is a Negative-channel Metal-Oxide Semiconductor (NMOS) 

sensor, which uses a charge integration method to read out the charges accumulated in 

the photodiode array, thus the output signal is proportional to the incident light intensity 

and the integration time. An anti-blooming switch is provided for each photodiode, 
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allowing the drainage of overflow. Photosensitivity is reported to be linear (absolute 

error < 1 %) up to 95 % of the saturation charge. Above this threshold, part of the 

output flows into the anti-blooming switch (Hamamatsu 2011a, c).  

Linearity calibration was carried out using an ASD RTS-3ZC integrating sphere 

(Analytical Spectral Devices Inc.,) with a stable illumination source. A 10 W quartz-

tungsten-halogen bulb powered by a battery provides a collimated beam of light, which 

was reflected by a 99 % Zenith Polytetrafluoroethylene (PTFE) standard (Sphereoptics 

Hoffman LLC, Contoocook, NH, USA) located at the opposite port of the sphere. The 

sphere, internally coated with highly reflective (> 95 %) Zenith PTFE, scatters the 

radiation in all directions, offering a homogeneous source of light through an open port.  

 

2.2 Field experiment 

An inter-comparison experiment took place in Monte Bondone (Italy) on July 

2011 in the framework of the COST Action ES0903-EUROSPEC: Spectral Sampling 

Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe. The 

aim of the experiment was comparing the reflectance values obtained with four different 

commercial spectroradiometers under controlled field conditions. Further details of this 

experiment can be found in Anderson et al. (2013). 

For the Unispec DC, a downward looking fiber optic (channel B) was placed 

together with the fibers of the other spectroradiometers on a tripod with a rotating arm; 

whereas a cosine receptor (channel A) was placed over its axis. A white reference panel 

(99 % Spectralon® (hereafter called “reference”) (Labsphere Inc., North Sutton, NH, 

USA), and three targets (a bright grey 75 % Spectralon® panel (“grey75”), a dark grey 

20 % Spectralon® panel (“grey20”), and a grass plot (“grass”)) were measured 50 times, 
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always in the same order. First, DC (DC in equations) was measured by completely 

covering the optical fibers. Then, a reference spectrum was taken from the 99 % 

Spectralon® panel, and a spectrum of each one of the targets (“grey75,” “grey20,” and 

finally “grass”) was collected immediately after that. The Unispec DC integration time 

(common to both channels A and B) was manually adjusted in order to compensate 

increases in irradiance as the solar zenith angle decreased along the experiment. We 

tried to maximize the SNR in the channel A simultaneously avoiding saturation in the 

channel B. 

Reflectance was calculated using two different approaches: 1) single-beam mode 

(SBM) where absolute reflectance was computed using the measurements of the 

“reference” panel in digital numbers (DN in equations) to normalize the radiance 

measured from the targets using only data acquired from channel B (Eq. 1), and 2) 

double-beam mode (DBM) where absolute reflectance was computed using the 

“reference” spectra to cross-calibrate both channels as described in Gamon et al. 

(2006a) (Eq. 2). SBM was calculated to compare the measurements of different 

instruments in the inter-comparison experiment, whereas DBM is the usual operation 

mode of this dual-channel instrument, especially in the case of unattended systems. 

 

ௌ஻ெߩ ൌ
ሺܦ ஼ܰ௛஻ െ ஼௛஻ሻ்௔௥௚௘௧ܥܦ
ሺܦ ஼ܰ௛஻ െ ஼௛஻ሻோ௘௙௘௥௘௡௖௘ܥܦ

∙ ோ௘௙௘௥௘௡௖௘ߩ (1)

 

஽஻ெߩ ൌ
ሺܦ ஼ܰ௛஻ െ ஼௛஻ሻ்௔௥௚௘௧ܥܦ
ሺܦ ஼ܰ௛஺ െ ஼௛஺ሻ்௔௥௚௘௧ܥܦ

∙
ሺܦ ஼ܰ௛஺ െ ஼௛஺ሻோ௘௙௘௥௘௡௖௘ܥܦ
ሺܦ ஼ܰ௛஻ െ ஼௛஻ሻோ௘௙௘௥௘௡௖௘ܥܦ

∙ 	ோ௘௙௘௥௘௡௖௘ߩ (2)
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2.3 Linearity characterization under stable illumination 

Different methods described to measure and model the nonlinear photoresponse 

of photodiode sensors require quantification of energy in absolute units (Anderson et al. 

2011; Hopkinson et al. 2004; Janesick 2001; López-Álvarez et al. 2009; Markham et al. 

1995; Schaepman and Dangel 2000; Smith 1998). Since no calibrated radiance sources 

were available for this paper, we applied another method used by Ocean Optics Inc., to 

correct nonlinearity of their instruments (OceanOptics 2012). However, in this 

experiment, we used a larger number of bins to estimate the sensors’ photoresponse, and 

we also characterized the uncertainties of the correction. 

The Unispec DC optical fibers (one of each channel) were aimed at inside of an 

ASD RTS-3ZC integrating sphere through an open port. A collimated light source was 

placed in a different port, and the light was reflected by a 99 % PTFE panel in the 

opposite one and then scattered within the sphere before reaching the fibers. Integration 

times were randomly changed from 50 to 1350 ms during the experiment in order to 

acquire data all along the dynamic range of both channels. Moreover, light stability was 

monitored by acquiring control spectra with the same integration time (500 ms) once 

every five measurements. In total, 31 spectra were acquired for both control and 

calibration. For each spectrum, DC was previously recorded by covering the sphere port 

with a black and opaque plate. After DC (DC in equations) subtraction, the response of 

each channel was computed normalizing each spectrum (in DN) by its integration time 

(IT in equations), and then by the highest normalized value of each spectrum (Eq. 3). 

 



Chapter 1 

40 
 

݁ݏ݊݋݌ݏܴ݁ ൌ 	

ሺܰܦ െ ሻܥܦ
ൗܶܫ

ݔܽ݉ ቌሺܰܦ െ ሻܥܦ
ൗܶܫ ቍ

	 (3)

 

Responses of the least noisy spectral region between 400 and 1,000 nm (181 

bins), were used altogether to fit a single seventh degree polynomial for the entire 

sensor of each channel (Eq. 4), the fitted response. This method assumes photoresponse 

uniformity along the sensor array (OceanOptics 2012). The independent variable (DN) 

was first transformed to avoid bad conditioning (Matlab Help 2012). 

 

݁ݏ݊݋݌ݏܴ݁	݀݁ݐݐ݅ܨ ൌ෍ܽ௜ ൉ ቆ
ሺܰܦ െ ሻܥܦ െ ሺܰܦ െ ሻܥܦ

஽ேߪ
ቇ

௜଻

௜ୀ଴

(4)

 

2.4 Linearity correction model and error propagation 

As proposed in (OceanOptics 2012), we corrected the nonlinearity of the inter-

comparison experiment spectra using the fitted responses polynomial (Eq. 4) to 

calculate the photoresponse of each bin as a function of the measured DN, and dividing 

these measured DN by their responses afterward as follows: 

 

ܦ ஼ܰ௢௥௥௘௖௧௘ௗ ൌ
ܦ ைܰ௥௜௚௜௡௔௟ െ ܥܦ

݀݁ݐݐ݅ܨ ݁ݏ݊݋݌ݏܴ݁
(5)

 

Residuals of the polynomial fits would eventually lead to uncertainties in the 

calculation of reflectance. Thus, we quantified these uncertainties through error 

propagation and later compared them with the biases introduced by nonlinearity. Error 

propagation was not carried out using the law of propagation of uncertainty (Bureau 



Nonlinear Response in a Field Portable Spectroradiometer 

41 
 

International des Poids et Mesures 2008), since the Probability Distribution Functions 

(PDF) of corrected DN errors were unknown or could not be assumed to be normal. 

Monte Carlo simulation was used instead, since it has proved to be a general tool for 

evaluating uncertainty through the propagation of PDF, avoiding assumptions about the 

shape of these distributions (Anderson 1976; Bureau International des Poids et Mesures 

2008; Cox et al. 2003; Herrador et al. 2005). 

Monte Carlo was applied to a model which included the correction of 

nonlinearity and to the computation of SBM (Eq. 1) and DBM (Eq. 2) reflectances. 

Least squares polynomial fitting produced residuals assumed to be normally distributed 

with mean 0. At each DN level, standard deviation was used to randomly generate 200 

samples of these residuals with normal distribution. These errors were added to the 

fitted responses predicted by the calibrated models, generating then a set of responses 

associated to each original DN. These responses were used to correct the original DN 

and compute SBM and DBM reflectances and their 95 % confidence intervals, which 

represented the propagated uncertainties in reflectance. The reflectance values selected 

for this analysis and its simulation are described in the following section.  

 

2.5 Modeling nonlinearity effects on reflectance 

Different SBM and DBM reflectances were simulated in order to compare the 

biases introduced by nonlinearities with those uncertainties propagated from the 

nonlinearity correction and then, to assess the significance of the correction when 

uncertainties found under field conditions were considered. Since we used the 

uncertainties found in the inter-comparison experiment, reflectance values similar to 

those measured in the “grey75” and “grey20” panels (80 % and 20 %, respectively), and 



Chapter 1 

42 
 

the reflectance of the grass plot at 566.9 nm (7.52 %) -the waveband most affected by 

nonlinearity- were selected for the simulation. A flowchart of the simulation is shown in 

Figure 1. For each one of these values, a dataset of DN corresponding to measurements 

of the white reference (ChB WR in Figure 1) and the target (ChB T) were generated 

simulating perfectly linear sensors along the different levels of the dynamic range. The 

average signal loss introduced by the cosine receptor during the inter-comparison was 

used to simulate channel A values (ChA WR). Moreover, since reflectances calculated 

in SBM and DBM would lead to the same values due to mutual cancelation of Channel 

A terms in (Eq. 2) under the same ideal conditions; we decided to change the conditions 

after the measurement of the reference to compute DBM reflectance, a situation that an 

unattended system may experience. For that, the simulated linear DN values of both 

channels corresponding to the target measurements were halved (ChA T0, ChB T0 ). A 

second dataset was then generated by biasing the DN of the linear dataset with the 

calibrated fitted responses of each channel (Eq. 4). The model was inverted to estimate 

the biased values from the linear (or corrected) ones using the simplex method (Lagarias 

et al. 1998). Then, we used these datasets to calculate linear (or corrected) and nonlinear 

reflectances at different levels of the dynamic range. 
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Figure 1. Spectral data simulation flowchart 

 

 

2.6 Nonlinearity effects on photochemical reflectance index  

The Photochemical Reflectance Index (PRI) (Gamon et al. 1992) was selected to 

assess the effects of nonlinearity for two reasons: the first one is that one of the narrow 

bands (570 nm) used in the index was greatly affected by nonlinearity in our instrument 

under solar irradiance. The second reason is that PRI has been widely used in the study 

of photosynthetic efficiency and vegetation productivity, where the first is largely 
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related to the level of radiation and the capability of vegetation to convert this into 

chemical energy through photosynthesis. Under excess radiation, the xanthophyll cycle 

is triggered, so that the excess of energy is liberated as heat, and a relative decrease of 

reflectance in a 50 nm width band centered on 531 nm is produced. The process 

reverses when stress is reduced (Gamon et al. 1992; Garbulsky et al. 2011; Hilker et al. 

2008; Peñuelas et al. 1995).  

PRI (Eq. 6) was computed from SBM and DBM reflectances using the “grass” 

spectra measured in the inter-comparison experiment. Reflectances at 531 and 570 nm 

were linearly interpolated from the adjacent wavebands. 

 

ܫܴܲ ൌ
ହଷଵ௡௠ߩ െ ହ଻଴௡௠ߩ
ହଷଵ௡௠ߩ ൅ ହ଻଴௡௠ߩ

(6)

 

3. RESULTS 

3.1 Field experiment 

Clear differences were found in the spectra acquired by the Unispec DC and the 

other spectrometers involved in the inter-comparison experiment. Only the first 8 

spectra were close to the nominal reflectance of calibrated panels (Figure 2a), whereas 

42 showed mountain-shaped reflectance increases of different magnitude centered on 

453.1 and 566.9 nm, being more prominent for the “grey20” and “grey75” panels 

(Figure 2b). These increases were not noticeable in the vegetation spectra, for which 

reflectance was not known a priori.  
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Figure 2. Absolute reflectance spectra acquired during the inter-comparison experiment 

corresponding to (a) first and (b) ninth rounds for both SBM and DBM reflectances. 

 

Aberrant reflectance increases were coincident with the regions where the 

maximum DN values were reached, occurring only above a certain DN value (Figure 3). 

White reference spectra values were high (> 50,000 DN) in channel B, whereas in 

channel A values were on average 2.7 times lower. 
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Figure 3. “Grey75” panel SBM reflectance versus channels A and B raw DN spectra at 

different wavebands. 

 

3.2 Characterization of linearity under controlled conditions 

The photoresponse of both spectrometers of the Unispec DC was carefully 

characterized under controlled illumination conditions covering the entire instrument’s 

dynamic range. In this case, the nature of the illumination source, a quartz-tungsten- 

halogen bulb, was different from the solar irradiance received during the outdoors 
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experiment. Consequently, maximum values found in the raw DN spectra were centered 

at different wavelengths, around 577.0 and 726.7 nm (Figure 4). At these wavebands, 

coefficients of determination (R2) between integration time and output DN were high 

(above 0.9986 in all the cases). Sensor photoresponses (Eq. 3) were fit to a seventh 

degree polynomial model (Eq. 4), (R2=0.9743 for channel A, R2=0.9581 for channel B).  

 

 

Figure 4. Raw spectra acquired for linearity characterization under controlled 

illumination condition. 

 

In both cases, the photoresponse of the Unispec DC spectrometers decreased 

gradually along most of the dynamic range, and dropped abruptly at the top, above 

50,000 DN. As can be seen in Figure 5, nonlinearity was more acute in the case of the 

channel B sensor. 
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Figure 5. Response of the Unispec DC spectrometers and fitted response seventh degree 

polynomial. 

 

3.3 Nonlinearity correction 

The fitted responses of the instrument, allowed the correction of the field data 

(Eq. 5). This resulted in an overall increase of the corrected DN values, which grew 

larger as the measured values were closer to saturation. Figure 6a shows the corrected 
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and uncorrected raw spectra in DN for all the measurements taken during the ninth 

round of the inter-comparison experiment (Figure. 2b). When reflectance was calculated 

using the corrected DN, mountain-shaped reflectance increases disappeared (Figure. 

6b); moreover, slight changes of reflectance occurred in all the spectra and in those 

regions least affected by nonlinearity. 

 

 

Figure 6. (a) Corrected and original channel B DN spectra. (b) SBM reflectance spectra 

corresponding to the ninth round of the inter-comparison experiment. The dashed line 

immediately next to each spectrum shows its respective uncorrected values. 

 

3.4 Correction error propagation and experimental uncertainties 

Residuals of the fitted response were propagated through Monte Carlo 

simulation of reflectance values. Table 1 shows the averaged values of SBM and DBM 
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simulated reflectances and their propagated uncertainties. Error propagation casted 

larger dispersions the larger the reflectance of the target, but these were similar when 

were normalized by the reflectance (Kruskal-Wallis test, p value > 0.05). Dispersions 

were larger for DBM than for SBM reflectances in all the cases (Kruskal-Wallis test, p 

value < 0.05). 

 

Table 1. Average reflectance uncertainties propagated from non-linearity correction 

errors. 

Ideal  

Reflectance 

Absolute 95 %  

C.I. 

Normalized 95 %  

C.I. 

Absolute 95 %  

C.I. Range 

SBM Reflectance 

0.8000 [0.7925, 0.8073] [0.9906, 1.0091] 0.0148 

0.2000 [0.1982, 0.2018] [0.9910, 1.0089] 0.0036 

0.0752 [0.0745, 0.0758] [0.9911, 1.0091] 0.0014 

DBM Reflectance 

0.8000 [0.7914, 0.8085] [0.9893, 1.0107] 0.0171 

0.2000 [0.1979, 0.2021] [0.9896, 1.0106] 0.0042 

0.0752 [0.0744, 0.0760] [0.9896, 1.0106] 0.0016 

 

The experimental uncertainties corresponding to the inter-comparison 

experiment (the residuals of the mean reflectance) are shown in Table 2. The largest 

dispersions were found in “grey20” reflectance, both for absolute and normalized 

values. The narrowest confidence intervals normalized by reflectance corresponded to 

“grey75.” 
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Table 2. Experimental residuals. 95 % condifence intervals. 

Reflectance Mode Grey 75 Grey 20  Grass plot 

Absolute Intervals 

SBM [-0.0066, 0.0066]  [-0.0109, 0.0146]  [-0.0025, 0.0027] 

DBM [-0.0069, 0.0086]  [-0.0121, 0.0158]  [-0.0024, 0.0026] 

Normalized Intervals 

SBM [-0.0083, 0.0083]  [-0.0543, 0.0730]  [-0.0328, 0.0357] 

DBM [-0.0087, 0.0108]  [-0.0606, 0.0788]  [-0.0322, 0.0346] 

 

3.5 Nonlinearity effects on reflectance 

The computation of SBM and DBM reflectances from modeled linear and 

nonlinear DN representing different levels of energy in the sensors led to similar results.  

Figure 7 shows DBM reflectances and the 95 % confidence intervals 

corresponding to the correction errors and the experimental uncertainties; these are 

plotted against the uncorrected DN value of the white reference, which is used as an 

indicator of the signal level along the dynamic range. 
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Figure 7. Corrected and original DBM simulated reflectance spectra and 95 % 

confidence intervals. (a) “Grey75”. (b) “Grey20”. (c) “Grass”. 

 

As can be seen, differences between linear and nonlinear reflectances were 

significant at the top of the dynamic range, above a different signal level in each case 

(Table 3), depending on the experimental uncertainty. However, when no experimental 

uncertainties were considered, nonlinear reflectances were out of the confidence 

intervals from much lower levels of the dynamic range, especially in the case of the 

dark targets. 
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Table 3. Dynamic range limits for equality of linear and nonlinear reflectances 

Reflectance Mode Grey 75 Grey 20 Grass plot 

Considering correction and experimental uncertainties 

SBM 86.23 % 97.19 % 89.46 % 

DBM 75.93 % 97.76 % 89.46 % 

Considering correction uncertainties only 

SBM 80.00 % 9.78 % 6.79 % 

DBM 31.86 % 11.27 % 8.28 % 

 

3.6 Nonlinearity effects on photochemical reflectance index  

The PRI computed from SBM and DBM reflectances corresponding to the grass 

plot in the inter-comparison were very similar (maximum difference 0.0012). PRI 

became greatly dependent on the energy level that reached channel B during the white 

reference measurement, especially when it was above 50,000 DN (Figure 8a). The PRI 

calculated from corrected SBM and DBM reflectance ranged between -0.0759 and -

0.0642, whereas variation was larger when nonlinearity effects were not corrected (from 

-0.0974 to -0.0650). In order to assess the importance of the biases introduced by 

nonlinearity, the range of variation of PRI values found in different canopies (−0.12, 

0.03) (Garbulsky et al. 2011) was taken as a reference. Figure 8b shows the variation of 

the index along the experiment within this range. As can be seen, uncorrected PRI 

changed its value whenever integration time was readjusted, but decreased again while 

irradiance increased along the experiment. Linear PRI changes represented 7.60 % of 

the range in (Garbulsky et al. 2011), but when computed from nonlinear reflectances, 

variation increased almost three fold (21.38 %). 
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Figure 8. (a) PRI calculated from linear and nonlinear DBM reflectances of the grass 

plot in the inter-comparison experiment. (b) PRI range from (Garbulsky et al. 2011). 

 

4. DISCUSSION 

4.1 Detection, characterization and correction of nonlinearity 

The use of calibrated panels during the inter-comparison experiment and the 

manual setting of integration time allowed the detection of nonlinearity of the Unispec 

DC unit. Nonlinearity caused DN values lower than expected from a perfectly linear 

sensor, which mainly affected the white reference measurements in channel B (Figure 

6). This eventually produced aberrant increases in reflectance when the ratio 

target/reference was computed. The photoresponse characterization revealed the 
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existence of nonlinearity in both channels, where sensor and electronics were likely 

contributors. The method used here to characterize nonlinearity is empirical and 

relative, and it does assume photoresponse uniformity along the sensor array; this is 

usually close to ± 1 % (± 3 % at maximum for Hamamatsu NMOS sensors) 

(Hamamatsu 2011a). Thus, uncertainties introduced by this nonlinearity correction 

should be characterized; especially when the radiance source used for the 

characterization is spectrally different from the irradiance found during the 

measurements (compare Figures 4 and 6). The coefficients of determination between 

integration time and instrument output (commonly used to assess deviations from 

linearity) (Anderson et al. 2011; OceanOptics 2011) were high despite of nonlinearities, 

which may suggest that this analysis is not always capable to determine the existence of 

nonlinearity. Spectral differences between the illumination used for the photoresponse 

characterization and the solar irradiance of the outdoors measurements still allowed data 

correction, since photoresponse nonuniformity along the sensor array was less relevant 

than nonlinearity. 

The manufacturer of the Unispec DC spectroradiometer used in this paper, PP 

Systems (www.ppsystems.com), conducted a similar experiment with a different 

Unispec unit (SC instead of DC), but with the same models of spectrometer and sensor, 

confirming that the nonlinear photoresponses we found were not exclusively shown by 

our unit, though they were different for each instrument. The correction method here 

applied was also successfully tested by PP systems, which released an application note 

on this matter (PP Systems 2012). Nonlinearity would most likely be different for each 

detector and eventually for each instrument, so the particular results stated here are 

perhaps unique to our unit. However, nonlinearity is a common problem in 
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spectroscopy, which may be found in each single spectroradiometer to some degree, 

significant or not. Thus, it would be recommendable to characterize nonlinearity of each 

instrument, among other sources of error. This is especially important for automated 

applications where irradiance conditions may exceed an optimal range. 

 

4.2 Nonlinearity effects on reflectance 

The Monte Carlo method permitted establishing confidence intervals for the 

corrected reflectances, which allowed us to determine at which levels of the dynamic 

range nonlinear reflectances would be significantly different from the corrected ones 

(and thus, correction would be worthy). In an ideal situation where no uncertainty was 

associated with reflectance, differences would be significant for most of the dynamic 

range, especially in the case of dark targets (“grey20,” “grass”), since absolute 

uncertainty of the correction increases with the reflectance value. In this case, the 

threshold of the dynamic range from where nonlinearity is significant only depends on 

the magnitude of nonlinearity affecting both sample and target measurements (in one or 

two channels), and thus on the energy reaching the sensors in each measurement. This is 

eventually controlled by the irradiance, the instrument configuration and the reflectance 

of the target. 

However, experimental uncertainties must be considered. In our simulation, 

these were larger or equal than the errors propagated from nonlinearity correction, 

masking the nonlinearity biases. This way differences were not significant along most 

of the dynamic range, though effects would still be noticeable in some cases below the 

95 % of the range. Since the magnitude of experimental uncertainties would be different 

in each experiment, so would be the significance of nonlinearity; thus, it is not possible 
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establishing an absolute limit for all the cases, as it happens for the different targets 

compared. Simply avoiding the top of dynamic range may not always prevent 

instrumental uncertainties from becoming prevalent over environmental or 

methodological ones. Adjusting the integration time of the sensor to always reach the 

same percentage of the dynamic range (not strongly affected by nonlinearity) for each 

measurement would increase precision, providing data more intercomparable, especially 

if targets’ reflectance is similar. However, depending on the accuracy required by the 

application, data still may not be intercomparable between different sensors or between 

different instrument configurations. Though correcting nonlinearities may reduce 

precision, increasing overall uncertainty (when the correction uncertainties were larger 

than the experimental), it would provide results more accurate and intercomparable. 

Nevertheless, it would always be advisable to avoid the least linear levels of the 

dynamic range, where the number of data available to calibrate the fitted responses (Eq. 

4) would also be lower and less representative of the whole sensor response.  

The effects of nonlinearity on reflectance would depend on each instrument’s 

response, irradiance, target reflectance, and modes of operation and protocols, and their 

significance will depend on the experimental uncertainties and the correction errors; 

whereas the eventual utility of data would be limited by the requirements of each 

application. Thus, characterizing the linearity and the uncertainties associated with its 

correction would be recommended (among other tests) before using any instrument. 

Automatically adjusting integration time for each measurement rather than using fixed 

values or manual configurations would contribute to the intra-comparability of data; 

whereas nonlinearity correction may improve comparison of data from different sources 

when uncertainties analysis recommended it. 
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4.3 Nonlinearity effects on PRI 

Nonlinearity differently affects each sensor bin, depending on the quantum 

efficiency and the radiation sampled, and thus, differently affects each one of the bands 

combined in a spectral index. Moreover, nonlinearity may become critical when 

retrieving weak signals such as vegetation responses to radiation using optical 

information (e.g., fluorescence, PRI (Hilker et al. 2008; Meroni et al. 2009)), since part 

of the detected response may not be physiological but instrumental. PRI, a spectral 

reflectance index used for the estimation of Light Use Efficiency (LUE), responds to 

changes of reflectance at 531 nm, which are compared with reflectance at 570 nm, a 

reference band mainly insensible to LUE control. PRI (and reflectance at 531 nm) 

decreases when LUE does. However, in our case nonlinearity photoresponse led to PRI 

decreases when high levels of energy were measured due to instrument-induced 

increases of reflectance at 570 nm. How the PRI bands are affected by nonlinearity will 

depend on each sensor and the illumination conditions, but effects will most likely be 

different for each band of the index. Therefore, nonlinearity could modify estimations 

of vegetation responses to radiation, since both bias and LUE may be a function of the 

same variable. Additionally, biases may happen to other narrowband spectral indexes 

not analyzed in this paper, though the meaning of these biases may also be different. 

Thus, those automated systems designed to track plant physiology and vegetation 

responses to radiation should follow the recommendations here, since the provided 

optical information may potentially be affected by nonlinearity, misleading responses of 

vegetation to environmental radiation. 
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5. CONCLUSIONS 

This paper emphasizes the importance of performing an exhaustive 

characterization of field portable spectroradiometers before they are used and the need 

for applying calibration and maintenance procedures. Linearity of NMOS type sensors 

can be characterized and data can be corrected in post-process. Uncertainties associated 

with the correction can be quantified and propagated by nonparametric methods. 

Nonlinearity may be a significant problem for spectroradiometers, especially if 

integration time is manually set or fixed, as well as for those automated systems 

tracking vegetation responses to environmental radiation. In these cases, we recommend 

characterizing linearity and correcting data when necessary, and avoid the least linear 

regions of the dynamic range if possible, adjusting integration time for each 

measurement to operate always at the same levels of the dynamic range. 
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ABSTRACT 

We report a nonlinearity effect related to the integration time in a double-beam 

spectroradiometer equipped with two Negative-module Metal–Oxide Semiconductor 

(NMOS) sensors. This effect can be explained by the addition of photoelectrons 

produced by the radiant flux on the sensors during the readout phase to the 

photoelectrons produced during the measurement phase. A new method is proposed to 

characterize and correct both gray-level and integration-time-related nonlinearities in 

NMOS sensors. This method is experimentally simple and outperforms other commonly 

used correction procedures. 

