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“When a person is sick, the doctor should first regulate the patient’s diet and lifestyle” 

Sun Si- Miao, 7 A.D. 

 

“Let food be the medicine and medicine be the food” 

Hippocrates, 4 B.C. 
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La hipertensión constituye un serio problema de salud y está considerada como una de las 

causas de las enfermedades cardiovasculares y renales. A pesar de la prevalencia de la 

hipertensión, la mitad de las personas afectadas desconocen que la padecen. Además, los 

estudios realizados acerca de las causas más importantes de muerte en el mundo predicen un 

aumento de la contribución de las enfermedades cardiovasculares. Debido a que los síntomas 

de la hipertensión pueden permanecer inadvertidos y raramente se ponen de manifiesto, la 

prevención y tratamiento de la hipertensión se consideran de gran importancia en la sociedad 

moderna. 

El conocimiento general tanto del sistema cardiovascular como de las causas de la 

hipertensión es muy amplio. Sin embargo, aún se desconocen algunos aspectos relacionados 

con los mecanismos moleculares que intervienen en el sistema cardiovascular. Entre los 

diferentes sistemas que contribuyen a controlar la presión arterial, el sistema renina-

angiotensina es el más importante. En efecto, la enzima convertidora de la angiotensina I 

(ACE), pieza clave en el sistema renina-angiotensina, convierte la angiotensina I en 

angiotensina II (vasoconstrictor), desactivando al mismo tiempo la bradiquinina 

(vasodilatadora), y jugando, por tanto, un papel muy relevante en los niveles de la presión 

arterial. Ello ha motivado el empleo de fármacos antihipertensivos sintéticos con capacidad 

para inhibir la actividad de la ACE. Otras proteínas importantes con efecto regulador en el 

sistema cardiovascular son la PKA, PKG y CaMKII que poseen diferentes isoformas con 

diferente relevancia. Sin embargo, los niveles exactos en los que se expresan estas proteínas 

en los órganos todavía no se conocen lo que limita a su vez el conocimiento de su importante 

función en el sistema cardiovascular. 

El tratamiento de la hipertensión ha disminuido la incidencia de accidentes 

cardiovasculares. Sin embargo, aunque la utilización de fármacos sintéticos ha sido decisiva 

en este descenso, estos fármacos poseen habitualmente efectos secundarios. Una alternativa 

interesante a estos fármacos la constituyen algunos péptidos que se encuentran de forma 

natural en determinados alimentos. De hecho, una estrategia básica para mejorar la salud 

cardiovascular es modificar la dieta y el estilo de vida ya que la dieta es uno de los factores 

que más influencia tienen en la salud humana. Entre los compuestos bioactivos que se 

encuentran en los alimentos, los péptidos bioactivos están recibiendo una gran atención en los 

últimos años. En particular, los péptidos antihipertensivos y antioxidantes son los más 

estudiados y han demostrado su efecto positivo sobre la salud cardiovascular. En efecto, los 

péptidos antihipertensivos pueden inhibir la actividad de la ACE y disminuir la presión 
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arterial. Por su parte, los péptidos antioxidantes previenen el estrés oxidativo que puede 

iniciar y promover la aparición de la hipertensión. Los péptidos bioactivos pueden ser 

ingredientes naturales de los alimentos o bien originarse a partir de proteínas alimentarias de 

las que forman parte ya sea por procedimientos in vivo o in vitro. La digestión gastrointestinal 

constituye en sí misma un procedimiento in vivo mientras que el procedimiento in vitro 

implica la hidrólisis de las proteínas por la acción de enzimas o microorganismos adicionados 

a los alimentos. En el caso de productos procesados, los péptidos bioactivos se liberan a partir 

de las proteínas durante el procesado del alimento (queso, yogurt, kéfir, etc.). Hasta la fecha, 

la investigación relacionada con péptidos antihipertensivos y antioxidantes se ha centrado 

principalmente en alimentos de origen animal como la leche, los productos lácteos y la carne. 

Sin embargo, los péptidos bioactivos de origen vegetal, aunque menos estudiados, a menudo 

poseen actividades más altas. El maíz y la soja, son ejemplos de fuentes de péptidos 

bioactivos de elevada actividad. 

Las fórmulas infantiles de soja (SBIFs) constituyen una alternativa muy interesante a la 

leche y los productos lácteos para niños con intolerancia o alergia a algunos constituyentes de 

la leche, con problemas de alimentación o pertenecientes a familias vegetarianas. Sin 

embargo, en comparación con la leche y los productos lácteos, las SBIFs han sido poco 

investigadas en lo que al contenido de péptidos bioactivos se refiere. Estas fórmulas infantiles 

se elaboran a partir de aislados de proteína de soja que contienen alrededor de un 90% de 

proteínas. Durante su preparación, se someten a calor intenso o a hidrólisis proteica. Así, las 

SBIFs pueden contener de forma natural péptidos potencialmente bioactivos con efectos 

beneficiosos sobre la salud a parte de sus beneficios nutricionales.  

En este trabajo, las SBIFs se han elegido como una fuente potencial de péptidos bioactivos. 

Se han propuesto cuatro métodos diferentes para extraer péptidos de las SBIFs. La capacidad 

antioxidante de los péptidos se determinó mediante tres ensayos diferentes mientras que la 

capacidad antihipertensiva se evaluó midiendo la capacidad para inhibir in vitro la ACE. La 

ultrafiltración directa a través de filtros de corte de 10 kDa permitió obtener el extracto con la 

concentración más alta de péptidos y la capacidad antioxidante más elevada. Los extractos así 

obtenidos se fraccionaron a continuación utilizando distintos filtros para ultrafiltración y se 

estudió la capacidad antioxidante y antihipertensiva de las fracciones obtenidas. Se obtuvieron 

fracciones con pesos moleculares comprendidos entre 5-10 kDa, 3-5 kDa, y por debajo de 3 

kDa. La capacidad antioxidante más alta se obtuvo en la mayor parte de los casos en la 
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fracción peptídica 5-10 kDa. Aunque se propuso un posterior fraccionamiento de este extracto 

peptídico por isoelectroenfoque en OFFGEL, los anfolitos necesarios para establecer el pH en 

isoelectroenfoque interferían en los ensayos para evaluar la capacidad antioxidante. Por ello, 

se probaron varias estrategias para eliminar los anfolitos una vez llevada a cabo la separación 

por isoelectroenfoque. La separación por cromatografía de líquidos con una columna 

monolítica permitió eliminar los anfolitos de las muestras investigadas. Sin embargo, las 

fracciones separadas por OFFGEL mostraron una capacidad antioxidante mucho menor que la 

muestra inicial sugiriendo un efecto sinérgico entre los péptidos antioxidantes. En 

consecuencia, se eliminó el paso de separación por isoelectroenfoque en OFFGEL de las 

muestras. Por otra parte, la mayor capacidad para inhibir la ACE se observó en las fracciones 

3-5 kDa y por debajo de 3 kDa. En estos casos, no se consideró ninguna separación adicional 

de estas fracciones por isoelectroenfoque. Las fracciones peptídicas con capacidad para 

inhibir la ACE se identificaron mediante HPLC acoplada a espectrometría de masas de 

quadrupolo tiempo de vuelo  (Q-ToF-MS) y el programa PEAKS. El análisis de los datos 

mostró una baja selectividad en el fraccionamiento por ultrafiltración. Las fracciones que 

presentaban una mayor capacidad para inhibir la ACE (3-5 kDa y por debajo de 3 kDa) y 

antioxidante (5-10 kDa) se sometieron a un proceso de digestión gastrointestinal simulada con 

pepsina y pancreatina. Los resultados mostraron que la capacidad antioxidante prácticamente 

no se modificaba mientras que la capacidad para inhibir la ACE disminuía. Los péptidos 

obtenidos tras la digestión gastrointestinal simulada se identificaron también. De los más de 

120 péptidos identificados en cada fracción antioxidante, 42 péptidos eran comunes a todas 

las fórmulas infantiles analizadas. El péptido VAWWM fue identificado en todas las 

fracciones antioxidantes. Este péptido es parte de la secuencia de la soistatina (VAWWMY) 

que es un péptido de la soja previamente descrito como un potente inhibidor de la absorción 

de colesterol y con capacidad de enlazarse a ácidos biliares. En el caso de las fracciones con 

capacidad inhibidora de la ACE, se encontraron 13 péptidos en la fracción 3-5 kDa y 20 

péptidos en la fracción por debajo de 3 kDa que resistieron la digestión gastrointestinal 

simulada. Es interesante remarcar que el péptido RPSYT se encontró en todas las fórmulas 

infantiles analizadas y demostró tener capacidad antioxidante e inhibidora de la ACE. Tras 

sintetizar este péptido y caracterizarlo, se puso de manifiesto su resistencia a la acción de las 

enzimas gastrointestinales y a las altas temperaturas de procesado, su moderada actividad 

antihipertensiva y su potente actividad antioxidante.  
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Como ya se ha mencionado previamente, el maíz y la soja constituyen fuentes atractivas de 

péptidos bioactivos. Entre ellos, destacar los péptidos con potente actividad inhibidora de la 

ACE: LRP (IC50 = 0.29 µM), LSP (IC50 = 1.7 µM) y LQP (IC50 = 2.0 µM), obtenidos por 

digestión con termolisina a partir de α -zeínas del maíz y el péptido VLIVP (IC50 = 1.69 µM) 

que se encuentra en el hidrolizado de la glicinina 11S de la soja con proteasa P. De hecho, la 

capacidad para inhibir la ACE de estos péptidos es mucho mayor que la de los conocidos 

péptidos VPP (IC50= 9.13 µM) o IPP (IC50= 5.15 µM) de la leche. Teniendo en cuenta que la 

actividad de los péptidos inhibidores de la ACE depende en gran medida de la dosis empleada 

y dadas las diferencias en el contenido proteico que se pueden observar entre distintos 

cultivos de maíz, queda clara la necesidad de disponer de metodologías analíticas para la 

determinación cuantitativa de estos péptidos. Sin embargo, a pesar del elevado interés que 

presenta la determinación de péptidos inhibidores de la ACE, los trabajos publicados en 

relación a este tema son escasos. 

En este trabajo, se ha desarrollado una metodología analítica para la determinación 

simultánea de los péptidos LRP, LSP y LQP de las α-zeínas presentes en granos de maíz. Los 

métodos de extracción recogidos en la bibliografía para obtener las α-zeínas se limitaban a 

trabajar con concentrados de proteínas de maíz tales como el gluten de maíz y no se 

ultilizaban los granos de maíz que presentan un contenido de proteínas mucho menor. En 

consecuencia, se desarrolló un método empleando ultrasonidos focalizados de alta intensidad 

para la extracción de las α-zeínas de los granos de maíz. Además, también se propuso la 

purificación de los extractos de α-zeínas realizando una precipitación con acetona lo que 

permitió obtener recuperaciones próximas al 100 % para las proteínas extraídas de diferentes 

cultivos de maíz. Se seleccionó un medio de separación que permitía la solubilización de las 

proteínas del maíz y, al mismo tiempo, era compatible con la actividad de la termolisina lo 

que permitió optimizar un procedimiento de digestión de los extractos de α-zeínas utilizando 

la enzima termolisina. La presencia de los tres péptidos antihipertensivos en los extractos 

digeridos se confirmó utilizando HPLC-Q-ToF-MS y utilizando patrones de los péptidos 

investigados. Se desarrolló un método de separación utilizando una fase estacionaria fused-

core lo que permitió evaluar la actividad de diferentes cultivos de maíz por HPLC con 

detección UV. 

Adicionalmente, se desarrolló una metodología analítica por HPLC-Q-ToF-MS para la 

determinación de los tres péptidos mencionados en maíz. Se estudió tanto la estabilidad de las 

disoluciones de patrones como de muestras y se optimizaron diferentes parámetros del 
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espectrómetro de masas con el fin de evitar la fragmentación espontánea de los péptidos en la 

fuente de ionización. La optimización de estos parámetros no solo disminuyó dicha 

fragmentación en la fuente ESI sino que también dio lugar a una mejora en la sensibilidad. Se 

propusieron dos estrategias basadas en FASP (filter aided sample preparation) y SPE (solid 

phase extraction) para eliminar la urea de los extractos digeridos evitando así su interferencia 

en la detección por espectrometría de masas. Las señales EICs (extracted ion chromatogram) 

monitorizadas para llevar a cabo la cuantificación de los péptidos de interés fueron las 

siguientes: 193.1315 m/z y 385.2558 m/z en el caso de LRP, 316.1867 m/z para LSP y 

357.2132 m/z para LQP. Se evaluaron las siguientes caracteristicas analíticas del método: 

linealidad, límites de detección y cuantificación, repetibilidad, precisión intermedia y la 

recuperación de los péptidos. También se investigó la existencia de interferencias de matriz. 

El método desarrollado se aplicó a la cuantificación de los péptidos LRP, LSP y LQP en 

diferentes líneas de maíz utilizando el método de calibración de adiciones patrón. Los 

resultados obtenidos pusieron de manifiesto importantes diferencias en los contenidos de los 

tres péptidos antihipertensivos en las distintas líneas de maíz analizadas. En general, el 

péptido más abundante fue el LSP seguido del LQP mientras que el péptido LRP fue el que se 

encontraba en menor proporción aunque era el que poseía una mayor actividad 

antihipertensiva. 

Con fines a llevar a cabo la determinación del péptido VLIVP en habas de soja, en este 

trabajo se desarrolló también una metodología analítica utilizando HPLC capilar acoplada a 

un sistema de espectrometría de masas de trampa de iones (HPLC capilar-IT-MS). La 

extracción de las proteínas a partir de las habas de soja se hizo inicialmente utilizando un 

método previamente desarrollado. Sin embargo, este método requería un tiempo considerable 

e implicaba una posterior precipitación de la proteína glicinina 11S a su punto isoléctrico. El 

empleo de ultrasonidos focalizados de alta intensidad en condiciones optimizadas permitió 

reducir el tiempo de extracción de las proteínas de 2 h a 2 min. Dado que la posterior 

precipitación isoeléctrica de la glicinina 11S resultó no ser cuantitativa, ésta no se llevó a 

cabo. El péptido VLIVP se identificó, por tanto, en el hidrolizado completo de las proteínas 

de soja mediante HPLC-IT-MS tanto en modo MS como en modo MS/MS. La inyección del 

patrón del péptido en el modo MS/MS permitió observar que la transición 540.4  425.3 era 

la principal. La optimización de diferentes variables cromatográficas (gradiente de elución, 

agente formador de pares de iones y temperatura de separación) permitió separar el péptido 

VLIVP en 7 min. Además, el hidrolizado de proteínas de soja fue diluido con el fin de 
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eliminar las interferencias de ionización. El proceso de hidrólisis con la enzima proteasa P se 

optimizó también con el fin de incrementar su rendimiento y reducir el tiempo de digestión. 

Se optimizaron diferentes parámetros del espectrómetro de masas para mejorar la sensibilidad 

del método y se evaluaron las características analíticas del método desarrollado mediante la 

evaluación de la linealidad, límites de detección y cuantificación, interferencias de matriz, 

precisión y recuperación del péptido investigado. Se analizaron cinco cultivos diferentes de 

soja observándose que la variedad procedente de Polonia era la que tenía el mayor contenido 

en VLIVP.  

Finalmente, en este trabajo se ha desarrollado un método SRM (selected reaction 

monitoring) utilizando detección por espectrometría de masas de triple cuadrupolo (QqQ) 

para evaluar el contenido de las isoformas de las proteínas kinasas PKA, PKG y CaMKII en 

distintos tejidos de rata. La simulación in-silico de la digestión, los resultados previos 

existentes y las búsquedas en bases de datos (PeptideAtlas y BLAST) permitieron seleccionar 

de forma preliminar un grupo apropiado de péptidos proteotípicos. Para ello, se utilizó un 

espectrómetro de masas Orbitrap-Velos MS con un sistema de fragmentación HCD (higher 

energy collision dissociation) y se analizaron los tejidos digeridos enriquecidos en las 

proteínas kinasas mencionadas. Los resultados permitieron confirmar un gran número de los 

péptidos proteotípicos seleccionados de forma teórica así como definir la lista más probable 

de transiciones. Este grupo de péptidos y transiciones se verificaron en el QqQ lo que 

permitió el diseño final del método SRM. El análisis de los péptidos marcados con isótopos 

pesados en tejidos de riñón digeridos permitió seleccionar y validar un grupo de péptidos y 

transiciones. La sensibilidad se mejoró programando cada transición durante la separación de 

los péptidos por HPLC y optimizando la energía de colisión para cada péptido. La aplicación 

del método SRM a los lisados digeridos de corazón, hígado y riñón permitió observar un 

rango dinámico que no era lo suficientemente amplio como para determinar todas las 

isoformas de las proteínas investigadas. La separación previa de los lisados por electroforesis 

en gel con dodecilsulfato de sodio (SDS-PAGE) permitió reducir la complejidad de los 

lisados de corazón. Sin embargo, esta estrategia no permitió obtener resultados reproducibles. 

Por ello, se considera que son necesarios estudios adicionales con el fin de poder disminuir la 

complejidad de la muestra. 

A modo de resumen, en este trabajo se ha investigado por primera vez la presencia de 

péptidos bioactivos nativos presentes en SBIFs. Estos estudios  han permitido obtener una 
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visión amplia del potencial de los péptidos bioactivos presentes en estos alimentos para bebés 

y al mismo tiempo observar grandes diferencias entre ellos contribuyendo a incrementar el 

conocimiento del valor nutricional real de estos alimentos así como de sus efectos fisiológicos 

y biológicos. Por otra parte, también se han desarrollado metodologías analíticas para la 

determinación de péptidos inhibidores de la ACE altamente potentes en cultivos de maíz y 

soja. Estos métodos se han caracterizado y se han aplicado al análisis de diferentes variedades 

de estos cultivos. Los resultados obtenidos tienen un importante potencial en el campo de la 

ciencia de los alimentos íntimamente relacionada con el área de la biomedicina. Finalmente, 

otro aspecto investigado en este trabajo ha sido la determinación de isoformas de proteínas de 

alto interés cardiovascular en diferentes tejidos de rata. Aunque se desarrolló un método SRM 

apropiado, la complejidad de la muestra no permitió la cuantificación fiable de las isoformas 

de PKA, PKG y CaMKII por lo que son necesarios más estudios para superar esta dificultad. 

Una vez superada, esta estrategia podría tener un impacto enorme en la investigación de los 

mecanismos moleculares que intervienen en el sistema cardiovascular.   
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Hypertension is recognized as a serious worldwide health problem and it is considered as a 

leading cause of various cardiovascular and kidney diseases. Despite the prevalence of 

hypertension, around half of affected individuals are unaware of their condition. Additionally, 

forecasts concerning major causes of worldwide deaths predict the growing participation of 

cardiovascular disease. Together with the fact that symptoms of hypertension are hidden and 

rarely occur, the prevention, treatment, and mitigation of hypertension receive a high priority 

in modern society.   

General knowledge on cardiovascular system and hypertension is quite well established. 

However, some pieces of information related to some molecular mechanisms in 

cardiovascular system are absent. It is well known that among various systems controlling 

blood pressure level, the renin-angiotensin system plays the pivotal role. Indeed, angiotensin I 

converting enzyme (ACE), main player in the renin-angiotensin system, converts angiotensin 

I into the vasoconstrictor angiotensin II and, at the same time, deactivates the vasodilator 

bradykinin. Therefore, this enzyme plays a significant role in the control of blood pressure 

level. Consequently, synthetic antihypertensive drugs with capacity to inhibit ACE activity 

have been mostly used. Other important regulatory proteins in cardiovascular system are 

PKA, PKG, and CaMKII. These proteins present different isoforms and various scientific 

reports have suggested great differences among them. Nevertheless, their exact expression 

levels in body organs is still unknown, which limits the knowledge on their important 

function in the cardiovascular system.  

The treatment of hypertension has shown to decrease the occurrence of various 

cardiovascular events. Nevertheless, although the use of synthetic drugs has been decisive for 

this decrease, they usually cause side effects. An interesting alternative to synthetic drugs are 

peptides found naturally in some foods. In fact, the basic strategy to improve cardiovascular 

health is to change diet and lifestyle since nutrition is one of the main factors influencing 

human health. Among food bioactive compounds, bioactive peptides are attracting great 

attention. Specifically, antihypertensive and antioxidant peptides are the most commonly 

reported and have proved to positively contribute to cardiovascular health. Indeed, while 

antihypertensive peptides can inhibit ACE activity and effectively decrease blood pressure 

level, antioxidant peptides prevent oxidative stress that can initiate and promote the 

development of hypertension. Bioactive peptides can be natural ingredients of foods or can be 

released from parent food proteins by in vivo or in vitro approaches. The in vivo strategy is the 

gastrointestinal digestion itself while the in vitro approach involves protein hydrolysis by non-
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specific enzymes or microorganisms added to foods. Special attention deserves processed 

products. In this case, bioactive peptides are released from proteins during food processing 

(e.g. cheese, yoghurt, kefir). Until date, the investigation concerning antihypertensive and 

antioxidant peptides was mainly devoted to animal origin foods like milk, dairy products, and 

meat. However, less studied vegetable origin bioactive peptides have frequently shown more 

potent activities. Maize and soybean are exceptional examples of sources of highly potent 

bioactive peptides.  

The presence of soybean based infant formulas (SBIFs) in the market is significant since 

they constitute an alternative to dairy products and milk for infants with intolerance or allergy 

to some milk constituents, with feeding problems or coming from vegan families. 

Nevertheless, in comparison with milk and dairy products, they have not been much explored 

for their content in bioactive peptides. Modern SBIFs are based on soybean protein isolate 

that contains around 90% of proteins. During manufacturer preparation, SBIFs are subjected 

to intense heat and/or protein hydrolysis. Thus, SBIFs can naturally contain potential 

bioactive peptides that might exert specific health effects apart from their nutritional benefits.  

In this research work, SBIFs were selected as a potential source of bioactive peptides. Four 

different methods were proposed to extract peptides from SBIFs. The antioxidant peptide 

capacity was determined using three different antioxidant assays while antihypertensive 

capacity was evaluated by measuring the capacity to inhibit ACE in vitro. The direct 

ultrafiltration through 10 kDa Mwco filters provided the extract with the highest peptide 

concentration level and antioxidant capacity. SBIF extracts were next fractionated using 

different Mwco filters and the antioxidant and antihypertensive capacity of these fractions 

were evaluated. Fractions from 5-10 kDa, 3-5 kDa, and below 3 kDa were obtained and 

studied. The highest antioxidant capacity, in most cases, was detected in the 5-10 kDa peptide 

fractions. A further fractionation of this fraction was proposed by OFFGEL 

isoelectrofocusing. Nevertheless, ampholytes necessary to establish pH gradient for the 

isoelectrofocusing separation interfered with the antioxidant assays employed in this work. In 

order to remove these ampholytes various strategies were proposed. Chromatographic 

separation with a monolithic column enabled to remove the ampholytes from the investigated 

samples. However, individual OFFGEL fractions showed much lower antioxidant capacities 

than output sample, suggesting a synergistic effect among antioxidant peptides. Therefore, the 

OFFGEL separation step was removed from the investigation workflow. On the other hand, 

the highest ACE inhibitory capacity was observed in fractions from 3-5 kDa and below 3 
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kDa. In these cases, no additional separation of fractions by isoelectrofocusing was 

considered. ACE inhibitory peptide fractions were next identified by HPLC coupled to 

quadrupole time of flight mass spectrometer (Q-ToF-MS) and PEAKS software. The analysis 

of data showed a poor selectivity in the ultrafiltration fractionation. Then, fractions presenting 

the highest ACE inhibitory (3-5 kDa and below 3 kDa) and antioxidant (5-10 kDa) capacities 

were submitted to a simulated gastrointestinal digestion with pepsin and pancreatin. Results 

showed that the antioxidant capacity changed negligibly after the simulated gastrointestinal 

digestion while the ACE inhibitory capacity of peptide fractions decreased. Peptides obtained 

after the simulated gastrointestinal digestion procedure were also identified. More than 120 

peptides were identified in every antioxidant fraction where 42 peptides were common for all 

SBIFs. The peptide VAWWM was found in all the studied SBIF antioxidant fractions. This 

peptide is a part of the sequence of soystatin (VAWWMY), a soybean peptide previously 

reported as a strong cholesterol absorption inhibitor and bile acid binder. In the case of the 

ACE inhibitory fractions, there were 13 peptides in the fraction from 3-5 kDa and 20 peptides 

in the fraction below 3 kDa that could stand the gastrointestinal digestion process. 

Interestingly, RPSYT peptide appeared in all infant formulas and showed both antioxidant 

and ACE inhibitory capacities. Therefore, this peptide was synthesized and further 

characterized. These studies revealed its resistance to gastrointestinal enzymes and high 

processing temperatures, its moderate antihypertensive activity, and its potent antioxidant 

activity.  

As previously stated, maize and soybean are attractive sources of bioactive peptides. A 

special attention deserves exceptionally potent ACE inhibitory peptides LRP (IC50 = 0.29 

µM), LSP (IC50 = 1.7 µM), and LQP (IC50 = 2.0 µM), obtained by the thermolysin digestion 

of maize α-zeins, and peptide VLIVP (IC50 = 1.69 µM) found in the protease P hydrolysate of 

11S soybean glycinin.  ACE inhibitory capacity of these peptides is much higher than that of 

known peptides VPP (IC50= 9.13 µM) or IPP (IC50= 5.15 µM) from milk. Taking into account 

the highly dosage dependence of ACE inhibitory peptides and the differences in protein 

content observed among maize crops, it is clear the need for analytical methodologies for the 

quantitative assessment of these peptides. Nevertheless, despite the huge interest existing to 

determine ACE inhibitory peptides in foods, the literature concerning this area is quite scarce.  

In this work, an analytical methodology for the simultaneous determination of LRP, LSP, 

and LQP peptides from α-zeins contained in whole maize kernels was developed. Existing 

extraction methods to obtain α-zeins were focused on maize protein concentrates such as corn 
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gluten meal and not on maize kernels with much lower protein concentration. Therefore, a 

method using high intensity focused ultrasounds for the extraction of α-zein proteins from 

whole maize kernels was developed. Furthermore, the purification of α-zein extracts by 

acetone precipitation was also proposed. The recoveries of proteins extracted from different 

crops were close to 100%. A suitable buffer enabling the solubilization of maize proteins and 

that was compatible with thermolysin activity was selected. The digestion procedure of α-zein 

extracts by thermolysin was optimized. The presence of the three antihypertensive peptides in 

the digested extracts was confirmed using HPLC-Q-ToF-MS analysis and by comparison with 

peptide standards. Separation conditions in a novel fused-core stationary phase were 

optimized and the antihypertensive capacity of maize crops was evaluated by HPLC-UV.  

The determination of the above-mentioned peptides in maize kernels by HPLC-Q-ToF-MS 

was also carried out in this research work. The stability of the standard and sample solutions 

was studied. Different MS parameters were optimized to avoid spontaneous in source 

fragmentation of peptides. The optimization of these parameters not only decreased the 

spontaneous fragmentation in the ESI source but also enabled to increase sensitivity. Two 

different strategies based on FASP (filter aided sample preparation) and SPE (solid phase 

extraction) were proposed to remove urea from digested extracts due to its interference with 

MS detection. Appropriate EIC (extracted ion chromatogram) signals (at 193.1315 m/z and 

385.2558 m/z for LRP, at 316.1867 m/z for LSP, and at 357.2132 m/z for LQP) were 

monitored for the quantification of targeted peptides. The developed method was 

characterized by evaluating linearity, limits of detection and quantitation, repeatability, 

intermediate precision, and recovery. A study on the existence of matrix interferences was 

also performed. The developed method was applied to the quantification of LRP, LSP, and 

LQP peptides in different maize lines using the standard additions calibration method. Results 

demonstrated great differences in the three peptides contents among the studied maize lines. 

In general, most abundant peptide was LSP followed by LQP while LRP peptide showed the 

lowest content despite being the most antihypertensive. 

In order to evaluate VLIVP content in soybean crops, an analytical methodology using 

capillary HPLC and ion trap mass spectrometry (capillary HPLC- IT-MS) was developed. A 

previously developed method was firstly implemented to extract proteins from soybean crops. 

Nevertheless, the selected extraction method was time consuming and involved a further 

precipitation of 11S glycinin at its isoelectric point. Application of high intensity focused 

ultrasounds and the optimization of conditions permitted to decrease the extraction time from 



Summary 
 

xv 
 

2 h to 2 min. Further isoelectric precipitation of the 11S glycinin fraction resulted non 

quantitative and, thus, this step was rejected. Peptide VLIVP was identified in the protease P 

hydrolysate of whole soybean proteins using capillary HPLC-IT-MS in MS and MS/MS 

modes. The injection of the peptide standard using MS/MS showed that the transition 540.4 

 425.3 was the dominant. Various chromatographic conditions (elution gradient, ion-pairing 

reagent, and separation temperature) were optimized being possible the separation of VLIVP 

peptide within just 7 min. Moreover, the protease P hydrolysate of soybean proteins was 

diluted to remove sample ionization interferences. The digestion with protease P enzyme was 

optimized to obtain a better digestion performance and to reduce the digestion time. In order 

to improve sensitivity, various MS parameters were also optimized. The methodology was 

characterized by the evaluation of linearity, limits of detection and quantification, matrix 

interferences, precision, and recovery. The developed method was applied to the analysis of 

five different soybean crops showing the highest peptide content in the soybean variety from 

Poland.  

Finally, an SRM (selected reaction monitoring) assay using triple quadrupole (QqQ) was 

developed to estimate the content of PKA, PKG, and CaMKII kinase isoforms in different rat 

tissues. In-silico digestion simulation, previous results, and database searches (PeptideAtlas 

and BLAST) enabled the preliminary selection of an appropriate set of proteotypic peptides. 

A new strategy using an Orbitrap-Velos MS with a HCD (higher energy collision 

dissociation) fragmentation system was employed. Digested tissues containing enriched 

targeted protein kinases were analyzed. Results allowed to confirm a great number of 

theoretically selected proteotypic peptides and to define the most probable list of transitions. 

Such set of peptides/transitions was verified on the QqQ enabling to create a final SRM assay. 

Analysis of heavily labeled peptides in kidney digested tissues allowed to validate selected set 

of peptides and transitions. Sensitivity was increased by scheduling the method over the 

HPLC run and by the optimization of collision energy for every peptide. SRM assay was 

applied to heart, liver, and kidney digested lysates showing a dynamic range not high enough 

to determine all targeted proteins isoforms. Previous lysate separation by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) allowed decreasing heart lysate 

complexity. Nevertheless, such approach showed a lack of reproducibility when applying to a 

big set of heart lysates. Additional studies to low down sample complexity were suggested. 

Summarizing, this work has evaluated for the first time the presence of native bioactive 

peptides in SBIFs. Native peptides present in SBIFs have been studied for the first time. 
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These studies showed a broad view of potential bioactive peptides in SBIFs. These results 

have improved the knowledge on real nutritional value and physiological and biological 

effects of SBIFs. On the other hand, methods to determine highly potent ACE inhibitory 

peptides in maize and soybean crops were developed. These methods were successfully 

characterized and applied to the analysis of different crop varieties. The results have a great 

potential importance in food research strictly connected with the biomedical field. Finally, the 

quantification of protein isoforms of high cardiovascular interest in various tissue samples 

was also investigated. Although an appropriate SRM assay was developed, the complexity of 

sample did not enable a reliable quantification of targeted PKA, PKG, and CaMKII isoforms. 

Additional studies to overcome this issue must be conducted and, when successful, this 

approach could have a huge impact on the overall knowledge on molecular mechanisms of the 

cardiovascular system.  
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ACRONYMS AND ABBREVIATIONS: 

AA- acetic acid 

ABTS - 2,2’-azino bis-(3-ethylbenzothiazoline-6-sulfonic acid) 

ACE- angiotensin I converting enzyme 

ACN- acetonitrile 

ADP- adenosine-5’-diphosphate 

Ang- angiotensin 

B-ME- β-mercaptoethanol 

BP- blood pressure 

CAM- calmodulin protein 

CaMKII- Ca2+/calmodulin-dependent kinase II 

cAMP- cyclic adenosine 3’,5’-monophosphate  

CGM- corn gluten meal 

cGMP- cyclic guanosine 3’,5’-monophosphate 

CID- collision induced dissociation 

CVD- cardiovascular disease 

DBP- diastolic blood pressure 

DC- direct current 

DPPH - 2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity 

DTT- dithiothreitol 

ECD- electron capture dissociation 

EDTA- ethylenediaminetetraacetic acid 

EIC- extracted ion chromatogram 

ESI- electrospray ionization 

ET- electron transfer 
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ETD- electron transfer dissociation 

EtOH- ethanol 

FA- formic acid 

FASP- filter aided sample preparation 

FOSHU- food for special health use  

GDP- guanosine-5’-diphosphate 

GTP- guanosine-5’- triphosphate 

HA- hippuric acid 

HAT- hydrogen atom transfer 

HCD- higher energy collision dissociation 

HHL- hippuryl-histidyl-leucine 

HIFU- high intensity focused ultrasounds 

HPLC (LC)- high performance (pressure) liquid chromatography 

I.D.- internal diameter 

IEF- isoelectrofocusing 

IPA-isopropanol 

IPG- immobilized pH gradient gel 

IT- ion trap 

LC (HPLC)- high performance (pressure) liquid chromatography 

LIT (LTQ)- linear ion traps 

LTQ-Ortbitrap- commercial name of LTQ- Fourier transform technology 

MALDI- matrix assisted laser desorption  

MeOH- methanol 

MS- mass spectrometry 
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Mwco- molecular weight cut off 

pI- isoelectric point 

PKA- cAMP dependent kinase 

PKA-C- catalytic subunit of PKA 

PKA-R- regulatory subunit of PKA 

PKG- cGMP dependent kinase 

PTP- proteotypic peptide 

Q- quadrupole  

QqQ- triple quadrupole 

Q-ToF- quadrupole time of flight 

RAS- renin-angiotensin system 

RF- radio frequency 

ROS- reactive oxygen species 

RP-LC- reversed phase liquid chromatography 

RT- room temperature 

SBP- systolic blood pressure  

SDS- sodium dodecyl sulfate  

SDS-PAGE- sodium dodecyl sulfate polyacrylamide gel electrophoresis 

SHR- spontaneously hypertensive rats  

SIM- single ion monitoring 

SPE- solid phase extraction 

SPI- soybean protein isolate 

SRM- selected reaction monitoring or multiple reactions monitoring (MRM) 

TFA- trifluoroacetic acid  
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ToF- time of flight 

Tris-HCl- tris (hydroxymethyl) aminomethane-hydrochloride 

UV- ultraviolet 

 

SYMBOLS: 

IC50- inhibitory concentration 
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I.1. Hypertension and cardiovascular disease 

Blood is distributed to all parts of the body through blood vessels creating a force against 

their walls, commonly named blood pressure (BP). BP is expressed as millimeters of mercury 

(mmHg) [1]. A state of persistently raised BP is defined as high blood pressure or hypertension. 

According to the European Society of Hypertension, an optimum adult BP is 120 mmHg of 

systolic blood pressure (SBP) (heart contraction or beat) and 80 mmHg of diastolic blood 

pressure (DBP) (heart relaxation) although these values can be extended to 129/84 mmHg of 

SBP/DBP, respectively [2]. Hypertension can be classified based on levels indicated in Table 

I.1.  

Table I.1. Classification of BP levels (mmHg) 1. Source: [2].  

 

The permanent high BP level is a serious worldwide health problem related with many health 

complications. Hypertension, can cause a heavier work of heart and, when uncontrolled, can 

lead to heart attack, expansion of heart muscle, and, finally, heart failure. It may cause 

permanent organ damage and development of bulges (aneurysms) or weak spots through blood 

vessels, making them more likely to clog and burst. Hypertension has been recognized as a 

cause of stroke, which is a rupture of a blood vessel and leakage of blood into the brain, causing 

permanent brain damage, problems with speech or vision, weakness or even paralysis. Kidney 

failure, blindness, and cognitive impairment are also some effects of  hypertension [3]. Indeed, 

hypertension is considered a leading cause of several cardiovascular (CVD) and kidney diseases 

[4, 5] and has been recognized as a risk factor for myocardial infarction, renal failure, 

congestive heart failure, progressive atherosclerosis, and dementia [6].  

                                                           
1 Classification for adults (≥ 18 years old), not taking any antihypertensive drug, and not ill at the moment.  

Category SBP (mmHg) DBP (mmHg) 

Optimum 120 80 

Normal 120-129 80-84 

High normal 130-139 85-89 

Grade 1 hypertension (mild) 140-159 90-99 

Grade 2 hypertension (moderate) 160-179 100-109 

Grade 3 hypertension (severe) >180 >110 

Isolated systolic hypertension >140 90 
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According to the World Health Organization, around 17 millions of deaths per year are 

associated to CVD, being hypertension responsible for 9.4 millions of these deaths [3]. Kearney 

et al. [7] reported that in 2000, 26.4 ± 0.2% of the worlds’ adult population suffered 

hypertension (26.6 ± 0.2% in men and 26.1 ± 0.1% in women). Although hypertension occurs 

frequently, it has been reported that over a half of hypertensive population is unaware of its 

condition [4]. Estimated total number of adults with hypertension in 2000 was 972 ± 15 millions 

from which 333 ± 3 millions were in economically developed countries and 639 ± 15 millions 

in economically developing countries [7, 8]. Pereira et al. [9] reported that although the 

prevalence of hypertension in developing countries is 32.2% for men and 30.5% for women, 

just 9.8% of men and 16.2% of women are aware of the ill and control hypertension. Similar 

results were also obtained for developed countries. In addition, the prevalence of hypertension 

increases with age, from < 10% in younger adults (30-59 years) to > 65% in older adults (aged 

≥ 60 years) [10]. It is predicted that in 2025, the number of adults with hypertension will 

increase by about 60% to a total number of 1.56 billion individuals [7, 8]. The projected trend 

for major causes of deaths expects an increase in mortality rates due to CVD (see Fig. I.1). This 

is related to the fact that hypertension rarely causes symptoms and, if so, they are headache, 

shortness of breath, dizziness, chest pain, palpitations of heart or nose bleeding. For this reason, 

hypertension is commonly called ‘invisible’ or ‘silent killer’ [3].  

 

 

 

 

 

 

 

 

 

Fig. I.1. Projected mortality trend from 2008-2030 for major non-communicable and communicable diseases. 

Source: [3].  
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A scheme summarizing the most relevant factors leading to the development of CVD is 

depicted in Fig. I.2. On the first place are social determinants and drivers like education or 

income that influence the second group of factors consisting of an unhealthy diet, lack of 

physical activity, or abuse of tabaco or alcohol. All together leads to the development of 

hypertension and, along with other metabolic factors (obesity, diabetes, raised blood level of 

lipids, etc.), can cause the increase risk of heart disease, stroke, kidney failure, and other 

hypertension complications [3].  

 

 

 

 

 

Fig. I.2. Main factors that contribute to the development of high BP, CVD, and their complications. Adapted 

from: [3].  

Indeed, it has been estimated that hypertension along with high cholesterol, high Body Mass 

Index, low fruit and vegetable intake, smoking, and alcohol intake, is responsible for 83-89% 

of ischemic heart disease and 70-76% of stroke in the world [11]. Among all mentioned factors, 

it is important to highlight the impact of diet and the fruit and vegetable intake. It has been 

proven that an increase in fruit and vegetable intake (up to 600 g/day) reduces the burden of 

ischaemic heart disease and ischaemic stroke by 31% and 19%, respectively [12]. Despite the 

knowledge on hypertension has significantly increased, the related statistics are still 

discouraging. Hypertension is an important global public health challenge and its prevention, 

detection, and treatment should receive high priority in modern society. 

I.2. The cardiovascular system at molecular level 

The cardiovascular system is one of the most important systems within human body, whose 

main purpose is to supply nutrients to tissues and deliver wastes to the excretory system. 

Although the overall knowledge of the function of the cardiovascular system and its related 

diseases are well established, most of the molecular mechanisms behind its correct behaviour 

are still not completely known. This represents a fundamental piece of information in order to 

prevent, mitigate, and treat hypertension and cardiovascular events. Some basic aspects dealing 
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with biochemical processes involved in the regulation of BP at molecular level are presented in 

this thesis.  

Every organism controls its homeostasis orchestrating complex molecular signaling events. 

In multicellular organisms, the molecular signaling can act over long distances and induce 

several physiological responses. Chemical messengers, known as hormones, trigger 

intercellular signaling. Upon binding to its own specific receptor on the cell surface, every 

hormone activates intercellular signal transduction evoking a specific effect [13]. Several 

different molecular pathways are involved in the regulation of BP in human organism. In this 

respect, renin-angiotensin system (RAS) plays a pivotal role in living organisms. RAS is not 

the exclusive regulator of BP since also kinin-nitric oxide system, endothelin converting 

enzyme system, and neutral endopeptidase system have also shown to affect BP [14]. At 

intracellular level, several biochemical reactions occur in which different proteins are involved. 

Part of this thesis will be devoted to study different proteins playing important roles in the 

cardiovascular function such as cyclic adenosine 3’,5’-monophosphate (cAMP) and cyclic 

guanosine 3’,5’-monophosphate (cGMP) dependent kinases (PKA and PKG) and 

Ca2+/calmodulin-dependent kinase II (CaMKII).  

I.2.1. The renin- angiotensin system and blood pressure regulation 

Different studies have led to the discovery of RAS as the major regulator of BP, electrolyte 

balance, and renal, neuronal, and endocrine functions associated with cardiovascular control 

[14]. RAS consists of a cascade of enzymatic reactions (see Fig. I.3). Activation of RAS begins 

with the production of prorenin by kidneys [15]. Prorenin is, therefore, converted into renin by 

the action of kallikrein enzyme. Then, angiotensinogen, secreted by the liver, is exclusively 

converted into the decapeptide angiotensin I (Ang I, DRVYIHPFHL) by the presence of renin 

in bloodstream.  

Angiotensinogen has exclusive functions, as it is the only precursor of Ang I and the only 

substrate for renin [14]. Hence, Ang I is transported into the small vessels of lungs (see Fig. I.3) 

where it is hydrolyzed by the action of angiotensin I converting enzyme (ACE; kinases II 

peptidyldipeptide hydrolase) into angiotensin II (Ang II: DRVYIHPF), an essential hormone in 

the organism. Additionally, ACE also inactivates the potent vasodilator bradykinin 

(RPPGFSPFR) by removing the dipeptide (FR) from its C-terminus [16, 17]. 
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Thus, the inactivation of this potent vasodilator by the action of ACE causes the raise of BP. 

The action of chymase enzyme can also catalyze the formation of Ang II from Ang I; however, 

this reaction dominates only in the left ventricle of the human heart [14, 17-19]. Ang II is 

distributed through the body and is converted by aminopeptidase A or aminopeptidase N to 

angiotensin III (RVYIHPF) or angiotensin IV (VYIHPF), respectively. These two peptides may 

play a relevant role in different tissues, though their functions are not entirely understood [17]. 

Moreover, Ang II is a hormone that plays a number of important regulation functions in human 

organism such as the regulation of perfusion pressure of a number of organs, BP regulation, salt 

and water volume modulation, regulation of neurotransmitter interactions, and control of the 

activity of gonadotropin hormone and pituitary hormone [14, 17]. Additionally, an increasing 

number of reports indicates the influence of Ang II on the production and release of reactive 

oxygen species (ROS) [17]. In fact, Ang II could amplify oxidative stress and ACE inhibitors 

could intensify the antioxidant defense system by the inhibition of Ang II formation in animals 

and humans [20].  

Summarizing, the regulation of RAS by the control of Ang II and bradykinin levels can 

effectively modulate BP. Indeed, ACE inhibitors influencing RAS are the most prominent 

antihypertensive drugs and have shown to reduce CVD [17]. 

I.2.2. PKA, PKG, and CaMKII - regulatory proteins of cardiovascular functions 

PKA and PKG are important regulatory proteins of the cardiovascular function and are both 

involved in BP regulation and cardiac contractility [13]. CaMKII occupies a central role in the 

physiology and pathology of cardiac muscle cells [21]. PKA, PKG, and CaMKII belong to the 

same protein family of serine/threonine kinases and they phosphorylate the hydroxyl group of 

serine or threonine [13, 22-24].  

PKA and PKG are the major targets of secondary messengers cAMP and cGMP. 

Signalization through these cyclic nucleotides is at the center of a large variety of physiological 

responses such as memory, contraction of heart, and BP regulation. Moreover, they are also 

involved in many pathophysiological processes such as heart failure, hypertension, and cancer. 

At molecular level, the activation of PKA is associated to the production of cAMP and to the 

catecholamine level in blood (see Fig. I.4) (Nobel Prize in 1971). PKA is involved in several 

sets of functional heart pathways such as excitation-contraction coupling and calcium 

homeostasis. Its activation leads to the phosphorylation of other proteins that promote muscle 
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contraction in heart and increase heart rate. Additionally, the activation of PKA is involved in 

pathological remodeling of heart [25]. In this regard, it was observed that patients suffering 

from heart failure had increased plasma catecholamine levels [13, 26], which raises PKA level. 

 

 

 

 

 

 

 

 

 

Fig. I.4. Mechanism of activation of PKA and PKG in the cell. Source: [13]. 

On the other hand, PKG is associated to the production of cGMP which can occur by 

different ways. The production of cGMP can be due to the release of highly reactive radicals 

(NO) from nearby endothelial cells (see Fig. I.4). These radicals, produced from L-arginine, 

diffuse through cells and activate soluble guanylate cyclase. Activation of soluble guanylate 

cyclase leads to the synthesis of cGMP from guanosine-5’- triphosphate (GTP). The formation 

of cGMP can also be achieved by a membrane bound particulate guanylate cyclase, a receptor 

of paracrine hormone peptides or natriuretic peptides that is released from heart and vascular 

endothelium. Increased level of cGMP causes the activation of PKG that further phosphorylates 

several proteins in the cell [13, 27]. PKG is mainly involved in the relaxation of muscles lining 

on arteries and veins and, therefore, it is involved in the control of BP. Indeed, for more than 

100 years, NO generating reagents, which increase PKG level, were used in the treatment of 

hypertension and CVD [13] (Nobel Prize in 1998).  

PKA and PKG have a similar domain architecture (see Fig. I.5). PKA is formed by 2 catalytic 

subunits (PKA-C) and 2 regulatory subunits (PKA-R) resulting in a heterotetrameric 

holoenzyme [(PKA-R)2-(PKA-C)2]. At low cAMP concentrations, PKA remains intact and 

catalytic subunits are together with regulatory ones. At high cAMP concentrations, the 
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holoenzyme dissociates into [R2(cAMP)4)] and the two free catalytic subunits are released to 

phosphorylate intracellular targets. Once the cAMP level decreases, it dissociates from the 

PKA-R subunits (in [R2(cAMP)4)]) which results in rebinding of PKA-C subunits. 

Interestingly, PKA-R subunits are encoded as four distinct isoforms (Iα, Iβ, IIα, and IIβ) and 

the catalytic domain (PKA-C) as three distinct splicing variants (α, β, and γ). 

 

 

 

 

 

 

 

 

 

 

Fig. I.5. Domain organization, structural models, and activation scheme of PKA and PKG. Adapted from: [27]. 

PKG is activated when binding to cGMP resulting in the phosphorylation of intracellular 

substrates (see Fig. 1.5). Mammals have two genes encoding PKG, PKG type I and II. PKG I 

has two variants, Iα and I β. Little is known about the specificity and functionality of PKA and 

PKG isoforms, although some evidences would suggest that these isoforms are not redundant 

proteins [13, 25, 27]. 

CaMKII is an abundant protein in myocardium that is activated by increasing intracellular 

Ca2+ concentration [28]. CaMKII is a multimeric protein typically composed of 12 subunits 

(see Fig. I.6). Each subunit contains association, regulatory, and catalytic domains. The 

activation of CaMKII protein is associated to an increased intracellular calcium concentration.  
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Fig. I.6. Domain organization, structural model, and activation scheme of CaMKII. Adapted from: [23].  

Calcium calcifies calmodulin protein (CAM) which binds to the regulatory subunits of 

CaMKII and, as a consequence, it exposes its catalytic domains (active conformation of 

CaMKII) [23]. Once activated, CaMKII might autophosphorylate, decreasing its dependence 

on the Ca2+/CAM interaction [21, 23]. Signaling through Ca2+ and CaMKII is involved in a 

large variety of physiological responses in heart, brain, kidney, and many other organs. CaMKII 

expression and activity is increased in failing human myocardium and in many animal models 

of cardiac hypertrophy and heart failure [29]. CaMKII is expressed as many variants: α, β, γ 

(A-C), and δ (1-7). Although these isoforms have different tissue distribution and may have 

different sensitivities to Ca2+/CAM and different activation kinetics, the specific role of 

CaMKII isoforms is still unclear [30].  

Summarizing, PKA, PKG, and CaMKII are important kinases involved mainly in the 

regulation of the cardiovascular system. The study of the activity, function, and structure of 

these proteins suggests that there are large differences among their isoforms. The 

straightforward quantification of these isoforms could help to understand the cardiovascular 

system and its performance at molecular level. Therefore, their expression in organs having 

cardiovascular importance like liver, kidney, or heart is of particular interest.   

I.3. Treatment and prevention of hypertension 

A variety of drugs such as diuretics, β-blockers, ACE inhibitors, Ang II antagonists, calcium 

channel blockers, AT1 receptor blockers, nitrates, renin inhibitors, vasodilators, and others [31, 

32] can be used in the treatment of hypertension. Drugs that target at various levels the RAS 

cascade are renin inhibitors, ACE inhibitors, and receptor antagonists [33], while β-blockers, 
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calcium channel blockers, and nitrates, directly or indirectly, influence the level of PKA, PKG, 

and CaMKII proteins. Among them, calcium channel blockers (e.g. nifedipine) and ACE 

inhibitors (e.g. captopril) are the first choice where the last one exhibits higher effectiveness 

and less side effects [34]. The discovery of the first ACE inhibitor is strictly connected to the 

studies dealing with the venom of snake Bothrops jararaca performed by Mauricio Rocha e 

Silva. They enabled the isolation of bradykinin that decreases BP, contracts slowly intestinal 

smooth muscle, and enlarges vessels (from Greek word brady (slow) and kinin (to move)) [1]. 

Further work of Sergio Ferreira resulted in the isolation of the first ACE inhibitor in 1970 from 

the same snakes’ venom [35]. Based on this study, in 1970 Miguel Ondetti and David Cushman 

designed the first synthetic antihypertensive drug called captopril [36] which is still the most 

commonly prescribed drug for the treatment of hypertension. Numerous potent di- and tri-

peptide inhibitors of ACE or their pro-drug forms have been synthetized therefore (e.g. 

cilazapril, ramipril, enalapril, enalaprilat, ceranapril) [37]. Nevertheless, although synthetic 

drugs exhibit high capability to inhibit ACE, they cause various side effects [14, 38]. An 

excellent alternative to synthetic drugs are antihypertensive peptides naturally ocurring in some 

foods. Unlike synthetic drugs, food antihypertensive peptides do not yield any adverse effect 

although they are usually less potent [39, 40]. Despite this, even a small decrease in BP can 

result in a significant reduction of the risk of CVD. It was estimated that a reduction of DBP of 

5 mmHg decreases CVD risk to ≈ 16% and stroke to  ≈ 40%, while a reduction of SBP of 10 

mmHg declines CVD up to ≈ 20-25% [6, 14, 41, 42]. Indeed, dietary therapies are 

acknowledged to prevent hypertension, reduce BP in hypertensive patients, and improve 

efficiency of antihypertensive therapies [10]. Works devoted to the study of dietary approaches 

to stop hypertension revealed that diets rich in proteins resulted in a greater reduction of BP, 

improved lipid levels, and reduced cardiovascular risk than diets rich in unsaturated fats or 

carbohydrates [10, 43]. Moreover, it has been proved that the maximum benefit can be obtained 

by the consumption of vegetable and milk proteins [10, 44]. These functional properties could 

be attributed to biologically active peptides encrypted in protein molecules and released by 

gastrointestinal digestion [45].  

I.3.1. Food bioactive peptides 

There is an increasing interest on improving diet and lifestyle as a basic strategy against 

CVD and hypertension [46]. This fact encouraged the development of food products with 

specific health promoting properties that are known as ‘functional foods’ [47]. According to 
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Health Canada Federal Department ‘a functional food is similar in appearance to, or may be, 

a conventional food that is consumed as part of an usual diet, and is demonstrated to have 

physiological benefits and/or reduce the risk of chronic disease beyond basic nutritional 

functions’[48]. First country recognizing the benefits of functional foods was Japan [49].  

Indeed, in 1999 Japan government established the legal frame for the commercialization of 

these foods that were labeled as food for special health use (FOSHU) [50]. Unlike Japan, EU 

and USA legislation do not yet recognize functional foods as a distinct category of foods [51, 

52]. On the other hand, bioactive compounds incorporated within functional foods can be 

defined as ‘food components that can affect biological processes or substrates and hence have 

an impact on body function or condition and ultimately health’. In this respect, it is important 

to highlight to ceveats: the component should impart a measurable effect at a realistic 

physiological level and the measured ‘bioactivity’ has to show a potential beneficial health 

effect [50, 53, 54].  

One of the most widely studied bioactive compounds from foodstuffs are bioactive peptides. 

Bioactive peptides have been defined as ‘specific protein fragments that have a positive impact 

on body functions or conditions and may ultimately influence health’ [55, 56]. Mellander et al. 

[57] described the first report on bioactive peptides in 1950. Since then, and according to the 

BIOPEP database, there are more than 2600 different bioactive peptides with more than 37 

different types of bioactivties [58]. Nowadays, there are several commercially available 

functional foods and food ingredients containing bioactive peptides and claiming health 

benefits [59]. In majority, these products are fermented milk drinks (Ameal S, Calpis, Danaten, 

Evolus, Casine DP, PRODIET F200/Lactium etc.) or other types of hydrolysates (C12 peptide, 

Lowpept, PeptoPro, Tensiocontrol, Vasotensin etc.) [46, 55, 59-61]. Interestingly, most of these 

products claim to reduce BP level and improve cardiovascular performance [59]. Increased 

attention has been focused on the discovery of new bioactive peptides with specific bioactivities 

[46, 50]. Food bioactive peptides have been found to affect many body systems (see Fig. I.7) 

[55, 59, 62, 63] either directly through their presence in an undisturbed form (bioavailable 

peptides) or by their release from their respective host protein by hydrolysis [59].  

An analysis of the data extracted from the BIOPEP database (n=2609) revealed that most 

bioactive peptides are below 1 kDa (51%) while peptides above 5 kDa represent just 1% of the 

whole database (see Fig. I.8). This observation emphasizes the inverse relationship between 

peptide size and peptide activity. 
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Fig. I.7. Influence of bioactive peptides on different human systems. Adapted from: [55, 59, 62]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.8. Chart representing the distribution of peptide bioactivities and peptide molecular weights. Charts 

prepared based on the data available in the BIOPEP database (2609 peptides in September 2013).  
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Bioactive peptides generally contain from 2 or 3 to 20 amino acids although sometimes this 

range can be extended to even 50 amino acids (e.g. anticancer lunasin with 43 amino acid 

residues) [45, 52, 54, 64, 65]. The activity of a bioactive peptide depends mainly on its amino 

acid composition [45, 55]. Bibliographic data demonstrate that antihypertensive (21%) peptides 

are the most frequently reported, followed by antibacterial (18%) and antioxidant peptides 

(15%) (see Fig. I.8). Additionally, some peptides can exert multifunctional activities being 

peptides simultaneously showing antihypertensive and antoxidant activities the most usual.  

I.3.2. Antihypertensive and antioxidant peptides in foods 

Antihypertensive peptides (ACE inhibitors) are the best-known class of bioactive peptides 

[60, 65, 66]. Antihypertensive peptides inhibit the in vitro activity of ACE, which results in the 

reduction of BP [52, 54]. The potency of an ACE inhibitor is usually expressed as IC50 value 

which is the inhibitor concentration leading to a 50% inhibition of ACE activity [56, 59]. 

Studies on spontaneously hypertensive rats (SHR) and some clinical trials have shown that 

antihypertensive peptides significantly reduce BP but they do not have effect on normotensive 

individuals [46]. Additionally, studies comparing antihypertensive activity of captopril and 

food ACE inhibitors have shown that some ACE inhibitory peptides can exhibit higher in vivo 

than in vitro activity [46]. It has been postulated that some peptides may influence not only the 

RAS system through the inhibition of ACE, but also other BP regulation systems [46, 67]. 

Maruyama and Suzuki described the first isolation and identification of an antihypertensive 

peptide in 1982. The peptide, hydrolized from bovine casein by trypsin, had the sequence 

FFVAPFPEVFGK [68]. Nowadays, best-known and studied ACE inhibitory peptides are VPP 

and IPP, identified in a Japanese sour milk drink fermented with Lb. Helveticus and 

Saccharomyces cerevisiae strains [50]. These peptides exert IC50 values of 9.13 and 5.15 µM, 

for VPP and IPP, respectively. These values are 1267 and 704 times higher than that for 

captopril [50]. ACE inhibitory peptides can be found in a large variety of foodstuffs as 

independent entities or can be released from foods after protein hydrolysis. Antihypertensive 

peptides have been discovered in marine foods (shrimps, sea cucumber, and blue mussel), fishes 

(Alaska Pollock, bonito, salmon, and pacific hake), meat (pork, pork loin, bullfrog, porcine, 

and chicken), eggs, milk and dairy products, plant foods (soybean, wheat, rice, garlic, maize, 

mushrooms, and amaranth) and processed products (miso paste, douchi, wakame, royal jelly, 

soybean sauce, and soybean paste). Some examples of peptides isolated and identified in 

different foodstuffs are presented in Table I.2. Despite there are some exceptions (e.g. VPP and 

IPP), most protein derived ACE inhibitory peptides have moderate potency, within 100-500 
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µmol/L [46]. Among vegetable foods, maize and soybean have attracted particular attention 

being possible the identification of peptides (LRP, LSP, LQP and VLIVP) with higher ACE 

inhibitory activity than VPP and IPP (see Table I.2). Although active antihypertensive peptides 

with up to 27 amino acids have been identified, they are generally smaller. ACE inhibitory 

peptides contain from 2 to 20 amino acids and a high level of hydrophobic amino acids within 

the sequence [52, 56, 66, 69]. The inhibition of ACE by antihypertensive peptides seems to be 

strongly influenced by the C-terminal sequence of the peptide. Peptides containing proline, 

lysine, and arginine at C-terminus are preferred residues [56, 63, 69, 70]. In fact, small peptides, 

with high hydrophobicity and containing proline at the C-terminal, are more likely to resist the 

action of gastrointestinal enzymes [65]. It was suggested that phenylalanine residue could also 

be essential for ACE inhibition [71]. ACE also seems to prefer substrate or competitive 

inhibitors containing hydrophobic amino acid residues at C-terminal positions [67, 71].  

Table I.2. Examples of antihypertensive peptides, their sources, sequences, and IC50 values. 

Source of peptide(s) Identified peptide(s) IC50 References 

Pork loin VKKVLGNP 28.5 µM [72] 

Spanish dry-cured ham AAATP 100 µM [73] 

Chicken bone YYRA 33.9 μg/mL [74] 

Alaska Pollack skin GPM, GPL 17.13, 2.65 µM [75] 

Marine shrimp DP, GTG, ST 2.15, 5.54, 4.03 µM [76] 

Jellyfish QPGPT, GDIGY 80.67, 32.56 µM [77] 

Duck skin by-products WYPAAP 137 µM [78] 

Salmon by-product 
VWDPPKFD, FEDYVPLSCF, 

FNVPLYE 
9.10, 10.77, 7.72 µM [79] 

Skimmed milk VPP, IPP 9.13, 5.15 µM [80] 

Cheese LQP, MAP 3.4, 0.8 µM [81] 

Wheat bran LQP, IQP, LRP, VY, IY, TF 
2.2, 3.8, 0.21, 21, 3.4, 18 

µM 
[82] 

Corn gluten meal (CGM) AY 14.2 µM [83] 

Maize α-zein LRP, LSP, LQP 0.29, 1.7, 2.0 µM [84] 

Glycinin from soybean VLIVP 1.69 µM [85] 

Processed soybean milk 
FFYY, WHP, FVP, LHPGDAQR, 

IAV, VNP, LEPP, WNPR 

1.9, 4.8, 10.1, 10.3, 27.0, 

32.5, 100.1, 880.0 µM 
[86] 
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On the other hand, although some physiologically produced free radicals can exhibit 

beneficial functions, like signaling role or provide even defense against infections, an excess of 

ROS might damage cells [87]. An extensive ROS production in combination with failing of the 

antioxidant defense system is commonly known as oxidative stress. Oxidative stress is an 

important factor influencing the initiation or progression of several vascular diseases. ROS can 

damage most important biological macromolecules like DNA, proteins, and lipids, and their 

prolonged action can be a cause of the development of severe tissue injury and diseases like 

hypertension, cancer, and cardiovascular or inflammatory diseases [46, 63, 87]. The production 

of ROS, like superoxide anion and hydrogen peroxide, is increased in hypertensive individuals 

in which NO synthesis and bioavailability of antioxidants are reduced [60].  

Antioxidant peptides contribute to the prevention of oxidative stress, a causative factor for 

the initiation or progression of hypertension and several vascular diseases. Antioxidant peptides 

prevent the formation of radicals or may scavenge radicals. Artificial antioxidants (butylated 

hydroxylanisole, butylated hydroxyltoluene, and n-propyl gallate) have shown strong activity 

against several oxidation systems. However, many of them are considered a health risk and, 

therefore, their use is restricted or even prohibited in some countries [88]. Consequently, dietary 

antioxidant supplements and functional foods containing antioxidants like α-tocopherols, 

vitamin C, or plant derived phytochemicals (lycopene, lutein, isoflavones, green tea extract, 

etc.) are highly demanded in the current marketplace [89]. Peptides derived from protein 

hydrolysates can exert antioxidant activity against enzymatic and non- enzymatic peroxidation 

of lipids and essential fatty acids, where the exact mechanism is not fully understood [46, 52, 

56, 88]. Since peptidic antioxidants can exert more than one bioactivity, they are more attractive 

candidates than non-peptidic antioxidants as dietary ingredients [89, 90]. It is important to 

highlight that, in some cases, hydrolysates exhibit higher antioxidant capacity than purified 

peptides [87], which might be connected to the synergistic effect of antioxidants [91]. Indeed, 

unlike antihypertensive activity, most works devoted to antioxidant peptides do not yield 

specific peptide sequences and are more interested in the evaluation of antioxidant capacity of 

whole hydrolysates, whole extracts, etc. [66] (see Table I.3). Antioxidant peptides have been 

observed in marine foods (oyster, giant squid, blue mussel, and jumbo squid skin), fishes (loach, 

sardine, capelin, catfish, hoki, Alaska Pollock, bonito, salmon, pacific hake, mackerel, and 

much more), meat (porcine, venison, and chicken essence), eggs, milk and dairy products, and 

vegetable foods (soybean, rice, maize, chickpea, peanut, sunflower, and amaranth). The 

properties of antioxidant peptides are related to their composition, structure, and hydrophobicity 
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[87]. The antioxidant activity is attributed mainly to a high amount of histidine residues and the 

presence of hydrophobic amino acids like methionine, cysteine, tyrosine, tryptophan, and 

phenylalanine [87, 89]. Nevetheless, these amino acids are not effective when they are not 

within a peptide sequence [89]. 

