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Summary 

The present review highlights the progress made in plant proteomics via the 

introduction of combinatorial peptide ligand libraries (CPLL) for detecting low-

abundance species. Thanks to a novel approach to the CPLL methodology, namely 

that of performing the capture both under native and denaturing conditions, 

identifying plant species in the order of thousands, rather than hundreds, is now 

possible. We report here data on a trio of tropical fruits, namely banana, avocado 

and mango. The first two are classified as “recalcitrant” tissues since minute 

amounts of proteins (in the order of 1%) are embedded on a very large matrix of 

plant-specific material (e.g., polysaccharides and other plant polymers). Yet, even 

under these adverse conditions we could report, in a single sweep, from 1000 to 

3000 unique gene products. In the case of mango the investigation has been 

extended to the peel too, since this skin is popularly used to flavour dishes in Far 

East cuisine. Even in this tough peel 330 proteins could be identified, whereas in soft 

peels, such  lemons, one thousand unique species could be detected. 

 

1 Introduction 

The present review aims at offering a panorama of what modern pre-fractionation 

technologies can achieve in detecting the low- to very-low abundance proteins (LAP) 

in plant proteomics, an analyte fraction that is quite invisible even to the most 

sophisticated modern MS, whose sensitivity spans in general five orders of 

magnitude in relative concentrations of proteins present in a sample. Yet, in human 

biological fluids, such as plasma, such a dynamic range can cover up to 12 orders of 

magnitude [1] and, in living cells, it can span at least seven orders of magnitude. 

Thus, it is quite obvious that MS alone cannot efficiently cover the ground and thus 

additional techniques would be needed to achieve the goal of (hopefully) a global 

coverage of any proteome. One such technique, which will be reviewed here with 

examples of what can be achieved in analysis of plant proteomics, is definitely the 

combinatorial peptide ligand library (CPLL) technology. This technology has been 

developed over the years and it has now been taken at a level of maximum 

performance, as summarized in a recent book [2].  



www.proteomics-journal.com Page 3 Proteomics 

 

This article is protected by copyright. All rights reserved. 

 

   As just stated, CPLLs appear to be a unique tool for exploring the “dark side” of 

any proteome, due to their unique property of providing millions of affinity ligands 

able to find a partner in any protein species present in biological materials. It must be 

emphasized that in just about any biological specimen a small set of proteins (often 

as few as 20–30) are present in large excess and they could constitute, like in 

human sera, as much as 99% of the total protein mass. This would leave little room 

for sampling (and thus detecting) all other species present therein. A solution 

proposed already in 2002 by the Anderson’s lab was immuno-subtraction, i.e., 

preparation of affinity resins containing antibodies against the six most abundant 

proteins in sera (first extended to 12 and now to 20) [3]. It was believed to permit 

access to low-abundance species [4], but in reality it did not quite live up to 

expectations [5, 6] for several reasons. Among them, the major issue was that far too 

little sample volume could be processed in a single sweep (barely 100 µL 

serum/plasma). Application of this methodology to plant proteomes, such as the 

immuno-depletion of RuBisCO, also did not lead to any major improvement [7]. The 

CPLL technique that we have developed is immune to such drawbacks. To start 

with, these beads can be loaded with any volume (and quantity) of sample, since 

they work on an overloading principle. Additionally, they are universal, since they can 

be applied to any sample of any origin, whereas immune-subtraction relies on 

antibodies made against specific samples, which involves preparing a new one when 

the organism is changed. Thirdly, and most importantly, these beads act 

simultaneously by drastically cutting the concentration of high-abundance species 

while enriching and concentrating the LAP population to the maximum possible 

extent (i.e. as long as there are species in solution, depending on how large the 

sample applied is). The consequence of such a situation is the detection of many 

novel proteins (low-abundance) as a result of (i) the annihilation of the signal 

suppression due to concentrated species (e.g., albumin in serum) and (ii) the 

detection of very low concentration proteins that were below the detectability level 

prior to sample treatment [8-10]. Although we have discussed and reviewed the 

properties and mechanism of action of CPLLs several times, we will briefly report 

them again here. CPLLs comprise several million hexapeptides (probably made by 
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using 16 different amino acids) which are potentially able to recognize a 

complementary amino acid sequence in a bait protein, thus harvesting it from the 

sample matrix. Therefore CPLLs can be envisioned as a matrix consisting of millions 

of bio-affinity ligands, contrary to classical affinity chromatography where, in general, 

a single ligand specific for a given protein is bound to a resin [2]. Their ability to 

capture a given protein, especially if present in very low abundance (LAP), as 

compared to much more concentrated proteins (HAP), depends on the relative 

affinities for a given bait. Thus, a LAP, having very high affinity for a given 

hexapeptide, can displace from it an HAP having low affinity for the same ligand. 