 

Keywords: Radiometry; remote sensing and sensors; photodetectors. 

 

1. INTRODUCTION 

Spectroradiometers are used in the field and in the laboratory to measure land 

surface reflectance factors from spectral radiance measurements, and to collect 

information about their properties. However, the acquisition of accurate and comparable 

data is challenging due to both environmental and instrumental issues (Gamon et al. 

2010; Milton et al. 2009). Among the latter, nonlinearity features of detectors need to be 

properly assessed. A radiometric detector is said to be linear if its response -once the 

dark signal has been subtracted- is proportional to the number of collected photons. 

Linearity is usually affected by various factors, such as charge leakage during the 

readout phase (Ferrero et al. 2006), supraresponsivity (Stock 1986), saturation and anti-

blooming switches (Stevens 1991) or the electronic transformations required to convert 

photoelectrons to digital numbers (DN) (Janesick 2001). During the nonlinearity 
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characterization and correction, the signal generated by the sensor in the absence of 

light (dark signal) must be subtracted. It must be considered that this dark signal is not 

constant, but is a function of the temperature (T) and the integration time (tint); this is the 

time interval during which light reaching the sensor is accumulated and collected to 

generate the analogic signal (Kuusk 2011).  

In the case of the sensors installed in field spectroradiometers, nonlinearity is 

usually corrected as a function of the gray level measured (OceanOptics 2012; Saber et 

al. 2011; Schaepman and Dangel 2000), this is the discrete brightness value produced 

by the analogic-to-digital conversion of the photocurrent generated in a pixel. The 

photoresponse of these sensors is usually almost linear during most of their dynamic 

range. However, Pacheco-Labrador and Martin (2014) reported a nonlinear 

photoresponse larger than that specified by the spectrometer manufacturer in a double-

beam field spectroradiometer (Unispec DC, PP Systems, Amesbury, Massachusetts, 

USA). This response was modeled as a function of the gray level, as is usually done for 

this type of instrument. Nonetheless subsequent and more extensive repetitions of the 

calibration experiment revealed the existence of inconsistencies between the modeled 

photoresponses for the same instrument. Therefore, the existence of other sources of 

nonlinearity than the gray level was analyzed.  

As a result, we propose in this work a methodology to characterize and correct 

nonlinearities that depend on both the gray level and the integration time referred to 

hereafter as Gray-Level and Integration Time-related Nonlinearity correction (GLIT-

NL). The technique requires the same experimental setup that is needed to implement 

other usual methods that characterize gray-level dependencies of photoresponse 

(OceanOptics 2012). Specifically, the GLIT-NL method requires measuring a constant 
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radiance source with different integration times. Therefore, it could be easily 

implemented in most spectroscopy laboratories. 

 

2. METHODOLOGY 

2.1 Experimental setup 

In this work we characterize and correct the nonlinearity of two spectrometers 

integrated in a Unispec DC double-beam field spectroradiometer. The core of the 

instrument consists of two MMS-1 modules (Carl Zeiss, Inc., Thornwood, NY, USA), 

named from now on as “module 1” and “module 2”. Each one is equipped with a silicon 

diode array S8381-256Q NIR-enhanced sensor (Hamamatsu Photonics K.K., Tokyo, 

Japan). This is a Negative-module Metal-Oxide Semiconductor (NMOS) linear image 

sensor, with 256 pixels of 25 µm pitch each. The spectral sampling interval is 3.3 nm, 

the spectral resolution -Full Width at Half Maximum (FWHM)- is less than 10 nm, and 

it covers a spectral range from 300 to 1,100 nm. The Analog-to-Digital Converter 

(ADC) has 16 bits of dynamic range. Measured noise floor (at 25 ± 2.5 ºC) and 

saturation values are 26.7 DN and 65,534.0 DN in module 1, and 28.2 DN and 64,999.0 

DN in module 2. Like most of the NMOS sensors, it uses a charge integration method to 

read out the signal. In this method, the generated charge is temporarily stored in the 

junction capacitance and each photodiode is sequentially read through an output line. 

Therefore, unlike Charge Coupled Devices (CCD) sensors, there is no pixel-to-pixel 

charge transfer, and each pixel is independently read (Hamamatsu 2010, 2011). In the 

Unispec DC, the fixed readout frequency is about 250 Hz. This instrument does not 

have shutters to enable the automatic recording of a dark signal; however, it provides 

temperature readings through a sensor located inside the spectroradiometer.  
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The nonlinearity characterization experiment was carried out at the 

Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), belonging to 

the Spanish National Research Council (CSIC). The experimental setup was similar to 

the one described in Pacheco-Labrador and Martin (2014). A 10 W power-stabilized 

radiance source irradiated an ASD RTS-3ZC integrating sphere (Analytical Spectral 

Devices Inc., Boulder, Colorado), coated with highly reflective (> 95 %) Zenith 

Polytetrafluoroethylene (Sphereoptics Hoffman LLC, Contoocook, NH, USA). Two 

optical fibers, each connected to one of the MMS-1 modules of the Unispec DC were 

placed so that their fields of view were included within an open port of the integrating 

sphere. In order to investigate the linearity of each sensor, forty different integration 

times ranging between 4 and 714 ms were randomly set. Ten spectra were 

simultaneously acquired with each module for each integration time. 

Prior to nonlinearity characterization, the dark signal was measured and modeled 

as a function of the temperature and the integration time. The ends of the optical fiber 

cables connected to each module were covered to avoid sampling any radiation. 3,134 

dark spectra were acquired at different integration times that ranged between 4 and 

1,000 ms. Meanwhile the instrument's temperature was modified between 9.5 and 45.4 

ºC using a Raypa DOD-90 drying oven (R. Espinar, Terrasa, Spain). 

 

2.2 Dark signal characterization 

A negative relationship of the dark spectra (Ndark) with the temperature at low 

integration times was detected; which could be explained by the presence of an 

electronic bias (Nbias) that decreased linearly with the temperature. This bias was added 

to the dark signal resulting exclusively from the thermally-generated signal (N0), which 
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is proportional to the integration time and also varies with temperature. Consequently, 

we assumed that the dark signal measured in each pixel (i) is the sum of two 

contributions, as shown in Eq. (1). The abovementioned Ndark measurements were used 

to estimate the coefficients (a and b) in Eq. (1) by means of a least-square fitting. This 

way, for each measurement, the expected value of Ndark could be predicted as a function 

of the instrument's integration time and temperature as: 

 

ୢܰୟ୰୩,௜ ൌ ୠܰ୧ୟୱ,௜ሺܶሻ ൅	 ଴ܰ,௜ሺݐ୧୬୲, ܶሻ ൌ ൫ܾ଴,௜ ൅ ܾଵ,௜ܶ൯ ൅ ୧୬୲൫ܽ଴,௜ݐ ൅ ܽଵ,௜ܶ ൅ ܽଶ,௜ܶଶ൯	 (1)

 

2.3 Nonlinearity characterization 

We define the gray level recorded in each pixel and exclusively linked to the 

amount of collected electrons as: 

 

ܰ୫ୣୟୱ,௜ ൌ ୮ܰ୦୭୲,௜ ൅ ୢܰୟ୰୩,௜ െ ୠܰ୧ୟୱ,௜ ൌ ୮ܰ୦୭୲,௜ ൅ ଴ܰ,௜ (2)

 

where Nphot,i is the gray level produced only by the incoming photons falling directly on 

the pixel, expressed in Digital Numbers (DN). Therefore, the Nphot,i-to-tint ratio (in 

DN/ms) must be proportional to the radiance (L), that would be estimated through a 

radiance calibration factor for each pixel. This factor is not required for the 

characterization of the nonlinearity, hence we will hereafter refer to the above-

mentioned ratio as “instrumental radiance”, using the notation L*
phot = Nphot /tint. 

Therefore, based on Eq. (2) we obtain: 

 



Chapter 2 

74 
 

୫ୣୟୱ,௜∗ܮ ൌ ୮୦୭୲,௜∗ܮ ൅ ଴,௜∗ܮ (3) 

 

where L*
phot,i is proportional to the radiance over the pixel and L*

0 (N0/tint) is 

proportional to the thermally-generated signal and does not represent radiance. See 

Table 1 for a complete definitions of the variables used. 

As described in 2.1, in order to characterize the nonlinearity we varied the 

integration time of the measurements keeping constant the power of the radiance 

source; this way a perfectly linear sensor would produce a constant L*
phot,i in each pixel. 

Nonlinearity in the sensors used in field spectroradiometers is usually related with the 

gray level measured (Hamamatsu 2011; OceanOptics 2012). To analyze this 

relationship, we computed a value L*
norm for each pixel as the ratio of L*

meas to a 

reference L*
meas spectrum acquired with an intermediate integration time of 431 ms. 

Notice that in OceanOptics (2012) this responsivity is calculated dividing L*
meas,i by the 

maximum value of L*
meas,i instead. 
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Table 1. Variables and functions definition 

Variables and functions definition Symbol Units 

Pixel i - 

Temperature T  ºC 

Integration time tint ms 

Dark signal Ndark DN 

Electronic bias signal N0 DN 

Thermally-generated signal Nbias DN 

Measured signal Nmeas DN 

Photo-generated signal Nphot DN 

Radiance L W m-2 sr-1 

Measured “instrumental radiance” L*
meas DN/ms 

Photo-generated “instrumental radiance” L*
phot 

DN/ms or 

DN/(cd m-2) 

Thermally-generated “instrumental radiance” (does not 

represent radiance) 
L*

0 DN/ms 

Normalized “instrumental radiance” L*
norm - 

Nonlinearity correction function related to the 

integration time 

ԸIT(tint) 
- 

Nonlinearity correction function related to the gray 

level 

ԸGL(Nmeas) 
- 

Residuals from the ԸIT fitting ε DN/ms 

Leakage factor B ms 

Gray level corrected measured “instrumental radiance” L*
measGLcor DN/ms 

Corrected photo-generated “instrumental radiance” L*
cor DN/ms 

 

Figure 1 shows L*
norm vs. Nmeas for all the pixels of module 2 located between 

positions 32 and 202, where noise is low. For each particular pixel, the trail of related 

points represents the different acquisitions, where the integration time ranges between 4 

ms and 741 ms. As expected, the responsivity decreases at the highest gray levels 
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(Hamamatsu 2011; OceanOptics 2012). However in those pixels irradiated by a high 

radiant flux, such as pixel 128, its behavior is completely different than in those pixels 

irradiated by a low radiant flux, such as pixel 32. On one hand, in pixel 128 L*
norm 

seems to be hyperbolically related with the integration time. On the other hand, in pixel 

32 any fitting that took into account the different error bars would led to an almost 

constant L*
norm curve within the whole integration time range.  

 

 

Figure 1. Normalized L*norm vs. Nmeas in pixels 32 to 202 of MMS-1 module 2. Data 

corresponding to pixels 32 and 128 have been highlighted. The error bars represent the 

95 % confidence interval. 

 

A relationship between responsivity and the integration time had been 

previously reported (Ferrero et al. 2006) in CCD detectors. Since light is not blocked 

during the readout phase, the phenomenon could be explained by the leakage of a 

significant amount of electrons during this phase due to pixel irradiation. In that case, 
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the effects on responsivity would be larger the more similar the readout and the 

integration times are. 

Since all the measurements were affected to some degree by both types of 

nonlinearity, the residuals (ε) from fitting of ԸIT were assumed to be related with ԸGL. 

This way, both functions could be fit. To characterize ԸIT two parameters were fit for 

each pixel: A, which represents the L*
meas that the measurements should ideally yield; 

and B, which is related to the readout time and the leakage effect and encompasses the 

dependence of ԸIT on the integration time: 

 

୫ୣୟୱ,௜∗ܮ ൌ ୧୬୲ሻݐ௜Ըூ்ሺܣ ൅ ௜൫ܰ୫ୣୟୱ,௜൯ߝ ൌ ௜ܣ ൬1 ൅
௜ܤ
୧୬୲ݐ

൰ ൅ 	௜൫ܰ୫ୣୟୱ,௜൯ߝ (4)

 

where 

 

Ըூ் ൌ 1 ൅
௜ܤ
୧୬୲ݐ

(5)

 

After a first estimation of A and B, the residuals εi(Nmeas,i) were obtained. By 

considering that they carry all the information about the nonlinearity respect to Nmeas,i, 

they allow ԸGL function to be expressed as the ratio between a nonlinear function 

(L*
meas,i) and a linear function (L*

meas,i - ε,i) respect to Nmeas,i: 

 

Ըீ௅ሺܰ୫ୣୟୱሻ ൌ
୫ୣୟୱ,௜∗ܮ

୫ୣୟୱ,௜∗ܮ െ ௜൫ܰ୫ୣୟୱ,௜൯ߝ
ൌ

ܰ୫ୣୟୱ,௜
ܰ୫ୣୟୱ,௜ െ ୧୬୲ݐ௜൫ܰ୫ୣୟୱ,௜൯ߝ

	 (6) 

 

and a polynomial function was fit to it. 
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Then, Nmeas,i was corrected using the function ԸGL: 

 

୫ୣୟୱୋ୐ୡ୭୰,௜∗ܮ ൌ
ܰ୫ୣୟୱ,௜

Ըீ௅ሺܰ୫ୣୟୱሻݐ୧୬୲
(7) 

 

and both functions were fit again using the gray-level-corrected “instrumental radiance” 

L*
measGLcor,i in the place of L*

meas,i in Eq. (4). The errors from the second fit were added 

to the ones previously got and used both to calculate ԸGL by Eq. (6).  

Figure 2 shows the fit of ԸIT in the pixel 128 of the module 2; the “instrumental 

radiance” is plotted against the integration time. As can be seen, data initially cannot fit 

the hyperbolic model, especially those corresponding to the largest gray levels. 

However, the accuracy of the fit improved when the ԸGL correction function is applied. 

 

 

Figure 2. L*meas vs. integration time (tint) during the simultaneous fit of parameters A 

and B in the pixel 128 of module 2 before and after ԸGL correction is applied. 
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Once fit the two nonlinearity correction functions it was observed that the 

magnitude of the leakage charge, represented by B, was not independent of the pixel 

position. That is because every pixel is irradiated at different level and it was obtained 

that B was tightly linked to the gray-level-corrected “instrumental radiance” calculated 

from Eq. (7), which suggests that the observed leakage depends on the irradiance 

striking the pixel. Therefore, B was not used as a constant coefficient associated to each 

pixel, but modeled as a function of the measured L*
measGLcor,i. A single model was 

adjusted for each module using data from all the pixels to estimate coefficients C and D: 

 

ܤ ൌ ܥ െ
ܦ

୫ୣୟୱୋ୐ୡ୭୰∗ܮ
log ൬1 ൅

୫ୣୟୱୋ୐ୡ୭୰∗ܮ
ܦ

൰ (8)

 

Prior to the fitting, those data that showed the highest noise levels were 

discarded. After characterizing the responsivity of each spectrometer module; the 

correction of nonlinearity can be accomplished as: 

 

ୡ୭୰,௜∗ܮ ൌ
୫ୣୟୱ,௜∗ܮ

Ըீ௅൫ܰ୫ୣୟୱ,௜൯Ըூ்ሺݐ୧୬୲ሻ
െ ଴,௜∗ܮ ൌ

୮୦୭୲,௜∗ܮ ൅ ଴,௜∗ܮ
Ըீ௅൫ܰ୫ୣୟୱ,௜൯Ըூ்ሺݐ୧୬୲ሻ

െ 	଴,௜∗ܮ (9)

 

Here it has been assumed that the nonlinear correction does not have a 

significant impact on L*
0, therefore the same value has been used for both the corrected 

and the non-corrected dark signals. 
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2.4 Validation 

In a pixel with a perfectly linear responsivity, Nphot,i is a linear function of the 

number of photons impinging on the pixel during the collection phase. This way, the 

rate of the gray level measured to any variable that modifies the amount of collected 

photons, e.g. integration time or radiant flux, would be constant. For this reason, in 

order to validate the GLIT-NL correction model, we assessed its ability to reduce the 

variability of this ratio, represented by L*
meas,i. On one hand, we used different 

integration times under a constant radiance; on the other, we also used a constant 

integration time under different radiance levels. In this second case, L*
meas,i was 

calculated as the ratio of Nphot,i to the corresponding luminance value set in the light 

source (Table 2).  

 

Table 2. Validation Scheme Summary 

Tested datasets 

Dataset Radiance Source Modified variable 

GLIT-NL 

experiment 
10 W tungsten bulb Integration time 

FSF Inter-

comparison 

Hoffman Engineering LS-65-8D (Tungsten) 

Luminance/radiance standard source 
Radiance 

Ocean 

Optics Lamp 
Mercury-argon calibration source Integration time 

Correction models compared 

Model Calibration dataset 
tint range 

(ms) 

Correction 

functions 

GLIT-NL GLIT-NL experiment 4 - 741 ԸIT, ԸGL 

OOLIT GLIT-NL experiment 4 - 741 ԸGL 

OOHIT Pacheco-Labrador and Martin (2014) 50 - 1350 ԸGL 
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The performance of the GLIT-NL method was compared with the nonlinearity 

correction method commonly applied to field spectroradiometers and proposed by 

OceanOptics (OOINL) (OceanOptics 2012). This method only takes ԸGL into account. 

Moreover, in order to assess the impact of the integration-time-related nonlinearities on 

this method, we determined two different ԸGL correction functions, each based on a 

different experimental dataset (Table 2). The first correction function, from now on 

called Ocean Optics correction using High Integration Times (OOHIT), was established 

by using spectra that had been acquired with integration times much larger than the 

readout time of the sensors. OOHIT was calibrated in a previous work (Pacheco-

Labrador and Martin 2014) using the same experimental setup and instrumentation; the 

minimum integration time was 50 ms. A second correction model, Ocean Optics 

correction using Low Integration Times (OOLIT), was established by applying the 

OOINL method to the data acquired for the GLIT-NL calibration dataset. In this case, 

the minimum integration time was 4 ms and data had to be smoothed using RLOWESS 

(Cleveland 1979) prior to the model fit. 

The three models GLIT-NL, OOHIT and OOLIT were used to correct three 

different datasets. Firstly, the correction model was applied to the same data used for 

characterization of GLIT-NL, previously described. Secondly, the correction was 

applied to spectra acquired with the Unispec DC from a Hoffman Engineering LS-65-

8D Luminance/radiance standard source at the NERC Field Spectroscopy Facility, 

University of Edinburgh. In this experiment, the integration time was kept constant at 

122 ms, and the power of the radiance source was changed between 171.3 cd/m2 and 

3426.2 cd/m2. In this case L*
meas was calculated as the ratio of Nphot,i to the 

corresponding luminance set in the light source. This way, the possible effect of 
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supraresponsivity (Ferrero et al. 2005), not directly considered in the GLIT-NL model, 

was at least partly assessed. Additionally, corrections were also applied to a set of 

narrow-band spectra that were acquired using a mercury-argon calibration source 

(Ocean Optics, Dunedin, FL, USA) with different low integration times: 4 ms, 6 ms and 

7 ms, to avoid saturation. The models that describe ԸGL, Eq. (6), and B, Eq. (8), rely on 

the assumption that the behavior of all the pixels is the same, though differences could 

exist. Since the emission spectra of the mercury-argon lamp and of the tungsten lamps 

used in the other experiments are very different, this allowed testing if this assumption 

could be accepted. 

 

3. RESULTS 

3.1 Dark signal characterization 

A dark signal model was fit for each pixel. For the pixels in modules 1 and 2 the 

coefficients of determination (R2) were 0.995 and 0.994 respectively. Relative Root 

Mean Squared Error (RRMSE) was 2.83 % in module 1 and 2.53 % in module 2. Figure 

3 shows the different models for a single pixel belonging to module 2. The predicted 

bias and dark signal (a) and the dark readings (b) are depicted as a function of the 

integration time for three different temperatures. As can be observed from the figure, 

the bias decreases with the temperature and is usually larger than N0. The dark signal 

(Nbias + N0) increases with the integration time and also (and to a larger extent) with the 

temperature. 
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Figure 3. (a) Predicted dark current and electronic bias and (b) predicted and measured 

total dark signal versus integration time at different temperatures. Modeled data are 

depicted with lines, and measurements with dots. The simulations correspond to pixel 

128 of module 2. 

 

3.2 Nonlinearity 

The spectra acquired for the nonlinearity characterization practically covered the 

dynamic range of the spectroradiometers. Maximum Nmeas values were located at pixel 

126 in module 1 and at pixel 128 in module 2. For the rest of the pixels, gray levels 

decreased towards the sensor's ends to almost dark signal values. The function ԸGL 

characterized from the residuals in the fit of the ԸIT correction function. For ԸGL, the 

RRMSEs of the fit were 0.30 % and 0.40 % in modules 1 and 2, respectively. Figure 4 

shows ԸGL fitted in module 2 vs. Nmeas, for both the GLIT-NL curve and measured data. 

Moreover, the data and the curves of the models OOHIT and OOLIT are also shown. 

The three curves decrease slowly across most of the dynamic range and then experience 
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a sudden drop at its upper end. The responsivities estimated by the OOHIT and the 

OOLIT models are lower than that predicted by GLIT-NL. Moreover, OOLIT predicts a 

sudden initial drop of ԸGL at the lower end of the radiometric range. This results in 

OOLIT yielding lower values than the other two functions throughout the radiometric 

range under study. 

 

 

Figure 4. ԸGL correction functions in module 2, computed using three different methods 

 

The fit of the function ԸIT was initially affected by the nonlinearity related to the 

gray level. However, the ԸGL correction led to an increase of the fitting accuracy and 

eventually the mean RRMSE was as low as 0.32 % and 0.39 % in modules 1 and 2, 

respectively. Figure 5a shows parameter B vs. the pixel position in the spectrometer of 

module 2. Negative values are seen in both ends of the array, where the signal is too 

noisy to enable a reliable fitting. Figure 5b shows the relationship between B and 
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L*
measGLcor. B grows rapidly at first and then levels off to become asymptotic to a 

saturation level. RRMSEs were 8.98 % and 9.37 % in modules 1 and 2, respectively.  

 

 

Figure 5. Estimated B for each pixel in module 2 (a) and B modeled as a function of 

L*measGLcor (b) in module 2 

 

3.3 Validation 

Figure 6 (left column) shows L*
phot,i spectra corresponding to the three validation 

datasets in module 2 (Table 2). An assessment of the performance of the three different 

methods is included in the same figure (right column). Figures 6a and 6b show the same 

data used for the GLIT-NL calibration, Figures 6c and 6d correspond to the spectra 

acquired with a fixed integration time and varying light source's luminance -notice that 

L*
phot,i is in DN cd-1 m2-, and Figures 6e and 6f show the mercury-argon lamp spectra 

for three different integration times. Figures 6a, 6c and 6e depict L*
phot,i spectra both 

with and without GLIT-NL correction. 
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Figure 6. Left: L*
phot,i spectra with and without GLIT-NL correction for the different 

validation datasets: (a) calibration, (c) FSF-NERC lamp, and (e) mercury-argon lamp. 

L*
phot,i is given in DN/ms in (a) and (e) and in DN cd-1 m2 in (c). Right: The curves 

represent, for each pixel, the ratio between the standard deviation of the non-corrected 

data and the standard deviation of the data that has been corrected with OOHIT, OOLIT 

or GLIT-NL. (b) corresponds to the calibration dataset, (e) to the FSF-NERC lamp, and 

(d) to the mercury-argon lamp. 
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Similarly, Figures 6b, 6d and 6f show, for these L*
phot,i, the ratio of the non-

corrected to the corrected standard deviations for each pixel. This ratio is a good 

indicator of the improvement achieved by the correction carried out with the GLIT-NL, 

OOLIT and OOHIT models, respectively. As can be inferred from the figure, the GLIT-

NL method significantly reduces L*
phot,i variation in each pixel, and this effect is 

observed for the different datasets. The comparison between GLIT-NL and the models 

that only characterize ԸGL reveals that the former achieves a better correction of the 

nonlinearities, both using the calibration dataset (Figure 6b) and also with independent 

data (Figures 6d and 6f). The standard deviation of L*
phot,i was reduced in each 

validation up to 10.54, 4.78 and 25.35 times (Figures 6b, 6d and 6f, respectively) by the 

GLIT-NL correction; whereas the maximum drop amounted to only 6.27, 2.99 and 1.29 

times, respectively, with OOHIT and to 1.76, 2.23 and 1.23 times when using OOLIT. 

 

4. DISCUSSION 

In this work, we analyzed the nonlinearity in two NMOS sensors integrated in a 

Unispec DC spectroradiometer. The dependence of responsivity on gray level is usually 

characterized and corrected in the sensors integrated in field spectroradiometers. 

Nonetheless, results proved that responsivity was also affected by the integration time 

set. This phenomenon had been previously reported in CCD imager sensor (Ferrero et 

al. 2006). In both cases, it was concluded that the phenomenon was due to the leakage 

of photo-generated electrons in the photodiode during the readout phase; these electrons 

would be added to those generated during the integration time. However, a full 

characterization was not possible in (Ferrero et al. 2006) because the effect was 

dependent on three factors: (1) the radiant power's spectral distribution; (2) the lens' 
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numerical aperture -due to the variation of the inclination distribution of the rays- and 

(3) the pixel-to-pixel charge transfer along the sensor columns. The first two factors 

would influence the geometry of the irradiation and absorption on each pixel (i.e., the 

pixel region that is irradiated) and, therefore, would affect the distribution of the photo-

generated electrons in the detector bulk. The third factor would not allow the leakage 

effect to be characterized in each individual pixel. On the contrary, the NMOS sensors 

characterized in this work presented certain features that allowed the characterization of 

the dependency of responsivity on both, the gray level and the integration time: (1) each 

pixel is irradiated by a narrow spectral band (2) the spectrometer's slits and entrances 

would produce a constant numerical aperture, and (3) no charge is transferred across 

neighboring pixels because it is read out separately from each individual pixel. The two 

first factors would produce a constant angular distribution of radiation on the sensor, so 

that changes in the irradiated area would be minimal. Irradiation geometry could still be 

affected by the temperature due to spectral calibration dependencies (Maleki and 

Petersen 1997), and by sharp changes in the radiant power's spectral distribution with 

each pixel waveband. However, these changes could be considered negligible due the 

spectral features of the sensors characterized. The third factor makes possible the 

characterization of the pixels on an individual basis, since the number of photoelectrons 

is not influenced by the number of photoelectrons of adjacent pixels. 