Table I.3. Examples of antioxidant peptides, their source, sequence, and assays used to measure their capacity. 

Source of peptide(s) 
Identified antioxidant 

peptide(s)/fraction 
References 

Bullfrog skin (Rana catesbeiana Shaw) LEELEEELEGCE [92] 

Tuna cooking juice 
PSHDAHPE, SHDAHPE, VDHDHPE, 

PKAVHE, PAGY, PHHADS, VDYP 
[93] 

Pacific hake (Merluccius productus) 

fillet 
Whole hydrolysate  [94] 

Oyster (Crassostrea talienwhannensis) 

meat 

Peptides in the fraction below 1 kDa with 

the highest antioxidant capacity 
[95] 

Camel and bovine whey proteins 
Peptides in the fraction 5-10 kDa with the 

highest antioxidant capacity 
[96] 

Zein hydrolysate 
Hydrolysate containing short peptides 

(<500 Da) 
[97] 

Native and heated soybean protein 

isolate (SPI) 
Whole hydrolysate [98] 

 

Despite vegetable proteins have been less studied as a source of bioactive peptides, their 

relevance is increasing [60, 66].  

I.4. Vegetable proteins 

There is a trend toward to alternative sources of high quality proteins due to economical 

(plants are cheaper), ecological, and sustainability (production of plant proteins is less 

demanding than animal proteins) issues, or even consumer preferences (vegans and vegetarians) 

[47]. A special attention deserves widely consumed plant foods such as soybean, wheat, maize 

or rice. In fact, according to the Food and Agriculture Organization a major part of human diet 

all over the world consists of cereals and legumes. Indeed, it was estimated that around 70% of 

human foods comprise cereals and legumes while remaining 30% comes from animals feed on 

these seed meals [99]. Among plant foods, maize and soybean are of great interest since they 

are excellent sources of antihypertensive and antioxidant peptides (see Tables I.2 and I.3). In 
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fact, high hydrophobicity and high level of proline amino acids in maize and soybean proteins 

ensures that release peptides could exert high antihypertensive and antioxidant properties.  

Seed proteins can be classified into storage and biologically active (so called housekeeping) 

proteins. Biologically active proteins like lectins, enzymes, and enzyme inhibitors are 

responsible for maintaining the normal cell metabolism and are usually minor proteins. Storage 

proteins are non-enzymatic and their unique function is to deliver nitrogen and sulphur required 

during germination and establishment of the new plant [99]. Empirical classification of seed 

proteins proposed by Osborne [100], distinguished four main groups of proteins based on their 

solubility: albumins - soluble in water, globulins- extractable in dilute salty solution, prolamins- 

soluble in alcohol solutions, and glutelins- soluble in dilute acids and bases or sodium dodecyl 

sulfate (SDS) solutions. Prolamins and glutelins are storage proteins in monocots (e.g. cereals) 

while albumins and globulins are storage proteins in dicots (e.g. legumes) [99, 101].  

I.4.1. Maize proteins 

Corn or maize (Zea mays L.) is a major crop for both livestock feeding and human nutrition. 

It was estimated that maize accounts 15-56% of the total daily calories in human diets, 

particularly in Africa and Latin America [102]. It is also the only indigenous cereal crop from 

America and the most dominant crop in United States being grown throughout the temperates, 

sub-tropical, and tropical zones wherever rainfall or irrigation is adequate [103, 104]. Maize 

kernel is composed of the pericarp (6%), the endosperm (82%), and the germ (12%). Table I.4 

depicts an approximate distribution of major components in whole maize kernel and its parts.  

Table I.4. Average distribution of major components in maize kernel. Source: [104]. 

Component 
Whole kernel  

(%) 

Endosperm Germ Pericarp 

(%) as dry basis 

Starch 62.0 87 8.3 7.3 

Protein 7.8 8 18.4 3.7 

Oil 3.8 0.8 33.2 1 

Ash 1.2 0.3 10.5 0.8 

Water 15.0 - - - 

Others 10.2 3.9 29.6 87.2 
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Maize protein content can range from 6 to 12% (as dry basis), being mainly present in the 

endosperm and germ. The distribution of protein fractions in the germ (25% of proteins) and 

the endosperm (75% of proteins) is summarized in Table I.5. Zeins, according to Osborne 

nomenclature, are the prolamin fraction of maize and they are almost exclusively present in the 

endosperm. They also represent the most abundant fraction in maize and the most widely 

explored. Zeins have a high content in glutamic acid (21-26%), leucine (20%), proline (10%), 

and alanine (10%) and are deficient in basic and acidic amino acids. Therefore, around 59% of 

their amino acids are hydrophobic [104]. 

Table I.5. Distribution of protein fractions in maize (percentage related to total proteins). Source: [101]. 

Protein fraction Endosperm Germ 

(%) as dry basis 

Albumins 6 30 

Globulins - 30 

Zeins 60 5 

Glutelins 26 23 

Residue 8 12 

 

Zeins are a family of similar proteins with different molecular sizes, solubility, and charges. 

There are, at least, five different zeins nomenclatures being those proposed by Wilson [105] 

and Esen [106, 107] the most important. Based on their molecular weights and solubility in 

aqueous alcohols and aqueous alcohols containing β-mercaptoethanol (B-ME), Wilson 

classified zeins as: A-zeins (21-26 kDa), B-zeins (18-24 kDa), C-zeins (13-18 kDa), and D-

zeins (9-11 kDa). Based on their molecular weights and solubility in different concentrations 

of isopropanol (IPA) containing B-ME and sodium acetate, Esen classified zeins as: α- zeins 

(21-25 kDa), β-zeins (17 kDa), γ-zeins (18 and 27 kDa), and δ- zeins (10 kDa). α-zein is the 

most abundant zein fraction, accounting for 75-85% of total zeins depending on genotype [106, 

107]. On the other hand, isoelectrofocusing of α-zeins indicates that they consist of a mixture 

of at least 15 proteins [108]. Most authors distinguish two major groups of α-zeins: Z19 zein 

migrating at 19 kDa and Z22 zein migrating at 22 kDa. Nevertheless, the studies on zein 

sequences obtained from cloned cDNAs and genes, have shown that these two groups of zeins 

were made up of 210-245 amino acid residues and had a molecular weight (Mw) around 23-24 

and 26-27 kDa, respectively. This caused a further confusion in nomenclature [108]. Moreover, 

two interesting works focused on the analysis of zeins by MALDI-MS (matrix assisted laser 

desorption mass spectrometry) have confirmed the complexity and variety of zeins [109, 110]. 
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In order to clarify the nomenclature introduced by Wilson [105] and Esen [106, 107], the 

following scheme is presented in Fig. I.9.  

 

 

 

 

 

 

 

 

Fig. I.9. Summarized scheme of various zeins nomenclatures introduced by Wilson [105] and Esen [106, 107]. 

I.4.2. Soybean proteins 

Soybean (Glycine max) is a legume with a high protein content, ranging from 20 to even 

50%. Soybean, like other legumes, contains anti-nutritional compounds that can be classified 

into proteic compounds (termolabile) and non-proteic compounds (termostable). The first group 

includes biologically active proteins like protease inhibitors or amylase inhibitors, which need 

to be inactivated by hydrothermal treatment before consumption. The second group of anti- 

nutritional compounds consists of phytic acid, saponins, goitrogens, etc.. Therefore, it is usual 

the use of soybean protein isolates (SPI) and concentrates as starting materials for the 

production of soybean products avoiding the presence of antinutritional non-proteic 

compounds. Soybean proteins are present in human foods in a variety of forms, like infant 

formulas, sauce, miso, natto, tempeh, sufu, soybean dairy-like products, tofu, yuba, etc. [111, 

112].  

In addition to proteins, other soybean components are lipids (20%, mainly saturated fatty 

acids), water (≈4-10%), carbohydrates (cellulose, hemicellulose, pectins, soluble 

oligosaccharides), minerals (iron, zinc, magnesium, calcium, sodium, potassium, copper, 

magnesium), and vitamins (thiamine (B1) and riboflavin (B2)). Table I.6 summarizes an 

approximate distribution of major components in soybean seeds and SPI.  
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Table I.6. Average distribution of major components in soybean seed and SPI. Source:  [113]. 

Component Soybean seed (%) SPI (%) 

Protein 43.7 86.0-87.0 

Oil 21.8 0.5-1.0 

Ash 5.3 3.8-4.8 

Water 4.0-10.0 4.0-6.0 
 

Soybean contains three kinds of proteins: proteins involved in metabolism, structural 

proteins or glycoproteins, and storage proteins (globulins) which do not exert biological 

function. The last ones account around 80-90% of total soybean proteins, are soluble in salt 

solutions, and precipitate at different isoelectric points (pI). Soybean globulins have high level 

of glutamic (22.4%) and aspartic acid (12.6%) and are rich in hydrophobic amino acids (53%) 

[111]. Unlike maize zeins, soybean globulins nomenclature is quite standardized. Soybean 

globulins are composed of 4 major components that can be classified as 2S2, 7S, 11S, and 15S 

according to their rate of sedimentation by ultracentrifugation (see Table I.7.) [111, 114]. Major 

storage proteins are glycinin (11S) and β and γ- conglycinin (7S) [113]. Structurally, glycinin 

consists of six subunits, each made up of two polypeptide chains: an (A) acidic chain (≈ 40 

kDa) and a (B) basic chain (≈ 20 kDa). Both chains are joined by intra-chain disulphide bonds. 

Table I.7. Components of soybean globulins. Source:  [111, 114]. 

Soybean protein components Content (% of total storage proteins) Molecular 

weight (kDa) 
pI 

Ultracentrifugation Immuno-methods Ultracentrifugation Immuno-methods 

2S globulin α-conglycinin 15.0 13.8 21 - 

7S globulin 
β-conglycinin 

34.0 
27.9 180 

4.8 
γ-conglycinin 3.0 170 

11S globulin Glycinin 41.9 40.0 350-380 6.4 

15S globulin 
Polymer of 

glycinin 
9.1 - 600 - 

 

Five genetic variants (G1-G5) which are divided into group-I (A1aB2 , A2B1a, A1bB1b) and 

group-II (A5A4B3, A3B4) based on their homology [115] can be distinguished. Glycinin subunits 

in the Uniprot protein database can be found under the name G1 (A1aB2), G2 (A2B1a), G3 

                                                           
2 ‘S means Svedberg unit, which is a unit of sedimentation rate computed as the rate of sedimentation per unit field 

of centrifugation strength’. Source: [114]. 
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(A1bB1b), G4 (A5A4B3), and G5 (A3B4). On the other hand, β-conglycinin is a trimer composed 

of three subunits: α (63 kDa), α’ (67 kDa), and β (48 kDa). These subunits share a large degree 

of sequence homology [114]. 

I.5. Proteomics and peptidomics workflows for the analysis of proteins and peptides 

I.5.1. Proteomics workflows for the analysis of proteins 

Analysis of peptides and proteins is emerging as an important part in science and technology. 

Proteomics is a relatively new methodology that can analyze entire proteins (proteome) present 

in biological samples. Proteome is a highly dynamic system which depends on various factors 

and can change during the age (maturation) or impact of a disease. Its understanding can yield 

information about a process that takes place in a biological system and can depict how system 

reacts under certain conditions [116]. Proteomics can be defined as a “large-scale analysis of 

proteins in a particular biological sample at a certain time” [117]. Proteomics tools allow to 

characterize proteins and to study their function, nutritional and biological relevance, 

conformation, modifications, localization, quantification or even interactions [117-119]. 

Proteomics centers the identification of proteins in the analysis of protein fragments or peptides 

by mass spectrometry (MS). The sensitivity of MS detection in the case of peptides is much 

higher than in the case of proteins. Indeed, MS is more efficient to obtain sequence information 

from peptides up to around 20 amino acid residues than from proteins [120]. 

There are two main types of proteomics workflows to analyze proteins: top-down or bottom-

up approaches [117, 121, 122]. In the top-down approach, intact proteins are both fragmented 

and analyzed in a mass spectrometer and information on primary protein structure is obtained. 

In the more frequent bottom-up strategy, proteins are firstly separated, digested (usually using 

trypsin), and finally resulting peptides are identified by MS (see Fig. I.10).  

Bottom-up strategy can further be performed by two different procedures. Peptide mass 

fingerprint is an approach where two-dimensional gel electrophoresis is normally employed to 

isolate proteins of interest. Separated proteins are then enzymatically digested into peptides and 

subjected to MS [117]. Obtained peptide mass profile is compared against generated in-silico 

protein sequences from databases taking into account the same enzyme cleavage sites. All 

peptide masses that match the obtained sequence within a certain mass error tolerance are 

scored and ranked [123]. 
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Fig. I.10. Proteomics workflow using the bottom-up approach. Adapted from: [122]. 
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On the other hand, peptide fragmentation fingerprint produces fragment ion data by MSn 

from one or more unique peptides to identify unambiguously parent proteins [117]. This 

approach provides more confident protein identification than peptide mass fingerprint [123]. In 

the peptide fragmentation fingerprint approach, peptides can be identified from their MS/MS 

spectra by searching against databases. There are several algorithms to search sequences against 

databases like Peptide Search, Sequest, Mascot, Sonar MS/MS or Protein Prospector [120]. 

Database search involves that parent proteins have previously been identified and introduced in 

the database. Otherwise, protein could just be tentatively identified by homology with related 

proteins. It must be highlighted that the proteome of several organisms is still not known or 

incomplete, which generates difficulties to identify proteins.  

A major analytical challenge in proteomics is the dynamic range that can reach even 1012. 

Current MS-based proteomics platforms can yield a dynamic range of just 104. Therefore, the 

study of low abundant proteomes requires partial purification, by depletion of most abundant 

proteins or by the selective enrichment of low-abundant proteins, before their analysis [117, 

123]. There are two main modes of analysis of proteins in proteomics: data-dependent analysis 

and targeted proteomics. In the first one, the objective is to study the highest possible number 

of proteins in a sample while, in the second the aim is to identify selected proteins or peptides 

by focusing just specific peptide ions.  

I.5.2. Peptidomics workflows for the analysis of peptides 

Peptidome is defined as a “pool of all peptides of an organism, tissue or cell” [124]. 

Peptidomics is a subfield of proteomics, which focuses on the composition, interaction, and 

properties of peptides. Moreover, peptidomics also studies the origin and changes of peptides 

released from proteins during processing and storing [117, 118]. The area of food peptidomics 

also involves the study of product authenticity, history, functional properties, allergenicity, 

sensory properties, and biological activities of peptides in food products or raw materials [118, 

124]. The classical workflow in the analysis of food bioactive peptides is depicted in Fig. I.11. 

Studied peptides can be obtained by their direct extraction from foodstuffs or by the hydrolysis 

of parent protein(s). The release of peptides from parent proteins can be performed by the action 

of proteolytic enzymes or microorganisms. In order to study whether obtained peptides exert a 

desired activity, bioactivity assay(s) is(are) needed. In vitro bioactivity assays are much more 

popular on this stage of research since they are faster, cheaper, easier to perform, and available 

in the majority of laboratories. In most cases, the purification of one or few potential peptides 
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is the goal of the study. However, the measurement of the activity of a whole hydrolysate or a 

peptide fraction of a product without isolation and identification of particular peptides is also 

possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.11. Workflow used for the analysis of bioactive peptides from foodstuffs. 

Purified bioactive peptides or groups of peptides are then identified by MS. Identification of 

bioactive peptides from unknown proteins is not possible by database searching and requires 

the use of de novo sequencing strategy. Finally, potential peptide counterparts are synthetized 

and characterized using in vitro and/or in vivo assays to confirm their bioactivity.  
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The analysis of food bioactive peptides apparently can remind proteomics workflows since 

it involves an enzymatic hydrolysis, followed by peptide separation, and MS identification. 

However, a few basic features and differences should be highlighted (see Fig. I.12).  

 

 

 

 

 

 

 

 

 

 

 

Fig. I.12. Comparison of proteomics and bioactive peptide discovery workflows. Adapted from: [125]. 

One of the most important differences is the kind of enzyme used to release desired peptides. 

In the proteomics workflow, specific enzymes like trypsin are employed. This enables to obtain 

peptides with similar charge (typically + 2 or +3) and length (7 to 25 amino acids) and same 

amino acids at C-terminal position (in trypsin digestion, basic amino acids, K and R, are at C-

terminal positions in the resulting peptides) [123]. Bioactive peptides released by unspecific 

enzymes or microorganisms result in a much more heterogeneous mixture of small peptides (2 

to 20 amino acids with charge + 1), often without any basic amino acid within the sequence, 

and bearing different C-terminal residues. Moreover, this peptide mixture also results much 

more complex in peptide length distribution and dynamic range. All these facts make necessary 

a higher number of fractionation steps. Furthermore, food bioactive peptide identification might 

be problematic since fragmentation is usually poorer and less informative when using 

nonspecific enzymes than when using specific trypsin. Indeed, tryptic peptides bearing many 

charges and basic amino acids, that maintain the charge within the sequence, can be easily 

identified.  Moreover, there are several tools to analyze and identify tryptic peptides in an 

automated fashion. Additionally, the search for new bioactive peptides usually requires 

organisms proteomes that have not been yet sequenced. In these cases, de novo sequencing is 

the only solution to identify them. Finally, all quantitative tools in proteomics are based on the 
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fact that a unique peptide can identify a particular protein and that the peptide: protein ratio is 

equal to one. In the case of small bioactive peptides, this ratio might be different from one since 

very small peptide sequences can derive from more than one protein [125].  

I.6. Extraction and enrichment of proteins 

Suitable performance of protein extraction, isolation, and purification is critical in both 

previously described workflows. There is a variety of methods for the disintegration of cells 

(lysis) within various tissues and for the extraction of proteins. The selection of the extraction 

method depends on the type of studied cells/tissues (animal or plant etc.) and targeted protein 

[126]. Tissue samples are very complex matrices since they may contain many different cell 

types and structural material connecting tissues. This translates into a higher challenge for 

sample preparation procedures [127].  

I.6.1. General considerations in the extraction and enrichment of proteins 

Prior to protein extraction, the mechanical disruption of cells (cell lysis) is required. Manual 

homogenization, vortexing, grinding, or liquid nitrogen treatment are the most used methods. 

Cell lysis depends on the presence or absence of cell walls. Especially difficult are plant cells 

where walls are made up with multiple layers of cellulose, particularly strong and difficult to 

disrupt [128]. Proper cell lysis is significantly important when intracellular proteins are studied. 

They can represent a tiny fraction of total cellular proteins and, thus, they are much more 

difficult to extract and recover [126, 129]. Proteins in biological samples are generally in a 

native state associated to other proteins and often being part of large complexes or membranes. 

Chemical and physical techniques can be applied to disturb cell walls. They can be grouped 

into five major categories: mechanical homogenization, osmotic and chemical lysis, 

ultrasounds or pressure, and temperature treatments. The application of two or more procedures 

has also been reported [130]. These methods must lyse rapidly and efficiently cells to extract 

proteins with minimal proteolysis or oxidation [126, 128].  

Mechanical homogenization implies the use of a rotor-stator homogenizer or open blade 

mill. In the osmotic shock strategy, cells are suspended in a gently shaken hypertonic solution. 

Regarding chemical lysis, most common treatment includes the use of antibiotics, chelating 

agents, detergents, and solvents capable of disintegrating cells. For example, organic solvents 

(e.g. acetonitrile (ACN), ethanol (EtOH), and methanol (MeOH)) are efficient for destabilizing 
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membrane bilayers [121]. Procedures employing detergents or strong chaotropic reagents (a 

substance that denatures and disrupts the structure of macromolecules, e.g. urea, thiourea or 

guanidine chloride) within the extraction buffer assure the disruption of interactions among 

proteins and between proteins and other compounds. Furthermore, low cost and easy to use 

detergents can efficiently disrupt cell membranes, break lipid-protein interactions, and 

solubilize proteins. Four different groups of detergents are mainly used for this puropose: bile 

acid salts, non-ionic, zwitterionic, and ionic. Bile acid salts (e.g. sodium deoxycholate) are 

charged soft detergents compatible with native protein extraction. Non-ionic  detergents (e.g. 

Triton X series and Tween 20) are considered as mild since they disrupt protein-lipid 

interactions rather than inter/intra-protein interactions. Zwitterionic  detergents (e.g. 3-[3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate) show intermediate properties and 

they can solubilize proteins more efficiently than non-ionic detergents. Ionic detergents (e.g. 

SDS) provide the harshest conditions and cause protein denaturation. SDS is considered the 

best protein solubilizer but it is incompatible with MS [131]. In fact, most traditional detergents 

and chaotropic reagents are not compatible with common MS ionization techniques and may 

interfer further enzymatic digestions. Therefore, their removal must be considered [121, 128]. 

Basic criteria for the selection of a suitable lysis buffer for protein extraction are buffer 

composition, pH, ionic strength, salt concentration, temperature, and presence of detergents, 

chaotropes, protein reducing agents (e.g. B-ME, dithiothreitol (DTT)), and presence of 

components preventing their proteolysis (e.g. protease inhibitors) [128, 129]. In conclusion, the 

selection of a sutaible lysis buffer or method is essential to avoid possible difficulties in next 

steps.  

High intensity focused ultrasounds (HIFU) or pressure treatment involves the application of 

ultrasonic waves to the solution. Ultrasounds generate a cyclic sound pressure with a frequency 

greater than 20 kHz [132]. This pressure can accelerate certain chemical reactions, replacing 

traditional techniques or accelerating them. This phenomenon is produced by the focalization 

of high intensity ultrasonic waves that cross the liquid media and create an effect known as 

cavitation. Cavitation can be defined as a physical process by which numerous tiny gas bubbles 

are produced. Bubbles grow, oscillate, split, and implose [132, 133]. Therefore, these bubbles 

can be considered as microreactors inside which there are high temperatures and pressures. 

Ultrasonic devices (bath or probes) are commonly applied in many analytical laboratories. The 

greatest difference between them is that ultrasonic probe is inserted into the solution which 

provides, at least, 100 times greater energy than the ultrasonic bath [133, 134]. Sonication and 
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high-pressure procedures have been applied to disrupt (lysis) different kinds of cells 

(microorganisms, plants, animal) and to extract organic and inorganic analytes from solid or 

liquid media [126]. Apart from protein extraction, the ultrasonic probe has also shown to reduce 

time in protein enzymatic digestion procedures [128]. 

After proteins extraction, the precipitation of proteins is very usual to separate them from 

interfering compounds, to change the surrounding environment if required in further steps, or 

to enrich proteins of interest. The precipitation of proteins can also be important when just the 

peptidome of a sample is studied, since it enables the removal of proteins [135]. It is a especially 

important step in the case of plant cell extracts, since they can contain high amounts of 

interfering molecules (polysaccharides, lipids, polyphenols, secondary metabolites, etc.). 

Removal of interfering compounds can be performed before or after the extraction procedure. 

Among various procedures, precipitation at pI, precipitation at high temperatures or 

precipitation using various reactants/solvents are the usual [135]. Lower protein solubility at pI 

can be explained by proteins zero net charge, which enables the association among protein 

molecules with a minimum charge repulsion. Thermal precipitation is based on the fact that 

proteins denature at high temperatures [135]. This method is also employed to stop enzymatic 

reactions. Moreover, various organic solvents such as acetone, EtOH, ACN, and their mixtures 

often provide effective protein removal. Additionally, protein deproteinization can be carried 

out by the addition of inorganic acids and salt solutions such as ammonium sulfate (salting out), 

trifluoroacetic acid (TFA), trichloroacetic acids, perchloric acid, or sulfosalicylic and alginic 

acids. In the analysis of food samples, precipitation under acidic conditions is more effective 

than with inorganic salts [136]. 

I.6.2. Special considerations in the extraction of maize and soybean proteins 

In the case of seeds, the extraction of a desired group of proteins is possible by their 

sequential extraction with water, salt solutions, aqueous EtOH, and acid/alkali solutions 

containing  detergents [99] or by the direct extraction of the protein group if it is the majority.  

As described previously, main maize proteins are zeins while other minor proteins are 

globulins, albumins, and glutelins. The literature describing the extraction of zeins from maize 

kernels and maize co-products (CGM, corn gluten feed, etc.) is considerably wide. The special 

solubility behavior of zeins is related to a high ratio in non-polar amino acid residues and the 

lack of basic and acidic amino acids [104]. Three types of solvents have been used for the 
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extraction of zeins [137]: primary solvents at concentrations >10% (glycols, glycol-ethers, 

amino-alcohols or amines, and amides) that dissolve zeins alone, secondary solvents (water 

/organic solvent or short-chain aliphatic alcohols /organic solvent), and ternary solvents 

(water/short chain aliphatic alcohol /organic solvent or water/ two different organic solvents). 

Despite this extended list of solvents, the most frequently used are binary mixtures of water 

with short chain aliphatic alcohols (EtOH or IPA) since they enable an easier recovery and 

separation of zeins [146] (see Table I.8).  

Table I.8. Procedures employed for the extraction of zeins. 

Solvent 
Solvent/ 

sample ratio 
Other conditions References 

70% EtOH 4:1, v:w 40˚C, 30 min [138] 

70% EtOH 4:1, v:w 50˚C, 30 min [139] 

70% EtOH 

 

4:1, w:w 

 

A: 60˚C, 1 h, at 125 rpm centrifugation; 

filtration; overnight at -18˚C; pellet 

solubilization; overnight at -18˚C; pellet 

isolation 

B: 60˚C, 1.5 h, at 125 rpm; centrifugation; 

filtration; air and vacuum drying 

[140] 

30-70% ACN+ 5% B-ME 

70% EtOH +5% B-ME 

8 M Urea+ 5% B-ME 

1:0.25, v:w RT, 45 min [141] 

0.5% (v:v) B-ME, 0.5% 

(w:v) ammonium acetate, 

45% ACN 

0.1:3, v:w ultrasounds, 5 min [142] 

ACN, B-ME, water, 

60:5:35 (v:v:v), 120 mM 

ammonium hydroxide 

1:0.5, v:w RT, 5 min [143] 

55% IPA+0.2% DTT 

60% t-butanol+0.2% DTT 
---- ---- [144] 

70% EtOH ---- 60˚C, 2 h [145] 

 

In some cases, albumins and globulins can be pre-extracted (step not included in the table). 

However, as reported by Adams et al. the previous removing of albumins and globulins did not 
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seem to be indispensable for the extraction of zeins [109]. Among different attempts to obtain 

total-zeins, extraction procedures using aqueous solutions of EtOH or IPA with or without a 

reducing agent are the most frequent. Parris and Dickey [145] described a method for the 

fractionation of total-zeins based on their different solubility. Nevertheless, this time consuming 

procedure was rather optimized for CGM and not for maize kernels. Yano et al. extracted α-

zeins with 70% of EtOH from CGM [84]. Nevertheless, since all fractions of zeins (α-, β-, γ-, 

and potentially δ-) are soluble in 60% EtOH [101] when 70% of EtOH is used to extract α-

zines, small amounts of β- and γ- proteins are also extracted [141]. Moreover, all methods using 

70% EtOH to extract α-zeins are very tedious, time-consuming, and highly dependent on 

experimental conditions (temperature and sample-to-solvent ratio) [137]. Furthermore, these 

methods have never been applied to extract α-zeins from maize kernels but from maize co-

products (e.g. CGM).  

Regarding soybean, most abundant proteins are globulins. Bibliography related with the 

analysis of soybean proteins and their extraction from soybean seeds is quite wide. The 

extraction mostly starts with the defatting of grinded seeds. This step removes the high level of 

lipids in soybean (even ≈ 20%) which facilitates further protein extraction. Defatting step can 

be achieved using petroleum ether [147], hexane [148] or a mixture of them [149]. Next, a 

variety of protein extraction buffers can be employed. Despite organic/aqueous based media 

can be used, a Tris-HCl (tris (hydroxymethyl) aminomethane-hydrochloride) aqueous buffer is 

more frequently applied (see Table I.9) for this puropose. After obtaining a whole protein 

extract, further fractionation of 11S and 7S globulins is commonly performed (step not included 

in the table). For that purpose, the method of Thanh and Shibasaki [150] and the method of 

Nagano [151] are usually applied. These methods are characterized by their simplicity and 

ability to afford a large-scale separation of these two major proteins. Briefly, they are based on 

the sequential isoelectric precipitation of 11S and 7S proteins. A variety of modifications have 

been introduced into these methods to improve protein yield and recovery. A special attention 

deserves the method of Liu et al. [148] that was developed based on these two first methods. In 

the first stage of this method, a whole protein extract with a high protein yield is obtained. 

Further steps enable the isolation of 11S and 7S protein fractions with high purity. The only 

disadvantage of the mentioned method is the tedious and time-consuming protein preparation.  
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Table I.9. Procedures employed for the extraction of soybean proteins. 

Solvent 

Solvent/ 

sample 

ratio 

Other conditions References 

30 mM Tris-HCl buffer, 

pH 8.0, 10 mM B-ME 
---- agitation 1h; centrifugation [147] 

30 mM Tris-HCl buffer, 

pH 8.5 
15:1, v:w 

stirring 1h at 45°C; centrifugation; supernatant 

separated; pellet extracted one more time; 

centrifugation; two supernatants combined 

[148] 

A: 30 mM Tris-HCl 

buffer, pH 8.0, 10 mM 2 

B-ME  

B: 50 mM Tris-HCl buffer, 

pH 8.8, 1.5 mM KCl, 10 

mM DTT, 1 mM 

phenymethanesulfonyl 

fluoride, 0.1% SDS 

---- 
A: 1 h vortexing; centrifugation 

B: 10 min in ice bath; centrifugation 
[149] 

25% (v/v) ACN, 0.3% 

(v/v) acetic acid (AA) or 

0.1% (v/v), TFA 

---- ---- [152] 

water ---- 25°C for 5 min; centrifugation [153] 

10 mM Tris-HCl, pH 8.0 
10:0.6, 

v:w 
3 min sonication; centrifugation [154, 155] 

 

I.6.3. Special considerations in the extraction and enrichment of PKA, PKG, and CaMKII 

from animal tissues 

An aspect to be taken into account for the selection of a method to extract proteins from 

animal tissues is the further use of isolated proteins. If the aim is to extract the highest number 

of proteins, very harsh conditions are employed [156]. Nevertheless, if the aim is the isolation 

of specific proteins and their enrichment from cellular lysates, a fractionation using interactions 

with specific bait-proteins and antibodies are prefered. Nevertheless, protein-bait interaction 

requires that the whole protein assembly is maintained. Therefore, in these cases, very mild 

extraction conditions, as those grouped in Table I.10 are necessary.  
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Table I.10. Procedures employed for the extraction of PKA, PKG, and CaMKII proteins from animal tissues. 

Extraction procedure References 

Whole proteome extract  

animal tissue + 500 µL lysis buffer (50 mM ammonium bicarbonate, 8 M urea, complete 

mini protease EDTA (ethylenediaminetetraacetic acid) free inhibitor mixture (1 tablet 

for 15 mL buffer), 0.1% phosphatase inhibitor mixture); room temperature (RT) for 5 

min; centrifugation; supernatant 1 separated; pellet 1+ 500 µL lysis buffer; RT for 5 

min; centrifugation; supernatant 2 separated; pellet 2+ 500 µL lysis buffer; sonication; 

centrifugation; supernatant 3 separated; three supernatant combined 

[156] 

Protein extract maintaining inter/intra proteins interactions  

animal tissue + lysis buffer (phosphate buffer solution (50 mM K3PO4, 150 mM NaCl, 

pH 7.0), 0.1% Tween 20, protease inhibitor cocktail); 10 min at 0°C; centrifugation 
[25, 157, 158] 

animal tissue + 1 mL lysis buffer (phosphate buffer solution, 0.1% Tween 20, 300 mM 

sucrose); RT for 5 min; 10 min at 0°C; centrifugation 
[158, 159] 

 

One of the major difficulties in the extraction of proteins from cardiac and other types of 

tissues is the dynamic range of protein expression. Cardiac proteome contains a set of high 

abundant muscle proteins that can hide less abundant but important proteins like PKA, PKG, 

or CaMKII [156]. In these cases, it is very usual the need for an enrichment step after protein 

extraction. The selective enrichment of low abundance proteins can be performed by a 

subproteomics approach or chemical proteomics. The subproteomics approach or chemical 

proteomics approach involve the use of agarose beads attached to molecules that interact with 

targeted proteins. Agarose beads with attached secondary messenger molecules, cAMP and 

cGMP, are added to the protein extract to interact with targeted kinases proteins. Next, beads 

with attached proteins are separated and enriched proteins are eluted (see Fig. I.13).  

Secondary messengers cAMP and/or cGMP are immobilized onto agarose beads via flexible 

linkers in either 2- or 8- position of the nucleotide moiety. Although the principal intracellular 

targets of cAMP and cGMP are PKA and PKG, respectively, several other proteins can also be 

activated by these secondary messengers and can be pulled by their direct attachment to 

cAMP/cGMP. 
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Fig. I.13. Protocol for the enrichment of protein kinases using cAMP/cGMP agarose beads. Adapted from: 

[25, 157, 158].  

Moreover, some proteins can also be bound through the attachment to the bonded PKA/PKG. 

Among these co-attached proteins are cyclic-nucleotide gated channels, phosphodiesterases, 

guanidine nucleotide exchange factors, A-kinase anchoring proteins, PKG anchoring proteins, 

and others [157]. Nevertheless, although it is difficult to ‘pull-down’ just selected protein 

kinases using these beads, the sample dynamic range obtained using this approach is very 

narrow. It is also possible to reduce non-specific binding by the incubation with an ADP/GDP 

(adenosine-5’-diphosphate/guanosine-5’-diphosphate) solution. The use of sequential elution 

with ADP, GDP, cAMP, and cGMP increases further specific enrichment as cross-linked 

nucleotide binding proteins can be pre-eluted. The use of cAMP-/cGMP agarose beads has 

shown to be very effective in the enrichment of these kinases in different proteomics studies 

[25, 27, 157, 159].  
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I.7. Extraction of peptides  

Different procedures can be employed for the extraction of peptides depending on sample 

matrix and on peptide state.  

I.7.1. Extraction of bioactive peptides from foodstuffs 

Bioactive peptides can be naturally occurring in foods as individual entities or can be 

encrypted within a parent protein (see Fig. I.14).  

 

 

 

 

Fig. I.14. Scheme summarizing the pathways to obtain bioactive peptides from foodstuffs. 

Two proteolytic pathways can be performed to release peptides from food proteins: in vivo 

and in vitro. The in vivo pathway is the result of the degradation of dietary proteins by digestive 

enzymes (gastrointestinal tract) in the organism. The in vitro manner involves protein 

processing by the action of microorganisms or enzymes derived from microorganisms or plants 

[52, 54, 55]. An interesting case are peptides provided from food processing. Although these 

bioactive peptides are released from food proteins, they are released just in order to obtain 
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desired products like yoghurt, cheese or other fermented products (e.g. kefir). Therefore, 

peptides obtained by food processing can be classified as native bioactive peptides.  

Extraction of antioxidant and antihypertensive peptides naturally occurring in foodstuffs 

(native peptides). Native antioxidant and antihypertensive peptides have been found in a variety 

of unprocessed and processed foods (see Table I.11). Among unprocessed foods, the most 

frequently reported source of native antihypertensive peptides are mushrooms [160-162]. 

Regarding processed foods, the most frequently reported source of native antihypertensive 

peptides are dairy products [81, 163-166] and soybean based products [40, 167, 167-171] (not 

all works included into the table). Despite food matrix might be very different, the methods 

used for the extraction of antihypertensive peptides are very similar. They mostly consist of 

peptide extraction with water or an organic solvent like MeOH [66].  

Literature concerning the extraction of native antioxidant peptides is much more narrow. In 

this case, the most frequently reported sources of native antioxidant peptides are milk and dairy 

products and soybean [172, 173]. Extraction procedures used in this case involve mainly the 

use of water or aqueous solutions.  

Food protein hydrolysis approaches. As previously mentioned, there are two main pathways 

to release encrypted peptides within a parent protein, in vivo and in vitro. In the in vitro pathway, 

protein hydrolysis can be carried out by fermentation with bacterial organisms, by using 

proteolytic enzymes or by autolyzation. The last one is based on the proteolytic activity of 

natural ingredients in some foodstuffs. Despite this method is the simplest and the cheapest one, 

it is not the most popular since it requires long-term fermentation (even until 6 months) [179, 

180]. In general, peptides produced by fermentation yield higher ACE inhibitory activities than 

digested peptides since bacterial strains can produce smaller peptides [181]. Nevertheless, the 

use of bacterial strains have some limitations like higher cost and laboriosity. This makes more 

common the use of proteolytic enzymes. One of the best sources of animal origin proteinases 

are pancreases, a by-product of meat industry. In addition, microorganisms’ proteases such as 

thermolysin, neutrase, subtilisin, orientase, and proteases from lactic acid bacteria are relatively 

cheap and widely used sources of proteases [182]. The advantage of using commercially 

available microbial proteinases is their low cost, safety, and very high product yield [64].  
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Table I.11. Procedures employed for the extraction of native bioactive peptides from foodstuffs. 

Product Extraction procedure Peptide References 

Antihypertensive peptides  

Pleurotus cornucopiae 

mushroom 
Extraction with MeOH-water  

RLPSEFDLSAFLRA, 

RLSGQTIEVTSEYLFRH 
[161]  

Garlic 
Homogenization in water, 

precipitation with MeOH 

SY, GY, FY, NY, SF, QF, 

DF 
[174] 

Wakame 
Extraction with hot water, 

centrifugation 
10 dipeptides [175] 

Buckwheat 
Extraction with water at pH 9.0, 

centrifugation 
GPP [176] 

Probiotic yogurt Adjusting pH 4.5, centrifugation 
VPP, IPP, and other 6 

peptides 
[177] 

Different Spanish 

cheeses 

Extraction with water, 

ultrafiltration Mwco 1 kDa 
A total of 41 peptides [164] 

Commercial fermented 

soybean paste 
Extraction with water HHL [168] 

Douchi, douche qu, natto 
Extraction with water, 

centrifugation 
--- [167] 

Antioxidant peptides 

Apium graveolens 

(celery) 

Extraction using a phosphate buffer 

(pH 7.4), with KCl, EDTA, and 

polyvinylpyrrolidone, 

centrifugation 

5 kDa peptide with partial 

sequence 

ADNAARPVRETDAVP 

[178] 

Cheddar cheese 

Extraction with water, 

centrifugation, protein precipitation 

at pH 4.6 

--- [173] 

Douchi 
Extraction with water, boiling, 

centrifugation 
--- [172] 

 

A variety of enzymes can be employed for the release of antihypertensive peptides. Enzymes 

such as subtilisin, chymotrypsin, pepsin [39, 183], thermolysin [184, 185], and alcalase [83, 

183, 186] have been used for this purpose. These enzymes cleave peptide bonds near to 

hydrophobic amino acid residues leading to peptides favorable residues for antihypertensive 

activity at C-terminal position [183, 187]. In the case of antioxidant peptides, enzymatic 
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hydrolysis has been the main process for the production of bioactive peptides [89]. Enzymes 

such as trypsin, α-chymotrypsin and pepsin [188-190], or alcalase [191-193] were employed 

for this purpose. When the aim is the production of peptides with both antioxidant and 

antihypertensive activities, enzymes with low specificity are preferred. Enzymatic digestion can 

be achieved using a selected enzyme or by sequential digestion with different kinds of enzymes. 

There are also many kinds of commercially available proteinases which can contain a mixture 

of enzymes exerting both exopeptidases3 and endopeptidases4 activities [194]. Final 

composition of hydrolysates depends on the protein substrate, proteolytic enzyme(s) employed, 

enzyme to substrate ratio, physicochemical conditions (pH, preheat treatment, digestion buffer, 

hydrolysis time, and temperature), degree of hydrolysis, post-hydrolysis modifications, etc. 

[90].  

I.7.2. Release of proteotypic peptides from tissue proteins 

Enzymatic digestion of proteins is also used to obtain peptides that are further used for the 

identification and quantification of parent proteins. To achieve that, enzymatic digestion mainly 

using trypsin enzyme is employed. Trypsin is an aggressive, stable, specific protease that 

cleaves at the carboxy-terminal side of arginine and lysine residues. Obtained peptides are 

suitable for MS/MS analysis due to their appropriate mass range for sequencing (7-25 amino 

acid residues) and the presence of basic residues (R or K) at peptide C-terminal position. Lys-

C endoprotease is another frequently used specific enzyme that cleaves at the C-terminal of K. 

Due to its stability in harsh solubilizing protein conditions (e.g. 8 M urea), it is commonly 

employed just before trypsin digestion (so called ‘two stage digestion’). Other frequently used 

highly specific but less active proteases are Asp-N or Glu-C, which generate peptides 

complementary to tryptic peptides. Less specific proteases are usually avoided since they cut 

proteins into many small peptides overlapping protein coverage and generating highly complex 

matrices [120, 121].  There are three main strategies for this enzymatic digestion: in-solution, 

in-gel, and in-column [128], being the first two the most frequently applied. Additionally, a new 

approach known as FASP (filter aided sample preparation) introduced by Wiśniewski et al. in 

2009 [195] is recently gaining a lot of interest. 

In-solution digestion. The easiest and most widely applied approach to digest proteins is 

directly in the lysis buffer itself (in-solution). The digestion rate from sample to sample can be 

                                                           
3 enzymes that break peptide bonds at the end of the chain. 
4 enzymes that break peptide bonds in non-terminal amino acids (within the chain). 
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influenced by the heterogeneity of the sample matrix and by the physicochemical properties of 

proteins. In order to disrupt intra molecular complexes, the protein mixture is subjected to its 

denaturation (e.g. using 8 M urea). Before trypsin digestion, the reduction and alkylation of 

protein disulphide bridges is commonly performed with DTT and iodoacetic acid or 

iodoacetamide. To allow digestion by trypsin action, sample is diluted to milder conditions 

(around 1 M urea) and the digestion is performed for 12-24 h. In order to reduce digestion time, 

several approaches have been developed. Among them, the application of microwaves, infrared 

radiation, ultraviolet radiation, use of a modified trypsin, or the use of HIFU are usual. Next, 

the addition of strong acids (formic acid (FA), AA, and TFA) or heating is mostly used to stop 

enzymatic digestion. The main drawback of this approach is the complexity of the peptide 

sample and the need for further fractionation of peptides [128].  

In-gel digestion. In this strategy, proteins in the sample are separated by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) or two-dimensional electrophoresis before 

enzymatic digestion. Afterwards, selected gel bands or spots from mono or bi-dimensional 

electrophoresis are cut off and gel pieces are destained using suitable procedures. For the most 

common Coomassie Brillant Blue destaining, several washes with 50% ACN in ammonium 

bicarbonate at neutral pH is the most appropriate. In order to reach an efficient protein digestion 

within the gel, gel pieces must be dehydrated and dried. Therefore, gel piece can easily swell 

the trypsin solution. Enzymatic digestion with trypsin is carried out using standard reduction 

and alkylation. Two-stage digestion with Lys-C and trypsin is also a common practice. After 

digestion, peptides are extracted in a stepwise fashion. The main advantage of in-gel digestion 

is the reduced complexity of the sample and the lack of interferences. In addition, the apparent 

molecular weight of proteins is already known. Nevertheless, in-gel digestion suffers some 

limitations. First, some peptide bonds could not be accessible to the enzyme and, second, the 

extraction of peptides from the gel could be limited [128, 130].  

 FASP. In-solution digestion is an easily automated method that minimizes sample handling 

but may be hampered by interfering compounds. Moreover, obtained proteome might be 

incomplete. On the other hand, in-gel digestion is extremely robust against impurities but hard 

to automate. In addition, gel may prevent appropriate recovery of some important peptides. 

Therefore, a new approach combining the advantages of in-solution and in-gel digestion, has 

recently been introduced. FASP enables to combine strong detergents for universal protein 

solubilization and sample clean up before digestion while avoiding the disadvantages of using 
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a gel [195]. The basic steps involved in the FASP approach have been depicted in Fig. I.15 and 

include the use of ultrafiltration Mwco filters as a basic tool. Critical steps in FASP are: 1) 

separation of proteins from interfering compounds (e.g. SDS) by ultrafiltration through Mwco 

filters by centrifugation; 2) reduction and alkylation of proteins (when trypsin is used); 3) 

protein digestion; 4) elution of pure peptides. The key feature in FASP is the ability to retain 

high molecular weight substances on the Mwco filter and the ability to elute interferences. The 

major advantage of this protocol, over the two previously mentioned, is its ability to 

accommodate a wide range of digestion conditions [195].  

 

 

 

 

 

 

 

Fig. I.15. FASP protocol workflow. 

 

I.8. Techniques used for the separation, purification, and determination of peptides and 

proteins 

I.8.1. Separation and purification techniques 

The complexity of biological samples usually requires the use of techniques enabling the 

separation of peptides and proteins. Separation techniques mostly used in the analysis of 

proteins and peptides are grouped in Table I.12.  
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Table I.12. Separation and purification techniques used in the analysis of proteins and peptides. Adapted 

from: [196]. 

 Separation technique Physical/chemical property 

Electrophoretic techniques 

Gel electrophoresis Stroke’s radius 

Isoelectrofocusing (IEF) Isoelectric point 

Chromatographic techniques 

Size exclusion chromatography  Stroke’s radius 

Ion exchange chromatography Charge 

Reversed phase chromatography (RP-LC) Hydrophobicity 

Affinity chromatography Specific biomolecular interaction 

 

 

I.8.1.1. Electrophoretic techniques 

Electrophoresis is based on the movement of charged compounds under the application of 

an electric field. The direction and velocity of substances is determined by their charge and ion 

mobility [197]. This phenomenon offers a powerful tool to separate proteins, peptides, and other 

molecules. The velocity of migration (υ) of charged compounds within an electric field depends 

on the electric field strength (Es), the net charge of molecules (z), and the frictional coefficient 

(f). The frictional coefficient depends on both mass and shape (for a sphere of radius r) of 

separating molecules and the viscosity of the medium (η). Therefore, the velocity of migration 

can be expressed by the following equation: 

    𝜐 =
𝐸𝑠 𝑧

6𝜋𝑟𝜂
   (Equation 1)   

For an established electric field and medium viscosity, the velocity of migration of an ion in 

an electrolyte depends directly on the net charge and on the molecule radius. Consequently, 

small molecules with high net charge have high electrophoretic mobility and move faster in an 

electric field than large molecules with low net charge [198]. Based on this principle, various 

electrophoretic techniques have been developed for the separation of proteins and peptides 

being SDS-PAGE and IEF the most commonly applied. 
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SDS-PAGE. Simple SDS-PAGE enables to resolve around 100 proteins in one run [116]. 

SDS-PAGE remains a gold standard technique to separate complex protein mixtures according 

to their molecular masses on a gel surface [131]. Electrophoretic separation is carried out in 

gels (solid support), which act as molecular sieves. Inert and readily formed polyacrylamide 

gels obtained by the polymerization of acrylamide and cross-linkers (methylenebisacrylamide) 

are the most commonly used [198]. Each gel is characterized by the total percentage 

concentration (%T) of both monomers (acrylamide and cross-linker). This value limits the size 

range of molecules that can be separated on the gel: the higher the %T, the smaller the molecules 

that can be separated [122]. Separation of proteins by SDS-PAGE is carried out in a device 

similar to that shown in Fig. I.16 A.  

 

 

 

 

 

 

 

 

Fig. I.16. Polyacrylamide gel electrophoresis device (A) and scheme of the electrophoretic separation 

procedure (B). Source: [198].  

Several samples can be separated by electrophoresis on one gel. Proteins are normally 

separated in polyacrylamide gels under denaturing conditions using SDS detergent and B-ME 

or DTT. SDS anions bind to protein chains creating a complex with a large negative charge 

which masks the real protein charge. In this way, the net charge per unit mass is approximately 

constant in all separating molecules and their separation is based just on their molecular masses. 

SDS-protein complexes migrate towards the positively charged electrode (anode) during the 

electrophoretic separation. Small molecules pass through the gel pores rapidly, larger molecules 

remain immobilized, and intermediate molecules move with different degrees of difficulty (see 

Fig. I.16 B). The mobility of most proteins under these conditions is linearly proportional to the 

logarithm of their mass [198].  
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Separated proteins can be detected using various stains like Coomassie Brilliant Blue, silver 

dyes, fluorescence dyes or radiolabeling. Despite silver staining has a great sensitivity, it does 

not show signal linearity and is less compatible with MS detection. Therefore, Coomassie 

Brilliant Blue is the most common staining technique in SDS-PAGE separation [131].  

Isoelectrofocusing. IEF is an electrophoretic technique enabling the separation of amphoteric 

molecules based on their characteristic pI. The pI of any amphoteric molecule is defined as the 

pH at which its net charge is equal to zero. Based on equation 1, the electrophoretic mobility of 

amphoteric molecules at their pI is null. pI values of proteins and peptides depend on the relative 

content of acidic and basic residues within their sequence. IEF is performed normally by the 

stablishment of a pH gradient of polymeric ampholytes exerting small differences in their pI 

values. The pH gradient of ampholytes can be created in a gel, in a capillary or can be 

immobilized on a strip. In the OFFGEL equipment, a protein or peptide liquid sample is 

distributed into different wells that are positioned on the top of an immobilized pH gradient 

(IPG) gel strip (see Fig. I.17).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.17. Scheme of fractionation using OFFGEL IEF with IPG strips.  
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The application of an electric field to the extremes of the IPG strips makes peptides and 

proteins to migrate with ampholytes through wells until they reach a pH equal to their pI. At 

this point, molecules lose their charge and focus in wells [116, 122, 198]. OFFGEL equipment 

enables a free flow IEF where proteins or peptides are separated in a multi-well device (12 or 

24 wells) from which they can be directly recovered after separation for their further analysis. 

Dehydrated IPG strips are commercially available with different pH gradients [131]. Separation 

resolution depends on the number of used wells and the range of pH gradient. 

I.8.1.2. High performance liquid chromatography (HPLC) 

HPLC plays a central role in the separation of both proteins and peptides. The 

physicochemical diversity of these molecules (see Table I.12) makes them suitable for nearly 

every kind of chromatographic mode [199]. Size exclusion or ion exchange chromatography 

(including both anion and cation exchange modes) are frequently applied at the beginning of a 

peptide/protein fractionation, while RP-LC is usually employed as last step due to its high 

resolving power and compatibility with MS [200].  

The separation by RP-LC is based on the hydrophobic interaction between molecules and 

packing material. Mobile phases used in the separation of peptides/proteins by RP-LC usually 

consist of water with an organic modifier being ACN followed by alcohols such as MeOH, 

EtOH or IPA, the most popular options. ACN is the most frequently selected due to its volatility, 

low viscosity, and transparence to ultraviolet (UV) light. Separation under gradient conditions 

is the most usual in the case of peptides and proteins [199]. In order to increase the 

hydrophobicity of charged peptides or proteins, the addition of acidic ion-pairing reagents to 

the mobile phase is also frequent. Ion-pairing reagents like AA, FA, phosphoric acid, 

heptafluorobutyric acid or quaternary ammonium salts are very common, although most widely 

employed ion-pairing reagent is TFA. TFA is transparent to UV light, it does not block amino 

groups, it is highly volatile, and it is easily miscible in most organic mobile phases. 

Nevertheless, the use of TFA is not advisable when using MS detection since it suppresses 

electrospray (ESI) ionization causing significant signal decrease [201]. Alternatively, UV 

online detection can be performed. Wavelengths at which peptides are detected are 210-220 nm 

(corresponding to the absorption of peptide bonds) and 254 and 280 nm (specific absorption of 

aromatic amino acids as tryptophan, phenylalanine, and tyrosine) [202]. 
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Silica-based supports used to be the first choice in RP-LC since they enable a wide range of 

selectivities, depending on the bonded phase. Hydrophobic molecules like large peptides and 

proteins are usually separated on less retentive stationary phases (C4-C12 phases). On the other 

hand, most typical choice for peptides is the use of C18 phases. C18 stationary phases offer 

retention and selectivity for a wide range of compounds that contain both polar and non-polar 

groups. Columns with phases as cyano, hexyl, phenyl, hexyl/phenyl, and perfluorinated are also 

available [203, 204].  

In conventional columns, the separation speed is limited by the rate of analyte transference 

between mobile and stationary phase [199]. This step is particulary critical in the case of 

macromolecules like proteins due to their slow diffusion [205]. There are two main approaches 

in HPLC to reduce separation time without compromising resolution and separation efficiency: 

1) use of supports with enhanced permeability and 2) use of stationary phases with smaller 

particle sizes [205-207]. Perfusion columns facilitate the permeability of proteins through the 

stationary phase by the use of particles containing large through- pores (6000-8000 Å) that are 

connected by small diffusive pores (800-1500 Å). These through-pores permit small percentage 

of convective flow through particles accelerating large molecules pass through them. This 

approach reduces the distance over which diffusion to the particle-binding surface occurs and, 

consequently, the retention time (see Fig. I.18 A and B). This strategy allows to rise the flow 

rate without loss of resolution. Another strategy to increase the permeability is to use columns 

made of one single piece (monolithic columns), prepared by compression or by polymerization 

of monomers inside the column [208]. These single rigid or semi-rigid rods contain both flow-

through channels and a system of conventional diffusive pores (see Fig. I.18 C).  

 

 

 

 

 

 

Fig. I.18. Comparison of stationary phases. A) Particle with normal porosity, B) particle with flow through 

pores, and C) scanning electron microscope image of the porous structure of a typical monolithic silica column 

(left) and enlarged view of the entrance to a through-pore (right). Pictures A) and B) adapted from: [209]. Picture 

C) from: [210].  
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Monolithic columns can be divided in two groups: organic monoliths (polymer based, e.g. 

polystyrene-divinylbenzene and polymethacrylate), suitable for the separation of 

macromolecules, and inorganic monoliths (silica-based), suitable for the separation of small 

molecules [199, 200].  

The easiest strategy to reduce analysis time is to increase flow-rate. However, in 

conventional HPLC, particles present an optimum flow-rate at which column performance is 

maximized. Below and above this flow-rate, efficiency is lost due to different kinetic 

parameters described in the van Deemter equation: 

 

𝐻 = 𝐴 +
𝐵

𝑢
+ 𝐶𝑢  (Equation 2) 

where H is the theoretical plate height, u is the linear velocity, and A, B, and C are constants 

that account for contributions to band broadening by Eddy diffusion, longitudinal diffusion, and 

mass transfer resistance, respectively [207]. The plot of the Van Deemter equation shows the 

variation of H versus the linear velocity (Fig. I. 19.). Smaller particles provide, at any practical 

flow-rate, higher efficiency and faster analysis without loss of efficiency. As a consequence, 

the development of chromatographic supports with smaller particles have been of great interest 

during the last decades (see Fig. I.19). Therefore, flatter Van Deemter plots are obtained and, 

higher flow-rates and maximum efficiencies are allowed [207].  

 

 

 

 

 

 

 

 

 

 

Fig. I.19. Van Deemter plot and evolution of particle sizes over the last three decades. Adapted from: [211]. 
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Nevertheless, the backpressure varies with the inverse square of the average particle 

diameter, according to the following equation: 

 

∆𝑃 =
(𝑢𝐿𝜂𝛷)

𝑑𝑝
2     (Equation 3) 

where P is pressure, L is column length, Φ is the column resistance factor, and dp is particle size 

[199]. Therefore, columns packed with particles smaller than 2 μm require suitable equipments 

supporting high backpressures (commonly named: UPLC). An alternative  to sub-2 μm particles 

is the use of pellicular packings also known as ‘fused core’, ‘core-shell’, or ‘superficially 

porous’ silica particles. Unlike sub-2 μm particles, fused-core silica particles enable the 

reduction of analysis times and maintain column efficiency with relatively low backpressure. 

Fused-core particles consist of a 0.35-0.5 μm porous silica layer fused onto a 1.7-1.9 μm 

solid inner core (see Fig. I.20). Small diffusion paths (0.5 μm), in comparison with traditional 

particles (1.5 μm), ensure a faster mass transfer and a better performance at high mobile phase 

velocities. Moreover, a robust packed bed and a homogeneous path length net minimize analyte 

diffusion through the column. Columns with 2.7 μm fused-core particles produce, 

approximately, half of the backpressure observed with 1.8 μm particles (UPLC) being possible 

the use of traditional HPLC systems [212]. Columns with fused-core particles play an important 

role in chromatography and their use in bio-analytical methods has been reviewed [213].  

 

 

 

 

 

 

 

 

 

Fig. I.20. Scheme of a fused-core particle (on left) and comparison of the diffusion path with that of a totally 

porous particle.  



 
 

47 
 

C
H

A
P

T
E

R
 I IN

T
R

O
D

U
C

T
IO

N
 

Besides the reduction of analysis time, another topic that has attracted much attention in 

HPLC is the improvement of sensitivity. The use of HPLC columns with miniaturized 

dimensions provides an increase in sensitivity. For that purpose, flow rates, connecting tubes, 

and injection volumes should also be downscaled [214]. LC techniques can be classified based 

on column internal diameter (I.D.) in: micro (0.5-1 mm), capillary (0.1-0.5 mm), and nano 

(0.01-0.1 mm) HPLC [134]. The reduction of column internal diameter offers several 

advantages, such as: 1) lower requirement of all types of chemicals (mobile and stationary 

phases) and samples; 2) less wastes; 3) higher sensitivity due to a lower dilution of the sample 

during its separation; 4) higher capacity of thermostatization of the column; 5) increased ESI -

MS detector response, since ionization is easier; and 6) higher efficiency [122, 134, 215, 216]. 

An important issue in miniaturized LC is the injection volume that should not exceed 30% of 

the column volume. To overcome this problem, it is especially common in nano-LC the use of 

switching systems. In these systems, a short trapping column with a highly retaining stationary 

phase keeps compounds, which are then eluted in a longer analytical column. This approach 

also ensures an online sample cleaning from unwanted or clogging interferences [214-216].   

I.8.2. Mass spectrometry 

MS involves the ionization of analytes in the ion source and their separation depending on 

their mass per charge (m/z) ratio in one or more mass analyzers. Subsequently, a detector 

registers the ion current from the analyzers, yielding the corresponding mass spectrum. During 

several years, a fundamental issue in the analysis of biological samples was the transference of 

polar and non volatile molecules into the gas phase without destroying them. The proposed 

solution commonly known as soft ionization techniques (MALDI and ESI) had a high impact 

on the peptide and protein research field. Nobel Prize awarded the latter technique in 2002 in 

the field of chemistry [120]. One of the most important advantages of ESI over MALDI is the 

possibility of on-line connection with the chromatographic eluent. In addition, while MALDI 

is used for relatively simple peptide mixtures, ESI-MS system is preferred for complex samples 

[217].  

Most popular analyzers in proteomics are ion trap (IT), quadrupole (Q), time of flight (ToF) 

tubes, and Orbitrap cells [120, 123]. Hybrid mass spectrometers can yield additional 

information on analyte structure. Different fragmentation mechanisms (collision induced 

dissociation (CID), also known as collision activated dissociation, electron capture and electron 

transfer dissociation (ECD and ETD) etc.) are available [117]. 
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Principles of ESI. ESI is a technique of ionization at atmospheric pressure where a sample 

is nebulized and ionized at the end of a capillary due to the action of a strong electric field 

(several kV) (see Fig. I.21). After ionization and nebulization, charged droplets move forward 

due to the established electric field gradient and the pressure gradient (ionization takes place at 

atmospheric pressure while mass analyzers are at very low pressure). Moreover, the control of 

chamber temperature enables the evaporation of charged droplets during this transition. As a 

consequence of solvent evaporation, the size of droplets decreases and the charge density 

increases, which results in a repetitive droplet instability and explosion into finer droplets. 

Finally, electrostatic repulsion is sufficiently high to cause desorption of analyte ions which 

then pass to the MS. Ions generated by ESI usually bear multiple charges [119, 120, 122, 128].  

 

 

 

 

 

 

 

 

 

 

 

Fig. I.21. ESI ionization overview. 

In ESI, analytes compete for charge as they are extruded from spray droplets. Consequently, 

the main drawback of ESI is its sensitivity to easily chargeable salts and detergents [218, 219]. 

Recently, an additional feature in ESI named “Jet Stream” has been introduced. This technology 

consists of an additional sheath gas heated at high temperature that focuses the nebulizer spray 

and desolvates ions more efficiently, thus improving sensitivity at high LC flow rates [205].   

Mass analyzers and hybrids. Key parameters of any mass analyzer are sensitivity, resolution, 

mass accuracy, and ability to generate MS/MS spectra. There are four main analyzers: 
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quadrupole, ion trap, time of flight, and Orbitrap [217]. The schemes of all four mass analyzers 

are depicted on Fig. I.22. Moreover, different hybrid instruments have been developed by fusing 

various mass analyzers, ions optic, and fragmentation tools [131].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. I.22. Schemes of Q, IT, ToF, and Orbitrap mass analyzers. 

First mass analyzer introduced in the market was the quadrupole (Q). It consists of four 

parallel rods to which a fixed and direct current (DC) and an alternating radio frequency (RF) 

are applied [121] (see Fig. I.22). By applying appropriate RF/DC voltages, only a narrow m/z 

range can reach the detector [219]. Q is limited in mass range (until 4000 m/z) and provides low 

resolution. This mass analyzer can operate in single ion monitoring (SIM) or in scan modes. 