This mechanism of action can thus counterbalance the law of mass action and 

permit capture and much increased visibility of LAPs in the presence of HAPs.  

We have applied the CPLL technique to plant proteomics (but in particular to 

analysis of foodstuffs and beverages of plant and animal origin) for three main 

reasons: 

(i) To detect trace proteins/peptides exhibiting negative effects on health (e.g., 

allergens); 

(ii) To detect trace proteins/peptides displaying positive effects on health (e.g., 

anti-microbial, anti-hypertensive and anti-oxidant activities); 

(iii) To expose fraud in commercial food products and provide a proof of 

genuineness for “correct” commercial foods, as found in supermarkets. 

   The present review is limited to application of the CPLL methodology to three 

typical tropical fruits of very large consumption, namely the banana, avocado and 

mango, whose proteome was largely unknown before our investigations. 

Additionally, two of them (avocado and banana) represent “recalcitrant tissues” in 

that minute amounts of proteins (of the order of 1%) are embedded on a very large 

matrix of plant-specific material (e.g., polysaccharides and other plant polymers). 

Thus, the description and discovery of their proteomes represents a real challenge. 

Therefore, we will not cover here the vast literature on plant and food proteomics, but 

we will just mention two recent reviews (and references therein) covering this field 

quite extensively [11, 12]. Special issues of different journals appear from time to 

time covering plant proteomics, including analysis of food and beverages. A recent 
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one has been released by Journal of Proteomics [13]. Within this issue see, for 

instance, Boggess et al. [12], Nakamura et al. [14], Uvackova et al. [15] and Agrawal 

et al. [16]. 

 

2 Mammalian versus plant proteomics 

When surveying the deeds of scientists working with mammalian proteomics, it is 

clear that today they can explore to an incredible extent the proteome of any living cell 

line. For instance, when analyzing 11 human cell lines, Geiger et al. [17] could 

identify a total of 11,731 proteins and on average 10,361 ±120 proteins in each cell 

line, an outstanding catch, indeed. Interestingly, a very large number of them 

represent a common set shared by all cell lines, amounting to 8522 unique species. 

Each individual cell then displays from 200 to 500 proteins specific of each line. The 

latter probably represent proteins that characterize each individual line and ensure 

its specific biological activity. It is likely that they could also be low-abundance 

species. How can there be such a discrepancy with plant proteomics, when in this 

last domain we are lucky if we can find a few hundred species in a single run? It 

should be noted that, in a way, these mammalian cell lines grown in vitro cultures are 

rather “easy” samples, in that they are not embedded in, e.g., fibrous tissues, 

muscles and other body compartments that would represent a complex matrix from 

which such cells would have to be extracted. On the contrary, in plant proteomics, 

most of the time, proteins to be identified are dispersed into a very complex matrix 

and often are present in low amounts as compared to the plant biopolymers (e.g., 

polysaccharides, polyphenols) and metabolites constituting the specimen mass. This 

is the reason why it has been difficult to detect more than a few hundred species in 

any plant tissue. Thus, the CPLL methodology described here, allowing access to an 

order of magnitude more (up to 3000 unique gene products), represents an 

important advance in the field. Clearly, however, more efforts should be dedicated to 

improving extraction technologies so as to match what is obtained in mammalian 

proteomics today. 
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   There is a reason, though, for this major advance in mapping of fruit proteomics. 