Though the two first factors are common to the most of the linear sensors 

usually integrated in field spectroradiometers, the third is not usually applicable since 

these are most frequently CCDs. Therefore, the characterization and correction 

proposed in this work could not be extended to these sensors. Nonetheless, the 

understanding of the phenomenon is still valuable and its presence should be kept in 



Characterizing Integration Time and Gray-Level-Related Nonlinearities in a NMOS Sensor 

89 
 

mind. As shown, this type of nonlinearity goes unnoticed unless very low integration 

times, close to the readout time of the sensor, are used in the nonlinearity 

characterization. Moreover, the responsivity of a large number of pixels must be studied 

across the sensor array. Thus, this effect is unlikely to be detected by the commonly 

applied OOINL algorithm (OceanOptics 2012), which only includes 9 pixels in its 

nonlinearity characterization procedure. Such small sample could lead to confound ԸIT 

with noise in those pixels with low gray level. On the contrary, when a large number of 

pixels is used to characterize nonlinearity, as it was the case in the present study, 

different pixel-position-related trends can be observed, revealing that this nonlinearity is 

not simply noise or sensor unevenness, but a systematic effect (Figure 4). 

This phenomenon had not been observed in previous nonlinearity 

characterization experiments carried out in the laboratory because low irradiance levels 

and typically large integration times had been used. Though the influence of the 

integration time on the nonlinearity of the sensor can be unnoticed, it still can influence 

the characterization of the gray-level-related nonlinearity, as happened in Pacheco-

Labrador and Martin (2014). As shown in Figure 4, when this factor is not accounted 

for, the dependency of responsivity on the gray level is overestimated. This could be 

explained because, in the OOINL method, responsivity values are calculated by 

normalizing the L*
phot to each pixel's maximum L*

phot, while ԸIT induces an increase of 

L*
phot for low integration times (Figure 2). As expected, the overestimation of the effects 

of nonlinearity related with the gray level was more pronounced in the OOLIT than in 

the OOHIT model (Pacheco-Labrador and Martin 2014), which is consistent with the 

hyperbolic dependence of ԸIT on the integration time.  



Chapter 2 

90 
 

In the Unispec DC, the integration time can be set between 4 and 4,000 ms, 

whereas the sensor's readout time ranges between 2.5 and 3.5 ms (PPSystems 2013). 

Even though it is in fact lower since it has to be divided by the number of pixels in the 

sensor, -ranging then between 9.8 ns and 13.7 ns in each pixel-, this readout time is 

large enough to induce a significant nonlinearity in the measurements. In other 

commercially available field spectroradiometers the integration time can also be set to 

be close to the readout time (OceanOptics 1996, 2001), which can lead users to include 

this bias effect in the measurements without being aware of it.  

The GLIT-NL method characterizes the function ԸGL from the residuals in the 

fit of ԸIT. This is possible since these residuals are mainly produced by the dependency 

of responsivity on the gray level. However, like others methods (OceanOptics 2012; 

Pacheco-Labrador and Martin 2014), the GLIT-NL assumes that the response of all the 

pixels of a sensor is the same. This would introduce some uncertainty in the correction 

procedure; however, validation shows that the differences between pixels are less 

relevant than the corrected nonlinearities. Other works have also reported nonlinearities 

independent of the wavelength in photodiode arrays (Saber et al. 2011). The calibration 

of a model for each sensor pixel would require that the full dynamic range was 

completely covered for all the pixels during the characterization experiment. Though 

GLIT-NL does not characterize each pixel separately, this method is experimentally 

affordable and easy to implement in most spectroscopy laboratories. 

In the GLIT-NL model, B represents the pixel's charge leakage rate between the 

detection and the register phases multiplied by the readout time. Results suggest that B 

varies with the radiant flux impinging on each pixel, reaching a saturation level above a 

given radiant flux level, as if the charge leakage rate would depend on the 
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photoelectrons generated during the readout rate until a given density of electrons is 

reached. For this reason, a saturation function was chosen to characterize the 

relationship between B and the “instrumental radiance” Eq. (8). 

Since the characterization method is based on the residuals of one of the models 

fit, a robust validation scheme has been proposed to demonstrate that this is not just a 

way of improving the fit of experimental data. Therefore, the performance of the GLIT-

NL method has been tested with datasets of different characteristics: On one hand, we 

used the data acquired for the characterization of the nonlinearities; on the other, we 

also used independent data acquired using a different methodology or from a radiance 

source with a very different emission spectrum curve (Table 2). In all the cases, the 

performance of GLIT-NL method has been compared with other correction models. The 

method proposed in this work outperformed those methods that only correct for ԸGL. As 

show in Figure 6, validation was carried out using different radiance levels, the highest 

levels being reached with the mercury-argon lamp. It is worth pointing out that this is 

not a trivial issue, since radiance level determines the integration time to be selected and 

the value of B, but the radiance levels found in the field and in the laboratory can differ 

significantly. For instance, the maximum “instrumental radiance” levels reached by the 

tungsten lamps in the experiments described ranged between 60 DN/ms and 100 

DN/ms, whereas in the case of the mercury-argon lamp they exceeded 5,000 DN/ms. 

Field measurements acquired under solar irradiance during a Summer clear-sky day can 

reach maxima L*
meas between 1,000 DN/ms and 3,000 DN/ms with integration times 

between 19 ms and 39 ms. These low integration times and high radiance levels could 

potentially induce significant deviations in the acquired spectra. Therefore, as shown in 

the validation, methods that only account for ԸGL may not always be successful at 
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correcting nonlinearities in field measurements. GLIT-NL does not correct for 

supraresponsivity, which depends on the factor (N-N0)×tint (related with irradiance), 

since this effect did not become evident for the range tested with our spectroradiometer, 

but a very similar methodology may be developed if required. 

Several approaches have been used to characterize nonlinearity in radiometric 

instrumentation. Usually, the response to different irradiance levels have been 

characterized using methods based on the superposition of sources, but also others 

(Saber et al. 2011; Schaepman and Dangel 2000). In the case of field 

spectroradiometers, different integration times are frequently used to achieve a range of 

signal that allows the characterization (OceanOptics 2012; Pacheco-Labrador and 

Martin 2014). In these cases, results show a decrease of linearity as the signal gets close 

to saturation, due to different reasons (ADC, supraresponsivity…) (1993). However, the 

impact of the integration time has not been so usually analyzed. Saber et al. (2011) also 

found a decrease of linearity at larger integration times, which was interpreted as a loss 

of photoelectrons during the storage of the charge. 

The Unispec DC and other field spectroradiometers are frequently used to 

measure reflectance factors and sometimes also radiances. Reflectance factors are 

obtained as the ratio of two measurements over the same pixel. This means that 

nonlinearities could mutually cancel out if they were of similar magnitude in each pixel. 

However, in some cases, the signal differences between the down-welling irradiance 

(using reference panels and/or cosine receptors) and the up-welling radiance (which is a 

function of the down-welling irradiance and the fraction of it reflected by the measured 

target), could lead to different nonlinearity magnitudes that would not cancel out during 

the calculation of reflectance factors. As discussed in a previous work (Pacheco-
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Labrador and Martin 2014), nonlinearities could play an especially relevant role in 

certain applications where both, the nonlinearities and the variable of interest, depend 

on the irradiance level. In the context of remote and proximal sensing, examples include 

the quantification of radiance; the study of short-term vegetation stress by measuring 

slight reflectance changes related to the Xanthophyll cycle (Gamon et al. 1992) and sun-

induced fluorescence (Meroni et al. 2009); or the characterization of the bidirectional 

reflectance distribution function. In all these cases the measured radiance would 

determine the integration time to be selected and the gray level of each pixel -and, 

therefore, its nonlinearity. However, the integration time and the gray level would be 

also related to down-welling irradiance, illumination and observation angles and 

possibly to the vegetation physiology as well. 

 

5. CONCLUSIONS 

The GLIT-NL method is proposed to characterize nonlinearities related with the 

gray level and the integration time in NMOS sensors integrated in MMS-1 

spectrometers of a Unispec DC spectroradiometer. The method has been robustly 

validated, and it has been proved that linearity is better achieved when the dependencies 

on the integration time are characterized and corrected. The source of this nonlinearity 

is the addition of spurious electrons due to pixel irradiation during the readout phase. 

Therefore, it could potentially affect other sensors not tested here, as in Ferrero et al. 

(2006). Pixel-to-pixel charge transfer in CCD sensors makes the application of this 

method impossible; however, users still should be aware of the phenomenon and avoid 

the use of integration times that are close to the sensor’s readout time. GLIT-NL 

improves the instrumentation performance under large irradiance levels, when 
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integration times close to the readout time must be set to avoid saturation. These 

conditions can be found both outdoors and in the laboratory. Therefore, the 

quantification of radiometric variables, the measurement of reflectance factors, and the 

characterization of sensors could potentially be improved by this method. The present 

work’s findings stress the need to match the radiance levels used for field 

spectroradiometers’ characterization with those later found outdoors, so as to obtain 

reliable field measurements. 
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ABSTRACT  

Field spectroradiometers integrated in automated systems at Eddy Covariance 

(EC) sites are a powerful tool for monitoring and upscaling vegetation physiology and 

carbon and water fluxes. However, exposure to varying environmental conditions can 

affect the functioning of these sensors, especially if these cannot be completely 

insulated and stabilized. This can cause inaccuracy in the spectral measurements and 

hinder the comparison between data acquired at different sites. This paper describes the 

characterization of key sensor models in a double beam spectroradiometer necessary to 

calculate the Hemispherical-Conical Reflectance Factor (HCRF). Dark current, 

temperature dependence, nonlinearity, spectral calibration and cosine receptor 

directional responses are modeled in the laboratory as a function of temperature, 

instrument settings, radiation measured or illumination angle. These models are used to 

correct the spectral measurements acquired continuously by the same instrument 

integrated outdoors in an automated system (AMSPEC-MED). Results suggest that part 

of the instrumental issues cancel out mutually or can be controlled by the instrument 

configuration, so that changes induced in HCFR reached about 0.05 at maximum. 

However, these corrections are necessary to ensure the inter-comparison of data with 

other ground or remote sensors and to discriminate instrumentally induced changes in 

HCRF from those related with vegetation physiology and directional effects. 

 

Keywords: Spectroradiometer; automated system; characterization; sensor model; dark 

current; nonlinearity; temperature dependence; spectral calibration; cosine directional 

response; hemispherical-conical reflectance factor. 
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1. INTRODUCTION 

Linking gas exchange measurements taken at single-point EC sites with spatial 

information provided by remote sensing is key to globally quantify and monitor the 

“breathing” of the planet (Gamon et al. 2006b). However, the connection between these 

data sources is challenging due to the existence of spatial and temporal mismatches. 

Unattended ground-set optical sensors have the advantage of overcoming the temporal 

mismatch existing between the continuous micrometeorological measurements acquired 

by the EC systems and the periodic overpass of remote sensors. This way, information 

relative to the optical properties of vegetation can be directly related with the biospheric 

carbon and water fluxes, and used to upscale the flux information from site to local, 

regional and global scales (Gamon et al. 2010; Gamon et al. 2006b). Though the use of 

single or multi-spectral sensors at EC sites is more frequent due to their low cost and 

easy installation (Balzarolo et al. 2011), hyperspectral sensors (spectroradiometers) are 

being gradually installed at these sites (Balzarolo et al. 2011; Gamon et al. 2010). These 

sensors sample radiation in narrow and overlapping bands continuously arranged along 

the spectral domain, typically covering the visible and Near Infrared (NIR) regions. On 

one hand, such detailed optical information can be related with the physiological and 

biochemical status of vegetation on the other it can be flexibly matched with the 

spectral bands of other remote sensors (Hilker et al. 2010a; Hilker et al. 2012; Hilker et 

al. 2009b). 

However, though information provided by spectroradiometers is rich and 

detailed, large uncertainties can affect the quantities of these spectral measurements 

(Kostkowski 1997; Milton et al. 2009). This can be specially an issue in the case of 

unattended outdoor systems, which may face wide ranges of environmental conditions 
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in terms of temperature, irradiance or illumination geometry, among others. These 

factors can produce changes in the radiometric quantities and in the computed 

reflectance factors which are not related with the optical properties of the target covers. 

Among the instrumental sources of uncertainty that can affect field spectroradiometers 

there are: the dark current, nonlinearity, temperature dependence, spectral calibration or 

the directional response of the cosine receptors. 

The dark current (DC) is a residual electrical current produced by a 

photosensitive device when this is not illuminated. It varies with the sensor’s 

temperature (T) and the integration time (tint) (Kuusk 2011); which is the period while 

radiation is sampled in the sensor. The dark current is added to the photocurrent 

produced by the radiation, and its impact is larger the lower the photogenerated signal in 

the pixel.  

The nonlinearity (NL) is a variation in the proportionality between the radiance 

sampled and the output signal generated by the instrument. Nonlinearity can be related 

with the gray level measured in each pixel; this makes less comparable the 

measurements taken under different radiation levels, measurements of targets of 

different bright, and for the different pixels of the array (Pacheco-Labrador and Martin 

2014; Saber et al. 2011). Moreover, nonlinearity can be also related with the integration 

time when this is close to the sensor’s readout time (Ferrero et al. 2006). This artifact 

had been previously reported but not corrected in CCD cameras (Ferrero et al. 2006); 

however a correction method valid for NMOS sensors was recently proposed by 

Pacheco-Labrador et al. (2014). 

The energy bandgap of semiconductors, and therefore their photoresponse, is 

inversely related with their temperature. This phenomenon is known as temperature 
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dependence (TD), and especially affects the near infra-red region in the case of silicon 

photodiodes (Markham et al. 1995; Starks et al. 1995). Heat can also slightly modify the 

spectrometer dimensions and consequently the center and width of the spectral bands; 

the spectral range within each pixel is illuminated. The spectral calibration (SC), which 

is the function that relates the center of these bands with each pixel, can show thus a 

dependence on temperature. The accuracy and precision of SC is key when integrating 

information of different sensors or for fine resolution applications (Anderson et al. 

2006; Bachmann et al. 2012; Guanter et al. 2006) 

Finally, in the case of the sensors that sample hemispherical irradiance using 

cosine diffusers, the directional response of the cosine receptor (CR) can be also an 

issue. Ideally, the CR is the cosine of the illumination zenith angle (θs); however, 

deviations from this behavior would introduce artifacts in the measurement of 

irradiance. The correction would require accounting for the fractions of diffuse and 

direct radiation in the environment (Meywerk and Ramanathan 1999).  

Some of the abovementioned instrumental artifacts could be controlled, e.g., 

stabilizing the temperature of the instrument (Daumard et al. 2010; Drolet et al. 2014) 

but this might not always be possible. Also others are inherent to the instrument design 

so they cannot be prevented but should be characterized (e.g., nonlinearity, or 

directional response of cosine receptors). Some of these artifacts have already been 

considered and corrected in automated systems in different ways (Drolet et al. 2014; 

Gamon et al. 2006a; Hilker et al. 2007; Meroni et al. 2011; Middleton et al. 2013), 

however to the best of our knowledge a full characterization accounting for all the 

factors identified in this work has not been previously reported. 
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The aim of this work is characterizing the instrumental responses of a field 

spectroradiometer integrated in an automated system currently installed in an EC site, to 

allow the correction of the Hemispherical-Conical Reflectance Factor (Nicodemus et al. 

1997). This would help to improve the inter-comparison of data, the upscale of spectral 

information and the separation between observed changes in the optical properties of 

vegetation caused by instrumental factors from those directionally, phenologically, and 

physiologically induced. 

 

2. MATERIALS AND METHODS 

2.1 Instrumentation  

We describe the characterization of a commercial double beam field 

spectroradiometer (Unispec DC (SN 2038), PP Systems, Amesbury, MA, USA). This 

instrument allows calculating HCRF by simultaneously sampling up-welling (channel 

2) and down-welling (channel 1) radiation. Channel 2 is a bare optical fiber (UNI685-6, 

PP Systems) whereas channel 1 is an optical fiber but with a cosine receptor (UNI686-6 

+ UNI435, PP Systems). Each channel is equipped with a Monolitical Miniature 

Spectrometer 1 (Carl Zeiss, Inc., Thornwood, NY, USA), composed by a fixed grating 

and a silicon diode array S8381-256Q NIR-enhanced sensor (Hamamatsu Photonics 

K.K., Tokyo, Japan). The Unispec DC operates in the Visible-NIR (300–1100 nm) with 

a radiometric resolution of 16 bits, a nominal bin size of 3.3 nm and < 10 nm of spectral 

resolution (Full Width at Half Maximum, FWHM). The instrument does not have 

shutters to automatically record dark current but provides temperature readings through a 

temperature sensor inside the spectroradiometer which can be used to model DC (Hilker et 

al. 2007).  
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This spectroradiometer has been installed in the field as the core instrument of 

an AMSPEC system (Hilker et al. 2007; Hilker et al. 2010b), in the Majadas del Tiétar 

FLUXNET site (www. fluxnet.ornl.gov), Cáceres, Spain (denominated AMSPEC-MED 

system). These systems can continuously sample canopy spectra at different viewing 

and illumination angles in order to characterize the canopy bidirectional reflectance 

distribution function and estimate Light Use Efficiency (LUE) and other biophysical 

variables (Hilker et al. 2009a; Hilker et al. 2008; Hilker et al. 2010a). The AMPSPEC-

MED system is powered by solar panels. Power constrains do not allow stabilizing the 

instrument temperature as in other unattended systems (Daumard et al. 2010; Drolet et 

al. 2014), thus fans are used instead when air temperature goes over 30 °C.  

In the EC site, diffuse-to-global radiation ratios (DGr) are continuously 

measured and integrated every ten minutes by a SPN1 Sunshine Pyranometer (Delta T 

Devices, Cambridge, UK). This instrument samples global and diffuse irradiance 

between 400 and 2800 nm. As in our study spectral DGr is needed to correct CR, this 

has been modeled using an ASD Fieldspec® 3 spectroradiometer (Analytical Spectral 

Devices Inc., Boulder, CO, USA), with a spectral range (350 to 2500 nm) close to the 

pyranometers’s one, and a calibrated Spectralon® panel (Labsphere Inc., North Sutton, 

NH, USA). 

Prior to field deployment, the Unispec DC was characterized in the 

Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab-CSIC, Spain). 

As in the AMSPEC-MED, the Unispec DC User Interface Computer was bypassed and 

the instrument was controlled through a RS-232 connection using a fit-PC2i computer 

(CompuLab, Yokneam, Israel); and controlled using a Matlab routine (Hilker et al. 

2007; Hilker et al. 2010a). For the characterization in the laboratory, an ASD RTS-3ZC 
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integrating sphere (Analytical Spectral Devices Inc.) was used as homogenous light 

source. The sphere’s inner surface coating is highly reflective (> 95 % Zenith 

Polytetrafluoroethylene (PTFE), Sphereoptics Hoffman LLC, Contoocook, NH, USA); 

and it is illuminated by a 10 W quartz-tungsten-halogen bulb powered by a stabilized 

source. A collimated beam is sent through one of the ports of the sphere and reflected 

by a 99 % Zenith PTFE in front of it. Radiation is scattered in all directions and 

measured through a second open port, normal to the collimated beam, where both 

Unispec DC optical fibers are aimed.  

A mercury-argon calibration source (Ocean Optics, Dunedin, FL, USA) and a 

250 W quartz-tungsten-halogen bulb irradiance source (OSRAM GmbH, Munich, 

Germany) have been used for spectral calibration and the characterization of the cosine 

receptor directional response respectively. The spectroradiometer temperature was 

regulated using a drying oven Raypa DOD-90 (R. Espinar, Terrasa, Spain) and a fridge 

CTP 31213 (Lieberh, Ochsenhausen, Germany).  

 

2.2 Experimental setup 

This section describes the experiments and measurements carried out in order to 

characterize the Unispec DC spectroradiometer responses under different environmental 

conditions and instrument settings. 

 

2.2.1 Dark current 

DC was characterized as a function of the integration time and the sensor’s 

temperature. The optical fibers connected to the instrument were covered to block the 

entrance of light. Like in the other experiments described in this work, where the 
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instrument temperature was modified, the spectroradiometer was first cooled down in 

the fridge. Then the experiment started and measurements were done while it was 

warmed up in the oven. Once it reached a maximum temperature, the instrument was 

cooled down at environmental conditions, while a second set of measurements was 

taken. In the cold down experiments the instrument never reached temperatures as low 

as those used at the beginning of the warm up since cooling was not forced. This way, 

two different models were adjusted both for the warm-up and the cool-down processes. 

DC measurements started when sensor temperature was 9.5 °C, when it reached 45.4 °C 

the instrument was cooled down to 24.2 °C (Table 1).  

 

Table 1. Summary of the calibration experiments carried out with the Unispec DC 

spectroradiometer. In the third column: Wp = Warm-up model. Cd = Cool-down model. 

St = Stable temperature. 

Experiment tint (ms) T (°C) 
Recorded 

Spectra 

Dark current 
4 , 10, 15, 20, 25, 30, 35, 40, 50, 75, 

100, 250, 500, 1,000 

Wp: [9.5, 45.4] 

Cd: [45.4, 24.2] 
3840 

Nonlinearity 

4, 6, 9, 11, 13, 15, 17, 18, 20, 22, 24, 

25, 27, 29, 31, 33, 34, 36, 38, 71, 105, 

139, 172, 206, 240, 273, 307, 341, 

375, 408, 442, 454, 476, 509, 543, 

577, 610, 644, 676, 741 

St: [22.7, 23.9] 419 

Temperature 

dependence 
190, 283, 376, 469 

Wp: [13.9, 46.1] 

Cd: [46.1, 25.6] 
1102 

Spectral 

calibration 
7 

Wp: [15.6,48.3] 

Cd: [48.3,18.3] 
430 

Cosine 

directional 

response  

400 St: [26.4,29.3] 200 
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Meanwhile measurements were continuously taken, randomly varying the tint 

between 4 and 1,000 ms. Similarly as the instrument operates in the field, the 

integration time was first set and then the number of scans averaged was selected so that 

the full measurement took a time equal or shorter than 2 s. This configuration was also 

applied to the others experiments. 

 

2.2.2. Nonlinearity 

For the NL characterization, the spectroradiometer was warmed up at 

environmental temperature until the sensor’s T was stable (notice that the range 

presented in Table 1 is due to random noise of the T sensor). Optical fibers for channels 

1 and 2 were aimed into the integrating sphere port. Ten measurements of the radiance 

source were taken at 40 different and randomly selected integration times, ranging 

between 4 ms and 741 ms (Table 1). 

 

2.2.3. Temperature dependence 

The temperature dependence of the Unispec-DC was characterized by collecting 

measurements while the instrument was warmed up and cooled down. In this 

experiment, T started at 13.9 °C and was increased up to 46.1 °C; then the instrument 

was cooled at environment temperature up to 25.6 °C. In this case, the optical fibers 

were also aimed into an open port of the integrating sphere. Measurements were 

continuously acquired at four different integration times (Table 1); every time that a 

new integration time was set five spectra were taken. 
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2.2.4. Spectral calibration 

The spectral calibration experiment was repeated at different temperatures in 

order to assess any significant influence of T. In this case the instrument was warmed up 

from 15.6 °C to 48.3 °C and then cooled to 18.3 °C. We alternately plugged the optical 

fibers of channels 1 and 2 into the mercury-argon source and took ten measurements 

using always the same integration time. 

 

2.2.5. Cosine receptor directional response  

The cosine receptor directional response was characterized by rotating the 

Unispec DC’s cosine receptor in front of a fixed light source between 0° and 90°, at 10° 

steps. The experiment was done twice, rotating the cosine head 90° over its central axis 

in order to acquire measurements at different zenith angles in two perpendicular planes 

of the cosine head. The experiment was carried out in a dark room in order to minimize 

diffuse radiation. In each position of the cosine receptor, five measurements of the 

global radiation were acquired first, then the cosine diffuser was shaded using a small 

opaque plate, and five measurements of the diffuse radiation were recorded. During the 

experiment the sensor temperature was stable, ranging randomly between 26.4 °C and 

29.3 °C. 

 

2.2.6. Diffuse-to-global radiation ratio  

Spectral DGr is needed for applying the CR correction. However, quite typically 

diffuse-to-global radiation ratio is only provided by broadband meteorological sensors 

in the field (DGrbroadband). In this study we use an ASD Fieldspec® 3 spectroradiometer 
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to model spectral DGr and DGrbroadband by acquiring irradiance measurement under 

different sky conditions between 350 and 2500 nm. Modeled ratios are later used to 

predict the spectral DGr in the Unispec DC from the broadband measurements of the 

SPN1 sensor in the field. Global irradiance was measured using a calibrated Spectralon® 

panel, whereas diffuse radiation was measured shading the same panel with an opaque 

plate alternately (Rollin et al. 2000). High zenith angles were avoided to minimize the 

effects of panel anisotropy (Rollin et al. 2000). Since diffuse and global measurements 

were not simultaneous, global irradiance was linearly interpolated to the timestamps of 

the diffuse measurements. Then DGr was calculated by dividing the diffuse irradiance 

by the interpolated global irradiance. 

 

2.3. Sensor models 

This section describes the models adjusted to the experimental data that describe 

the responses of the sensor to radiation as a function of the different variables modified 

during the experiments. 

 

2.3.1. Dark current 

The dark current can be characterized as a variable proportional to the 

integration time and quadratically dependent of the temperature (Kuusk 2011). In 

addition, during the experiment we found a negative trend of the measured dark signal 

(Ndark) with the temperature at low integration times. This suggested that the recorded 

spectra could be actually composed by electrons thermally generated in the photodiode 

(N0) plus an electronic bias (Nbias) inversely proportional to temperature (Hamamatsu 

2011; Pacheco-Labrador et al. ; Pan et al. 2012). Consequently we characterized Ndark as 
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the addition of both signals, as described in Eq. (1). Coefficients a and b in Eq. (1) were 

fitted per each pixel (i) of each Unispec-DC channel by using ordinary least squares 

regression. Hysteresis (Kuusk 2011) was accounted for by fitting one model for the 

warm-up and another for the cool-down processes separately: 

 

ୢܰୟ୰୩,௜ ൌ ௕ܰ௜௔௦,௜ሺܶሻ ൅ ଴ܰ,௜ሺݐint, ܶሻ ൌ ൫ܾ0,௜൅ܾ1,௜ܶ൯ ൅ intݐ ൉ ൫ ܽ0,௜ ൅ ܽ1,௜ܶ ൅ ܽ2,௜ܶଶ൯	 (1)

 

For every spectrum Nbias was first removed so that the measured signal (Nmeas) 

later processed is the addition of the signals produced by the photocurrent (Nphot) and 

N0. 