The SIM mode provides a significantly higher sensitivity. In the SIM mode, Q parameters are 

adjusted to select only one specific m/z. The time required to collect data of a particular mass 

is the transmission efficiency. When various m/z values are detected, the instrument works 

sequentially (from low to high m/z) [205]. When a high number of ions is selected, the 

transmission efficiency for every ion is reduced which directly decreases sensitivity. Three 

consecutive Q configured together (QqQ) can enhance significantly selectivity. The first and 
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third Q are used for scanning/filtrating ions, while the middle one is used as a collision cell. 

Ions are fragmented using CID, which is a low energy ‘beam type collision’ with a ground gas 

(e.g. nitrogen) [218]. Many MS/MS scan modes are possible in QqQ, like product ion, precursor 

ion, neutral loss or selected reaction monitoring (SRM or multiple reactions monitoring 

(MRM)). The two first modes are especially useful to identify closely related molecules or 

functional groups, and are out of the scope of this thesis. In the SRM mode (see Fig. I.23), Q1 

and Q3 are programmed to filter just selected precursor and fragment ions, thereby increasing 

selectivity. When the number of monitored compounds during an analysis is too high and the 

transmission efficiency is very low, different time-scheduled windows with different SRM 

transitions and time intervals can be employed [206].  

 

 

 

 

 

Fig. I.23. Overview of the selected reaction monitoring mode in QqQ. Source: [220]. 

Quadrupole IT consists of two parallel oval rods enabling the application of variable RF and 

one circular ring enabling the application of a fixed RF (see Fig. I.22). IT permits to isolate and 

fragmentate ions in the same space. Ions are trapped into a small volume by an oscillating 

electric field (RF/DC) and scanned by increasing the RF applied to the trap. IT is filled with 

helium gas that takes the excess of ions kinetic energy and focus them in the center of the trap. 

Further isolation of selected precursor ions is performed by ejecting all ions except that selected 

as precursor. Isolated ions are translationally excited before the collisions with helium gas. The 

translational energy is converted to internal energy during the collisions with helium, which 

leads to the ion fragmentation (so called resonance CID). Obtained daughter ions are then 

scanned out. The main advantage of IT is its quick shift between scanning for masses of analytes 

and generating fragmentation spectra of these ions [131]. IT is very sensitive since it can 

concentrate ions in the trapping field for different amounts of time. Additionally, IT is the only 

mass analyzer that can provide multiple MSn fragmentation and, alone, can be used to identify 

peptides. ‘Pseudo- SRM’ mode is used with IT analyzer when upon fragmentation of a 

precursor ion, MS/MS data are acquired on a partial mass range, which is centered on a 
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fragment ion [221]. The main disadvantage of IT is its low mass accuracy, partly due to the 

limited number of ions that can be accumulated at its center. Linear ion traps (LIT) are a recent 

improvement of IT, where ions are stored in a cylindric volume that is larger than a conventional 

IT. This feature improves IT sensitivity, resolution, and mass accuracy [131, 217, 219]. Dual 

pressure LIT improves sampling speed and sensitivity. In this hybrid, the first IT efficiently 

captures and fragments ions at relatively high pressure, whereas the second IT performs 

extremely fast scan at reduced pressure [131, 222]. 

ToF-MS is a mass analyzer where ionized molecules are accelerated by a fixed amount of 

kinetic energy and travel down to a flight tube (see Fig. I.22). Due to the differences in masses, 

ions have different velocities and reach the detector, at the far end flight tube, at different times. 

ToF instruments provide high mass resolution and accuracy over a broad mass range. Typically, 

ToF instruments can achieve very high resolutions [218, 219]. The combination of ToF with Q 

is other commonly applied hybrid. Q-ToF consists of one Q, one hexapole collision cell, and a 

ToF mass analyzer (see Fig. I.24). This configuration provides additional advantages since it is 

possible to select parent ions for their fragmentation and to separate fragments using high 

resolving power ToF [121]. 

 

 

 

 

 

 

 

Fig. I.24. Schematic diagram of a Q-ToF. Adapted from: [131]. 

Orbitrap is one of the newest mass analyzers. It consists of an outer electrode enclosing a 

central inner electrode and a ceramic ring (see Fig. I.22). In Orbitrap, moving ions are trapped 

into an electrostatic field. The attraction toward the central electrode is compensated by the 

centrifugal force that comes from the initial tangential velocity of ions (similar to satellites on 

orbit). This electrostatic field forces ions to move in complex spiral patterns. The axial 

component of ions oscillations (independent from initial energy, angles, and position) are 



 
 
 

 
52 

 

C
H

A
P

T
E

R
 I IN

T
R

O
D

U
C

T
IO

N
 

detected as a current in two parts of the electrode that encapsulate the core. Fourier transform 

turns those currents into oscillation frequencies of ions at different masses, which allows 

obtaining their accurate m/z values. Although it may be possible to fragment ions in the 

Orbitrap, it is more practical and much faster to hybrid Orbitrap with other systems. In this 

regards, a hybrid with sensitive and very fast LIT has been developed (LTQ-Orbitrap). LTQ-

Orbitrap contains three main parts: a LIT analyzer to obtain MS and MSn spectra with very high 

sensitivity and mass accuracy, a C-Trap system (simplified Q) to accumulate and store ions, 

and an Orbitrap to analyze ions accumulated in the C-Trap (see Fig. I.25). Depending on 

requirements, two analyzers can be used independently or in concert. When both analyzers 

work simultaneously, high resolution/mass accuracy spectra are acquired by Orbitrap while fast 

fragmentation and MS/MS detection is carried out by LIT [223]. The next generation of LTQ 

Orbitrap system, termed Velos, provides even more improved sensitivity and scan speed. The 

most important implemented changes are: the use of a dual LIT instead of a simple LIT which 

accelerates the acquisition speed, improves and makes more efficient the fragmentation by a 

higher energy collision dissociation cell (HCD) system, etc. [222].  

 

 

 

 

 

 

 

 

Fig. I.25. Schematic diagram of the LTQ Orbitrap Velos MS. Adapted from: [222]. 

Finally, Table I.13 groups some characterictics of the mass analyzers and hybrids described. 

Q-ToF and LTQ-Orbitraps are the MS equipments with the highest resolving power and mass 

accuracy. Regarding m/z range, Q-ToF is the system enabling to work at higher m/z values and, 

thus, the most suitable to work with large molecules. Last extremely important parameter is 

acquisition speed, being IT and LIT the systems showing the highest values [224].  
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Table I.13. Overview of some selected commercially available mass spectrometers with their technical 

specifications provided. Source: [224]. 

 

The selection of a suitable MS system obviously depends on the requirements of the analysis 

in terms of resolution, mass accuracy, and acquisition speed. QqQ provides good linear dynamic 

range, high precision, and less matrix interferences for product ion measurements. QqQ is 

perfectly adapted for targeted analysis and quantitative applications. In fact, SRM using QqQ 

is a golden standard for LC-MS quantification. IT and LIT are fast, sensitive, and able to 

perform multi-stage fragmentation. They are perfect for both targeted and non-targeted analysis 

coupled to fast and highly efficient LC systems. Q-ToF instrument can acquire data over a wide 

mass range with high mass accuracy, resolving power, and speed. Therefore, it is particularly 

well suited for non-targeted analysis and, in some cases, for targeted [224]. On the other hand, 

Orbitrap instruments offer extremely high resolving power. However, such high quality 

measurements sacrifice the time of analysis proportionally with requested resolution [223]. 

LTQ-Orbitrap shows low sensitivity and, due to the slower data acquisition rate, it requires 

slower chromatography. Latest generation of this instrument has improved significantly this 

inconvenient by the introduction of the dual-LIT. Therefore, LTQ-Orbitrap instruments are 

especially important in non-targeted analysis of complex samples.  

Application of tandem MS  to the sequencing of peptides. Tandem MS enables to obtain the 

primary structure of peptides. In the first stage, the peptide ion is isolated and fragmented and 

the MS/MS spectrum of peptide fragments is generated. Fragment ions produced by tandem 

MS can be separated into two classes. One class retains the charge on the N-terminal while the 

                                                           
5 Defined as m/z value of particular peak divided by the peak full width at half maximum. Resolving Power is 

defined for a particular m/z value. 
6 Defined as the inverse of Resolving Power expressed as Δm/z for a given m/z value. 
7 Defined as the relative difference between the experimental m/z value related to its theoretical value including 

the sign (+ or -) and expressed in ppm. 
8 Defined as the limits of m/z over which the mass analyzer can measure ions. 

Mass 

analyzer type 

Resolving Power5 

(defined at m/z) 

Resolution6 

(Δm/z) 

Mass accuracy 

(ppm) using 

internal 

calibration7 

m/z range8 
Acquisition 

speed (Hz) 

QqQ 7,500 (m/z 508) 0.07 5 10-3,000 5 

IT - 0.1 - 50-6,000 52 

LIT - 0.05 - 15-4,000 66 

Q-ToF 42,000 (m/z 922) 0.02 <1 50-10,000 50 

LTQ-Orbitrap 240,000 (m/z 400) 0.002 <1 50-4,000 8 (at RP= 15,000) 
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cleavage is observed in the C-terminal. This fragmentation can occur at three different 

positions, each of which is sequence designated as types an, bn, and cn (see Fig. I.26.). The 

second class of fragment ions generated from the N-terminal retains the charge on the C-

terminal, while cleavage is observed from the N-terminal. Like the first class, this fragmentation 

occurs at three different positions, types xn, yn, and zn (see Fig. I. 26).  

 

 

 

 

 

 

Fig. I.26. Peptide fragmentation nomenclature.  

MS/MS fragmentation can be performed by various fragmentation methods. CID is the most 

widely applied where peptide ions undergo dissociation at amide bonds generating b- and y- 

type fragment ions. In contrast, ECD and ETD lead to the cleavage of N-Cα backbone bonds 

generating c- and z- type fragment ions [225]. While the differences among spectra obtained 

with CID and ECD/ETD are obvious, interestingly differences have also been observed among 

CID types. Indeed, the energy applied to a peptide in IT (resonance CID) and Q (beam type 

CID) analyzers is different. Obtained spectra differences have been associated mainly to gas 

conditions and kinetic energy. Lately, introduced HCD fragmentation type is other beam CID 

that has shown to generate spectra similar to Q fragmentation [226].  

On the other hand, peptide fragmentation information can sometimes be incomplete or some 

peaks can belong to other peptide series, which result in complex MS/MS spectra analysis. 

Indeed, peptides obtained by enzymes, which do not cut at basic residues, do not possess charge 

at C- or N-terminal of peptides. In this case, the abundance of b- and y- ions series can be 

reduced and some abundant internal ions are generated. This fact complicates spectrum 

interpretation and peptide identification. Peptides with basic residues at C- or N-terminus, like 

tryptic peptides, cleave easily in MS/MS obtaining fragments that deliver richer sequence 
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information on b- and y- ion series and, consequently, are much easier to interpret. Obtained 

data can be treated using database search or de novo sequencing. De novo sequencing is 

influenced by the quality of data, in terms of mass accuracy and resolution, as well as the 

information obtained from the MS/MS spectrum. Database search is easier since the number of 

possible peptide amino acids sequences that occur in nature is limited  [120].  

I.9. Quantification of targeted proteins/peptides 

Quantification methods can be divided into classical (e.g. Bradford assay, o-phtaldialdehyde 

assay, etc.), where total protein/peptide content is estimated, and more specific, where just 

targeted peptides or proteins are quantified.  

I.9.1. Quantification of targeted bioactive peptides in foods 

To date, studies in the area of bioactive peptides in foodstuffs have been mainly focused 

on the discovery of novel peptides with antihypertensive or antioxidant activity, their isolation, 

purification, identification, and in vitro or/and in vivo characterization. However, quick 

development of functional foods with bioactive peptides requires new methodologies for the 

quantification of peptides along with stability studies in complex matrices. This is especially 

true in the case of antihypertensive peptides since they have shown to be highly dosage 

dependent and they do not exert synergistic effects. In this sense, the quantification of 

antioxidant peptides in food hydrolysates could be pointless. Quantification methodologies to 

assess the content of antihypertensive peptides in foods are necessary in order to evaluate safety 

of functional foods, to establish healthy claims, and to expand policy and regulations controlling 

the addition of peptides to foodstuffs [227, 228]. Table I.14 summarizes the methodologies used 

to determine antihypertensive peptides in foodstuffs. LC has been the most frequently employed 

technique, using UV or MS detection. MS is the dominant technique for the reliable detection 

and quantification of antihypertensive peptides. A special attention should be directed to matrix 

effects since they can suppress peptide ionization in MS detection [227]. Label free approach 

using MS or MS/MS detection has been the unique strategy employed for bioactive peptides. 

In addition to the scarce number of existing methodologies for the determination of 

antihypertensive peptides in foodstuffs, most of them are focused on foods from animal origin. 
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Table I.14. Summary of methodologies used for the determination of antihypertensive peptides in foodstuffs.  

Source of peptide(s) 
Quantified 

peptide(s) 
Methodology References 

Yoghurt like products YP LC-UV [229] 

Royal jelly IY, VY, IVY LC-UV [230] 

Wakame 7 dipeptides LC-MS [231] 

Salmon muscle 8 dipeptides LC-MS [232] 

Goat milk 
TGPIPN, SLPQ, 

SQPK 
LC-MS [233] 

Miso paste IPP, VPP LC-MS [234] 

Fermented milk LHLPLP LC-MS and LC-MS/MS [235] 

Bonito muscle LKPNM LC-MS and LC-MS/MS [236] 

Fermented soybean seasoning and 

soybean sauce 
9 dipeptides LC-MS/MS [40] 

Swiss and non-Swiss cheeses VPP, IPP LC-MS3 [237] 

Cheeses with different time of 

ripening 
VPP, IPP LC-MS3 [238] 

Soybean Soymetide LC-UV and LC-MS [154, 239] 

Rye malt sourdoughs LQP, LLP, VPP, IPP LC-MS/MS [240] 

 

I.9.2. Quantification of targeted proteins in living organism tissues 

The quantification of protein populations in samples with different states or obtained under 

different conditions (control vs. case) is an essential topic in proteomics. To achieve that, 

different approaches for the quantification of proteins in proteomics have been developed (see 

Fig. I.27).  

 

 

 

 

 

 

Fig. I.27. Classification of strategies applied in quantitative proteomics. Adapted from: [131]. 
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Classical two-dimensional gel electrophoresis methods are not suitable to analyze low 

abundant proteins in complex samples. MS-based approaches can be divided into label- free 

and label-based methods. Label free methods determine protein content based on the MS- ion 

current signal of a peptide/protein or the MS/MS spectra (spectral counts) of a protein [116, 

123, 128, 200]. Moreover, these methods provide comparable results within biological samples 

[131]. In label-based methods, proteins/peptides are labeled at different stages using mass tags. 

This strategy provides both relative and absolute quantification although this is less precise than 

label-free strategies. In absolute quantification, isotopically labeled synthetic peptides are 

needed as internal standards for each targeted protein [117, 123, 123]. Absolute quantification 

can be obtained by spiking the sample with stable isotopically labeled peptides or proteins. 

Briefly, it is based on unique peptides (proteotypic peptide- PTP) which can be related just to 

one certain protein. A peptide with identical sequence to this PTP is synthetized and isotopically 

labelled. Both types of PTPs (labeled and non-labeled) are monitored, identified, and quantified 

by MS/MS using SRM [123]. This approach has recently emerged as a targeted proteomics 

technique for accurate quantification of specific sets of proteins in very complex backgrounds. 

Although it is highly sensitive and selective, it still has not been broadly used since it is only 

useful if working with a limited number of proteins [241]. The typical workflow to establish 

SRM experiments to quantify targeted proteins is presented in Fig. I.28.  

 

 

 

 

 

 

 

 

 

 

Fig. I.28. Workflow for SRM-based proteomics experiments. Adapted from: [221].  
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The most important part is the appropriate selection of PTPs and the selection of specific m/z 

settings for precursor and fragments (transitions). Firstly, PTP selection is based on in-silico 

targeted protein digestion together with mining in previously acquired results to predict most 

promising candidates and to confirm their uniqueness within PeptideAtlas database. Next, the 

selection of transitions is based on data from discovery experiments or it is experimentally 

determined in a QqQ instrument. While the first approach can result in biased information due 

to differences in fragmentation patterns, the second one is much more reliable but might be time 

consuming. Despite the high selectivity obtained by this approach, the appropriate selection of 

transitions must be validated for every peptide using heavily labelled peptides counterparts. The 

optimization of collision energy and time scheduling is normally performed to increase 

detection sensitivity [220, 221, 241]. 

I.10. Characterization of bioactive peptides 

Once protein hydrolysate or bioactive peptide is obtained, its bioactivity must be confirmed 

by the use of one or more in vivo or in vitro assays. In addition, several characteristics can be 

assessed such as the kind of inhibition, resistance to high temperatures and other processing 

factors, and bioavailability. In the case of hydrolysates, the amino acid composition, molecular 

weight distribution, and peptide content are some additional characteristics that could be 

studied. 

I.10.1. Bioactivity assays 

Antihypertensive activity assays. Antihypertensive assays monitor the conversion of an 

appropriate substrate by ACE in the presence and absence of peptide inhibitors. Commonly 

used substrates are hippuryl-histidyl-leucine (HHL) and 2-furanacryloyl-phenylalanyl-glycyl-

glycine [64]. Original method developed by Cushman and Cheung [242] is still the most widely 

adopted assay, where HHL is hydrolysated by ACE to hippuric acid (HA) and HL peptide [71]. 

The increase of HA level can be monitored at 228 nm. Recently, this assay has been carried out 

by RP-LC which ensures a suitable separation between HHL and HA [66]. Lately, highly 

sensitive, selective, and quick UPLC-MS methodology has also been proposed [243].  

Antioxidant activity assays. In order to study the antioxidant capacity of peptides, several in 

vitro methods have been developed (2,2-diphenyl-1-picrylhydrazyl radical scavenging capacity 

assay (DPPH), 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) assay (ABTS), oxygen 

radical absorbing capacity assay, ferric reducing antioxidant power, hydroxyl radical 
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scavenging, etc.). Nevertheless, there is no official standardized method due to the complex 

nature of antioxidants. Consequently, it is suggested the use of different methods to evaluate 

antioxidant capacity of potential antioxidants [90, 118]. In vitro antioxidant assays can be 

divided into two groups: assays based on hydrogen atom transfer (HAT) and those based on 

electron transfer (ET). HAT assays are based on a competitive reaction scheme, where 

antioxidant and substrate compete for thermally generated radicals. ET assays are non- 

competitive and are based on the measurement of the capacity of reduction of oxidants by 

antioxidants. While oxygen radical absorbing capacity assay and hydroxyl radical scavenging 

assays can be classified as HAT, DPPH, ferric reducing antioxidant power, and ABTS assays  

belong to the ET assay group [90, 244].  

DPPH, ABTS, and hydroxyl radical scavenging assays have been commonly used for the 

evaluation of antioxidant activity in proteins and peptides from vegetable foodstuffs. In the 

DPPH assay, the scavenging capacity of peptides is tested on DPPH free radicals. DPPH 

dissolved in EtOH is incubated under light and temperature protection with the mixture of 

peptides. Upon reduction, the solution color fades proportionally to the antioxidant capacity of 

investigated peptides and the absorbance at 515-517 nm is measured. On the other hand, in the 

ABTS assay, ABTS radicals are used as probes and oxidants. ABTS radicals are produced after 

the incubation of ABTS with potassium persulfate. This radical is able to scavenge electrons 

from antioxidant peptides and change its color. Decoloring process is monitored at 734, 690 or 

420 nm in the presence and absence of tested peptides. The hydroxyl radical scavenging assay 

can be performed in various systems. The most popular is the FeSO4-phenanthroline-H2O2. 

Both, FeSO4 and H2O2 generate hydroxyl (OH·) radicals which hydroxylate 1,10-

phenantroline-Fe2+ to 1,10-phenantroline-Fe3+, causing the reduction of the absorbance at 536 

nm corresponding to 1,10-phenantroline-Fe2+ complex. Antioxidant peptides inhibit this 

oxidation reaction [66, 90, 244].  

I.10.2. Bioavailability study 

In order to exert in vivo effects, bioactive peptides have to be bioavailable [46]. This means 

that a bioactive peptide has to demonstrate its capacity to be absorbed and available for use. 

Consequently, bioavailability studies are essential. They involve to study the resistance of 

peptides to gastrointestinal track conditions, to study the absorption of peptides through the 

intestinal barrier, and to study the resistance of peptides against brush border aminopeptidases, 

serum, or blood enzymes. In order to study the intestinal absorption, in vitro tests with 
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monolayers of intestinal cell lines (commonly Caco-2 cultures) simulating epithelium are 

usually applied. Additionally, the incubation with serum or blood enzymes, including ACE in 

case of antihypertensive peptides, can also be checked. A simulated gastrointestinal digestion 

enables to evaluate the resistance of peptides to gastrointestinal conditions [60, 90]. Various 

methodologies have been developed for this in vitro digestion from which that of Garrett et al. 

[245] is the most commonly used. It consists of a pepsin HCl digestion followed by a pancreatin 

(commercial protease mixture isolated from pancreas and made up of trypsin, chymotrypsin, 

elastase, and carboxypeptidases A and B) digestion with bile salts which simulates the 

conditions in the small intestine.  

Part of the information presented in this chapter is included in detail in the following book 

chapter and review article: 

 Book Chapter: “Peptides” 

P. Puchalska, C. Esteve, M. L. Marina, M. C. García 

IN: “Handbook of Food Analysis”, 3rd Edition, Chapter 17. CRC Press, Taylor& 

Francis, USA, 2014, ISBN: 978-1-46655-654-6.  

 

 Article 1: Isolation and characterization of peptides with antihypertensive activity in 

foodstuffs 

P. Puchalska, M. L. Marina, M. C. García 

Crit. Rev. Food Sci. Nutr., in press (DOI: 10.1080/10408398.2012.664829) 
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1. Introduction 

The word “peptide” (πεπτός) originally comes from Greek and means “small 

digestible”. Structurally, peptides are constituted by amino acids linked by amide bonds. 

Commonly, it is assumed that peptides contain up to 100 amino acids, more amino acids 

residues is referred normally to protein. Peptides play important physiological and 

biochemical functions in human body being involved in numerous biochemical processes 

within the nervous, immunological, and cardiovascular systems or intestine [1]. Among 

them, peptides working as neurotransmitters, neuromodulators or hormones (receptor-

mediated signal transduction) are the best known.  

The main source of peptides in living organisms is food. Peptides can occur naturally 

in foods as independent entities (e.g.  garlic [2] or mushrooms [3, 4]) or can be as part of 

proteins [5, 6]. Moreover, peptides can also be released from proteins during food 

processing (e.g. yoghurt [7-9], cheese [10-12], or soybean products like douchi [13], natto 

and tempeh [14] etc.). Food processing can be performed by the action of proteolytic 

enzymes (with various low specificity enzymes: alcalase, thermolysin, papain, etc. [15]), 

microorganism fermentation (mainly Lactic acid bacteria) or autolysis. Although it has 

been proven that fermentation, in general, produces peptides with higher activity, the 

procedure is expensive, laborious, and requires special conditions. Animal origin 

proteases, which are the by-product of meat industry (e.g. pancreases) or are isolated from 

microorganism proteases (alcalase from Bacillus Licheniformis or thermolysin from 

Bacillus thermo-proteolyticus rokko), are relatively cheap sources of enzymes [16]. 

Moreover, the fact that proteolytic enzymes are already ingredients of foodstuffs is also 

exploited to obtain protein hydrolyzates. The main advantages of autolysis are simplicity 

of process and low cost [17]. On the other hand, gastrointestinal digestion can also release 

peptides and simulated gastrointestinal digestion is employed in bioavailability studies to 

evaluate peptide resistance to gastrointestinal digestion. The most commonly used 

method was developed by Garrett [18] and it involved the application of sequential 

digestion with pepsin and pancreatin enzymes. Additionally, the use of other enzyme 

mixtures containing pepsin, trypsin, chymotrypsin, pancreatin or corolase P ® has also 

been reported [5, 19]. In addition to simulated gastrointestinal digestion, bioavailability 

also involves a digestion with brush border peptidases, absorption through the intestinal 

barrier, as well as digestion with blood enzymes, once peptides reached the circulation 
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[20]. Enzymatic release becomes a very complex and unspecific mechanism in which 

several enzymes, from food processing or the digestive system, with various activities are 

involved [21].  

  Depending on the amino acid sequence, peptides ingested or released from proteins 

in organism may affect the major body systems. These effects may be attributed to the 

numerous activities possessing food peptides, commonly named "bioactive peptides" (see 

section 4.2.). In general, bioactive peptides contain 2-20 amino acids, but in some cases 

this range can be extended [22]. 

Food products can also be supplemented with peptides coming from other sources in 

order to obtain foodstuffs with certain properties. This type of foods is commonly called 

"functional food". Food products enriched with peptides are already commercially 

available (see Table 1.) [5, 20, 23-25].  

Table 1. Commercial food products supplemented with peptides with desired properties. Adapted from: 

[5, 20, 23-25].  

Commercial 

product name 
Product type Peptide sequence 

Health/ function 

claims 
Company 

Ameal S Fermented milk VPPIPP 
Blood pressure 

reduction 

Calpis Co, 

Japan 

BioPURE-

GMP 

Whey protein 

isolate 

κ-casein ƒ(106-109) 

(Glycomacropeptide) 

Anticariogenic, 

antimicrobial, 

antithrombotic 

Davisco, USA 

Biozate 
Whey protein 

hydrolysate 

β-lactoglobulin 

fragments 

Blood pressure 

reduction 
Davisco, USA 

Calpis Fermented milk VPP, IPP 
Blood pressure 

reduction 

Calpis Co, 

Japan 

Capolac Ingredient Caseinophosphopeptide 
Helps mineral 

absorption 

Arla Foods 

Ingredients, 

Sweden 

Casine DP 
Casein protein 

hydrolysate 
FFVAPFEVFGK 

Blood pressure 

reduction 

Kanebo Ltd., 

Japan 

CE90CPP Ingredient 
Caseinophosphopeptide 

(20%) 

Helps mineral 

absorption 

DMV 

International, 

The 

Netherlands 

CholesteBlock Drink powder 
Soybean peptides bound 

to phospholipids 
Hypocholesterolemic 

Kyowa Hakko, 

Japan 
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Cystein peptide 
Ingredient/ 

hydrolysate 
Milk derived peptides 

Helps to raise energy 

level and sleep 

DMV 

International, 

The 

Netherlands 

C12 peptide 
Casein protein 

hydrolysate 
FFVAPFEVFGK 

Blood pressure 

reduction 

DMV 

International, 

The 

Netherlands 

Danaten Fermented milk Not described 
Blood pressure 

reduction 

Danone, 

France 

Evolus 
Calcium enriched 

fermented milk 
VPP, IPP 

Blood pressure 

reduction 

Valio Ltd., 

Finland 

Festivo 
Fermented low 

fat hard cheese 

αs1-casein ƒ(1-9), αs1-

casein ƒ(1-7), αs1-casein 

ƒ(1-6), 

No health claim as 

yet 

MTT Agrifood 

Research, 

Finland 

Glutamin 

peptide 

Dry milk protein 

hydrolysate 
Glutamin- rich peptide Immunomodulatory 

DMV 

International, 

The 

Netherlands 

Kotsu Kotsu 

calcium 
Soft drink Caseinophosphopeptide 

Helps mineral 

absorption 
Asahi, Japan 

Lowpept 
Casein 

hydrolysate 
RYLGY, AYFYPEL 

Blood pressure 

reduction 

InnavesBiorec

h SA, Spain 

PeptoPro 
Ingredient/ 

hydrolysate 
Casein derived peptides 

Improves athletic 

performance and 

muscle recovery 

DSM Food 

Specialities, 

The 

Netherlands 

Peptide Soup Soup Bonito derived peptides 
Blood pressure 

reduction 

NIPPON, 

Japan 

PRODIET 

F200/Lactium 

Milk drink, 

confectionery, 

capsules 

YLGYLEQLLR 
Reduction of stress 

effects 

Ingredia, 

France 

Tekkotsu 

Inryou 
Soft drink Caseinophosphopeptide 

Helps mineral 

absorption 
Suntory, Japan 

Tensiocontrol 
Egg protein 

hydrolysate 

RADHPFL, 

YAEERYPIL, IVF 

Blood pressure 

reduction 

Bioactor, The 

Netherlands 

Vasotensin 
Bonito protein 

hydrolysate 
LKPNM, LKP 

Blood pressure 

reduction 

Metagenics, 

Australia 

Vivinal Alpha 
Ingredient/ 

hydrolysate 
Whey derived peptides 

Helps relaxation and 

sleep 

Borculo Domo 

Ingredients 

(BDI), The 

Netherlands 
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Nevertheless, there is not a consensus in the definition of health claims in functional 

foods among different countries [26]. EU legislation does not yet recognize functional 

foods as a distinct category of foods, and European Food Safety Authority has the role to 

decide which nutritional claims are valid based on the scientific evidence. Unlike the EU, 

Japan licensed in 1991 the legal system in relation to allowable health claims on 

functional foods (FOSHU, Foods for Specified Health Use) [27]. According to Japanese 

legislation, before FOSHU is granted, health claims must be substantiated through 

scientific evidences [28]. Regarding USA, although the Institute of Medicine of US 

National Academy of Sciences describes functional foods, there is no legal position which 

defines functional or health enhancing foods [26]. Additionally, peptides released from 

foodstuffs with characteristic masses and sequences (unique peptides) are frequently 

employed in food analysis for the unequivocal identification of a protein source exhibiting 

a certain activity [29]. In fact, ‘peptide centric’ approach is one of the most powerful 

aspects in proteomics studies [30]. In this case, peptides serve as a precise molecular 

indication (biomarker) of the presence of specific proteins in foodstuffs (see section 4.1.). 

These peptides can unambiguously be inferred back to one parent protein sequence 

accounting for its key biological activity. In order to obtain a unique peptide (proteotypic 

peptide), in vitro enzymatic digestion with a highly specific enzyme (commonly trypsin) 

must be performed. Thus, generated peptides commonly contain 7-25 amino acids.  

As well as the biological activity, food peptides are also important for their influence 

on functional food properties and product taste. Functional properties of peptides include 

solubilization, foaming, emulsifying, and gelling. Peptide length can change solubility 

and gelling properties. Overall, peptides act like surfactants contributing to the formation 

of droplets by lowering the interfacial tension and by preventing recoalescence [31]. 

Emulsion forming behavior and stability of protein hydrolyzates are often related to the 

degree of hydrolysis and the apparent molecular weight distribution [32]. An extensive 

protein hydrolysis results in an increase in turbidity and viscosity finally leading to the 

formation of a gel [33]. However, as proved by Ferreira et al. [34], smallest peptides are 

unable to form gels and, thus, gelation time and gel strength depend on the degree of 

hydrolysis. Since gels confer structure, texture, and stability to food products and allow 

the retention of water and other small molecules, gelation capacity of peptides is highly 

appreciated by food manufacturers. Despite bitter-tasting peptides are described most 

extensively, peptides may also reveal other tastes like sweet, sour, salty, or umami [35]. 
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Bitter taste comes from small peptides (< 6 kDa) containing hydrophobic amino acids (L, 

P, F, Y, I, and W). Internally sited hydrophobic amino acids exhibit higher bitterness than 

terminal ones [36]. Debittering of protein hydrolyzates can be performed by the 

adsorption of bitter peptides on activated carbon, by their chromatographic removal using 

different matrices, or by their selective extraction with alcohols. Bitter taste can also be 

masked by the addition of polyphosphates, amino acids (D and E), α-cyclodextrins, 

hydrolysates with intact proteins, or by transpeptidation reaction [36]. Other methods 

include further hydrolysis of bitter peptides with enzymes such as aminopeptidase, 

alkaline/neutral protease, and carboxypeptidase or the use of Lactobacillus as a starter 

adjunct [37]. Encapsulation also enables to mask bitter taste of peptides as well as reduce 

the metabolic activity of some bacteria or improve peptide stability. In the case of 

bioactive peptides, masking methods involve the use of monosodium glutamate or 

glutamylglutamic acid, encapsulation, addition of cyclodextrins, phospholipids, and 

lysophospholipids [38].  

Despite food processing may improve its safety and may preserve food, it can also 

have harmful influence on peptides. Indeed, evaluation of dehydratation, thermal heating, 

and fermentation on peptides are important issues. Dehydratation preserves food, 

decreases the action of microorganisms, and facilitates its storage and transport. However, 

food dehydration can also change peptide composition, reduce amino acid content, and 

produce non-enzymatic browning [38]. On the other hand, thermal processing favors 

racemization, decomposition of residues (e.g. R converts to ornithine), glycation 

(browning, Maillard reaction), and cross-linking [38]. It is important to highlight that 

peptides can be altered or degraded without intervention of any reactive species by 

temperature (e.g. degradation of D [39]), pH (e.g. loss of ammonia from N and Q [40]), 

moisture (high water content results in an enhanced mobility and chemical reactivity 

[41]), or high pressures [42]. Peptide susceptibility to degradation or modification 

increases with molecular mass. Peptide modifications include intramolecular cyclization 

(N at N-terminus [43]), backbone modifications (intramolecular cyclization of C, S, T or 

β-aminoalanine [35]), side chain modifications (formation of dehydro amino acids from 

S, C, T), cross-linking (mainly from the dehydro amino acids or formation of disulfide 

bridge), or peptide breakdown (formation of carcinogenic acrylamide [44, 45]). 

Additionally, peptides can react with food components such as carbohydrates, lipids or 

their degradation products or with minor compounds like vitamins, additives, carbonyl 
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compounds from other reactions, or even inorganic additives. These interactions must be 

taken into consideration for novel functional foods formulation since they can affect 

peptide functionality. Some strategies for the enhancement of peptide stability and 

bioavailability such as lipidization, glycosilation, cationization, and microencaplsulation 

are extensively discussed by Witt et al. [46]. 

2. Sample preparation 

Sample preparation is the first critical step affecting the outcome of the entire peptide 

analysis. Isolation of peptides from food is a difficult task since foods constitute complex 

and heterogeneous matrices. It is complicated to analyze food peptides with good 

accuracy without a suitable sample preparation combining, in many cases, fractionation, 

purification, and pre-concentration steps [47].  

2.1. Peptide standard solubilization 

Appropriate selection of peptide media is essential since improper peptide 

solubilization can lead to its loss or even experiment failure. Peptide solubility is sequence 

dependent. In fact, in order to facilitate peptide solubility more than 20% residues should 

be charged. Short peptides (till 5 residues) or hydrophilic peptides containing > 25% 

charged residues (E, D, K, R) and < 25% hydrophobic residues are water soluble. 

Hydrophobic peptides containing 50-75% hydrophobic residues may be just partly 

soluble in water solutions. In this case, the addition of an organic solvent like acetonitrile 

(ACN), alcohols, acetic acid (AA), or dimethyl sulfoxide (DMSO) (if there is no C, W or 

M; in case of C, dimethylformamide (DMF) is recommended instead of DMSO) might 

be necessary. For peptides that tend to aggregate, the addition of guanidine hydrochloride 

or urea is recommended. Very hydrophobic peptides (>75% hydrophobic residues) 

require the addition of strong solvents (trifluoroacetic acid (TFA), formic acid (FA)) or 

high concentration of organic solvents or denaturant reagents [29]. Peptides are more 

stable at solid state than in aqueous solutions. The stability of peptides is influenced by 

solvent, concentration, pH, and temperature [35]. Instability of peptides in solution can 

be caused by adsorption onto vial walls, inactivation, racemization, oxidation (C or M), 

deamination (N or Q), chain cleavage, diketopeperazine formation or rearrangements 

[29].   
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2.2. Peptide release from foodstuffs  

Extraction of peptides from foodstuffs depends on how the peptide is present. Peptides 

present as individual entities are usually extracted with different solvents. Hydrophilic 

peptides are usually extracted using water or short-chain alcohols (e.g. ethanol or 

methanol). The use of alcohols also enables the precipitation of proteins, and thus, their 

removal. In most cases, protein removal (deproteinization) is a key clean-up step [48] 

which can include precipitation (with acetone, TFA, TCA, ethanol, methanol, ammonium 

sulfate or salting out), centrifugation, filtration (also ultrafiltration) or simply boiling [47, 

49].  Extraction of peptides encrypted in high structural protein/s to obtain biomarker 

peptides requires a previous hydrolysis with enzyme(s). Chemical hydrolysis, involving 

the use of acids or alkalis, is simple and less expensive than any available approach. 

However, it is not commonly applied due to the difficulties to control it, showing low 

selectivity and specificity and giving rise to the damage of some amino acids [48]. For 

these reasons, enzymes of high purity and specificity are usually applied, being trypsin 

the most common one [50] (see Table 2.). Generated peptides share similar properties, 

having lengths between 7-25 amino acids (molecular masses between 700 and 2500 Da), 

which reduces the analytical range to be covered, being suitable for mass spectrometry 

(MS) analysis. Different strategies can be used for trypsin enzymatic protein digestion 

such as in-gel digestion [51] (proteins are previously separated by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)), in-solution digestion (proteins 

are dissolved in an aqueous solution) [52] or filter aided sample preparation (FASP) 

digestion. In-gel trypsin digestion of proteins is a standard procedure in the field of 

proteomics. Briefly, excised pieces of gels (from 1D or 2D gels) are destained, digested 

with trypsin, and obtained peptides are extracted. Although a large number of protocols 

have been published for in-gel digestion, they only differ on their sensitivity and 

throughput [53]. In-solution digestion is the easiest and the most commonly applied 

approach. However, typical digestion protocols usually take long time. In order to speed 

up and simplify digestion, different strategies have been reported: heat, microwaves, high 

pressure, and infrared and ultrasonic energy [54]. FASP digestion, recently introduced by 

Wiśniewski et al. [55], is still not commonly employed in peptide food analysis. It 

consists of digesting proteins previously retained on a membrane filter and recovering of 

peptides by centrifugation. FASP digestion allows the use of more aggressive conditions 

which ensures better protein solubilization. 
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2.3. Purification of peptides  

The objective of purification is the separation of target molecules from others. 

Purification is essential when studying peptide structure or properties. Peptides can be 

purified by the application of several approaches based on different types of 

chromatography, electrophoresis, and membrane separation techniques. Purification and 

fractionation of peptides can be performed based on their hydrophobic/hydrophilic 

properties (reversed phase (RP) or normal phase (NP) liquid chromatography (LC), 

hydrophobic interaction liquid chromatography (HILIC)), charge properties (ion 

exchange chromatography (IEC), isoelectrofocusing electrophoresis), molecular size 

(size exclusion chromatography (SEC), ultrafiltration (UF)), or affinity properties 

(affinity chromatography (AC)) [48]. Purification of peptides from complex matrices 

normally requires several purification steps using orthogonal separation techniques 

(multidimensional purification).  

2.3.1. Membrane separation 

Ultrafiltration (UF) is a common membrane separation technique which can be used 

for fractionation or for the removal of interfering macromolecules [47]. Additionally, it 

enables concentration and enrichment of peptides. Peptide solution is applied on a 

semipermeable membrane (mostly polysulfone or cellulose) working as molecular sieve 

and fractionating peptides according to molecular size [49]. Cellulose membranes are less 

resistant but have reduced fouling while polysulfone membranes are more rigid but are 

more susceptible to fouling [47]. UF is a pressure driven separation technique although 

centrifugation can also be applied instead. Poor selectivity of UF can be a big 

disadvantage. Wide range of molecular weight cut off (Mwco) membranes is 

commercially available (500 Da-100 kDa). Frequently, sequential fractionation of 

bioactive peptides on small Mwco membranes is performed (1-10 kDa). UF membranes 

can also be used as a surface for the tryptic digestion of proteins (FASP, see section 2.2.).  

2.3.2. Liquid chromatography 

Chromatographic modes mostly employed for the separation of peptides are size 

exclusion, ion exchange, normal phase, and reversed-phase [29]. Complex mixtures can 

be resolved by multi-dimensional approaches where two or more chromatographic modes 

are combined. 
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Size-Exclusion Chromatography (SEC). Since SEC separates molecules over a wide 

mass range (0.1–100 kDa) and it is a low resolution technique, it is just useful when 

peptide raw material requires a first purification from main interferences (such as protein 

or salts) [49]. Moreover, SEC is also used as first dimension in multidimensional 

separation strategies. SEC is commonly performed on dextran (Sephadex) resins, 

agarose/dextran (Superdex), polyacrylamide (BioGel P), and divinylbenzene polymers 

[49]. The elution on SEC depends on resin composition and can be carried out using 

water, organic acids, salts or alcohols [47].  

Ion-Exchange Chromatography (IEC). Porous and nonporous matrices with 

hydrophilic materials like cellulose, cross-linked dextrans, polystyrene polymers or Bio-

Rex membranes are the most used for peptide separation [47]. Cation exchange (cIEC) 

matrices are attached to negatively charged groups (sulfopropyl, methyl sulfonate or 

carboxymethyl) while anion exchange (AEC) matrices have positively charged groups 

(quaternary ammonium, quaternary aminoethyl or diethylaminoethyl). Peptides are 

mainly eluted from IEC columns by increasing mobile phase ion strength while 

maintaining pH (to break up the ionic interaction) being less common the elution by pH 

change [49]. Although both IEC modes can be applied to peptide separation, strong cation 

exchange chromatography (cIEC) is more common. IEC resists harsh cleaning conditions 

and allows the purification of peptides with low cost and relatively high resolution. 

Affinity Chromatography (AC) and Immobilized Metal Ion Affinity Chromatography 

(IMAC). The few works devoted to the separation of peptides from foodstuffs via AC 

mostly employed Immobilized Metal Ion Affinity Chromatography (IMAC). Separation 

is based on the interaction of metals like Cu2+ [56, 87], Fe3+ [88, 89], Zn2+ [90] or Ti4+ [91] 

immobilized on a solid support with peptides in solution. The separation depends on the 

coordination between chelating metal ions and electron donor groups of peptides [92]. 

Although some commercial IMAC supports (beds, spin column) are available, 

immobilization of metals on solid supports is frequently performed in-house. Typically, 

metal ions are immobilized on chelating ligands like iminodiacetic acid (IDA) which is 

attached to a sepharose [89, 93] or a chitosan [90] matrix. As an alternative, Shen et al. 

presented the efficient IMAC-Ti4+ chelated on phosphorylated cellulose [91]. Metal-

chelated peptides usually contain H, S, C, E, and D residues. Metal ions prefer binding 

carboxyl groups (E, D) or oxygen (phosphate group) or nitrogen (H) rich groups [87]. 
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IMAC-Cu2+ binds peptides via carboxylic groups, phosphate groups, and amino acid side 

chains with electron donor groups (H, C, W). The wide specificity of interactions allows 

high recovery of peptide fractions [56]. Moreover, phosphopeptides enrichment, based 

on electrostatic interactions between positively charged metal ions and negatively 

charged phosphate groups of peptides, is usually carried out with metal ions like Fe3+, 

Ga3+, Zr4+, and Ti4+. Although this method is relatively specific, acidic peptides can also 

bind [91]. In fact, IMAC-Fe3+ proved to also attach peptides with H being necessary a 

previous separation by cIEC [93]. Liu et al. compared metal ion chelating capacity, 

adsorption, and separation efficiency of peptides in IMAC with different metal ions (Fe3+, 

Cu2+, Zn2+, Ca2+) immobilized on an IDA-Sepharose matrix [94]. They observed that 

binding ability of soybean protein peptide on the column was Fe3+> Cu2+> Zn2+> Ca2+, 

which was associated to different adsorption behaviors of metal ions. IMAC enables 

removal of majority of low molecular weight interferences, which led to better signal-to-

noise ratio. High throughput, reproducible, easy handling, and short analysis times are 

additional advantages [56].  

Reversed-Phase Chromatography (RP). There is a wide selection of chromatographic 

materials to separate peptides by RP-LC [95]. Columns packed with silica-based 

reversed-phase particles are the most widely used material for the purification of peptides. 

The C18 bound phase is the most popular for separation of peptides. When the alkyl chain 

is large, smaller or more hydrophilic peptides are recovered in high yield but larger or 

more hydrophobic peptides are lost. When alkyl chain is shorter the situation is opposite. 

Mobile phase in RP-LC usually is a mixture of water with ACN due to its high volatility, 

low viscosity, and relatively transparency to UV detection. Alcohols such as methanol, 

ethanol or isopropanol can also be employed instead of ACN. Elution of peptides in RP-

LC is normally performed in the gradient mode. The addition of an ion-pairing reagent 

aids to maintain low pH, create complexes with positively charged peptides, and 

minimize their ionic interactions with stationary phase. TFA, AA or FA are the most 

common ion-pairing reagents (see more in section 3.1.1).  

Hydrophilic interaction chromatography (HILIC). It is a powerful tool for the 

separation of polar compounds. The separation of analytes on HILIC is based on the 

interaction with a hydrophilic stationary phase like in normal phase (NP) 

chromatography. However, NP is performed just with non-aqueous, non-water-miscible 
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solvent buffers, whereas HILIC is performed with water-miscible solvents (e.g. ACN or 

methanol) and elution is achieved by a water gradient [96]. Columns used for NP can also 

be successfully applied in HILIC conditions [97]. HILIC stationary phases can be divided 

into three different groups: neutral (e.g. diol and amide phases, without electrostatic 

interactions with the analyte), charged (e.g. plain silica and aminopropyl phases which 

have strong electrostatic interactions with the analyte), and zwitterionic phases (e.g. 

sulfobetaine silica phases with weak electrostatic interactions with the analyte) [98]. The 

most commonly used HILIC columns for the separation of peptides from food matrices 

are TSK-gel Amide-80 (neutral) [99, 100], Atlantis HILIC Silica (charged) [101, 102], 

and, in some cases, ZIC-HILIC (zwitterionic) [103]. For HILIC, the best and most 

common organic solvent is ACN. Methanol yields wider peaks in approximately the same 

retention time while tetrahydrofuran may change the elution order. Aqueous solutions 

typically contain salts of ammonium, formate or acetate. The type of organic solvent and 

the type, concentration, and pH of buffer can affect the selectivity and retention time in 

HILIC [98]. A detailed review about HILIC [104] and an excellent review dealing with 

the application of HILIC to food matrices have recently been published [98] (see more in 

section 3.1.1).  

Solid-phase extraction (SPE). SPE is primary used to retain peptides enabling the 

removal of sample matrix interferences and/or peptide concentration. Basically, all types 

of SPE sorbents are commercially available (C2-C18, phenyl, cyanopropyl, IEC etc.) [47]. 

The separation principles and the mode of use depend on the selected sorbents. Micro-

device counterparts designed for small sample amounts like spin-columns and zip-tips 

are gaining popularity. 

2.3.3. Electrophoretic isoelectrofocusing 

Peptides can also be fractionated by electrophoretic isoelectrofocusing (IEF). 

Commercially available ‘OFFGEL’ fractionator systems are excellent devices for that 

purpose. Separation of peptide mixtures is performed on strips containing immobilized 

carrier-ampholytes required to establish a pH gradient. The application of an electric field 

enables the separation of peptides according to their isoelectric point (pI). ‘OFFGEL’ 

have proved to be an efficient and reproducible separation technique. Its micropreparative 

scale provides fraction volumes large enough to perform subsequent analyses [105]. 
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Although, this relatively new technique has shown to be a complementary tool to obtain 

peptide fractions, its application in the area of food peptides is still scarce.  

3. Analytical methods 

3.1. Separation of peptides 

Chromatographic and electrophoretic techniques are usually employed for the 

separation of peptides [29] due to their high-resolving power and compatibility with MS 

detection.  

3.1.1. Liquid chromatography 

RP-LC is the most common chromatographic mode used for the separation of peptides 

[95]. The choice of the packing material has the greatest impact on the separation and 

resolution of peptides. A significant progress has been the replacement of conventional 

silica-based columns by new stationary phases enabling higher resolutions and reduced 

analysis times. Monolithic columns consist of a single, rigid or semi-rigid, porous rod 

that can be organic-based (polymeric) or silica-based [29]. Monolithic supports contain 

two kinds of pores that are interconnected enhancing permeability and mass transfer of 

molecules. Consequently, overall performance and efficiency are improved and analysis 

times are significantly reduced. Another strategy enabling to improve efficiency and to 

increase linear velocity and mass transfer are columns filled with sub-2 µm particles. 

However, in order to withstand resulting high back pressures, these columns require the 

use of special instrumentation (ultra-performance liquid chromatography systems 

(UPLC)). Fused-core particle technology has been introduced as an alternative to obtain 

high separation efficiencies with low backpressure [106]. In the last decades, 

conventional flow columns have been replaced by micro and nanocolumns [107]. The 

reduction in column’s internal diameter permits decreasing the flow-rate, which results 

in a higher sensitivity. Additional advantages are a lower sample volume required for the 

analysis, a reduced consumption of solvents, and a lower waste. 

Highly polar di- and tri-peptides are often poorly or not separated due to their weak 

retention on RP supports. HILIC constitutes an increasingly used alternative for the 

separation of these peptides [108]. The recent increase in popularity of HILIC could be 

due to the widespread use of LC-MS. The use of partly aqueous eluents with high ratios 
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in ACN ideally matches ESI ionization [108]. Moreover, HILIC provides reduced back 

pressure and, as a consequence, the separation can be performed with smaller particles 

and higher flow rates [97].  

The separation of a large number of peptides from very complex matrices is not 

frequently possible using only one chromatographic or electrophoretic dimension. In 

these cases, a multidimensional approach is often needed. The number and kind of 

separation steps depends on the complexity of sample, the dynamic range of peptides, and 

the aim of the study [109]. Probably, the widest combination used for two-dimensional 

separation of peptide mixtures is IEC (usually cIEC) in the first dimension and RP-LC in 

the second dimension. One of the reasons of this combination is that IEC uses high 

concentration of salts, being necessary the introduction of a middle RP-LC separation for 

its connection to MS. Another approach more recently introduced for two-dimension 

chromatography is HILIC-RP [100, 102, 110, 111]. 

3.1.2. Electrophoresis 

Capillary electrophoresis (CE). The use of CE-MS in food analysis provides important 

advantages due to the combination of the great separation capabilities of CE and the 

power of MS as an identification and confirmation technique [112]. Among CE modes, 

capillary zone electrophoresis (CZE) is the most widely used. The separation is usually 

performed in a fused silica capillary (inner diameter 25-100 µm, and length 30-100 cm) 

filled with background electrolyte at a selected pH. Analytes are separated into the 

capillary due to their electrophoretic mobility which depends on peptide charge and size. 

CE is used in the separation of food peptides but in much less extent than HPLC. The 

collection of separated fractions from CE is difficult to achieve and not efficient. 

Additionally, adsorption of peptides to the inner surface of fused silica capillaries causes 

reduction in separation efficiency and peptide recovery [113]. There are three main 

strategies to avoid peptide adsorption: separation at pHs < 2.0 (at which silanol groups 

are protonated), the use of high ionic strength background electrolyte or the use of coated 

capillaries. Dynamic (reversible) coating by small ions or polymers (cellulose derivates, 

synthetic polysaccharides) or static (permanent) coating by the binding or adsorption of 

polymers (polyacrylamide, PVA, PEG, cellulose) are commonly applied [113].  
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3.2. Detection and identification of peptides 

Sensitive and selective detection of peptides, particularly small peptides, has been 

cumbersome due to the lack of suitable chromophores, fluorophores or electrophores. 

Peptides were commonly detected using UV/Vis spectroscopy. Absorption at λ 185-220 

nm results from peptide bonds while absorption at 254 and 280 nm is due to W, F or Y. 

In some cases, peptide derivatization has been required especially when using (laser-

induced) fluorescence (LIF) detection [113].  

3.2.1. Detection and identification of peptides by MS 

MS offers the ability to detect, identify, and quantify peptides with a wide dynamic 

range. Early ionization techniques were not amenable for the analysis of proteins and 

peptides [114]. MS application to the analysis of peptides was possible by the 

development of ‘soft’ ionization techniques (Electrospray Ionization (ESI) and Matrix 

Assisted Laser Desorption/Ionization (MALDI)) [115]. Soft ionization allows the transfer 

of polypeptide ions into the gas phase without their in-source fragmentation.   

MALDI source results mainly in singly charged ions and it is considered as a robust 

method of ionization in presence of salts and detergents, much less prone to ionization 

suppression effects than ESI [116]. However, since MALDI requires off-line sample 

deposition onto a target plate, it is less convenient to couple with HPLC and to perform 

quantitative analysis. In ESI, charged droplets are produced by passing a solubilized 

sample through a high voltage needle at atmospheric pressure. This ionization technique 

is often coupled with a chromatographic system, typically RP-LC or HILIC. ESI peptide 

ionization is typically carried out in the positive mode. Higher voltages favor lower 

charged peptides forms while lower voltages are better for smaller analytes. In the last 

decade, the introduction of nanoelectrospray (nanoESI) has enabled to increase 

sensitivity. Indeed, the reduction of the internal diameter of the MS capillary from 150 to 

15 µm results in a decreased flow rate and a 100 fold increase in ionization efficiency. In 

the ESI positive mode, protonated peptides are better produced in acid mixtures of water 

and organic solvents, such as ACN or MeOH. On increasing the percentage of organic 

solvent, the surface tension decreases making easier solvent evaporation. TFA, widely 

used as counter-ion in peptide chromatographic separations, is avoided for acidification 

since it results in strong signal suppression [117]. Instead, both AA and FA are used for 
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acidification resulting in reduced separation efficiency in RP-LC. One of the limitations 

of ESI is its high sensitivity to contaminants such as salts, chaotropes, and detergents, 

which may form clusters and adducts with the analytes or simply spoil the spray [50]. In 

fact, the addition of additives, such as urea at concentrations of 1 M and non-volatile 

buffers in mM range, is not recommended. Detergents usually cause deleterious effects, 

often type and concentration dependent. They may form adducts with peptides and 

frequently the signal is suppressed. In most cases, detergent concentration must be 

maintained below 0.01%. Therefore, in order to prevent adduct formation with salts or 

detergents, a previous purification of sample is needed. Nowadays, solid phase extraction 

(SPE) cartridges, tips (zip-tips) or spin columns with different chemistries are available 

from several manufacturers for this purpose. The selection of the appropriate approach 

depends on the chemistry of peptides (e.g. hydrophobic peptides), the volume of sample 

(zip-tips, and spin columns require µL), and its cost (see section 2.3.2).   

Four types of mass analyzers are commonly used for peptide analysis: quadrupole (Q), 

time of flight (ToF), ion trap (IT) (quadrupole ion trap: QIT and linear ion trap: LIT or 

LTQ), and Fourier transform ion cyclotron resonance (FTICR) [118]. Additionally, multi-

stage and ‘hybrid’ instruments such as QqQ, QqLIT, QToF, ToF/ToF, and LTQ-FTICR 

have also been employed. New instrument referable to the LTQ-Fourier-transform 

technology is commercially available as LTQ-Orbitrap system [115]. Most hybrid 

instruments are used in research laboratories [114] all with their different pros and cons. 

IT is rapid, robust, sensitive, and inexpensive but it provides low accuracy and resolution 

[118]. QToF, on the other hand, yields high accuracy and resolution but shows relatively 

low duty cycles. FT-ICR and LIT-Orbitrap show ultrahigh mass accuracy, mass range, 

and resolution, but their cost of acquisition and maintenance is high [114]. An excellent 

overview of commercial MS analyzers, their updated technical specifications, parameters, 

and applications has been published [116]. 

Identification and quantification of peptides. MS is the alternative to classical Edman 

degradation, used for the identification of peptides. Edman degradation is based on the 

labeling of N-terminal amino acid residues and cleaving from the protein in a sequential 

manner [119]. MS can directly provide information on the mass of a particular peptide 

but can also generate amino acid sequence information from tandem mass spectra 

(MS/MS). Peptide fragmentation is achieved by various fragmentation modes, 
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increasingly complementary and even competitive. Collision induced dissociation (CID) 

is, by far, the most common fragmentation method. Higher energy collision dissociation 

CID (HCD), electron capture dissociation (ECD), and electron- transfer dissociation 

(ETD) are other options. Peptides fragment in certain ways and a peptide fragmentation 

nomenclature (Biemann notation) has been introduced (see Fig.1) [114, 120, 121]. The 

sequence can be read from the distance between peaks of peptide ion fragments. Different 

dissociation techniques can yield different peptide fragments. Low energy fragmentation, 

such as CID, breaks the weakest bonds in the peptide (peptide bonds) yielding primary 

‘b’ and ‘y’ ions [114] (see Fig. 1). HCD provides highly similar spectra to CID [122]. 

Much less used but more efficient ECD and ETD fragmentations show MS spectra 

dominated by ‘c’ and ‘z’ ions [114]. Fragmentation patterns of peptides depend on the 

number of peptide charges. Peptides can be singly or multiply protonated. In case of 

singly protonated peptides, signal intensity decreases during fragmentation since it results 

in just one charge peptide fragment. The amino acid residues hosting this charge are R, 

K, and H amino acids. Thus, MS/MS fragmentation spectra of tryptic peptides with R or 

K at the end of the sequence (biomarker peptides) contain strong ‘y’ ion series and poor 

‘b’ ion series, especially at high m/z [114]. Small peptides with little or no R, K, and H 

amino acids (such as bioactive peptides) result in charge spread, which will make their 

identification more difficult. Peptide identification is based on precise measurement of 

peptide precursor mass, on product ions, and on the use of established spectra 

interpretation rules. For example, it is well known that linear ‘b’ ions are unstable and 

can form stable cyclic structures or can decompose to an ion losing the CO (-28 uma) 

residue (‘a’ ions). Loss of ammonia (-17 uma) from peptide fragments indicates the 

presence of R, K, Q, and N amino acids, while loss of water (-18 uma) indicates S, T, E, 

and D residues [123]. Some amino acid residues tend to form immonium ions which 

provide information about peptide composition but not about its sequence [114]. Highly 

similar molecular masses of I/L, and Q/K residues make their differentiation hard or 

impossible to obtain in low accuracy MS.  
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Fig. 1. Biemann notation of peptide fragmentation ions. Source: [114]. 

Two main approaches have been developed to identify peptide MS/MS spectra in an 

automated fashion: database dependent methods and database independent methods. 

Database dependent methods were firstly adopted while database independent methods 

are relatively new [114]. Database dependent methods are based on the comparison of 

theoretical peptide spectra from in-silico digestion of proteins and on the classification of 

the best candidates using cross-correlation or probabilistic scores [29]. This is performed 

just when the genome of studied peptides is known and common enzymes (like trypsin) 

are used. This is the case of studies with biomarker peptides. There are different 

algorithms that use tandem MS spectra data to search sequences against known databases: 

Sequest [124], Mascot [125], PeptideSearch, Sonar, ProteinProspector [120], X!Tandem, 

ProbID, Phenyx [114]. Although, the basis of these engines is the same, they use different 

scoring schemes to rank peptide matches. Most used protein databases are: Entrez Protein 

Database (redundant but large) of National Center for Biotechnology (NCBI), Unigene 

(compact but minimal), International Protein Index (deposit protein and translated cDNA 

sequences and predicted genes) [120], UniProt, SwissProt, and Ensembl. This approach 

is efficiently and widely applied for peptide identification. In order to automatically assess 

and validate database search results, false positive rates at a determined error rate are 

calculated. False discovery identification (when noise is mistaken as signal), scoring 

imbalance (long low quality peptides has higher score than higher quality short peptides), 

false identification (for post-transitional modifications or sequence polymorphisms), and 
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requirement of studied organism proteome database are weak points of this approach 

[114]. Another database dependent method includes correlation of acquired fragment ion 

spectra with previously obtained experimental MS/MS libraries [126]. This method 

ensures good performance in terms of speed and accuracy. Main disadvantage of this 

strategy is the non possible identification of peptides when their MS/MS spectra are never 

reliably identified [114]. Moreover, this strategy is not suitable in studies with bioactive 

peptides since they require the use of unspecific proteases and there is no much 

information on databases on food proteomes. In this case, database independent methods, 

also known as de novo sequencing, are more suitable. It allows identification of unknown 

peptides (no genome sequence information) and post-translation modifications [126]. In 

the de novo sequencing approach the amino acid sequence of a peptide is explicitly read 

from the fragment ion spectrum. Initially, this was accomplished manually, but recently, 

an array of tools has been developed [124]. In this case, the ability of software to read 

peptide sequence depends on MS mass accuracy, resolution, and MS/MS spectra quality. 

Currently, available programs are: PEAKS, Lutefisk, PepNovo, SHERENGA [114], 

PARSEK II [66] or DeNovoX [67]. PEAKS software, from Bioinformatics Solutions 

Inc., is the most popular software for de novo sequencing. Indeed, it has shown the best 

accuracy among all currently available de novo sequencing software packages [114]. 

When information about peptides’ parental protein is required, extracted MS/MS spectra 

of peptide can be matched against already known proteins using BLAST.  

Peptide quantification in foodstuffs is generally carried out by UV and MS detection. 

First approach is less usual since it requires that peptide was separated as pure signal from 

the complex sample. In case of non-pure peptides, laborious standard addition method 

must be applied. A MS-driven detection provides a valuable tool in bioactive peptide 

quantification. MS quantification approach uses commonly a label free strategy. This 

method is based on the relationship between peptide abundance and sampling statistics, 

such as peptide count and spectral count. To be statistically significant, chromatographic 

separation reproducibility must be very high. Methodologies using stable isotopes for 

differential labeling of peptides can also be used but they are not very usual in the 

quantification of food peptides. A common approach to quantify peptides is targeted MS. 

Monitoring of transitions (suitable pairs of precursor and fragment ions) in selective 

reaction monitoring (SRM) or multiple reaction monitoring (MRM) can be used. This 

setup provides high analytical reproducibility, good signal-to-noise ratio (SNR), and 
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increased dynamic range [70]. The optimization of an SRM assay is a time-consuming 

procedure and, unfortunately, its use for the quantitation of very small peptides present 

in complex matrices might show insufficient selectivity.  

4. Recent examples 

The possibility to develop standardized peptide extraction protocols together with the 

considerably higher resistance of peptide sequences to food processing in comparison to 

DNA sequences, makes the analysis of peptides an interesting and promising alternative 

for the analysis of food safety, for food authentication, food composition analysis, etc. In 

this case, recent advances in the field of proteomics have allowed the search of exact 

peptide biomarkers as potential indicators of product quality and traceability. On the other 

hand, bioactive peptides are gaining much attention and works devoted to the discovery 

of new potential bioactive peptides are being released. Despite the huge diversity of 

bioactivities that can exert bioactive peptides, most efforts have been aimed to 

antihypertensive and antioxidant peptides, especially in animal food origin foods.     