Up to these investigations, in fact, we applied the CPLL technology under “orthodox” 

conditions, namely by capturing proteomes under native conditions, since it was 

believed (correctly) that CPLLs would not be compatible with denaturing milieus, 

such as the classical cocktail of 2 M thiourea, 7 M urea and 2% CHAPS adopted for 

solubilizing proteins in view of two-dimensional mapping. Such conditions, indeed, 

are used to elute the proteins captured by CPLLs, so they could hardly be applied for 

their capture! Yet, we found an escape route: after solubilizing proteins (and 

capturing them) under native conditions, the remaining sample could be treated with 

2% SDS, but not under boiling conditions, only at room temperature. Under these 

conditions, plenty of additional species could be solubilized. Yet the presence of 2% 

SDS would be incompatible with further sample treatment via CPLLs. However, by 

diluting the sample to barely 0.1% SDS and adding a larger excess of surfactants 

compatible with CPLLs (up to 1% of Triton X 100 or CHAPS) this denatured sample 

is now amenable to CPLL capture. This is illustrated in Fig. 1. Thus, by subjecting 

the sample to this double capture, under native and denaturing conditions, the 

number of proteins that can be identified increases substantially to well above 1000 

species, a major increment over the past. Of course there are more ways for both 

capturing and eluting proteins from CPLL beads. They cannot possibly be reviewed 

here; however, in the book by Boschetti and Righetti [2], in Chapter 8, no less than 

56 pages are devoted to “Detailed Methodologies and Protocols” (among them, 

notably, the fact that it is possible to digest the harvested proteins directly on the 

CPLL beads, collect the peptides and go directly to MS analysis). Readers are thus 

referred to this book for detailed treatments on methodologies related to CPLLs.  

 

3 Banana proteomics 

The first tropical fruit investigated by us, among the “recalcitrant tissues”, was the 

banana. Musa spp., comprising banana and plantain, is grown extensively in many 

developing countries and is considered to be one of the most important sources of 

energy in the diet of people living in tropical humid regions. Due to its antioxidant and 
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cell anti-proliferative activities, the consumption of banana has been associated with 

reduced risk of chronic diseases such as cardiovascular diseases and cancer [18]. 

To date, no in-depth work has focused on identifying the banana fruit proteome; 

since fresh banana pulp contains approximately 20% carbohydrates and only 1% 

proteins. This fruit has been traditionally considered as a difficult matrix for protein 

extraction, being a target in studies of optimization of protein extraction 

methodologies [19]. Fruits, as every biological source, contain HAP, which are often 

of limited interest for proteome analysis, whereas other proteins may be less 

abundant in orders of magnitude, although still of high importance. Here too, by 

using CPLLs, advanced mass spectrometry techniques and Musa mRNAs database 

in combination with Uniprot_viridiplantae database, we could identify, for the first 

time, 1131 proteins [20]. Among the large amount of species found, several already 

known allergens such as musa a 1, pectinesterase, superoxide dismutase and 

potentially new allergens have been detected. Additionally, several enzymes 

involved in degradation of starch granules and strictly correlated to ripening stage 

were identified. These results constitute the largest description so far of the banana 

proteome. Figure 2 summarizes the data discussed here. The upper left gel strips 

represent the SDS-PAGE profiling of a sample prior and after CPLL capture. The 

Venn diagrams exhibit the protein IDs as obtained in the control and in the CPLL 

treated sample and using CPLLs under native and denatured conditions. The graph 

on the right displays the major GO categories in which the various species have 

been classified. The use of CPLLs more than doubled (from 452 to 1131) the 

number of identified proteins. 

 

4 Avocado proteomics 

Avocado, the fruit of the tropical tree Persea americana, native to Mexico, is 

nowadays grown and consumed in many parts of the world. The oil obtained from 

pressing the avocado fruit, already used in Mexican folk medicine in the XVI century 

[21], is nowadays employed for manufacturing foodstuffs, cosmetics and health care 

products [22]. Besides this, avocado oil has been proposed as a domestic source of 

cooking oil to help improve the nutritional status of populations in some developing 

countries. The consumption of both the avocado fruit and oil has been associated 
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with health benefits such as the decrease of total serum cholesterol, LDL-cholesterol 

and triglycerides [23], the control of blood pressure and the inhibition of certain types 

of cancer [24]. The avocado fruit composition has been deeply studied, leading to 

good characterization of small-size compounds such as fatty acids and sterols. 