 

2.3.2. Nonlinearity 

In field spectroradiometers nonlinearity is usually characterized as a function of 

the gray level measured (OceanOptics 2012). However, a second source of nonlinearity 

has been found in this instrument and has been characterized using a new methodology; 

a complete description can be found in Pacheco-Labrador et al. (2014). This method 

characterizes the responses of the instrument to both sources of nonlinearity 

simultaneously from the measurements of a single experiment. The second NL is related 

with the integration time, and is described as a leakage of electrons from the pixel to the 

output line during the readout phase (Ferrero et al. 2006). This is represented by the 

function ԸIT (Eq. 2), where linearity is proportional to the total amount of electrons 

leaked during the readout phase in each pixel (Bi) divided by the integration time set. In 

Pacheco-Labrador et al. (2014) was also shown that Bi increases with the radiance in the 
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pixel until a maximum level. Since this instrument has not a radiance calibration, Bi is 

defined as a function of a variable named “instrumental radiance” (Eq. 3), which is 

proportional to radiance after gray level-related nonlinearity has been corrected using 

ԸGL. This variable, L*
measGLcor,i, is calculated dividing Nmeas by ԸGL and tint: 

 

Ը୍୘,௜ ൌ 1 ൅
୫ୣୟୱୋ୐ୡ୭୰,௜൯∗ܮ௜൫ܤ

௜௡௧ݐ
(2)

௜ܤ ൌ ܥ െ
ܦ

୫ୣୟୱୋ୐ୡ୭୰,௜∗ܮ
൉ log ൬1 ൅

୫ୣୟୱୋ୐ୡ୭୰,௜∗ܮ
ܦ

൰ (3)

 

2.3.3. Temperature dependence 

Temperature dependence was characterized normalizing the sensor responses by 

the sensor responses measured at a given temperature. To avoid the influence of other 

variables, DC and NL corrections were first applied to Nmeas resulting Nphot. These 

corrections are later described in Section 2.4. TD was then calculated as the ratio 

between Nphot measured at different T and the Nphot linearly interpolated to a reference T 

arbitrarily selected (30 °C) as in Eq. (4). In order to minimize the impact of noise in the 

pixels where signal-to-noise ratio was low, TD was smoothed with a robust local 

regression using weighted linear least squares (RLOWESS) method (Cleveland 1979) A 

fifth degree polynomial was fit for each pixel of each sensor relating TD and T: 

 

ܶ ௜ܵ ൌ
௣ܰ௛௢௧,௜

௣ܰ௛௢௧,௜ଷ଴°஼

(4)
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2.3.4. Spectral calibration 

Experimental data were first corrected using the sensor models previously 

described and the method described in the Section 2.4. Then spectral calibration 

measurements were used to fit a second degree polynomial that assigns wavelength 

units to the pixels of each sensor. This polynomial included also a temperature factor to 

account for the temperature related spectral shifts. In the spectra recorded several 

emission lines whose wavelength is known were selected. The center of the emission 

lines was calculated as the mean of a normal distribution fit on each selected emission 

line of the spectra; however, if the coefficient of determination was lower than 0.9, 

these emission lines were discarded. Eventually, only the emission lines that remained 

were used to adjust the model. 

 

2.3.5. Cosine receptor directional response 

Prior to any other calculation, measurements were corrected as described in 

Section 2.4 using the models previously adjusted. CR was characterized using 

exclusively the direct radiation measured during the experiment. Therefore, residual 

diffuse radiation was subtracted from global radiation to characterize the cosine 

response using only direct radiation. CR was characterized as the ratio between the 

direct radiation measured at each angle normalized by the direct radiation at nadir. As 

defined in Eq. (5), a correction factor βi(θs) was calculated as the difference between the 

cosine of the illumination angle and CR (Meywerk and Ramanathan 1999). In each 

pixel, a seventh degree polynomial was fit to model the correction factor βi as a function 

of θs: 
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௦ሻߠ௜ሺߚ ൌ cosሺߠ௦ሻ െ
୮ܰ୦୭୲ ୢ୧୰ୣୡ୲,௜ሺߠ௦ሻ

୮ܰ୦୭୲ ୢ୧୰ୣୡ୲,௜ሺ0ሻ
൘ (5)

 

2.3.6. Diffuse-to-global radiation ratio 

The spectral DGr in each band of the channel 1 of the Unispec DC was modeled 

as a function of the broadband DGr measured in an EC tower by a single-band SPN1 

Sunshine Pyranometer. For that, the DGrbroadband was simulated from the global and 

diffuse irradiances measured with the ASD Fieldspec® 3 integrating the spectral 

irradiance between 400 and 2,500 nm weighted by the nominal spectral response of the 

SPN1 sensor (Wood et al. 2007). The 283 DGr spectra generated were resampled to the 

spectral bands previously estimated for the channel 1 of the Unispec DC using the 

spectral convolution method (Meroni et al. 2010) and the nominal spectral resolution of 

the instrument, < 10 nm. The Unispec DC itself was not used since the DGr 

measurements acquired with the cosine receptor would have been affected by the 

directional response of the diffuser, for whose correction the DGr is needed. Then the 

simulated spectral DGr of each pixel of the Unispec DC (DGri) was characterized as a 

linear function of the simulated DGrbroadband (Eq. 6): 

 

௜ݎܩܦ ൌ ܽ଴,௜ ൅ ܽଵ,௜ ൉ ௕௥௢௔ௗ௕௔௡ௗݎܩܦ (6)

 

2.4. HCRF correction 

We used the described sensor models adjusted in the laboratory in order to 

correct spectral measurements provided by the Unispec DC integrated in an outdoors 

automated system. A summary of the corrections applied is shown in the Scheme 1; any 
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spectra quantified in digital numbers units, at different stages of the correction, is 

represented in a general way by the variable N and a subscript related with the 

correction level. 

 

 

Scheme 1. Summary of the corrections performed to the spectral data acquired by the 

Unispec DC spectroradiometer. 

 

In this paper, we present the corrections applied to the spectra acquired by the 

AMSPEC-MED system in a single viewing position between the 1 August 2013 and the 

15 June 2014. Spectra were taken with a viewing azimuth and zenith of 190 ° and 40 ° 

respectively. Saturated and corrupted spectra were removed and eventually 3730 

measurements were selected. For this dataset, sensor’s temperature ranged between 1.2 

°C and 44.4 °C, integration time was set between 8 and 4,000 ms, θs ranged between 

16.8 ° and 77.8 °, and DGrbroadband integrated every ten minutes by the SPN1 sensor 

ranged between 0.063 and 0.986. All the spectra were originally acquired in raw Digital 

Numbers (DN) for each channel.  
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The correction began estimating Nbias and N0 from Eq. (1) so that Nbias was 

subtracted from the original digital numbers to obtain Nmeas. Then NL correction was 

applied to those pixels where the signal was larger than N0, which was removed 

afterwards (Eq. 7); this way, NNL was calculated. After that, we estimated TD for each 

pixel as a function of T, and normalized NNL to the sensor’s response at 30 °C (Eq. 8), 

resulting NTD. Next, since the spectral calibration of each channel is different, we 

resampled NTD spectra of channel 2 to the center bands of channel 1 using linear 

interpolation (NSC). For those corrections where two models (warm-up and cool-down) 

had been calibrated, the daily trend of temperature was used to decide which model 

would be used: 

 

ܰ୒୐,௜ ൌ
ܰ௠௘௔௦,௜

Ըீ௅൫ܰ௠௘௔௦,௜൯Ըூ்൫ݐ௜௡௧, ௠௘௔௦ீ௅௖௢௥,௜൯∗ܮ
െ ଴ܰ,௜ (7)

்ܰ஽,௜ ൌ
ܰே௅,௜

௜ሺܶሻܦܶ
൘ (8)

 

Finally, we applied the CR correction to NTD spectra of channel 1 following the 

methodology described in (Meywerk and Ramanathan 1999). First, we linearly 

interpolated the DGrbroadband (integrated every 10 minutes by the SPN1) to the timestamp 

of each spectrum. Then we used the interpolated values to estimate the DGri in each 

spectral band using the previously adjusted model (Eq. 6). The sun zenith angle is 

calculated by the AMSPEC routine (Reda and Andreas 2003) and provided with the 

spectra metadata (Hilker et al. 2008). The correction factor βi and the DGri are used to 

correct the instrumental irradiance as defined in Eq. (9): 

 



Chapter 3 

118 
 

஼ܰோ,௜஼௛	ଵ
ൌ 	்ܰ஽,௜஼௛	ଵ ൉ ቎1 െ ௜ݎܩܦ ൉ නߚ௜ሺߠ௦ሻ

଴

ଵ

௦ߠ௦݀ߠ െ ሺ1 െ ௜ሻݎܩܦ ൉ 	௦ሻ቏ߠ௜ሺߚ
(9)

 

 

Finally, reflectance is calculated using the cross-calibration method (Gamon et 

al. 2006a), where the channels’ ratio is corrected using the measurement of a calibrated 

white reference panel (while channel 1 measures down-welling irradiance) as in Eq. 

(10), where ρReference is the absolute reflectance correction factor of the reference panel: 

 

஽஻ெ,௜ߩ ൌ
ቀܰௐ஼,௜஼௛	ଶ

ቁ
୘ୟ୰୥ୣ୲

ቀ ஼ܰோ,௜஼௛	ଵ
ቁ
୘ୟ୰୥ୣ୲

∙
ቀ ஼ܰோ,௜஼௛ ଵ

ቁ
ୖୣ୤ୣ୰ୣ୬ୡୣ

ቀܰௐ஼,௜஼௛ ଶ
ቁ
ୖୣ୤ୣ୰ୣ୬ୡୣ

∙ ୤ୣ୰ୣ୬ୡୣ,௜ୣୖߩ
(10)

 

3. RESULTS 

3.1. Dark current  

Measured dark signal ranged between 81 and 829 and between 99 and 797 DN 

in channels 1 and 2 respectively. At low tint we observed a negative trend of the dark 

signal with T, which led us to model Ndark as defined in Eq. (1). Errors in the fitting were 

low, Relative Root Mean Squared Errors (RRMSE) in the warm-up and cool-down 

models were 2.83 % and 3.45 % in channel 1 and 2.53 % and 4.46 % in channel 2 

respectively.  

Figure 1a separately depicts the modeled N0 and Nbias in a pixel of channel 1 

predicted by the warm-up model. As shown, Nbias linearly decreases with T and N0 is 

weaker than Nbias at low temperatures. Figure 1b shows the predicted and measured Ndark 

for the same pixel; as can be seen, the dark signal increases with the temperature at 

large integration times, and decreases at low integration times. 



Characterization of a Field Spectroradiometer for Unattended Vegetation Monitoring  

119 
 

 

Figure 1. Channel 1’s dark signal models in pixel 170 of sensor while warming up: (a) 

Modelled dark current (N0) and electronic bias (Nbias); (b) Modelled and measured dark 

signal (Ndark).  

 

3.2. Nonlinearity  

NL measurements covered the full sensor’s radiometric range and also used very 

low tint; this allowed adjusting the models ԸGL and ԸIT (Pacheco-Labrador et al. 2014). 

Figure 2 shows the predicted and measured values for each one of the corrections 

functions corresponding to channel 1. Figure 2a depicts ԸGL, which slightly decreases 

with the gray level measured up to dropping above 50,000 DN. RRMSEs of the fit were 

0.30 % and 0.40 % in channels 1 and 2 respectively. Figure 2b shows the predicted and 

measured values of	ԸIT, in this case RRMSEs were 0.22 % in channel 1 and 0.24 % in 

channel 2. As can be seen, ԸIT asymptotically increases with L*
measGLcor up to a 

maximum value at low tint, and drops quickly as the tint increases. 
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Figure 2. Channel 1’s nonlinearity models: (a) NL model related with the gray level 

(ԸGL); (b) NL model related with the integration time (ԸIT). 

 

3.3. Temperature dependence  

Measured TD ranged between 0.90-1.21 in channel 1 and 0.86-1.19 in channel 2 

(95 % confidence). Pixels in the extremes of the sensors, especially in the ultraviolet 

region, were very noisy due to the low signal. Figure 3a shows the adjusted models in 

channel 1. As can be seen, the sensitivity of the sensors varied with the temperature, 

especially in those pixels corresponding to the largest wavelengths, above pixel 120 

(~700 nm), where the sensitivity increased with T. Predictive models were precisely fit, 

though noise was large in the extremes of the sensor array. Between 400 and 1,000 nm 

RRMSEs for the warm up and the cool down models were 0.155 % and 0.094 % in 

channel 1 and 0.160 % and 0.087 % in channel 2 respectively. Figure 3b shows the 

hysteresis of temperature dependence for different pixels. 
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Figure 3. Temperature dependence models in channel 1: (a) Warm-up model and data 

(in orange) cool-down model and data (in blue). (b) Warm-up (thin solid lines) and 

cool-down models (thick dashed lines) for pixels close to different wavelengths. 

 

3.4. Spectral calibration 

In order to locate the center of the emission peaks in the sensor array, a normal 

distribution function was fit to the emission lines of the mercury-argon lamp. However, 

for the spectral calibration, only those emission lines where correlation coefficient of 

the fit was high were used. This way, nine and eight lines were selected for channel 1 

and channel 2 respectively (Figure 4).  

Center band position showed a small decreasing trend with T, with slopes 

ranging between -0.0048 nm/°C and -0.0006 nm/°C. For each sensor a second order 

polynomial was fit relating a center wavelength to each pixel of the array. The effect of 

temperature was tested including this variable in the models. Differences found between 

the wavelengths predicted by each model ranged between -0.081 and 0.075 nm in 

channel 1 and -0.098 and 0.094 nm in channel 2. Therefore, considering the spectral 

features of the sensors and the noise of the temperature readings, T was not included in 

the spectral calibration models. A second degree polynomial was fit relating the pixel 
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position and the corresponding spectral band; Root Mean Squared Errors (RMSE) of the 

models were 0.920 and 0.714 nm in channel 1 and 2 respectively. RMSEs were larger in 

the NIR, where emission lines were wider and noisier than in the visible. Spectral 

ranges estimated for channels 1 and 2 respectively were 301.13-1,122.98 nm and 

300.10-1,122.16 nm. 

 

 

Figure 4. Mercury-argon lamp emission lines spectra. The bands selected for the 

spectral calibration of each channel are marked with a star. (a) Channel 1; (b) Channel 

2.  

 

3.5. Cosine receptor directional response 

Figure 5 shows the correction factor βi(θs) calculated as the difference between 

the ideal and the measured cosine response.  

The cosine receptor overestimated irradiance at wavelengths lower than 700 nm. 

This threshold shifted to above 850 nm as the illumination angle increased. Maximum 

differences from an ideal cosine response were between -0.156 and 0.169 in the range 

400-1100 nm, and were largest at the middle angles, around 60 °. A polynomial model 
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was fit for each pixel with an overall RRMSE of 1.03 %. Diffuse radiation fraction was 

lower than 2.14 % in the range 400-1,000 nm with the illumination at nadir. 

 

 

 

Figure 5. Cosine receptor directional response correction factor β(θs). Fit model and 

measured data. 

 

3.6. Diffuse-to-global radiation ratio 

For each band of the channel 1, a linear model was fit to predict the spectral DGr 

from the DGrbroadband. Figure 6a shows the slope and the offset of each model and Figure 

6b depicts the measured and the modeled DGr. As can be seen, spectral DGr is lower in 

the atmospheric absorption bands; these features are noticeable in the offset of the 

models, which decrease from the Visible to the NIR. On the contrary, the slope of the 

models increases towards the NIR. Mean RRMSE in the prediction of spectral DGri was 

1.21 %. 
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Figure 6. (a) DGr linear model coefficients. (b) Measured and estimated spectral DGr. 

 

3.7. HCRF correction 

In order to assess the influence of each correction both on the digital numbers 

and the reflectance factor spectra, we corrected a dataset of measurements acquired by 

the AMSPEC-MED system for almost ten months, under very different environmental 

conditions. The changes introduced by each step of the correction (Scheme 1) respect to 

the previous step were analyzed; and also the differences between the raw and the 

completely corrected values are also calculated. Results of this analysis are summarized 

in Figure 7, where the 99 % confidence intervals of the changes introduced in this 

dataset are shown. Figure 7a,b show the differences observed in the DN spectra (N) of 

channels 1 and 2 respectively. In this figure we have merged the removal of the dark 

current and the electronic bias in order to assess independently the impact of the dark 

signal. However, it must be noticed that Nbias is removed in the first step of the 

correction whereas N0 is removed after the nonlinearity correction (Scheme 1). As can 

be observed, in channel 1, the largest changes in N were produced by the temperature 

dependency correction. These were mainly negative in the Visible region, and became 

more clearly positive in the NIR. CR corrections also introduced large variations, with 
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positive differences below 780 nm, and negative above 800 nm. Nonlinearity correction 

produced changes in N of lower magnitude than TD and CR, which where related with 

the measured DN value when positive. All the corrections applied together led to 

increases and decreases of N. The increases were larger than the decreases in the visible 

region and decreases were larger in the NIR. In channel 2 the temperature dependence 

correction also produced the largest variations; these were maxima above 700 nm with a 

positive effect. NL correction mainly produced decreases of DN, though increases were 

registered between 710 and 860 nm, where the signal was also maximum. The spectral 

calibration correction led to irregular differences that peaked around the atmospheric 

absorption features. These were maximum around 756 nm, close to the atmospheric O2-

A absorption band. In the overall, corrections in channel 2 produced a decrease of N in 

the Visible region and increases and decreases in the NIR, where the first were of larger 

magnitude. In both channels, DC correction produced a moderated decrease in N. 

Figure 7c similarly shows the changes introduced in HCRF by each correction. 

HCRF calculation is limited to the spectral region between 400-1,000 nm due to the 

noise found in the models out of this range. DC correction slightly modified the HCFR, 

producing small decreases below 735 nm and larger differences, both positives and 

negatives, above this wavelength. NL produced small decreases of HCRF in all the 

spectral range, but in the range 720 nm to 900 nm, where some increases were also 

registered. TD correction produced small changes below 700 nm in HCRF, but above 

this point, large increases were registered. SC correction produced peaky changes 

around the atmospheric absorption bands, mainly located in the NIR such as 760 nm 

(O2-A) and 820, 930 and 970 nm (H2O). Variations introduced by the CR corrections 

were small and negative in the Visible; increases became larger and positive above 700 
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nm and were always positive above 800 nm. All the corrections together led to small 

decreases in HCRF between 400 and 700 nm, but these became larger and also positives 

in the NIR region. 

 

 
Figure 7. HCRF correction performed on 3730 spectra taken by the AMSPEC-Med 

system between the 1 August 2013 and 15 June 2014 in a single viewing position. 

Percentiles 99 % of the changes introduced by each step of the correction respect to the 

previous stage are shown: (a) DN spectra in channel 1; (b) DN spectra in channel 2; (c) 

HCRF spectra; (d) HCRF spectra grouped in 10 degrees wide ranges of θs. 

 

Figure 7d depicts the percentile 99 % of changes introduced by all the 

corrections in HCRF grouped in different moments of the day. The dataset has been 

classified using ranges of θs with a width of 10 degrees and the time of the day (a.m. or 
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p.m.). As can be seen, the effects of the corrections are larger the larger is θs. The 

differences between the corrected and non-corrected HCRF were minimum at noon and 

larger in the morning than in the afternoon for the same elevation angles.  

 

4. DISCUSSION 

Different instrumental sources of error in the computation of HCRF have been 

characterized in laboratory under different temperatures and configuration settings. The 

Unispec DC spectroradiometer is not provided with a shutter that allows measuring dark 

current, however, it can be retrieved as a function of tint and T. Hysteresis can be 

accounted for by using the T variations along the day to establish when the instrument is 

warming up or cooling down. Temperature ranges used were shorter for cooling 

experiment than for the warming up experiments, since cooling could not be controlled. 

However, models adjusted are still suitable to correct field data, since this is similar to 

what actually occurs outdoors; temperatures in the morning are lower than temperatures 

at the end of the afternoon. A similar characterization performed on a MMS 1 

spectroradiometer also found quadratic and linear relationships between dark current 

and T and tint respectively (Kuusk 2011). In that case, minimum tint were larger than the 

ones used here, and the Front End Electronics that controlled the spectrometer was 

different; thus the presence of a bias or a negative trend like the one we found could not 

be compared. The authors have not a clear explanation for the reported bias inversely 

related with the temperature, but it might be explained by a change in the capacitance of 

the condensers related with the temperature. Though both Nbias and N0 are eventually 

subtracted from the spectra, the separation is necessary for the correction of NL. 
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The nonlinearity correction method we used proved having a better performance 

during independent validations (Pacheco-Labrador et al. 2014), and would provide 

corrections more reliable than other methods under AMSPEC-MED operating 

conditions. This method corrects nonlinearity using the functions ԸGL and ԸIT; the first 

of them is related with the electronics that process the analogical signal read from the 

sensor, and the second with a leakage of photocurrent generated during the readout. The 

AMSPEC-MED system automatically sets the tint of each spectrum so that the signal in 

channel 1 reaches about 40,000 DN, this prevents reaching very high values, where the 

influence of ԸGL is large. However, tint set under sunny conditions are low and 

measurements could be potentially affected by photocurrent leakage. The effects of 

nonlinearity in HCRF are, however, lower than those produced by other corrections. 

This can be explained on one hand because the tint auto-adjustment is designed to keep 

measurements within a range of DN values where of ԸGL is low. On the other hand, the 

tint is the same for both channels and both also reach high “instrumental radiances” (in 

DN/ms) (Pacheco-Labrador et al. 2014). Since the electron leakage (Bi) rapidly 

increases at low radiance levels, approaching asymptotically a maximum value (Figure 

2b), ԸIT would be similar in channels 1 and 2 too, and would cancel mutually when DN 

spectra from these channels are divided to calculate HCRF (Eq. 10). However this 

cancellation might not occur in all the cases; for example, when measuring shaded 

targets the up-welling radiation channel might register low instrumental radiances, or in 

the case of sensors with a high spectral resolution, within atmospheric absorption lines. 

In that case, ԸIT could be different in each channel, leading to artifacts in HCRF, and 

also in LUE estimators as those derived from spectral indices such as the Photochemical 
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Reflectance Index (PRI) (Gamon et al. 1992) or Sun Induced Fluorescence (Meroni et 

al. 2009).  

Within the range of temperatures registered during its characterization, the 

temperature dependency normalized at 30 °C varied less than 0.032 between 400 and 

the 700 nm, but above this region, variation exponentially increased up to 0.23 at 1,000 

nm. This might be explained due to proximity to the band edge of the silicon, which is 

sensible to T (Saber et al. 2011). Compared with the other corrections the temperature 

dependence produced large changes in HCRF, especially in the NIR region. Unlike in 

the case of nonlinearity, differences between both channels did not seem to cancel out 

during the calculation of the reflectance factor. Changes introduced in the raw DN 

spectra were also large, and might be significant in the quantification of the measured 

radiation. 

The spectral calibration showed a dependency on temperature; however, the 

magnitude of these observed drifts compared with the spectral characteristics of the 

sensor and the model errors suggested that it could be overlooked. Actually, the 

inclusion of T on the calibration models barely produced any difference in the calibrated 

wavelengths and was eventually removed. Spectral resolution and sampling interval of 

the Unispec DC are suitable for the characterization of vegetation reflectance and 

computation of different vegetation indices (Claudio et al. 2006; Gamon et al. 2006a; 

Sims et al. 2006); however, it cannot be used for other applications which require very 

high spectral resolution, such as sun induced fluorescence retrieval (Damm et al. 2011; 

Meroni et al. 2009). Though we discarded the influence of T on the spectral calibration, 

this might be still considered for instruments whose applications require very high 

spectral accuracy. Though we were able to characterize the spectral shift, we could not 
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measure the changes in the FWHM. However, considering the small shifts in the center 

wavebands in the case of this instrument and its application, we assumed that these 

should be also negligible. 

The characterization of the cosine receptor’s directional response allows 

correcting the down-welling radiation spectra taking into account the direct and diffuse 

fractions. (Milton and Rollin 2006) empirically inferred spectral irradiance from a 

reduced number of spectral bands; though estimations would not be reliable under 

passing clouds. A simple approach has been used here, since DGr is measured with a 

single broadband pyranometer in the EC site, this single value is used to infer the 

spectral DGr. The modelling was done using an ASD spectroradiometer with a spectral 

range slightly narrower than the one of the SPN1 sensor; however, irradiance in the 

spectral range not measured by the ASD is low, and should have little effect on the 

model. CR corrections rely also on the directional responses of the Spectralon® panel 

used for the modelling and the directional response of the SPN1 sensors. For this 

reason, large θs were avoided during the modelling of the DGr to minimize directional 

dependencies on the panel. Moreover, the directional response of the cosine receptor 

used in the AMSPEC system is known to be further from the ideal response when 

compared with the responses of other cosine heads (Julitta et al. 2013). For these 

reasons, we expect that this correction is able to improve the quality and inter-

comparability of data. The CR correction applied relies on the assumption that the 

diffuse skylight is isotropic, and the DGrbroadband provided is the average of ten minutes 

period; this can lead to uncertainties under heterotrophic and unstable sky conditions. 

However, data used to separate physiological from directional changes in PRI (Hilker et 

al. 2008) must be acquired under similar illumination conditions. Thus, unstable 
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conditions would force to reject these data even if DGr measurements were available all 

the time. Nonetheless, this correction introduced large changes both in the N and HCRF 

spectra; thus, CR correction should be regularly included and further research should be 

done to achieve reliable estimates of DGri. CR correction produced the second largest 

changes in the N spectra of channel 1, and also in the HCRF in the NIR. 

The analysis of the effects of all the corrections across the day (Figure 7d) can 

be related mainly with two corrections. On one hand, the CR correction produces larger 

differences in the NIR region the larger is θs, since in this region the directional 

response is furthest from the cosine response than in the Visible. Moreover, the largest 

changes occur during the morning, this can be related to the temperature dependence 

correction. Due to power constrains, the instrument is not thermally stabilized, and 

starts operating as soon as it switches on in the morning. The largest changes of 

temperature are thus experimented in the first hours of the day, during which the 

instrument is warmed up by the circulating power and by the increasing environmental 

temperature. T varies less during the afternoon, when is stable and slightly decreases at 

the end. Thus, the temperature dependence correction, which is based on a reference of 

30 °C, produces large changes in the NIR region during the first hours of operation. 

The effects observed are limited to the spectroradiometer used for this work. 

Nonetheless, the instrument has been tested under a wide range of environmental 

conditions, showing how instrumental issues can operate and modify the measurements. 

Results suggest that similar characterizations should be applied to spectroradiometers 

integrated in outdoors unattended systems. Since characteristics of each instrument 

would be unique and the requirements of each application also different, the selection of 

which sensor models should be used and how should be experimentally adjusted could 
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vary. However, some of the methods proposed in this work could be either directly used 

or adapted to characterize other instruments. Additionally the reported impacts of each 

model on the spectral variables considered can help other users to take decisions about 

systems development, instrument configuration and data analysis. Corrections applied 

generated differences in HCRF close to 0.05 at maximum, partially due to cancelling 

effects and partially due to the configuration of the system. The largest changes 

occurred in the NIR bands, which are of relevance in the study of vegetation vigor, 

structure and sun induced fluorescence. Effects in the Visible bands were much lower, 

however, this not might happen all the times, depending on the instrument 

characteristics, configuration and targets measured. Effects on the quantification of 

radiance or irradiance would be related with the changes introduced in the digital 

numbers by the different corrections. However, the instrument lacks of radiometric 

calibration, and these could not be assessed. Moreover, maintenance of updated sensor 

models shall not be overlooked, and should be done as frequently as possible. However, 

dismantling automated systems can be resource and time consuming, and therefore 

methods for in-situ calibration, characterization or validation should be explored.  