4.1. Examples dealing with biomarker peptides  

Food safety is a concept which encompasses different areas: food quality (food 

composition), traceability (food origin), and food safety per se (absence of allergens, 

pathogens or other contaminants) [127]. Two strategies have been mainly followed to 

solve food safety problems: the comparison of peptide profiles and the search for 

biomarker peptides. A peptide profile is a graphic representation of a set of peptides 

reflecting an exact situation, which permits to study how specific changes can affect 

peptides content. In some works, the study of the profile of a complex group of peptides 

allowed to obtain more information than the study of a target peptide. On the other hand, 

the identification of specific peptide biomarkers for a particular specie, tissue or 

ingredient by proteomics technologies is an interesting and promising strategy. This 

approach has shown high discriminating power, robustness, and sensitivity. For that 

purpose, the bottom-up approach is the most popular strategy. Target peptides are 

released, in this case, by the digestion with an enzyme such as trypsin. Next, peptides are 

analyzed by MS/MS for their accurate sequence analysis. Final peptide or protein 

identification is obtained by comparing MS/MS spectra with database using a suitable 

algorithm for database searching.  
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Food composition analysis. The first step in any food analysis or control is the 

knowledge of food composition. Since food proceeds from living organisms, peptide 

composition is affected by changes during agricultural production, industrial processing, 

and storing. Partial hydrolysis of proteins is quite often, desired and undesired, in the food 

industry. For example, hydrolytic activity of several milk proteases during milk treatment 

results in peptide formation [128]. Nevertheless, a high content of hydrolytic fragments 

from milk proteins have a negative impact on the gelation behavior or on the clotting 

properties in cheese production. Therefore, peptide profiles in raw milk and their changes 

during heat treatment have been investigated by Meltretter et al. [56]. In this case, milk 

clean-up was performed by IMAC-Cu and it was possible to observe by MALDI-

ToF/ToF-MS five new peptides from the αS1-casein that appeared when heating.  

As mentioned in the introduction, peptides can also participate in the formation of odor 

and taste in some foods. Flavor peptides are a group of oligopeptides with molecular 

masses bellow 3 kDa that possess unique taste properties including sweet, bitter, umami, 

sour, and salty. Toelstede et al. [57] characterized peptides imparting typical 

mouthfulness and complex body in Gouda cheese. In order to isolate those molecules 

underlying the so-called kukumi sensation of the 44-week-matured Gouda cheese, SEC 

in combination with analytical sensory tools were applied on a water-soluble extract. 

HPLC-MS/MS analysis of isolated SEC fractions enabled to identify 10 γ-L-glutamyl 

dipeptides as responsible for the characteristic kukumi sensation of matured Gouda 

cheese. Bitter taste is also one of the most common quality defects of cheese. It is caused 

by the formation of bitter peptides from casein hydrolysis during cheese ripening. 

Hydrophobic peptides of cheese have shown the major contribution to this bitter flavor. 

Moreover, it was observed that hydrophobic peptides size also affected bitterness in ovine 

milk cheese [58]. Bitterness intensity of cheeses also depended on the coagulant used in 

their manufacture. In fact, cheeses made with microbial coagulants were perceived as the 

most bitter and also contained the highest concentration of bitter peptides. Also, soybean 

proteins have demonstrated to produce strong bitter peptides. 21 peptides from the bitter 

fraction of tryptic hydrolysates of soybean 11S glycinin were purified using a 2D 

chromatographic system consisting of sequential SEC and RP-LC separations [129]. The 

amino acid sequence of bitter peptides was determined using Edman degradation. When 

compared these peptides with those released from proglycinin, many bitter peptides were 

basic mimics of the common structure. This indicates the significance of the primary 
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structure of a peptide in the bitter taste perception. Flavor is also a very important 

component in meat quality. At this regard, there is interest to determine the factors 

influencing flavor quality during the production and processing of meat and fish. Key 

flavor peptides in cooked puffer fish were identified by a previous purification of peptides 

using UF, Sephadex G-15 SEC, and RP-LC [60]. Peptide contributing to sweet taste was 

isolated and identified by MALDI-ToF/ToF MS/MS as YGGTPPFV. The relation 

between hydrophilic amino acids residues (Y, G, G, T, and F) and umami and sweet tastes 

was also demonstrated. Moreover, this peptide was suggested as an important contributor 

to the mellowness and tenderness taste of puffer fish. The generation of peptides during 

curing of dry-cured products has also attracted much attention for their influence in 

product taste. At this regard, Sentandreu et al. studied peptide development during ham 

curing [130]. Many biochemical mechanisms such as intense proteolysis of sarcoplasmic 

and myofibrillar proteins by endogenous muscle enzymes take place during the curing 

period. It is well known that long ripening periods ensure better ham quality. Analyzing 

peptide extracts from hams having 6, 8, and 12 months of curing time by capillary zone 

electrophoresis (CZE) showed changes in protein profiles [61]. These changes enabled to 

develop a mathematical model using multiple lineal regression (MLR) to predict suitable 

ripening times. The prediction of ham curing time was possible with an error below 2.5%. 

The identification of peptides in dry-cured ham was also performed [62-64]. Peptide 

purification was possible by the combination of SEC, RP-LC, and cIEC. Isolated peptides 

were identified by Edman degradation [62] and different MS and MS/MS devices [63, 

64]. Small peptides (especially dipeptides) were identified in the water-soluble extracts 

of dry-cured ham demonstrating a high proteolysis level during ham ripening [62]. In a 

second study, a total of 14 peptides fragments derived from myosin light chain I and titin, 

probably released by the action of dipeptidyl peptidases, were identified using MALDI-

ToF-MS, nLC-MS, and MS/MS [63]. The intense proteolysis of the sarcoplasmic fraction 

of dry-cured ham was determined by nLC-MS/MS [64]. Obtained sequences suggested 

the contribution of both endopeptidases and exopeptidases during ripening. Finally, 11 

fragments of myoglobin, a sarcoplastic protein responsible for the color of meat and meat 

products, were identified by nLC-MS/MS [65]. In these studies, the comparison of 

Paragon and Mascot search engines, together with UniProt and NCBI databases was 

performed. It permitted the selection of the most adequate tool in the identification of 

naturally generated peptides. It also demonstrated the utility of these common searching 

tools for the analysis of complex samples [61, 65].  
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Food authentication. The assessment of food authentication and origin is a major 

concern not only for the prevention of commercial frauds but also to avoid safety risks 

derived from the inadvertent introduction of any food ingredient that might be harmful 

for human health. It is of high importance to develop analytical methods to distinct closely 

related species and prevents inadvertent or deliberate mislabeling and adulteration of food 

products. 

The identification of marine species is an issue of primary relevance for the seafood 

industry due to global commercial requirements concerning labeling and traceability. For 

that purpose, species-specific biomarkers capable to provide information about the 

composition of food are required. A pioneer work in the identification of species-specific 

peptides from marine species was performed by López et al. [66]. Three European marine 

mussel species were characterized by MALDI-ToF-MS. Peptide maps generated from 6 

random selected spots of two-dimensional gel electrophoresis analysis were compared 

and species-specific differences corresponding to the protein tropomyosin were detected. 

The analysis of peptide extracts from tropomyosin by μ-HPLC-ESI-MS/MS in SIM mode 

demonstrated unambiguous identification of species. A similar strategy was used for the 

characterization of different protein nucleoside diphosphate kinase B (NDK B) from 

commercial hakes and grenadiers (Merlucciidae family) [67]. Species-specific peptides 

used for fish authentication were characterized by MALDI-ToF and LC-MS/MS. Shrimp 

species have also been identified based on the characterization of species-specific 

peptides from arginine kinase [68]. Since genomes from these fish species were poorly 

explored, de novo sequencing of peptides was required. It involved the manual 

interpretation of ion series in the spectra with the aid of the software package PARSEK 

II [66] or DeNovoX (Thermo-Finnigan) [67] and the BLAST program which use 

homology searches between the given sequences and those available in the NCBI 

database [68]. In a later study, the long time digestion protocol was reduced using a high-

intensity focused ultrasound (HIFU)-assisted in-solution digestion to just 2 min [69, 70]. 

The use of this ultrasonic probe allowed the differentiation of 7 shrimp species within just 

90 min [69]. Another example of the use of peptides for food authentication was the 

monitoring of 11 parvalbumins (PRVB) peptide biomarkers for the unequivocal 

identification of closely related Merlucciidae species in processed and precooked seafood 

products [70].   
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Another aspect in food authentication is the presence of adulterations. Adulteration is 

usually carried out to increase the profit of a product by its partial replacement with a 

cheaper counterpart. The development of meat binders to incorporate meat and fish cuts 

into consumer products demands accurate portion control in commercial meat and fish 

products. To solve this problem, a method designed to target specific peptides markers of 

the presence of fibrinogen has been described [71]. Fibrinopeptide A, released from blood 

protein fibrinogen during thrombin gelling, was isolated from food matrices by acid 

precipitation and SPE. Isolated fibrinopeptides were analyzed by MALDI-ToF and LC-

QqQ. Fibrinopeptide A was found to be an effective marker in fresh, processed, and 

cooked food matrices with 5% (v/m) of bovine binding agent. A proteomics-based 

method was also developed for the detection of chicken meat within mixed meat 

preparations [72]. The first step of the procedure consisted of an enrichment of 

myofibrillar proteins by OFFGEL IEF. Next, myosin light chain 3 was submitted to in-

solution trypsin digestion or SDS-PAGE separation and in-gel trypsin digestion. 

Generated peptides were analyzed both by MALDI-ToF and LC-MS/MS. The use of 

AQUA stable isotope peptides permitted to carry out a quantitative detection of selected 

species-specific peptide biomarkers. The method enabled the detection of adulterations 

of 0.5% of chicken meat in both raw and cooked pork meats. The use of peptide 

biomarkers to detect food adulterations constitute an interesting alternative to currently 

used immunoassay, hampered when the tertiary protein structure is affected by food 

processing. Marker peptides have also been used to differentiate bovine from porcine 

gelatins [73]. The similarity between gelatins makes difficult to trace their species. 

Gelatin proteins were subjected to in-gel trypsin digestion and SEC analysis. Thanks to 

the differences in bovine and porcine type I collagen sequences, marker peptides specific 

for bovine and porcine gelatins were successfully detected.  

Food allergen detection. Food allergy is a significant worldwide public health issue 

estimated to affect up to 4% of infants and adults in developed countries [131]. Proteins 

termed allergens are mostly responsible for food allergenic reactions, being capable of 

triggering severe adverse reactions in sensitized individuals. To guarantee the security of 

consumers, a number of regulations in terms of food allergy have been implemented 

[132]. In the European Union, these regulations compel the producers to label 14 

established food allergens when these have been intentionally introduced in foodstuffs. 

However, some products on the market could contain traces of allergens due to cross-
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contaminations during food manufacturing. In order to protect consumer, reliable 

detection methods are needed to ensure meticulous labeling and to control allergen-free 

products. Immunoassay methods can be employed to detect the presence of allergens [74]. 

Nevertheless, these antibody-based assays usually exhibit cross-reactivities to other 

related species. As demonstrated by hazelnut allergens, this problem is solved thanks to 

the specificity of MS experiments [83]. In fact, different MS-based methods have been 

developed to identify set of peptides that could work as allergen markers. 

Milk allergy is one of the most common food allergies in young children from birth to 

1 year old. This together with severe and prevalent tree nuts (peanuts and hazelnuts) and 

fish allergens are the most studied. Emphasis was given to the identification of major 

allergens in casein [74, 75] and whey [76] fractions from milk, Ara h 1, Ara h 2, and Ara 

h 3/4 allergens from peanut [80, 81], and parvalbumins beta (β-PRFBs) from fish [86]. 

Sample treatment is especially critical when working with allergenic proteins. In fact, 

protein enrichment methods like ProteoMinerTM (based on a large and highly diverse 

bead-based library of combinatorial peptide ligands) [82, 133, 134], selective 

immunomagnetic beads (based on the use of monoclonal antibodies) [81] or a 

combination of AEC with UF (Centripep filters) [74] are usually required to detect 

allergens at a trace level in complex food matrices. In order to obtain the best sensitivity 

and to improve peptide detection limits, sample treatment was usually optimized. The 

comparison of UF, LLE, and SPE for the isolation of peanut allergens showed the best 

peptide recovery when UF was applied [79]. Food processing affects the stability of 

proteins, which influences the detection of allergen sequence tags. Therefore, different 

works have been aimed to study the influence of food processing on biomarker peptides 

of food allergens. An example is the study of the effect of Maillard reaction on peptides 

from whey [76] and hazelnut [84] allergens. Also roasting can affect protein stability. 

Consequently, raw and roasted peanuts have been analyzed to identify peanut-specific 

sequence tags that could work as markers of specific allergens in processed foodstuffs 

[77]. 

Peanut allergen Ara h 1 was analyzed by its previous extraction and enzymatic 

digestion. Better LODs in comparison to post-extraction trypsin digestion was obtained 

[78]. On the other hand, chocolate is a difficult matrix since proteins can interact with 

chocolate tannins making more difficult protein extraction. In this case, pre-extraction 
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digestion greatly reduces these interactions. To speed up the protocol, a microwave-

assisted [81] and a HIFU-assisted enzyme digestions [86] were implemented. 

Once the hydrolyzates are obtained, the identification and selection of marker peptides 

is usually performed using MS-based methodologies. A fundamental role in the outcome 

of MS analysis in complex mixtures is a previous chromatographic separation. For the 

simultaneous determination of selective biomarkers from five nut allergens, two different 

chromatographic columns (a C18 particle-packed column and a silica-based C18 

monolithic column) were evaluated [85], observing better performances, in terms of 

sensitivity, selectivity, and solvent consumption, with the first column. Nevertheless, the 

direct infusion of protein digest into the MS/MS system could be useful to identify most 

abundant peptides in a hydrolyzate [75]. This was successfully applied to the analysis of 

nut traces in commercially available breakfast cereals and biscuits [85]. Since almost all 

nut allergens belong to the seed storage protein family and have homologue structure, the 

use of BLAST algorithm has helped to select suitable peptides and transitions for the 

specific detection of different nuts by SRM and MRM. Indeed, SRM/MRM were applied 

to the detection of hazelnut allergens [83] and peanut allergens in chocolate [78], cookies 

[82], rice crispy, and chocolate-based snacks. Alternatively to LC-MS/MS strategy, a Eu-

tagged ICP-MS immunoassay was proposed. This methodology is based on a non-

competitive sandwich ELISA method with ICP-MS detection of the metal used to tag the 

antibody. Some advantages of this methodology are the absence of matrix interferences 

usually producing ion suppression in LC-MS/MS and better LOD [80].  

Additionally, marker peptides corresponding to αS1-casein [74] and β-lactoglobulin 

[75, 76] from milk have been proposed, as shown in Fig. 2 for a chocolate sample. Also 

Ara h 1, Ara h 2, and Ara h 3/4 from peanut [77-82], and hazelnut allergens [83, 84] have 

been proposed for the detection of these specific allergens in foodstuffs. Because of the 

different expression levels of peptides, their simultaneous detection and the selection of 

different allergenic proteins will increase the confidence in the correct identification of 

specific allergen traces in analytical samples [79]. Finally, simultaneous analysis of 

different species has been proposed, as the developed for five nut allergens from cashew-

nut, hazelnut, almond, peanut, and walnut in cereals and biscuits [85].  
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Fig. 2. MALDI-TOF/MS and MS/MS spectra of the chocolate sample. The stable peptides 41Val-Lys60 

and 15Val-Arg40 are marked with arrows. Matched y- and b- ions are indicated in black and gray 

respectively. The amino acid sequence is indicated in the one letter code. Source: [76]. 

4.2. Examples dealing with bioactive peptides 

Epidemiological studies are increasingly linking the prevalence of some diseases to 

the dietary factor [38]. Humans ingest an average of 50-70 g of food proteins per day. 

Proteins are hydrolyzed into a high variety of peptides, which can be adsorbed and 

transported by the blood stream and that can have a significant influence on main human 
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body systems (cardiovascular, nervous, gastrointestinal or immune) [20]. It is important 

to highlight that some dietary peptides are extremely potent and even microgram amounts 

entering to the body circulation can have major pathophysiological effects [135]. The 

term ‘bioactive peptide’ refers to peptides of plant or animal origin that brings measurable 

biological effects at a physiological level, with the caveat that the effect must be beneficial 

[28]. Around 37 different peptide bioactivities are known, such as antihypertensive, 

antioxidant, anticancer, opioid, mineral-binding, antimicrobial, immunomodulatory, 

cytomodulatory, antithrombotic, hypocholesterolemic, etc. [136]. Online databases such 

as BioPep, PepBank, EROP-Moscow, BioPD, PeptideDB, and Peptidome are 

comprehensive resources of bioactive peptides [21]. Among these peptide bioactivities, 

the most commonly studied are antihypertensive and antioxidant peptides (see Table 3.). 

Recently, some excellent reviews devoted to several bioactivities of peptides [24, 25, 48, 

137] or, in particular, antihypertensive [28, 38, 138] or antioxidant peptides [139-141] 

have been published. Studies about bioactive peptides involve their extraction, separation, 

isolation, identification, and characterization by in vitro and in vivo studies. In general, 

animal origin (milk, cheese, pork, egg, fish, ham etc.) bioactive peptides are more 

explored although vegetable origin peptides are recently gaining relevance (see Table 3.). 

Among vegetable origin peptide sources, soybean is receiving a special attention since in 

many countries is an important dietary ingredient [20]. As previously explained, bioactive 

peptides can be present as independent entities or can be part of parental proteins released 

by their hydrolysis. Since protein hydrolyzates obtained by digestion or fermentation are 

highly complex matrices, several techniques have been employed to separate and purify 

bioactive peptides. The use of RP-LC is still the most common although HILIC, AC, and 

IMAC constitute interesting alternatives. Additionally, appropriate bioactive assay(s) are 

also needed in order to detect most active fractions. Identification of bioactive peptides is 

next step. Despite robust Edman degradation peptide sequencer is still in use, high 

throughput, exact, and quick mass spectrometry techniques recently dominates. Once 

bioactive peptides are identified, several methods for their characterization are used. 

General aspects, characteristics, and examples of peptides with selected bioactivities are 

summarized below. 
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Angiotensin I converting enzyme inhibitory peptides. Antihypertensive peptides are the most 

extensively studied bioactive peptides. This might be linked to the fact that high blood pressure 

or hypertension affects about quarter of world’s population and it is considered as a significant 

health problem worldwide. Hypertension is one of the main risk factor in the development of 

cardiovascular diseases (CVD), a group of disorders of heart and blood vessels [23]. Renin-

angiotensin system plays a crucial role in the regulation of blood pressure in human organism. 

Angiotensin I converting enzyme (ACE) converts angiotensin I into angiotensin II, a potent 

vasoconstrictor involved in a cascade of mechanisms increasing blood pressure. By the 

inhibition of ACE, the level of angiotensin II and, as a consequence, blood pressure decreases. 

Antihypertensive peptides contain few amino acids residues (2-12 amino acids) and commonly 

hydrophobic amino acids (aromatic or branched side chains) at three C-terminal positions. The 

presence of W, Y, F, and/or P at the C-terminal was suggested to enhance the effectiveness of 

peptide inhibition [38]. Despite the inhibition mechanism of ACE inhibitor peptides is still 

unknown, they represent a healthier and natural alternative to drug counterparts since ACE 

inhibitor peptides do not present side effects [165]. The affinity of antihypertensive peptides to 

ACE can also be used for their purification. In fact, ACE enzyme immobilized on a BCL 

glyoxyl-agarose support was employed for the separation of antihypertensive peptides from the 

alcalase hydrolysate of sunflower and rapeseed [166] and the alcalase/flavourzyme hydrolysate 

of sunflower [142]. ACE inhibitor capacity is measured by monitoring the conversion of an 

appropriate substrate by ACE in the presence or absence of inhibitors. The inhibitory potency 

is expressed as the IC50 value defined as the concentration required for a 50% inhibition of 

enzyme activity [38]. Among various strategies, a spectrophotometric method measuring the 

conversion of hippuryl-histidyl-leucine (HHL) to hippuric acid (HA) by ACE is still the most 

widely employed [137, 167]. On the other hand, an in vivo assay based on the measurement of 

blood pressure in spontaneously hypertensive rats (SHR) after oral administration of a 

hydrolyzate or peptide is also widely employed. In several occasions, in vitro and in vivo assays 

have shown inconsistent results. In fact, the potential of three antihypertensive peptides isolated 

from gastrointestinal digest of pork meat [168] were in vivo assessed with spontaneously SHR. 

These peptides exerted a makeable in vivo antihypertensive effect despite a previous study did 

not show high ACE inhibitor activity [144]. This could be due to the bioconversion or 

availability of these peptides in organism, or the influence of these peptides on additional blood 

pressure regulating system than the major one (renin-angiotensin system).  
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A variety of food sources of antihypertensive peptides have been investigated (see Table 3.). 

However, animal origin, including fermented milk and dairy products, are among the most 

studied. A large set of antihypertensive peptides from milk fermented with a variety of Lactic 

acid bacteria strains (LAB) or enzymes, have been purified and identified by several authors 

[145-147]. For example, fraction below 3 kDa of fermented milk prior and after the simulated 

gastrointestinal digestion was separated using RP-LC (see Fig. 3A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (A) RP-LC–UV chromatograms of 3 kDa fraction of fermented milk (with L. rhamnosus) prior and after 

the simulated gastrointestinal digestion. (B) Mass spectrum of the selected chromatographic peak. (C) MS/MS 

spectrum of ion m/z 873.6. The sequence of peptide with the fragment ions observed in the spectrum is presented 

below. Only the b and the y fragment ions were labeled. Source: [146].  
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The MS, MS/MS spectrum obtained for selected peak enabled the identification of peptide 

β-casein ƒ(98-105) (see Fig. 3B, and 3C), and a set of others potential antihypertensive peptides 

[146]. Antihypertensive peptides formed during Manchego cheese ripening were monitored by 

HPLC-MS/MS [148]. Epidemiological studies suggested that the consumption of milk and 

dairy products is inversely related to the risk of hypertension [20]. Indeed, the best characterized 

ACE inhibitor peptides are casein derived VPP and IPP, also known as lactotripeptides [38]. In 

vivo studies using SHR [20] and around 20 human studies have linked the consumption of 

products containing lactotripeptides with significant reductions in both systolic and diastolic 

blood pressure [169]. Consequently, products containing lactopeptides are already 

commercially available (see Table1.). Nevertheless, despite the great effort invested in the 

discovery and characterization of antihypertensive peptides, vegetable origin ACE inhibitor 

peptides are relatively poorly explored. Among them, sunflower and wheat have shown to be 

good sources of antihypertensive peptides [17, 142].  

Antioxidant peptides. Oxidative stress reflexes the increased amount of reactive oxygen 

species (ROS) with outstripping endogenous antioxidant defense mechanisms [22]. ROS can 

damage macromolecules such as DNA, proteins, and lipids [141]. Protein oxidation has been 

linked to the evolution of a variety of diseases (diabetes, atherosclerosis, neurodegenerative 

disorders, etc.) [140]. An antioxidant is a synthetic or natural compound that delays or inhibits 

oxidation of a substrate when present at low concentration. Strict regulation is needed for 

synthetic antioxidants since they can possess toxic effects on human’s enzyme system [139]. 

Therefore, safe and widely distributed natural antioxidants are an excellent alternative. The 

cytotoxicity of natural peptides purified and identified from an alcalase hydrolyzate of rice 

endosperm was studied. In addition to a higher inhibition of lipid peroxidation than α-

tocopherol, no cytotoxic effect on lung fibroblasts or mouse macrophages were observed [149]. 

The mechanism underlying the antioxidant activity of peptides is still not fully understood. 

However, it has been shown that antioxidant peptides can be inhibitors of peroxidation, 

scavengers of free radicals, and chelators of transition metal ions. In order to assess this 

antioxidant capacity, several methods have been developed. Since none of them can be used as 

official standardized method, the most usual is the evaluation of antioxidant capacity by various 

methods in different oxidation conditions [162]. Two groups of methods can be used for the 

measurement of antioxidant capacity: methods based on hydrogen atom transfer (HAT) and 

methods based on electron transfer (ET) [170]. HAT assays like oxygen absorbance capacity 

(ORAC), total radical trapping antioxidant parameter (TRAP), and β-carotene bleaching 
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involve a competition reaction between antioxidant and substrate for the generation of peroxyl 

radicals. ET assays measure the capacity of antioxidant in the reduction of an oxidant used as 

probe. Trolox equivalent antioxidant capacity (TEAC), ferric ion reducing antioxidant power 

(FRAP), and 2,2-diphenyl-1-picrylyhydrazyl radical scavenging capacity (DPPH) assays 

belong to this group [141]. Evaluation of inhibition of linoleic acid autoxidation, hydroxyl 

radical or 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging 

activities are also commonly employed to assess antioxidant capacity of peptides. In these 

assays, antioxidant peptides activity is related to their composition, structure, and 

hydrophobicity. Commonly, antioxidant peptides contain aromatic amino acids (F, Y, and W) 

in addition to other amino acids such as M, K, C, and H [141]. Indeed, a peptide fraction 

enriched in aromatic amino acids obtained from a soybean protein isolate hydrolyzate showed 

an antioxidant capacity higher than the observed with other fractions with less content in 

aromatic amino acids [150]. Moreover, Tsopmo et al. [151] suggested that the presence of W 

residues in the sequence of the most antioxidant peptide in human milk hydrolysate played a 

significant role. It was demonstrated that it enhanced peroxyl radical scavenging properties and 

the inhibition of lipid hydroperoxide. Nevertheless, the results obtained by the fractionation of 

a Spanish chorizo extract using HILIC showed that free amino acids Y, W, M, and F presents 

as independent entities in some chorizo fractions, had no antioxidant ability. This singular result 

could be due to a low concentration of these amino acids in the fraction or to the need of being 

inside a peptide and not as independent entities [110]. Moreover, fractionation of a Jinhua ham 

extract enabled the purification and identification of antioxidant peptides observing a wider 

contribution to free radical scavenging activity of more hydrophobic fractions [152]. 

Hypocholesterolemic peptides. Hypercholesterolemia is another important CVD risk factor 

[48]. The major preventive strategy for treatment of this disease is to manage blood cholesterol 

level through diet and drug therapies [155]. Cholesterol, triglycerides, and other lipids are 

transported to the intestinal epithelium for its absorption by bile acids and phospholipid 

micelles. Micelles form spontaneously when the concentrations of bile salts and/or 

phosphatidylcholine are above critical level in bile. Two mechanisms are suggested to cause 

the removal of cholesterol from micellar aggregates. Since micelles can accommodate a limited 

level of sterols and lipids, cholesterol can be displaced from the micelle by other sterols like 

phytosterols. On the other side, cholestyramine, β-sitosterol or hydrophobic peptides can 

disrupt the micellar structure by binding to bile acids which led to the reduction of micellar-

carrying capacity. Unabsorbed cholesterol passes into the colon to be excreted, which result in 
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lower blood cholesterol level [153]. The suppression of cholesterol micelle solubility in 

artificially prepared or naturally derived micelles is used for in vitro test of hypocholesterolemic 

efficiency [48]. Hypocholesterolemic peptides have been recognized to contain mostly highly 

hydrophobic amino acids. Therefore, hydrophobic supports such as DA201-C resin with 

ethanol elution has been used for the fractionation of soybean and rice bran protein hydrolyzates 

[153, 154]. In both cases, most hypocholesterolemic peptides appeared in the hydrophobic 

peptide fraction eluting at 75% (v/v) ethanol. In the case of isolated rice bran proteins, it was 

possible to observe a positive correlation between low K/R and M/G ratios and 

hypocholesterolemic capacity. Consequently, some authors suggested that both hydrophobicity 

and peptide structure could play important roles in the decrease of cholesterol concentration in 

bile micelles [153][154]. On the other hand, a synergistic effect of hypocholesterolemic 

peptides was also observed when hypocholesterolemic capacity of a tryptic casein hydrolysate 

was compared to individual fractions obtained by SEC [155].  

Antimicrobial peptides. Antimicrobial peptides inhibit microbe-caused food deterioration 

and invasion of different pathogens in vivo (bacteria, fungi, virus, parasites) [48]. They act 

either by penetrating and disrupting microbial membrane integrity or by translocating across 

membranes and acting on internal targets [171]. Antimicrobial peptides are composed of less 

than 50 amino acids with around 50% hydrophobic amino acids. They are often cationic 

peptides and have amphipathic 3D structures. Main application areas of antimicrobial peptides 

are food preservation and therapeutic purpose in health care [48]. Among the broad variety of 

antimicrobial peptide sources, milk can be credited as a leader. Indeed, two cationic peptides 

isolated and identified in pepsin hydrolyzate of bovine casein displayed a broad spectrum of 

activities against several gram-positive (B. subtilis, L. innocua, L. monocytogenes) and gram-

negative bacteria (C. freundii, Ent. Aerogenes, E. coli, S. Enteritidis, S. Typhimurium). 

Additionally, the high degree of similarity between bovine peptide 99-109 of bovine αS1-casein 

and the corresponding peptide from sheep, goat, and buffalo αS1-casein indicated probable 

antimicrobial counterparts in these milk sources. Since identified peptides were obtained by 

pepsin action, the protection against microbial infection in the gastrointestinal tract was also 

suggested [156]. On the other hand, peptides generated from αS1-casein, αS2-casein, and κ-

casein and possessing high antibacterial activities against E.coli and B.subtilis were identified 

in a commercially casein hydrolysate. The amino acid analysis of identified peptides revealed 

that positive charges of peptides were very important but it did not guarantee antimicrobial 

activity [157]. 
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Immunomodulatory and cytomodulatory peptides. Immune function plays a significant role 

in the prevention and control of chronic diseases. The modulation of immune response is 

difficult and most drugs are not suitable to prevent chronic diseases [159]. Immunomodulatory 

peptides improve immune cell functions, antibody synthesis, and cytochrome regulation [171]. 

Cytomodulatory peptides modulate the viability (e.g. proliferation) of different cell types and, 

together with immunomodulatory peptides, might help in the control of tumor development 

[171]. Potential cytomodulatory peptides have been isolated from Mozzarella di Bufala waste 

whey [158]. Investigated peptides inhibited significantly cell proliferation, interfered with cell 

cycle, and exerted a possible pro-apoptotic activity on Caco2 cancer cells. Nevertheless, 

identification of individual peptides responsible for this cytomodulatory action was impossible 

due to sample complexity. Instead, the presence of precursors of the widely recognized agonist 

opioids β-casomorphin 7 and β-casomorphin 5 were evaluated. It was suggested that cell 

proliferation decreased due to the interaction of identified casomorphin-agonist precursors and 

specific opioid and somatostain receptors expressed on Caco2 cells [158]. Furthermore, Alaska 

Pollock frame enhanced splenic lymphocytes proliferation, T lymphocyte proliferation, and 

macrophage phagocytosis. Purification of Alaska Pollock frame hydrolyzate using IEC, SEC, 

and multiple RP-LC enabled to purify three bioactive peptides. Identified peptides exhibited 

high lymphocyte proliferation activities which provided a scientific basis for the preparation of 

immunomodulating peptides [159].  

Antithrombotic peptides. One of CVD complications is related to the tendency to develop 

thrombosis due to the abnormalities in blood coagulation. Thrombosis is linked to platelet 

hyperactivity, high levels of hemostatic proteins, defective fibrinolysis, and blood 

hyperviscosity. Antithrombotic drugs reduce platelet aggregation and enhance fibrinolysis [22]. 

Due to amino acid sequence similarities between fibrinogen γ-chain from blood and κ- casein 

from milk and functional similarities between milk and blood coagulation, most investigated 

antithrombotic peptides are from milk [172]. Recently, two novel peptides from soybean protein 

hydrolyzate inhibiting rat platelet aggregation have been discovered. Interestingly, during its 

fractionation by SEC, RP-LC, and IEC it was observed that most fractions yielded some level 

of antiplatelet effect. Indeed, synthesized counterparts of identified peptides inhibited platelet 

aggregation in a concentration-dependent manner [160].  

Multiple bioactivities peptides. Some peptides can also possess multiple bioactivities. As 

example, metal-chelating peptides can bind metal elements through certain amino acids (H, M, 

or C) and, simultaneously, can yield antioxidant activity [48]. Positive correlation between H 



Book chapter 
 
 

104 
 

C
H

A
P

T
E

R
 I IN

T
R

O
D

U
C

T
IO

N
 

content and antioxidant activity of sunflower copper-chelating peptides was reported. Copper, 

in addition to its role as an essential trace element, can also exhibit pro-oxidative activity. 

Indeed, copper chelating peptides may be useful in preventing oxidative activity of copper in 

the digestive tract and oxidative damage of low-density lipoproteins in blood and tissues by 

copper absorption into the blood stream [87]. Food derived metal-chelating peptides can also 

enhance in vivo absorption of metals and trace elements. A prime example of this kind of metal 

chelating peptides is caseinophophopeptides (CPPs) [48]. Their calcium absorption ability was 

already applied in some commercial products (see Table 1.). Recently, tryptic peptides of 

sesame have also shown to possess metal-chelating activity. Purification of these hydrolyzates 

enabled to isolate six potent metal chelating peptides. Identified peptides showed high zinc and 

iron chelating abilities [90]. It is important to point out the effectiveness of IMAC technique in 

the purification of metal-chelating peptides from food hydrolyzates.  

It is also very common for protein hydrolyzates or peptides to possess both antioxidant and 

antihypertensive activities [161]. It was reported that angiotensin II amplifies oxidative stress 

and ACE inhibitors intensify antioxidant defense system by inhibition of angiotensin II 

formation in animals and humans [162]. Peptides obtained from cured ham extract, cocoa, and 

pacific hake autolyzates showed antihypertensive and antioxidant activities [161-163]. The 

presence of two bioactivities makes these foods an attractive source of bioactive compounds 

that can improve cardiovascular health and control related disease [163]. Another attractive 

source of bioactive peptides turned out to be soybean. Peptides purified and characterized from 

soybean hydrolyzate, natto, and tempeh have demonstrated a range of biological activities. 

Antihypertensive, antithrombotic, surface tension, and antioxidant peptides were mainly from 

glycinin. In this study the use of low specificity proteases produced more bioactive peptides 

with higher activity than higher specific enzymes [173]. 

5. Future trends 

Isolation of peptides from foods is still a difficult task and a problem to overcome in next 

years. For that purpose, highly specific, reproducible, and high throughput methods are 

desirable. Recent popularization of techniques mainly devoted to clinical proteomics like 

IMAC and AC, have resulted very useful and are gaining acceptance. Although ‘OFFGEL’ 

isoelectrofocusing has shown to be a complementary tool to obtain peptide fractions, its 

application in the area of food peptides is still scarce and will spread in the future. Another 

separation technique that will expand in next years is HILIC. Fractions previously rejected 
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during RP-LC due to their elution in the void time, can be now easily separated by HILIC. Since 

HILIC and MS are a perfect marriage, their united expansion in the peptide research field is 

expected. 

The trend in the area of peptide production from foodstuffs is oriented to obtain highly 

valuable material (bioactive peptides) from cheap sources (use of by-products or wastes), using 

low cost (autolysis) and/or highly efficient (simulated gastrointestinal digestion) methods. The 

study of bioactive peptides in vivo, together with clinical studies, and further expansion of 

bioactive peptides in the functional food area are also future trends. Moreover, since most 

bioactive peptides activities are dose-dependent, a great development of quantification methods 

is expected in next future which involves overcoming problems related to interferences due to 

complex food matrices. In the area of biomarker peptides, the lack of proteome databases from 

different food organisms constitutes a great limitation. This fact, together with huge 

popularization of MS analysis, will lead to the extension of available food protein database 

information. In relation to allergens detection using biomarker peptides, the development of 

methodologies enabling the simultaneous detection of different allergens will increase the 

confidence in the identification of allergen traces in foodstuffs. 
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Abstract 

Hypertension is one of the main causes of cardiovascular diseases. Synthetic drugs inhibiting 

ACE activity present high effectiveness in the treatment of hypertension but cause undesirable 

side effects. Unlike these synthetic drugs, antihypertensive peptides do not show any adverse 

effect. These peptides are naturally present in some foods and since hypertension is closely 

related to modern diet habits, the interest for this kind of foods is increasing. Different methods 

for the purification, isolation, and characterization of antihypertensive peptides in foods have 

been developed. Nevertheless, there is no revision work summarizing and comparing these 

strategies. In this review, in vivo and in vitro pathways to obtain antihypertensive peptides have 

been summarized. The ACE mechanism and the methodologies developed to assay the ACE 

inhibitory activity have also been described. Moreover, a comprehensive overview on the 

isolation, purification, and identification techniques focusing on the discovery of new 

antihypertensive peptides with high activity has been included. Finally, it is worthy to highlight 

that the quantitation of antihypertensive peptides in foods is a new trend since genotype and 

processing conditions could affect their presence. Analytical methodologies using mass 

spectrometry constitute an interesting option for this purpose.  
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1. Introduction 

Traditionally, the dietetic value of a protein was evaluated from its nutritional quality, mainly 

by the presence of antinutrients and availability of essential amino acids. A new aspect to take 

into account is the possibility of generating bioactive peptides. Bioactive dietary components 

are defined as `food components that can affect biological processes or substrates and hence 

have an impact on body function or condition and ultimately health' [1]. Since any consumed 

dietary component in enough quantity could be described by this definition, two caveats should 

be added: the component should impart a measurable effect at a realistic physiological level 

and the measured ‘bioactivity’ has to show a potential beneficial health effect [1, 2]. Bioactive 

peptides can be naturally presented in foods but the most usual scenario is that they are 

encrypted in parent proteins [2-5]. 

Several bioactive peptides from different origins such as milk [6-8] and soybean [5] have 

been released, isolated, characterized, and briefly reviewed. Moreover, peptides showing 

numerous bioactivities such as antihypertensive, antilipemic, anticarcinogenic, antioxidative, 

antimicrobial, antiamnestic, opiate, antithrombotic, osteoprotective, vasodilatative, 

immunomodulating were thoroughly described [3-5, 9]. According to the BIOPEP database, 37 

different types of bioactivities have been gathered for more than 1950 peptides [10]. Among 

them, peptides with antihypertensive activity are the most prevalent.      

Hypertension or high blood pressure is attributed by World Health Organization (WHO) as 

the fundamental source of cardiovascular mortality. Worldwide high blood pressure was 

estimated to be the cause of 7.6 million premature deaths (13.5% of the total premature deaths) 

[11]. Additionally, hypertension along with other cardiovascular risk factors (high cholesterol, 

high Body Mass Index, low fruit and vegetable intake, smoking, and alcohol intake) were 

established to be the cause of about 83-89% ischaemic heart disease cases and 70-76% of 

strokes in the world [12]. Furthermore, hypertension can lead to cardiac arrhythmia, coronary 

heart disease, heart and renal failure, disability and death [13] and, in accordance to the World 

Hypertension League (WHL), over 50% of the hypertension population is unaware of their 

condition [14]. Hypertension can be treated with distinct medications such as nitrates, diuretics, 

β-blockers, α-adrenergic antagonist, vasodilators, dopamine agonists, calcium channel blockers 

(CCBs), and angiotensin converting enzyme (ACE) inhibitors [15]. Among them, ACE 

inhibitors are mostly employed for showing greater effectiveness and lower side effects [16].  
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First ACE inhibitor was described by Ferreira et al. (1970). It was a bradykinin potentiator 

and was isolated from snake (Bothrops jararaca) venom [17]. The first synthetic ACE inhibitor 

adopted for hypertension therapy was [2S]-1-[3-mercapto-2-methylpropionyl]-L-proline 

(captopril) [18]. Afterwards, several other synthetic ACE inhibitors were employed for 

treatment of hypertension (enalapril, lisinopril, alecepril or fosinopril) although they provoke 

adverse effects such as skin rashes, cough, angioedema, taste disturbances, hypotension, 

reduced renal function, increased potassium levels, and fetal abnormalities [19, 20]. Unlike 

these drugs, antihypertensive peptides do not yield any adverse effect but are usually less potent 

in comparison to synthetic substances [21]. Indeed, seven dipeptides isolated from garlic 

showed decreasing systolic blood pressure (SBP) after oral administration of 200 mg/kg in 

spontaneously hypertensive rats (SHRs). However, none of these peptides lowered SBP as 

much as captopril which was used as a positive control test [22]. There are some exceptions to 

this fact such as a peptide isolated from tuna frame protein peptic hydrolysate and the milk 

peptides VPP and IPP that exert antihypertensive effects comparable with captopril [21, 23].  

Since hypertension is closely related to modern diet habits, interest in functional foods with 

antihypertensive activity is worth great consideration. Therefore, the aim of this work has been 

to review the methodologies used to isolate, purify, identify, and characterize food peptides 

with antihypertensive activity. 

 2. ACE and blood pressure (BP) 

Several interacting biochemical pathways are associated with the control of blood pressure 

(BP) in living organisms, the renin-angiotensin system being the most important. Additionally, 

kinin-nitric oxide system, endothelin converting enzyme system, and neutral endopeptidase 

system are also recognized to have influence on BP.  

Renin-angiotensin system is shown in Fig. 1. Angiotensinogen is the first link of the reaction 

chain in the renin-angiotensin system. It is the precursor of Angiotensin I (Ang I- 

DRVYIHPFHL). In fact, it converts to Ang I in the presence of renin (E.C. 3.4.23.15) in the 

bloodstream. On the other hand, Ang I hydrolyzes by the removal of the C-terminal dipeptide 

HL to Angiotensin II (Ang II- DRVYIHPF) through the action of angiotensin I converting 

enzyme (ACE; kinases II peptidyldipeptide hydrolase). Afterwards, Ang II is distributed in the 

blood until it is inactivated by aminopeptidase A (E.C. 3.4.11.7) or N (E.C. 3.4.11.2) enzymes 

and it’s converted to Angiotensin III and IV (RVYIHPF and VYIHPF, respectively). Ang II 

peptide causes vasoconstriction by the activation of the AT1 receptor (AT1R) which leads to 
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increase in the BP. Furthermore, Ang II negatively affects kidney retaining salts and water, 

causing an increase in extracellular fluid volume and, in a consequence, an increase in the BP 

[20, 24, 25].  

Moreover, ACE also removes a dipeptide from C-terminus of bradykinin (RPPGFSPFR) 

resulting in the inactivation of this vasodilator. Therefore, ACE inhibitors decrease the BP not 

only by lowering the level of Ang II but also by increasing the level of bradykinin. Since the 

inhibition of ACE causes an effective decrease in BP, most antihypertensive drugs employ this 

mechanism for the treatment of hypertension. 

 

 

 

Fig. 1. Scheme of Renin- Angiotensin System. 

3. Release of antihypertensive peptides from foodstuffs 

Antihypertensive peptides used to be encrypted in a parent protein from which they need to 

be released in order to exert its ability to inhibit ACE. Two main proteolytic pathways can be 

distinguished, in vivo and in vitro. The first one involves the in vivo digestion of the parent 

protein by the action of gastrointestinal enzymes while the second one involves food or protein 

processing before its ingestion. Moreover, some bioactive peptides cannot be liberated by 

gastrointestinal enzymes and so have to be synthetically produced, added to foods, and supplied 

as functional foods [26]. 

The first antihypertensive peptide isolated and identified from food was described in 1982 

by Maruyama and Suzuki [27]. Casein from bovine milk was subjected to hydrolysis by trypsin 

and purified by several chromatographic steps. A peptide with 12 amino acids and sequence 
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FFVAPFPEVFGK was identified. The knowledge about preparation, purification, and 

identification of antihypertensive peptides from food steadily increased since this first 

discovery, especially in the case of milk derived peptides [28-31]. In this case, advances have 

even enabled the development of commercial milk products enriched with antihypertensive 

peptides (Table 1) [29, 32].  

In addition to milk and dairy products, several other foodstuffs have been examined as 

potential sources of peptides with ACE inhibition activity. Marine foods (shrimps, sea 

cucumber, blue mussel), fishes (alaska pollock, bonito, salmon, pacific hake), meat (pork, 

bullfrog, chicken), vegetable foods (soybean, wheat products, rice, garlic, aramanth grain), 

mushrooms or processed products (miso paste, douche, wakame, royal jelly, soybean sauce or 

paste) are some examples. The most common way to induce the in vitro release of 

antihypertensive peptides is enzymatic digestion (hydrolysis) and fermentation with bacterial 

organisms. 

Table 1. Commercially available milk products enriched with antihypertensive peptides. Adapted from: [29, 

32].  

Brand name Company, country Bioactive peptide 

Ameal S ® Calpis Co., Japan VPP, IPP 

BioZate ® Davisco, USA ---- 

Calpis ® Calpis Co., Japan VPP, IPP 

Casein DP ® Kanebo Ltd., Japan FFVAPFEVFGK 

C12 peptide ® DMV International, Holland FFVAPFEVFGK 

Danten ® Danone, France ---- 

Evolus ® Valio, Finland VPP, IPP 

 

With regards to enzymatic digestion, the composition of hydrolysate depends on several 

parameters such as the enzyme to substrate ratio, hydrolysis time, pH, temperature of 

hydrolysis, etc. but it mostly depends on the type of proteolytic enzyme. Most commonly used 

enzymes are pepsin [21, 33], thermolysin [34, 35], and alcalase [36-38]. They cleave peptide 

bonds near to hydrophobic amino acid residues, resulting in peptides with the most favorable 

amino acid residues for antihypertensive activity at the C-terminal position [37, 39]. 
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Different strategies have been followed to increase antihypertensive activity. Pepsin 

treatment followed by digestion with pancreatin [40-42], corolase PP [43] or trypsin (E.C. 

3.4.21.4) with chymotrypsin (E.C. 3.4.21.1) [43-45] has usually been employed to obtain 

smaller peptides with greater antihypertensive effects. Moreover, since these enzymes are 

present during gastrointestinal digestion, it is possible to assess whether these peptides will be 

inactivated during this process or not. Quiros et al. [46] attempted to promote the release of 

bioactive peptides from ovalbumin with chymotrypsin, trypsin, and pepsin using high 

hydrostatic pressures observing that antihypertensive effect of certain peptides improved when 

pressures of 200-400 MPa were employed. Another strategy for increasing antihypertensive 

activity was explored by Jia et al. [47]. They evaluated the effect of ultrasonic irradiation on 

the hydrolysis and the ACE inhibitory activity of defatted wheat germ protein (DWGP). Results 

suggested that this approach improved enzymatic hydrolysis by promoting the release of 

peptides. Moreover, some authors have demonstrated an increase in the antihypertensive 

activity of foodstuffs by the combination of bacterial fermentation and enzymatic digestion. 

Tonouchi et al. [48] observed these results when using different enzymes to digest a Danish 

skim milk-cheese previously fermented with Lactococcus. Similarly, Hernández-Ledesma et 

al. [49] found a higher number of antihypertensive peptides when a milk sample fermented with 

Lactobacillus rhamnosus was subjected to simulated gastrointestinal digestion. Chobert et al. 

[50] compared the antihypertensive activity of peptides obtained from ovine milk by tryptic 

digestion and fermentation with different bacterial strains. Fermentation yielded higher ACE 

inhibitory activity than digestion, probably because fermentation yielded peptides with lower 

molecular masses [50].  

On some occasions, the foodstuffs contain antihypertensive peptides that are not encrypted 

in any protein and fermentation or digestion is not necessary. For example, few peptides which 

exerted antihypertensive activity were detected in garlic (allium sativum L) [22], in various 

kinds of mushrooms (Pholiota adiposa, Tricholoma giganteum) [51, 52], in soypaste [53], and 

in different kind of cheeses (gouda, manchego, and varieties of Spanish and Swiss cheeses) [54-

57]. These peptides can simply be extracted with water or alcohols like ethanol or methanol. 

With this in mind, it is possible to differentiate between processed and unprocessed products. 

Unprocessed products are garlic or mushrooms while processed products comprised soypaste 

and cheese. The manufacture of these products involves the use of enzymes or bacterial 

organisms but, in no case, they are used to release antihypertensive peptides.  
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The other way to release peptides without the addition of bacterial organisms or enzymes is 

autolyzation. Autolyzation involves the employment of proteolytic enzymes which are already 

ingredients of foodstuffs. This approach was followed for the preparation of hydrolysates of 

bonito bowels [58, 59], pacific hake fish [60] or wheat bran [61]. A similar approach was also 

used when proteins of oyster and blue mussel were fermented without any addition of bacterial 

organism for 6 months at 20°C in salty conditions. In both cases, antihypertensive peptides were 

obtained after long-term fermentations [62, 63].  

4. Determination of ACE inhibitory activity of food peptides 

The general framework of the experimental investigation for the production, purification, 

and identification of antihypertensive peptides is presented in Fig. 2. Work strategies commonly 

consist of the release of peptides, and the isolation, purification, identification, and 

determination of the amino acid sequence. After each step, the screening of ACE inhibitory 

activity is crucial to select the experimental conditions or fractions with the most potential 

antihypertensive abilities.  

ACE inhibition activity is expressed using an IC50 index which represents the required 

concentration of a particular substance in order to inhibit 50% of the ACE activity. Different 

assays have been developed to determine the ACE inhibition value in vitro. Initially, the assays 

were based on the employment of Ang I or bradykinin as an ACE substrate and measurement 

of the generated product was done by radiochromatography, colorimetry or radioimmunoassays 

in the presence or absence of the inhibitor. Nevertheless, the problem related to the interferences 

produced by other peptidases that were degradating substrates or products of ACE, led to 

erroneous results. Then, assays using artificial substrate started to play a considerable role since 

they were inexpensive, easy to obtain, not liable to be hydrolyzed by peptidases and presented 

a higher dissociation constant for ACE  [64]. Released compounds by the action of ACE could 

be quantified -through a spectrophotometric [65], fluorometric [66], HPLC [67], CE [68] or by 

a radiometric method [69].  

Nowadays, the most broadly spread method for the determination of ACE inhibition activity 

is that developed by Cushman and Cheung (1971) [70]. It is based on the reaction between 

hippuryl-L-histydyl-L-leucine (HHL) used as substrate and ACE and shows a subsequent 

formation of hippuric acid (HA). The ACE activity is directly related to the extent of HA 

liberated from HHL. 
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Fig. 2. Framework of production, purification, and identification of bioactive peptides with antihypertensive 

activity.  

The extent of this reaction in the presence or absence of inhibitory peptides is evaluated by 

measuring the amount of formed HA from its absorbance at 228 nm. In this first approach ACE 

was acetone extracted from rabbit lung. Further modification of this procedure employed pure 

ACE from a rabbit’s lung in place of their acetone extract [71, 72]. Despite the high selectivity 

of this reaction, the assay had low sensitivity since unhydrolyzed HHL was co-extracted with 

HA [28, 64]. Furthermore, long incubation time (around 30 min) was required to obtain enough 

product amounts to be quantified. Therefore, numerous modifications appeared in the literature, 

and, as a consequence, the obtained IC50 values differed significantly due to comparison 

amongst themselves not being possible [73]. In fact, the IC50 of hydrolysates obtained by 

digestion of an insect protein with four different enzymes was determined by applying two 
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different ACE assays. One method was based on the spectrophotometric measurement of 

FAPGG [2-furanacryloyl-phenylalanyl-glycyl-glycine], used as a substrate, whilst an HPLC 

method (which adopted DTG [dansyltriglycine] as a substrate) was employed in the second 

approach. When using the FAPGG method, IC50 values were 3.935 ± 0.014 and 0.214 ± 0.179 

mg/mL for the nonhydrolyzed and hydrolyzed extract, respectively. The HPLC method yielded 

IC50 values of 22.465 ± 0.615 and 4.969 ± 0.622 mg/mL (with 50 µL of ACE extract) and 

43.220 ± 12.66 and 1.253 ± 0.120 mg/mL (with 25 µL of ACE extract), respectively, for the 

nonhydrolyzed and hydrolyzed extract [74]. 

As well as to the in vitro determination of IC50 values, additional experiments are very 

frequently included to confirm ACE inhibitory activity. Indeed, experiments using 

spontaneously hypertensive rats (SHR) have also been used for assaying ACE inhibition in 

living organisms. This type of experiment is usually focused on short and/or long-term 

administration studies. Nevertheless, results obtained by in vivo studies sometimes significantly 

differ from the results observed by in vitro assays. These differences could be justified by the 

bioavailability of peptides [28, 29]. As an example, a peptide (β- lactosin B, ALPM) derived 

from a commercial whey product that presented weak ACE inhibitory activity (IC50=928 µM), 

surprisingly showed a noticeable decrease of SBP after 8 h oral administration (2 mg/mL) to 

SHRs [75]. In other occasion, Fujita and Yoshikawa [76] compared the ACE inhibitory activity 

of LKPNM and LKP peptides (obtained by digestion from dried bonito with thermolysin) with 

captopril using an in vitro and an in vivo study. The in vitro study yielded much lower ACE 

inhibitory activity for peptides while the in vivo study demonstrated that peptides were more 

effective for reducing BP than captopril [76]. The differences between the two approaches to 

assess ACE inhibitory activity also appeared when Yamamoto et al. [30] purified and 

characterized a dipeptide from a yoghurt-like product. The IC50 value of this dipeptide was 

estimated as 720 µM which would classify it as a peptide with moderate antihypertensive 

activity. However, the same peptide provoked similar in vivo antihypertensive activity to IPP 

and VPP, which are generally categorized as peptides with very high activity (IC50 values, 5.15 

and 9.13 µM, respectively) [30].  

In addition to the estimation of the IC50 value, some authors also pay attention to additional 

measurements such as simulated gastrointestinal digestion or Caco2 cell monolayer transport. 

These experiments can yield information on the bioavailability of target compounds and will 

be discussed later. Additionally, the activity of peptides may be affected by factors such as the 
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amino acid composition, hydrophobicity, size, stability, processing or the mechanism of action 

[77]. In fact, ACE inhibition activity is significantly influenced by the position of proline in the 

amino acid sequence, by protein hydrophobicity, and by the size of released peptides.   

The following examples demonstrate this point. Different protein sources were hydrolyzed 

in the same conditions: soybean protein, wheat gluten, caseinate, and whey proteins. The IC50 

for these hydrolysates was 180, 340, 100, and 200 µg/mL, respectively. High antihypertensive 

activity of casein (100 µg/mL) could be attributed as much for their high hydrophobicity as for 

the high amount of encrypted prolines in its primary structure. Despite wheat gluten, also 

containing high amounts of proline residues but with lower hydrophobicity, yielded a 

significantly high IC50 value (340 µg/mL) [73]. In addition to the IC50, another important 

parameter to take into account is the degree of hydrolysis (DH). This parameter is commonly 

calculated by the o-phtaldialdehyde (OPA) method [38, 78]. Nevertheless, other methods and 

techniques have also been employed for this purpose, such as SDS-PAGE [79], calculation of 

α-amino nitrogen and total nitrogen, [80] or the calculation of the relative peak area in regards 

to whole protein [50]. Yak milk casein was hydrolyzed by alcalase at pH 8 and 55°C in times 

ranging from 0 to 340 min. It was observed that at 240 min of hydrolyzing, the ACE inhibitory 

activity reached the maximum level and DH was correlated with it. After this time, DH was too 

high and inhibition activity decreased due to the hydrolysis of small peptides with 

antihypertensive activity [80]. However, when the same yak milk casein was hydrolyzed with 

various enzymes (trypsin, pepsin, alcalase, flavourzyme, papain, and neutrase) at their optimal 

pH and temperature and at different times till 12 h, the DH was not correlated with the ACE 

inhibition activity. ACE inhibition activity was the poorest when using flavourzyme despite its 

high DH. Inversely, the most promising antihypertensive activities were obtained with papain 

and neutrase which showed low DH [78]. Similar results were also observed when milk was 

fermented by 13 different strains of lactic acid bacteria [81] and when a soybean protein isolate 

was hydrolyzed by different enzymes (alcalase, flavourzyme, trypsin, chymotrypsin, and 

pepsin) [38].  

5. Isolation and purification of bioactive peptides from foodstuffs 

The purification of a hydrolysate showing antihypertensive activity is one of the most 

important steps in the framework presented in Fig. 2. The purification pathway could 

significantly influence the number of identified peptides, their activity and characteristics (e.g. 

size of the peptide and their composition), and their properties. Generally, Liquid 
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Chromatography (LC) is the most often employed technique. Different chromatographic modes 

can be selected from the base of the properties of ACE inhibitory peptides. After each 

chromatographic step, fractions with the highest in vitro ACE inhibitory activity are lyophilized 

and subjected to the next chromatographic step till pure peptide/s is/are obtained. 

Table 2 summarizes the methods that have been employed for the release and purification of 

peptides with antihypertensive properties. Despite there being some general approaches that are 

more or less common in all procedures, the number of purification steps in each case depends 

on the complexity of the sample and the dynamic range and abundance of peptides [90, 135].  

Generally, the first step in the purification process is separation based on the size of the 

peptide using either ultrafiltration (UF) or size-exclusion chromatography (SEC). UF is a low-

pressure technique where the solution is processed through a semi permeable membrane and 

molecules are isolated by molecule size. Moreover, UF also enables the concentration and 

enrichment of fractions by the removal of the solvent. What is more, it is quite easy to use, it 

does not require special equipment, and can be used at cold room temperature [136]. UF enables 

the separation of small antihypertensive peptides from bigger molecules, such as unproteolyzed 

proteins and other interferences, thus in many cases it is the first step towards purification. 

Despite the fact that membranes with Mw in the range of 1-30 kDa have been tried, smaller 

cut-off membranes are preferred. For example, a hydrolysate of sea cucumber gelatin was 

subjected to UF using membranes with cut-offs of 10, 5, and 1 kDa observing IC50 values of 

0.72, 0.47, and 0.35 mg/mL, respectively. Based on the ACE inhibition activity, the fraction 

containing molecules smaller than 1 kDa were purified [122]. However, very low Mw cut-off 

membranes can sometimes result in a loss of activity [60, 96, 137, 138].  
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In fact, results obtained when a pacific hake protein hydrolysate was ultrafiltrated through 

membranes cut-off at 10, 3, and 1 Mw indicated that the fraction with the highest ACE 

inhibition activity was that obtained when the hydrolysate passed through the 3 kDa cut-off 

membrane [60]. 

SEC (also known as Gel-Filtration Chromatography (GFC) when an aqueous solution 

system is used and Gel-Permeation Chromatography (GPC) with a non-aqueous solution 

system) is also frequently used for the purification of peptides. SEC tends to be used at the 

beginning of the purification path, as is UF, as well as in the middle of protocols for removing 

interferences. SEC is quick, easy to use, universal, and compatible with physiological 

conditions. SEC is also useful for estimating the Mw range or for desalting. Nevertheless, the 

separation of a target peptide from a closely related peptide mixture is practically impossible 

and additional SEC separations using stationary phases with different pore diameters are needed 

[139]. Among SEC columns, porous silica base TSK-gel SW [109, 113, 116] and 

polyhydroxymethacrylate base OHpak [131] are preferred. For low and medium pressure SEC, 

dextran base Sephadex or agarose/dextran base Superdex columns are mainly employed. 

Among Superdex columns, those with an Mw ranging from 100 to 7000 like the Peptide 10/300 

GL column [41, 96, 120] and the Peptide HR 10/30 column [44, 45, 48, 57, 92, 111] were 

mostly chosen. Regarding Sephadex columns, the ones most commonly used were Sephadex 

G-25 (Mw range, 1000-5000) and Sephadex G-15 (Mw ≤ 1500). Other less used Sephadex 

columns are G-50 (Mw range, 1500–30000) [62], G-75 (Mw range, 30000–80000) [63], and G-

200 (Mw range, 5000–250000) [105]. Tovar-Pérez et al. [105] purified alcalase aramanth 

albumin and globulin protein hydrolysates using sequentially Sephadex G-200 and G-15 

columns. Albumin hydrolysate eluted in 18 h in one broad peak (Mr<1.35 kDa) using the G-

200 column while globulin hydrolysate eluted in 5 h in two separated fractions. Afterwards, 

fractions were individually separated in a G-15 column. The peaks corresponding to the 

albumin hydrolysate were observed at Mw of 4.70 and 0.55 kDa and peaks corresponding to 

the globulin hydrolysate were observed at Mw of 7.50, 4.70, 0.55, and 0.40 kDa [105].  

An alternative and complementary chromatographic mode for the purification of ACE 

inhibitory peptides is Ion Exchange Chromatography (IEC). IEC is mainly employed as a 

further purification step after or between UF or SEC purification. Cation exchange resins with 

negatively charged groups like sulfopropyl (SP), methyl sulfonate (S), and carboxymethyl 

(CM) and anion exchange resins positively charged with quaternary ammonium (Qa), 
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quaternary aminoethyl (QAE) or DEAE (diethylaminoethyl) are mostly employed [140]. Since 

antihypertensive peptides contain mainly hydrophobic amino acids, whose pI’s are between 5-

7, both cation exchange (cIEC) and anion exchange (AEC) can be employed. When AEC is 

used, the pH tends to be around 7.5 and binding peptides are negatively charged, while in cIEC 

the pH is maintained at acidic level (4.0) to retain positively charged peptides. AEC purification 

methods focus more on columns with weak ion-exchange ligands, such as DEAE [21, 33] or 

DE [80, 113, 116], while cIEC methods mainly prefer strong ion-exchange ligands as SP. In 

both cases, peptides are eluted by increasing the eluent ion strength using NaCl gradients at a 

constant pH [141]. cIEC with isocratic elution has also been possible through the use of a 

sodium succinate buffer in 20% ACN [53], an ammonia solution [22, 95, 125, 127] or an 

ammonium carbonate buffer [41]. 

 Reserved-Phase Chromatography (RP-LC) is the dominate technique in the purification of 

peptides with antihypertensive activity [141]. Generally, RP-LC is employed at the end of the 

purification protocol after UF, SEC or IEC separations. However, there are also examples in 

which this has been the only technique employed in the purification [35, 50, 85-87, 97, 104, 

112, 118, 119].  

There is a large number of RP-LC columns that can be used in the separation and purification 

of peptides where column support, bonded phase, pore size, particle size, and column dimension 

should be taken into consideration. Porous silica-based supports are the first choice since they 

offer good mechanical stability and a wide range of selectivity through the bonding of different 

phases. C4-C12 phases are typically used with high hydrophobic samples like large peptides and 

small hydrophilic proteins, while C18 phases prefer slightly more hydrophilic analytes and are 

the perfect choice for small peptides. Moreover, phases such as cyano, hexyl, phenyl, 

hexyl/phenyl, perfluorinated are also available [142]. Alternatively, polymeric reserved phases 

such as polystyrene divinylbenzene, withstand a wide range of pHs and have also been 

employed.  