However, up to the present, no work had been focused on identifying the avocado 

pulp proteome; only some reports have appeared on the avocado seed [25] and root 

[26] proteins, with a total identification of proteins of the order of a few dozens.  

   On the contrary, by using the CPLL approach, the total number of unique gene 

products (meaning single, non-redundant proteins, excluding isoforms, post-

translations modifications, truncated forms etc.) identified amounted to 1012 

proteins, of which 174 were in common with the control, untreated sample, 190 were 

present only in the control and 648 represented the new species detected via CPLLs 

of all combined eluates, likely representing low-abundance proteins. Among the 

1012 proteins, it was possible to identify the already known avocado allergen Pers a 

1 and different proteins susceptible to be allergens like a profilin, a 

polygalacturonase, a thaumatin-like protein, a glucanase, and an isoflavone 

reductase-like protein. Figure 3 summarizes the data discussed here. The upper left 

gel strips represent the SDS-PAGE profiling of the samples prior to and after CPLL 

capture. The Venn diagrams exhibit the protein IDs as obtained in the control and in 

the CPLLs treated sample and using CPLLs under native and denatured conditions. 

The graph on the right displays the major GO categories in which the various 

species have been enriched. In this case, application of the CPLLs technique almost 

tripled (from 364 to 1012) the number of identified proteins, many of them observed 

under denaturing conditions. Moreover, it can be appreciated that, in all GO 

categories, the number of protein species identified after CPLL capture are much 

higher than in the controls. Additionally, in the CPLL eluates, three novel categories, 

not represented in the control, could be detected [27].  

 

5 Mango proteomics 

The mango is a fleshy stone fruit belonging to the genus Mangifera, consisting of 

numerous tropical fruiting trees in the flowering plant family Anacardiaceae 

http://en.wikipedia.org/wiki/Drupe
http://en.wikipedia.org/wiki/Mangifera
http://en.wikipedia.org/wiki/Tree
http://en.wikipedia.org/wiki/Flowering_plant
http://en.wikipedia.org/wiki/Anacardiaceae
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(en.wikipedia.org, accessed XXXXX [please give date of access]). It is native to 

South Asia and has spread worldwide to become one of the most widely cultivated 

fruits in the tropics. Among the different species Mangifera indica – the 'common 

mango' or 'Indian mango' – is the only mango tree commonly cultivated in many 

tropical and subtropical regions. It is the national fruit of India, Pakistan and the 

Philippines, and the national tree of Bangladesh. The ripe fruit varies in size and 

colour. Cultivars are typically yellow, orange, red or green, and carry a single flat, 

oblong pit that can be fibrous or hairy on the surface, and which does not separate 

easily from the pulp. Mango is used to make juices, smoothies, ice cream, fruit bars, 

raspados, aguasfrescas, pies and sweet chili sauce, or mixed with chamoy, a sweet 

and spicy chili paste (en.wikipedia.org, accessed XXXXX [please give date of 

access]). It is popular on a stick dipped in hot chili powder and salt or as a main 

ingredient in fresh fruit combinations. In Central America, mango is either eaten 

green mixed with salt, vinegar, black pepper and hot sauce, or ripe in various forms. 

Some people also add soy sauce or chili sauce. Pieces of mango can be mashed 

and used as a topping on ice cream or blended with milk and ice as milkshakes. 

Sweet glutinous rice is flavoured with coconut, then served with sliced mango as a 

dessert.  

   In mango fruit pulp, the antioxidant vitamins A and C, vitamin B6 (pyridoxine), 

folate, other B vitamins and essential nutrients, such as potassium, copper and 

amino acids, are present. Mango peel and pulp contain other compounds, such as 

pigment carotenoids and polyphenols, and omega-3 and -6 polyunsaturated fatty 

acids [28]. Additionally, mango peel pigments seem to have important biological 

effects [29], and include carotenoids such as the provitamin A compound, beta-

carotene, lutein and alpha-carotene [30], polyphenols [31] such as quercetin, 

kaempferol, gallic acid, caffeic acid, catechins, tannins, and the unique mango 

xanthonoid, mangiferin [32], all of which may counteract free radicals in various 