 

5. CONCLUSIONS  

We have characterized the responses of a Unispec DC spectroradiometer 

integrated in an automated system (AMSPEC-MED) under a wide range of 

environmental conditions. Results show the impact of temperature, irradiance levels and 

illumination angle, and also the instrument settings on the spectral data acquired. Some 

of the effects partially cancelled out when raw spectra of each channel were divided to 

calculate HCRF, especially in the visible bands. For this reason and because some of the 
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artifacts operate more strongly in the NIR, corrections had larger effects in this region 

than in the Visible. Though the instrumental dependencies can be also characterized as 

done in this work, some of these can be controlled during the design of the automated 

systems. Results suggest that temperature stabilization would be highly recommendable. 

Moreover, the estimation of spectral DGr is not usual in this type of systems, and 

further research should be done since this information is needed for the CR correction 

and could be applied in the use of radiative transfer models. Additional efforts should be 

done to correct instrumental dependencies of sensors installed in outdoors automated 

systems, in order to ensure quality and comparability of data, and to assure the update of 

the sensor models. 
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ABSTRACT  

The development of automated multi-angular hyperspectral systems has brought 

new opportunities but also new challenges for the characterization of the Bidirectional 

Reflectance Distribution Function (BRDF) in a continuous basis. In this study we 

describe the setup of one of these systems (AMSPEC-MED) in a Mediterranean tree-

grass ecosystem and the modeling of directional effects. We model the Hemispherical-

Directional Reflectance Distribution Function (HDRDF) in order to account for the 

effects of diffuse radiation on the estimation of BRDF. This required integrating data 

from several days in order to increase variability of sky conditions. In addition, a 3D 

modeling of the observed scene is used to unmix the HDRDF of the two components of 

the ecosystem, trees and grass covers. To do so, optics and observation geometry were 

characterized. For model inversion, Tikhonov regularization and least squares solutions 

were compared. Estimates of HDRDF were up-scaled and compared with the MODIS 

BRDF product (r2 = 0.86); and also were compared with grass hand held spectral 

measurements (r2 = 0.89). Despite of uncertainties in the estimation of diffuse 

irradiance and the modeling of the observed scene the HDRDF unmix was reasonably 

achieved. Results prove the potential of multi-angular automated proximal sensing for 

the study of vegetation and the correction of directional effects from different sources. 

Further systems should consider new approaches to improve the measurement of 

spectral diffuse down-welling flux, to model scene heterogeneity and to explore optimal 

datasets and sampling schemes. 

 

Keywords: BRDF, HDRDF, diffuse irradiance, unmix, automated proximal sensing, 

AMSPEC-MED, Unispec DC, tree-grass, MODIS. 
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1. INTRODUCTION 

The BRDF relates the incoming radiation flux that reaches a given surface from 

a direction in the hemisphere to the reflected one in another direction (Nicodemus et al. 

1977). This function is defined as the ratio between two infinitesimals and since these 

do not exist, BRDF cannot be measured (Nicodemus et al. 1977). However, this 

function is characteristic of each surface, and thought it cannot be directly measured its 

estimation is of large importance in remote sensing science (Lucht et al. 2000; 

Schaepman-Strub et al. 2006). BRDF serves to estimate albedo, which is the ratio of the 

reflected and incoming radiant fluxes by a surface unit from/to the whole hemisphere 

(Nicodemus et al. 1977). Albedo quantifies the energy absorbed by the earth, allowing 

the computation of the energy balance (Dickinson et al. 1990; Vermote et al. 1997). It 

cannot be measured from satellites since a remote sensor only samples the radiation flux 

within a small solid angle; however albedo can be computed integrating the BRDF 

(Lucht and Roujean 2000; Nicodemus et al. 1977). Moreover, BRDF allows the 

directional normalization of the reflectance factors, making comparable observations 

acquired at different sun-view geometries (Lucht and Roujean 2000). Also, since BRDF 

is an intrinsic characteristic of each surface, it can be used for land cover classification. 

Though directional and spectral information are in part redundant, their combination 

still could increase the degree of freedom available to discriminate different elements 

(Lucht and Roujean 2000). Several works have improved the classification accuracy by 

including information in the directional domain (Brown de Colstoun and Walthall 2006; 

Dupigny-Giroux 2007), by normalizing spectral information prior to classification 

(Colgan et al. 2012) or directly adding albedo to the classifier (Kuusinen et al. 2013; 

Roy et al. 2002). 
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BRDF products have multiple applications in the study of vegetation terrestrial 

ecology (Asner et al. 1998; Fassnacht and Koch 2012). The contrast between the hot 

and the dark spots of different vegetation indices or at several angles in the solar plane 

has been related with vegetation structure parameters such as Leaf Area Index (LAI) 

(Hasegawa et al. 2010), clumping index (Chen et al. 2003), canopy height (Wang et al. 

2011) and roughness (de Wasseige and Defourny 2002). The difference between the 

Photochemical Reflectance Index (PRI) value in the hot and the dark spot has also been 

related with physiological variables such light use efficiency (Hall et al. 2008; Hilker et 

al. 2008a). Other authors have used the BRDF or multi-angular observations to invert 

complex radiative transfer models and derive biophysical parameters of vegetation 

(Durbha et al. 2007; Liu et al. 2007; Qi et al. 2000); to determine the sun-view 

geometries most sensitive to biophysical variables (Byambakhuu et al. 2010) or to get 

rid of directional effects prior to their estimation (de Abelleyra and Verón 2014). 

BRDF is usually retrieved by inversion of linear semi-empirical kernel-driven 

models to compromise between complex radiative transfer and purely empirical models 

(Pokrovsky et al. 2003b; Wanner et al. 1997). These kernel-driven models consist on a 

linear combination of mathematical functions that represent the major BRDF features. 

They are computationally cheap to invert, need no prior knowledge of the pixel 

contents, and require only a limited number of remote observations since usually a few 

kernel parameters must be estimated. Even though they are based on substantial 

simplifications, they acceptably represent the BRDF of land covers (Roujean et al. 

1992; Wanner et al. 1997). However, much of the physics of the phenomenon is 

retained is also questioned (Lucht and Roujean 2000). Usually, these semi-empirical 

models linearly combine functions that describe the isotropic, geometric and volumetric 
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scattering depending on illumination and viewing geometry and, in some cases, on 

parameters that describe properties of the observed surface (Roujean et al. 1992; 

Wanner et al. 1995). The isometric kernel is a constant that represents the Bidirectional 

Reflectance Factor (BRF) observed and illuminated from nadir. The geometric-optical 

kernel characterizes the shadows and occlusion produced by the vegetation canopy in 

the scene based on the areas of background and canopy viewed, shaded and sunlit 

(Roujean et al. 1992; Wanner et al. 1995; Xiaowen and Strahler 1985, 1992). Based on 

the Ross theory (Ross 1981), the volumetric kernel represents the directional scattering 

of a medium of facets randomly distributed, simulating the leaves (Roujean et al. 1992; 

Wanner et al. 1995). The pixel boundary problem is overcome by assuming no pixel-to-

pixel variance around the modelled pixel (Xiaowen and Strahler 1985). Therefore, 

kernel models describe scattering in pixels where texture is fine enough to assume 

homogeneity at the observing scale, and minimum variance with respect to the 

surrounding pixels. However, this does not mean that heterogeneous pixels cannot be 

modeled; in fact that is one of the advantages of linear models (Lucht and Roujean 

2000; Wanner et al. 1995). Model parameters provide information about the control of 

each scattering type on the BRDF of the observed pixel (Roujean et al. 1992), however 

they lack of physical meaning and their interpretation must be carefully considered 

(Lucht and Roujean 2000). 

A limited number of satellite missions provide multi-angular observations 

simultaneously, sequentially or within several days to generate standard BRDF and/or 

albedo products in a continuous basis, such as Moderate Resolution Imaging Spectro-

radiometer (MODIS) (Schaaf et al. 2002), Advanced Very High Resolution Radiometer 

(AVHRR) (O’Brien et al. 1998), Polarization and Directionality of Earth Reflectance 
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(POLDER) (Bacour and Bréon 2005; Hautecœur and Leroy 1998), Multi-Angle 

Imaging Spectra-Radiometer (MISR) (Diner et al. 2005), Compact High Resolution 

Imaging Spectrometer (CHRIS) (Guanter et al. 2005), VEGETATION (Duchemin et al. 

2002; Duchemin and Maisongrande 2002), Meteosat (Pinty et al. 2000) or Meteosat 

Second Generation (MSG) (Pokrovsky et al. 2003a; Proud et al. 2014). In addition, 

multi-angular imagery acquired from planes (Colgan et al. 2012; Weyermann et al. 

2014), Remotely Piloted Aircraft Systems (RPAS) (Burkart et al. 2015; Roosjen et al. 

2015) and proximal sensing (Abdou et al. 2001; Sandmeier 2000) can also retrieve 

BRDF. However, these measurements are mostly limited to sporadic field campaigns. 

One of the challenges of multi-angular proximal sensing has been the location of the 

sensor at the desired geometries. For example, goniometers locate the sensor at a 

specific observation angles while aiming at the same target. However height constrains 

have limited their use to the measurement of low canopies, such as grasslands 

(Chopping 2000; Chopping et al. 2004), crops. (Schopfer et al. 2008; Strub et al. 2003), 

shrubs lichens and moss (Peltoniemi et al. 2005; Suomalainen et al. 2009b), and non-

vegetated covers such as soils, stones, ice or snow (Marks et al. 2015; Peltoniemi et al. 

2009; Suomalainen et al. 2009a). In order to measure taller canopies and larger targets, 

field spectroradiometers have been also mounted on helicopters (Kimes et al. 1986) or 

cranes (Thomas et al. 2004). Recently, RPAS have brought new possibilities on terms 

of sensor location. Multi-angular observations have already been carried out from such 

platforms using cameras (Bendig et al. 2015; Hakala et al. 2010; von Bueren et al. 

2015) and spectroradiometers (Burkart et al. 2015; Burkart et al. 2014; Roosjen et al. 

2015; von Bueren et al. 2015). However RPAS show some limitations related with 

power constrains, payload, wind speed or legislation thus currently measurements are 
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mainly limited to dedicated research field campaigns (Colomina and Molina 2014; Lei 

et al. 2013; Salamí et al. 2014).On the other hand, in the last years the development of 

tower-based automated multi-angular hyperspectral systems is also increasing (Hilker et 

al. 2007; Hilker et al. 2010b; Huber et al. 2014; Leuning et al. 2006; Middleton et al. 

2013). These systems are closely related with the study of vegetation physiology and 

ecosystem-atmosphere flux exchanges and thus usually installed in towers where such 

fluxes are measured using the eddy covariance technique (Baldocchi 2003). These 

systems provide new opportunities to validate and compare BRDF estimates with 

satellite observations (Hilker et al. 2010a; Hilker et al. 2009b).  

It is noticeable that multi-angular proximal sensing does not measure the BRF 

but a different quantity that is used as a proxy, the Hemispherical-Conical Reflectance 

Factor (HCRF) (Schaepman-Strub et al. 2006). Cosine heads or Lambertian panels 

provide measurements of the down-welling radiation flux in the sky hemisphere. This 

includes, not only of the direct, but also the diffuse radiation generated in the 

atmosphere and in the scene. Optics sampling the up-welling radiation flux usually 

capture radiance within a relatively wide Field of View (FOV), which makes this 

component, in the simplest case, conical and can only be assumed directional if FOV is 

very narrow (Marks et al. 2015). 

Automated systems can operate under wide ranges of diffuse-to-global radiation 

ratio (δdif) (Hilker et al. 2008a); whereas datasets acquired in sporadic field campaigns 

or remote observations are usually limited to clear sky conditions, when δdif is generally 

low. Nonetheless, diffuse radiation influences the reflectance factors measured (Kriebel 

1975, 1978) and affects the estimation of BRDF (Hilker et al. 2008a; Martonchik 1994). 

A simple alternative adopted in some automated multi-angular systems has been 
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filtering or classifying data by sky conditions prior to the characterization of surface 

directional responses (Hilker et al. 2009a; Hilker et al. 2008a). However, diffuse 

radiation can be accounted for during the retrieval of BRDF if it is modeled or measured 

(Lyapustin and Privette 1999; Martonchik 1994); which can be understood as modeling 

the Hemispherical-Directional Reflectance Distribution Function (HDRDF) 

(Cierniewski et al. 2004).  

Most automated multi-angular systems that have provided BRDF estimates have 

operated in dense forests largely homogeneous (Hilker et al. 2007; Hilker et al. 2010b), 

so that the same BRDF was assumed for the whole stand. However, scene heterogeneity 

might be a problem for multi-angular proximal sensing since changes in the 

composition of the patches observed at different geometries would be mixed with the 

directional effects. In these situations BRDF retrieval would not be straight forward. 

Heterogeneity is also a challenge for remote sensing as usually coarse spatial 

resolutions integrate the signals of the different elements of the scene. This complicates 

the interpretation of data (Abdou et al. 2001) and leads to errors in the estimation of 

biophysical parameters of vegetation (Sjöström et al. 2009). In response to this problem, 

different techniques have been used to disentangle the contributions of the different 

elements in the pixel, such as spectral unmixing analysis (Guerschman et al. 2009), 

classifying high spatial resolution imagery (Boggs 2010; Detto et al. 2006) or analyzing 

the responses of the different vegetation types to rainfall (Scanlon et al. 2002). On the 

contrary, proximal sensing usually deals with scene elements which are similar or larger 

than the pixel size. This makes necessary adopting strategies that ensure a representative 

sampling of the study area or the pixel; but also that allow a characterization of the 

different elements that compose the scene (Wang et al. 2005; Webster et al. 1989). Such 
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adequate sampling is needed to up-scale the optical signals and to relate them with 

ecosystem processes, which can be dynamic in time and space as in example gas 

exchanges with the atmosphere (Balzarolo et al. 2011; Gamon et al. 2010; Gamon et al. 

2006b). Hand held spectroscopy can address these issues with a suitable sampling 

design (Wang et al. 2005); however, automated systems are usually fixed and only 

sample a given fraction of the area of interest. Limited experiences have been reported 

in the literature where automated systems have been able to tackle spatial issues. In 

some cases, the full system has been moved using a tram to sample the scene variability 

(Gamon et al. 2006a). In others, image sensors like phenological cameras, limited to a 

few spectral bands, have been used to identify and monitor patches of different 

vegetation types (Ahamed et al. 2012; Julitta 2015). To the best of our knowledge, only 

two multi-angular automated hyperspectral systems have been installed in 

heterogeneous ecosystems. The first was an AMSPEC located in a beetle infested 

lodgepole pine stand in Canada (Hilker et al. 2009a). In this case the observations were 

stratified in different classes of disturbance prior to retrieve BRDF. The second case 

was the DAFIS system installed in a semi-arid savanna in Senegal (Huber et al. 2014), 

where observations were limited to the dominant cover, the grass. However none of 

these automated systems have addressed the heterogeneity at intra-pixel scale. 

As shown, heterogeneity complicates the remote and proximal observation of 

Earth surfaces and consequently the study of some types of ecosystems is inherently 

complex. Among them, mixed tree-grass and shrub-grass vegetation associations 

present one of the most wide and extensive distributions; e.g. tree-grass ecosystems 

occupy nearly a quarter of the terrestrial surface (27 million km2). These systems are 

characterized by a complex horizontal and vertical structure where species with 
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different ecological strategies are mixed. Moreover they frequently experiment also a 

large temporal variability related to drought, seasonality, fire, herbivory and land use 

change. Therefore they present features inherently difficult to measure with remote 

sensing and represent in ecosystem and Earth system models (Hill et al. 2011). These 

systems face severe pressures from land use change and climate change as well as are 

vital for a livestock production that supports the livelihoods of more than 600 million 

people in development regions, where food security and livelihoods are vulnerable to 

climate variability, drought, degradation and famine (Hill et al, 2011; MEA 2005). 

Thus, despite of the importance of tree-grass ecosystems in Earth processes and human 

well-being these still represent a gap in Earth Observation science and land surface 

modeling. Their role in the climate system and feedbacks with the atmosphere are not 

well understood; as well as the consequences that land cover and land use change in 

these areas will have for ecosystems function and human beings (Hill et al. 2011). 

This study describes the setup of an automated multi-angular spectrometer 

hyperspectral system (AMSPEC-MED) installed in a Mediterranean tree-grass 

ecosystem. Multi-angular observations acquired by the system from August 2013 to 

June 2015 were used to unmix the HDRDF of the two main ecosystem components 

(tree and grass), based on estimates of spectral diffuse radiation and a 3D model of the 

ecosystem. 

 

2. METHODS 

2.1 Study site 

The AMSPEC-MED was installed on a tower adjacent to a flux tower in July 

2013 in Las Majadas del Tietar, Cáceres, Spain (39 º 56 ’ 29 ’’N, 5 º 46 ’ 24 ’’W) at 259 
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m above sea level. The site is part of the FLUXNET (http://fluxnet.ornl.gov/site/440, 

last accessed 16 July 2015), Figure 1. A Continental Mediterranean climate causes hot 

and dry Summers that reach over 40 ºC, much above the 16.7 ºC annual average, and 

concentrate only 6 % of the annual 572 mm rainfall (Casals et al. 2009). This site is a 

tree-grass ecosystem, also known as “dehesa”, where annual grasses peak in Spring, 

senesce by the beginning of the Summer and recover moderately with Autumn rains, 

before going dormant in Winter. Holm oak trees (Quercus ilex subsp. ballota L.) cover 

20 % of the ground. Around the AMSPEC-MED, mean distance between them is 16 m. 

 

 

Figure 1. AMSPEC-MED location in the Majadas del Tietar study site 
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2.2 The AMSPEC-MED system 

2.2.1 Components 

The AMSPEC-MED is a modified version of the AMSPEC-II (Hilker et al. 

2010b) that measures HCRF at different view angles in a continuous basis. It is divided 

in ground, tower and sensor modules (Figure 2). The ground module contains a CR3000 

Micrologger® (Campbell Scientific Inc, Logan, UT, USA) that switches the system on 

and off, and a MultiConnect® rCell MTR-H6-B16-EU modem (Multi-Tech Systems 

Inc, Mounds View, MN United States) to transfer data via mobile phone connection. It 

is plugged to a set of batteries that accumulate energy generated by solar panels situated 

around the tower. The tower module is insulated in an electronic box at 8 m above the 

ground and connects to the ground module via Ethernet line. The power cable connects 

with a relay system that controls the power supply and distribution to the other 

components. A fit-PC2i computer (CompuLab Ltd., Yokneam Elite, Israel) controls 

data acquisition, storage and transfer via Ethernet connection with the router. There is 

also a Pan-Tilt Unit (PTU) D-46 controller (Directed Perception, Burlingame, CA, 

USA) that communicates with the computer via RS-232 through a micro USB 

converter. The hyperspectral sensor is a Unispec DC spectrometer (SN 2038, PP 

Systems, Amesbury, MA, USA), it communicates via RS-232 with the fit-PC2i. 

Unispec DC is a dual-channel system with two sensors featuring 256 spectral bands 

with an interval sampling of 3.3 nm and Full Width Half Maximum (FWHM) lower 

than 10 nm. The channel 1 is a 6 m optical fiber and a cosine diffuser (UNI686-6 + 

UNI435, PP Systems) which samples the down-welling radiation flux. Channel 2 

consists of a 6 m optical fiber (UNI686-6, PP Systems) plus a 1 m extension 

(HPCS600IRT-1m, LEONI Fiber Optics GmbH, Berlin, Germany) linked by a SMA-
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905/SMA-905 connector (LEONI). A thermostat controls two fans inside the tower 

module box, one on each side, which refrigerate it when air temperature exceeds 30 ºC.  

 

 

Figure 2. Main connections and module components for the AMSPEC-MED. 

 

The sensor module is located on a horizontal arm, 40 cm distant from the tower and 12 

m above the ground. A weatherized PTU D46- 17.70W (Directed Perception, 

Burlingame, CA, USA) installed on the arm communicates with the controller in the 

tower module with a RS-485 cable. The PTU holds a box with a NetCam SC 5MP 
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webcam, connected with the fitPC2i computer via Ethernet. The tip of the optical fiber 

attaches to the top of this box and connects to the channel 2 of the Unispec DC. 

Moreover, the cosine diffuser is located on top of the tower at 13 m, so that no other 

elements can shade the sky hemisphere. 

 

2.2.2 Operation 

Since the system is powered by solar panels, the datalogger in the ground 

module switches on and off the AMSPEC-MED when the sun elevation angle goes 

above and below 20 º respectively. When powered up, the PTU performs a starting/reset 

sequence moving to the extremes of the horizontal and vertical rotations for calibration. 

Meanwhile the fitPC2i computer starts up and initializes the compiled executable that 

controls the webcam, the PTU and the Unispec DC. This is a modified version of the 

Matlab® (Matworks, Natick, MA, USA) code used by Hilker et al. ( 2010b). The control 

routine initializes and configures the Unispec DC, sets communication rates, integration 

time and number of scans to average. Unlike in previous versions of the AMSPEC 

(Hilker et al. 2007; Hilker et al. 2010b), the integration time is configured here to 

optimize the signal in each measurement. Initially, the integration time is the minimum 

allowed by the instrument (4 ms) and the number of scans to average is a function of 

integration time, so that a measurement takes 2 s or less. The computer also 

communicates with the PTU to set speed, acceleration, power and rotation limits. When 

both PTU and Unispec DC are ready, a sequence of rotations to measure starts. First, 

the PTU moves to a pre-determined position. If requested, the webcam acquires an 

image, cuts out a 400 x 400 pixels central window and stores it as a 4D variable. 

Eventually, the Unispec DC takes a measurement and attempts an integration time 
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optimization. If the maximum Digital Number (DN) recorded in channel 1 is not in the 

range 40,000 ± 2,000 DN, a new integration that corrects for the difference is set. This 

maximizes the signal-to-noise at the same time that keeps the signal in the linear range 

of the instrument, as described in previous chapters. If signal saturates, it selects a pixel 

to set a new integration time where solar irradiance usually produces DN values about 

2.7 times lower than the maximum. The instrument attempts three times the 

optimization so that the measurements do not stop under changing illumination 

conditions and continues otherwise. Moreover, if a measurement is corrupted or 

incomplete it is also repeated three times. If despite of these repetitions, a correct 

measurement is not completed the Unispec DC is switched off and restarted. Once the 

spectral measurement is acquired, the PTU moves to the next position.  

Spectrodirectional measurements of channels 1 and 2 are organized in periods of 

30 min, in which the PTU drives to “solar” and to “regular” sequences of measurements 

(Hilker et al. 2010b). In the “regular” sequence, the PTU fixes one of the five 

predefined zenith angles ϵ [40 º, 49 º, 56 º, 63 º 69 º], and scans in the azimuthal 

direction between 20 º and 330 º at 10 º intervals. After this, it increases the zenith angle 

and repeats the azimuth scan inversely. The sequence is repeated until the end of the 30 

minutes period; then data are stored in a Matlab® structure format and the PTU 

calibrates itself. At the beginning of each period, the PTU performs a “solar” sequence 

driving to the sun zenith angle for the same azimuthal positions used in the “regular” 

sequence (Hilker et al. 2010b). 

In addition to the spectral data, AMSPEC-MED stores the Universal Standard 

Time of acquisition, scan type (“regular”/“solar”), integration time, number of scans 

averaged, sensor voltage and temperature, and view and sun zenith and azimuth angles. 
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The input angles provided to the PTU and the actual returned ones usually differ in few 

tenths of degrees, so both are recorded. The algorithm described in Reda and Andreas 

(2004) is used to calculate the sun angles. Spectral data are back-up in a server via 

mobile phone connection every day at noon. The fitPC2i separately stores the webcam 

images once a day, during the 30 minutes period at noon, due to storage and data 

transfer limitations. Images are manually downloaded from the ground module using 

the Ethernet connection during maintenance activities. Every afternoon, AMSPEC-

MED stops before sun zenith reaches 20 º and stores the last dataset acquired, the PTU 

returns to a safe position, and the data logger powers off the complete system. 

 

2.2.3 System characterization and models 

As described in chapter 3, in order to adequately calculate the HCRF, sensor 

models were adjusted in the laboratory to correct the Unispec DC measurements for 

dark current, nonlinearity, temperature dependence, spectral calibration and the 

directional response function (DRFλ) of the cosine diffuser, where λ denotes spectral 

(Pacheco-Labrador and Martín 2015). Consequently, AMSPEC-MED radiometric 

quantities were independent of environmental conditions such as temperature, sun 

zenith, irradiance level, diffuse down-welling radiation, and integration time. In 

addition, a model predicted spectral δdif from a broadband SPN1 Sunshine Pyranometer 

(Delta T Devices, Cambridge, UK) installed in the flux tower (Pacheco-Labrador and 

Martín 2015). This variable serves to correct the directional response of the cosine 

diffuser and to model HDRDF. 

During an inter-comparison experiment of different spectroradiometers 

organized by the COST Action ES0903 EUROSPEC in the NERC Field Spectroscopy 
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Facility at the University of Edinburgh, United Kingdom, the FOV and the DRFλ of the 

Unispec DC downward-looking optical fiber was characterized (Julitta 2015). This 

inter-comparison aimed to test the performance of different commercial field 

spectroradiometers. The FOV was mapped by measuring a miniature halogen lamp 

mounted on a movable carriage at different positions following MacArthur et al. (2012) 

(Figure 3). Due to technical issues, the lamp could not be rotated at each position, so 

that the same part of the incandescent filament could be observed by the 

spectroradiometer. This produced an occlusion of the portion of the lamp filament 

observed, which was noticeable in the DRFλ shapes (Julitta 2015). In order to minimize 

this problem, we selected the maximum values in the axial section of the FOV map and 

rotated them 360º around the FOV axis. 

The deviation of the fiber with respect to the direction where the PTU drives and 

its orientation and rotation was estimated similarly as the characterization of the FOV 

and the DRFλ. In this case, an experimental setup was mounted at the Environmental 

Remote Sensing and Spectroscopy Laboratory (SpecLab-CSIC), Madrid, Spain in 

which the fiber response was measured with a 1W white LED light on a movable 

carriage (Figure 3). The sensor module was deployed at the laboratory, and the PTU 

aimed horizontally. The frame holding the movable carriage was placed normal to the 

PTU aiming direction and the LED carefully positioned in front of the optical fiber with 

a laser. The LED was moved horizontally and vertically at 5 cm steps to map the FOV 

over the frame. The distance between the starting position of the LED and the center of 

the FOV map determined the actual direction where the fiber aimed.  
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Figure 3. On the left, experimental set-up for the DFR characterization at the NERC 

Field Spectroscopy Facility at the University of Edinburgh, University of Edinburgh. 