Mobile phases consist of mixtures of water with an organic modifier being acetonitrile and 

alcohols such as methanol, ethanol or isopropanol [142] the most popular options. Gradient 

elution by the increased concentration of the organic modifier is the option most commonly 

used. Mobile phases are usually prepared at acidic pH. Moreover, the addition of ion-pairing 

agents is also very useful to increase hydrophobicity of peptides, as it creates a pair with 

positively charged peptides. Trifluoroacetic acid (TFA) is usually the first choice because it is 
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transparent to UV light, does not block amino groups (therefore, derivatization of peptides is 

possible), is highly volatile (therefore, it is easy to remove by lyophylization), and easily 

miscible with most organic mobile phases. Other ion-pairing agents like acetic acid, formic 

acid, phosphoric acid, heptafluorobutyric acid (HFBA) or quaternary ammonium salts can be 

alternatives to TFA.  

Online detection during purification was mainly performed using UV absorption at 210-220 

nm (absorbance wavelength of peptide bonds). Moreover, in some cases wavelengths of 254 

nm, where phenylalanine residues absorbs, and 275-280 nm, where aromatic residues (tyrosine, 

tryptophan) absorb, are also employed [141].  

Moreover, additional steps involving liquid-liquid extraction, desalination or dialysis are 

also employed for the purification of antihypertensive peptides. Desalination of samples is 

usually conducted by electrodialysis [62, 63, 73, 98] or by solid-phase extraction [113, 115, 

116].  

6. Identification and characterization of bioactive peptides from foodstuffs  

Isolated and purified peptides possessing the most potential antihypertensive activity at the 

end of the framework (see Fig. 2) are next identified and characterized. Characterization mostly 

involves the determination of the amino acid sequence and the IC50 value. Moreover, in some 

cases, additional information like the amino acid composition, molecular weight, molecular 

weight distribution, peptide content, molecular structure, and purity are also determined. Table 

3 summarizes the peptides that have been identified from foodstuffs and the kind of 

characterization that has been performed. 

Amino acid sequence determination can be carried out by mass spectrometry (MS) or by 

Edman degradation sequencing. Edman degradation is based on the sequential elimination of 

N-terminal amino acids by chemical procedures. However, this method is time consuming and 

requires highly purified samples (free of salts, detergents, and nonvolatile additives such as 

urea). Edman degradation can be performed manually or it can be fully automated using special 

automated protein/peptide sequencers [87, 96, 97, 102, 118, 119].  
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MS is a powerful technique widely employed for the characterization of bioactive peptides. 

In addition to the amino acid sequence, MS can also yield accurate information on molecular 

masses, peptide purity or post-translational modifications, etc. [141]. MALDI (matrix assisted 

laser desorption and ionization), ESI (electrospray ionization) and, less frequently, FAB (Fast 

Atom Bombardment) have been the ionization sources employed. LC and, less frequently, 

capillary electrophoresis (CE) are sometimes needed previously to the MS analysis. An 

alternative technique to determine molecular structure is NMR. NMR has been used for 

tripeptides of salmon muscle hydrolysate (1H NMR) [129] and dipeptides of steamed soybean 

mixed with roasted wheat hydrolysate (1H NMR and 13C NMR) [98].  

Another strategy for peptide characterization is to determine its amino acid composition. 

This is determined by the chemical hydrolysis of peptides and the amino acid analysis using an 

automatic analyzer. Other options for the amino acid analysis have been peptide hydrolysis with 

HCl and phenol, followed by RP-LC separation and UV detection [57, 75].  

Although a full relationship between structure and the ACE inhibitory properties of 

antihypertensive peptides has still not been established, it is important to highlight some 

common features for antihypertensive peptides. In addition to low molecular weight and short 

sequences (2-12 amino acid residues [13], antihypertensive peptides contain a significant 

amount of hydrophobic amino acids especially at C-terminal position [26]. The presence at C-

terminal position of proline (P) or a positive charge of lysine (K) (ε- amino group) or arginine 

(R) (guanidine group) enhances the potency of antihypertensive peptides [6, 9, 13, 26]. This 

fact could be related to the bioavailability of antihypertensive peptides since it has been 

demonstrated that peptides including proline at the end of the sequence are particularly resistant 

to in vivo proteolysis [143].  

Nevertheless, the presence of in vitro antihypertensive activity of isolated peptides does not 

involve the activity in vivo. In fact, orally administered peptides need to reach the target 

cardiovascular system in an active form. Before reaching the cardiovascular system however,  

orally delivered peptides have to resist the gastrointestinal tract digestion and be transported in 

bioactive form [144]. Primary digestion of peptides starts in the stomach with the action of 

pepsin in acidic conditions. Following that, peptides are digested in the luminal phase of the 

small intestine at an alkaline pH by the action of pancreatic proteases like trypsin, α-

chymotrypsin, elastase, and carboxypeptidase A and B [144]. Next, peptides resisting 

gastrointestinal digestion are subjected to the intestinal brush border membrane where a variety 
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of peptidases can further hydrolyze the ACE inhibitory peptide. Generally, peptides resisting 

this step can be transported to the blood circulation [145]. 

In order to demonstrate peptide bioavailability, additional (bio)chemical characterization is 

needed. Several measurements of the stability of the purified antihypertensive peptides against 

gastrointestinal enzymatic digestion can be carried out. The pure peptide can be submitted to a 

simulated gastrointestinal digestion using different enzyme systems. A combination of trypsin-

chymotrypsin [100], pepsin-pancreatin [93], pepsin-corolase PP [89], pepsin-trypsin [52] or 

pepsin-trypsin-protease N [51] enzymes have been employed for this purpose. This procedure 

has been assayed with peptides isolated from sea cucumber [123], rice [102], oyster [124], 

porcine hemoglobin [114] and wakame [126] hydrolysates. Resistance to intestinal digestion 

can also be demonstrated by the use of a model system such as Caco2 cells. Caco2 cells in a 

monolayers format display a variety of intestinal enzymes and transporters and have been 

employed as a model of intestine epithelium [28]. Geerlings et al. [84] purified three peptides 

(TGPIPN, SLPQ, and SQPK) from goat milk hydrolysate, which all had similar IC50 values. 

All peptides were subjected to the Caco2 monolayer experiment but only TGPIPN was found 

to pass through the Caco2 monolayer intact (albeit in a small quantity). Therefore, the intake of 

goat milk hydrolysate by SHR over 12 weeks had resulted in a decrease of SBP [84]. 

Nevertheless, it is important to highlight that this model could yield erroneous conclusions since 

the Caco2 model is tighter than intestinal mammalian tissue. Therefore, some molecules 

exerting in vivo activity could not show sufficient absorption in this model [146].  

Furthermore, since ACE cleaves the C-terminal of oligopeptides with wide specificity, 

antihypertensive peptides reaching the cardiovascular system also need to resist ACE action. In 

relation to this fact, peptides can be divided into three groups: inhibitor type, substrate type, and 

pro-drug type [112]. ‘Inhibitor type’ peptides are not affected when they are preincubated with 

ACE. ‘Substrate type’ peptides show a decrease in activity when they are exposed to ACE 

whereas ‘Pro-drug type’ peptides are transformed to a true inhibitor by ACE or gastrointestinal 

proteases [144, 147]. True inhibitor type [36, 48, 123], substrate type [113, 116], and pro-drug 

inhibitor [148] peptides have been found in different hydrolysates.  

One of the attempts to understand the inhibition site and to explore the inhibition mechanism 

of antihypertensive peptides is the measurement of the inhibition mode of peptides. The overall 

pattern for ACE inhibition was investigated by the incubation of inhibitory peptides with 

different concentrations of HHL and by measuring of the ACE inhibitory activity. The majority 
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of antihypertensive peptides inhibit ACE following a competitive mode although 

noncompetitive inhibition has also been found [147]. Structure- activity correlation is 

influenced by the three C-terminal residues of the antihypertensive peptide where the substrate 

or competitive inhibitors, which constantly contain hydrophobic (aromatic or branched-side 

chains) residues, are preferred. However, the most favorable are aromatic amino acid residues 

and proline [106]. Competitive ACE inhibitor peptides have been found inter alia in porcine 

skeletal muscle troponin [113], soybean glycinin [97], Pholiota adiposa [52], oyster [62], 

mushroom tricholoma giganteum [51], and porcine hemoglobin [114] hydrolysates. 

Noncompetitive ACE inhibitor peptides have been found in oyster [124], tuna dark muscle [33], 

bullfrog muscle [37], pork loin [116], bovine lactoferrin [118], and hen ovotransferrin 

hydrolysates [119].  

7. Quantification of peptides with antihypertensive activity  

Since the first discovery of antihypertensive peptides from foodstuffs, studies in the area of 

ACE inhibitory peptides were mainly focused on isolation, purification, identification, and 

characterization of these peptides. In the last years, a new trend has been the quantitative 

analysis of particular peptides with high IC50 values. In fact, the recent rapid development of 

functional foods which contain antihypertensive peptides requires established standardized 

methodologies for the quantification of peptides including stability studies in complex 

biological matrices. In this cases, quantitative determination of antihypertensive peptides is 

essential to assess safety, product activity, and healthy claims [149, 150]. Furthermore, the 

amount of encrypted peptides could varied within crop varieties and the amount of released 

peptides could depends on hydrolysis and storage conditions [46, 87]. Moreover, considering 

that functional foods could become widespread, quantitative information will be essential to 

establish regulations controlling the addition of antihypertensive peptides to commercial 

foodstuffs [149, 150]. 

Generally, the quantification of selected antihypertensive peptides is carried out by MS with 

previous HPLC separation, however some other attempts can also be found in literature. The 

quantification of particular peptides which possess antihypertensive activity was made on the 

standard calibration curve of corresponding synthetic peptides injected into the LC-MS system. 

By this methodology, the concentration of seven dipeptides in wakame [126] and eight 

dipeptides in salmon muscle [129] hydrolysates were estimated. Fig. 3 shows the 

chromatograms and the mass spectra corresponding to the antihypertensive peptide FY in a 
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synthetic standard and in the hydrolysate of wakame. Since the mass spectrum obtained with 

the synthetic peptide was identical to that observed in the hydrolysate, this was used for the 

quantitation of the peptide in wakame by LC-MS (Sato et al., 2002). A similar approach has 

also been used for the determination of three peptides in goat milk hydrolysate [84]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Chromatograms (A, C) and mass spectra (B, D) obtained by LC-MS and corresponding to FY: (A, B) 

synthetic FY; (C, D) FY in the hydrolysate of wakame. LC conditions: Column, Xterra MS C18, 150 x 2.1 mm; 

gradient, 3-20% in 40 min; mobile phases, A: water + 0.05% TFA; B: ACN+0.05% TFA; flow-rate, 0.2 mL/min; 

MS conditions: cone voltage: +30V; capillary voltage: 3 kV; desolvation temp.: 300 °C; source block temp.: 

100°C; desolvation gas flow: 350 L/min; cone gas flow: 50 L/min. Source: [126].  

Quantification of LHLPLP peptide in fermented milk has been performed by HPLC-MS and 

HPLC-MS/MS. The developed method was validated by the determination of repeatability, 

reproducibility, linearity, and recovery. Calibration was performed based on the peak areas of 

the precursor and its adducts in the MS experiments and on the 0peak area of the most abundant 

product ions after precursor fragmentation by MS/MS analysis. The limits of detection and 

quantification determined by MS/MS were 7 μg/mL and 25 μg/mL, respectively [82]. Similarly, 
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the LKPNM antihypertensive peptide was determined in bonito muscle hydrolysates by HPLC-

MS and HPLC-MS/MS. Validation of the method by measuring specificity, linearity, accuracy, 

precision, and reproducibility was also presented [151]. Next, the quantification of nine 

antihypertensive dipeptides in fermented soybean seasonings and soybean sauces was 

performed by LC-MS/MS [98]. A comparative study of the concentration of IPP and VPP in 

Swiss cheeses and non-Swiss cheeses [152] and in cheeses with different ripening degrees [56] 

using HPLC-MS3 and PPPP as an internal standard revealed that there were large variations 

among individual loaves from various producers. Moreover, high concentrations of both 

peptides often occurred in these cheeses produced from raw milk which was matured over a 

long period of time. The same peptides were also quantified in miso paste by LC-MS using 

internal standard methodology. In this case isotopes (13C5)Val(13C5)Pro-Pro and Ile-(13C5)Pro-

Pro were involved [153]. HPLC with UV detection has also been employed for the quantitation 

of antihypertensive peptides in foodstuffs. Yamamoto et al. [30] used it for the quantitation of 

YP in yoghurt like products using a synthetic peptide for the calibration [30]. The same 

methodology was employed in the quantification of IY, VY and IVY in Protease N treated 

Royal Jelly [154].  

Moreover, targeted peptides are usually presented in highly complex matrices and at low 

concentration. These complex matrices could compromise the determination of these minor 

components. MRM (multiple reaction monitoring) assays could be the technique of choice in 

these cases. Nevertheless, only one work in which antihypertensive peptides were quantified in 

rat plasma after their administration was found [155]. To our knowledge, there is no work that 

had used this methodology to quantify antihypertensive peptides in foodstuffs. Since the MRM 

assay offers reliable quantification for low abundance analytes in complex matrices, it can be a 

potential tool for overcoming these future challenges.  

8. Conclusions  

The role of antihypertensive peptides derived from foodstuffs becomes increasingly 

appreciated since hypertension is a serious problem, especially in highly-developed countries. 

The knowledge about ACE inhibitory peptides in the last years improved at the same rate as 

the specifications of their biochemistry, bioavailability, properties, and mechanisms of 

inhibition. In addition to this, the number of identified peptides with certain ACE inhibition 

activity from various sources increased considerably. Antihypertensive peptides usually contain 

2-12 amino acids and significant amounts of hydrophobic residues. Secondly, the selection of 
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an appropriate source of protein with a suitable releasing technique is crucial in the production 

of antihypertensive peptides. The most frequently involved technique is enzymatic digestion 

where the use of enzymes with low specificity is essential. Techniques such as fermentation, 

autolysis or simple extraction in the case of naturally presented antihypertensive peptides were 

also found in literature to be an alternative. Different ACE assays have been employed to 

evaluate IC50 values. Nevertheless, the significant differences among obtained results demand 

a standardized method for measuring antihypertensive activity. Purification paths generally 

depend on the complexity of the hydrolysate although some common features can be extracted. 

UF or SEC are commonly used as a first stage purification. IEC, as much cIEC as AEC, is also 

frequently used in the purification path. RP-LC can be used both at the end of the purification 

stage or as well as the only technique used in the purification of peptides. Some others methods, 

such as desalination, liquid-liquid extraction, solid phase extraction or capillary electrophoresis 

also randomly appears in the purification paths of antihypertensive peptides. Peptide 

identification has been perfomed by Edman degradation despite MS is now the preferred 

technique. Antihypertensive peptide characterization also includes (bio)chemical tests to assess 

bioactivity. Namely, gastrointestinal digestion, Caco2 monolayer, preincubation with ACE or 

inhibition mode are employed to check inter alia the bioavailability of peptides. Quantitative 

analysis of some targeted peptides is becoming more usual being HPLC-MS the preferred 

technique for this purpose.  
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II. OBJECTIVES  

The main goal of the present research work has been the characterization, identification, and 

quantification of peptides and proteins having a significant influence on the prevention and 

understanding of hypertension. For this purpose, our efforts were aimed to develop new 

analytical methodologies for the determination of proteins and peptides from different plant and 

animal origin tissues using the most recent technological achievements in the separation and 

detection areas. 

In order to achieve this general goal, the following specific objectives were proposed:  

 To investigate the presence of native antihypertensive and antioxidant peptides in 

commercial soybean based infant formulas.  

 To identify potential antihypertensive and antioxidant peptides from soybean based 

infant formulas using mass spectrometry.  

 To study the influence of simulated gastrointestinal digestion on the bioactivity of 

soybean based infant formulas.  

 To develop analytical methodologies based on mass spectrometry enabling the 

sensitive and selective quantification of highly potent antihypertensive peptides in 

soybean and maize crops. 

 To evaluate the content of highly potent antihypertensive peptides in different 

soybean and maize crops. 

 To develop an analytical methodology for the quantification of isoforms of important 

proteins involved in the regulation of cardiovascular function (PKA, PKG, and 

CaMKII) using mass spectrometry and proteomics tools. 

 To apply the developed analytical method for the analysis of healthy and pathological 

heart rat tissues. 
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III.1.1. Characterization and identification of antioxidant and antihypertensive peptides 

in commercial soybean infant formulas. 

Preface 

The most frequently studied bioactive peptides of cardiovascular interest from foodstuffs are 

antihypertensive and antioxidant peptides. From the vast list of bioactive peptide sources, 

peptides from an animal origin have received a special attention. Nevertheless, as already 

mentioned, plant origin bioactive peptides have proved several times to provide peptides with 

much more potent bioactivities. Among the most promising plant sources, soybean and its 

derived products have shown to be an attractive source of bioactive peptides. Despite milk and 

dairy products and soybean and its derived products are the most investigated sources of both 

antihypertensive and antioxidant peptides, there is no work devoted to the determination of 

these peptides in soybean based infant formulas. 

Soybean based infant formulas are widely used to feed children suffering from allergy to 

cow’s milk and when breast milk is not possible. They are inexpensive and nutritionally 

adequate as substitutive of milk based formulas and rarely elicit allergic reactions [246]. 

Soybean based infant formulas are based on soybean protein isolate which contains around 90% 

of proteins [247]. Soybean infant formulas are submitted to heating and/or partial protein 

hydrolysis during their manufacture preparation. This procedure can result in the release of 

various peptides from parent proteins, differing in length, sequence, and, thus, properties. 

Therefore, soybean based infant formulas can contain native peptides that can have potential to 

offer specific health effects (antihypertensive and/or antioxidant) in addition to nutritional 

benefits. Due to the different manufacturing conditions, soybean based infant formulas can 

present different protein and peptide contents [248]. Peptides exhibiting one or two of these 

bioactivities are of particular interest as food components, since they could improve 

cardiovascular health and control related diseases [249]. Finally, in order to exert effects at a 

molecular level in the organism, ingested peptides must preserve their sequence and bioactivity 

after passing the gastrointestinal track. Native antihypertensive and antioxidant peptides 

resistant to the action of gastrointestinal enzymes show the real nutritional value of the product 

and their identification is of very high interest. 
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Objectives  

The specific objectives of this work were: 

 To propose and evaluate various extraction methods to obtain antihypertensive and 

antioxidant peptides from different commercial soybean based infant formulas.  

 To fractionate complex peptide extracts from soybean based infant formulas using 

chromatographic, electrophoretic, and membrane separation techniques. 

 To investigate the antioxidant and antihypertensive activities of peptides present in 

soybean based infant formulas using various in vitro assays.  

 To identify potential antioxidant and antihypertensive peptides from soybean based 

infant formulas using highly potent mass spectrometrics and bioinformatics tools. 

 To study the resistance of the identified antioxidant and antihypertensive peptides to the 

action of gastrointestinal enzymes.  

 To characterize and investigate the bioactivity of the identified and selected peptides.  

Results 

The results obtained in this research work are included in the following scientific articles: 

 Article 2: Isolation and identification of antioxidant peptides from commercial soybean 

based infant formulas. 

P. Puchalska, M. L. Marina, M. C. García. 

Food Chem., 2014, 148, 147-154. 

 

 Article 3: Identification of native angiotensin I converting enzyme inhibitory peptides 

in commercial soybean based infant formulas using HPLC-Q-TOF-MS. 

P. Puchalska, M. C. García, M. L. Marina. 

Food Chem., in press. 
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Article 2 
Isolation and identification of  antioxidant peptides from commercial 
soybean based infant formulas 

P. Puchalska, M. L. Marina, M. C. García 

Food Chem., 2014, 148, 147-154 
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Abstract 

Soybean based infant formulas (SBIFs) based on soybean protein isolate (90% of proteins) 

are an interesting alternative to cow’s milk infant formulas. Different works have demonstrated 

the presence of bioactive peptides in different soybean based foodstuffs. The aim of this work 

was the evaluation, for the first time, of antioxidant peptides in five different commercially 

available SBIFs. Ultrafiltration through 10 kDa molecular weight cut-off filters was the most 

suitable extraction method. Despite peptide concentrations ranging between 1.19 and 2.27 

mg/mL, similar antioxidant capacities were detected in all SBIF extracts. Extracts were further 

fractionated according to their molecular weight by ultrafiltration, and fractions from 5 to10 

kDa, 3 to 5 kDa, and below 3 kDa were obtained. The most active fraction was further 

fractionated by off-gel isoelectrofocusing and reversed-phase chromatography. Antioxidant 

fractions were also submitted to simulated gastrointestinal digestion with pepsin and pancreatin 

to evaluate their antioxidant capacity after digestion. Peptides were identified by HPLC-ESI-

Q-ToF-MS/MS. At least 120 peptides were identified in every antioxidant fraction, with 42 

peptides common to all SBIFs. 

 

Keywords: 

Bioactive peptides; Antioxidant capacity; Soybean based infant formula; Q-TOF; Food 

analysis 
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 1. Introduction 

Cows’ milk and soybean are the most widely used sources of proteins in infant formulas. 

Soybean based infant formulas (SBIFs) were introduced onto the market more than 60 years 

ago. At the moment, SBIFs accounts for 25% of total infant formulas sold in the USA [1]. 

Initially, SBIFs were developed for infants with immunoglobulin E-mediated milk allergy and 

post infectious diarrhoea (lactose intolerance) [1]. Nowadays, they are also targeted at infants 

with galactosaemia, for infants from families who are strict vegans, and for the treatment of 

common feeding problems [2]. Early SBIFs were based on soybean flour while modern SBIFs 

are based on soybean protein isolate (SPI) and possess higher protein digestibility. SPI contains 

around 90% protein based on a dry weight basis and a highly balanced concentration of essential 

amino acids [2]. Moreover, these formulas are enriched in amino acids, such as methionine [3], 

carnitine [4], taurine [5], and choline [6], and other nutrients, such as lipids, vitamins and 

minerals [7].  

Proteins are the precursors of many bioactive peptides, released by the action of 

gastrointestinal proteolysis or food processing [8]. Biologically active peptides can be absorbed 

through the intestine and can produce several biological effects at tissue level. Indeed, peptides 

released in the gastrointestinal tract are of high importance, since they can exert a beneficial 

effect on the body when they are adsorbed in the intestine. This fact is especially important in 

infants whose gastrointestinal tract is still not yet completely developed [9]. Soybean based 

infant formulas are submitted to heating and partial protein hydrolysis during manufacture, 

which can result in the release of peptides. The antioxidant capacity of peptides has been widely 

reported [10-14]. Antioxidant peptides inhibit reactive oxygen species (ROS) and other free 

radicals, formed as a consequence of cellular metabolism in aerobic organisms. ROS and free 

radicals can cause extensive damage in DNA, lipids, and proteins [15, 16]. Under normal 

conditions, they are removed by enzymatic or non-enzymatic antioxidants constituting the body 

antioxidant defence system [10]. However, environmental conditions, way of life or 

pathological situations may cause an imbalance between free radicals and antioxidants. This 

process, known as oxidative stress, has been associated with cell apoptosis and several diseases, 

including diabetes, atherosclerosis and cancer [17].  

Antioxidant peptides are rich in histidine and other aromatic and/or hydrophobic amino acids 

[10]. It has been also suggested that peptide linkage and peptide conformation could also affect 

the antioxidant capacity of peptides [18, 19].  
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The aim of this work is to evaluate the presence of peptides with antioxidant capacity in 

commercial SBIFs. The isolation and fractionation of peptides from five different SBIFs was 

performed. Antioxidant peptides obtained after in vitro gastrointestinal digestion have been 

identified. 

2. Materials and methods 

2.1. Chemicals and samples 

Acetonitrile (ACN) was purchased from Fisher Scientific (Pittsburgh, PA). Water was 

freshly taken daily from a Milli-Q system (Millipore, Bedford, MA). Methanol, ethanol, 

trichloroacetic acid (TCA), and acetic acid (AA) were from Scharlau Chemie (Barcelona, 

Spain). Sodium dodecyl sulfate (SDS), hydrochloric acid, 2-mercaptoethanol, sodium 

bicarbonate, and sodium hydroxide were supplied by Merck (Darmstadt, Germany). Sodium 

tetraborate, o-phthalaldehyde (OPA), 2,2-diphenyl-1-picrylhydrazyl (DPPH), glutathione 

(GSH), 2,2’-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), potassium persulfate, 

potassium phosphate, 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 1,10-

phenantroline, ferrous sulfate, hydrogen peroxide, pepsin from porcine gastric mucosa (P7012), 

and pancreatin from porcine pancreas (P-7545) were purchased from Sigma (St. Louis, MO). 

All chemicals were of analytical grade purity.  

Thiamine (B1), riboflavin (B2), nicotinic acid (B3), pyridoxine (B6), biotin (B7), folic acid 

(B9), and cobalamin (B12) were from Sigma, and pantothenic acid (B5) and ascorbic acid (C) 

were from Fluka (Buchs, Switzerland). Vitamins B1, B3, B5, B6, B9, C (all at 1 mg/ mL) and B12 

(4 mg/mL) were prepared in water. Vitamins B2 (1 mg/mL) and B7 (0.5 mg/mL) were dissolved 

in 20 mM NaHCO3 due to their lower solubility.  

The five different soybean based infant formulas (SBIF 1- SBIF 5) were purchased at a local 

pharmacy and stored at room temperature. SBIF 1- 4 were indicated for newborn infants (stage 

1 infant formulas), while SBIF 5 was for infants older than 6 months (stage 2 infant formula). 

2.2. Peptide isolation from infant formulas 

Infant formula samples were prepared at the concentration suggested by manufacturers for 

infant ingestion (1 g of SBIF powder in 6 mL of solution). In order to separate peptides from 

proteins and other components in infant formulas, different extraction methods were proposed. 

Method 1 consisted of mixing infant formula with 12% TCA as previously described [20] using 
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ultrasonic energy for 5 min followed by centrifugation (10 min, 4000g, 4°C). Method 2 was 

also performed as previously described with modifications [21]. Sample was mixed with water 

(previously boiled) at 40°C, boiled for 15 min, mixed with TCA to attain a final concentration 

of 5% TCA, boiled for another 15 min, left in the fridge for 1 h, and centrifuged (10 min, 4000 

x g,4°C). Method 3 consisted of ultrafiltering extracts obtained from Method 2 using Millipore 

filters with 10 kDa molecular weight cut-off (Mwco) (1 h, 4000g, 25°C). Method 4 consisted 

of mixing SBIF with water at 40°C (water was boiled before addition) and utrafiltering through 

Millipore filters with 10 kDa Mwco (1 h, 4000g, 25°C). In all cases, extracts were filtered 

through 0.45 μm regenerated cellulose filters and stored at -20°C until use.   

2.3. Separation of peptide extracts/fractions and vitamins 

Peptide extracts, their fractions, and vitamin solutions were separated using an Agilent 

Technologies liquid chromatograph (Santa Clara, CA) with an Ascentis Express Peptide ES-

C18 column (100 mm x 2.1 mm I.D., 2.7 μm particle size) and an Ascentis Express Guard 

column (5 mm x 2.1 mm I.D., 2.7 μm particle size), both from Supelco (Bellefonte, PA). 

Chromatographic conditions were: mobile phase A, Milli-Q water/0.1% (v/v) TFA; mobile 

phase B, ACN/0.1% (v/v) TFA; binary gradient: 5–95% B in 30 min and 95–5% in 5 min; 

temperature, 25°C; flow rate, 0.3 mL/min; injection volume, 2 μL; UV detection at 210, 254, 

and 280 nm for peptides and 210, 245, 265, and 280 nm for vitamins.  

2.4. Fractionation of peptide extracts 

2.4.1. Ultrafiltration (UF) 

Peptide extracts from each SBIF were ultrafiltered sequentially using Amicon filters with 10 

kDa Mwco (Millipore), Vivaspin 500 PES filters with 5 kDa Mwco (Sartorious Stedim Biotech, 

Goettingen, Germany), and Amicon filters with 3 kDa Mwco (Millipore). All recovered 

fractions (fractions from 5 to 10 kDa, 3 to 5 kDa, and below 3 kDa) were dissolved to the initial 

volume in water.  

2.4.2. Separation by off-gel isoelectrofocusing (IEF) 

Most active peptide fractions from every SBIF obtained after UF were further separated 

based on their isoelectric points (pI). For that purpose, a 3100 OFFGEL fractionator (Agilent 

Technologies) and immobilised pH gradient (IPG) gel strips (General Electric Healthcare, 

Freiburg, Germany) from pH 3 to 10 and 24-wells were used. IPG gel strips were rehydrated in 
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the assembled device by adding 40 μL of focusing buffer (12% (v/v) glycerol with ampholytes 

(pH 3–10) to every well. Peptide fractions (0.72 mL) were mixed with 2.88 mL of focusing 

buffer and 150 μL of this mixture were loaded in the device. In order to obtain suitable peptide 

focusing, a maximum current of 50 μA was applied and separation was continued until 50 kV/h 

was reached.  

2.4.3. Separation of ampholytes from peptides 

Separation of peptides fractionated by IEF from ampholytes was tried with OMIX C18 

pipette tips (Varian Inc., Cary, NC), peptide clean-up C18 spin tubes (Agilent Technologies), 

and RP-LC. Fractionation by RP-LC was performed in a Chromolith Performance column (100 

mm x 4.6 mm I.D.) from Merck and peptides were collected with an automatic fraction collector 

from Agilent Technologies. The optimized conditions were: mobile phase A, Milli-Q 

water/0.1% (v/v) TFA; mobile phase B, ACN/0.1% (v/v) TFA; flow rate, 0.5 mL/min; 

temperature, 25°C; injection volume, 10 μL; gradient: 5–95% in 10 min and 95–5% in 2 min. 

The detection was performed at 210 and 280 nm. During the fractionation step, samples of 

interest were collected between 6.8 and 10 min. Collected fractions were evaporated and 

resuspended in 100 μL of water. 

2.5. OPA assay 

The determination of peptide concentration in extracts was performed by the OPA assay 

with modifications [22] using a spectrophotometer Lambda 35 (Perkin-Elmer, Waltham, MA) 

and cuvettes designed for small volumes (UVetter® , Eppendorf, Hamburg, Germany). The 

procedure involved mixing 2.5 μL of sample with 100 μL of OPA mixture (2.5 mL of sodium 

tetraborate, 1 mL of 5% (w/v) SDS, 100 μL of 40 mg/mL OPA in methanol, 10 μL of 2-

mercaptoethanol, and 1.39 mL of water). Afterwards, the mixture was left for 8 min at room 

temperature and signal was measured at 340 nm. The peptide content was calculated by 

interpolation in a GSH standard calibration curve in the range from 0 to 5 mg/mL. GSH, a 

tripeptide with one primary amine was used as a standard in the OPA assay.  

The degree of hydrolysis (%DH) of sample was calculated by dividing the concentration of 

peptide obtained for sample extract (peptide content), by the concentration of proteins provided 

on the sample label, and multiplied by 100.  
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2.6. Antioxidant capacity assays 

The estimation of antioxidant capacity was performed using DPPH, ABTS, and hydroxyl 

radical-scavenging assays. Solvent blanks were measured for every assay. Three replicates were 

prepared for every sample or fraction and all measurements were done at least three times. 

2.6.1. DPPH radical-scavenging capacity assay 

The assay was carried out using a previously developed method [23] with some 

modifications. Sample (50 μL) was mixed with 50 μL of 0.1 mM DPPH in 95% ethanol and 

kept for 30 min (at room temperature) in the dark. The absorbance at 517 nm of the resulting 

solution was measured. A calibration curve of GSH (0–5 mg/mL) was performed, before 

measurements, as positive control. The DPPH radical-scavenging capacity was calculated as 

follows:   

DPPH radical scavenging capacity (%) =  (1 −
𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) 𝑥100 

where Abssample is the absorbance of the sample with DPPH solution; Abssamplecontrol is the 

absorbance of the sample without DPPH solution; Absblank is the absorbance of the sample 

solvent (without peptides) with the DPPH solution. 

2.6.2. ABTS radical-scavenging assay 

ABTS assay was performed according to a previously developed method [24]. ABTS stock 

solution was obtained by mixing 7.4 mM ABTS with 2.6 mM potassium persulfate in 10 mM 

phosphate buffer (PB) (pH 7.4) and by its incubation in the dark for 16 h. Before analysis, the 

ABTS radical stock solution was dissolved in 10 mM PB (pH 7.4) to attain an absorbance of 

0.7 ± 0.1 AU at 734 nm (ABTS radical working solution). Prepared ABTS radical working 

solution (100 μL) was mixed with 1 μL of sample, incubated for 6 min, and signal was measured 

at 734 nm. A calibration curve of Trolox (0–5 mg/mL) was performed before measurements as 

positive control. The ABTS radical-scavenging capacity was calculated using the following 

equation: 

ABTS radical scavenging capacity (%) =  (
𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) 𝑥 100 
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Where Abssample is the absorbance of the sample with the ABTS radical working solution and 

Absblank is the absorbance of the sample background solution with the ABTS radical working 

solution. 

2.6.3. Hydroxyl radical-scavenging assay 

The hydroxyl radical-scavenging capacity was measured using a previously developed 

method [25] with some modifications. Sample (25 μL) was mixed with 25 μL of ferrous sulfate 

(3 mM) and 25 μL of 1,10-phenanthroline (3 mM, dissolved in 0.1 M PB (pH 7.4)). To initiate 

the reaction, 25 μL of 0.01% (v/v) hydrogen peroxide were added. Mixture was incubated for 

1 h at 37°C and signal was measured at 536 nm in the spectrophotometer. A calibration curve 

of GSH (0–5 mg/mL) was performed before measurements as positive control. Hydroxyl 

radical-scavenging capacity was calculated according to the following equation: 

Hydroxyl radical scavenging capacity (%) = (
𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘

𝐴𝑏𝑠𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) 𝑥 100 

Where Abssample is the absorbance of the sample; Absblank is the absorbance of a blank solution 

containing water; Abscontrol is the absorbance of a control solution in absence of hydrogen 

peroxide. 

2.7. Gastrointestinal digestion 

Peptide fractions were digested according to the method described by Garrett et al. [26], with 

some modifications. Briefly, sample was adjusted to pH 2 with 1 M HCl and mixed with pepsin 

at an enzyme to substrate ratio of 1:35. Reaction mixture was incubated for 1 h at 37°C with 

shaking. Afterwards, pH of sample was first adjusted with 0.1 M NaHCO3 to pH 5 and then 

with 0.1 M NaOH to pH 7–8. Next, pancreatin enzyme dissolved in 0.1 M PB (pH 8) was added 

at an enzyme to sample ratio of 1:25. Reaction mixture was incubated for 2 h at 37°C with 

shaking. Digestion was stopped by boiling for 10 min. 

2.8. HPLC-MS/MS 

Identification of peptides was performed using a Quadrupole-Time-of-Flight (Q-ToF) MS 

(instrument series 6530) from Agilent Technologies coupled to a 1100 Series liquid 

chromatograph also from Agilent Technologies. HPLC separation was carried out on the 

Ascentis Express column previously employed, using as mobile phases Milli-Q water/0.3% 
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(v:v) AA (mobile phase A) and ACN/0.3% (v:v) AA (mobile phase B). The elution gradient 

was from 3% to 95% B in 30 min and from 95 to 3% B in 5 min. The flow rate was 0.3 mL/min, 

the column temperature was 25°C, and the injected volume was 15 μL. Simultaneous UV (210, 

254, 280 nm) and MS signals were registered. The mass spectrometer operated in positive ion 

mode and a mass range from m/z 100 to 3200 was selected. ESI conditions were: fragmentator 

voltage, 200 V; nozzle voltage, 0 V; nebulizer pressure, 50 psig; capillary voltage, 3500 V; gas 

temperature, 350°C; gas flow, 12 L/min; skimmer, 60 V. The Jet Stream sheath gas flow and 

temperature were 12 L/min and 400°C, respectively. MS/MS was performed using the auto 

mode, 1 precursor per cycle, dynamic exclusion after three spectra, and collision energy of 35 

V. MS/MS spectra were analyzed using PEAKS Studio Version 6 (Bioinformatics Solutions 

Inc., Waterloo, Canada). Analysis of data with PEAKS software was performed using the 

PEAKS proteome database tool. Results were always refined using a false discovery rate (FDR) 

of 1%. Proteome of soybean (Glycine max) was downloaded from the UniProt protein database 

and contained just reviewed proteins (380 proteins). 

2.9. Statistical analysis 

Statistical analysis was performed using Statgraphics Software Plus 5.1 (Statpoint 

Technologies, Inc., Warrenton, VA). In order to find statistically significant differences among 

results, analysis of variance (ANOVA) was applied when three replicates of every sample were 

analysed in triplicate. 

3. Results and discussion 

3.1. Selection of the extraction method 

In order to study the peptidome of SBIFs, two different extraction methods (Method 1 and 

2) enabling the removal of proteins were tested. Both methods were applied to the extraction of 

five SBIFs and peptide concentrations, determined by OPA assay, are shown in Fig. 1A. 

Method 1 resulted in a very poor peptide yield in all SBIFs, giving peptide concentrations in 

the range 0.84– 1.34 mg/mL. Method 2 yielded almost double the concentration of peptides 

(1.83–2.90 mg/mL). This fact could be explained by co-precipitation of peptides with proteins 

when Method 1 is used, or by an incomplete removal of proteins when Method 2 is employed. 

In order to assure that Method 2 completely precipitated proteins and that signal observed by 

OPA assay did not correspond to proteins, a further clean-up by ultrafiltration through 10 kDa 

Mwco filters (Method 3) was carried out. Peptide content using Method 3 was significantly 
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lower than for Method 2 (ANOVA, P < 0.05). Peptide content obtained by Method 3 was 

significantly higher than that obtained by Method 1 (ANOVA, P < 0.05) demonstrating that 

some peptides co-precipitated with proteins when Method 1 was employed. Method 4, 

consisting of the direct ultrafiltration of peptides through 10 kDa Mwco filters, was tried and 

results were compared with those obtained by Method 3. Peptide contents when using Method 

4 (1.19–2.27 mg/mL) (direct UF) were statistically similar to those obtained by Method 3 (1.09– 

2.13 mg/mL) (combining precipitation with TCA + UF).  

 

Fig. 1. Summary of results for OPA (A), ABTS (B), DPPH (C), and hydroxyl radical-scavenging capacity (D) 

assays for five SBIF extracts obtained using four different extraction methods.  

A comparison of the different SBIF revealed higher degree of hydrolysis for SBIF 5 (11.4%) 

while no statistical differences were observed (ANOVA, P < 0.05) among the other four SBIF. 

Interestingly, SBIF 1–4 were designed for neonates while SBIF 5 was designed for older 

infants. The antioxidant capacities of SBIF extracts obtained by all four extraction methods 

were measured using three different antioxidant assays (see Fig. 1B–D). In most cases, there 

were statistically significant differences among antioxidant capacities (ANOVA, P < 0.05). In 

general, all extracts showed a high antioxidant capacity and differences observed between them 

were based on different peptide concentrations obtained with every extraction method. As 

expected, the extract obtained by Method 1 always showed the lowest antioxidant capacity, 

while the extract obtained by Method 4 resulted in one of the highest antioxidant capacities. 
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There were some exceptions, especially when using DPPH assay, where Method 2 showed very 

high antioxidant capacities. These higher antioxidant capacities could come from the proteins 

extracted with the peptides when this extracting method was employed. Taking into account 

these results and the simplicity of Method 4, this was the method selected for further studies. It 

is important to highlight the differences between SBIFs designed for newborn infants (stage 1 

infant formula, SBIFs 1–4) and SBIF 5 that was designed for infants older than 6 months (stage 

2 infant formula). Although, the peptide content was higher for SBIF 5, the antioxidant capacity 

was not significantly different.  

Extracts obtained by UF with 10 kDa Mwco filters can also contain small molecules (e.g., 

vitamins, minerals, and amino acids), which could also contribute to antioxidant capacity. 

Therefore, in order to assure these small molecules were absent, a further investigation was 

needed. According to the manufacturer’s label, the most active antioxidant compounds added 

to the SBIFs recipe were vitamins. SBIF extracts were injected into a chromatographic system 

and chromatograms were compared with those obtained when injecting water-soluble vitamins 

present in SBIF (vitamin C, B1, B2, B3, B5, B6, B7, B9, and B12). Chromatograms obtained for 

all SBIF were very similar and peptide signals were detected from 5 to 17 min. Vitamins B1, 

B3, B5, B6, and C eluted in the dead volume, while vitamins B2, B7, B9, and B12 eluted from 6.6. 

to 8.2 min. The presence of vitamins which eluted within the elution time of peptides was 

checked by spiking SBIFs with vitamin standard solutions. Results revealed that these vitamins 

were not present in the peptide extracts. 

3.2. Fractionation of peptide extracts 

Peptide extracts were firstly fractionated by ultrafiltration through different Mwco filters, in 

order to obtain peptide fractions from 5 to 10 kDa, 3 to 5 kDa, and below 3 kDa. Peptide 

concentration and antioxidant capacity of these fractions were next measured, observing in most 

cases statistically significant differences among them (P < 0.05). The highest peptide content 

was always observed in fractions containing 5 to 10 kDa peptides or in fractions with peptides 

below 3 kDa (see Fig. 2A). ABTS radical scavenging assay (see Fig. 2B) showed the highest 

antioxidant capacity for the fraction containing 5 to 10 kDa peptides, followed by the fraction 

with peptides below 3 kDa. The results obtained with the DPPH assay (see Fig. 2C) also showed 

that peptide fractions containing 5 to 10 kDa peptides or peptides below 3 kDa yielded the 

highest antioxidant capacity. The hydroxyl radical scavenging assay (see Fig. 2D) revealed that 
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5 to 10 kDa peptide fractions provided higher or similar activity (range 16.8–27.6%) to peptide 

fractions below 3 kDa (19.6–20.8%).  

 

Fig. 2. Summary of results for OPA (A), and ABTS (B), DPPH (C), and hydroxyl radical-scavenging capacity 

(D) assays corresponding to the 5 to 10 kDa, 3–5 kDa, and below 3 kDa peptide fractions from five SBIF extracts. 

The fraction containing peptides from 5 to 10 kDa was selected for further studies, since it 

yielded, in most cases, the highest antioxidant capacity. This higher antioxidant capacity might 

be connected to the higher number of hydrophobic and aromatic amino acids within the peptides 

obtained in these fractions. Moreover, the use of this fraction assured the absence of other SBIF 

ingredients, like vitamins, minerals, and amino acids that could exert antioxidant capacity. 

Furthermore, comparison among SBIFs revealed no significant difference among them (P < 

0.05).  

Further fractionation of bioactive peptides from the peptide fraction from 5 to 10 kDa was 

proposed using OFFGEL isoelectrofocusing. OFFGEL system separates peptides based on their 

pI and requires the addition of ampholytes to the peptide solution to obtain the desired pH 

gradient. In this case, the OFFGEL separation was carried out using a gradient from pH 3 to 10 

into 24 wells to obtain a high resolution among peptides. Nevertheless, the assays employed for 

the determination of peptide concentration (OPA assay) and antioxidant capacity (ABTS and 

DPPH radical-scavenging assays) of the obtained fractions resulted were seriously interfered 
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by ampholytes used in the OFFGEL separation. This could be explained taking into account 

that ampholytes are zwitterionic low molecular weights polypeptides. Moreover, although the 

exact structure of commercially available ampholytes is unknown, their influence on other 

bioactive assays has already been proven [27]. Thus, blank separations (separations just with 

focusing buffer (12% (v/v) glycerol and ampholytes (pH 3–10)) were performed and blank 

solutions corresponding to the 24 wells were obtained. The blanks corresponding to every well 

were analyzed by OPA, ABTS, and DPPH assays (see Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Summary of results for OPA (A), and ABTS (B), and DPPH (C) radical-scavenging assays 

corresponding to the off-gel blanks obtained for the 24 OFFGEL wells. 
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Results obtained by OPA assay showed detectable signals in most wells, especially at more 

alkaline pHs. Moreover, false positive signals were also observed when OFFGEL blanks were 

analysed by the ABTS and DPPH radical-scavenging assays. Therefore, a method for the 

removal of ampholytes was required. Since ampholytes are small polypeptide molecules while 

investigated peptides were much larger (from 5 to 10 kDa), UF through 5 kDa Mwco filters 

was firstly proposed to separate them. Nevertheless, results showed that UF did not enable a 

complete removal of ampholytes. Zip-tips and spin columns, recently introduced on the market 

to easily remove interferences in peptide mixtures, were the second choice. Zip-tips and spin 

columns removed a high amount of ampholytes, but a significant number of peptides still could 

not be recovered. Another alternative was the use of RP-LC. After optimization, it was possible 

to separate peptide fractions from ampholytes using a monolithic column. Peptides were 

observed just in the first five wells which demonstrated the presence of mainly acidic peptides 

in SBIF. Collected fractions were evaporated, redissolved, and assayed using OPA and ABTS 

methods (see Fig. 4).  

 

 

 

  

 

 

 

 

 

 

 

Fig. 4. Summary of results for OPA (A) and ABTS (B) radical-scavenging assays corresponding to the whole 

5 to 10 kDa fraction and the OFFGEL subfractions containing peptides (OG1–OG5).  
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Results showed that the most abundant fraction was always the most acidic one (well 1). The 

lowest amount of peptides was measured in SBIF 3 (0.06–0.17 mg/mL) and the highest in SBIF 

5 (0.24–0.33 mg/mL). These results were in accordance with previous results (Figs. 1 and 2). 

The ABTS radical-scavenging assay revealed that every well contained peptides with 

antioxidant capacity. Nevertheless, antioxidant capacity of the whole 5 to 10 kDa extract was 

much higher than that obtained with the individual OFFGEL fractions. This synergistic effect 

has already been described among antioxidant compounds [28]. Therefore, the OFFGEL 

separation was rejected and the whole 5 to 10 kDa fraction was employed for further 

investigations.  

3.3. Evaluation of the antioxidant capacity of fraction from 5 to 10 kDa after gastrointestinal 

digestion  

Whole fractions from 5 to 10 kDa were next digested sequentially with pepsin and pancreatin 

according to a previous method [26]. Every SBIF extract was digested twice in order to confirm 

the reproducibility of the simulated gastrointestinal digestion. The antioxidant capacity of these 

digested fractions was measured using the ABTS assay. The comparison of the ABTS radical-

scavenging capacity of samples (see supplemental material 1) showed that antioxidant capacity 

of extracts after gastrointestinal digestion was lower than the observed for the extract before 

gastrointestinal digestion for SBIFs 1, 2, and 4 while there was no significant difference 

between antioxidant capacities for SBIFs 3 and 5 (t-test, P < 0.05). In order to clarify this fact, 

the peptide content before and after gastrointestinal digestion were evaluated and compared. 

Results (see supplemental material 1) showed a higher peptide content after gastrointestinal 

digestion for all SBIFs, which meant that some of the original peptides have been degraded. 

This degradation could be responsible for the slight decrease in the antioxidant capacity that 

was observed in some SBIFs when they were submitted to gastrointestinal digestion (SBIFs 1, 

2, and 4). On the other hand, the similar antioxidant capacity before and after gastrointestinal 

digestion showed by SBIFs 3 and 5 could be because the resulting peptides also exerted 

antioxidant properties.  

3.4. Identification of peptides from 5 to 10 kDa fractions  

Peptide fractions after simulated gastrointestinal digestion were analyzed by RP-LC coupled 

to ESI-Q-ToF-MS/MS. The identification of peptides after gastrointestinal digestion shows the 

real nutritional value of SBIFs. At least 120 peptides were identified in every SBIF and a total 
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of 278 different peptides were identified among the five SBIFs. The analysis of the amino acid 

composition of SBIFs showed a high amount of highly hydrophobic (V, I, and L) and aromatic 

(H, F, W, Y) amino acid residues, typical features of antioxidant peptides. The percentage of 

highly hydrophobic and aromatic amino acids ranged from 26.75% for SBIF 4 to 30.11% and 

30.66% for SBIF 3 and 5, respectively.  

Within all identified peptides, 42 were common to all samples. The list of these peptides 

with their experimental molecular masses and protein origin (accession as in the Uniprot 

database) is presented in Table 1. Most of these peptides came from the glycinin protein 

subunits (from GLYG1 to GLYG5; where GLY means glycinin protein, and G1–G5 specify its 

subunit); glycinin is a major seed storage protein of soybean (around 40% of soybean storage 

proteins). A second major group of peptides came from the alpha chain (GLCA) of b-

conglycinin, another seed storage protein (around 28% of soybean storage proteins). The 

presence of already identified peptides was checked using the bioactive peptide database 

BIOPEP. This study enabled the detection of part of the sequence of soystatin (VAWWMY), a 

soybean peptide previously reported as strongly cholesterol absorption inhibiting and bile acid 

binding [29]. The antioxidant activity of this peptide (VAWWM) could be justified taking into 

account that it contained two aromatic amino acid residues (W) and most of the amino acids in 

the sequence were hydrophobic (V, W, M).  

The infant formula with the highest antioxidant capacity (SBIF 5) showed thirty unique 

peptides. The presence of these peptides in the BIOPEP database was checked. Among them, 

peptide SGDAL had previously been reported within two longer sequences of antioxidant 

peptides, LQSGDALRVPSGTTYY and LNSGDALRVPSGTTYY, both from soybeanb-

conglycinin [30].  

This work has evaluated, for the first time, the presence of peptides with antioxidant capacity 

in infant formulas based on soybean. The direct ultrafiltration of the sample through 10 kDa 

Mwco filters enabled the removal of proteins. The fractionation of the extracts using different 

Mwco filters and the measurement of antioxidant capacity showed the highest antioxidant 

capacity in the peptide fraction from 5 to 10 kDa. Fractions with peptides from 5 to 10 kDa 

were digested using a simulated gastrointestinal digestion observing that antioxidant capacity 

was maintained. A total of 278 different peptides were identified among the five SBIFs of which 

42 were common to all. Many of these peptides possessed typical features of antioxidant 

peptides.  
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Table 1. List of common peptides identified in the five SBIFs after simulated gastrointestinal digestion. 

Protein accessiona Mass Peptide 

P04405|GLYG2_SOYBN 557.2697 ALPEE 

P04405|GLYG2_SOYBN 645.2904 DQMPR 

P04347|GLYG5_SOYBN 727.3613 DQNPRV 

P11827|GLCAP_SOYBN 730.3861 EEINKV 

P11827|GLCAP_SOYBN 667.3329 FAFGIN 

P04405|GLYG2_SOYBN 609.2798 FAPEF 

P29531|OLEO2_SOYBN 618.3125 FEAPR 

P02858|GLYG4_SOYBN 905.3766 FEEPQEQ 

P04776|GLYG1_SOYBN 594.3013 FSVDK 

P13916|GLCA_SOYBN 803.4177 FVDAQPK 

P11827|GLCAP_SOYBN 803.3813 FVDAQPQ 

P11827|GLCAP_SOYBN 1488.6844 FVDAQPQQKEEGN 

P25974|GLCB_SOYBN 616.3584 FVIPAA 

P04405|GLYG2_SOYBN 666.3013 GFAPEF 

P04405|GLYG2_SOYBN 556.322 IAVPTG 

P04405|GLYG2_SOYBN 1486.7205 IETWNPNNKPFQ 

P04347|GLYG5_SOYBN 543.2904 IPSEV 

P04776|GLYG1_SOYBN 558.3741 IVTVK 

P02858|GLYG4_SOYBN 587.3643 KQIVT 

P02858|GLYG4_SOYBN 1062.5134 KYEGNWGPL 

P13916|GLCA_SOYBN 789.4021 LAFPGSAQ 

P04776|GLYG1_SOYBN 681.3697 LVPPQE 

P04347|GLYG5_SOYBN 656.3605 NIARPS 

P13916|GLCA_SOYBN 693.3486 NPFLFG 

P04347|GLYG5_SOYBN 796.4079 NSGPLVNP 

P04776|GLYG1_SOYBN 703.3137 NSLENQ 

P02858|GLYG4_SOYBN 900.4188 NTGDEPVVA 

P04776|GLYG1_SOYBN 622.3074 RPSYT 

P02858|GLYG4_SOYBN 661.3282 SQVSEL 

P02858|GLYG4_SOYBN 629.3748 SVISPK 

P13916|GLCA_SOYBN 1022.492 TISSEDKPF 

P04776|GLYG1_SOYBN 691.3152 VAWWM 

P13916|GLCA_SOYBN 656.3493 VDAQPK 

P04776|GLYG1_SOYBN 596.3282 VIQHT 

P02858|GLYG4_SOYBN 542.3428 VISPK 

P04776|GLYG1_SOYBN 646.3538 VSIIDT 

P04776|GLYG1_SOYBN 760.3967 VSIIDTN 

P11828|GLYG3_SOYBN 646.3538 VSLIDT 

P11828|GLYG3_SOYBN 760.3967 VSLIDTN 

P04776|GLYG1_SOYBN 798.3159 WWMYN 

P02858|GLYG4_SOYBN 934.4185 YEGNWGPL 

P13916|GLCA_SOYBN 575.3319 YPVVV 
 

a From UniProt protein database. 
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Appendix A. Supplementary data 

Supplemental material 1. Comparison of the antioxidant capacity (A) and peptide content (B) before and after 

simulated gastrointestinal digestion (GI) of the 5 to 10 kDa peptide fraction of five SBIFs. 

A) 

 

 

B)  
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Abstract 

 This work evaluates, the presence of native antihypertensive peptides in five soybean based 

infant formulas (SBIFs). SBIFs peptide extracts (< 10 kDa) and their subfractions (5 to 10 kDa, 

3 to 5 kDa, and <3 kDa) from a variety of samples were obtained by ultrafiltration and ACE 

inhibitory activity was determined. The highest activities were observed in the smaller (<5 kDa) 

peptide fractions (IC50 values of 1.20 ± 0.05 and 0.57 ± 0.04 μg/mL). A set of peptides presented 

in various SBIFs were studied, and identified using HPLC-Q-ToF-MS.  Despite ACE inhibitory  

activity decreased after in vitro gastrointestinal digestion, it still remained at a high value (IC50 

values of 18.2 ± 0.1 and 4.9 ± 0.1 μg/mL). Peptides resisting the action of gastrointestinal 

enzymes were identified and compared to previously identified peptides highlighting the 

presence of peptide RPSYT. Discovered peptide was synthesized, its antihypertensive and 

antioxidant activity were evaluated, and its resistance to in vitro gastrointestinal digestion and 

to high processing temperatures were studied.  

  

Keywords: 

Soybean based infant formulas; Bioactive peptides; Antihypertensive activity; HPLC; Q-ToF-

MS 
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1. Introduction 

Soybean based infant formulas (SBIFs) are based on soybean protein isolate (SPI) and are 

enriched with non-protein amino acids [1] and several nutrients like lipids, vitamins or minerals 

[2]. SBIFs are suitable for infants with intolerance or allergy to milk (lactose intolerance, 

galactose intolerance, milk protein intolerance/allergy, etc.), for infants from families that are 

strict vegans, and for the treatment of common feeding problems [3].  Its presence in the market 

is significant since they are consumed by a 25% of infants fed with infant formulas in the USA 

[4]. Despite this data, SBIFs have not been much explored in comparison with milk and infant 

formulas from animal origin. 

Indeed, milk and dairy products have been widely studied for its content in bioactive peptides 

[5-7]. The characterization and/or identification of antihypertensive and antioxidant peptides in 

human milk and bovine protein based infant formulas [8-11] have especially been reported. 

Among milk bioactive peptides, it is remarkable the presence of peptides VPP and IPP exerting 

high ACE inhibitory activity  (IC50 values, 9.13 µM (2.80 µg/mL)  and 5.15 µM (1.67 µg/mL), 

respectively). Antihypertensive peptides enable the reduction of blood pressure acting mainly 

on the renin-angiotensin system by inhibiting angiotensin I converting enzyme (ACE). This 

enzyme catalyzes the conversion of angiotensin I to angiotensin II, which is a potent 

vasoconstrictor [12,13]. Moreover, ACE also removes a dipeptide from C-terminus of 

bradykinin (RPPGFSPFR) resulting in the inactivation of this vasodilator. Therefore, ACE 

inhibitors decrease blood pressure by lowering the level of angiotensin II and increasing the 

level of bradykinin. Despite different bioactive peptides have been identified in soybean [14-

15] the studies concerning the evaluation of the SBIFs bioactive peptide are scare [16]. In fact, 

there is only one work, carried out by our research group, dealing with the evaluation of the 

presence of a group of antioxidant peptides in SBIFs [17]. Nevertheless, there is still none work 

devoted to the complex study of ACE inhibitory peptides in various SBIFs. 

ACE inhibitory peptides are small peptides with high level of hydrophobic amino acids and, 

commonly, with proline at C-terminal [18]. ACE inhibitory peptides can be found as 

independent entities or can be in a latent state as part of the sequence of a protein from which 

they are released during the course of gastrointestinal digestion or processing. SBIFs are 

submitted to intense heating and/or partial protein hydrolysis during processing. Thus, this 

processing could result in the release of peptides that could have potential to offer specific 

health effects in addition to nutritional benefits. 
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The aim of this work has been the evaluation of the presence of native peptides with ACE 

inhibitory  activity in commercial SBIFs. The extracts and fractions from various SBIFs were 

obtained and its ACE inhibitory capacity was evaluated. Antihypertensive activities were also 

explored after a simulated gastrointestinal digestion and antihypertensive peptides were 

identified by HPLC-tandem mass spectrometry.  

2. Materials and methods 

2.1. Chemicals and samples 

All chemicals were of analytical grade purity. Water was taken every day from a Milli-Q 

System (Millipore, Bedfore, MA, USA). Acetonitrile (ACN) was from 

Fisher Scientific (Pittsburgh, PA, USA). Acetic acid (AA) was purchased from Scharlau 

Chemie (Barcelona, Spain). Sodium dodecyl sulfate (SDS), hydrochloric acid, 2-

mercaptoethanol, sodium bicarbonate, hydrochloric acid, and sodium hydroxide were from 

Merck (Darmstadt, Germany). Angiotensin-I converting enzyme (ACE) from rabbit lung, 

hipuryl-His-Leu (HLL), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 

trifluoroacetic acid (TFA), sodium chloride, sodium tetraborate, o-phthalaldehyde (OPA), 2,2-

diphenyl-1-picrylhydrazyl (DPPH), glutathione (GSH), 2,2’-azino-bis(3-ethylbenzothiazoline-

6-sulfonic acid) (ABTS), potassium persulfate, potassium phosphate, 6-hydroxy-2,5,7,8-

tetramethylchroman-2-carboxylic acid (Trolox), 1,10-phenantroline, ferrous sulfate, hydrogen 

peroxide, pepsin from porcine gastric mucosa (P7012), and pancreatin from porcine pancreas 

(P-7545) were supplied by Sigma (St. Luis, MO, USA). Five different soybean based infant 

formulas (SBIFs) were purchased at a local pharmacy and stored at room temperature when not 

in use. SBIFs 1-4 were indicated for newborn infants (stage 1 infant formulas), while SBIF 5 

was designed for infants after completing 6 months (stage 2 infant formula).In order to avoid 

degradation, prepared samples, when not in use, were stored at -20°C. Peptide (RPSYT) was 

synthesized by Genescript (Genescript Corp., Piscataway, NJ, USA). 

2.2. Extraction and fractionation of peptides 

Infant formulas were prepared according to the manufactures’ label.1 g of SBIF powder was 

mixed with 6 mL of previously boiled water at 40˚C and shaken till an homogenous sample 

was obtained. In order to obtain whole peptide extract, sample was ultrafiltrated through 

Millipore filters with 10 kDa Mwco (1 h, 4000 x g, 25 ºC). Fractionation of whole peptide 

extracts was performed by their further sequential utrafiltration using Vivaspin 500 PES filters 
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with 5 kDa Mwco (Sartorious Stedim Biotech, Goettingen, Germany) and Amicon filters with 

3 kDa Mwco (Millipore). Each recovered fraction (fraction from 5 to10 kDa, 3 to 5 kDa, and 

below 3 kDa) was dissolved to the initial volume in water. Extracts and fractions were stored 

at -20°C until use.  

2.3. OPA assay 

Peptide concentration was determined in fractions by the OPA (o-phthalaldehyde) assay with 

modifications [19] using a spectrophotometer Lambda 35 (Perkin-Elmer, Wathman, MA, USA) 

and cuvettes designed for small volumes (UVetter ®, Eppendorf, Hamburg, Germany). The 

procedure was as follows: 2.5 μL of sample was mixed with 100 μL of OPA mixture (2.5 mL 

of sodium tetraborate, 1 mL of 5% (m/v) SDS, 100 μL of 40 mg/mL OPA in methanol, 10 μL 

of 2-mercaptoethanol, and 1.39 mL of water). Solution was left for 8 min at room temperature 

and signal was measured at 340 nm. Peptide content was calculated by interpolation in a GSH 

standard calibration curve in the range from 0 to 5 mg/mL. Three replicates were prepared for 

every sample or fraction and all measurements were done at least three times. 

2.4. ACE inhibitory activity assay 

The measurement of ACE inhibition was performed according to a previous method [20] 

with modifications. Reaction solution contained 20 µL of ACE (0.05 U/mL, dissolved in water), 

10 µL HHL (1.25 mg/mL in 50 mM HEPES buffer pH 8.3/ 300 mM NaCl), 35 µL HEPES 

buffer/NaCl, and 5 µL sample solution. Control sample contained peptide solvent instead of 

sample solution. Prepared mixtures were incubated at 37°C in a hot air oven (Memmert, model 

300, Schwabach, Germany). Reaction was stopped with 100 µL of cold ACN. In order to 

calculate the IC50 value for ACE inhibition, investigated peptide solution was prepared in series 

of concentrations (at least five dilutions for each peptide sample). Prepared samples were 

injected into the HPLC-UV system. Measurements were performed in a modular capillary 

chromatographic system (Agilent Technologies, Pittsburgh, PA). HPLC assembly consisted of 

a micro vacuum degasser (model 1100), a capillary LC pump (model 1100), a thermostatized 

autosampler (model 1100), a thermostatized column compartment (model 1200), and a multiple 

wavelength detector (model 1200). HP Chemstation software was used to control HPLC 

instrument. Reaction mixture was separated in a C18 Zorbax 300 SB (1500 mm x 0.5 mm I.D., 

5µm particle size, and 80 Å pore size) (Agilent Technologies, Pittsburgh, PA) using a flow rate 

of 20 µL/min, a temperature of 25°C, a binary gradient from 5 to 100% B in 7 min, 100% B in 
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2 min, 100-5% in 2 min, and mobile phases consisting of Milli-Q water/0.025% (v:v) TFA 

(mobile phase A) and ACN/0.025% (v:v) TFA (mobile phase B). The injected volume was 1 

µL and the detection was performed at a wavelength of 228 nm. For each of five dilutions the 

percentage of inhibition of the activity of ACE enzyme was estimated calculating the 

percentage of decreasing the HA signal in comparison to control sample were the inhibition did 

not occur. Percentages of ACE inhibition have been plotted against the peptide concentrations 

in the studied sample, and IC50 was calculated. Three replicates were prepared for every sample 

or fraction and all measurements were done at least three times. 