disease processes. Notwithstanding all the data reported above on mango 

metabolites, not much is known about this fruit proteome. Only recently, a 2D mango 

pulp analysis has been reported, aiming at identifying modulation of protein 

expression associated with ripening [33]. A total of 373 spots could be visualized in 

http://en.wikipedia.org/wiki/Mango
http://en.wikipedia.org/wiki/Indigenous_%2528ecology%2529
http://en.wikipedia.org/wiki/South_Asia
http://en.wikipedia.org/wiki/Fruit
http://en.wikipedia.org/wiki/Tropics
http://en.wikipedia.org/wiki/Mangifera_indica
http://en.wikipedia.org/wiki/Subtropical
http://en.wikipedia.org/wiki/India
http://en.wikipedia.org/wiki/Pakistan
http://en.wikipedia.org/wiki/Philippines
http://en.wikipedia.org/wiki/List_of_national_trees
http://en.wikipedia.org/wiki/Cultivar
http://en.wikipedia.org/wiki/Fibre
http://en.wikipedia.org/wiki/Juices
http://en.wikipedia.org/wiki/Smoothie
http://en.wikipedia.org/wiki/Ice_cream
http://en.wikipedia.org/wiki/Raspado
http://en.wikipedia.org/wiki/Aguas_frescas
http://en.wikipedia.org/wiki/Pie
http://en.wikipedia.org/wiki/Chili_sauce
http://en.wikipedia.org/wiki/Chamoy
http://en.wikipedia.org/wiki/Mango
http://en.wikipedia.org/wiki/Central_America
http://en.wikipedia.org/wiki/Ice_cream
http://en.wikipedia.org/wiki/Antioxidant
http://en.wikipedia.org/wiki/Vitamin_A
http://en.wikipedia.org/wiki/Vitamin_C
http://en.wikipedia.org/wiki/Vitamin_B6
http://en.wikipedia.org/wiki/B_vitamins
http://en.wikipedia.org/wiki/Essential_nutrients
http://en.wikipedia.org/wiki/Potassium
http://en.wikipedia.org/wiki/Copper
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Peel_%2528fruit%2529
http://en.wikipedia.org/wiki/Pigment
http://en.wikipedia.org/wiki/Omega-3
http://en.wikipedia.org/wiki/Polyunsaturated_fatty_acid
http://en.wikipedia.org/wiki/Polyunsaturated_fatty_acid
http://en.wikipedia.org/wiki/Provitamin_A
http://en.wikipedia.org/wiki/Beta-carotene
http://en.wikipedia.org/wiki/Beta-carotene
http://en.wikipedia.org/wiki/Lutein
http://en.wikipedia.org/wiki/Alpha-carotene
http://en.wikipedia.org/wiki/Quercetin
http://en.wikipedia.org/wiki/Kaempferol
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http://en.wikipedia.org/wiki/Flavan-3-ol
http://en.wikipedia.org/wiki/Tannin
http://en.wikipedia.org/wiki/Xanthonoid
http://en.wikipedia.org/wiki/Mangiferin
http://en.wikipedia.org/wiki/Free_radicals


www.proteomics-journal.com Page 10 Proteomics 

 

This article is protected by copyright. All rights reserved. 

 

the 2D map, leading to the identification of 51 unique gene products. In another 

report, via database searches of mango-derived ESTs and proteins along with 

proteins from six other closely related plant species, Renuse et al. [34] could identify 

1001 peptides that matched 538 proteins. However, this set of proteins applied only 

to the mango leaves, not to the pulp or peel. 