On the right, experimental setup to characterize the optical fiber deviations at SpecLab-

CSIC, Madrid. 

 

Once the AMSPEC-MED sensor module was later installed at Las Majadas site, 

zenith and azimuth deviations of the arm that holds the PTU from North and nadir were 

measured. Zenith deviation was measured along and across the arm alignment using a 

digital level S-Digit min (Geo-FENNEL GmbH, Baunatal, Germany) with a precision 

of ± 0.1 º. The azimuth deviation was measured placing an aligned 25 mW laser parallel 

to the arm and measuring the laser ray path with a GPS Leica 1200 (Leica Geosystems 

AG, St. Gallen, Switzerland). The laser aimed forwards and backwards and the slope of 

the linear model fit to the GPS coordinates determined the azimuth angle and 9 points 

were measured within a segment of 78.5 m. Coordinates of the base of the tower were 

also acquired to later determine the PTU position, whose position relative to the tower 

was known. All these measurements defined the actual Cartesian reference coordinate 

system of PTU and were used to estimate the actual observation angles. 
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2.2.4 Ecosystem and observation models 

Airborne laser scanning (ALS) data acquired over the study area in 2010 and 

provided by Spanish National Plan for Aerial Orthophotography (PNOA) were used to 

build a tree dimensional model of the scene observed by the AMSPEC-MED. The 

average laser density was 0.96 points/m2, but areas with no overlapping flight lines 

contained only 0.41 points/m2. Ground and tree canopy points were classified with 

TerraScan (Terrasolid Ltd., Finland). Taking into account this classification, a Digital 

Ground (DGM) and a Surface (DSM) Model were generated using 0.5 m pixels and 

filling gaps up to 20 pixels. The area modeled was a rectangle of 500 x 400 m 

approximately. The size was determined from the observation angles of a “regular” 

sequence and the AMSPEC-MED was located on the North of it, since observations in 

this direction are occluded by the tower itself. In this area 545 trees were selected and 

individual crowns discriminated. For each one an ellipsoid was fit using the Matlab® 

package developed by Levente Hunyadi 

(http://www.mathworks.com/matlabcentral/fileexchange/45356-fitting-quadratic-

curves-and-surfaces, last accessed 24th June 2014). Moreover, GPS measurements were 

used to represent the shape and location of the polluting non-vegetation elements of the 

scene: the solar panels, the ground module housing, the fence around the tower or and 

road nearby. The 3D location of the AMSPEC-MED tower module was also derived 

from the GPS coordinates and the known dimensions of the structure.  

Based on this 3D model, a ray-casting model simulated the Unispec DC FOV to 

determine the contribution of trees and grasses, both sunlit and shaded, in each 

observation of the AMSPEC-MED. A cone of vectors was generated from a dense 

regular grid of coordinates within the FOV. The interval between these coordinates was 



Hemispherical-Directional Reflectance Distribution Function Modeling and Unmixing 

161 
 

selected so that the average of all the vectors was equal to the central vector of the cone. 

The position of the PTU in the 3D model was determined knowing the height and 

azimuth direction of the arm and the distance between the mast and the PTU. Prior to 

model each observation, the azimuth and zenith angles provided by the PTU were 

transformed to the Cartesian reference coordinate system to determine the actual aiming 

direction of the PTU and translate the position of the optical fiber tip on it. Then the 

cone of vectors that describe the FOV were translated to each PTU position and rotated 

considering also the deviation of the optical fiber respect to the PTU aiming direction. 

Once the FOV was set, each vector was projected on the DGM and the 3D 

coordinates calculated. All the vectors were initially classified as “sunlit grass”. Then 

the ellipsoids representing the trees located within and around the FOV were selected 

and the vectors that intercepted these ellipsoids were classified initially as “sunlit trees”; 

the coordinates of interception replaced the original coordinates projected on the DGM. 

At this point we discarded any observation with polluting elements within the FOV like 

a fence, solar panels or a road nearby; as well as any observation that unexpectedly 

might reach out of the 3D model. If the measurement was not discarded, we used the 

sun angles to determine the shadow fraction of each cover. All the ellipsoids that might 

cast a shadow within the FOV were selected; these were those within the FOV projected 

on the ground and within a distance from it estimated from the sun elevation angle and 

the maximum tree height. All the points intercepting grass and trees were projected 

towards the sun; Those which intercepted any of the selected ellipsoids and whose 

distance to sun was larger or equal to that of the ellipsoid, were classified as “shaded 

grass” or “shaded tree” respectively. Shades in the trees could be produced by their own 

crowns or by other tree crowns. For each 30 minutes sequence of measurements, a 
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Matlab® structure variable type was generated to store the FOV vectors with the 

corresponding interception coordinates, sunlit/shadow and tree/grass classification; and 

all the geometric variables of each observation.  

To determine the contribution to the observation (α) of each one of the four 

categories, we calculated the fraction of vectors of the FOV that intercepted each 

category weighted by the DRFλ of the optical fiber. To do so, a weight was assigned to 

each vector of the FOV interpolating the DRFλ measurements. Since DRFλ is different 

for each band fractions are actually not estimated in this phase, but when later, during 

the modeling of the HDRDF. Similarly observation zenith and azimuth angles of each 

category were calculated as the mean angles of the vectors that intercepted each surface, 

also weighted by the DRFλ of the optical fiber.  

 

2.2.5. Data processing 

Spectra recorded by each Unispec DC channel were used to calculate the HCRF 

in a daily basis. For every measurement, sensor temperature, integration time and the 

raw signal in DN were used to correct dark current, nonlinearity and temperature 

dependence as described in chapter 3 and Pacheco-Labrador and Martín (2015). During 

the process, saturated spectra were filtered out. Then the spectral calibration model of 

each channel was used to linearly interpolate channel 2 spectra to the corresponding 

wavelengths of channel 1. Sun zenith angle and spectral δdif were used to correct the 

directional response of the cosine diffuser in channel 1. Spectral δdif was calculated 

using the model fit in Pacheco-Labrador and Martín (2015) interpolating the 

measurements averaged every 10 minutes by the SPN1 pyranometer located in the flux 

tower. Data were filtered in a daily basis; measurements acquired 4 hours after the last 
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rain event and reflectance outliers were removed. Then the calculated δdif, HCRF and 

the corrected spectra in DN of both channels were stored. 

In a second phase, the 3D and the ray casting models simulated the contents of 

each observation. For each ray in the FOV the interception coordinates with the 

vegetation and type of cover (grass/tree, sunlit/shaded) were stored. However, if the 

absolute difference between the input and the output angles of the PTU was larger than 

0.2 º, or if the FOV included polluting surfaces as described in section 2.2.4; the 

observation was not analyzed. 

The third phase was the modeling of HDRDF; that made use only of 

observations for which both, HCRF and FOV contents were available. At this stage, the 

contribution of the different covers and the average observation angles were calculated 

using the DRFλ of the optical fiber for each band. HCRF, δdif, contributions and 

observation and illumination angles were used for the retrieval of HDRDF using the 

methods described in the following section. 

 

2.3. HDRDF and BRDF modeling 

This section describes the HDRDF model and inversion method. This model is 

tested against synthetic data, the AMSPEC-MED measurements, and independent 

measurements both proximal (hand held spectroscopy) and remote (a BRDF product). A 

summary of the abovementioned analyses and the datasets used in each case can be 

found in the Figure 4. 
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Figure 4. Summary of the analyses and datasets used to test the HDRDF model. 

 

2.3.1 Model definition 

Up to now, multi-angular automated tower-based systems used for BRDF 

retrieval have been deployed in ecosystems that were homogeneous (Hilker et al. 2008a; 

Hilker et al. 2010a; Leuning et al. 2006) or where pure observations of the different 

covers could be identified (Hilker et al. 2009a). In these cases, it was possible assuming 

that the differences between the observations of different patches of the same cover 

were exclusively due to directional effects. This is therefore equivalent to observing the 
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same pixel from different directions; which is the base of the multi-angular tower-based 

systems. In the case of the AMSPEC-MED, pixel heterogeneity at the viewing scale 

makes not possible assuming that the same cover is observed from different directions. 

Differences between observations are partly due to the fact that different covers are seen 

every time. AMSPEC-MED rather observes small areas within a pixel where only parts 

or a few individual elements are present but it does not observe a representative sample 

of the pixel. Thus a priori information of such contents is needed to model the 

directional effects. For this reason, we developed a 3D model of the ecosystem and a 

ray casting model of the AMSPEC-MED FOV. These were used to estimate which the 

elements of the ecosystem were present in each observation and their corresponding 

contributions to the sensor signal. A linear kernel-driven model is proposed to separate 

the isotropic, volumetric and geometric scattering of the two covers (j) described in the 

ecosystem: trees and grass. The contributions of each cover (αj) predicted by the 3D 

model were used as weight in a linear combination of semi-empirical kernel functions 

(Eq. 1).  

 

,௩ߠሺߩ ,௦ߠ ߶ሻ ൌ෍ቀߙ௝൫݇୧ୱ୭,௝ ൅ ݇୥ୣ୭,௝ܭ′୥ୣ୭,௝ ൅ ݇୴୭୪,௝ܭ′୴୭୪,௝൯ቁ

௠

௝ୀଵ

	 (1)

 

where m is the number of different covers observed. θv, θs and ϕ stand for the view 

zenith angle, the sun zenith angle and the relative view-sun azimuth respectively. K’geo,j 

and K’vol,j are the geometric and the volumetric kernel functions and kiso,j, kgeo,j and kvol,j 

are the model parameters or weights for the isotropic, geometric and volumetric 

coefficients respectively.  
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In addition, since the AMSPEC-MED system operates under a wide range of sky 

conditions, the model accounted for the diffuse (δdif) and direct (1 - δdif) fractions of 

incoming irradiance. This way, it would not be necessary to classify the measurements 

in different sky condition groups as previously done for other AMSPEC dataset (Hilker 

et al. 2008a). In all the cases, δdif is assumed isotropic. This is a common assumption in 

radiative transfer and BRDF analysis. It is actually an approximation; however, it makes 

feasible the computation while it still takes into account the most of the effect (Lucht et 

al. 2000; Pinker and Laszlo 1992). Therefore, our model actually represents the HDRDF 

based on the BRDF and the integrated components of the BRDF that account for the 

directional response to diffuse isotropic irradiance. 

In order to model the geometric component of scattering, we substituted the 

typically used geometric-optical kernel functions by a new function (ܭ′୥ୣ୭౎ి,௝) that 

describes occlusion and shading from the contributions estimated by the 3D model as 

follows (Eq. 2): 

 

୥ୣ୭౎ి,௝′ܭ ൌ ݂൫ߙୱ୪,௝, ,ୱ୦,௝ߙ ௗ௜௙൯ߜ ൌ
൫ߙୱ୪,௝ ൅ ୱ୦,௝ߙ ൉ ୧୤൯ୢߜ

௝ߙ
െ 1, ,୥ୣ୭౎ి,௝ϵሾ0′ܭ െ1ሿ	

 

(2)

 

where αsl,j and αsh,j stand for the sunlit and the shaded contribution of each element, so 

that αj = αsl,j.+ αsh,j. The function accounts for δdif similarly as described in Hall (2011). 

Like other geometric-optical kernels, the function acquires negatives values (ranges 

between 0 and -1) describing a decrease of the reflected radiance as shadow fraction 

increases in the observation (Wanner et al. 1995; Xiaowen and Strahler 1985). It 

predicts minimum values for a shaded pixel under pure direct irradiance that would 

increase as diffuse irradiance illuminates shaded areas. Therefore, kernel values are the 
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same for a completely sunlit area (αsh,j=0) that is observed under a “black-sky” (δdif = 0) 

than for any observation under a “white-sky” (δdif = 1). Unlike other geometric-optical 

models, this function depends exclusively of the modeled scene, and there is not 

necessarily neither reciprocity nor symmetry at both sides of the solar plane (Lucht and 

Roujean 2000; Lucht et al. 2000; Pokrovsky and Roujean 2003a). 

The volumetric scattering was modeled using Ross kernels (Roujean et al. 1992; 

Wanner et al. 1995). After different tests, we selected the Ross-thick kernel (Roujean et 

al. 1992) for both grass and tree covers. In their original formulae these functions only 

describe the bidirectional scattering; however these can be integrated over the 

hemisphere of view or illumination angles becoming exclusively dependent on θs or θv 

respectively. This has been done for the computation of black-sky albedo (Lucht et al. 

2000) or emittance (Snyder and Zhengming 1998). In order to model HDRDF 

Cierniewski et al. (2004) used the integrated forms of the kernel functions over the 

illumination hemisphere to calculate HDRF under isotropic diffuse illumination; these 

integrated forms only depend on θv (Eq. 3).  

 

݄௞ሺߠ୴ሻ ൌ
1
ߨ
න න ,ୱߠሺܭ ,୴ߠ ߶ሻ

గ
ଶൗ

଴
sinሺߠୱሻ cosሺߠୱሻ ߶ୱ݀ߠ݀

ଶగ

଴
	

 

(3)

 

Later, the hemispherical-directional form of the kernel can be linearly mixed 

with the bidirectional kernel as a function of the diffuse and the direct irradiance 

components both in the sunlit and shaded fractions (Eq. 4). 
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The first term represents the contribution of the sunlit area of a given cover (sl,j) 

illuminated by direct and diffuse radiation, whereas the second is the contribution of the 

shaded area (sh,j) exclusively illuminated by diffuse radiation. 

From, Eq. 2 and 4 each observation was described as follows (Eq 5):  

 

HDRF ൌ ୋ݇୧,ୋߙ ൅ ܭୋ݇୥ୣ୭ೃ಴,ୋߙ
ᇱ
୥ୣ୭౎ి,ୋ

൅ ܭୋ݇୴୭୪౎౐,ୋߙ
ᇱ
୴୭୪౎౐,ୋ

	
൅ߙ୘݇୧,୘ ൅ ୥ୣ୭౎ి,୘′ܭ୘݇୥ୣ୭ೃ಴,୘ߙ ൅ ୴୭୪౎౐,୘′ܭ୘݇୴୭୪౎౐,୘ߙ

(5)

 

where subscripts “G” and “T” stand for grass and tree respectively, “geoRC” stand for 

the geometric-optical ray casting model and “volRT“ indicates the volumetric Ross-thick 

kernel. Though this model predicts HDRF, BRF values can be also computed by setting 

δdif to 0. 

As described in Eq. 5, HDRF was modeled as a linear combination of six kernels 

weighted by their contribution the corresponding covers to the observation. This allows 

the retrieval of the HDRDF model parameters k from observations that include 

significantly different fractions of each cover and acquired under different sky 

conditions. The simplification done here is that the quantity measured by the AMSPEC-

MED, the HCRF, can be used as a proxy of HDRF in the inversion. This has been 

previously done in other AMSPEC systems (Hilker et al. 2009a; Hilker et al. 2008a). 

HDRDF is connected to BRDF as both functions share the same parameters and BRDF 

equals HDRDF when δdif = 0. 
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2.3.2 Model inversion and quantification of uncertainties 

From Eq. 5 we deduce that for any set on n AMSPEC-MED observations for 

which the optical properties of vegetation can be assumed invariant, the following linear 

system can be built:  

 

ܾ ൌ A ݔ ൅ ߝ
(6)

 

where b is a n-by-1 matrix with the HCRF values measured by the AMSPEC-MED, A 

is a n-by-6 matrix containing the kernel function values where n >> 6, x is a 6-by-1 

matrix with the corresponding coefficients (k) and ε would be a n-by-1 matrix with the 

associated errors. Thought linear systems are readily invertible, the sensitivity of system 

solutions to perturbation (ill-conditioning) and the existence of several solutions due to 

dependences between the columns of matrix A (ill-posedness) must be taken into 

account. Several works deal with these issues in the retrieval of BRDF parameters from 

linear models (Cui et al. 2014; Pokrovsky et al. 2003b; Pokrovsky and Roujean 2003a, 

b; Wang et al. 2007). Though in the case of multi-angular remote observations the ill-

posedness is related with the lack of observations or even the underdetermination of the 

system; AMSPEC systems usually sample so much data that systems are largely 

overdetermined (Hilker et al. 2008a). However, condition numbers can be large so that 

model coefficients can be extremely sensitive to perturbation. To avoid these problems, 

additional conditions can be imposed to the minimization of the sum of squares using 

techniques such as Tikhonov regularization (Tikhonov and Arsenin 1977); where 

together with the sum of squares of residuals, the sum of squares of the solution is also 

minimized (Eq. 7):  
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ఉݔ ൌ argminሼ‖Aݔ െ ܾ‖ଶ
ଶ ൅ ݔሺܮ‖ଶߚ െ ሻ‖ଶ∗ݔ

ଶሽ
 

(7)

 

where xβ is the regularized solution, β is the weight given to the minimization of the 

solution Euclidean norm, L is the identity matrix or a derivative operator and x* can be 

included as an initial estimate of the solution. Eq. (7) can be rewritten as a least squares 

problem (Eq. 8):  

 

ఉݔ ൌ argmin ൜ฯ൤
A
L൨ߚ ݔ െ ൤

ܾ
൨ฯଶ∗ݔLߚ

ൠ ൌ ‖Cݔ െ ݀‖ଶ
ଶ

 

(8)

 

The problem can be summarized with the new matrices C and d analogous to A and b 

respectively. As can be seen in Eq. (7), the coefficient β controls the balance between 

the two errors that determine the regularized solution, the perturbation error and the 

regularization error. The L-curve method can be used to select an optimal balance 

between both errors by looking for the maximum curvature log-log relationship between 

the norm of the error and the norm of the solution (Hansen 1992). Tikhonov 

regularization was used to retrieve HDRDF parameters using the Matlab® package 

developed by Hansen (2007), available at 

http://www.mathworks.com/matlabcentral/fileexchange/52-regtools (last accessed, 21st 

April 2015). Problems were solved in the “standard form” (L = In) and no initial 

estimate of the solution (x*) was provided. In addition, we also computed the ordinary 

least squares (OLS) solution for comparison. 
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In a least squares problem the uncertainty half-band associated to the vector of 

coefficients (ߜ୶ො) can be derived using information present in the diagonal of the 

covariance matrix of the matrix of predictors ([(ATA)-1]qq, where “q” is the row or 

column number) and the error variance (σ2) (Van De Geer 2005). As shown in 

Pokrovsky and Roujean (2003a), confidence intervals can be established from the 

inverse Student’s cumulative distribution value (Tinv(1- γ/2, v)) for a given significance 

level (γ) and degree of freedom (v) (Eq. 9) and propagated to produce the uncertainty 

half-band of the predicted directional reflectance (ߜ୷ෝ) from a given set of predictors (Z) 

(Eq. 10), where A can also be the C matrix in Eq. (8).  
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(10) 

 

Though this analysis can be extended to the regularized solutions, it must be 

considered that, in this case, the estimation of uncertainty is only an approximation, 

since a bias might exist between the real solution (x) and the estimated solution (xβ) 

which is not easily taken into account (Kasper et al. 2002). 

 

2.3.3 Model performance: comparison with remote sensing BRDF models 

In this work, we propose the substitution of the geometric-optical kernels by a 

direct estimation of the observed sunlit and shaded fractions of each ecosystem layer. 

Moreover, we account for irradiance using the integrated form of the volumetric kernel 



Chapter 4 

172 
 

functions, and adding the diffuse radiation to the shaded fractions predicted by the 3D 

and the ray casting models. In this section, we analyze the changes introduced in the 

HDRDF shape by these modifications and compare the proposed model with a BRDF 

model typically used in remote sensing products. To do so, we used the ecosystem 3D 

model to simulate remote observations of an artificial scene where spheroid trees were 

randomly distributed. Crown relative height and shape were defined using the 

AMBRALS (Wanner et al. 1997) standard values h/b = 2 and b/r = 1 (Lucht et al. 2000; 

Schaaf et al. 2002). The scene was theoretically observed from a remote sensor with a 

small instantaneous FOV (0.3545 mrad) resulting in a diameter of 250 m at nadir, 

analogous to MODIS bands 1 and 2. In this case the FOV was made of a cone of 6957 

vectors that equally contributed to the signal. Sun was located at three different zenith 

angles 30 º, 45 º and 60 º. For each illumination angle, the contributions of each cover, -

sunlit and shaded- in the simulated scene were estimated for 121 observation angles 

homogeneously distributed in the hemisphere every 15 º; view zenith was limited to 75 

º. The estimated contributions were used to simulate BRF (δdif = 0) and HDRF (δdif = 

0.5, 1) from Eq. (5). For that, a sample of 500 vectors containing the model parameters 

k was randomly generated, always with the condition that the modeled reflectance 

factors would be comprised between 0 and 1.  

In order to compare our model with other BRDF models commonly used in 

remote sensing (Wanner et al. 1997), the simulated BRF (δdif = 0) and HDRF (δdif = 0.5, 

1) were used to adjust the parameters of a linear model that includes the widely used Li-

Sparse-Reciprocal (Lucht 1998) and Ross-thick kernels known as RTLSR BRDF 

model. One of the assumptions frequently found in the geometric-optical models is that 

the canopy and the background are equally bright (Roujean et al. 1992; Wanner et al. 
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1995; Xiaowen and Strahler 1985). Since we selected the same kernel function (Ross-

Thick) for both covers, any linear combination of different covers’ BRDF would be 

directly comparable with the RTLSR model; this dataset was labeled as ModTkTk. 

However, the model proposed (Eq. 5) allows combining BRDFs described by different 

functions. In order to assess the impact of this feature we also generated a second 

dataset where the volumetric kernel of grass was the Ross-thin function instead of the 

Ross-thick (Wanner et al. 1995). This function describes the volumetric scattering of 

canopies with low LAI values. This second dataset was not directly comparable with the 

RTLSR model since canopy and background directional responses were described by 

different functions, and it was labeled as ModTnTk  

BRF values were used to assess the effect of mixing covers with different bright 

in the retrieval of BRDF; whereas HDRF values were used to assess the effect of 

isotropic diffuse radiation. This way, both features of the model could be separately 

analyzed and also combined. Notice that, in these analyses, atmospheric correction and 

related errors were omitted and therefore we assumed that irradiance and radiance at the 

top of the canopy were perfectly known.  

 

2.3.4 Model performance: comparison with real observations 

The performance of the model was also tested using the AMSPEC-MED 

measurements to retrieve HDRDF. For that, we selected all the measurements available 

between 1st August 2013 and 30th May 2014. Since the proposed model deals with 

different sky conditions, we evaluated the need of aggregating data during a single day 

or for larger periods in order to improve the distribution of δdif values available for 

model inversion. Thus, we retrieved HDRDF using data selected from a single day 
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(TW0) and within three time windows around each day of the period of ± 1, ± 2 and ± 3 

days around it (TW1, TW2 and TW3 respectively). Additionally, the performance of the 

inversion methods (OLS and Tikhonov regularization) was also tested in order to 

determine if any of them could provide more robust estimates of the model parameters. 

Then we analyzed the two main features of the modeling approach proposed: unmixing 

directional responses of different covers and accounting for diffuse radiation. To assess 

the unmixing we compared the HDRDF retrievals using different datasets: the first 

included all the observations where the different covers of the ecosystem were mixed 

(“Mix”); the following were mono-angular observations of pure grassland (“Grass”) or 

tree crowns (“Tree”). Pure observations were not included in the “Mix” dataset, but 

used together as a validation dataset (“Val”) to test the retrievals performed using 

“Mix”. Finally, we compared the retrieval of HDRDF which accounts for diffuse 

radiation, with the direct retrieval of BRDF which assumes δdif = 0.  

In order to assess the results these analyses we calculated the Root Mean Square 

Error (RMSE) of the adjusted models. We also assessed the smoothness of model 

parameters and the derived HDRF and BRF time series; inferring that noise in the series 

was due to dependences of the results on data availability and random errors. In order to 

maximize these effects, HDRF and BRF were also computed at geometries not observed 

by AMSPEC-MED, and therefore where models are not constrained by measurements. 

Also, parameter uncertainties were propagated to predicted reflectance factors and 

considered in the evaluation. Additionally, the presence of model parameters with 

negative values was interpreted as a bad performance of the models. Even though 

kernel-driven models are not completely physical, they are conceived so that reflectance 

factors result of the positive addition of the kernel values (Lucht and Roujean 2000), 
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and therefore some physical consitency is expected. Though negative values could 

appear when confidence intervals are considered (Pokrovsky and Roujean 2003a) these 

can be also be produced by ill-posedness and/or ill-conditioning of the inverse problem. 

Results of the analysis described in this section were used to select the most 

reliable methodology for the HDRDF retrieval using data acquired by the AMSPEC-

MED system. This method was used to retrieve HDRDF parameters with the associated 

uncertainties at the different spectral bands between August 2013 and June 2015. From 

these, daily BRF and HDRF values normalized to standardized sun-view geometry and 

sky conditions would be generated and used for the analysis of time series of 

comparable spectral data.  

 

2.3.5 Comparison with remote BRDF products and hand held field spectroscopy 

After selecting an adequate methodology the directional analysis (section 2.3.4), 

grass and tree HDRDF model parameters were retrieved between the 1st August 2013 

and the 15th May 2015, and used to upscale BRF at the ecosystem level. These estimates 

were compared with those predicted by the BRDF parameters provided by the 

MCD43A1 BRDF/Albedo Model Parameters Product. For this comparison, we 

simulated remote observations of the ecosystem using the methodology described in 

section 2.3.3. In this case, the FOV was modified to produce a 500 m pixel to match the 

resolution of the MCD43A1. The number of vectors (6957) was kept in order to reduce 

computing effort after checking that this had no impact on the cover contributions 

estimated. The scene was simulated using the 3D model derived from airborne LiDAR 

data (section 2.2.4). Since this model only covered an area about 500 x 400 m, the 

central square of 300 x 300 m was replicated 49 times in order to cover the area that 
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could be observed by a MODIS 500 m pixel at the same angles as described in section 

2.3.3. The contributions of each cover and the shadow fractions were estimated at θs = 

30 º, 45 º and 60 º; and a Gaussian DRFλ of the sensor was assumed. The contributions 

simulated and the HDRDF parameters estimated from the AMSPEC-MED observations 

were used to compute BRF values of the scene. All the MCD43A1 images acquired 

over the study site and available from 1st August 2013 and the 15th May 2015 were 

downloaded from http://e4ftl01.cr.usgs.gov. The MODIS Reprojection Tool (Dwyer 

and Schmidt 2006) was used to extract the parameter values from the pixel in where the 

AMSPEC-MED is located. These and the RTLSR model were used to compute BRF at 

the same sun and view angles used in the simulated scenes. BRF values predicted by the 

MCD43A1 and the AMSPEC-MED were compared. For the comparison, MODIS Band 

1 data was used and the Unispec DC spectral bands were convolved to MODIS Band 1 

by using the averaged spectral response of Terra and Aqua sensors available at 

http://mcst.gsfc.nasa.gov/calibration/parameters, last accessed 1st July 2015. 