2.5. Gastrointestinal digestion 

Peptide fractions were digested according to Garrett et al. method [21] with modifications. 

Briefly, the pH of sample was adjusted to 2 with 1 M HCl and pepsin (enzyme: substrate ratio 

1:35) was added. Reaction mixture was incubated in a thermomixer for 1 h at 37°C with 

shaking. Afterwards, pH of sample was adjusted with 0.1 M NaHCO3 to pH 5 and further with 

0.1 M NaOH to pH 7-8. Pancreatin (enzyme: substrate ratio 1:25) was added and reaction 

mixture was incubated for 2 h at 37°C with shaking. Digestion was stopped by boiling for 10 

min. 

2.6. Identification of peptides 

A Quadrupole-Time-of-Flight (Q-ToF) MS (instrument series 6530) from Agilent 

Technologies coupled to a liquid chromatograph 1100 series also from Agilent Technologies 

were used for the identification of peptides prior and after the gastrointestinal digestion of infant 

formula fractions. HPLC separation was obtained using an Ascentis Express Peptide ES-C18 

column (100 mm× 2.1 mm I.D., with 2.7 µm particle size) with an Ascentis Express Guard 

column (5 mm×2.1 mm I.D., with 2.7 µm particle size) both from Supelco (Bellefonte, 

PA,USA). Mobile phases were: A,  Milli-Q water/0.3%  (v:v) AA and B, ACN/0.3% (v:v) AA; 

the elution gradient was: 3-95% B in 30 min and 95-3% B in 5 min. Flow rate was 0.3 mL/min, 

the column temperature was 25°C, and the injection volume was 15 µL. The mass spectrometer 

operated in the positive ion mode with a mass range from 100 to 3200 m/z. ESI conditions were 

as follows: fragmentator voltage, 200 V; nozzle voltage, 0 V; nebulizer pressure, 50 psig; 

capillary voltage, 3500 V; gas temperature, 350˚C; gas flow, 12 L/min; skimmer, 60 V; Jet 

Stream sheath gas flow and temperature, 12 L/min and 400˚C, respectively. Auto MS/MS mode 

with fixed collision energy 35 V was employed where 1 precursor per cycle was selected and 

dynamically excluded after three spectra. To identify the list of present in the sample peptides, 
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the analysis of MS/MS spectra (mgf files) was performed using PEAKS Studio Version 6 

(Bioinformatics Solutions Inc., Waterloo, Canada). Search was performed using database 

search tool (against soybean proteome) with improved algorithm that validate and assist the 

database search with the de novo sequencing results. Proteome of soybean (Glycine max) was 

downloaded from the UniProt protein database and contained just reviewed proteins (380 

proteins). In order to select a proper -10lgP value threshold for identified peptides, obtained 

results have been refined using a False Discovery Rate (FDR) of 1%. Peptides identified above 

appropriate -10lgP threshold have been treated as true positive identification and used in further 

data analysis. Venn Diagrams were created using the GenoToul bioinformatics facility.  

2.7. Characterization of synthetic peptide RPSYT 

In vitro gastrointestinal digestion of 0.25 mg/mL of peptide in water was performed 

following the protocol described above. Peptide (0.25 mg/mL) was also incubated at 100°C for 

10 min to study its resistance to high processing temperature. To investigate whenever peptide 

structure changed, samples were injected into the HPLC-Q-ToF-MS system using the same 

parameters previously employed for the identification of peptides but using just MS mode. ACE 

inhibitory  activity of RPSYT peptide was estimated using method previously described (see 

section 2.4). The estimation of antioxidant capacity of peptide RPSYT was performed using 

ABTS and DPPH assays. Solvent blanks were measured for every assay. Three replicates were 

performed. DPPH radical scavenging capacity assay. The assay was carried out following a 

previously developed method [22] with some modifications. A calibration curve of GSH (0-5 

mg/mL) was performed before measurements as positive control. Peptide at a concentration of 

0.5 mg/mL (50 μL) was mixed with 50 μL of 0.1 mM DPPH in 95% ethanol and kept for 30 

min (at room temperature) in the dark. The absorbance at 517 nm of the resulting solution was 

measured in the spectrophotometer. The DPPH radical scavenging capacity was calculated as 

follow: 

 

where Abssample is the absorbance of the sample with DPPH solution; Abssamplecontrol is the 

absorbance of the sample without DPPH solution; Absblank is the absorbance of the solvent 

(without peptides) with the DPPH solution.  

DPPH radical scavenging capacity (%) =  (1 −
𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒𝑐𝑜𝑛𝑡𝑟𝑜𝑙

𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) 𝑥100  
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ABTS radical scavenging assay. ABTS assay was carried out using a previously developed 

method [23]. ABTS stock solution was obtained by mixing 7.4 mM ABTS with 2.6 mM 

potassium persulfate in 10 mM phosphate buffer (PB) (pH 7.4). This stock solution was 

incubated in the dark for 16 h. Before analysis, the ABTS stock solution was dissolved in 10 

mM PB (pH 7.4) to attain an absorbance of 0.7 ± 0.1 AU at 734 nm (ABTS working solution). 

ABTS working solution (100 μL) was mixed with 1 μL of peptide (0.5 mg/mL), incubated for 

6 min, and signal was measured at 734 nm. The ABTS radical scavenging capacity was 

calculated using the following equation: 

 

where Abssample is the absorbance of the sample with the ABTS working solution and Absblank 

is the absorbance of the solution in which peptides were dissolved with the ABTS working 

solution. 

2.8. Statistical analysis 

Statistical analysis was performed using Statgraphics Software Plus 5.1 (Statpoint 

Technologies, Inc.,Warrention, VA, USA). In order to find statistically significant differences 

among results, the analysis of variance (ANOVA) was applied when three replicates of every 

sample were analyzed by triplicate. 

3. Results and discussion 

3.1. ACE inhibitory  activity of infant formula extracts and fractions 

Peptides from five different commercially available SBIFs were obtained by the dilution of 

powder in water according to manufactures’ suggestions and their ultrafiltration through 10 

kDa Mwco filters [17]. These extracts with molecular weights below 10 kDa were next 

fractionated by ultrafiltration to obtain fractions from 5 to 10 kDa, from 3 to 5 kDa, and below 

3 kDa. ACE inhibitory  activity of SBIF extracts and their fractions are presented in Table 1.  

 

 

ABTS radical scavenging capacity (%) =  (
𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘 − 𝐴𝑏𝑠𝑠𝑎𝑚𝑝𝑙𝑒

𝐴𝑏𝑠𝑏𝑙𝑎𝑛𝑘
) 𝑥 100 
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Table 1. Antihypertensive capacity corresponding to peptide fractions below 10 kDa (whole extract), from 5 

to 10 kDa, from 3 to 5 kDa, and below 3 kDa of five commercial SBIFs.  

 IC50 [μg/mL] 

Fractions 1IF 2IF 3IF 4IF 5IF 

below 10 kDa 41.85±1.27 50.70 ±0.78 63.90 ±1.70 5.88±0.12 2.45±0.07 

5-10 kDa 71.71±1.14 26.21±0.39 17.99±0.03 17.26±0.59 40.19±1.01 

3-5 kDa 14.20 ±0.08 11.67±0.37 11.61±0.13 17.52±0.22 15.15±0.21 

<3 kDa 10.48±0.21 10.86±0.36 18.03±0.25 1.20 ±0.05 0.57±0.04 

 

In all cases, whole peptide extracts presented certain antihypertensive bioactivity being 4IF 

and 5IF the most active ones (IC50 values of 5.88 ± 0.12 and 2.45 ± 0.07μg/mL, respectively). 

Regarding fractions, in general, the lower the molecular weight, the higher the ACE inhibitory  

activity. In fact, fractions from 5 to 10 kDa yielded the lowest ACE inhibitory activity (with the 

exception of 3IF) while fractions from 3 to 5 kDa and below 3 kDa were more active. This 

behavior is in agreement with the fact that antihypertensive peptides are small peptides. The 

highest activity was shown in fractions below 3 kDa from 4IF and 5IF with IC50 values of 1.20 

± 0.05 and 0.57 ± 0.04μg/ mL, respectively. This antihypertensive activities were even higher 

than the potent and extensively studied milk peptides VPP (2.80 µg/mL) and IPP (1.67 µg/mL) 

[24].  

3.2. Identification of antihypertensive peptides in infant formulas fractions 

Fractions exerting the highest ACE inhibitory  activity (fractions of 3 to 5 kDa and below 3 

kDa) in all SBIFs were injected into the HPLC-Q-ToF-MS in order to identify potential 

antihypertensive peptides. During the analysis of these fractions, tandem MS/MS spectra were 

obtained for most abundant molecular ions. A table with all identified peptides is available as 

supplemental material (S1). In some cases, two peptide isoforms were identified and included 

into the table (for example KGAIG and KGALG). Since the equipment is not able to 

differentiate I from L due to their equal molecular masses, both sequences have been included 

into the table. Interestingly, those peptides have been assigned to different parent proteins, 

which can be explained by high protein sequence homologies among some soybean proteins. 

The summary of peptides identified that were in common among SBIFs or specific of every 

SBIFs is presented by a Venn diagram (see Figure 1A). A total of 141 individual peptides were 
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identified in peptide fractions between 3 to 5 kDa. Among them, 12 peptides were common in 

all SBIFs. Since, the inhibition of ACE was identified in all SBIFs fractions, these 12 peptides 

may be listed as potential ACE inhibitors. Interestingly, most identified peptides in fraction 

from 3 to 5kDa had much lower molecular masses than expected. Indeed, the averaged 

molecular mass of peptides in this fraction was 1 kDa. This result could be explained by the 

poor selectivity of ultrafiltration, especially at very low molecular weights, and could explain 

the high ACE inhibitory  activity reported in these fractions. Then, all identified peptides were 

checked against BIOPEP database observing that peptides QSGDALR and SGDALR had 

previously been reported within two longer sequences (LQSGDALRVPSGTTYY and 

LNSGDALRVPSGTTYY) from the soybean beta-conglycinin and that both peptides possessed 

antioxidant activity [25].  Regarding fractions below 3 kDa, the summary of common peptides 

(7 peptides) and peptides identified just in every SBIF fraction is depicted in Figure 1B. 

Indicated peptides may be added to the list of potential ACE inhibitors. 94 individual peptides 

were detected (see S1). Surprisingly, some of these peptides were detected previously in 

fraction 3 to 5 kDa. In fact, two peptides APAMR and RPSYT were determined in all five 

SBIFs in both 3 to 5 kDa and below 3 kDa fractions. The averaged molecular mass of identified 

peptides in this fraction was around 0.7 kDa. Also in this case, QSGDALR and SGDALR 

peptides were found when checking against BIOPEP database. Special relevance could have 

the 29 peptides identified just in the fraction below 3 kDa in 4IF and 5IF since these fractions 

yielded the highest ACE inhibitory  activity (see Table 1). However, it must be added that not 

just one but several peptides may contribute to the exceptional ACE inhibitory activities of 4IF, 

5IF peptide fractions below 3 kDa.  

3.3. Simulated gastrointestinal digestion of infant formula fractions 

One of the most important properties of a bioactive peptide in order to exert a certain 

biological effect is its ability to reach targeted organs in an active form. The most important 

step in bioavailability studies is gastrointestinal digestion. Those peptides resisting this 

physiological process could reach the circulatory system and exert antihypertensive effects. 

Therefore, an study evaluating the ACE inhibitory  activity of most antihypertensive fractions 

after a simulated gastrointestinal digestion was next carried out. For that purpose, sequential 

digestion by pepsin/pancreatin have been reported to provide a proper model to estimate the 

release of peptides in the digestive system [26].  
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Digestion with pepsin endopeptidase offers more accessible sites for subsequent pancreatin 

hydrolysis. Following, the hydrolysis with pancreatin, a mixture of different peptidases (trypsin, 

α-chymotrypsin, elastase, and carboxypeptidases A and B), is normally performed. Fractions 

from 3 to 5 kDa and below 3 kDa were submitted to simulated gastrointestinal digestion. Figure 

2 compares peptide concentration before and after gastrointestinal digestion for fractions from 

3 to 5 kDa and below 3 kDa.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Comparison of peptide contents in fractions from 3 to 5 kDa (A) and below 3 kDa (B) of five commercial 

soybeans based infant formulas before and after simulated gastrointestinal digestion.  

For all fractions, from 3 to 5 kDa and also below 3 kDa, peptide contents before and after 

the gastrointestinal digestion were significantly different (test-t, P < 0.05). An extensive 

proteolysis was observed after simulated gastrointestinal digestion, especially, in the case of 

fractions from 3 to 5 kDa. ACE inhibitory activity of digested fractions was also measured (see 

Table 2) observing, in all cases, a decrease in ACE inhibitory activity in comparison with results 

shown in Table 1. By the action of gastrointestinal enzymes, peptides can break down into 

smaller peptides exhibiting different sequence, size, and, as a consequence, bioactivity. 

However, antihypertensive activities were still maintained at high level highlighting, again, the 
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fraction below 3 kDa in 4IF and 5IF with IC50 values of 18.2 ± 0.1 and 4.9 ± 0.1 μg/ mL, 

respectively. 

Table 2. Antihypertensive capacity corresponding to peptide fractions from 3 to 5 kDa and below 3 kDa of 

five commercial SBIFs after in vitro gastrointestinal digestion.  

 

 IC50 [μg/mL] after gastrointestinal digestion 

Fractions 1IF  2IF  3IF  4IF  5IF  

3-5 kDa 34.71±0.70 20.25±0.68 17.79±1.53 31.75±2.05 36.94±1.18 

<3 kDa 33.27±0.62 26.63±0.44 59.03±0.22 18.18±0.10 4.87±0.13 

 

3.4. Identification of peptides after in vitro gastrointestinal digestion of infant formulas 

fractions 

In order to identify those antihypertensive peptides standing gastrointestinal digestion, 3 to 

5 kDa and below 3 kDa fractions that had been submitted to simulated gastrointestinal digestion 

were analyzed by HPLC-Q-ToF-MS. Total of 133 and 127 peptides were identified for fractions 

3 to 5 kDa and below 3 kDa, respectively. Peptides identified in every hydrolyzed infant 

formula fraction are listed in the supplemental material (S1). The averaged peptide mass in the 

fraction from 3 to 5 kDa decreased after gastrointestinal digestion from 1 kDa to 0.7 kDa, while 

in fraction below 3 kDa it was maintained at 0.7 kDa. This fact explains partly the number of 

detected peptides after the gastrointestinal digestion. Although, apparently shorter peptides 

were created (see S1), some parts of cleaved peptides due to their small molecular weights 

(amino acids, di- or tri- peptides) are impossible to be identified in digested samples. In 

addition, some digested part might be the copy of already identified peptides. Peptides 

identified in each fraction prior and after gastrointestinal digestion were compared and those 

resisting gastrointestinal digestion have been summarized in Table 3. Fractions from 3 to 5 kDa 

showed 13 peptides resisting gastrointestinal digestion being 5IF that with the highest number 

of peptides standing this digestion. Regarding fractions below 3 kDa, 20 peptides were able to 

resist gastrointestinal digestion being most of them in 2IF. It is also important to highlight 

peptide NQLDQ that only appeared in the fraction < 3 kDa of 5IF since this fraction yielded 

the highest ACE inhibitory  activity after gastrointestinal digestion (see Table 2). Furthermore, 

peptide with sequence RPSYT was identified in all fractions from 3 to 5 kDa and below 3 kDa 

while peptides NSGPLVNP and RDPIYS were present in all fractions below 3 kDa.  
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Table 3. Peptides from fractions 3 to 5kDa and below 3 kDa identified in the five SBIFs resisting in vitro 

gastrointestinal digestion. 

Peptide 

sequence 
(-10lgP) Mass m/z 

RT 

[min] 
Protein assesiona Infant 

formula 

Fractions 3-5 kDa 

DFYNPKA 72.33 853.397 854.4159 8.75 P04347|GLYG5_SOYBN 2, 5 IF 

FLVPPQE 38.87 828.4381 829.4523 10.13 P04776|GLYG1_SOYBN 5 IF 

FPFPRPPHQ 52.81 1121.577 561.8013 10.38 P13916|GLCA_SOYBN 5 IF 

GKGIFG 27.57 577.3224 578.3302 9.49 P04776|GLYG1_SOYBN 2 IF 

KGAIG 27.51 444.2696 445.2782 2.55 P04347|GLYG5_SOYBN 1IF 

KGALG 27.51 444.2696 445.2782 2.55 P02858|GLYG4_SOYBN 1IF 

KGIFG 29.68 520.3009 521.3115 9.74 P04776|GLYG1_SOYBN 2, 4, 5 IF 

KGLFG 29.69 520.3009 521.3115 9.74 Q02920|NO70_SOYBN 2, 4, 5 IF 

KNILE 26.77 615.3591 616.3695 7.91 P11827|GLCAP_SOYBN 5 IF 

NSGPLVNP 100.12 796.4079 797.4203 8.81 P04347|GLYG5_SOYBN 
1, 3, 4, 5 

IF 

RDPIYS 47.37 749.3708 750.3798 7.47 P13916|GLCA_SOYBN 2, 3 IF 

RPSYT 51.00 622.3074 623.3178 4.03 P04776|GLYG1_SOYBN 1-5 IF 

YNLRQ 31.71 692.3605 693.3647 7.04 P02858|GLYG4_SOYBN 1 IF 

Fractions < 3kDa 

ANSLLN 35.63 630.3337 631.3411 8.46 P04776|GLYG1_SOYBN 1-3 IF 

EEGGSV 27.2 576.2391 577.2692 6.99 P04347|GLYG5_SOYBN 1 IF 

FLVPPQE 38.87 828.4381 829.4487 10.14 P04776|GLYG1_SOYBN 4 IF 

FPFPRPPHQ 52.81 1121.577 561.7978 10.34 P13916|GLCA_SOYBN 4 IF 

GANSLLN 31.54 687.3552 688.371 8.76 P04776|GLYG1_SOYBN 2 IF 

GKGIFG 27.57 577.3224 578.3334 9.5 P04776|GLYG1_SOYBN 2 IF 

IPSEVLA 43.24 727.4116 728.4222 9.9 P02858|GLYG4_SOYBN 2 IF 

IPSEVLS 36.53 743.4065 744.4169 9.35 P04347|GLYG5_SOYBN 1-3 IF, 5IF 

KGAIG 27.51 444.2696 445.2787 2.51 P04347|GLYG5_SOYBN 1 IF 

KGALG 27.51 444.2696 445.2787 2.51 P02858|GLYG4_SOYBN 1 IF 

KGVITQ 44.93 644.3857 645.3962 5.71 P22895|P34_SOYBN 2, 3 IF 

KHFLA 34.47 614.354 615.3593 7.33 P04347|GLYG5_SOYBN 2, 5 IF 

NQLDQ 33.71 616.2816 617.2919 3.54 P04347|GLYG5_SOYBN 5 IF 

NSGPLVNP 100.12 796.4079 797.4205 8.86 P04347|GLYG5_SOYBN 1-5 IF 

NTGNLLG 42.11 687.3552 688.3624 9.15 P22895|P34_SOYBN 1 IF 

RDPIYS 47.37 749.3708 750.3771 7.43 P13916|GLCA_SOYBN 1-5 IF 

RNPIYS 39.67 748.3868 749.3976 7.57 P25974|GLCB_SOYBN 2, 3 IF 

RPSYT 51.00 622.3074 623.3182 3.98 P04776|GLYG1_SOYBN 1-5 IF 

VEGGLS 28.10 560.2806 561.2917 6.09 P04347|GLYG5_SOYBN 1 IF 

YNLRQ 31.71 692.3605 693.3718 7.04 P02858|GLYG4_SOYBN 2 IF 

 

a From UniProt protein database. 
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These three peptides resistant to the gastrointestinal digestion, might present a potent ACE 

inhibitory activities. Due to the fact that peptide RPSYT could resist gastrointestinal digestion, 

it was presented in a high amount in all SBIFs, and it was also identified in previous studies as 

a potential antioxidant peptide [17], it has been selected for its further characterization. 

Therefore, a synthetic counterpart was synthetized and studied. 

3.5. Characteristics of RPSYT peptide 

Synthetic RPSYT was characterized by the study of its, bioactivity and resistance to 

simulated gastrointestinal digestion and high processing temperatures. Resistance to 

gastrointestinal digestion and high processing temperatures. In order to clearly confirm that 

RPSYT peptide could stand gastrointestinal digestion, it was subjected to the action of pepsin 

and pancreatin enzymes. Comparison of MS spectra prior and after this digestion did not show 

significant changes concluding that this peptide could resist it. Furthermore, the application of 

high temperatures (up to 100 ºC) for 10 min did not influence peptide signal which is an 

interesting data when submitting to heat processing. ACE inhibitory and antioxidant activity 

studies. ACE inhibitory  activity of RPSYT peptide was evaluated.  RPSYT yielded a moderate 

ACE inhibitor activity with an IC50 value of 245 ± 3 μg/mL (393 µmol/L). According to the 

literature, this IC50 value is within the range of IC50values shown by most milk protein derived 

ACE inhibitors (100-500 µmol/L) [27]. Additionally, the antioxidant activity of this peptides 

was also measured. Peptides yielding both antihypertensive and antioxidant activities are of 

great interest due to the relationship between hypertension and oxidative stress. Indeed, it has 

been proved that angiotensin II amplifies oxidative stress and, therefore, ACE inhibitors 

amplify antioxidant defense system in animals and humans by inhibiting angiotensin II 

formation [28].  Antioxidant activity was measured by DPPH assay and ABTS assay observing 

a 33 ± 4 % of scavenging capacity in the case of radical DPPH and 79 ± 2 % in the case of 

radical ABTS.+. These results demonstrate that RPYST peptide had both antioxidant and 

antihypertensive properties. The ACE inhibitory and antioxidant activity of discovered peptide 

RPSYT can be explained by its moderate hydrophobicity. On the other hand, intensified 

antioxidant activity could be caused by the presence of aromatic tyrosine within the peptide 

sequence.  
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4. Conclusions 

Five commercial soybean infant formulas have been fractionated according to their 

molecular weights observing the highest ACE inhibitory  activity in fractions from 3 to 5 kDa 

and below 3 kDa. It was remarkable the ACE inhibitory  activity of fraction below 3 kDa in 

two different infant formulas exerting IC50 values (1.20 ± 0.05 and 0.57 ± 0.04μg/ mL) lower 

than those corresponding to antihypertensive milk peptides VPP (2.80 µg/mL) and IPP (1.67 

µg/mL). Identification of peptides in most active fractions by HPLC-Q-ToF-MS revealed the 

presence of common peptides among all infant formulas. Despite in vitro gastrointestinal 

digestion decreased ACE inhibitory activity in all fractions, it still remained at a high level. 

HPLC-Q-ToF-MS enabled the identification of 13 peptides in fractions from 3 to 5 kDa and 20 

peptides in fraction below 3 kDa after simulated gastrointestinal digestion. Among them, 

RPSYT peptide was highlighted since it appeared in all infant formulas. The characterization 

studies of this peptide confirmed its resistance to gastrointestinal enzymes and high processing 

temperatures. Moreover, RPSYT peptide possessed, beyond moderate antihypertensive 

activity, a potent antioxidant activity.  

 



III.1.1. Article 3 
 

222 
 

C
H

A
P

T
E

R
 III R

E
S

U
L

T
S

 A
N

D
 D

IS
C

U
S

S
IO

N
 

 

Appendix A. Supplementary data 
Supplemental material 1.  