   In the case of this fruit, our research has taken a sudden twist: we also explored 

the proteome of the peel, since this part of the fruit is largely used in Far East cuisine 

to flavor plenty of dishes. Additionally, we captured its peptidome, after protein 

removal, via C18 resins [35]. This idea of also exploring the peel proteome of fruits 

has been extended to other plant samples as well. For instance, we have reported 

the proteome of lemon peel (the flavedo, not the albedo), since this part of the fruit is 

used in the Mediterranean area not only for flavouring dishes, but also for producing 

the very popular liqueur called, aptly, “Limoncello”, indeed an infusion of the lemon 

flavedo [36]. Recently, we have applied this strategy also to the peels of oranges and 

clementines (work in progress), since these skins are also used in cuisine. By 

performing the capture under both native and denaturing conditions, a total of 334 

unique protein species were identified in the peel vs 2855 in the pulp, by acting at 

two different pH values (2.2 and 7.2). These data are presented in Fig. 4, where the 

gel strips on the right exhibit SDS-PAGE profiles prior to and after CPLL capture and 

the Venn diagrams show the total species identified in both peel and pulp. Figure 5 

displays the major GO categories in which the various species have been classified 

in both compartments. It is of interest to note that, although in the peel only slightly 

more than 10% of those proteins detected in the pulp are present, at least 8 GO 

categories are unique to this organ and apparently absent in the pulp, suggesting 

that they have a special biological role confined to the skin. Conversely, in the pulp, 

another 8 GO categories appear which do not seem to have a counterpart in the 

peel. In regard to mango's potential allergies, the responsible allergens have not yet 

been identified, due also to the fact that the mango proteome is not completely 

known because its genome has not yet been sequenced. For this reason in allergen 

databases we could not find specific proteins regarding the mango but in our 

identified species we could verify the presence of well-known allergens, referring to 

the same plant order (Sapindales) and belonging to the same taxonomic group 
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(Plantae Magnoliopsida). By consulting the IUIS allergen nomenclature databases 

(http://www.allergen.org/), we obtained a list of allergens, of which some are present 

in our list. In particular in CPLLs eluates we recognized non-specific lipid transfer 

protein, superoxide dismutase, germin-like protein and profilin. 

 

6 Discussion 

We hope that the data briefly summarized here will show the unique potential of 

CPLLs in detecting those low-abundance species which sorely miss the roll call in 

plant proteomics. It can also be appreciated that, by using CPLLs coupled with 

modern MS instrumentation, an important step forward has been made in plant 

proteomics, permitting, in a single sweep, identifications ranging now in the 

thousands, vs barely in the hundreds up to recent times. Yet, we cannot ignore that 

mammalian proteomics is far ahead as compared to plant proteomics, since in this 

domain it is not uncommon to see papers reporting IDs above tens of thousands in a 

single run (another important reason, of course, is the fact that mammalian 

genomes, and especially the human genomes, have been much more extensively 

sequenced and annotated than those of plants). Thus, whereas mammalian 

proteomics can now claim to perform at the level of Beethoven Symphonies, we 

have to limit our music, at present, to an honest sarabande. Yet even a sarabande 

has found full dignity and space in the domain of music, as exemplified by the 

famous sarabande by Händel in the baroque period, as well as by other composers 

in the late 19th and early 20th centuries, such as Grieg, Debussy, Satie and many 

others. It may be that, in order to reach the level of Beethoven, plant proteomics will 

have to wait a little longer! 
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Figure 1 General scheme for extraction of proteins via CPLLs under native and 

denaturing conditions. 
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Figure 2 Banana proteomics. Upper left gel strips: SDS-PAGE of untreated vs CPLL-

treated samples. Circles: Venn diagrams of total species identified under native and 

denaturing conditions and in the control vs CPLL-treated sample. Extreme right: plot 

of the functional categories against the log of number of counts of each GO term 

found in the filtered database. 
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Figure 3 Avocado proteomics. Upper left gel strips: SDS-PAGE of untreated vs 

CPLL-treated samples. Circles: Venn diagrams of total species identified under 

native and denaturing conditions and in the control vs CPLL-treated sample. Lower 

right: plot of the functional categories against the log of number of counts of each 

GO terms found in the filtered database. 
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Figure 4 Mango proteomics. Extreme right gel strips: SDS-PAGE of untreated vs 

CPLL-treated samples of both peel and pulp. Circles: Venn diagrams of total species 

identified in control vs CPLL-treated samples in both peel (upper) and pulp (lower 

circles).  
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Figure 5 Plotting of the functional categories against the log of number of counts of 

each GO terms found in the filtered database for both peel and mango pulp. It should 

be noted that, in both cases, 8 categories are unique either to the peel or to the pulp, 

suggesting specific biological functions of these two quite different compartments.  

 

 