We also compared grass field spectra acquired in the Majadas del Tiétar site 

with the AMSPEC-MED HDRF estimates at the same θs and δdif. Hand held spectra 

were acquired at nadir in 25 x 25 m plots with an ASD Fieldspec® 3 in eight campaigns 

± 2 h around solar midday, resulting in a total of 132 spectra. Measurements were taken 

with a bare optical fiber with a FOV of approximately 25 º. 

 

3. RESULTS 

3.1. AMSPEC-MED characterization and models 

In this section, we describe the outcomes of the characterization of the different 

features of the system. A complete characterization of the Unispec DC spectrometer 
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was already described in Chapter 3 and Pacheco-Labrador and Martín (2015). Thus only 

results corresponding to the system geometry are described here.  

The DRFλ characterization of the downward-looking optical fiber revealed that 

the FWHM ranged between 22.79 º and 28.84 º in the range 400-1,000 nm. Actually, 

radiation flux was sampled within solid angles between 34.05 º and 39.64 º 

(accumulated DRFλ larger than 0.05). DRFλ showed a top-hat shape and the DRFλ 

became narrower and sharper towards the Near Infrared (NIR). Figure 5 shows the 

DRFλ weights of the modeled FOV for three different bands. 

 

 

Figure 5. FOV DRF weights at 500 (a), 700 (b) and 900 nm (c). Each value corresponds 

to one of the vectors that represent the FOV of the AMSPEC-MED. 

 

The observation direction of the optical fiber was found also biased respect to 

the direction driven by the PTU. The optical fiber aimed 0.44 º above and 0.41 º to the 

right side of the direction driven by the PTU. In the field, the orientation of the pole that 

holds the PTU was determined with an aligned laser and a GPS. The pole and therefore 

the relative zero azimuth reference of the PTU was at 173.72 º. The pole was inclined 

respect to the horizontal plane 0.33 º in the east-west direction and -0.27 º in the north-
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south direction. All these angles were later considered to determine the actual 

orientation of the FOV. The characterization proved not to be trivial. The correction of 

the tower inclination and the optical fiber deviations produced differences between 1.47 

º and 9.44 º in the azimuth view angles and between -3.12 º and 3.69 º in the zenith view 

angles for the observations of a “regular” sequence of measurements.  

 

3.2. Ecosystem and observation models 

Figure 6 shows an example of an 84 x 84 m scene generated with the 3D model 

and the points intercepted by the FOV vectors used for the analysis of the AMSPEC-

MED data. A similar scene was generated for each AMSPEC-MED measurement in 

order to determine the contributions of the different covers observed. In a “regular” 

sequence (186 observations at different geometries), the average contribution of grasses 

and trees is approximately 70.5 and 29.5 % respectively. Shadow fractions vary 

depending on the sun position. Among the observation angles set in the “regular” 

sequence only one of the measurements included exclusively grass, at azimuth 84.63 º 

and zenith 45.32 º. The purest observation of a tree crown included ~97.5 % of tree 

cover within the FOV, at the azimuth 168.53 º and zenith 39.58 º. This measurement 

was assumed as pure in further analyses. 
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Figure 6. Example of a modeled AMSPEC-MED FOV and scene at ϕ = 206.1 º, θv = 

57.7 º, θs =.60 º. Blue and red dots show the interceptions of the simulated FOV vectors. 

Darker tones used for shaded and brighter for sunlit areas. Tree crowns were selected to 

detect any interception with the FOV rays; those in turquoise were tested for producing 

shades in the FOV. The road on the south in bright brown, and the fence and structures 

nearby in grey were also represented.  

 

3.3. Model performance: comparison with remote sensing BRDF models 

Figure 7 shows one of the artificial scenes simulating observations from a 250 m 

MODIS pixel as described in 2.3.3; tree crowns and FOV rays interceptions are shown. 
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Also, threes selected to test shadow casting or interception out of the FOV can be seen 

in the surroundings of the doted area. In this case, the 28.33 % and the 39.79 % of the 

rays intercepted sunlit and shaded grass respectively, while 23.98 % and 7.91 % 

captured sunlit and shaded tree crowns. 

 

 

Figure 7. 3D simulated scene for a MODIS 250 m pixel at ϕ = 0.0 º, θv = 0.0 º, θs =.60.0 

º. Red dots represent viewed sunlit grass or tree crowns and black dots the view shaded 

covers.  

 

Figure 8 shows the different contributions estimated in the principal plane (a-c) 

and in the cross principal plane (d-f) for different zenith illumination angles: 30 º (a, d), 

45 º (b, e) and 60 º (c, f). The total sunlit (αsl) and total shaded (αsh) fractions including 

all the covers are also shown. For comparison, the corresponding Li-Sparse-Reciprocal 
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and the Li-Dense-Reciprocal kernel values (Lucht 1998) are presented in an arbitrary 

scale. As can be seen, the total sunlit fraction resembles the Li-Sparse-Reciprocal kernel 

values at low observation zenith angles, but large angles the decrease is not as much 

abrupt and slightly behaves like the Li-Dense-Reciprocal kernel. The ray casting model 

is able to reproduce the “hot spot” in the backward direction, where no shaded surfaces 

are observed. Also the symmetry at both sides of the cross principal plane is reasonably 

achieved. 

 

 

Figure 8: Contributions of the tree/grass sunlit/shaded covers and total sunlit and 

shadow fractions simulated with a 3D model for multi-angular remote observations. 

Values shown correspond to observations located in the principal plane (a-c) and in the 

cross principal plane (d-f) for different zenith illumination angles: 30 º (a, d), 45 º (b, e) 

and 60 º (c, f). Sun zenith angle and scaled values of the Li-Sparse-Reciprocal and Li-

Dense-Reciprocal kernel values (b/r = 1, h/b = 2) are shown in all the cases. 
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The RTLSR BRDF model was fit to BRF and HDRF generated from the 

synthetic scene using the ModTkTk and the ModTnTk datasets. The corresponding Relative 

Root Mean Square Error (RRMSE) and the 95 % confidence intervals corresponding to 

the 500 samples simulated are presented in Table 1. In absence of diffuse radiation, 

RRMSE increased with θs and was always larger for the ModTnTk dataset. Under 

isotropic diffuse radiation the fit of each dataset works differently. At low θs ModTkTk is 

best fit under mid diffuse conditions (δdif = 0.5), and RRMSEs are always lower than 

under direct radiation and increases with θs. In the case of ModTnTk, the errors increase 

with δdif only at low illumination angles; but these are minimum at δdif = 0.5 at mid and 

high θs. Only at the highest illumination angle, RRMSEs are lower under completely 

diffuse radiation than under direct.  

 

Table 1. RRMSE (%) of the fit of the RTLSR BRDF model to simulated BRF (δdif = 0) 

and HDRF (δdif = 0.5, 1) at different illumination angles; both mimicking the RTLSR 

model (ModTkTk) and representing covers of different BRDF (ModTnTk). Each dataset 

had 500 samples. Mean values and the 95 % confidence interval are presented. 

θs 30 º 45 º 60 º 

δdif ModTkTk ModTnTk ModTkTk ModTnTk ModTkTk ModTnTk 

0.0 
6.2 ϵ  

[1.5, 12.7] 

6.5 ϵ  

[2.0, 12.4] 

7.7 ϵ  

[2.0, 14.5] 

8.3 ϵ  

[2.4, 14.9] 

8.2 ϵ  

[2.2, 15.7] 

10.8 ϵ  

[4.1, 20.2] 

0.5 
5.2 ϵ  

[1.1, 11.0] 

6.8 ϵ  

[2.1, 11.9] 

6.8 ϵ  

[1.4, 15.0] 

7.8 ϵ  

[2.3, 13.2] 

7.0 ϵ  

[1.2, 15.8] 

7.7 ϵ  

[2.6, 12.8] 

1.0 
5.3 ϵ  

[0.9, 12.1] 

7.5 ϵ  

[1.8, 12.6] 

7.1 ϵ  

[1.0, 16.8] 

8.7 ϵ  

[2.0, 14.5] 

7.4 ϵ  

[0.9, 18.3] 

8.4 ϵ  

[2.1, 14.4] 
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Figure 9 shows the average BRF and HDRF simulated values and the values 

predicted by the adjusted RTLSR model. As can be seen, for the same θv the reflectance 

factors’ slope in the principal plane is maximum under direct radiation (Figure 9a, d) 

and becomes flatter under full diffuse conditions (Figure 9c, f). Directional effects and 

absolute mean BRF and HDRF values are larger for ModTnTk (Figure 9d-f) than for 

ModTkTk (Figure 9a-c). For both datasets, RTLSR BRDF model fits reasonably when δdif 

= 0; however, this fit gets worse when δdif increases. In both datasets diffuse radiation 

led to an overestimation of the reflectance factors in the backward direction of the 

principal plane. 

 

 

Figure 9. Average BRF and HDRF values derived from the synthetic 3D scene and the 

corresponding values predicted by the RTLSR BRDF model. In the bottom ϕ and θv are 

plotted every 30 º and 15 º respectively. In (a)-(c) values were simulated using ModTkTk 

model. In (d)-(f) values were simulated using ModTnTk. Diffuse radiation fraction 
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increases from left to right. In (a) and (d) δdif = 0; in (b) and (e) δdif = 0.5 and in (c) and 

(f) δdif = 1. In all the cases, θs = 45 º. 

 

The mean values of the RTLSR parameters inverted by OLS from the ModTkTk 

and the ModTnTk datasets are shown in Table 2. Parameters differ for each dataset and 

δdif level. Diffuse radiation produced an increase of the isometric parameters and a 

decrease of the volumetric and the geometric ones. In fact, the parameters of the 

geometric kernel took negative values.  

 

Table 2. Averaged RTLSR model coefficients retrieved over two simulated datasets of 

remotely observed reflectance factors and different illumination conditions. θs = 45 º. 

ModTkTk ModTnTk 

δdif ki kg kv ki kg kv 

0.0 0.237 0.003 0.364 0.250 0.003 0.413 

0.5 0.251 -0.024 0.351 0.280 -0.028 0.410 

1.0 0.264 -0.050 0.339 0.310 -0.059 0.407 

 

3.4. Model performance: comparison with real observations 

3.4.1. Effect of the temporal aggregation of data 

AMSPEC-MED multi-angular observations were used to retrieve HDRDF of the 

different components of the ecosystem between 1st August 2013 and 30th May 2014. In 

this period there were data available only for the 74.59 % of the days due to rain or 

technical failures. After data processing and filtering 300,498 observations were 

selected and used for the retrieval of HDRDF. Results of the data aggregation analysis 

are shown in Figure 10. 
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Figure 10: HDRDF model coefficients retrieved daily by ordinary least squares fitting 

@650 nm. Data acquired the same day (a), ± 1 (b), ± 2 (c) and ± 3 days (d). The ranges 

of daily δdif (between 0 and 1) are plotted scaled according to the y axis values. 

Predicted BRF (e) by the same model parameters for θs =45 º, θv =0 º, ϕ = 45 º, δdif = 0, 

αsl,P = αsh,P = αsl,T = αsh,T = 0.25. 
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Figure 10a-d shows the HDRDF model parameters corresponding to the 650 nm 

band. These were retrieved by OLS for from data aggregated in different time windows, 

as described in 2.3.4. Model parameters became less noisy along the period as the width 

of the time window increased. In the figure, the daily ranges of the δdif values are also 

shown. As can be observed, the coefficients seem to vary according to the values of δdif 

available. This effect is more acute the narrower is the time window used, as well as the 

presence of negative values in the retrieved parameters. Figure 10e shows the 

corresponding BRF estimates, predicted under sky conditions and sun-view 

configurations that were not measured by the system. Similarly, BRF noise and 

presence of negative values decrease as the time window width increases. 

Table 3 shows the averaged uncertainties and sample size (n) of the retrievals of 

HDRDF for the different time windows. RMSEs shown correspond to the “Mix” dataset 

from where model is inverted and to the “Val” dataset used for validation purposes. In 

all the cases the systems were largely overdetermined; more than 1,000 observations 

were available, in average, for the narrowest time window. Table 3 shows the values 

corresponding to the model inversion using OLS, but results are similar using Tikhonov 

regularization. For the different time windows, no large differences were found between 

errors. RMSE slightly increased with the width of the time window. However, the 

maximum 95 % half band uncertainty was at TW0. Similar results were observed in 

other bands, both in the Visible and in the NIR regions. 
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Table 3. Time aggregation analysis results for the 650 nm band. Uncertainties expressed 

in reflectance (%) for the different time windows (TW). Predicted 95 % confidence half 

band (ߜ௬ොሻ corresponds to predicted values shown in Figure 10e. 

 TW0 TW1 TW2 TW3 

Mean n 1,330.6 3,560.2 5,725.6 7,854.4 

RMSEmix 1.36 1.37 1.39 1.42 

RMSEval 0.97 1.00 1.02 1.06 

Predicted ߜ௬ො  2.03 1.89 1.89 1.92 

 

3.4.2. Effect of inversion method 

Figure 11 shows the model parameters retrieved by least squares (a, c) and 

Tikhonov regularization (b, d) for the narrowest (a, b) and the widest (c, d) time 

windows used. For both inversion methods, the width of the time window contributed to 

smooth coefficients across time, reducing the dependence of δdif data available for the 

inversion. Even for TW3, coefficients derived by OLS showed abrupt variations and 

largely negative values; however regularized solutions were less noisy.  

Figure 11e shows the BRF computed from the coefficients above in the same 

graph, and the same sun-view configuration and sky conditions than in Figure 10e. TW0 

led to noisier values than TW3 for both methods; OLS also produced negative values. 

Regularized BRF predictions reached larger and usually smoother values. 
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Figure 11: HDRDF model coefficients retrieved daily @650 nm for two different time 

windows and inversion methods. Model parameters corresponding to TW0, OLS (a); 

TW0, Tikhonov regularized (b); TW3, OLS (c); and TW3, Tikhonov regularized (d). 

The ranges of daily δdif (between 0 and 1) are plotted scaled according to the y axis 

values. Predicted BRF (e) for the coefficients shown above under θs =45 º, θv =0 º, ϕ = 

45 º, δdif = 0, αsl,P = αsh,P = αsl,T = αsh,T = 0.25. 
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Table 4 shows the mean RMSE and propagated uncertainties from the 

parameters retrieved with each method. Error variances and propagated uncertainties 

were larger for the regularized solutions; which also increased with the width of the 

time window. In the case of the OLS, mean RMSE increased with the width of the time 

window, whereas propagated uncertainties were maxima at TW0. 

 

Table 4. Inversion method analysis results, @650 nm. Uncertainties expressed in 

reflectance (%). Predicted 95 % confidence half bands (ߜ௬ොሻ correspond to the BRF 

values shown in Figure 11e. 

TW0 TW1 TW2 TW3 

Mean n 1323.6 3553.2 5742.9 7914.3 

Ordinary least squares 

Mean fit RMSE 0.90 0.94 0.95 0.97 

Predicted ߜ௬ො  2.03 1.89 1.89 1.92 

Tikhonov regularization 

Mean fit RMSE 1.08 1.11 1.14 1.17 

Predicted ߜ௬ො  2.12 2.18 2.23 2.30 

 

3.4.3. Effect of the spectral mixture 

In this section, we present the results of the unmixing of the HDRDF. We 

compare the HDRDF model parameters retrieved using datasets that include mixed and 

pure observations and the predicted BRF. In this case, in order to minimize the effect of 

other sources of noise, model parameters were retrieved using Tikhonov regularization 

and a time window of ± 3 days around each date. Figure 12a-c shows the model 

parameters retrieved using the “Grass”, “Tree” and “Mix” datasets.  
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Figure 12: HDRF model coefficients retrieved daily by least squares fitting @650 nm. 

Parameter retrieval for a pure grass patch (a), pure tree crown (b) and a mix of grass and 

tree canopies (c). The ranges of daily δdif (between 0 and 1) are plotted rescaled 

according to the y axis values. Predicted BRF (d) for the coefficients shown above 

under θs =45 º, θv =0 º, ϕ = 45 º, δdif = 0, αsl,P = αsh,P = 0.5, αsl,T = αsh,T = 0.5. 
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As can be seen in the figure, negative parameters can be observed in the all 

cases. For each cover, the corresponding parameters retrieved from pure and mixed 

datasets showed different absolute values and also trends. These were noisier when 

retrieved from mon-angular pure observations. The isotropic parameters were more 

similar than the others in all the cases. 

Figure 12d shows the grass and tree canopy BRF predicted by coefficients above 

in the same figure. BRF was computed under the same sun-view configuration and sky 

conditions than in Figure 10e, but corresponding to pure covers. As can be seen, there 

are differences between the predicted values of each cover depending on the dataset 

used to estimate the coefficients. Grass and trees BRF estimated from pure observations 

usually reached higher values than BRF derived from the “Mix” dataset. The largest 

differences were found in the Summer. Sudden changes appeared in grass BRF derived 

from the “Grass” and the “Mix” datasets, but these were less frequent in the case of 

“Mix” (Figure 12e).  

Table 5 summarizes sample sizes and uncertainties related with each dataset. As 

shown, the sample sizes of the datasets with pure observations were considerably 

smaller than the one that included the remaining mixed observations available; thought 

in these cases the models were still largely overdetermined. These differences are 

explained because due to ecosystem heterogeneity and system configuration only one 

observation angle was sample pure patches of the two covers. Thus only the variation of 

illumination angles drives HDRDF. RMSE and half-band uncertainties propagated to 

the predicted BRF were larger when parameters derived from the “Mix” were used. 
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Table 5. Cover mix analysis results, @650 nm. Uncertainties expressed in reflectance 

(%). Predicted 95 % confidence half band (ߜ௬ොሻ corresponds to the values in Figure 12d. 

 “Grass” “Tree” “Mix” 

Mean n 89.1 108 7,926.3 

RMSE 1.06 0.34 1.42 

Predicted ߜ௬ො  1.82 1.05 
2.30 (“Grass”);  

2.30 (“Tree”) 

 

3.4.4. Effect of diffuse radiation 

In this section we analyze the inclusion of diffuse radiation in the model. The 

retrieval of HDRDF as proposed in section 2.3.1 is compared with the retrieval of a 

pseudo-BRDF (BRDF*) where diffuse radiation is neglected assuming it equals 0. In 

order to minimize the effect of other sources of noise, model parameters were retrieved 

using Tikhonov regularization and a time window of ± 3 days around each date.  

Figure 13 shows the model parameters retrieved neglecting diffuse radiation (a) 

and accounting for it (b). This is, forcing δdif.to 0 or using estimated values as described 

in 2.2.5 and Pacheco-Labrador and Martín (2015) respectively. Though in both cases 

parameters show smooth curves, the first methodology shows a larger dependence on 

δdif ranges. Abrupt changes and negative values in model parameters are larger and 

more frequent in BRDF*. Figure 13c-d show respectively BRF and HDRF values 

predicted from both methods with the same geometry and contributions than in Figure 

12d, but full direct and full diffuse radiation were used in each case. As can be seen, 

when diffuse radiation is neglected, predictions largely depend on sky conditions. The 

largest differences between the estimates of each method can be noticed in the Summer; 

when also in some cases, BRDF* based predictions present sharp variations.  
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Figure 13: HDRF model coefficients retrieved daily by Tikhonov regularization @650 

nm and predictions not (a) and taking (b) into account diffuse radiation. The ranges of 

daily δdif measured (between 0 and 1) are plotted rescaled according to the y axis values. 

(c) Predicted BRF values from coefficients in the same figure, δdif = 0. (d) Predicted 

HDRF values from coefficients in the same figure, δdif = 1. For the predictions θs =45 º, 

θv =0 º, ϕ = 45 º, αsl,P = αsh,P = 0.5, αsl,T = αsh,T = 0.5. 
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Table 6 shows the RMSE of the models fits corresponding to the datasets 

“Grass”, “Trees”, “Mix” and its validation dataset “Val”. It also provides the 95 % half 

band uncertainties for the predicted BRF and HDRF shown in Figure 13c-d. As can be 

seen RMSEs were, in general, larger when diffuse radiation was included into the 

model. No large differences can be observed between the uncertainties in the prediction 

of BRF and HDRF, but these were still larger for the HDRDF-based estimates. 

 

Table 6. Diffuse radiation analysis results, @650 nm. Uncertainties expressed in 

reflectance (%). Predicted 95 % confidence half band (ߜ௬ොሻ corresponds to the BRF and 

HDRF values shown in Figure 13c-d. 

RMSE “Grass” “Trees” “Mix” “Val” 

BRDF* 1.05 0.36 1.25 0.87 

HDRDF 1.06 0.34 1.42 1.06 

Predicted ߜ௬ො  BRFGrass BRFTree HDRFGrass HDRFTree 

BRDF* 2.12 2.12 2.12 2.12 

HDRDF 2.30 2.30 2.30 2.30 

 

3.4.5. Method selection and HDRDF retrieval 

Previous analyses led to the selection of the most appropriate methodology to 

model the directional responses of vegetation from AMSPEC-MED observations. We 

decided modeling HDRDF using observations from mixed covers and aggregated in a 

time window of ± 3 days. The inversion selected was method was Tikhonov 

regularization, however, OLS solutions were always computed for comparison. 

Figure 14 summarizes the performance of the method using the AMSPEC-MED 

data between the 1st August 2013 and 30th May 2015 corresponding to the 650 nm band.  
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Figure 14: Model fit on the “Mix” (blue, a-c) and the validation (red, d-f) dataset @650 

nm. From left to right, observed HCRF vs. predicted HDRF values (a, d), error 

histogram (b, e) and δdif vs. error (c, f).  

 

From the predicted-observed scatterplots (a, c), the model seems to slightly 

underestimate the largest HDRF values, both, for validation and fit datasets. r2 values 

were 0.76 and 0.92 respectively for the model fit and the validation datasets (p < 0.05 in 

both). The bias can be noticed in the error histograms (b, e), which are narrow and with 

the error still centered on 0. RMSE are 1.40 % and 0.96 % respectively. The largest 

errors were found under clear skies with low δdif (c, f). 

Figure 15 shows the predicted HDRF and the 95 % uncertainty confidence 

intervals for different spectral bands frequently used in vegetation spectral indices. 
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Figure 15: Predicted HDRF values and 95 % confidence intervals for 531 (a), 570 (b), 

650 (c), 680 (d), 700 (e) and 800 nm (f) at θs =45 º, θv =0 º, ϕ = 45 º, αsl,P = αsh,P = 0.5, 

αsl,T = αsh,T = 0.5, δdif = 0.5. 

 

HDRF values were estimated for tree and grass covers separately and 

corresponds to a standardized observation where half of the contribution is shaded and 

δdif = 0.5. Thought the changes predicted across the period were smooth, still some 
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abrupt variations appeared in some of the bands, and confidence intervals included 

negative values. Uncertainties seem to become wider in the Summer, but in the case of 

the 800 nm band (Figure 15f) when contrarily to the other bands, the values of both 

covers are more similar. 

 

3.5 Comparison with remote BRDF products and hand held field spectroscopy 

Table 7 summarizes the results obtained from the comparison between 

AMSPEC-MED based estimates with other remote and proximal measurements. BRF 

up-scaled from AMSPEC-MED parametrized HDRDF and a 3D model is compared 

with BRF computed from the MOD43A1 parameters corresponding to band 1 of 

MODIS. Also, HDRF estimated is compared with hand held spectral measurements of 

grass. Though model parameters are derived from the AMSPEC-MED data using the 

methodology selected in section 3.4.5; OLS based estimates were also compared. As 

can be seen, OLS estimates got lager r2 and lower RMSE than the regularized ones. For 

both inversion methods, errors increased and r2 decreased with θs. The comparison of 

grass HCRF measurements with the predicted grass HDRF showed higher correlations 

and lower errors than in the comparison with the MCD43A1; OLS also achieved a 

better fit than Tikhonov regularization. In all the cases, relationships were significant (p 

< 0.05). 
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Table 7. Summary of the comparison of the AMSPEC-MED BRF and HDRF estimates 

with BRF derived from the MCD43A1 BRDF/Albedo Model Parameters Product and 

hand held HCRF. RMSE is expressed in reflectance (%). 

Ordinary Least Squares Tikhonov Regularization 

r2 RMSE r2 RMSE 

MODIS Band 1   

θs = 30 º 0.86 2.07  0.84 2.32 

θs = 45 º 0.85 2.24  0.80 2.65 

θs = 60 º 0.76 3.00  0.66 3.69 

ASD Fieldspec® 3, grass   

θv = 0 º 0.89 1.85  0.85 2.10 

 

Figure 16 shows the observed vs. predicted plots corresponding to the 

comparison with MODIS (a, b) at θs = 45 ºand for the comparison with handheld grass 

measurements taken from nadir (c, d). The comparison with MODIS BRF shows an 

underestimation of the largest BRF values; which can also be observed in the 

comparison with hand held measurements of grass (c, d). In all the cases, the 

underestimation was slightly more acute for the regularized solutions than for OLS. In 

the comparison with MODIS, 121 different observation angles are compared for each 

date; in the figure, data corresponding to the nadir view are flagged in green; these show 

in general a better fit than the complete dataset.  
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Figure 16. Comparison of ecosystem MCD43A1 BRF and AMSPEC-MED up-scaled 

BRF from OLS (a) and Tikhonov regularization (b) parameters; green diamonds 

corresponds to observations at nadir. Comparison of grass hand held measured HCRF 

and AMSPEC-MED predicted HDRF from OLS (c) and Tikhonov regularization (d) 

parameters. 

 

4. DISCUSSION 

4.1 AMSPEC-MED system and scene characterization. 

AMSPEC-MED was be carefully characterized in order to correct the 

reflectance factors computed and to model and unmix the directional responses of the 
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different elements of the ecosystem. Different sensor models were developed for the 

correction of instrumental artifacts during the characterization of the spectroradiometer 

(Pacheco-Labrador et al. 2014; Pacheco-Labrador and Martín 2015; Pacheco-Labrador 

and Martin 2014). We found that, due to the combination of solar irradiance spectrum, 

optics transmittance and sensor quantum the maximum signal of the down-welling was 

close to 570 nm. Therefore this band could be more severely affected by gray-level-

related nonlinearity than others (Pacheco-Labrador and Martin 2014). This could 

produce changes in the PRI due to increases in irradiance levels actually not related 

with changes in vegetation physiology. For this reason we included an integration time 

optimization in AMSPEC-MED which not only prevents from nonlinearity artifacts, but 

also maximizes the signal-to-noise ratio for every measurement. Since in the field site 

the power supply was limited and the spectroradiometer temperature could not be 

regulated, the characterization included dark current and temperature dependence 

models to correct data in the post-process.  