Peptides in fractions 3-5 kDa 
1IF 81 peptides           
Peptide -lg10P Mass m/z RT [min] Protein accession 
AGVTVSK 23,41 660,3806 661,3337 6,33 P02858|GLYG4_SOYBN 
AGVVPPAR 50,87 765,4497 766,4664 7,12 P29531|OLEO2_SOYBN 
ALPEEVIQ 38,48 897,4807 898,4965 10,08 P04405|GLYG2_SOYBN 
ALPEEVIQHTFNLK 101,68 1637,8777 819,9628 12,54 P04405|GLYG2_SOYBN 
ALPEEVIQHTFNLKS 86,34 1724,9097 863,4651 12,4 P04405|GLYG2_SOYBN 
ANSLLN 35,63 630,3337 631,3474 8,5 P04405|GLYG2_SOYBN 
APAMR 41,96 544,2791 545,2877 2.84, 2.89, 2.93 P04405|GLYG2_SOYBN 
DFYNPKA 72,33 853,397 854,4198 8,65 P02858|GLYG4_SOYBN 
EAPRY 22,95 634,3074 635,3185 6,04 P29531|OLEO2_SOYBN 
EEPRE 38,22 658,2922 659,3045 1,56 P02858|GLYG4_SOYBN 
EQIRA 22,53 615,334 616,3441 5,35 P13916|GLCA_SOYBN 
EQIRQ 27,12 672,3555 673,3738 2.34, 6.29 P25974|GLCB_SOYBN 
ESFFLS 31,1 728,3381 729,3566 12 P13916|GLCA_SOYBN 
ESVIVEISKEQIRA 38,64 1599,8832 800,9573 11,16 P13916|GLCA_SOYBN 
FAPEFLK 45,43 850,4589 851,5073 10,92 P04405|GLYG2_SOYBN 
FGINAENNQRNFLA 70,73 1606,7852 804,4113 11,21 P11827|GLCAP_SOYBN 
FPFPRPPHQ 38,89 1121,577 1122,5906 10.13, 10.23, 10.28 P13916|GLCA_SOYBN 
FPGSAQAVEKLLK 29,57 1386,787 1387,8062 11,26 P13916|GLCA_SOYBN 
FPGSAQAVEKLLKNQRE 79,56 1914,0322 958,0334 10,97 P13916|GLCA_SOYBN 
FSKHFLA 50,42 848,4545 849,4709 9,09 P02858|GLYG4_SOYBN 
FSREEGQQQGEQRL 26,83 1690,8022 846,4271 7,67 P13916|GLCA_SOYBN 
FSRNILE 30,71 877,4658 878,4778 9,64 P13916|GLCA_SOYBN 
GANSLL 26,06 573,3122 574,3313 9,74 P04405|GLYG2_SOYBN 
GANSLLN 31,54 687,3552 688,3776 8,7 P04405|GLYG2_SOYBN 
GFAPEFLK 49,97 907,4803 908,5094 11,41 P04405|GLYG2_SOYBN 
GFSKHFLA 55,18 905,4759 906,4973 9,49 P02858|GLYG4_SOYBN 
GNGIFG 22,4 563,2703 564,2919 10,03 P04405|GLYG2_SOYBN 
HENIARPSRA 40,04 1149,6002 575,8027 5,79 P02858|GLYG4_SOYBN 
HGGIATDDDYPYRA 129,13 1549,6797 775,8544 8,9 P22895|P34_SOYBN 
HKNKNPFLFG 40,28 1200,6404 1201,7444 10,87 P13916|GLCA_SOYBN 
HVRVLQ 30,74 750,4501 751,4633 6,78 P11827|GLCAP_SOYBN 
IGINAENNQRNFLA 62,22 1572,8008 787,4176 10,67 P13916|GLCA_SOYBN 
IIDTNSLENQLDQMPRR 27,54 2042,0215 681,6924 11,02 P04405|GLYG2_SOYBN 
IIIAQGKGALG 66,35 1039,6389 1040,6549 9,54 P02858|GLYG4_SOYBN 
IKNNNPFKF 48,67 1120,6029 1121,6466 10,42 P04776|GLYG1_SOYBN 
IKNNNPFKFLVPPQE 36,06 1783,962 892,99 12,45 P04776|GLYG1_SOYBN 
IPNSISI 36,01 742,4225 743,4518 10,72 P09186|LOX3_SOYBN 
IPSEVLA 28,65 727,4116 728,4366 9,83 P02858|GLYG4_SOYBN 
ISKEQIRA 21,71 943,545 944,5586 6,93 P13916|GLCA_SOYBN 
ISLLDTSNFNNQLDQTPRV 124,46 2174,0967 1088,0536 12,3 P02858|GLYG4_SOYBN 
KGAIG 25,62 444,2696 445,2795 2,49 P04347|GLYG5_SOYBN 
KGALG 25,62 444,2696 445,2795 2,49 P02858|GLYG4_SOYBN 
KHFLA 34,47 614,354 615,3644 7,27 P02858|GLYG4_SOYBN 
KLLKNQRE 22,5 1027,6138 514,8127 2,54 P13916|GLCA_SOYBN 
KNKNPFLFG 54,37 1063,5814 1064,6049 11,36 P13916|GLCA_SOYBN 
KNKPLVVQ 50,89 924,5756 925,5945 6.98, 7.02 P01071|ITRB_SOYBN 
KNPFLFG 51,68 821,4435 822,4576 12,15 P13916|GLCA_SOYBN 
KPLVVQ 36,54 682,4377 683,4514 7,52 P01071|ITRB_SOYBN 
LHENIARPSRA 34,47 1262,6843 632,35 6,83 P02858|GLYG4_SOYBN 
LSKEQIRQ 34,25 1000,5665 501,2951 6,24 P25974|GLCB_SOYBN 
NKNPFLFG 61,06 935,4865 936,5142 12.05, 12.1 P13916|GLCA_SOYBN 
NPFLFG 35,9 693,3486 694,3635 13,04 P13916|GLCA_SOYBN 
NQLDQMPRR 27,14 1156,5771 579,3108 7,71 P04405|GLYG2_SOYBN 
NSGPLVNP 68,11 796,4079 797,4257 8,85 P04347|GLYG5_SOYBN 
QRSPQLQ 39,49 855,4562 856,47 6,19 P13916|GLCA_SOYBN 
RPSYT 50,91 622,3074 623,3126 4.02, 4.07, 4.12 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQ 28,48 1792,8744 897,4635 9,78 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGKGIFG 88,59 2352,1863 1177,1188 11,51 P04776|GLYG1_SOYBN 
SFEWVLE 40,53 908,428 909,4421 13,48 P22895|P34_SOYBN 
SGDAIR 43,61 617,3132 618,3238 3,08 P07135|RR7_SOYBN 
SGDALR 43,61 617,3132 618,3238 3,08 P13916|GLCA_SOYBN 
SNFNNQLDQTPRV 74,81 1531,7379 766,884 9,69 P02858|GLYG4_SOYBN 
SQVSELK 51 789,4232 790,436 6,73 P02858|GLYG4_SOYBN 
SSEDKPFNLRS 50,11 1278,6204 640,3274 9,24 P13916|GLCA_SOYBN 
TGNLLG 39,65 573,3122 574,3234 8,95 P22895|P34_SOYBN 
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TISSEDEPFNLRS 56,02 1493,6997 747,876 9.34, 9.39, 9.44, 10.38 P25974|GLCB_SOYBN 
TTYYVVNPDNNENLRL 77,31 1923,9326 962,9849 11,31 P13916|GLCA_SOYBN 
VAISR 29,33 544,3333 545,3419 6,09 C6T1G0|CSPL1_SOYBN 
VALSR 29,33 544,3333 545,3419 6,09 P04405|GLYG2_SOYBN 
VAWWMYNNEDTPVVA 55,34 1793,8083 897,9208 13,33 P04405|GLYG2_SOYBN 
VKGGLR 26,43 628,402 629,4133 2.15, 2.2 P04405|GLYG2_SOYBN 
VKGGLRV 36,52 727,4705 728,4863 7,22 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQE 32,15 1728,8834 865,4514 13.63, 13.68 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQESQR 25,66 2100,0752 701,0344 12,79 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQESQRR 68,8 2256,1763 753,0692 12.2, 12.25 P04405|GLYG2_SOYBN 
VNMQIVRN 33,81 972,5175 973,5349 8,75 P04405|GLYG2_SOYBN 
VPTGV 26,08 471,2693 472,2809 4.56, 4.61 P04405|GLYG2_SOYBN 
VSIIDTNSLENQLDQMPRR 67,19 2228,1218 743,7213 11.76, 11.8 P04405|GLYG2_SOYBN 
WWMYNNEDTPVVA 41,27 1623,7028 812,8675 13,14 P04405|GLYG2_SOYBN 
YNLRQ 22,67 692,3605 693,3788 7,07 P02858|GLYG4_SOYBN 
2IF 50 peptides           
ALPEEVIQHTFNLK 96,84 1637,8777 819,9534 12,59 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQESQRR 80,44 2256,1763 753,0779 12.2, 12.3 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGNGIFG 75,26 2338,1343 1170,0901 11,9 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGKGIFG 75,2 2352,1863 1177,113 11,56 P04776|GLYG1_SOYBN 
TISSEDKPFNLRS 72,66 1492,7521 747,3875 9,44 P13916|GLCA_SOYBN 
FPGSAQAVEKLLK 71,32 1386,787 694,4092 11.26, 11.31 P13916|GLCA_SOYBN 
ALPEEVIQHTFNLKS 68,28 1724,9097 863,4677 12,45 P04405|GLYG2_SOYBN 
VSIIDTNSLENQLDQMPRR 64,68 2228,1218 743,7189 11.76, 11.8 P04405|GLYG2_SOYBN 
DFYNPKA 64,33 853,397 854,4124 8,7 P02858|GLYG4_SOYBN 
IIIAQGKGALG 60,37 1039,6389 1040,6611 9,59 P02858|GLYG4_SOYBN 
KNKPLVVQ 58,58 924,5756 925,5938 7,02 P01071|ITRB_SOYBN 
NKNPFLFG 54,53 935,4865 936,4923 12,1 P13916|GLCA_SOYBN 
NGPQEIYIQQGKGIFG 51,38 1747,8893 874,9647 11,71 P04776|GLYG1_SOYBN 
ISSEDKPFNLRS 50,36 1391,7045 696,863 9,29 P13916|GLCA_SOYBN 
KNKNPFLFG 48,11 1063,5814 1064,594 11.41, 11.46 P13916|GLCA_SOYBN 
TISSEDKPFNLR 47,37 1405,7201 703,8729 9,54 P13916|GLCA_SOYBN 
RDPIYSNKLG 46,67 1161,6141 581,8229 8,45 P13916|GLCA_SOYBN 
KNKPLVV 46,17 796,517 797,5298 7,57 P01071|ITRB_SOYBN 
RDPIYS 45,93 749,3708 750,3824 7,42 P13916|GLCA_SOYBN 
RPSYT 45,45 622,3074 623,3107 4,17 P04405|GLYG2_SOYBN 
FPFPRPPHQ 44,49 1121,577 1122,5918 10.23, 10.28 P13916|GLCA_SOYBN 
HENIARPSRA 42,73 1149,6002 575,8065 5,84 P02858|GLYG4_SOYBN 
APAMR 42,41 544,2791 545,2814 2.93, 2.98, 3.03 P04405|GLYG2_SOYBN 
SGDALR 42,16 617,3132 618,3146 3,13 P13916|GLCA_SOYBN 
SGDAIR 42,16 617,3132 618,3146 3,13 P07135|RR7_SOYBN 
FAPEFLK 38,91 850,4589 851,4797 10,97 P04405|GLYG2_SOYBN 
WWMYNNEDTPVVA 38,11 1623,7028 812,8593 13,18 P04405|GLYG2_SOYBN 
NPFLFG 37,57 693,3486 694,3572 12,99 P13916|GLCA_SOYBN 
GNDTFPYPRR 36,44 1221,589 611,8087 8,85 P09186|LOX3_SOYBN 
VNMQIVR 35,52 858,4745 859,4877 9,04 P04405|GLYG2_SOYBN 
RDPIY 33,94 662,3387 663,3502 7,91 P13916|GLCA_SOYBN 
ANSLLN 32,93 630,3337 631,3534 8,5 P04405|GLYG2_SOYBN 
IKNNNPFK 31,49 973,5345 974,5465 7,62 P04776|GLYG1_SOYBN 
IKNNNPFKFLVPPQE 31,01 1783,962 892,9921 12,49 P04776|GLYG1_SOYBN 
QSGDALR 30,79 745,3718 746,3782 3,87 P13916|GLCA_SOYBN 
VKNNNPFSFLVPPQE 30,1 1728,8834 865,4716 12.84, 13.68 P04405|GLYG2_SOYBN 
KGIFG 29,69 520,3009 521,3137 9.69, 9.74 P04776|GLYG1_SOYBN 
KGLFG 29,69 520,3009 521,3137 9.69, 9.75 Q02920|NO70_SOYBN 
VNMQIVRN 29,64 972,5175 973,5325 8,75 P04405|GLYG2_SOYBN 
EAPRY 29,48 634,3074 635,3126 6,04 P29531|OLEO2_SOYBN 
SREWRS 28,68 819,3987 820,4072 5,15 P02858|GLYG4_SOYBN 
EAGVVPPAR 28 894,4922 895,5049 7,37 P29531|OLEO2_SOYBN 
DITAFGGIRA 27,89 1019,54 1020,5509 11,21 P01071|ITRB_SOYBN 
PHSVQVHTTTTH 27,72 1343,6582 672,8555 8,6 P29530|OLEO1_SOYBN 
VKGGLRV 26,53 727,4705 728,4834 7,27 P04405|GLYG2_SOYBN 
YNLRQ 26,45 692,3605 693,371 7,07 P02858|GLYG4_SOYBN 
ISKEQIRA 26,2 943,545 944,5534 6,97 P13916|GLCA_SOYBN 
LSKEQIRQ 26,08 1000,5665 501,2938 6,29 P25974|GLCB_SOYBN 
IPSEVLA 25,79 727,4116 728,4312 9,83 P02858|GLYG4_SOYBN 
GKGIFG 25,4 577,3224 578,3409 9,49 P04776|GLYG1_SOYBN 
3IF 45 peptides           
APAMR 39 544,2791 545,2906 2.8, 2.85, 2.9 P04405|GLYG2_SOYBN 
RDPIYSNKLG 34,58 1161,6141 581,8254 8,43 P13916|GLCA_SOYBN 
GNDTFPYPRR 33,78 1221,589 611,8144 8,82 P09186|LOX3_SOYBN 
KHFLA 31,94 614,354 615,3666 7,25 P02858|GLYG4_SOYBN 
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RPSYT 46,88 622,3074 623,3142 3.98, 4.03, 4.08 P04405|GLYG2_SOYBN 
EAPRY 29,88 634,3074 635,3167 6,05 P29531|OLEO2_SOYBN 
EEPRE 30,54 658,2922 659,3047 1,57 P02858|GLYG4_SOYBN 
AGVTVSK 43,95 660,3806 661,3822 4,87 P02858|GLYG4_SOYBN 
KPLVVQ 36,49 682,4377 683,4502 7,49 P01071|ITRB_SOYBN 
NPFLFG 32,56 693,3486 694,3663 12,96 P13916|GLCA_SOYBN 
FPGSAQAVEKLLK 74 1386,787 694,4165 11.24, 11.29 P13916|GLCA_SOYBN 
ISSEDKPFNLRS 60,08 1391,7045 696,8757 9,27 P13916|GLCA_SOYBN 
INAENNQRNFLA 34,35 1402,6953 702,3701 9,61 P13916|GLCA_SOYBN 
IPNSISI 35,4 742,4225 743,4434 10.7, 10.75 P09186|LOX3_SOYBN 
VSIIDTNSLENQLDQMPRR 48,69 2228,1218 743,7332 11,78 P04405|GLYG2_SOYBN 
VTAPAMR 32,84 744,3953 745,4089 7,4 P04405|GLYG2_SOYBN 
TISSEDKPFNLRS 61,96 1492,7521 747,4 9,42 P13916|GLCA_SOYBN 
RNPIYS 28,25 748,3868 749,4011 7,54 P25974|GLCB_SOYBN 
RDPIYS 30,24 749,3708 750,3849 7,44 P13916|GLCA_SOYBN 
VKNNNPFSFLVPPKESQRR 40,11 2256,2126 753,0833 12,27 P11828|GLYG3_SOYBN 
VKNNNPFSFLVPPQESQRR 60,02 2256,1763 753,0833 12,22 P04405|GLYG2_SOYBN 
HTFNLK 51,71 758,4075 759,4429 7,69 P04405|GLYG2_SOYBN 
HGGIATDDDYPYRA 86,47 1549,6797 775,8627 8,92 P22895|P34_SOYBN 
NSGPLVNP 67,81 796,4079 797,4299 8.78, 8.87 P04347|GLYG5_SOYBN 
WWMYNNEDTPVVA 32,01 1623,7028 812,8699 13,16 P04405|GLYG2_SOYBN 
ALPEEVIQHTFNLK 88,57 1637,8777 819,9622 12,57 P04405|GLYG2_SOYBN 
KNPFLFG 53,51 821,4435 822,4667 12,17 P13916|GLCA_SOYBN 
FSKHFLA 45,9 848,4545 849,4764 9,12 P02858|GLYG4_SOYBN 
DFYNPKA 65,07 853,397 854,4199 8,68 P02858|GLYG4_SOYBN 
VKNNNPFSFLVPPQE 32,07 1728,8834 865,4623 13,6 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPKE 37,3 1728,9198 865,4814 12,77 P11828|GLYG3_SOYBN 
IKNNNPFKFLVPPQE 31,38 1783,962 893,0041 12.42, 12.47 P04776|GLYG1_SOYBN 
VAWWMYNNEDTPVVA 62,26 1793,8083 897,9249 13.31, 13.36 P04405|GLYG2_SOYBN 
ALPEEVIQ 35,1 897,4807 898,4957 10,11 P04405|GLYG2_SOYBN 
GFSKHFLA 51,89 905,4759 906,501 9,51 P02858|GLYG4_SOYBN 
KNKPLVVQ 48,82 924,5756 925,5905 7 P01071|ITRB_SOYBN 
NKNPFLFG 54,92 935,4865 936,5145 12,08 P13916|GLCA_SOYBN 
VNMQIVRN 34,44 972,5175 973,5425 8,73 P04405|GLYG2_SOYBN 
IKNNNPFK 38,4 973,5345 974,5481 7,59 P04776|GLYG1_SOYBN 
IIIAQGKGALG 54,85 1039,6389 1040,6641 9,56 P02858|GLYG4_SOYBN 
YFVDAQPKK 48,09 1094,576 1095,592 8,09 P13916|GLCA_SOYBN 
FPFPRPPHQ 41,44 1121,577 1122,6021 10.25, 10.3 P13916|GLCA_SOYBN 
ALPEEVIQHTFNLKSQQARQ 71,32 2336,2236 1169,1401 11,58 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGNGIFG 61,97 2338,1343 1170,0962 11,88 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGKGIFG 66,83 2352,1863 1177,1235 11,53 P04776|GLYG1_SOYBN 
4IF 70 peptides           
AGVVPPAR 53,27 765,4497 766,4664 7,17 P29531|OLEO2_SOYBN 
AGVVPPARF 38,56 912,5181 913,5347 9.88, 9.93 P29531|OLEO2_SOYBN 
ALPEEVIQHTFNLK 105,06 1637,8777 819,9598 12.54, 12.59, 12.64 P04405|GLYG2_SOYBN 
ALPEEVIQHTFNLKSQQARQ 74,33 2336,2236 1169,126 11,6 P04405|GLYG2_SOYBN 
APAMR 37,26 544,2791 545,2881 2.93, 2.98, 3.03 P04405|GLYG2_SOYBN 
APAMRK 25,78 672,3741 673,3484 3,62 P04405|GLYG2_SOYBN 
DFYNPKA 65,49 853,397 854,4153 8,7 P04347|GLYG5_SOYBN 
EAAEYVGQK 45,28 993,4767 994,5111 6,78 P29531|OLEO2_SOYBN 
EAPRY 31,6 634,3074 635,3193 6,04 P29531|OLEO2_SOYBN 
EEPRE 23,84 658,2922 659,3053 1,8 P02858|GLYG4_SOYBN 
ESVIVEISKEQIRA 32,04 1599,8832 800,9568 11,16 P13916|GLCA_SOYBN 
FAPEFLK 48,05 850,4589 851,4778 10.91, 10.96 P04405|GLYG2_SOYBN 
FEAPRY 31,29 781,3759 782,3841 8,99 P29531|OLEO2_SOYBN 
FGINAENNQRNFLA 48,79 1606,7852 804,3985 11,21 P25974|GLCB_SOYBN 
FLVPPQE 35,37 828,4381 829,4644 10,13 P04405|GLYG2_SOYBN 
FLVPPQESQKR 49,31 1327,7247 664,8831 8,8 P04776|GLYG1_SOYBN 
GDLIAVPTG 34,33 841,4545 842,4684 10.57, 10.62 P04405|GLYG2_SOYBN 
GFAPEFLK 48,74 907,4803 908,5035 11,41 P04405|GLYG2_SOYBN 
GFSKHFLA 58,6 905,4759 906,4879 9,49 P04347|GLYG5_SOYBN 
HGGIATDDDYPYRA 89,66 1549,6797 775,8615 8,94 P22895|P34_SOYBN 
IGINAENNQRNFLA 66,84 1572,8008 787,42 10.67, 10.72 P13916|GLCA_SOYBN 
IIDTNSLENQLDQMPRR 25,48 2042,0215 681,7013 11,01 P04405|GLYG2_SOYBN 
IKNNNPFK 39,85 973,5345 974,5474 7,61 P04776|GLYG1_SOYBN 
IKNNNPFKFLVPPQE 36,82 1783,962 893,0034 12.39, 12.49 P04776|GLYG1_SOYBN 
IPNSISI 27,6 742,4225 743,4401 10,77 P08170|LOX1_SOYBN 
IPSEVLA 34,09 727,4116 728,432 9.78, 9.83 P02858|GLYG4_SOYBN 
ISSEDKPFNLRS 72,17 1391,7045 696,8748 9.29, 9.24 P13916|GLCA_SOYBN 
IYIQQGKGIFG 33,89 1222,671 1223,6768 11,31 P04776|GLYG1_SOYBN 
KGIFG 29,68 520,3009 521,3167 9.68, 9.68 P04776|GLYG1_SOYBN 
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KGLFG 29,68 520,3009 521,3167 9.68, 9.69 Q02920|NO70_SOYBN 
KGVITQ 44,96 644,3857 645,3937 5,74 P22895|P34_SOYBN 
KHFLA 31,94 614,354 615,366 7,32 P04347|GLYG5_SOYBN 
KNKNPFLFG 52,1 1063,5814 1064,6108 11,36 P13916|GLCA_SOYBN 
KNKPLVVQ 52,54 924,5756 925,5872 7,02 P01071|ITRB_SOYBN 
KPLVVQ 35,61 682,4377 683,4479 7,51 P01071|ITRB_SOYBN 
KQQLQ 33,36 643,3653 644,3751 1,9 P02858|GLYG4_SOYBN 
LHENIARPSRA 38,81 1262,6843 632,3531 6,83 P04347|GLYG5_SOYBN 
LSKEQIRQ 27,11 1000,5665 501,2939 6,28 P25974|GLCB_SOYBN 
NALPEEVIQHTFNLK 65,99 1751,9207 876,9775 12,69 P04405|GLYG2_SOYBN 
NKNPFLFG 60,95 935,4865 936,5137 12.1, 12.05 P13916|GLCA_SOYBN 
NPFLFG 42,25 693,3486 694,3571 12,98 P13916|GLCA_SOYBN 
NQLDQ 33,71 616,2816 617,2952 3,67 P04405|GLYG2_SOYBN 
NSGPLVNP 57,91 796,4079 797,4156 8,89 P04347|GLYG5_SOYBN 
PHSVQVHTTTTH 23,51 1343,6582 672,8621 8,6 P29530|OLEO1_SOYBN 
RDPIY 35,53 662,3387 663,3584 7,86 P13916|GLCA_SOYBN 
RDPIYS 46,41 749,3708 750,3907 7.37, 7.42 P13916|GLCA_SOYBN 
RDPIYSNKLG 51,32 1161,6141 581,8258 8,45 P13916|GLCA_SOYBN 
RPSYT 47,57 622,3074 623,3134 4.11, 4.16, 4.21 P04405|GLYG2_SOYBN 
RPSYTNGPQEIYIQQGKGIFG 77,23 2352,1863 1177,1071 11,51 P04776|GLYG1_SOYBN 
SFEWVLE 35,63 908,428 909,4366 13,48 P22895|P34_SOYBN 
SGDAIR 44,25 617,3132 618,3231 3,13 P07135|RR7_SOYBN 
SGDALR 44,25 617,3132 618,3231 3,13 P13916|GLCA_SOYBN 
SNFNNQLDQNPRV 61,36 1544,7332 773,388 9,19 P04347|GLYG5_SOYBN 
SREWRS 31,28 819,3987 820,4037 5,1 P02858|GLYG4_SOYBN 
SYPTKEESET 50,93 1169,5088 1170,5261 6,38 P22895|P34_SOYBN 
TISSEDEPFNLRS 58,83 1493,6997 747,8771 10.37, 10.42 P25974|GLCB_SOYBN 
TISSEDKPFNLRS 72,46 1492,7521 747,3993 9.39, 9.44 P13916|GLCA_SOYBN 
VAWWMYNNEDTPVVA 61,42 1793,8083 1794,8508 13.33, 13.38 P04405|GLYG2_SOYBN 
VEGGLS 24,45 560,2806 561,2895 6,18 P04347|GLYG5_SOYBN 
VKGGLR 28,01 628,402 629,4109 2.29, 2.34 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPKE 42,21 1728,9198 865,4757 12.74, 12.79 P11828|GLYG3_SOYBN 
VKNNNPFSFLVPPKESQRR 72,3 2256,2126 753,0776 12,2 P11828|GLYG3_SOYBN 
VKNNNPFSFLVPPQE 25,72 1728,8834 865,45 13.53, 13.67 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQESQRR 79,07 2256,1763 753,0776 12.15, 12.25 P04405|GLYG2_SOYBN 
VNMQIVRN 35,1 972,5175 973,5398 8,75 P04405|GLYG2_SOYBN 
VPTGV 24,13 471,2693 472,2904 4,66 P04405|GLYG2_SOYBN 
VQVHT 28,27 582,3126 583,3218 5,3 P29531|OLEO2_SOYBN 
VSIIDTNSLENQLDQMPRR 72,05 2228,1218 743,7304 11.7, 11.75, 11.8 P04405|GLYG2_SOYBN 
WWMYNNEDTPVVA 55,07 1623,7028 1624,7466 13.13, 13.18 P04405|GLYG2_SOYBN 
YNLRQ 24,81 692,3605 693,3714 7,07 P02858|GLYG4_SOYBN 
5IF 82 peptides           
AGVVPPAR 46,68 765,4497 766,4603 7.16, 7.21 P29531|OLEO2_SOYBN 
ALPEEVIQHTFNLK 104,85 1637,8777 819,9572 12.54, 12.58,12.63 P04776|GLYG1_SOYBN 
ANSLLN 31,05 630,3337 631,352 8,49 P04776|GLYG1_SOYBN 
APAMR 41,28 544,2791 545,2913 2.87, 2.97 P04405|GLYG2_SOYBN 
DFYNPKA 68,28 853,397 854,4231 8,69 P02858|GLYG4_SOYBN 
DFYNPKAGRI 33,97 1179,6036 590,8165 9,48 P02858|GLYG4_SOYBN 
DITAFG 23,21 622,2962 623,3112 10,02 P01070|ITRA_SOYBN 
EQIRA 22,28 615,334 616,3437 5.34, 5.39 P13916|GLCA_SOYBN 
EQIRQ 25,62 672,3555 673,3682 2,33 P25974|GLCB_SOYBN 
ESFFLS 21,82 728,3381 729,3515 11,94 P13916|GLCA_SOYBN 
FAPEFLK 46,37 850,4589 851,5252 10.91, 10.96 P04405|GLYG2_SOYBN 
FEAPRY 21,47 781,3759 782,3947 8,99 P29531|OLEO2_SOYBN 
FLVPPQE 34,32 828,4381 829,4628 10,12 P04776|GLYG1_SOYBN 
FPFPRPPHQ 38,67 1121,577 1122,6074 10.22, 10.27, 10.32 P13916|GLCA_SOYBN 
FPGSAQAVEKLLK 75,51 1386,787 694,403 11,25 P13916|GLCA_SOYBN 
FQKLDKES 33,11 993,5131 994,5262 6,67 P01070|ITRA_SOYBN 
FREGDLIAVPTG 19,41 1273,6666 637,8542 11,11 P04776|GLYG1_SOYBN 
FSKHFLA 48,75 848,4545 849,4788 9.13, 9.18 P02858|GLYG4_SOYBN 
FSRNILE 27,36 877,4658 878,4806 9,63 P13916|GLCA_SOYBN 
GAIVT 20,97 459,2693 460,2806 6,37 P04776|GLYG1_SOYBN 
GANSLLN 28,38 687,3552 688,3746 8,74 P04776|GLYG1_SOYBN 
GDLIAVPTG 32,77 841,4545 842,4683 10.61, 10.56 P04776|GLYG1_SOYBN 
GFSKHFLA 41,25 905,4759 906,5023 9,53 P02858|GLYG4_SOYBN 
GFSKNILE 41,35 906,4811 907,5018 9,87 P11827|GLCAP_SOYBN 
HGGIATDDDYPYRA 123,19 1549,6797 775,8525 8,94 P22895|P34_SOYBN 
HTFNLK 55,93 758,4075 759,4222 7,7 P04776|GLYG1_SOYBN 
HVRVLQ 37,53 750,4501 751,465 6,77 P11827|GLCAP_SOYBN 
IGENKDAMDGWFRL 66,01 1650,7823 826,4037 13.42, 13.47 P01070|ITRA_SOYBN 
IIDTNSLENQLDQMPRR 41,7 2042,0215 681,6876 11,01 P04776|GLYG1_SOYBN 
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IKNNNPFK 40,92 973,5345 974,5466 7.56, 7.61 P04776|GLYG1_SOYBN 
IKNNNPFKF 27,54 1120,6029 1121,6221 10,47 P04776|GLYG1_SOYBN 
INAENNQRNFLA 46,86 1402,6953 702,3677 9,58 P13916|GLCA_SOYBN 
IPNSISI 27,6 742,4225 743,4495 10,76 P24095|LOXX_SOYBN 
IPSEVLA 30,53 727,4116 728,4305 9.78, 9.82 P02858|GLYG4_SOYBN 
ISLLDTSNFNNQLDQTPRV 101,62 2174,0967 1088,0457 12,34 P02858|GLYG4_SOYBN 
ISSEDKPFNLRS 59,83 1391,7045 696,8665 9,28 P13916|GLCA_SOYBN 
KGAIG 22,9 444,2696 445,2786 2.53, 2.59 P04347|GLYG5_SOYBN 
KGALG 22,9 444,2696 445,2786 2.53, 2.58 P02858|GLYG4_SOYBN 
KGIFG 26,62 520,3009 521,3171 9,68 P04776|GLYG1_SOYBN 
KGLFG 26,62 520,3009 521,3171 9,68 Q02920|NO70_SOYBN 
KHFLA 32,68 614,354 615,3702 7,26 P02858|GLYG4_SOYBN 
KNILE 22,74 615,3591 616,3737 7,95 P11827|GLCAP_SOYBN 
KNKNPFLFG 53,38 1063,5814 1064,5978 11.35, 11.4, 11.45 P13916|GLCA_SOYBN 
KNKPLVVQ 57,86 924,5756 925,5957 7,01 P01070|ITRA_SOYBN 
KNPFLFG 53,94 821,4435 822,4618 12,19 P13916|GLCA_SOYBN 
KPLVVQ 44,65 682,4377 683,452 7,51 P01070|ITRA_SOYBN 
LHENIARPSRA 38,01 1262,6843 632,3513 6,82 P02858|GLYG4_SOYBN 
LSKEQIRQ 19,64 1000,5665 501,2986 6,28 P25974|GLCB_SOYBN 
NALPEEVIQHTFNLK 59,21 1751,9207 876,9781 12,73 P04776|GLYG1_SOYBN 
NGPQEIYIQQGKGIFG 103,94 1747,8893 874,9542 11,65 P04776|GLYG1_SOYBN 
NKNPFLFG 56,35 935,4865 936,4989 12.09, 12.14 P13916|GLCA_SOYBN 
NPFLFG 33 693,3486 694,3583 12.98, 13.03 P13916|GLCA_SOYBN 
NQLDQ 28,81 616,2816 617,2911 3.56, 3.61 P04776|GLYG1_SOYBN 
NSGPLVNP 72,71 796,4079 797,4264 8.79, 8.89 P04347|GLYG5_SOYBN 
NSLLN 25,56 559,2966 560,3074 8,3 P04776|GLYG1_SOYBN 
QNALR 19,56 600,3344 601,342 2,63 Q9FZL4|MGDG_SOYBN 
QRSPQLQ 37,58 855,4562 856,4615 6,18 P13916|GLCA_SOYBN 
QTLFK 38,09 635,3643 636,3813 8,54 P11827|GLCAP_SOYBN 
RDPIY 28,15 662,3387 663,3546 7,9 P13916|GLCA_SOYBN 
RDPIYS 45,23 749,3708 750,3831 7.36, 7.41, 7.46 P13916|GLCA_SOYBN 
RDPIYSNKLG 58,22 1161,6141 581,8245 8,44 P13916|GLCA_SOYBN 
RPSYT 47,67 622,3074 623,3112 4.01, 4.11, 4.16 P04776|GLYG1_SOYBN 
RPSYTN 35,9 736,3504 737,3555 3,37 P04776|GLYG1_SOYBN 
RPSYTNGPQEIYIQQGKGIFG 79,06 2352,1863 1177,1293 11.5, 11.55 P04776|GLYG1_SOYBN 
SEDKPFNLRS 30,18 1191,5884 596,8152 8,84 P13916|GLCA_SOYBN 
SGDAIR 43,11 617,3132 618,3224 3.02, 3.08 P07135|RR7_SOYBN 
SGDALR 43,11 617,3132 618,3224 3.02, 3.07 P13916|GLCA_SOYBN 
SITTA 19,29 491,2591 492,268 4,06 P04405|GLYG2_SOYBN 
SNRFETLFK 31,02 1140,5928 571,3143 10,71 P13916|GLCA_SOYBN 
SYPTK 30,34 594,3013 595,3127 2,68 P22895|P34_SOYBN 
TISSEDEPFNLRS 39,79 1493,6997 747,8678 10,42 P25974|GLCB_SOYBN 
TISSEDKPFNLRS 72,7 1492,7521 747,3875 9,38 P13916|GLCA_SOYBN 
VAWWMYNNEDTPVVA 59,6 1793,8083 897,9229 13.32,13.37 P04776|GLYG1_SOYBN 
VKNNNPFSFLVPPQE 25,85 1728,8834 865,4539 13.57, 13.62 P04405|GLYG2_SOYBN 
VKNNNPFSFLVPPQESQRR 19,61 2256,1763 1129,0918 12,24 P04405|GLYG2_SOYBN 
VNMQIVR 34,29 858,4745 859,4933 9,04 P04405|GLYG2_SOYBN 
VPQNFVVA 44,43 872,4756 873,4901 10,37 P04776|GLYG1_SOYBN 
VPTGV 24,37 471,2693 472,2818 4.6, 4.65, 4.7 P04776|GLYG1_SOYBN 
VSIIDTNSLENQLDQMPRR 49,27 2228,1218 1115,0854 11.75, 11.8 P04776|GLYG1_SOYBN 
WNPNNKPFQ 58,75 1143,5461 1144,5516 9,33 P04776|GLYG1_SOYBN 
WWMYNNEDTPVVA 35,3 1623,7028 812,8617 13,18 P04776|GLYG1_SOYBN 
YNLRQ 20,58 692,3605 693,3715 7,06 P02858|GLYG4_SOYBN 
Peptides in fractions <3 kDa  
1IF 40 peptides           
AIEAAHA 50,89 681,3445 682,3574 5,79 P22895|P34_SOYBN 
ANSII 23,64 516,2908 517,3023 9.59, 9.64 P04405|GLYG2_SOYBN 
ANSLLN 32,03 630,3337 631,3474 8.5, 8.55 P04405|GLYG2_SOYBN 
APAMR 37,95 544,2791 545,291 2.98, 3.08, 3.13 P04405|GLYG2_SOYBN 
DFYNPKA 72,27 853,397 854,4037 8.7 and 87.5 P04347|GLYG5_SOYBN 
EAPRY 19,54 634,3074 635,3176 6,09 P29531|OLEO2_SOYBN 
EEGGSV 23,28 576,2391 577,2771 7,03 P04347|GLYG5_SOYBN 
EQIRQ 19,56 672,3555 673,3647 2,54 P25974|GLCB_SOYBN 
FAPEFLK 48,07 850,4589 851,4752 10.97, 11.02 P04405|GLYG2_SOYBN 
FSKHFLA 50,38 848,4545 849,4622 9,19 P04347|GLYG5_SOYBN 
GNGIFG 21,69 563,2703 564,2834 10,13 P04405|GLYG2_SOYBN 
IPNSISI 43,63 742,4225 743,4359 10,77 P38417|LOX4_SOYBN 
IPSEVLA 43,24 727,4116 728,4208 9.83, 9.88 P02858|GLYG4_SOYBN 
IPSEVLS 22,35 743,4065 744,4182 9,39 P04347|GLYG5_SOYBN 
KGAIG 21,34 444,2696 445,2798 2,64 P04347|GLYG5_SOYBN 
KGALG 21,34 444,2696 445,2798 2,64 P02858|GLYG4_SOYBN 
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KGVIT 33,33 516,3271 517,3336 5,35 P22895|P34_SOYBN 
KHFLA 36,81 614,354 615,3675 7.32, 7.37 P04347|GLYG5_SOYBN 
KNPFLFG 54,18 821,4435 822,4477 12,25 P13916|GLCA_SOYBN 
KPLVVQ 36,49 682,4377 683,4493 7,57 P01071|ITRB_SOYBN 
NKNPFLFG 43,81 935,4865 936,4952 12,2 P13916|GLCA_SOYBN 
NPFLFG 38,49 693,3486 694,3556 12.99, 13.04, 13.09 P13916|GLCA_SOYBN 
NSGPLVNP 77,14 796,4079 797,4247 8,8 P04347|GLYG5_SOYBN 
NSLAR 28,89 559,3078 560,3038 8,36 P38417|LOX4_SOYBN 
NTGNLLG 42,11 687,3552 688,3668 9,14 P22895|P34_SOYBN 
QSGDALR 41,11 745,3718 746,3859 4,02 P13916|GLCA_SOYBN 
RDPIYS 47,37 749,3708 750,3837 7.42, 7.47 P13916|GLCA_SOYBN 
RPSYT 51 622,3074 623,3136 4.22, 4.27, 4.36 P04405|GLYG2_SOYBN 
SGDAIR 47,31 617,3132 618,3253 3,23 P07135|RR7_SOYBN 
SGDALR 47,31 617,3132 618,3253 3,23 P13916|GLCA_SOYBN 
SREWRS 38,05 819,3987 820,4088 5,25 P02858|GLYG4_SOYBN 
SYNLRQ 22,49 779,3926 780,3976 7,27 P02858|GLYG4_SOYBN 
TGNLLG 34,3 573,3122 574,321 8,95 P22895|P34_SOYBN 
TISSEDKPFNLRS 73,7 1492,7521 747,3859 9,44 P13916|GLCA_SOYBN 
TPVVA 22,97 485,2849 486,2937 7,12 P04405|GLYG2_SOYBN 
TVTATTATA 45,74 835,4287 836,4349 6,68 P29531|OLEO2_SOYBN 
VEGGLS 20,44 560,2806 561,2879 6,19 P04347|GLYG5_SOYBN 
VNMQIVR 30,49 858,4745 859,4855 9,09 P04405|GLYG2_SOYBN 
VPTGV 23,81 471,2693 472,2916 4.71, 4.81, 4.86 P04405|GLYG2_SOYBN 
VVPPAR 19,61 637,3911 638,3992 5,94 P29531|OLEO2_SOYBN 
2IF 27 peptides           
AGVVPPAR 52,86 765,4497 766,4609 7.27, 7.32 P29531|OLEO2_SOYBN 
ANSLLN 24,9 630,3337 631,3416 8,55 P04405|GLYG2_SOYBN 
APAMR 30,04 544,2791 545,2881 3.38, 3.48, 3.53 P04405|GLYG2_SOYBN 
DFYNPKAGRI 24,11 1179,6036 590,8104 9,59 P04347|GLYG5_SOYBN 
EAPRY 24,12 634,3074 635,3184 6,29 P29531|OLEO2_SOYBN 
FAPEFLK 25,63 850,4589 851,4645 11,02 P04405|GLYG2_SOYBN 
FEAPRY 20,55 781,3759 782,3884 9,1 P29531|OLEO2_SOYBN 
GANSLLN 21,37 687,3552 688,3698 8,8 P04405|GLYG2_SOYBN 
GKGIFG 22,01 577,3224 578,3355 9,54 P04776|GLYG1_SOYBN 
IPNSISI 45,58 742,4225 743,4329 10,82 P09186|LOX3_SOYBN 
IPSEVLA 34,27 727,4116 728,4174 9,88 P02858|GLYG4_SOYBN 
IPSEVLS 28,03 743,4065 744,417 9,39 P04347|GLYG5_SOYBN 
ISSEDKPFNLRS 76,78 1391,7045 696,8602 9,34 P13916|GLCA_SOYBN 
KGVITQ 27,54 644,3857 645,4028 5,99 P22895|P34_SOYBN 
KHFLA 28,83 614,354 615,3632 7,42 P04347|GLYG5_SOYBN 
KPLVVQ 35,24 682,4377 683,4519 7,62 P01071|ITRB_SOYBN 
LSKEQIRQ 20,67 1000,5665 501,295 6,39 P25974|GLCB_SOYBN 
NKNPFLFG 46,32 935,4865 936,4965 12,2 P13916|GLCA_SOYBN 
NQLDQ 27,18 616,2816 617,2889 4,12 P04347|GLYG5_SOYBN 
NSGPLVNP 77,57 796,4079 797,4174 8,9 P04347|GLYG5_SOYBN 
NSLAR 26,45 559,3078 560,3116 8,41 P38417|LOX4_SOYBN 
RDPIYS 42,07 749,3708 750,3882 7.52, 7.57 P13916|GLCA_SOYBN 
RNPIYS 25,62 748,3868 749,3975 7,67 P25974|GLCB_SOYBN 
RPSYT 40,32 622,3074 623,32 4.56, 4.61 P04405|GLYG2_SOYBN 
RPVLG 21,56 540,3384 541,35 7,37 P09186|LOX3_SOYBN 
VEGGLS 20,98 560,2806 561,2922 6,34 P04347|GLYG5_SOYBN 
YNLRQ 22,07 692,3605 693,3702 7,17 P02858|GLYG4_SOYBN 
3IF 23 peptides           
AGVVPPAR 22,22 765,4497 766,4638 7,28 P29531|OLEO2_SOYBN 
ANSLLN 25,42 630,3337 631,3508 8,51 P04776|GLYG1_SOYBN 
APAMR 31,54 544,2791 545,2882 2.85, 2.9, 2.95 P04405|GLYG2_SOYBN 
DITAFG 22,99 622,2962 623,308 10,04 P01071|ITRB_SOYBN 
EAPRY 24,5 634,3074 635,3214 6,1 P29531|OLEO2_SOYBN 
EGEDK 23,34 576,2391 577,2753 7,04 P04776|GLYG1_SOYBN 
GIENFRL 23,03 847,4552 848,463 11,52 Q04672|SBP_SOYBN 
IPNSISI 43,54 742,4225 743,4355 10.73, 10.88 P09186|LOX3_SOYBN 
IPSEVLA 34,81 727,4116 728,4221 9.84, 9.89 P02858|GLYG4_SOYBN 
IPSEVLS 36,38 743,4065 744,4166 9,35 P04347|GLYG5_SOYBN 
KGAIG 22,21 444,2696 445,2794 2,55 P04347|GLYG5_SOYBN 
KGALG 22,21 444,2696 445,2794 2,55 P02858|GLYG4_SOYBN 
KGVITQ 30,12 644,3857 645,4016 5,75 P22895|P34_SOYBN 
KHFLA 32,27 614,354 615,3674 7.33, 7.38 P04347|GLYG5_SOYBN 
KNKPLVVQ 47,57 924,5756 925,5882 7,09 P01071|ITRB_SOYBN 
NPFLFG 24,12 693,3486 694,3553 13,05 P13916|GLCA_SOYBN 
NSGPLVNP 71,12 796,4079 797,4171 8,91 P04347|GLYG5_SOYBN 
RDPIYS 33,1 749,3708 750,3822 7,43 P13916|GLCA_SOYBN 
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RNPIYS 25,72 748,3868 749,3976 7,58 P25974|GLCB_SOYBN 
RPSYT 37,5 622,3074 623,3181 4.03, 4.08, 4.18 P04776|GLYG1_SOYBN 
TGNLLG 23,32 573,3122 574,3218 8,96 P22895|P34_SOYBN 
VAISR 28,28 544,3333 545,3372 6,15 C6T1G0|CSPL1_SOYBN 
VALSR 28,28 544,3333 545,3372 6,15 P04776|GLYG1_SOYBN 
4IF 57 peptides           
AGVVPPAR 46,81 765,4497 766,4635 7,24 P29531|OLEO2_SOYBN 
AGVVPPARF 18,01 912,5181 913,53 10 P29531|OLEO2_SOYBN 
ALPEEVIQHTFNLK 73,39 1637,8777 819,9507 12,61 P04405|GLYG2_SOYBN 
ANSLLN 28,56 630,3337 631,352 8,47 P04405|GLYG2_SOYBN 
APAMR 31,33 544,2791 545,2869 2,9 P04405|GLYG2_SOYBN 
APAMRK 17,62 672,3741 673,3467 3,59 P04405|GLYG2_SOYBN 
DFYNPKA 63,4 853,397 854,4196 8,71 P04347|GLYG5_SOYBN 
DFYNPKAGRI 17,1 1179,6036 590,8082 9,55 P04347|GLYG5_SOYBN 
DITAFG 18,53 622,2962 623,3163 10,04 P01070|ITRA_SOYBN 
EAPRY 23,64 634,3074 635,3179 6.05, 6.1 P29531|OLEO2_SOYBN 
EEGGSV 18,86 576,2391 577,2775 6.94, 6.99 P04347|GLYG5_SOYBN 
EQIRQ 23,62 672,3555 673,3666 2.35, 2.4 P25974|GLCB_SOYBN 
FAPEFLK 40,97 850,4589 851,4727 10.93, 10.98, 11.03 P04405|GLYG2_SOYBN 
FEAPRY 17,67 781,3759 782,3851 9,06 P29531|OLEO2_SOYBN 
FGGIRA 14,55 619,3442 620,3546 8,62 P01070|ITRA_SOYBN 
FLVPPQE 32,42 828,4381 829,448 10,14 P04405|GLYG2_SOYBN 
FPFPRPPHQ 28,46 1121,577 1122,5988 10,29 P13916|GLCA_SOYBN 
GANSLL 20,18 573,3122 574,3213 9.75, 9.8 P04405|GLYG2_SOYBN 
GANSLLN 22,99 687,3552 688,3773 8,76 P04405|GLYG2_SOYBN 
GDLIAVPTG 25,96 841,4545 842,4692 10,64 P04405|GLYG2_SOYBN 
GIENFRL 15,47 847,4552 848,4659 11,52 Q04672|SBP_SOYBN 
GKGIFG 23,34 577,3224 578,3397 9.45, 9.5 P04776|GLYG1_SOYBN 
HSYNLRQ 34,76 916,4515 917,4611 6,6 P02858|GLYG4_SOYBN 
HTFNLK 47,18 758,4075 759,4224 7,73 P04405|GLYG2_SOYBN 
INAENNQRNFLA 44,94 1402,6953 702,368 9,65 P13916|GLCA_SOYBN 
IPSEVLA 30,21 727,4116 728,423 9,9 P02858|GLYG4_SOYBN 
IPSEVLS 24,8 743,4065 744,4184 9.35, 9.4 P04347|GLYG5_SOYBN 
IVTVK 24,32 558,3741 559,3825 6,25 P04405|GLYG2_SOYBN 
KGIFG 20,94 520,3009 521,3137 9,7 P04776|GLYG1_SOYBN 
KGLFG 20,94 520,3009 521,3137 9,7 Q02920|NO70_SOYBN 
KGVITQ 20,82 644,3857 645,3961 5,71 P22895|P34_SOYBN 
KHFLA 27,82 614,354 615,368 7,28 P04347|GLYG5_SOYBN 
KNKPLVVQ 49,56 924,5756 925,5909 7,04 P01070|ITRA_SOYBN 
KNPFLFG 46,08 821,4435 822,4434 12,21 P13916|GLCA_SOYBN 
KPLVVQ 34,74 682,4377 683,4454 7,53 P01070|ITRA_SOYBN 
LDFPAL 21,3 674,3639 675,3725 13,05 P04405|GLYG2_SOYBN 
LSKEQIRQ 19,99 1000,5665 501,2962 6,3 P25974|GLCB_SOYBN 
NKNPFLFG 47,84 935,4865 936,5017 12,16 P13916|GLCA_SOYBN 
NPFLFG 33,9 693,3486 694,3557 13, 13.1 P13916|GLCA_SOYBN 
NQLDQ 25,06 616,2816 617,2943 3,64 P04405|GLYG2_SOYBN 
NSGPLVNP 67 796,4079 797,4295 8.81, 8.86 P04347|GLYG5_SOYBN 
NSLLN 20,33 559,2966 560,3123 8,32 P04405|GLYG2_SOYBN 
PFLFG 16,8 579,3057 580,315 13,25 P13916|GLCA_SOYBN 
QGKGALGV 14,72 728,4181 729,3614 6,89 P02858|GLYG4_SOYBN 
QPQQR 19,89 655,3401 656,3431 6,5 P04776|GLYG1_SOYBN 
RDPIYS 37,37 749,3708 750,3871 7.38, 7.43 P13916|GLCA_SOYBN 
RPSYT 41,19 622,3074 623,3163 4.03, 4.08, 4.13 P04405|GLYG2_SOYBN 
SNLNFFA 26,79 811,3864 812,3961 12,31 P13916|GLCA_SOYBN 
SREWRS 22,54 819,3987 820,4049 5.02, 5.12 P02858|GLYG4_SOYBN 
TPVVA 24,66 485,2849 486,298 7,09 P04405|GLYG2_SOYBN 
TVTATTATA 50,42 835,4287 836,4424 6,64 P29531|OLEO2_SOYBN 
VKGGLS 18,25 559,3329 560,3455 3,05 P04776|GLYG1_SOYBN 
VNMQIVR 20,88 858,4745 859,4823 9,11 P04405|GLYG2_SOYBN 
VPQFLFS 20,29 836,4432 837,4514 12,9 P13917|7SB1_SOYBN 
VPTGV 19,9 471,2693 472,2908 4.53, 4.57 P04405|GLYG2_SOYBN 
VQVHT 16,03 582,3126 583,3232 5.22, 5.31 P29531|OLEO2_SOYBN 
YSLGA 15,59 509,2485 510,2624 7,58 Q2PMT9|PSBC_SOYBN 
YSLGA  509,2485 510,2624 7,58 Q2PMT9|PSBC_SOYBN 
5IF 48 peptides           
AGVVPPAR 53,16 765,4497 766,4645 7.17, 7.22 P29531|OLEO2_SOYBN 
AIVTVK 41,34 629,4112 630,4255 7,67 P04405|GLYG2_SOYBN 
ANSII 22,05 516,2908 517,3065 9,59 P04405|GLYG2_SOYBN 
APAMR 35,57 544,2791 545,2895 2.79, 2.84, 2.89 P04405|GLYG2_SOYBN 
ATSDLNFFA 50,28 984,4552 985,4573 12,45 P11827|GLCAP_SOYBN 
EAPRY 22,09 634,3074 635,3198 6,09 P29531|OLEO2_SOYBN 
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EQIRA 21,52 615,334 616,3412 5,35 P13916|GLCA_SOYBN 
ESFFLS 23,33 728,3381 729,3497 12, 12.05 P13916|GLCA_SOYBN 
FAPEFLK 44,38 850,4589 851,4774 10.97, 11.02 P04405|GLYG2_SOYBN 
FGGIRA 24,89 619,3442 620,3546 8,6 P01070|ITRA_SOYBN 
GANSLL 21,25 573,3122 574,3224 9,78 P04405|GLYG2_SOYBN 
GANSLLN 31,4 687,3552 688,3698 8,75 P04405|GLYG2_SOYBN 
GKGIFG 27,57 577,3224 578,3353 9.44, 9.49 P04776|GLYG1_SOYBN 
GLRVT 20,23 544,3333 545,3429 6,78 P04405|GLYG2_SOYBN 
HSYNLRQ 51,07 916,4515 917,4591 6,58 P02858|GLYG4_SOYBN 
IPNSISI 41,22 742,4225 743,4412 10,72 P09439|LOX2_SOYBN 
IPSEVLS 33,25 743,4065 744,416 9,29 P04347|GLYG5_SOYBN 
KGIFG 26,59 520,3009 521,313 9.69, 9.74 P04776|GLYG1_SOYBN 
KGLFG 26,59 520,3009 521,313 9.69, 9.74 Q02920|NO70_SOYBN 
KGVITQ 27,49 644,3857 645,4 5.7, 5.74 P22895|P34_SOYBN 
KHFLA 30,91 614,354 615,3643 7,27 P04347|GLYG5_SOYBN 
KNKPLVVQ 52,22 924,5756 925,5923 7,03 P01070|ITRA_SOYBN 
KNPFLFG 52,83 821,4435 822,4519 12,25 P13916|GLCA_SOYBN 
KPLVVQ 43,46 682,4377 683,4452 7,52 P01070|ITRA_SOYBN 
LPALRQ 26,91 696,4282 697,4458 8,41 P04347|GLYG5_SOYBN 
LSKEQIRQ 22,71 1000,5665 501,2937 6,24 P25974|GLCB_SOYBN 
NKNPFLFG 39,81 935,4865 936,4974 12,2 P13916|GLCA_SOYBN 
NPFLFG 37,78 693,3486 694,3577 13,04 P13916|GLCA_SOYBN 
NQLDQ 28,51 616,2816 617,2924 3,58 P04405|GLYG2_SOYBN 
NSGPLVNP 75,36 796,4079 797,4288 8,8 P04347|GLYG5_SOYBN 
NSLLN 28,4 559,2966 560,3035 8,31 P04405|GLYG2_SOYBN 
QELRK 20,92 672,3918 673,3674 2.29, 2.34 Q1W376|PMM_SOYBN 
RDPIY 25,02 662,3387 663,3578 7,91 P13916|GLCA_SOYBN 
RDPIYS 43,93 749,3708 750,3839 7.37, 7.42, 7.47 P13916|GLCA_SOYBN 
RPSYT 45,5 622,3074 623,319 3.97, 4.02, 4.12 P04405|GLYG2_SOYBN 
SGDAIR 44,78 617,3132 618,3238 2.98, 3.03 P07135|RR7_SOYBN 
SGDALR 44,78 617,3132 618,3238 2.98, 3.03 P13916|GLCA_SOYBN 
SNLNFFA 53,27 811,3864 812,3928 12,3 P13916|GLCA_SOYBN 
SNRFETLFK 37,09 1140,5928 571,3098 10,77 P13916|GLCA_SOYBN 
TPVVA 21,85 485,2849 486,2963 7,07 P04405|GLYG2_SOYBN 
VEICT 23,19 563,2625 564,2834 10,13 P09439|LOX2_SOYBN 
VNMQIVR 36,09 858,4745 859,4857 9,05 P04405|GLYG2_SOYBN 
VPPQE 21,38 568,2856 569,2798 3,67 P04405|GLYG2_SOYBN 
VPTGV 20,6 471,2693 472,291 4.56, 4.61 P04405|GLYG2_SOYBN 
VQVHT 21,86 582,3126 583,3224 5.2, 5.25 P29531|OLEO2_SOYBN 
VVPPAR 43,68 637,3911 638,4017 5,89 P29531|OLEO2_SOYBN 
WNPNNKPFQ 64,18 1143,5461 1144,5513 9.39, 9.34 P04405|GLYG2_SOYBN 
WWMYNNEDTPVVA 27,25 1623,7028 812,8536 13,19 P04405|GLYG2_SOYBN 
Peptides in fractions 3-5 kDa GI 
1IF42 peptides           
AGVTVS 24,66 532,2856 533,2927 6,25 P04347|GLYG5_SOYBN 
AGVVPPA 37,62 609,3486 610,3592 8,17 P29531|OLEO2_SOYBN 
ANSII 24,08 516,2908 517,2986 9,6 P04776|GLYG1_SOYBN 
AVVAGLP 19,41 625,3799 626,3883 9,65 P29531|OLEO2_SOYBN 
DFYNPK 60,42 782,3599 783,3716 8,32 P04347|GLYG5_SOYBN 
EEGGSV 25,55 576,2391 577,2758 6,99 P04347|GLYG5_SOYBN 
FEAPR 41,37 618,3125 619,323 7,14 P29531|OLEO2_SOYBN 
GGLIE 21,97 487,2642 488,2733 8,56 P04347|GLYG5_SOYBN 
GKGIFG 23,68 577,3224 578,3324 9,5 P04776|GLYG1_SOYBN 
GNDTFPYPR 35,64 1065,4879 1066,4934 9,55 P09186|LOX3_SOYBN 
HENIARPS 41,87 922,462 923,4683 5,71 P04347|GLYG5_SOYBN 
IPSEV 34,34 543,2904 544,2982 8,27 P04347|GLYG5_SOYBN 
IPSEVL 32,9 656,3745 657,3767 10,24 P04347|GLYG5_SOYBN 
IPSEVLS 36,53 743,4065 744,4142 9,35 P04347|GLYG5_SOYBN 
IPSQV 26,61 542,3064 543,318 7,88 P13916|GLCA_SOYBN 
ISSEDKPF 43,16 921,4443 922,4562 8,71 P13916|GLCA_SOYBN 
KGAIG 27,51 444,2696 445,2782 2,55 P04347|GLYG5_SOYBN 
KGALG 27,51 444,2696 445,2782 2,55 P02858|GLYG4_SOYBN 
KGIFG 19,64 520,3009 521,3122 9,75 P04776|GLYG1_SOYBN 
KGLFG 19,64 520,3009 521,3122 9,75 Q02920|NO70_SOYBN 
KGVIT 19,96 516,3271 517,3308 4,57 P22895|P34_SOYBN 
KGVITQ 33,55 644,3857 645,3919 5,66 P22895|P34_SOYBN 
NIARPS 28,37 656,3605 657,3711 5,56 P04347|GLYG5_SOYBN 
NQLDQ 32,51 616,2816 617,2924 3,44 P04347|GLYG5_SOYBN 
NQLDQMPR 45,83 1000,476 1001,4887 8,42 P04776|GLYG1_SOYBN 
NSGPLVNP 92,61 796,4079 797,4164 8,81 P04347|GLYG5_SOYBN 
NSYNLG 23,17 666,2973 667,306 8,12 P04347|GLYG5_SOYBN 
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NTGNLLG 27,41 687,3552 688,3624 9,11 P22895|P34_SOYBN 
QELVQ 23,76 615,3228 616,3422 5,21 P10538|AMYB_SOYBN 
RDPIYS 33,05 749,3708 750,3795 7,38 P13916|GLCA_SOYBN 
RPSYT 47,13 622,3074 623,3176 3,88 P04776|GLYG1_SOYBN 
SGDAI 26,54 461,2122 462,2233 5,9 P07135|RR7_SOYBN 
SGDAL 26,54 461,2122 462,2233 5,9 P13916|GLCA_SOYBN 
SSEDKPF 40,67 808,3602 809,3687 9,01 P13916|GLCA_SOYBN 
SSSIA 20,76 463,2278 464,2499 9,8 Q2PMQ9|PSBB_SOYBN 
SSSLA 20,76 463,2278 464,2499 9,8 P09755|CB22_SOYBN 
TGSGMGTLL 31,41 835,4109 836,4244 11,03 P28551|TBB3_SOYBN 
TISSEDKP 36,04 875,4236 876,4266 6,3 P13916|GLCA_SOYBN 
TISSEDKPF 54,35 1022,492 1023,5031 8,96 P13916|GLCA_SOYBN 
VEGGLS 28,1 560,2806 561,2917 6,05 P04347|GLYG5_SOYBN 
VQVHT 23,51 582,3126 583,3184 5,02 P29531|OLEO2_SOYBN 
YNLRQ 31,71 692,3605 693,3647 7,04 P02858|GLYG4_SOYBN 
2IF 36 peptides           
AGVTVS 23,04 532,2856 533,2955 6,29 P04347|GLYG5_SOYBN 
AGVVPPA 52,88 609,3486 610,3576 8,11 P29531|OLEO2_SOYBN 
AGVVPPGA 53,58 666,3701 667,3796 8,41 P29530|OLEO1_SOYBN 
AIVTV 25,28 501,3162 502,3236 9,59 P04776|GLYG1_SOYBN 
DFYNPK 58,17 782,3599 783,3716 8,31 P04347|GLYG5_SOYBN 
DFYNPKA 53,47 853,397 854,4159 8,75 P04347|GLYG5_SOYBN 
EEGGSV 20,91 576,2391 577,274 6,98 P04347|GLYG5_SOYBN 
EFPPR 22,25 644,3282 645,34 7,57 P09186|LOX3_SOYBN 
FEAPR 26,76 618,3125 619,3209 7,18 P29531|OLEO2_SOYBN 
FLVPPQE 36,25 828,4381 829,4492 10,18 P04776|GLYG1_SOYBN 
GGLIE 28,2 487,2642 488,2757 8,6 P04347|GLYG5_SOYBN 
GKGIFG 24,19 577,3224 578,3302 9,49 P04776|GLYG1_SOYBN 
IKNNNPF 36,33 845,4395 846,4503 8,65 P04776|GLYG1_SOYBN 
IPSEVLS 31,58 743,4065 744,4177 9,34 P04347|GLYG5_SOYBN 
IYIQQGK 45,34 848,4756 849,4827 7,42 P04776|GLYG1_SOYBN 
KGIFG 21,41 520,3009 521,3115 9,74 P04776|GLYG1_SOYBN 
KGLFG 21,41 520,3009 521,3115 9,74 Q02920|NO70_SOYBN 
KGVITQ 21,51 644,3857 645,3984 5,7 P22895|P34_SOYBN 
KNKNPF 28,4 746,4075 747,4099 6,68 P13916|GLCA_SOYBN 
NIARPS 28,83 656,3605 657,3752 5,55 P04347|GLYG5_SOYBN 
NQLDQ 28,55 616,2816 617,291 3,58 P04347|GLYG5_SOYBN 
NSGPLVNP 70,43 796,4079 797,4184 8,85 P04347|GLYG5_SOYBN 
NSYNLG 28,13 666,2973 667,3091 8,11 P04347|GLYG5_SOYBN 
RDPIYS 32,99 749,3708 750,3798 7,47 P13916|GLCA_SOYBN 
RPSYT 44,09 622,3074 623,3176 4,12 P04776|GLYG1_SOYBN 
SGDAI 22,35 461,2122 462,2237 5,94 P07135|RR7_SOYBN 
SGDAL 22,35 461,2122 462,2237 5,94 P13916|GLCA_SOYBN 
TISSEDKPF 51,15 1022,492 1023,4997 9 P13916|GLCA_SOYBN 
TPVVA 22,54 485,2849 486,2946 7,13 P04776|GLYG1_SOYBN 
VISPK 24,98 542,3428 543,3516 3,97 P04347|GLYG5_SOYBN 
VKGGLS 22,57 559,3329 560,3414 3,04 P04776|GLYG1_SOYBN 
VPPQE 24,18 568,2856 569,2925 3,73 P04776|GLYG1_SOYBN 
VQVHT 28,3 582,3126 583,3195 5,2 P29531|OLEO2_SOYBN 
YEAGVVPPA 32,04 901,4545 902,4636 9,15 P29531|OLEO2_SOYBN 
YFVDAQPK 51,44 966,481 967,4904 8,8 P13916|GLCA_SOYBN 
YQGNSGPL 76,62 834,3871 835,3953 8,56 P04347|GLYG5_SOYBN 
3IF 55 peptides           
AGVVPPA 30,7 609,3486 610,3563 8,17 P29531|OLEO2_SOYBN 
AGVVPPGA 45,34 666,3701 667,3817 8,4 P29530|OLEO1_SOYBN 
ANSLLN 33,98 630,3337 631,3441 8,5 P04776|GLYG1_SOYBN 
DFYNPK 53,15 782,3599 783,3769 8,32 P04347|GLYG5_SOYBN 
DQMPR 32,47 645,2904 646,3019 4,47 P04776|GLYG1_SOYBN 
EEINK 28,75 631,3177 632,3287 1,86 P13916|GLCA_SOYBN 
EFPPR 30,76 644,3282 645,3376 7,53 P09186|LOX3_SOYBN 
EGEDK 24,19 576,2391 577,2783 7,03 P04776|GLYG1_SOYBN 
FEAPR 32,28 618,3125 619,3256 7,13 P29531|OLEO2_SOYBN 
FPGSAQ 35,66 605,2809 606,2933 7,04 P13916|GLCA_SOYBN 
FSHNILE 28,26 858,4235 859,4295 9,69 P25974|GLCB_SOYBN 
FVDAQPK 40,39 803,4177 804,426 6,89 P13916|GLCA_SOYBN 
GINAENNQ 46,18 858,3832 859,392 4,13 P13916|GLCA_SOYBN 
GKGIFG 25,45 577,3224 578,3347 9,49 P04776|GLYG1_SOYBN 
GNDTFPYPR 43,39 1065,4879 1066,4904 9,55 P09186|LOX3_SOYBN 
IKNNNPF 36,73 845,4395 846,449 8,61 P04776|GLYG1_SOYBN 
INAENNQ 40,71 801,3617 802,3724 2,5 P13916|GLCA_SOYBN 
IPSEVLS 28,61 743,4065 744,4156 9,34 P04347|GLYG5_SOYBN 
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IPSQV 24,68 542,3064 543,3222 7,87 P13916|GLCA_SOYBN 
IPVNKPG 47,09 723,4279 724,4376 6,79 P13916|GLCA_SOYBN 
ISSEDKPFN 56,43 1035,4873 1036,4995 8,07 P13916|GLCA_SOYBN 
IYIQQGK 45,65 848,4756 849,4837 7,38 P04776|GLYG1_SOYBN 
KGIFG 26,43 520,3009 521,3102 9,78 P04776|GLYG1_SOYBN 
KGLFG 26,43 520,3009 521,3102 9,78 Q02920|NO70_SOYBN 
KNILE 26,77 615,3591 616,3669 7,96 P11827|GLCAP_SOYBN 
KNKNPF 31,01 746,4075 747,4158 6,68 P11827|GLCAP_SOYBN 
KYEGNWGPL 38,46 1062,5134 1063,5253 11,27 P02858|GLYG4_SOYBN 
LAFPGSA 32,39 661,3435 662,3517 10,29 P13916|GLCA_SOYBN 
LAFPGSAQ 44,31 789,4021 790,4161 9,99 P13916|GLCA_SOYBN 
LVPPQE 26,34 681,3697 682,3839 7,77 P04776|GLYG1_SOYBN 
LVPPQES 31,17 768,4017 769,4106 7,48 P04776|GLYG1_SOYBN 
NALKPDN 39,58 770,3922 771,4019 4,08 P04776|GLYG1_SOYBN 
NALPEE 28,95 671,3126 672,3165 7,73 P04776|GLYG1_SOYBN 
NEGNPLEN 31,92 885,3828 886,4249 8,46 P01070|ITRA_SOYBN 
NIARPS 26,76 656,3605 657,3763 5,41 P04347|GLYG5_SOYBN 
NNQLDQNPR 47,91 1097,5214 1098,5239 6,25 P04347|GLYG5_SOYBN 
NQYGHV 48,98 716,3242 717,335 6,29 P11827|GLCAP_SOYBN 
NSGPL 38,63 486,2438 487,2521 7,28 P04347|GLYG5_SOYBN 
NSGPLVNP 55,72 796,4079 797,4196 8,86 P04347|GLYG5_SOYBN 
NSLENQ 35,79 703,3137 704,3228 3,83 P04776|GLYG1_SOYBN 
RDPIYS 32,36 749,3708 750,3779 7,43 P13916|GLCA_SOYBN 
RPSYT 39,5 622,3074 623,3188 3,93 P04776|GLYG1_SOYBN 
SGDAI 25,88 461,2122 462,2223 5,94 P07135|RR7_SOYBN 
SGDAL 25,88 461,2122 462,2223 5,94 P11827|GLCAP_SOYBN 
SNFNNQ 29,4 722,2983 723,3099 3,54 P04347|GLYG5_SOYBN 
SPYPR 35,93 618,3125 619,3239 5,79 P02858|GLYG4_SOYBN 
SYFVDAQPK 41,94 1053,5131 1054,5291 9,2 P13916|GLCA_SOYBN 
TISSEDKP 46,2 875,4236 876,4354 6,2 P13916|GLCA_SOYBN 
TISSEDKPF 45,27 1022,492 1023,4995 9,01 P13916|GLCA_SOYBN 
VIQHT 23,98 596,3282 597,338 1,96 P04776|GLYG1_SOYBN 
VKNNNPF 40,28 831,4239 832,4362 8,22 P04405|GLYG2_SOYBN 
VPPQE 23,74 568,2856 569,2881 3,82 P04776|GLYG1_SOYBN 
YEGNWGPL 44,78 934,4185 935,4291 11,91 P02858|GLYG4_SOYBN 
YFVDAQPK 46,65 966,481 967,498 8,81 P13916|GLCA_SOYBN 
YPVVV 24,26 575,3319 576,3379 10,33 P13916|GLCA_SOYBN 
4IF 49 peptides           
VNPESQQGSPR 29,93 1197,5737 599,7953 5,9 P02858|GLYG4_SOYBN 
YVVNPDNNEN 53,17 1176,5048 1177,5144 7,83 P13916|GLCA_SOYBN 
FPFPRPPHQ 47,47 1121,577 561,798 10,39 P13916|GLCA_SOYBN 
GNDTFPYPR 31,96 1065,4879 1066,4988 9,55 P09186|LOX3_SOYBN 
LVPPQESQK 22,28 1024,5553 1025,5586 7,09 P04776|GLYG1_SOYBN 
TISSEDKPF 42,73 1022,492 1023,5074 9,01 P13916|GLCA_SOYBN 
YFVDAQPK 47,9 966,481 967,4903 8,81 P13916|GLCA_SOYBN 
NEGNPLEN 30,09 885,3828 886,4201 8,47 P01070|ITRA_SOYBN 
TISSEDKP 45,14 875,4236 876,4338 6,35 P13916|GLCA_SOYBN 
IYIQQGK 48,48 848,4756 849,4839 7,38 P04776|GLYG1_SOYBN 
IKNNNPF 40,29 845,4395 846,4507 8,61 P04776|GLYG1_SOYBN 
IYIQQGN 52,24 834,4236 835,4357 7,92 P04405|GLYG2_SOYBN 
GSKDNVIS 29,96 818,4134 819,4221 5,95 P11827|GLCAP_SOYBN 
FVDAQPK 43,82 803,4177 804,431 6,94 P13916|GLCA_SOYBN 
NSGPLVNP 47,29 796,4079 797,4172 8,91 P04347|GLYG5_SOYBN 
LAFPGSAQ 41,29 789,4021 790,4109 9,99 P13916|GLCA_SOYBN 
DFYNPK 55,92 782,3599 783,3776 8,32 P04347|GLYG5_SOYBN 
LVPPQES 32,27 768,4017 769,4158 7,68 P04776|GLYG1_SOYBN 
IPVNKPG 50,87 723,4279 724,4395 6,84 P13916|GLCA_SOYBN 
SNFNNQ 23,42 722,2983 723,3073 3,64 P04347|GLYG5_SOYBN 
NQYGHV 41,88 716,3242 717,3325 6,3 P11827|GLCAP_SOYBN 
AGVVPPGA 37,73 666,3701 667,3853 8,42 P29530|OLEO1_SOYBN 
NIARPS 26,03 656,3605 657,3737 5,61 P04347|GLYG5_SOYBN 
VDAQPK 28,54 656,3493 657,359 1,81 P13916|GLCA_SOYBN 
VSIIDT 25,35 646,3538 647,3629 9,6 P04776|GLYG1_SOYBN 
VSLIDT 25,35 646,3538 647,3629 9,6 P11828|GLYG3_SOYBN 
DQMPR 35,89 645,2904 646,3024 4,77 P04776|GLYG1_SOYBN 
DAKVEA 25,81 631,3177 632,3287 3,34 P29531|OLEO2_SOYBN 
AVVAGLP 29,47 625,3799 626,3861 9,8 P29531|OLEO2_SOYBN 
RPSYT 44,22 622,3074 623,3185 4,18 P04776|GLYG1_SOYBN 
NKNPF 24,45 618,3126 619,3234 7,63 P13916|GLCA_SOYBN 
AGVVPPA 38,24 609,3486 610,3585 8,12 P29531|OLEO2_SOYBN 
NNNPF 23,22 604,2605 605,2722 8,66 P04776|GLYG1_SOYBN 
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VIQHT 22,93 596,3282 597,3395 2,06 P04776|GLYG1_SOYBN 
SAEFGS 22,46 596,2442 597,2564 6,74 P04776|GLYG1_SOYBN 
FSVDK 32,51 594,3013 595,3083 7,14 P04776|GLYG1_SOYBN 
IAVPTG 21,85 556,322 557,3339 8,52 P04776|GLYG1_SOYBN 
IPSEV 25,73 543,2904 544,3007 8,27 P04347|GLYG5_SOYBN 
IPSQV 24,22 542,3064 543,3145 7,87 P13916|GLCA_SOYBN 
KGIFG 22,02 520,3009 521,3108 9,7 P04776|GLYG1_SOYBN 
KGLFG 22,02 520,3009 521,3108 9,7 Q02920|NO70_SOYBN 
LPVGG 21,53 441,2587 442,2686 6,1 P29531|OLEO2_SOYBN 
YEGNWGPL 40,54 934,4185 935,4261 11,9 P02858|GLYG4_SOYBN 
FLVPPQES 41,84 915,4702 916,4792 9,98 P04776|GLYG1_SOYBN 
YEAGVVPPA 34,02 901,4545 902,4626 9,14 P29531|OLEO2_SOYBN 
INAENNQ 40,01 801,3617 802,3705 2,59 P13916|GLCA_SOYBN 
KNKPLV 27,01 697,4486 698,4574 5,35 P01070|ITRA_SOYBN 
FEAPR 32,73 618,3125 619,3198 7,17 P29531|OLEO2_SOYBN 
FPGSAQ 36,69 605,2809 606,2891 7,07 P13916|GLCA_SOYBN 
5IF 81 peptides           
AGVVPPA 34,56 609,3486 610,3604 8,11 P29531|OLEO2_SOYBN 
AGVVPPGA 35,72 666,3701 667,3858 8,36 P29530|OLEO1_SOYBN 
ALPEE 18,82 557,2697 558,2831 7,27 P04776|GLYG1_SOYBN 
DFYNPK 53,26 782,3599 783,3779 8,31 P02858|GLYG4_SOYBN 
DFYNPKA 47,14 853,397 854,4146 8,7 P02858|GLYG4_SOYBN 
DQMPR 32,44 645,2904 646,2988 4,37 P04776|GLYG1_SOYBN 
DQTPR 25,33 615,2976 616,3099 1,41 P02858|GLYG4_SOYBN 
EFPPR 20,45 644,3282 645,3361 7,52 P09186|LOX3_SOYBN 
FAFGIN 27,12 667,3329 668,3448 11,81 P11827|GLCAP_SOYBN 
FAIGIN 22,78 633,3486 634,3582 10,92 P13916|GLCA_SOYBN 
FEAPR 34,67 618,3125 619,3263 7,12 P29531|OLEO2_SOYBN 
FLVPPQE 30,72 828,4381 829,4523 10,13 P04776|GLYG1_SOYBN 
FPFPRPPHQ 36,75 1121,577 561,8013 10,38 P13916|GLCA_SOYBN 
FPGSAQ 36,02 605,2809 606,2958 7,03 P13916|GLCA_SOYBN 
FSREEGQQQGEQ 25,55 1421,6171 711,819 6,04 P13916|GLCA_SOYBN 
FSVDK 28,3 594,3013 595,3105 7,08 P04776|GLYG1_SOYBN 
FVDAQPK 38,64 803,4177 804,4278 6,93 P13916|GLCA_SOYBN 
FYNPK 30,27 667,3329 668,3412 7,17 P02858|GLYG4_SOYBN 
GFAPEF 31,48 666,3013 667,3072 11,42 P04405|GLYG2_SOYBN 
GKGIFG 19,23 577,3224 578,3347 9,44 P04776|GLYG1_SOYBN 
GNDTFPYPR 25,63 1065,4879 1066,5049 9,49 P09186|LOX3_SOYBN 
GSKDNVIS 32,03 818,4134 819,4265 5,84 P11827|GLCAP_SOYBN 
HENIARPS 47,75 922,462 923,4722 5,65 P02858|GLYG4_SOYBN 
IAVPTG 19,83 556,322 557,3309 8,45 P04776|GLYG1_SOYBN 
IETWNPNNKPF 34,34 1358,6619 1359,6689 10,87 P04405|GLYG2_SOYBN 
IIDTN 19,04 574,2963 575,3049 5,6 P04776|GLYG1_SOYBN 
IKNNNPF 37,61 845,4395 846,451 8,55 P04776|GLYG1_SOYBN 
INAENNQ 44,85 801,3617 802,3713 2,5 P13916|GLCA_SOYBN 
IPSEV 24,18 543,2904 544,304 8,21 P02858|GLYG4_SOYBN 
IPSEVLS 28,79 743,4065 744,4149 9,29 P04347|GLYG5_SOYBN 
IPSQV 24,92 542,3064 543,3177 7,81 P13916|GLCA_SOYBN 
IPVNKPG 48,54 723,4279 724,4414 6,78 P13916|GLCA_SOYBN 
ISSEDKPFN 52,63 1035,4873 1036,5126 8,07 P13916|GLCA_SOYBN 
IYIQQG 31,33 720,3806 721,3995 8,21 P04405|GLYG2_SOYBN 
IYIQQGK 45,18 848,4756 849,491 7,38 P04776|GLYG1_SOYBN 
KGIFG 20,19 520,3009 521,3121 9,69 P04776|GLYG1_SOYBN 
KGLFG 20,19 520,3009 521,3121 9,69 Q02920|NO70_SOYBN 
KGVITQ 29,34 644,3857 645,3964 5,6 P22895|P34_SOYBN 
KNILE 20,92 615,3591 616,3695 7,91 P11827|GLCAP_SOYBN 
KYEGNWGPL 50,94 1062,5134 1063,522 11,22 P02858|GLYG4_SOYBN 
LAFPGSA 29,18 661,3435 662,3541 10,28 P13916|GLCA_SOYBN 
LAFPGSAQ 43,31 789,4021 790,4106 9,98 P13916|GLCA_SOYBN 
LAIPV 20,03 511,337 512,3463 11,21 P13916|GLCA_SOYBN 
LIDTN 19,04 574,2963 575,3049 5,6 P11828|GLYG3_SOYBN 
LVPPQE 23,65 681,3697 682,3755 7,96 P04776|GLYG1_SOYBN 
LVPPQES 29,69 768,4017 769,4173 7,47 P04776|GLYG1_SOYBN 
LVPPQESQ 41,68 896,4603 897,4763 7,42 P04776|GLYG1_SOYBN 
NALPEE 32,4 671,3126 672,3273 7,67 P04776|GLYG1_SOYBN 
NEDTPV 31,9 673,2919 674,3049 6,49 P04405|GLYG2_SOYBN 
NIARPS 27,79 656,3605 657,3704 5,3 P02858|GLYG4_SOYBN 
NKNPF 24,37 618,3126 619,3263 7,57 P13916|GLCA_SOYBN 
NQYGHV 39,24 716,3242 717,3304 6,19 P11827|GLCAP_SOYBN 
NSGPLVNP 50,98 796,4079 797,4281 8,8 P04347|GLYG5_SOYBN 
NSLENQ 35,7 703,3137 704,325 3,83 P04405|GLYG2_SOYBN 
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RPSYT 38,31 622,3074 623,3173 3,77 P04776|GLYG1_SOYBN 
RPSYTNGPQE 20,97 1147,5258 1148,5287 6,88 P04776|GLYG1_SOYBN 
SAEFGSL 28,34 709,3282 710,3406 10,48 P04776|GLYG1_SOYBN 
SDNFE 22,44 610,2234 611,2339 6,34 P04776|GLYG1_SOYBN 
SNFNNQ 28,03 722,2983 723,3092 3,43 P02858|GLYG4_SOYBN 
SNRFET 21,07 752,3453 753,3544 6,69 P13916|GLCA_SOYBN 
SPQLQ 20,29 571,2966 572,3091 5,94 P13916|GLCA_SOYBN 
SVISPK 31,58 629,3748 630,3877 6,44 P02858|GLYG4_SOYBN 
SYFVDAQPK 38,06 1053,5131 1054,5229 9,24 P13916|GLCA_SOYBN 
SYPTKEE 32,66 852,3865 853,3986 5,36 P22895|P34_SOYBN 
SYPTKEESET 32,72 1169,5088 1170,5166 6,34 P22895|P34_SOYBN 
TISSEDKP 45,56 875,4236 876,4355 6,29 P13916|GLCA_SOYBN 
TISSEDKPF 50,42 1022,492 1023,4943 9 P13916|GLCA_SOYBN 
VIQHT 23,85 596,3282 597,3345 2 P04405|GLYG2_SOYBN 
VISPK 22,23 542,3428 543,35 3,78 P02858|GLYG4_SOYBN 
VKNNNPFS 46,74 918,4559 919,4784 8,26 P04405|GLYG2_SOYBN 
VNPESQQGSPR 43,14 1197,5737 599,7999 5,85 P02858|GLYG4_SOYBN 
VPYWT 26,79 664,322 665,3289 10,53 P02858|GLYG4_SOYBN 
VQVHT 20,19 582,3126 583,3215 5,1 P29531|OLEO2_SOYBN 
VSIIDT 23,38 646,3538 647,365 9,54 P04776|GLYG1_SOYBN 
VSIIDTNS 60,6 847,4287 848,4372 9,15 P04405|GLYG2_SOYBN 
VSLIDT 23,38 646,3538 647,365 9,54 P11828|GLYG3_SOYBN 
VSLIDTNS 60,6 847,4287 848,4372 9,15 P11828|GLYG3_SOYBN 
YEGNWGPL 47,75 934,4185 935,4261 11,9 P02858|GLYG4_SOYBN 
YFVDAQPK 47,99 966,481 967,5004 8,75 P13916|GLCA_SOYBN 
YPVVV 23,54 575,3319 576,3419 10,33 P13916|GLCA_SOYBN 
YVVNPDNDEN 52,2 1177,4888 1178,5088 7,92 P11827|GLCAP_SOYBN 
Peptides in fractions <3 kDa GI 
1IF 36 peptides      
AGVTVS 23,86 532,2856 533,2923 6,24 P04347|GLYG5_SOYBN 
AGVVPPA 54,49 609,3486 610,3606 8,12 P29531|OLEO2_SOYBN 
AGVVPPGA 57,2 666,3701 667,3766 8,42 P29530|OLEO1_SOYBN 
AIVTV 24,81 501,3162 502,3229 9,59 P04776|GLYG1_SOYBN 
ANSLLN 26,93 630,3337 631,3411 8,46 P04776|GLYG1_SOYBN 
ATPTP 24,86 485,2485 486,2166 1,46 Q42783|BCCP_SOYBN 
AVVAGLP 27,51 625,3799 626,3879 9,7 P29531|OLEO2_SOYBN 
DFYNPK 82,57 782,3599 783,3722 8,32 P04347|GLYG5_SOYBN 
EEGGSV 27,2 576,2391 577,2692 6,99 P04347|GLYG5_SOYBN 
FEAPR 51,35 618,3125 619,3233 7,19 P29531|OLEO2_SOYBN 
IKNNNPF 36,87 845,4395 846,451 8,66 P04776|GLYG1_SOYBN 
IPSEVL 39,85 656,3745 657,3781 10,24 P04347|GLYG5_SOYBN 
IPSEVLS 29,04 743,4065 744,4169 9,35 P04347|GLYG5_SOYBN 
IPSQV 25,42 542,3064 543,3164 7,92 P13916|GLCA_SOYBN 
KGAIG 26,08 444,2696 445,2787 2,51 P04347|GLYG5_SOYBN 
KGALG 26,08 444,2696 445,2787 2,51 P02858|GLYG4_SOYBN 
KGIFG 22,7 520,3009 521,3112 9,79 P04776|GLYG1_SOYBN 
KGLFG 22,7 520,3009 521,3112 9,79 Q02920|NO70_SOYBN 
KNKNPF 40,9 746,4075 747,4083 6,64 P13916|GLCA_SOYBN 
KSTVP 24,07 530,3064 531,278 5,7 Q96558|UGDH_SOYBN 
NQYGHV 45,55 716,3242 717,3338 6,25 P11827|GLCAP_SOYBN 
NSGPLVNP 100,12 796,4079 797,4205 8,86 P04347|GLYG5_SOYBN 
NTGNLLG 26,44 687,3552 688,3624 9,15 P22895|P34_SOYBN 
RDPIYS 24,57 749,3708 750,3795 7,38 P11827|GLCAP_SOYBN 
RNPIYS 39,67 748,3868 749,3976 7,57 P25974|GLCB_SOYBN 
RPSYT 46,88 622,3074 623,3182 3,98 P04776|GLYG1_SOYBN 
SPYPR 30,78 618,3125 619,3204 5,85 P02858|GLYG4_SOYBN 
TGSGMGTLL 31,93 835,4109 836,4189 11,03 P28551|TBB3_SOYBN 
TISSEDKP 41,75 875,4236 876,4305 6,34 P13916|GLCA_SOYBN 
TISSEDKPF 54,4 1022,492 1023,5015 9,05 P13916|GLCA_SOYBN 
TVTATT 22,91 592,3068 593,3127 3,43 P29531|OLEO2_SOYBN 
VEGGLS 22,36 560,2806 561,2917 6,09 P04347|GLYG5_SOYBN 
VISPK 39,39 542,3428 543,3463 3,89 P04347|GLYG5_SOYBN 
VQVHT 30,44 582,3126 583,3196 5,12 P29531|OLEO2_SOYBN 
VTGVP 23,95 471,2693 472,2873 4,57 Q2PMQ5|CYB6_SOYBN 
YFVDAQPK 56,45 966,481 967,4906 8,8 P13916|GLCA_SOYBN 
2IF 43 peptides           
AGVTVS 22,33 532,2856 533,2939 6,25 P04347|GLYG5_SOYBN 
AGVVPPA 35,95 609,3486 610,3577 8,12 P29531|OLEO2_SOYBN 
AGVVPPGA 31,31 666,3701 667,3824 8,41 P29530|OLEO1_SOYBN 
AIVTV 27,85 501,3162 502,3226 9,6 P04776|GLYG1_SOYBN 
ANSLLN 29,45 630,3337 631,3347 8,51 P04776|GLYG1_SOYBN 
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DFYNPK 60,82 782,3599 783,3711 8,32 P04347|GLYG5_SOYBN 
DQMPR 34,79 645,2904 646,3029 4,57 P04776|GLYG1_SOYBN 
EEGGSV 19,11 576,2391 577,2758 6,99 P04347|GLYG5_SOYBN 
FAPEF 18,61 609,2798 610,2865 10,98 P04405|GLYG2_SOYBN 
FEAPR 35,37 618,3125 619,3215 7,14 P29531|OLEO2_SOYBN 
FLVPPQE 38,87 828,4381 829,4459 10,14 P04776|GLYG1_SOYBN 
GANSLLN 24,43 687,3552 688,371 8,76 P04776|GLYG1_SOYBN 
GKGIFG 22,93 577,3224 578,3334 9,5 P04776|GLYG1_SOYBN 
GNDTFPYPR 29,52 1065,4879 1066,5 9,55 P09186|LOX3_SOYBN 
IAVPTG 22,62 556,322 557,3289 8,56 P04776|GLYG1_SOYBN 
IKNNNPF 45,39 845,4395 846,4513 8,62 P04776|GLYG1_SOYBN 
IPSEVLA 23,28 727,4116 728,4222 9,9 P02858|GLYG4_SOYBN 
IPSEVLS 35,51 743,4065 744,4176 9,35 P04347|GLYG5_SOYBN 
KGAIG 19,02 444,2696 445,2773 2,5 P04347|GLYG5_SOYBN 
KGALG 19,02 444,2696 445,2773 2,5 P02858|GLYG4_SOYBN 
KGIFG 23,31 520,3009 521,3099 9,75 P04776|GLYG1_SOYBN 
KGLFG 23,31 520,3009 521,3099 9,75 Q02920|NO70_SOYBN 
KGVITQ 31,86 644,3857 645,3962 5,71 P22895|P34_SOYBN 
KHFLA 29,39 614,354 615,3593 7,33 P04347|GLYG5_SOYBN 
KNILE 23,14 615,3591 616,3739 7,97 P11827|GLCAP_SOYBN 
NIARPS 31,01 656,3605 657,3708 5,56 P04347|GLYG5_SOYBN 
NPFLFG 28,96 693,3486 694,3539 13 P13916|GLCA_SOYBN 
NQYGHV 31,42 716,3242 717,3309 6,29 P11827|GLCAP_SOYBN 
NSGPLVNP 77,18 796,4079 797,4183 8,81 P04347|GLYG5_SOYBN 
NSLENQ 22,65 703,3137 704,3232 3,98 P04776|GLYG1_SOYBN 
RDPIYS 43,35 749,3708 750,3771 7,43 P13916|GLCA_SOYBN 
RDPIYSN 36,52 863,4137 864,424 7,24 P13916|GLCA_SOYBN 
RNPIYS 23,56 748,3868 749,3945 7,58 P25974|GLCB_SOYBN 
RPSYT 45,9 622,3074 623,3191 4,13 P04776|GLYG1_SOYBN 
SGDAI 30,41 461,2122 462,2261 5,91 P07135|RR7_SOYBN 
SGDAL 30,41 461,2122 462,2261 5,91 P13916|GLCA_SOYBN 
TGNLLG 24,65 573,3122 574,323 8,96 P22895|P34_SOYBN 
TISSEDKPF 43,1 1022,492 1023,5007 9,06 P13916|GLCA_SOYBN 
TPVVA 23,58 485,2849 486,2935 7,09 P04776|GLYG1_SOYBN 
VISPK 26,37 542,3428 543,3471 3,98 P04347|GLYG5_SOYBN 
VKGGLS 21,06 559,3329 560,3439 3,05 P04776|GLYG1_SOYBN 
WNPNNKPFQ 52,71 1143,5461 1144,556 9,4 P04776|GLYG1_SOYBN 
YNLRQ 21,71 692,3605 693,3718 7,04 P02858|GLYG4_SOYBN 
3IF 52 peptides           
AGVVPPA 31,35 609,3486 610,3653 8,06 P29531|OLEO2_SOYBN 
AGVVPPGA 39,15 666,3701 667,3815 8,41 P29530|OLEO1_SOYBN 
AIVTV 27 501,3162 502,3256 9,54 P04776|GLYG1_SOYBN 
ANSLLN 35,34 630,3337 631,3446 8,46 P04776|GLYG1_SOYBN 
AVVAGLP 20,78 625,3799 626,3907 9,64 P29531|OLEO2_SOYBN 
DFYNPK 51,97 782,3599 783,3791 8,26 P02858|GLYG4_SOYBN 
DQMPR 34,27 645,2904 646,302 4,31 P04776|GLYG1_SOYBN 
EFPPR 27,63 644,3282 645,3406 7,47 P09186|LOX3_SOYBN 
FLVPPQE 34,77 828,4381 829,4511 10,08 P04776|GLYG1_SOYBN 
FPFPRPPHQ 52,81 1121,577 561,799 10,28 P13916|GLCA_SOYBN 
FPGSAQ 39,39 605,2809 606,289 6,98 P13916|GLCA_SOYBN 
FVDAQPK 41,97 803,4177 804,4238 6,83 P13916|GLCA_SOYBN 
GKGIFG 20,93 577,3224 578,3294 9,5 P04776|GLYG1_SOYBN 
GNDTFPYPR 38,67 1065,4879 1066,4996 9,49 P09186|LOX3_SOYBN 
IAVPTG 22,12 556,322 557,3354 8,51 P04776|GLYG1_SOYBN 
IIIAQGK 39,56 741,4749 742,4865 7,81 P02858|GLYG4_SOYBN 
IKNNNPF 41,19 845,4395 846,4506 8,55 P04776|GLYG1_SOYBN 
INAENNQ 46,24 801,3617 802,3721 2,39 P13916|GLCA_SOYBN 
IPNSI 24,98 542,3064 543,3148 8,85 P08864|NO27_SOYBN 
IPSEV 29,78 543,2904 544,2987 8,21 P02858|GLYG4_SOYBN 
IPSEVLS 27,91 743,4065 744,4161 9,3 P04347|GLYG5_SOYBN 
IPVNKPG 55,15 723,4279 724,4379 6,78 P13916|GLCA_SOYBN 
ISSEDKPFN 47,19 1035,4873 1036,5017 8,11 P13916|GLCA_SOYBN 
IYIQQGK 45,74 848,4756 849,4885 7,37 P04776|GLYG1_SOYBN 
KGVITQ 24,72 644,3857 645,394 5,65 P22895|P34_SOYBN 
KNKNPF 22,4 746,4075 747,4132 6,64 P11827|GLCAP_SOYBN 
KVARSP 24,2 656,3969 657,3725 5,55 Q10370|HMGYB_SOYBN 
LAFPGSA 39,17 661,3435 662,3532 10,23 P13916|GLCA_SOYBN 
LAFPGSAQ 49,49 789,4021 790,4092 9,93 P13916|GLCA_SOYBN 
LVPPQES 30,48 768,4017 769,4116 7,42 P04776|GLYG1_SOYBN 
LVPPQESQ 32,22 896,4603 897,4639 7,52 P04776|GLYG1_SOYBN 
NIARPS 29,75 656,3605 657,3717 5,3 P02858|GLYG4_SOYBN 
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NQLDQ 27,47 616,2816 617,2923 3,58 P04347|GLYG5_SOYBN 
NQYGHV 43,34 716,3242 717,3337 6,14 P11827|GLCAP_SOYBN 
NSGPLVNP 60,4 796,4079 797,4183 8,85 P04347|GLYG5_SOYBN 
QELRK 24,57 672,3918 673,3636 2,3 Q1W376|PMM_SOYBN 
QGNGIFG 22,07 691,3289 692,3369 9,99 P04405|GLYG2_SOYBN 
RDPIYS 37,71 749,3708 750,3816 7,32 P13916|GLCA_SOYBN 
RNPIYS 25,39 748,3868 749,3958 7,52 P25974|GLCB_SOYBN 
RPSYT 40,77 622,3074 623,3173 3,77 P04776|GLYG1_SOYBN 
SNFNNQ 36,65 722,2983 723,3096 3,43 P02858|GLYG4_SOYBN 
SPYPR 32,93 618,3125 619,3242 5,75 P02858|GLYG4_SOYBN 
SSEDKPFN 44,13 922,4032 923,4099 7,02 P13916|GLCA_SOYBN 
SYFVDAQPK 44,6 1053,5131 1054,5293 9,19 P13916|GLCA_SOYBN 
SYPTKEE 35,23 852,3865 853,394 5,2 P22895|P34_SOYBN 
TISSEDKP 45,41 875,4236 876,4305 6,19 P13916|GLCA_SOYBN 
TISSEDKPF 48,35 1022,492 1023,5038 9 P13916|GLCA_SOYBN 
VEGGLS 23,11 560,2806 561,2916 6,05 P04347|GLYG5_SOYBN 
VISPK 25,99 542,3428 543,3506 3,93 P04347|GLYG5_SOYBN 
VKGGLS 22,33 559,3329 560,3422 3,04 P04776|GLYG1_SOYBN 
YEGNWGPL 44,95 934,4185 935,426 11,85 P02858|GLYG4_SOYBN 
YFVDAQPK 45,69 966,481 967,4907 8,75 P13916|GLCA_SOYBN 
4IF 49 peptides           
AGVVPPA 35,6 609,3486 610,3586 8,12 P29531|OLEO2_SOYBN 
AGVVPPGA 35,27 666,3701 667,3798 8,42 P29530|OLEO1_SOYBN 
AIPVNKPG 52,17 794,465 795,4733 7,33 P13916|GLCA_SOYBN 
DFYNPK 52,26 782,3599 783,3744 8,32 P04347|GLYG5_SOYBN 
DQMPR 32,66 645,2904 646,2997 4,72 P04776|GLYG1_SOYBN 
EFPPR 22,48 644,3282 645,3389 7,53 P09186|LOX3_SOYBN 
FEAPR 33,79 618,3125 619,323 7,19 P29531|OLEO2_SOYBN 
FLVPPQE 34,42 828,4381 829,4487 10,14 P04776|GLYG1_SOYBN 
FLVPPQES 40,37 915,4702 916,4774 9,99 P04776|GLYG1_SOYBN 
FPFPRPPHQ 43,53 1121,577 561,7978 10,34 P13916|GLCA_SOYBN 
FPGSAQ 34,43 605,2809 606,2909 7,09 P13916|GLCA_SOYBN 
FSVDK 34,26 594,3013 595,3127 7,13 P04776|GLYG1_SOYBN 
FVDAQPK 40,68 803,4177 804,4258 6,99 P13916|GLCA_SOYBN 
GNDTFPYPR 40,74 1065,4879 1066,4974 9,55 P09186|LOX3_SOYBN 
HENIARPS 50,83 922,462 923,4698 5,75 P02858|GLYG4_SOYBN 
IKNNNPF 38,38 845,4395 846,4487 8,66 P04776|GLYG1_SOYBN 
IPSEV 28,94 543,2904 544,3005 8,22 P02858|GLYG4_SOYBN 
IPSQV 27,24 542,3064 543,3162 7,87 P13916|GLCA_SOYBN 
IPVNKPG 53,42 723,4279 724,4344 6,79 P13916|GLCA_SOYBN 
IYIQQGK 48,81 848,4756 849,4899 7,43 P04776|GLYG1_SOYBN 
IYIQQGN 53,22 834,4236 835,4388 7,92 P04405|GLYG2_SOYBN 
KYEGNWGPL 47,91 1062,5134 1063,5242 11,27 P02858|GLYG4_SOYBN 
LVPPK 22,5 552,3635 553,3713 6,44 P11828|GLYG3_SOYBN 
LVPPQE 28,56 681,3697 682,3797 7,77 P04776|GLYG1_SOYBN 
LVPPQES 35,83 768,4017 769,4088 8,02 P04776|GLYG1_SOYBN 
NALPEE 27,16 671,3126 672,3252 7,72 P04776|GLYG1_SOYBN 
NIARPS 30,95 656,3605 657,3699 5,61 P02858|GLYG4_SOYBN 
NKNPF 23,86 618,3126 619,3255 7,68 P13916|GLCA_SOYBN 
NLGQSQV 46,4 744,3766 745,39 7,63 P04347|GLYG5_SOYBN 
NQLDQMPR 47,76 1000,476 1001,486 8,46 P04776|GLYG1_SOYBN 
NQYGHV 41,75 716,3242 717,3303 6,3 P11827|GLCAP_SOYBN 
NSGPL 31,24 486,2438 487,2543 7,33 P04347|GLYG5_SOYBN 
NSGPLVNP 58,58 796,4079 797,4187 8,86 P04347|GLYG5_SOYBN 
NSLENQ 32,24 703,3137 704,322 3,98 P04776|GLYG1_SOYBN 
RDPIYS 34,91 749,3708 750,3836 7,43 P13916|GLCA_SOYBN 
RDPIYSN 32,64 863,4137 864,4163 7,23 P13916|GLCA_SOYBN 
RPSYT 37,02 622,3074 623,3197 4,08 P04776|GLYG1_SOYBN 
SNFNNQ 24,57 722,2983 723,3079 3,59 P02858|GLYG4_SOYBN 
SYFVDAQPK 37,69 1053,5131 1054,5254 9,26 P13916|GLCA_SOYBN 
TISSEDKP 44,22 875,4236 876,4344 6,35 P13916|GLCA_SOYBN 
TISSEDKPF 46,7 1022,492 1023,5007 9,01 P13916|GLCA_SOYBN 
TISSEDKPFN 37,38 1136,5349 1137,5469 8,47 P13916|GLCA_SOYBN 
VIQHT 22,65 596,3282 597,3378 2,06 P04776|GLYG1_SOYBN 
VISPK 25,4 542,3428 543,3511 3,98 P02858|GLYG4_SOYBN 
VKNNNPF 37,9 831,4239 832,4316 8,27 P04405|GLYG2_SOYBN 
VPPQES 38,61 655,3177 656,3187 3,83 P04776|GLYG1_SOYBN 
VSIIDT 27,02 646,3538 647,3633 9,6 P04776|GLYG1_SOYBN 
VSLIDT 27,02 646,3538 647,3633 9,6 P11828|GLYG3_SOYBN 
YFVDAQPK 44,11 966,481 967,4971 8,81 P13916|GLCA_SOYBN 
5IF 72 peptides           
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AGNPDIE 34,14 714,3184 715,3355 6,73 P02858|GLYG4_SOYBN 
AGVVPPA 35,24 609,3486 610,3558 8,12 P29531|OLEO2_SOYBN 
AIPVNKPG 52,59 794,465 795,4747 7,29 P13916|GLCA_SOYBN 
ANSLLN 30,21 630,3337 631,3513 8,47 P04776|GLYG1_SOYBN 
DFYNPK 53,36 782,3599 783,3809 8,32 P04347|GLYG5_SOYBN 
DQMPR 32,04 645,2904 646,3023 4,48 P04776|GLYG1_SOYBN 
DQTPR 24,82 615,2976 616,3073 1,46 P02858|GLYG4_SOYBN 
FAFGIN 29,08 667,3329 668,337 11,8 P11827|GLCAP_SOYBN 
FAPEF 27,86 609,2798 610,2905 10,98 P04405|GLYG2_SOYBN 
FEAPR 36,2 618,3125 619,3217 7,14 P29531|OLEO2_SOYBN 
FGPMIQ 24,05 691,3363 692,3466 10,54 P19594|2SS_SOYBN 
FKTNDTPMIG 30,23 1122,538 1123,5538 9,64 P04776|GLYG1_SOYBN 
FLVPPQE 31,87 828,4381 829,4533 10,08 P04776|GLYG1_SOYBN 
FLVPPQES 40,13 915,4702 916,4763 9,93 P04776|GLYG1_SOYBN 
FPFPRPPHQ 45,82 1121,577 561,7995 10,39 P13916|GLCA_SOYBN 
FPGSAQ 36,52 605,2809 606,3268 6,05 P13916|GLCA_SOYBN 
FVDAQPK 39,89 803,4177 804,4269 6,94 P13916|GLCA_SOYBN 
FYNPK 27,48 667,3329 668,3448 7,22 P02858|GLYG4_SOYBN 
GFAPEF 27,01 666,3013 667,3143 11,46 P04405|GLYG2_SOYBN 
HKNKNPF 36,68 883,4664 884,4692 5,32 P13916|GLCA_SOYBN 
HQQEEENEGGSI 23,5 1355,559 1356,5715 6,78 P04776|GLYG1_SOYBN 
IIDTN 27,17 574,2963 575,3059 5,69 P04776|GLYG1_SOYBN 
IKNNNPF 38,21 845,4395 846,4517 8,62 P04776|GLYG1_SOYBN 
INAENNQ 43,52 801,3617 802,3711 2,51 P13916|GLCA_SOYBN 
IPSEV 24,14 543,2904 544,3044 8,22 P04347|GLYG5_SOYBN 
IPSEVLS 33,26 743,4065 744,4178 9,31 P04347|GLYG5_SOYBN 
IPSQV 23,39 542,3064 543,3207 7,86 P13916|GLCA_SOYBN 
IPVNKPG 47,58 723,4279 724,439 6,83 P13916|GLCA_SOYBN 
KHFLA 21,87 614,354 615,3644 7,27 P02858|GLYG4_SOYBN 
KNKPLV 27,32 697,4486 698,459 5,22 P01071|ITRB_SOYBN 
KTNDTPMIG 46,96 975,4695 976,4839 8,45 P04776|GLYG1_SOYBN 
KYEGNWGPL 45,48 1062,5134 1063,5167 11,21 P02858|GLYG4_SOYBN 
LAFPGSA 33,97 661,3435 662,353 10,29 P13916|GLCA_SOYBN 
LAFPGSAQ 36,7 789,4021 790,4149 10 P13916|GLCA_SOYBN 
LHENIARPS 35,72 1035,5461 1036,5492 7,09 P04347|GLYG5_SOYBN 
LIDTN 27,17 574,2963 575,3059 5,69 P11828|GLYG3_SOYBN 
LKYEGNWGPL 29,1 1175,5974 1176,6165 11,85 P02858|GLYG4_SOYBN 
LVPPKE 22,3 681,4061 682,4186 7,07 P11828|GLYG3_SOYBN 
LVPPQE 25,9 681,3697 682,3807 7,78 P04776|GLYG1_SOYBN 
LVPPQES 29,4 768,4017 769,4194 7,48 P04776|GLYG1_SOYBN 
LVPPQESQ 36,19 896,4603 897,4782 7,47 P04776|GLYG1_SOYBN 
NIARPS 27,12 656,3605 657,3741 5,41 P04347|GLYG5_SOYBN 
NNNPFSF 35,51 838,361 839,3672 11,9 P04405|GLYG2_SOYBN 
NPIYS 22,31 592,2856 593,2929 7,83 P25974|GLCB_SOYBN 
NQLDQ 26,83 616,2816 617,2919 3,54 P04347|GLYG5_SOYBN 
NSGPLVNP 61,72 796,4079 797,4204 8,81 P04347|GLYG5_SOYBN 
NSLENQ 34,15 703,3137 704,326 3,87 P04776|GLYG1_SOYBN 
NSLENQL 36,87 816,3977 817,4109 9,29 P04776|GLYG1_SOYBN 
NTGDEPVVA 43,35 900,4188 901,4369 7,91 P02858|GLYG4_SOYBN 
NTGNLLG 35,32 687,3552 688,3698 9,11 P22895|P34_SOYBN 
RDPIYS 37,79 749,3708 750,3836 7,39 P13916|GLCA_SOYBN 
RPSYT 37,73 622,3074 623,3187 4,08 P04776|GLYG1_SOYBN 
SNFNNQ 28,47 722,2983 723,3082 3,53 P02858|GLYG4_SOYBN 
SPYPR 25,34 618,3125 619,3217 5,86 P02858|GLYG4_SOYBN 
SVISPK 31,76 629,3748 630,3861 6,45 P04347|GLYG5_SOYBN 
SYFVDAQPK 36,84 1053,5131 1054,527 9,24 P13916|GLCA_SOYBN 
SYPTKEE 38,19 852,3865 853,3915 5,36 P22895|P34_SOYBN 
TISSEDKP 45,6 875,4236 876,4353 6,25 P13916|GLCA_SOYBN 
TISSEDKPF 50,11 1022,492 1023,5031 9,01 P13916|GLCA_SOYBN 
TISSEDKPFN 51,58 1136,5349 1137,5586 8,4 P13916|GLCA_SOYBN 
VIQHT 21,14 596,3282 597,3375 2,05 P04776|GLYG1_SOYBN 
VIQHTFNL 44,63 970,5236 971,5314 10,67 P04776|GLYG1_SOYBN 
VISPK 22,62 542,3428 543,3536 3,89 P04347|GLYG5_SOYBN 
VKNNNPF 38,87 831,4239 832,4361 8,21 P04405|GLYG2_SOYBN 
VKNNNPFS 44,12 918,4559 919,4776 8,26 P04405|GLYG2_SOYBN 
VKNNNPFSF 31,56 1065,5243 1066,5385 11,41 P04405|GLYG2_SOYBN 
VNPESQQGSPR 46,51 1197,5737 599,7978 5,84 P02858|GLYG4_SOYBN 
VSIIDT 23,16 646,3538 647,3649 9,55 P04776|GLYG1_SOYBN 
VSLIDT 23,16 646,3538 647,3649 9,55 P11828|GLYG3_SOYBN 
YFVDAQPK 48,28 966,481 967,5009 8,76 P13916|GLCA_SOYBN 
YVVNPDNDEN 23,07 1177,4888 1178,5088 7,98 P11827|GLCAP_SOYBN 
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III.1.2. Quantification of highly potent antihypertensive peptides in soybean and maize 

crops.  