The system integrates also information on δdif provided by a SPN1 sensor for the 

correction of the directional response of the cosine diffuser, and later for HDRDF 

modeling. However, uncertainties related to this approach might be important in some 

cases: First, because this is a broadband sensor from which spectral δdif values were 

estimated empirically. Second because the SPN1 sensor provides values integrated 

every 10 minutes; which are interpolated to provide estimates for each measurement of 

the AMSPEC-MED system. This might lead to errors when sky conditions rapidly 

change, e.g. under passing clouds. Nonetheless, such situations are already uncertain 

since, unlike assumed, diffuse radiation is largely anisotropic in a heterogeneous sky. In 

other circumstances these estimates might be closer to reality, and contribute to the 
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quality of data. Spectral diffuse radiation should be measured in automated systems; 

ideally using the same sensor of the system since this would provide diffuse and global 

irradiance values at the same wavelengths. Shadow band devices could be used to shade 

the spectrometer cosine receptor, as done by Barch et al. (1983). If that was not 

possible, multiband shadow band sensors as the one installed in FIGOS (Dangel et al. 

2005) could provide better estimates of spectral δdif tan the SPN1 used in this work. If 

measurements of δdif could not be simultaneous to the acquisition of HCRF, at least 

alternate measurements or a frequency similar the one at which HCRF was acquired 

should be used. Nonetheless, systems based on cosine diffusers are not able to 

characterize the angular distribution of diffuse radiation, actually anisotropic (Lyapustin 

and Privette 1999). A different approach might be the one adopted by PARABOLA III 

(Bruegge et al. 2000) and later by FIGOS (Schopfer et al. 2008): measuring bi-conical 

radiation fluxes as a proxy of the bi-directional ones. All these methods would increase 

the complexity and the vulnerability of these systems, but might be worthy to ensure a 

better understanding of the effects of diffuse radiation and provide more accurate 

estimates of BDRF. Though in this work we adopted a very simple approach, the 

advantages of accounting for diffuse radiation could be noticed. An additional issue that 

could be taken into consideration is that diffuse irradiance generated in the atmosphere 

might differ from the diffuse irradiance reaching the observed surface. The latter can be 

increased by the scattering of adjacent objects and this would be more relevant at bands 

where albedo is higher and anisotropic depending on the scene structure (Courbaud et 

al. 2003). To account for this effect the inversion of scene radiative transfer models 

based on Monte Carlo simulation of photon transport might be used; however 

computational effort might be excessive in the case of operational automated systems.  



Chapter 4 

202 
 

We characterized the multi-angular system geometry in order to correctly 

determine the observation angles and the contribution of the different elements present 

in the FOV. In previous automated multi-angular systems, such a detailed termination 

of the FOV contents was not necessary since it was assumed that a single cover was 

observed (Hilker et al. 2008a; Leuning et al. 2006) or that observations could be 

stratified in homogeneous clases (Hilker et al. 2009a). However Hilker et al. (2008b) 

used an ALS to generate a canopy surface model and estimate the shadow fraction of 

each observation, though still in a homogeneous canopy. The effect of elements 

surrounding the FOV had not been previously characterized in multi-angular automated 

systems, though Huber et al. (2014) found that shadows casted by trees out of the 

observed area might explain some variations in grass anisotropy factor. In our case, the 

characterization of the DRFλ of the Unispec DC optical fiber was undertaken; however 

it was not as accurate as needed due to a technical failure in the laboratory. To what 

extent has this affected the modeling of the viewed scene and of the BRDF is unknown. 

MacArthur et al. (2012) found that optics and entrance slits slightly modified the shape 

and DRFλ of a field spectroradiometer and such details would have been missed in our 

case. However our approach was more realistic than assuming a homogeneous response. 

In addition, we discovered that the FOV was wider than reported by the manufacturer 

(in terms of FWHM) and delimited the solid angle from where most of the radiation 

flux is sampled. This was relevant for the characterization of the FOV contents and to 

avoid sampling radiance above the horizon at large θv. 
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4.2 HDRDF modeling and retrieval 

The modeling of the directional effects proposed in this work includes two 

features that make it different from the kernel-based models most frequently used. On 

one hand, the geometric-optical scatter is substituted by a description of the viewed 

scene and the FOV. On the other hand, the model accounts for diffuse radiation. 

Similarly to the geometric-optical kernels, the ray casting model used in this 

work estimates the occlusion and shading effects for each AMSPEC-MED observation; 

and also assumes single scatter and no transmittance of the scene elements (Roujean et 

al. 1992). However, several features make the approach different. First, contributions 

and angles of the different elements observed are weighted by the DRFλ of the optical 

fiber. This is rarely done for non-imager sensors since it requires some knowledge about 

the contents of the pixel, though it is analogous to the point-spread function more 

frequently used in image analysis (Plaza et al. 2012). Its impact will depend on pixel 

heterogeneity and sensor DRFλ (MacArthur et al. 2012), which would be reduced when 

observing a homogeneous area from a narrow solid angle. Since AMSPEC-MED 

system FOV width and scene heterogeneity were large, accounting for DRFλ was 

necessary even if this could not be accurately determined. Second, geometric-optical 

models usually account for shades and occlusion based on the observed area of each 

cover observed and projected on the ground as a function of the sun-view geometry 

(Xiaowen and Strahler 1992). This does not account for the increase of the horizontal 

area per steradian within the FOV as a function of θv; which can be ignored for a 

homogeneous scene of fine grain observed by a narrow FOV. On the contrary, 

AMSPEC-MED model uses a ray casting approach with a constant vector density per 

solid angle, and estimates the different contributions based on the frequency of 
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interception of each cover. Therefore as θv increases, the sampling density per unit 

horizontal area becomes sparser, following in fact a Cauchy distribution (Eklundh et al. 

2011). Moreover, when vectors intercept crowns in the FOV, sampling density varies 

according to the distance to the sensor optics and the surface curvature. However, it 

must be noted that the model do not integrate the contents of the area observed within 

the solid angle. AMSPEC-MED FOV is wide, observations are done at large θv and the 

grain of the scene respect to the observation scale is large. Therefore, despite of the 

computational effort, the proposed approach is more suitable than the use of area-based 

methods. An alternative would be projecting the observed areas on a plane normal to the 

observation direction. A simulation analysis was used to compare the contributions 

estimated by our model with the Li-Sparse and Li-Dense reciprocal kernels. The 

correlation between the predicted sunlit fraction and each of the functions at high or low 

θv respectively can be explained by the tree density crown of the synthetic image. The 

Li-Sparse model predicts no occlusion of tree crowns due to low density by simplifying 

the term ex ≈ 1 + x in Eq. 30 of Wanner et al. (1995); which occurs at low θv. On the 

contrary at large θv occlusion happens and only the top of the crowns is observed, which 

increases the sunlit fraction observed as predicted by Li-Dense. An approach that deals 

with this issue is the Li-Transit kernel which combines the version of the Li-Sparse 

reciprocal kernel at low zenith angles and the Li-Dense function at large ones (Gao et 

al. 2000). 

The estimation of the contribution of the different covers to the sensor signal in 

each observation is the basis for unmixing their directional responses. Some authors 

have previously used prior information for BRDF modeling and unmixing. In example, 

Asner et al. (1997) used spectral unmix analysis to determine sub-pixel canopy, 
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background and shadow fractions and invert a geometric-optical model of a simulated 

scene. You et al. (2015) used high resolution imagery to determine sub-pixel fractions 

of different covers within a MODIS pixel and unmixed the corresponding BRDF; 

whereas Román et al. (2011) used land cover type prior knowledge and high spatial 

resolution airborne multi-angular information to analyze the impact of scale and mix in 

the BRDF retrieval.  

The second feature of the proposed approach is the inclusion of diffuse radiation 

by modeling HDRDF instead of directly BRDF, as proposed by Cierniewski et al. 

(2004). Methods to include diffuse radiation in BRDF modeling have been proposed 

and used (Dangel et al. 2005; Lyapustin and Privette 1999; Martonchik 1994). 

However, to our knowledge, these have not been used in automated tower-based mono 

and multi-angular hyperspectral systems. In spite of that, the effects of diffuse radiation 

on data acquired by these systems have been reported. In example, Meroni et al (2011) 

found that diffuse radiation could explain the disagreement of incoming irradiance and 

the cosine law. Huber et al. (2014) also found that diffuse irradiance might explain hihg 

forward scattering at high θs. Hilker et al. (2008a) found that shadow fraction had an 

effect on the BRDF shape of PRI under different sky conditions. In the same work, 

BRDF shapes related to different light use efficiency could only be determined by 

classifying data in different sky conditions groups. The relationship between the shadow 

fraction, the diffuse radiation and changes induced in PRI were later analyzed in Hall et 

al. (2011). On the other hand, Hilker et al. (2009a) filtered and removed cloudy data to 

avoid this influence in the BRDF analysis of several vegetation indices. Skawoska et al. 

(2015) found large variations in HCRF related with δdif. Results of this and other works 

support that even if impact of diffuse radiation can be small in remote sensing data, it is 
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relevant in the case of data acquired from proximal sensors. Most of the reported effects 

are related with large θs or cloudy situations but diffuse radiation might have significant 

effects in the visible region also under clear skies, where atmospheric scattering is 

strong (Kriebel 1996). Diffuse radiation increases the contribution of radiance coming 

from the shaded areas. Among other effects, diffuse radiation smooths the BRDF slope 

in the principal plane (section 3.3, this work) and increases the pixel bright (Sakowska 

et al. 2015). And as can be deduced by the hemispherical integrals of the kernel 

functions (Lucht et al. 2000), enhances the differences of scatter between low and large 

zenith angles. Diffuse radiation also affects the retrieval of BRDF parameters. Hilker et 

al. (2008a) also reported such effect on PRI BRDF; however since they analyzed a 

spectral index also related to plant physiology, their results are not directly comparable 

to the simulation done in this work. Results of the models comparison in section 3.3 

showed that kernel-driven BRDF models can accommodate to HDRDF with errors 

comparable to those produced by disagreement between the BRDF model and the real 

BRDF observed. This could affect the normalization of reflectance factors. In our 

analysis the BRDF dark spot was overestimated under diffuse conditions, which should 

be taken into account prior to use the contrast between the dark and the hot spot to 

estimate vegetation properties.  

The modeling of HDRDF proposed here is similar to the one suggested by 

Martonchik (1994). However, since δdif is estimated and assumed isotropic, no iterative 

inversion schemes are applied and the hemispherical integrals of the functions that 

represent the diffuse irradiance are precomputed. Different features of the approach 

proposed were tested using real data acquired by the AMSPEC-MED system. We 

concluded that aggregating data from several days increased the diversity of sky 
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conditions and better constrained the models. The maximum period of aggregation was 

a week, though no large differences were found when comparing to the 5-days 

aggregation period. In remote sensing, biophysical and optical properties of vegetation 

covers are not expected to show large changes within these periods. In fact, similar and 

larger periods are used to generate BRDF products from remote sensors (Hautecœur and 

Leroy 1998; Schaaf et al. 2002). After temporal aggregation some numerical instability 

persisted and consequently regularization techniques were tested. Tikhonov 

regularization provided solutions numerically more stable than OLS, and also estimates 

of HRDF and BRF smoother across time. The drawback of regularization is that 

uncertainties in the fit and the predictions were larger. Regularization is been often used 

for BRDF inversion (Asner et al. 1997; Cui et al. 2014; Pokrovsky and Roujean 2003a; 

Wang et al. 2007) but more frequently to overcome data scarcity. Automated multi-

angular sensors produce large datasets, and new approaches might be explored for 

BRDF models inversion. In addition to ill-posedness and conditioning, other issues 

should be addressed, like the effect of the distribution of geometries and diffuse-to-

global radiation ratios available for each inversion. Pokrovsky and Roujean (2003b) 

analyzed the issue of angular sampling scheme concluding that exhaustive sampling 

might not be always the best option whereas the optimal design was land cover 

dependent. Angular sampling might be optimized in these automated systems, taking 

also into account changes in the observed covers. However sky conditions cannot be 

controlled and schemes for the selection of optimal datasets should be explored.  

The unmixing of the grass and tree canopy HDRDF was based on the estimates 

of their respective contributions in every multi-angular observation. To our knowledge, 

this had not been done before from a tower-based multi-angular system. Despite of the 
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uncertainties associated to the modeling of the FOV scene and sampling, separation was 

reasonably achieved. The multi-angular unmixing approach proved to be also more 

convenient for the estimation of HDRDF than the mono-angular observation of pure 

targets. The latter approach could be easier to deploy in a heterogeneous tree-grass 

ecosystem, but as proved in our comparison, the characterization of directional effects 

might not be properly constrained. AMSPEC-MED FOV is wide, so in a savanna 

ecosystem as the one under investigation, this allows acquiring measurements with 

different contributions of grass and trees. Uncertainties in the estimation of such 

contributions can be relatively large, but the wide FOV also homogenizes the errors in 

the different measurements. In addition, the internal heterogeneity of each cover is 

integrated. A wide FOV also requires assuming that the measured HCRF still can be a 

proxy of HDRF. Another alternative would be using a narrow FOV (Bruegge et al. 

2000; Schopfer et al. 2008) where this assumption was more relaxed, and selecting 

angles to observe pure patches of each cover. This approach might also present 

technical problems related with the lenses when permanently installed outdoors and also 

a larger sensitivity to uncertainties in geometry of observation and intra-cover 

heterogeneity. In any case, in a tree-grass ecosystem it would be necessary to account 

for shadows casted from trees outside the FOV.  

We compared modeling HDRDF vs. modeling BRDF, where δdif = 0 was 

assumed. Though differences in terms of error were not large between both methods, 

modeling HDRDF provided model parameters more independent from the illumination 

conditions. Results show that, despite of the uncertainties in spectral δdif, automated 

multi-angular proximal sensing should account for diffuse radiation if the robust 

normalization of reflectance factors or if any interpretation of the model parameters are 
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expected. In this work, errors in the model fit were larger under clear skies (δdif < 0.2) 

and this might be explained by the anisotropy of diffuse radiation (Lyapustin and 

Privette 1999), maybe further from isotropy in absence of clouds; or by the assumed 

opacity of tree crowns. Since trees’ clumping was not accounted for, this could produce 

an overestimation of shaded grass that would vanish under diffuse radiation; and an 

overestimation of tree contributions. A characterization of this clumping and tree crown 

transitivity might improve the estimates.  

Uncertainties found in the estimation of the contributions of each cover and in 

the characterization of sky conditions, and also problems related with adequate 

distribution of data could partly explain the larger errors and instabilities in data. During 

the Summer in example sky was mainly clear and sometimes model was not well 

constrain even gathering data from several days. During this period also, the differences 

between trees and grass reflectances were maxima in the Visible, so that uncertainties in 

the modeling of FOV contents might have a larger impact in model inversion. 

Contrarily, in the Summer uncertainties were lower in the NIR, when differences 

between the reflectance factors of both covers were also smaller. This might be a 

problematic inherent in the study of tree-grass ecosystems, and others similar where 

vegetation types present behave spectrally different across the phenological cycle. 

In the model proposed, up-scaling HDRDF and reflectance factors requires using 

a 3D model of the pixel up-scaled and is therefore not straightforward. A 3D model of a 

500 m MODIS pixel was approximated and AMSPEC-MED BRF estimates were 

compared with values derived from the band 1 of MODIS MCD43A1 product. We 

observed an underestimation of the highest BRF values. This was confirmed when 

comparing HDRF estimates with field spectral measurements of grass canopy (Figure 
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16), and was also noticed during the fit of the HDRDF models (Figure 14). 

Uncertainties in the estimation of δdif or cover contributions, in the characterization of 

the FOV width and geometry, or a biased sampling scheme could explain the 

differences. However, correlation coefficients (r2 ϵ [0.66, 0.86]) were still larger than 

those found in previous comparisons of AMSPEC systems in homogeneous ecosystems. 

Hilker et al. (2009b) found r2 = 0.74 between tower-based and MODIS PRI in a 

Douglas fir forest. Also, Hilker et al. (2010a) compared PRI AMSPEC estimates with 

those derived from MODIS bands 11 and 12 obtaining r2 ranging between 0.57 and 0.62 

in a Douglas fir and between 0.51 and 0.63 in mature Aspen forest.  

 

5. CONCLUSIONS 

Automated tower-based hyperspectral systems are becoming more frequent 

nowadays; however several factors jeopardize the comparability of data and the analysis 

of surface properties. These systems operate under wide ranges of environmental 

conditions including air temperature, sun angles and diffuse fractions of down-welling 

flux. On one hand, instrumental artifacts can be prevented via system design and sensor 

models properly adjusted and updated. On the other, directional effects affecting these 

systems can be overcame retrieving the BRDF from multi-angular observations. Further 

efforts should be dedicated to the development of methodologies that make comparable 

the measurements of different systems. As shown, such approaches would not only 

depend on the sensor, but also on the scene observed and therefore he problematics and 

opportunities of these systems could be quite specific. Therefore, ad-hoc approaches 

rather than a standardization of the sensors used by the scientific community would 

achieve the comparability of data.  
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Further efforts will be needed in the modeling of the directional effects affecting 

these systems. Diffuse irradiance should be accounted for, and measurements of spectral 

δdif as simultaneous as possible to the acquisition of reflectance factors would be needed 

in order to model HDRDF. In some cases, spatial heterogeneity would be also an issue 

to address. In this study, we used a 3D model of the scene observed to unmix the 

directional functions of trees and grass; which was also necessary for up-scaling. This 

required a detailed characterization of the system optics and observation geometry. 

Similar approaches could be used and up-graded in tree-grass ecosystems and 

heterogeneous sites. In addition, automated multi-angular hyperspectral systems can 

provide enormous datasets; new methods to ensure robust model inversion and to select 

the most suitable angular and atmospheric datasets should be explored.  
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APPENDIX I. LIST OF SYMBOLS 

Symbol Magnitude 

A Predictors matrix of known observations 

b Observations vector 

b/r Relative crown shape 

C Predictors matrix of known observations in the regularized system 

d Observations vector in the regularized system 

DRFλ Spectral Directional Response Function 

G Subscript that stands for “grass cover” 

h Integral of a kernel-driven function over the hemisphere 

h/b Relative crown height 

j Cover type 

k BRDF or HDRDF model parameter  

kiso BRDF or HDRDF model isometric parameter  

kgeo BRDF or HDRDF model geometric parameter  

݇୥ୣ୭ೃ಴ BRDF or HDRDF model geometric parameter of the ܭ′୥ୣ୭౎ి function 

kvol BRDF or HDRDF model volumetric parameter  

݇୴୭୪ೃ೅ BRDF or HDRDF model geometric parameter of the ܭ′୴୭୪౎౐ function 

K Kernel-driven function that describes bidirectional scatter 

K’geo Geometric-optical function that describes HDRDF 

 ୥ୣ୭౎ి′ܭ
Geometric-optical function that describes HDRDF based on the 3D 

ray casting model 

K’vol Volumetric function that describes HDRDF 

ᇱܭ
୴୭୪౎౐ 

Volumetric function that describes HDRDF based on the Ross Thick 

kernel-driven function 

L Identity matrix or derivative operator 

n Number of observations 

m Number cover types observed 

p p-value 

q Subscript that indicates the row or column number of a matrix 

r2 Coefficient of determination 
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sh Subscript that stands for “shaded” 

sl Subscript that stands for “sunlit” 

T Subscript that stands for “tree cover” 

Tinv Student’s cumulative distribution value 

v Degree of freedom 

x System solution 

xβ System regularized solution 

x* Prior estimate of the system solution 

Z Set of predictors 

α Contribution to an observation 

αsl Contribution of the sunlit fraction to an observation 

αsh Contribution of the shadow fraction to an observation 

β Regularization error’s weight 

γ Confidence level 

δdif Diffuse-to-Global Radiation Ratio 

୶ොߜ  Uncertainty half-band associated to the vector of coefficients 

 ୷ෝ Propagated to produce the uncertainty half-band of the predictionߜ

ε Vector of random disturbances 

θs Zenith illumination angle 

θv Zenith view angle 

λ Subscript that denotes the spectral nature of a variable 

ϕ View-sun relative azimuth angle 

σ2 Error variance 
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APPENDIX II. LIST OF ACRONYMS AND ABBREVIATIONS 

ALS: Airborne Laser Scanning 

AMBRALS: Algorithm for MODIS Bidirectional Reflectance Anisotropies of the Land 

Surface 

AMSPEC: Automated Multiangular Spectro-radiometer for Estimation of Canopy 

reflectance 

AMSPEC-MED: AMSPEC system deployed in the Mediterranean tree-grass ecosystem 

in las Majadas del Tiétar site, Cáceres, Spain. 

AVHRR: Advanced Very High Resolution Radiometer 

BRDF: Bidirectional Reflectance Distribution Function 

BRF: Bidirectional Reflectance Factor  

CHRIS: Compact High Resolution Imaging Spectrometer 

DN: Digital Number 

DGM: Digital Ground Model 

DSM: Surface Model 

FIGOS: Swiss Field-Goniometer System 

FOV: Field of View  

GPS: Global Positioning System 

HCRF: Hemispherical-Conical Reflectance Factor 

HDRDF: Hemispherical-Directional Reflectance Distribution Function 

HDRF: Hemispherical-Directional Reflectance Factor 

LAI: Leaf Area Index 

LED: Light-Emitting Diode 

LiDAR: Light Detection and Ranging 
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MIRS: Multi-Angle Imaging Spectra-Radiometer 

MODIS: Moderate Resolution Imaging Spectroradiometer 

MSG: Meteosat Second Generation 

NIR: Near Infrared 

OLS: Ordinary Least Squares 

PARABOLA: Portable Apparatus for Rapid Acquisition of Bidirectional Observation 

of the Land and Atmosphere 

PNOA: Spanish National Plan for Aerial Orthophotography  

POLDER: Polarization and Directionality of Earth Reflectance 

PRI: Photochemical Reflectance Index 

PTU: Pan-Tilt Unit 

RMSE: Root Mean Squared Error 

RRMSE: Relative Root Mean Squared Error 

RPAS: Remotely Piloted Aircraft Systems 

RTLSR BRDF: Ross-Thick-Li-Sparse-Reciprocal BRDF model 

SWIR: Short Wave Infrared 

TW: Time Window 
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5. CONCLUSIONS AND FUTURE RESEARCH 

 

The first part of the present Thesis has focused on the characterization of a field 

dual channel spectrometer later installed in an automated multi-angular system 

outdoors. The second has been dedicated to the analysis of the directional responses 

observed by the system in a heterogeneous ecosystem.  

The continuous and automated nature of the system has been common to both 

parts of the study. Automated systems acquire measurements under ranges of 

environmental variables likely much larger than hand-held systems. This means that the 

influence of these variables must be subtracted from the measurements prior to analyze 

the information.  

 

5.1 INSTRUMENTAL CHARACTERIZATION 

The Unispec DC is a spectrometer largely used in the study of vegetation and 

remote sensing; among the first instruments to be automatized. However, a detailed 

characterization of this instrument had not been previously reported. This study has 

identified and characterized different instrumental artifacts that can compromise data 

quality.  

Special attention has been put on the characterization of non-linearities since 

these jeopardize the study of variables that, as the spectral measurement, are also 

dependent on the incoming or the reflected radiation fluxes. These could be vegetation 

physiology, quantification of energy fluxes or BRDF analysis. Gray-level-related non-

linearity can be controlled by integration time optimization procedures, though 

characterization and correction would still be recommendable, or even necessary for 
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some applications. The integration-time-related nonlinearity has been to our knowledge, 

reported here for first time in a field spectroradiometer. Though it is likely to have little 

effect in outdoor measurements, where radiation fluxes are high; it can dramatically 

affect laboratory measurements and the parametrization of other sensor models, where 

radiation sources are usually less powerful.  

Instrumental dependences on temperature have been also analyzed. This was 

critical for a system that lacks of shutter for recording the dark current signal; and that 

in addition was installed in a system that cannot include temperature stabilization, due 

to power supply limitations. Both features would be desirable for automated systems 

and should be provided whenever is possible.  

The directional response of the cosine receptor was also modeled in order to 

correct the effects of the different illumination heights and the diffuse component of 

irradiance. Also this type of characterization would be especially relevant in automated 

systems.  

Instrumental artifacts are specific of each sensor type, and unique for each 

instrument. Though some of them can be prevented via system design, this might not be 

always possible and sensor models should be developed and parametrized. Especially in 

the case of automated systems, especial efforts should be done to guarantee data quality 

and comparability. It must be also considered that the significance of biases and 

uncertainties and the corresponding impacts would also depend on the requirements of 

each application.  

Further efforts are needed to develop procedures for the characterization of 

outdoors automated spectral systems. Especial attention must be paid to the 

maintenance and update of sensor models. These tasks can be costly and difficult in the 
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case of automated systems as they could require dismounting the part or the whole 

system to perform laboratory measurements. Different solutions could be explored to 

guarantee regular update of sensor models of sensors installed in automated systems. In 

example, the use of modular systems could facilitate the disassembling and 

rearrangement after maintenance and characterization. A second option could be the 

development of characterization benchmarks that could be operated outdoors.  

 

5.2 HDRDF MODELING AND UNMIX 

In the second part of this study, we have proposed an innovative methodology 

for the analysis of the directional responses. To our knowledge, this is the first 

automated multi-angular tower-based system that unmixes the directional responses of 

the different covers simultaneously observed within the FOV of the sensor. The 

separation of directional functions is based on the 3D modeling of the ecosystem and 

the characterization of the optics used. The ecosystem model was derived from non-

synchronized ALS data, assuming low temporal variability. The accuracy with which 

scene and optics are modeled determines the quality of the unmixing. New methods 

should be tested to model observed scene covers and shadow fractions efficiently. In 

example, multi-angular RGB images and structure from motion techniques could be 

suitable in ecosystems where structure varied also across time. Terrestrial LiDAR could 

provide detailed topography of the observed scene if the system range is sufficient, and 

also provide information about canopy transmittance. These methods would allow also 

estimate shadow fraction to derive ΔPRI-based LUE. 

The approach proposed also accounts for the effect of diffuse radiation on the 

directional responses of vegetation, modeling the HDRDF instead of the BRDF. 
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However, further efforts are needed to improve the measurements of the diffuse 

component of irradiance in these systems, both, in the spectral and the directional 

domains. Radiative transfer, bi-conical or shadow band sensors or hemispherical 

cameras among other approaches could be tested. Also, new data processing approaches 

should be explored in order to optimize variances and distributions in datasets used for 

model inversion. 

The strong directional effects found in this work and others, makes highly 

recommendable for automated hyperspectral systems to adopt a multi-angular approach. 

This would allow not only the characterization of directional effects for correction and 

comparison with remote observations and sensors; but also chances for a better 

constrained inversion of radiative transfer models for the retrieval of biophysical 

parameters of vegetation. AMSPEC-MED HDRDF derived data have not been fully 

exploited yet. Future analyses would include the use of this information for the retrieval 

of biophysical variables or biospheric fluxes.  
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