Preface 

Most studies related with bioactive peptides are focused on their separation, purification, 

identification, and characterization from different sources in order to implement them for the 

preparation of functional foods. In addition, there are already few reports devoted to the 

generation of transgenic lines (especially for soybean) that expressed modified forms of 

proteins containing tandem repeats of selected bioactive peptides [250-253]. Quick 

development of transgenic crop varieties with a higher content in certain bioactive peptides or 

the presence of natural protein content differences within crops varieties open a new line of 

investigation of bioactive peptides. Therefore, one of the very emerging research topics within 

the study of bioactive peptides is their absolute quantification. These methods are very 

interesting for regulatory agencies in order to develop appropriate policies to regulate contents 

of bioactive peptides in foodstuffs for human consumption. Antihypertensive peptides present 

an especial interest since they are highly dosage dependence. Consequently, the development 

of reliable standardized methods for the determination of antihypertensive peptides in foods is 

crucial. 

At the time, there are just very few methods to determine antihypertensive peptide content 

in foods for human consumption. As already presented, most of these methods are devoted to 

animal origin antihypertensive peptides. However, antihypertensive peptides from vegetable 

origin may exhibit much more potent activities, especially those present in soybean and maize 

crops. Indeed, soybean contains the peptide (VLIVP), identified in protease P hydrolysates of 

the 11S glycinin protein fraction. High antihypertensive activity of this peptide has been 

demonstrated (IC50 value 1.69 μM) [85]. In the case of maize, three peptides (LRP, LSP, and 

LQP) derived from the α-zein protein fraction with demonstrated high antihypertensive activity 

(IC50 values 0.29, 2.0, 1.7 μM, respectively) have been identified [84]. Interestingly, all these 

peptides have demonstrated higher antihypertensive activity than famous VPP and IPP 

tripeptides (IC50 values 9.13 and 5.15 μM, respectively) from fermented milk [55, 64, 194]. 

Nevertheless, there is no work devoted to the absolute quantification of these potent 

antihypertensive peptides in soybean and maize.    
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Objectives  

The specific objectives of this work were: 

 To propose a rapid and efficient analytical method using high intensity ultrasonic 

waves for the extraction of proteins from soybean and α-zeins from maize crops.  

 To optimize a fractionation method for targeted soybean and maize protein groups.  

 To design and to optimize adequate methodologies for the enzymatic digestion of 

extracted proteins in order to obtain the highest recovery of targeted peptides from 

the digested extracts.  

 To obtain quick and efficient chromatographic separations of targeted peptides in 

highly complex digested protein extracts using novel stationary phases.  

 To unambiguously identify targeted antihypertensive peptides (VLIVP in soybean 

and LRP, LSP, and LQP in maize) in soybean and maize hydrolysates using 

chromatographic separation techniques and mass spectrometry systems. 

 To optimize mass spectrometric parameters in order to obtain highly sensitive and 

selective detection of targeted peptides enabling their unambiguous determination in 

complex food hydrolysates at a low concentration level. 

 To implement different approaches to avoid ionization interferences affecting the 

determination of targeted peptides in complex samples. 

 To evaluate the analytical characteristics of the developed methodologies (linearity, 

LOD, LOQ, precision, matrix effect, and recovery).  

 To apply these new analytical methodologies to the determination and quantification 

of highly antihypertensive peptides in different genotypes of soybean and maize.  

Results 

The results obtained in this research work are included in the following scientific articles: 

 Article 4: Development of a RP-LC analytical methodology for the determination of 

antihypertensive peptides in maize crops. 

P. Puchalska, M. L. Marina, M. C. García. 

J. Chromatogr. A, 2012, 1234, 64-71 
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 Article 5: Development of a HPLC-ESI-Q-ToF-MS methodology for the determination 

of three highly antihypertensive peptides in maize crops. 

P. Puchalska, M. L. Marina, M. C. García.  

J. Chromatogr. A, 2013, 1285, 69-77. 

 

 Article 6: Development of a capillary HPLC-IT-MS method for the determination of 

VLIVP antihypertensive peptide in soybean crops. 

P. Puchalska, M. C. García, M. L. Marina. 

J. Chromatogr. A, in press. 
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Article 4 
Development of  a RP-LC analytical methodology for the 
determination of  antihypertensive peptides in maize crops 

P. Puchalska, M. L. Marina, M. C. García 

J. Chromatogr. A, 2012, 1234, 64-71 
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Abstract 

The aim of this work was to estimate the content of three highly antihypertensive peptides 

(LQP, LSP, and LRP) in different maize crops. For that purpose, a method consisting of the 

extraction of the protein containing these peptides (α-zeins), releasing of peptides by 

thermolysin digestion, and separation and detection of peptides was designed. The rapid and 

efficient ultrasound assisted extraction of α-zeins proteins from whole maize kernels was 

achieved using 70% of ethanol followed by precipitation with acetone. A 10 mM Tris–HCl (pH 

8.0) buffer containing 8 M urea enabled to dissolve the precipitated α-zeins. This buffer was 

diluted to reach a 6 M urea concentration before digestion to keep active the enzyme. Other 

digestion parameters that were optimized were: enzyme to substrate ratio (5:100 was selected), 

digestion temperature (50 °C) and digestion time (6 h). The RP-LC separation in a fused-core 

column was also optimized allowing the separation of the three peptides extracted from maize 

kernels in 6 min. The presence of the three antihypertensive peptides in the digested extract was 

confirmed using HPLC–Q-ToF-MS analysis and by comparison with peptide standards. Clear 

differences were observed in the content of the three antihypertensive peptides and, thus, in the 

antihypertensive activity of the analyzed crops. The content of LRP peptide was very low 

regardless of the maize variety while the content of LQP and LSP significantly varied among 

studied maize lines. 

Keywords: 

Antihypertensive peptides;  HPLC; Maize; Thermolysin; Fused-core column 
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1. Introduction 

Hypertension appears as a leading cause of cardiovascular diseases (CVDs) and is known as 

‘silent killer’ since over 50% of hypertensive population is unaware of their condition [1]. 

According to the World Health Organization, hypertension is a highly prevalent cardiovascular 

risk factor worldwide and its treatment has been shown to prevent CVDs [2]. Different therapies 

can be applied to prevent hypertension being the use of angiotensin converting enzyme 

inhibitors (ACE inhibitors (e.g. captopril)) the first choice [3]. ACE inhibitor compounds act 

on the renin-angiotensin system associated in the control of blood pressure in living organisms. 

Angiotensin I is hydrolyzed in the presence of angiotensin I converting enzyme (ACE) to 

angiotensin II, leading to an increase in blood pressure. The ACE also removes a dipeptide from 

the C-terminus of bradykinin resulting in the inactivation of this vasodilator. As a consequence, 

ACE inhibitors cause effective reduction of blood pressure by decreasing the angiotensin II 

level and rising up bradykinin level [4-6]. Most antihypertensive drugs employ mechanism of 

ACE inhibition. Synthetic drugs are very potent but they also provoke several adverse effects 

[5, 7]. An alternative can rise from those foods naturally containing antihypertensive peptides 

which do not yield adverse effects [8, 9]. 

Most ACE inhibitory peptides contain 2-12 amino acids residues with a noticeably amount 

of hydrophobic amino acids such as proline, especially at C-terminal position [10]. ACE 

inhibitors were found in marine foods [11], fishes [8], meat [12], vegetable foods [13], 

mushrooms [14], and processed products [15]. Most studied antihypertensive peptides are from 

foods of animal origin, specially dairy products [16-18], although the most active peptides were 

found in maize. Indeed, maize contains three peptides (Leucine-Glutamine-Proline (LQP), 

Leucine-Serine-Proline (LSP), and Leucine-Arginine-Proline (LRP)) derived from the α-zein 

protein fraction with extremely high antihypertensive activity (IC50 value (the half maximal 

inhibitory concentration) 2.0, 1.7, 0.29 μM, respectively) [19] which is much higher than the 

popular Valine-Proline-Proline (VPP) (IC50 = 9.13 μM) and Isoleucine-Proline-Proline (IPP) 

(IC50 = 5.15 μM) found in milk. Taking into account that the protein content of maize crops can 

vary [20] and that antihypertensive activity of peptides is highly dosage dependent [21, 22], the 

development of analytical methodologies for estimating peptide contents in different crops is 

required.  

Worldwide corn or maize (Zea mays L.) is a major crop for both livestock feeding and human 

nutrition [23]. Maize protein content is in the range 6-12% (as dry basis) [20]. Zeins, according 
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to Osborne nomenclature, are the prolamin fraction of maize, representing 60% of total maize 

proteins [24]. Zeins can be classified as: α-zeins (21-25 kDa), β-zeins (17 kDa), γ-zeins (18 and 

27 kDa), and δ-zeins (10 kDa). The most abundant zein is the α fraction accounting for 75–85% 

of total zeins [25]. Two major groups of α-zeins can be separated using SDS-PAGE: Z19 zein 

migrating at 19 kDa and Z22 zein 22 kDa. Nevertheless, the studies of zein sequences obtained 

from cloned cDNAs and genes, have shown that those two groups of zeins had a Mw around 

23-24 and 26-27 kDa, respectively [26]. 

Several different attempts were made in order to obtain total-zeins from maize kernels, 

where extraction using aqueous solutions of ethanol or isopropanol with or without a reducing 

agent are the most frequent [27-29]. Moreover, despite there is one methodology enabling α-

zeins extraction, it was applied to maize product with high protein content (corn gluten meal, 

CGM) [19]. Nevertheless, to our best knowledge, none of these procedures have been applied 

to exclusively extract the α-zeins from maize kernels. 

Next step in the isolation of antihypertensive peptides would be the digestion of α-zeins. 

Different enzymes have been employed for the digestion of proteins containing 

antihypertensive peptides being thermolysin the most preferred due to its broad specificity to 

hydrophobic amino acids [30]. Reports about digestion of CGM by trypsin [31], alcalase [32], 

thermolysin [19], and six different commercial proteases [33] or zeins by trypsin or thermolysin 

[34- 35] can be found in the literature. Nevertheless, in all cases CGM or zeins were purchased, 

and no extraction procedure was previously applied. The lack of methodologies where zein 

proteins were digested after extraction from whole maize kernels need to be highlighted since 

the selection of a suitable buffer enabling to dissolve the alcohol soluble α-zeins and to keep 

active the enzyme had to be overcome. Moreover, comparison of digestion protocols using 

thermolysin revealed that digestion conditions differed significantly from one work to the other. 

Regarding peptide separation, a new trend in HPLC is focused to the development of 

stationary phases enabling high sample throughput analysis of peptides. Several strategies have 

been developed being the use of fused-core or superficially porous silica particles very 

interesting for the reduction of analysis times while keeping column efficiency and low back 

pressure. Columns with 2.7 μm fused-core particles produce approximately half of the back 

pressure of the 1.8 μm conventional columns allowing the use of traditional HPLC systems 

[36]. This fused-core particles start to play important role in chromatography and their use in 

bio-analytical methods have already been reviewed [37]. Nevertheless, the use of this 
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innovative approach is still not common, and has scarcely been employed for peptide 

separation. 

The aim of this work was to develop an analytical methodology for the rapid extraction of 

α-zeins from maize kernels allowing their further digestion by thermolysin and their separation 

by RP-LC in order to evaluate the content of three highly active antihypertensive peptides 

(LQP, LRP, and LSP) in maize crops. 

2. Materials and methods 

2.1. Chemicals and samples 

Water, was freshly taken every day from a Milli-Q system (Millipore, Bedfore, MA, USA). 

All used reagents were of analytical grade purity. Acetic acid (AA), AA with purity for LC-

MS, acetone, acetonitrile (ACN), ethanol (EtOH), methanol (MeOH), isopropanol (IPA), and 

urea were supplied from Scharlau Chemie (Barcelona, Spain). Formic acid (FA), hydrochloric 

acid, sodium dodecyl sulfate (SDS), sodium hydroxide, tris (hydroxymethyl) aminomethane 

hydrochloride (Tris-HCl), and β-mercaptoethanol (B-ME) were purchased from Merck 

(Darmstadt, Germany). Ammonium hydroxide, dithiothreitol (DTT), iodoacetamide (IAM), 

thermolysin, and trifluoroacetic acid (TFA) were from Sigma (St. Luis, MO, USA). 

Heptafluorobutyric acid (HFBA), and sodium acetate were acquired from Fluka (Burchs, 

Switzerland) and trichloroacetic acid (TCA) was from Panreac (Barcelona, Spain). All 

chemicals and gels for SDS-PAGE analysis were acquired in Bio-Rad (Hercules, CA, USA): 

Laemmli buffer (62.5 mM Tris–HCl, 25% (v:v) glycerol, 2% (m:v) SDS, 0.001% (m:v) 

bromophenol blue), Mini-Protean Precast Gels, running buffer (25 mM Tris-HCl, 192 mM 

glycine, and 0.1% SDS, pH 8.3), Precision Plus Protein Standards, and Bio-Safe Coomassie 

stain. Standards and samples employed were: corn gluten meal (CGM) (Sigma, St. Luis, MO, 

USA), peptides LQP, LSP, and LRP (GeneScript Corp., Piscataway, NJ, USA), standard of 

zeins (Sigma, St. Luis, MO, USA), and maize lines that were kindly donated by a Maize 

Germplasm Bank (Experimental Station of Aula Dei, CSIC, Zaragoza, Spain): EZ6, B73, 

EZ11A, EZ9, A632. 

Prepared solutions were stored in the fridge at 4 °C with the exception of urea, IAM, and 

DTT solutions that were always freshly prepared. Additionally, thermolysin powder or 

thermolysin stock solution (2.5 mg/mL in water) and peptides were stored always at −20 °C. 

Standards of peptides (1 mg/mL or 0.1 mg/mL) were dissolved in water (LRP, LQP) or in ACN 
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(LSP) according to the recommendation guide supplied by Genscript. Standard of zeins 

(100 mg/mL) was dissolved in 70% of ethanol prior to analysis. Maize kernels (around thirty 

whole kernels for each line) were grounded with a domestic miller during 1 min at ambient 

temperature. All milled maize powders were stored at 4 °C. 

2.2. Extraction and fractionation of zeins from CGM 

Main maize proteins (zeins) were fractionated following a method developed by Parris and 

Dickey [38] and improved by Rodríguez-Nogales et al. [39] with some modifications. The 

method was applied to fractionate zeins from CGM. The method consisted of extracting 2 g of 

CGM with 20 mL of 60% IPA containing 1% B-ME at room temperature and centrifuging for 

1 min at 4000 × g. This extraction was repeated three additional times. Next, three volumes of 

100% IPA were added and the resulting solution was left overnight at 4 °C. Afterwards, the 

solution was centrifuged for 10 min at 4000 × g and 4 °C. The resulting pellet containing β- and 

γ-zeins was separated from the supernatant. The supernatant was mixed with two volumes of 

water and 0.01 volumes of sodium acetate (pH 6.0). The solution was left for 2 h followed by 

centrifugation for 10 min at 4000 × g and 4 °C. The pellet containing α-zeins was separated. 

2.3. Extraction and purification of α-zeins from maize lines 

α-zeins from the EZ6 maize line were extracted using a method developed by Yano et al. 

[19] to isolate α-zeins from CGM. The method was carried out by extracting 1 g of pulverized 

maize line with 10 mL of 70% EtOH. For a more efficient and fast extraction, an ultrasonic 

probe (VCX.130, Sonic Vibra-Cell, Hartord, CT, USA) was employed for 10 min (amplitude 

90%) followed by centrifugation (4000 × g, 10 min, 20 °C). α-Zeins in the previous extract 

were purified by precipitation with 80 mL of acetone containing 0.07% B-ME followed by 

centrifugation (4000 × g, 15 min, 4 °C). The resulting pellet was dissolved in 20 mL of a buffer 

(10 mM Tris-HCl (pH 8.0) containing 8 M urea) and left overnight at 4 °C. 

2.4. Ultrafiltration 

The protein extract obtained with 70% EtOH was ultrafiltrated through semi permeable 

membranes with Mwco of 3 kDa (Amicon® Ultra, Millipore) and 10 kDa (Centricon®, 

Millipore), for 20 min by centrifugation at room temperature (4000 × g). 
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2.5. α-Zein digestion  

Purified α-zeins dissolved in a buffer containing 8 M urea were diluted in water to obtain a 

final urea concentration of 6 M. Optimized digestion protocol consisted of mixing 1.5 mL of 

protein extract with thermolysin stock solution (2.5 mg/mL), so that the enzyme to substrate 

ratio was 5:100 (w:w). Solution was incubated in a hot air oven (Memmert, model 300, 

Schwabach, Germany) for 6 h at 50 °C, then boiled for 10 min, and centrifuged for 5 s (mini 

centrifuge Nahita, model 2507, 7200 rpm). 

2.6. HPLC analysis 

Separation of zein proteins was performed on a modular Agilent Technologies liquid 

chromatograph (Pittsburg, PA, USA). The chromatographic assembly consisted of a degassing 

system, a quaternary pump, a thermostatized compartment for the column, an injection system, 

and an UV detector (series 1100). HP Chemstation software was used to control HPLC 

instrument. All experiments were made by duplicate and injected twice into the HPLC system. 

Extracted and purified zeins were separated in a POROS R2/10 perfusion column 

(100 mm × 2.1 mm I.D.) (Perspective Biosystem, Framingham, MA, USA) using a flow-rate 

of 1 mL/min, a temperature of 25 °C, a binary gradient from 5–50.2% B in 7.2 min, 50.2–65.4% 

B in 2.94 min, 65.4–95% B in 1 min, and 95–5% B in 1 min. Mobile phases consisted of Milli-

Q water/0.1% (v:v) TFA (mobile phase A) and ACN/0.1% (v:v) TFA (mobile phase B). The 

injected volume was 5 μL and the detection was performed at a wavelength of 280 nm. 

Separation of digested α-zein and target peptides was performed by HPLC with UV 

detection using an Ascentis Express Peptide ES-C18 column (100 mm × 2.1 mm I.D., with 

2.7 μm particle size) with an Ascentis Express Guard column (5 mm × 2.1 mm I.D., with 2.7 μm 

particle size) both from Supelco (Bellefonte, PA, USA). The optimized chromatographic 

conditions for the separation of peptides were: 3% B for 5 min, 3–5% B in 5 min, 5–97% B in 

2 min, and 97–3% B in 2 min; mobile phase A, Milli-Q water/20 mM AA; mobile phase B, 

ACN/20 mM AA; temperature, 40 °C; flow-rate, 0.4 mL/min; injected volume, 5 μL; UV 

detection at 210 nm. Digested extracts were filtrated through 0.45 μm pore size regenerated 

cellulose filter membranes (Titan 2, Eatontown, NJ, USA) before injections. 
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2.7. MS analysis 

MS analysis was performed using a Quadrupole-Time-of-Flight (Q-ToF) MS (instrument 

series 6530) from Agilent Technologies coupled to a liquid chromatograph 1100 series also 

from Agilent Technologies. HPLC separation was made on the Ascentis Express column 

previously employed, using mobile phases: A, Milli-Q water/0.3% (v:v) AA and B, ACN/0.3% 

(v:v) AA. The elution gradient was 5–20% B in 15 min, 20–95% B in 2 min, and 95–5% B in 

2 min with a flow-rate of 0.5 mL/min and a column temperature of 25 °C. The injected volume 

was 20 μL for the digested extract and 1 μL for the standards of peptides. Simultaneous UV 

(210 nm) and MS detection were registered. The mass spectrometer was operated with the ESI 

source Jet Stream in the positive ion mode using only ToF analyzer (only MS mode) and a mass 

range of 100–3200 m/z. The dry gas flow-rate was 10 L/min and its temperature was 300 °C. 

The nebulizer gas pressure was 30 psig and the sheath gas flow and temperature were set up at 

12 L/min and 400 °C, respectively. MS conditions were: capillary voltage, 3500 V; 

fragmentator, 200 V; skimmer voltage, 60 V; octopole voltage, 750 V, and nozzle voltage, 0 V. 

Mass spectrometer control, data acquisition, and data analysis were carried out with the 

MassHunter Software. 

2.8. SDS-PAGE analysis 

A Bio-Rad Mini-Protean system was used for the electrophoretic separation of proteins. 

Samples were prepared as follows: 15 μL of each sample was added to 15 μL of Laemmli buffer 

containing 0.5% of B-ME, vortexed, boiled at 95 °C for 5 min, and centrifuged for 10 s. 

Separation was carried out on commercial Mini-Protean Precast Gels using a solution consisting 

of 25 mM Tris–HCl, 192 mM glycine, and 0.1% SDS (pH 8.3) as running buffer. 

Electrophoresis was performed by applying 200 V for 30 min. Protein standards (Precision Plus 

Protein Standards) consisting of recombinant proteins expressed by Escherichia coli (with Mw 

250, 150, 100, 75, 50, 37, 25, 20, 15, and 10 kDa) were injected in the first lane and used as a 

ladder to estimate molecular weights of proteins in the following lanes. After electrophoresis, 

proteins were fixed by gentle agitation in 100 mL solution consisting of 10% (v:v) glacial acetic 

acid and 40% (v:v) MeOH for 30 min, stained for 1 h (gently agitating) with 50 mL of Bio-Safe 

Coomassie stain, and washed with Milli-Q water for at least 2 h. 
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3. Results and discussion 

3.1. Selection fo the extraction procedure and identification of α-zeins 

There is no quick and efficient procedure to extract α-zeins from maize kernels. Existing 

extraction procedures are mainly focused to the extraction of whole maize proteins or total-

zeins from maize kernels or to the extraction of α-zeins from maize products with high protein 

content, e.g. CGM. 

The procedure developed by Parris and Dickey [38] and improved by Rodríguez-Nogales 

et al. [39] enabled the fractionation of zeins from CGM based on their different solubility. We 

have modified the original fractionation procedure reducing the second overnight precipitation 

to 2 h. Moreover, we have also tried the use of this method to fractionate zeins from maize 

kernels. Nevertheless, zein fractionation from maize kernels was not possible due to their low 

protein content (6–12%) in comparison with maize products (CGM contained 60% protein) 

employed in the original procedure. Then, the method was applied to the extraction of zeins 

from CGM such as it was previously performed by Parris and Dickey [38]. The precipitated α, 

and β/γ-zeins, and the supernatant obtained from CGM, were injected into the HPLC system. 

Although, in each fraction different peaks were distinguished, small signals supposedly from 

α-zeins, could also be observed in the β/γ-zein fraction, and in the supernatant. These results 

could indicate that part of the analytes remain in the solution after precipitation. These results 

suggested that this fractionation method was not quantitative and could not fully separate α-

zeins from β and γ-zeins. In order to obtain a clear identification of peaks corresponding to α-

zeins, an extraction procedure used for extracting α-zeins from CGM [19] was applied to maize 

kernels from the EZ6 line. The extraction consisted of mixing 1 g of maize kernel with 10 mL 

of 70% EtOH. The extraction procedure was accelerated by the employ of an ultrasonic probe 

(20 min, 100% amplitude). Finally, the extract was centrifuged for 10 min (4000 × g, 20 °C). 

Furthermore, the 70% EtOH extract, supposedly containing α-zeins, was subjected to 

ultrafiltration through membranes with Mwco 3 and 10 kDa, where in both cases, results were 

identical. On the other hand, a commercially available zeins standard mainly made up from α-

zeins (due to the fact that other types of zeins (β, γ, δ) are thought to contribute to gelling [40]) 

was also used in order to clarify the identification of α-zeins. The commercially available zeins 

standard, the precipitated β/γ-zeins, the extract of α-zeins obtained from maize kernels extracted 

with 70% of EtOH, and the same extract passing through the membrane with Mwco 3 kDa were 

injected into the HPLC system (Fig. 1). α-Zeins eluted in three peaks at 3, 3.7, and 8 min (peaks 
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C, D, and H/I). As previously stated, β and γ-zeins fraction also yielded small peaks C, D, and 

H/I in addition to a big signal at 6 min (peak F) and two small signals (peaks E/G). Extract 

obtained from maize kernels with 70% of EtOH using the method of Yano et al. [19] accelerated 

with an ultrasonic probe, yielded mainly peaks C, D and H/I in addition to small signals A, B, 

and E.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Chromatograms obtained for: the commercial α-zein standard (solid line); fraction β/γ-zeins obtained 

by the fractionation of CGM (dash line); the extract of α-zeins obtained from the maize kernel with 70% of EtOH 

(dash dot line); extract when passing through a membrane with Mwco of 3 kDa (dot line). Chromatographic 

conditions: column: POROS R2/10 perfusion (100 mm × 2.1 mm I.D.), mobile phases: A, Milli-Q water/0.1% 

(v:v) TFA; B, ACN/0.1% (v:v) TFA; gradient: 5–50.2% B in 7.2 min, 50.2–65.4% B in 2.94 min, 65.4–95% B in 

1 min, 95–5% B in 1 min; T = 25 °C; inj. vol. = 5 μL; F = 1 mL/min; λ = 280 nm. 

Interestingly, when this extract was subjected to ultrafiltration through a 3 kDa Mwco 

membrane, peaks H/I disappeared and only signals A–E were observed. From these results, α-

zeins seemed to elute mainly in peaks H and I, while peaks F and G could correspond to β- and 

γ-zeins, and peaks A–E (passing through the 3 kDa filter) could be small molecules. These 

small molecules could correspond to impurities like polyamines putrescine compounds which 

have very high UV absorbance at 320 nm [27]. As reported Moreau et al. [41] when maize 

kernels are extracted with common polar organic extractants (e.g. ethanol or methylene 

chloride), high levels of polyamine conjugates such as diferuloylputrescine (DFP) and p-

coumaroylferuloyputrescine (CFP) were also extracted. Moreover, LC–MS analysis of these 
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compounds reported molecular weights of 440 and 410 mass units, for DFP and CFP, 

respectively [42] demonstrating these compounds passed through the 3 kDa cut-off filter. 

Furthermore, the chromatogram obtained when registering the signal at 320 nm (specific 

wavelength for polyamine putrescine compounds) showed just peaks A, B, C, D, and E and not 

the peaks assigned to zeins (F, G, and H/I). Moreover, the extract obtained from maize kernel 

using 70% of ethanol and accelerated with ultrasonic probe was also analyzed by SDS-PAGE. 

The electrophoretic pattern of this extract confirmed the presence of only α-zeins bands 

appearing at molecular weights of 19 and 22 kDa. 

3.2. Optimization of α-zeins extraction 

Once demonstrated that the use of an organic solvent as ethanol could extract α-zeins from 

maize kernels, following parameters were next optimized: organic solvent, percentage of 

organic solvent in extractant, time of extraction, amplitude of the ultrasonic probe, and maize 

to extractant ratio. According to the literature, an alternative solution to EtOH for the extraction 

of α-zeins could be IPA and ACN [28]. ACN was discharged due to the low amount of α-zeins 

that were extracted and due to the high amount of interferences that were obtained. Regarding 

IPA and EtOH, different solutions ranging from 40% to 90% were tried for the extraction of α-

zeins. Maximum α-zein extraction with EtOH was reached at 70% while for IPA, the highest 

extraction was obtained at 60%. Taking into account that IPA extraction provided higher 

amount of interferences and the higher price of this solvent, 70% EtOH was chosen as the 

optimum extractant for α-zeins. Next, the influence of the extracting time using the ultrasonic 

probe was evaluated in the range from 0 (sample mixed with solvent and centrifuged) to 60 min 

in 10 min intervals. Results indicated that α-zein solubility increased up to 10 min and 

afterwards decreased, concluding the optimum time for extraction was 10 min. Next, the 

ultrasonic energy was modified to evaluate its effect on the amount of extracted proteins. 

Following amplitudes were tested: 20%, 30%, 50%, 70%, 90%, and 100%. Results showed that 

higher ultrasonic energies accelerated the extraction of α-zeins up to 90% of amplitude, that 

was selected as the optimum value. Moreover, different sample to solvent ratios were evaluated: 

1:3, 1:5, 1:10, 1:15, and 1:20 (w:v). Extractions under sample to solvent ratios 1:5 and 1:3 were 

not possible and gave unreliable results. A 1:10 (w:v) sample to solvent ratio was further used 

as optimum since it enabled to obtain the maximum peak area. After optimization of the 

extraction procedure, a study on the stability of samples was performed. The same sample was 

injected over a long period of time (26 h). No change in the peak area corresponding to α-zeins 

was observed. Estimated repeatability for the ten first injections of the same sample yielded a 
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RSD of 0.4%. The precision obtained when injecting eight different samples in the same day 

was 2.2%. The inter-day precision when injecting eight maize samples in two different days 

(16 analysis) was 3.4%. 

3.3. Purification of α-zeins 

In order to clean the α-zeins extract from interferences and also to transfer α-zeins to other 

suitable solution for enzymatic digestion, the precipitation of proteins was proposed. Two 

different precipitation methods were designed. Precipitation methods consisted of mixing α-

zeins extract with 50 mL of 10% TCA/acetone containing 0.07% B-ME or with 50 mL of 

acetone containing 0.07% B-ME, both at −20 °C for 1 h. Both pellets were dissolved again in 

70% EtOH and were injected into the chromatographic system. Pellets obtained by the 

TCA/acetone method were very difficult to redissolve. Unlike this procedure, pellets from the 

acetone methodology were quickly redissolved in 70% EtOH. Moreover, a recovery close to 

100% was observed by comparing the signal corresponding to the protein before its 

precipitation with that of the protein after its precipitation and redissolution. In order to use the 

best conditions for the acetone precipitation of α-zeins, the volume of acetone and the 

precipitation time were optimized. The recoveries of α-zeins and interferences were estimated 

taking into account signals obtained before and after precipitation with different volumes (50–

100 mL) of acetone. Results data showed that all samples, regardless to the volume of acetone 

employed, were cleaned from interferences at approximately the same level. Finally, an acetone 

volume of 80 mL was considered as the optimum one since it yielded the highest protein 

recovery. Moreover, different precipitation times at −20 °C were tested (0–90 min in 30 min 

intervals). Results at each precipitation time were very similar and no waiting time for 

precipitation was considered necessary. 

3.4. Solubilization of precipitated α-zeins in an aqueous buffer 

The selection of an appropriate solvent for the enzymatic digestion of a protein is usually 

not a big problem since most proteins are soluble in aqueous buffers where enzymes are 

working. Nevertheless, since zeins are alcohol soluble proteins, choosing a medium in which 

zeins were soluble and, simultaneously, enzyme was active, is quite challenging. Information 

found in the literature indicated that zeins were soluble in aqueous solutions containing high 

concentrations of urea, salts, and ammonia [20]. Moreover, thermolysin has unusual properties 

and remains active in unfolding conditions such as high concentrations of urea (6–8 M urea) 
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[43] or in the presence of some salts [44]. In addition, anionic surfactants like SDS at 

concentrations up to 1% had been proven to be useful for solubilization of proteins [41]. Taking 

into account this bibliographic information, the following media were employed for the 

solubilization of the α-zeins obtained from the maize kernels: 4 M urea/0.1% NH3; 10 mM 

Tris–HCl/6 M urea (pH 8.5); 10 mM Tris–HCl/8 M urea (pH 8.5); 50 mM Tris–HCl/5 mM 

CaCl2 (pH 8.0); 8 M urea; 1% NH3; 10 mM Tris–HCl/0.1% SDS (pH 8.5); 10 mM Tris–

HCl/8 M urea + 0.6% SDS (pH 8.5); 10 mM Tris–HCl/0.6% SDS (pH 8.5). Nevertheless, only 

the buffer consisting of 10 mM Tris–HCl/8 M urea (pH 8.5) could dissolve α-zeins and enabled 

the digestion with thermolysin by the previous dilution of urea to 6 M. This solubilization 

process was accelerated when temperature decreased. Hence, the precipitated α-zeins were best 

dissolved when keeping in the fridge overnight. Obtained digested extract was injected into the 

HPLC system using UV detection at 210 nm which is a suitable wavelength for detecting 

peptides. Comparison of chromatograms demonstrated (data not shown) that α-zeins peaks 

appearing in the initial extract disappeared after thermolysin digestion and, at the same time, 

new signals corresponding to peptides appeared. Nevertheless, the perfusion column did not 

permit a good separation of peptides and it was replaced by a fused-core column in next 

experiments. 

3.5. Identification of target peptides in the α-zeins digested extract 

In order to confirm that target peptides LQP, LRP, and LSP were in the digested extract, 

HPLC–MS was used. For that purpose, the chromatographic conditions were chosen in order 

to obtain the best peptide separation with the fused-core column and, at the same time, a nice 

environment for the MS detection. At this point, it is important to highlight that the ion-pairing 

reagent used in this work up to now in RP-LC separations was not suitable for the MS detection. 

In fact, TFA creates strong complexes with peptides which are enhancing the separation in the 

RP-LC column, but at the same time, these complexes are strong enough to inhibit peptide 

ionization in MS resulting in signal suppression. Different alternatives such as reduction of the 

TFA concentration or the use of other ion-pairing reagent can be proposed. Typical mobile 

phases used for HPLC with MS detection are 0.3% AA, 0.2% HFBA, 0.025% TFA or 0.2% FA 

[45]. These ion-pairing reagents were tested for the separation of the α-zein digested extract. 

The chromatogram obtained using AA as ion-pairing reagent seemed to enable the best 

separation of peptides. 
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Fig. 3. Chromatograms corresponding to the digested extract spiked with (A) LQP, (B) LSP, (C) LRP and to 

(D) the digested extract. Chromatographic conditions: column: Ascentis Express Peptide ES-C18 

(100 mm × 2.1 mm I.D., with 2.7 μm particle size) with Ascentis Express Guard column (5 mm × 2.1 mm I.D., 

with 2.7 μm particle size), mobile phases: A, Milli-Q water/0.3% AA (v:v), B, ACN/0.3% AA (v:v). Gradient: 5–

20% B in 15 min, 20–95% B in 2 min, 95–5% B in 2 min, T = 25 °C, inj. vol. = 10 μL, F = 0.5 mL/min, λ = 210 nm. 

As a consequence, 0.3% of AA in the mobile phase was chosen for further experiments using 

the following gradient: 5–20% B in 15 min, 20–95% B in 2 min, and 95–5% B in 2 min. The 

comparison of the elution times of these peaks with the elution times of the standard peptides 

enabled a tentative identification of the peaks corresponding to LQP, LSP and LRP. Moreover, 

the MS spectra of these peptides in the maize sample and in the standards were compared for a 

better identification. Fig. 2 shows the spectra corresponding to the three standard peptides. All 

three peptides in the standards resulted singly protonated. In the case of LQP and LRP, this 

protonated ion was the base peak. Moreover, additional signals were also observed in every 

peptide standard, especially in the case of LQP and LSP. These additional signals could 

correspond to fragments of peptide and other reagents that have resulted during their synthesis. 

The total ion chromatogram (TIC) of the digested extract, and the extracted ion chromatograms 

(EICs) of each peptide ion obtained from the separation of digested extract, and peptide 

standards were compared in order to identify target peptides in the digestion extract. Moreover, 

the digested extract of α-zeins was spiked with every peptide standard to confirm the identity 

of peaks corresponding to these peptides in the digested extract. The digested extract (250 μL) 

was enriched with 2 μL of LQP (1 mg/mL), LSP (0.1 mg/mL) or LRP (1 mg/mL) (Fig. 3). 
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Comparison of spiked and non-spiked extracts enabled the clear identification of LQP, LSP, 

and LRP peptides. 

3.6. Optimization of the chromatographic separation of the α-zeins digested extract by RP-

LC 

Once target peptides have been identified in the digested extract, the chromatographic 

conditions were optimized. Since target peptides still eluted closely in the first minutes of the 

chromatogram, the slope of the gradient in the first part of the separation was reduced. Finally, 

a gradient consisting of a first isocratic step at 3% B for 5 min and followed by 3–5% B in 

5 min, 5% B in 5 min and 5–97% B in 2 min was chosen for further experiments. Different 

concentrations of AA in the mobile phase (20, 40, 50 (0.3%), 60, and 80 mM) were also 

examined. Separation was not possible when removing the AA reagent, while high 

concentrations resulted in very low retention. Therefore, a concentration of 20 mM of AA was 

found to be the best. Moreover, four different temperatures were tried: 25 °C, 30 °C, 35 °C, and 

40 °C. Best separation was obtained at 40 °C. Nevertheless, despite the appropriate separation 

of standard peptides (LRP peptide eluted at 2.1 min, LSP at 2.7 min, and LQP at 3.9 min), the 

digested extract from the maize kernel showed a limited sensitivity and very small peaks were 

observed. Thus, next step was focused to increase the sensitivity.  

3.7. Optimization of thermolysin digestion of α-zeins 

The following parameters were optimized: concentration of Tris–HCl buffer, pH, substrate 

to enzyme ratio, temperature, and digestion time. Also, an attempt of enhancing the digestion 

using an ultrasonic probe and the influence of reduction and alkylation of proteins previous to 

digestion, have been evaluated. Digestion can be enhanced and accelerated if using ultrasonic 

energy. The digested extract prepared under the initial conditions (α-zeins dissolved in a 10 mM 

Tris–HCl/8 M urea buffer (pH 8.5) and diluted to 6 M urea was mixed with thermolysin at an 

enzyme to substrate ratio of 0.1:100 (w:w) and digested at 37 °C for 3 h) was subjected to the 

action of the ultrasonic probe. Both the amplitude (20%, 40%, 60%, 80%) and the time (3, 5, 

7, 10 min) were studied. Surprisingly, in all cases proteins remained undigested. These results 

suggested that thermolysin was not able to stand the ultrasonic energy resulting inactive under 

these conditions. Therefore, precipitated zeins were dissolved in 20 mL of a buffer containing 

8 M urea and different concentrations (10, 20, 50 or 100 mM) of Tris–HCl (pH 8.5). Best results 

were obtained when using the 10 mM Tris–HCl buffer. On the other hand, according to the 

literature, the stability pH range of thermolysin ranges from 5.0 to 9.5 [46]. In order to confirm 
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the pH which was optimum for the digestion of α-zeins, the following buffer pHs were 

evaluated: 7.5, 8.0, 8.5, and 9.5. Results showed that thermolysin worked best at pH 8.0, while 

at pH 9.0 the digestion was inhibited due to instability of the enzyme. Following, the ratio 

enzyme to substrate was optimized. Several enzyme to substrate ratios were tested: 0.02:100, 

0.1:100, 0.5:100, 1:100, 2.5:100, 5.0:100, and 10:100 (w/w). Moreover, blank digestions 

without α-zeins were also performed for every ratio in order to evaluate the existence of 

autodigestion [47]. Rising up the level of enzyme resulted in an increase of detected peptides 

till ratio 5:100. No autodigestion was observed at enzyme to substrate values below 5:100 while 

at a ratio 10:100, peaks probably corresponding to the hydrolyzed enzyme were observed. As 

a consequence, a 5:100 ratio was chosen. Furthermore, the influence of temperature in the 

digestion was next studied. Since themolysin can stand temperatures up to 70 °C, examined 

temperatures were: room temperature, 37 °C, 50 °C, 60 °C, and 70 °C. Maximum signals were 

observed at 50 °C that was chosen as optimum temperature value. Different digestion times 

were also tested (1, 3, 6, 12, 18, 24 h). Despite there were not significant changes in the profiles 

obtained, results showed a slight improvement in the hydrolysis of α-zeins till 6 h. Therefore, 

6 h of digestion was chosen as optimum time. Moreover, we evaluated the effect of reduction 

and alkylation of α-zeins previously to their digestion. Interestingly, the hydrolysis of α-zeins 

did not occur when reduction and alkylation took place. Finally, the injected volume was 

optimized. Volumes ranging from 2 to 20 μL were employed. Reduction of the injected volume 

decreased the height of the detected signals. However, signals were much better resolved at 

reduced injected volumes and an injection volume of 5 μL was finally adopted. Fig. 4 shows 

the separation of the digested extract under the final chromatographic and digesting conditions. 

The arrows show the peaks in which target peptides are eluting.  

3.8. Application of  developed methodology to the analysis of maize varieties 

The developed methodology for the extraction and purification of α-zeins was applied to 

different maize varieties to evaluate the performance of the optimized methodology for isolating 

α-zeins. The worst purification was obtained for the crop B73 and the best for the EZ9 crop. 

However, the recovery of proteins after their precipitation with acetone was always higher than 

93%. Peptidic profiles were qualitatively very similar and only differences on the size of the 

peaks corresponding to the target peptides were observed. The comparison of the average areas 

of every antihypertensive peptide in the studied maize crops is shown in Fig. 5. 
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Fig. 4. Separation of LRP, LSP, and LQP peptides from the digested extracts corresponding to maize line B73 

under the final chromatographic conditions: column: Ascentis Express Peptide ES-C18 (100 mm × 2.1 mm I.D., 

with 2.7 μm particle size) with Ascentis Express Guard column (5 mm × 2.1 mm I.D., with 2.7 μm particle size), 

mobile phases: A, Milli-Q water/20 mM AA; B, ACN/20 mM AA; gradient: 3% B for 5 min, 3–5% B in 5 min, 

5% B for 5 min, 5–97% B in 2 min, and 97–3% B in 2 min, T = 40 °C, inj. vol. = 5 μL, F = 0.4 mL/min, λ = 210 nm. 

 

 

Fig. 5.  Comparison of average areas of peptides LQP, LSP, and LRP in different maize varieties (four maize 

varieties, prepared twice and injected two times in the HPLC; 16 analysis). 

There were statistically significant differences among results obtained for every 

antihypertensive peptide in the studied maize crops (ANOVA, P < 0.05). The content in LRP 

peptide was very low in all the analyzed maize lines. Nevertheless, LRP is the most potential 
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antihypertensive peptide (IC50 = 0.29 μM) causing a decrease in blood pressure of about 

15 mmHg by intravenously injection of a small amount of peptide (30 mg/kg) in SHR 

(spontaneously hypertensive rats) after 2 min intake [35]. It should be highlighted that a 

reduction of the diastolic blood pressure of 5 mmHg decreases the risk of heart disease by 

approximately 16% [5]. In the case of peptides LQP (IC50 = 2.0 μM) and LSP (IC50 = 1.7 μM), 

their content significantly varied among the studied maize lines. The highest yield of LSP 

peptide was found in the EZ9 and EZ11A crops, while the smallest in the B73. The highest 

level of LQP was observed in the EZ11A line, and the lowest in the B73. Concluding the crop 

with the highest yield of antihypertensive peptides seemed to be the EZ11A line while the B73 

crop showed the lowest content in antihypertensive peptides. The reproducibility of the method 

for each peptide and for every crop was calculated based on the area of two independently 

prepared samples injected twice into the HPLC. The reproducibility, expressed as RSD values, 

for each peptide was 7.28% for LRP, 1.43% for LSP, and 1.27% for LQP. 

4. Conclusions 

According to the results presented in this work, it can be concluded that, a new methodology 

has been developed for extracting and purifying α-zeins from whole maize kernels. The method 

resulted precise, effective, and quick. A solvent has been selected enabling the suitable 

solubilization of precipitated α-zeins and their suitable digestion (after urea dilution to 6 M) 

with thermolysin. A method has been optimized for the digestion of α-zeins with thermolysin. 

Three antihypertensive peptides (LQP, LSP, and LRP) have been identified by HPLC-Q-ToF 

in the digests of extracted α-zeins from maize kernels. A RP-LC analytical methodology using 

a fused-core column was optimized enabling the separation of the three antihypertensive 

peptides in maize crops in less than 6 min after the optimized extraction and digestion of α-

zeins from maize crops. The contents of LQP, LRP, and LSP peptides have been estimated in 

different maize varieties. The content of LRP peptide (IC50 = 0.29 μM) was very low regardless 

of the maize variety. LQP (IC50 = 2.0 μM) and LSP (IC50 = 1.7 μM) peptides, presenting an 

activity more than twice that of the most known and studied VPP and IPP peptides (IC50 = 9.13 

and 5.15 μM, respectively), were detected in all maize varieties. Significant differences in the 

content of LQP and LSP were observed among studied maize lines which clearly demonstrated 

the different antihypertensive activity of maize lines. 
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Abstract 

The simultaneous quantification of three highly antihypertensive peptides (LRP, LSP, and 

LQP) in six maize crops using novel HPLC–ESI-Q-ToF methodology is presented. The method 

included the extraction of α-zein proteins from maize, their purification by acetone 

precipitation, digestion with thermolysin and HPLC separation in a fused-core column. Several 

MS parameters were optimized to increase sensitivity and reduce spontaneous fragmentation of 

peptide ions into the ESI source. The ions with m/z 193.1315, 385.2558 (for LRP), 316.1867 

(for LSP), and 357.2132 (for LQP) were monitored in the optimization and characterization of 

the method. In order to improve the repeatability, sensitivity, and the stability of peptides in the 

sample, the removal of urea was required. The use of two solid-phase extraction methods to 

remove urea from digested extract was evaluated. For the first time filter aided sample 

preparation approach for the study of bioactive peptides in foodstuffs has been proposed. The 

optimized HPLC–ESI-Q-ToF method was characterized by the evaluation of linearity, LOD, 

LOQ, precision, and recovery. A study on the existence of matrix interferences was also 

performed. The developed method was applied to the quantification of LRP, LQP, and LSP 

peptides in maize lines using the standard addition method. The results showed the highest yield 

of LSP peptide in EZ11A line and LRP and LQP peptides in A632 line. 

 

Keywords: 

Antihypertensive peptides; HPLC;  ESI-Q-ToF; Fused-core column; Maize; Quantification 
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1. Introduction 

High blood pressure or hypertension is one of the most spread health problems worldwide. 

Treatment of hypertension has been shown to prevent cardiovascular diseases (CVDs), which 

were estimated in 2010 by World Health Organization (WHO) as the main cause of death in 

developing countries. Last clinical studies have shown that, in addition to synthetic drug 

therapy, the ingestion of fermented milk with antihypertensive peptides enables to reduce blood 

pressure in patients with first stage of hypertension [1]. Antihypertensive compounds act on 

renin-angiotensin system which is at the core of blood pressure regulation in living organisms. 

Briefly, angiotensin I converting enzyme (ACE) converts angiotensin I to a potent 

vasoconstrictor angiotensin II, and at the same time inactivates a potential vasodilator 

bradykinin. In this regards, those compounds inhibiting ACE activity would cause the drop of 

blood pressure [2]. ACE inhibitors can be classified like synthetic drugs (e.g. captopril and 

enapril) and naturally existing antihypertensive peptides, with the difference that the first one 

causes several side effects [3]. Common features of antihypertensive peptides are short 

sequences (2–12 amino acid residues) containing significant amount of hydrophobic residues 

[4] and the presence of proline at the C-terminal [5].  

Corn or maize (Zea mays L.) is a major crop which accounts 15–56% of the total daily 

calories in human diets, particularly in Africa and Latin America [6]. Maize contains 6–12% of 

proteins depending on the line, where zeins (the prolamin fraction) account to 60% of total 

proteins [7]. According to Esen classification, zeins can be distinguished based on their 

molecular masses as α-zeins (21–25 kDa), β-zeins (17 kDa), γ-zeins (18 and 27 kDa), and δ-

zeins (10 kDa). Almost 75–85% of total zeins are α-zeins [8]. Maize contains three highly 

antihypertensive peptides derived from α-zeins [9]. These peptides exhibit one of the highest 

half maximal inhibitory concentration (IC50) values, namely leucine–arginine–proline 

(LRP = 0.29 μM), leucine–serine–proline (LSP = 1.7 μM), and leucine–glutamine–proline 

(LQP = 2.0 μM). Nevertheless, the presence of these peptides can vary in relation with the 

maize genotype being very interesting the development of analytical methodologies for their 

reliable quantification. In our previous work, we have developed a quick and effective 

analytical methodology for the extraction and purification of α-zeins from whole maize kernels, 

their further solubilization, and digestion by thermolysin [10]. Nevertheless, in order to perform 

the absolute peptide quantification in such a high complex sample, better method selectivity 

and sensitivity are required. 
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The food peptidome is an ambitious challenge to be analyzed in the food matrix. Two main 

parameters need to be considered, namely peptide length and dynamic range. In nutritional 

peptidomic, a great peptide length distribution with high dynamic range is attributed to the 

diverse selectivity and specificity at the processing level (enzymatic digestion or fermentation) 

[11]. In this regards, antihypertensive peptides, usually composed by di- or tri-peptides, could 

be considered as a difficult task in nutritional peptidomic. In order to obtain antihypertensive 

peptides, enzymes with low specificity are used, which leads to very complex matrices. For the 

analysis of bioactive peptides in a food matrix, high performance liquid chromatography 

(HPLC) has been the technique most commonly applied [11]. Significant advantage in the 

analysis of complex matrices is the use of chromatographic columns with small particle size, 

which enable the separation with high efficiency and short analysis times. Nevertheless, at the 

same time these columns generate high back pressure which requires a special instrumentation 

(ultra high performance liquid chromatography, UPLC). Fused-core particles constitute a new 

type of stationary phases offering high efficiency and short analysis times while maintaining 

back pressure at a reasonable level [12]. In addition, the use of mass spectrometry (MS) coupled 

to HPLC has shown to provide several advantages in the analysis of complex matrices [13]. 

Functional foods containing antihypertensive peptides are having a growing interest since 

diet is the factor with the most profound life-long influence on health. There are 24 patented 

and commercially available antihypertensive functional foods described in literature [2, 14, 15]. 

Despite the great interest on the discovery of new antihypertensive peptides in foodstuffs [16-

19], their quantification is quite scarce [20]. However, the establishment of standardized 

methodologies in order to quantify these targeted peptides in foodstuffs is essential, since their 

content can significantly vary with genotype [20- 21]. The relevance of analytical methods 

dealing with the quantification of peptides in food matrices is often emphasized. Nevertheless, 

the quantification of antihypertensive peptides is not common, probably due to the complexity 

of food matrices from which targeted peptides need to be distinguished in an unambiguous way. 

HPLC has been the only technique used for this purpose using UV detection [22-24] or more 

frequently MS detection (HPLC–MS [25-28], HPLC–MS/MS [29-32], or HPLC–MS3 [33-34]). 

Nevertheless, in no case quantification of LRP, LSP, and LQP in maize crops was performed. 

The aim of this work was the development of a sensitive analytical methodology enabling 

the quantification of highly antihypertensive peptides LRP, LSP, and LQP in maize crops by 

high-performance liquid chromatography coupled with electrospray ionization-quadrupole-
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time-of-flight-mass spectrometry (HPLC–ESI-Q-ToF-MS) using a fused-core column. The 

method was characterized and the evaluation of the content of these three antihypertensive 

peptides in different maize crops lines was performed. 

2. Materials and methods 

2.1. Chemicals and samples 

Acetonitrile (ACN) (MS and HPLC grade), trifluoroacetic acid (TFA), and thermolysin were 

purchased from Sigma (St. Louis, MO, USA). Tris-(hydroxymethyl)aminomethane 

hydrochloride (Tris–HCl), β-mercaptoethanol, formic acid (FA), and sodium hydroxide were 

from Merck (Darmstadt, Germany). Acetic acid (AA), acetone, ethanol, and urea were supplied 

by Scharlau Chemie (Barcelona, Spain). HPLC grade solvents (unless otherwise stated) were 

use. Peptide standards (LRP, LSP, and LQP) were synthesized by Genescript (Genescript Corp., 

Piscataway, NJ, USA), all with more than 98% of purity. Maize lines (EZ6, EZ9, B73, EZ11A, 

A632, and Millo Corvo (MC)) were kindly donated by a Maize Germplasm Bank (Experimental 

Station of Aula Dei, CSIC, Zaragoza, Spain) and stored in the fridge at 4 °C. The moisture of 

samples was determined using official reference method [35]. Thermolysin powder and stock 

solution (2.5 mg/mL) and peptide standards were always stored at -20 °C. 

2.2. α-Zeins extraction 

Whole maize kernels were ground with a domestic miller and extracted using 70% of ethanol 

with assistance of an ultrasonic probe (VCX.130, Sonic Vibra-Cell, Hartford, CT, USA) as in 

a previous work [10]. Afterwards, sample was centrifuged (4000 × g, 10 min, 20 °C) and 

separated from the pellet. 

2.3. Purification and in-solution digestion of α-zeins 

α-Zein extract was purified by precipitation with acetone containing 0.07% of β-

mercaptoethanol as in a previous work [10]. Air dried pellet was dissolved in 20 mL of buffer 

(10 mM Tris–HCl (pH 8.0) containing 8 M urea) and left overnight at 4 °C. Dissolved α-zeins 

were diluted in water in order to reach an urea concentration of 6 M. Therefore, protein extract 

was mixed with thermolysin stock solution (enzyme to substrate ratio 5:100 (w:w)), and 

incubated for 6 h at 50 °C in a hot air oven (Memmert, model 300, Schwabach, Germany). The 

reaction was stopped and sample was desalted using solid phase extraction (SPE).  
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2.4. Filter aided sample preparation (FASP) 

A FASP protocol [36] that had never been applied to food matrices was tested for the 

extraction and digestion of antihypertensive peptides with modifications. Filters with Mwco of 

10 kDa (Amicon® Ultra, Millipore) were washed with 0.25 mL of freshly taken water from a 

Milli-Q system (Millipore, Bedford, MA, USA) and centrifuged for 20 min (12,100 × g). 

Therefore, 93 μL of α-zein extract was diluted till 0.25 mL with 8 M urea in 0.1 M Tris–HCl 

buffer (pH 8.5). Next, 0.23 mL of this mixture was applied onto the filters and centrifuged 

(20 min, 12,100 × g). Filters retaining proteins were washed once with 0.20 mL of 8 M urea in 

0.1 M Tris–HCl buffer (pH 8.5) and twice with 0.10 mL of 8 M urea in 0.1 M Tris–HCl buffer 

(pH 8.0) and centrifuged after each step for 20 min (12,100 × g). The thermolysin solution 

(0.22 mL) dissolved in 10 mM Tris–HCl buffer (pH 8.0) containing 6 M urea was applied onto 

the filters (enzyme to substrate ratio 5:100 (w:w)), and incubated for 6 h at 50 °C in the hot air 

oven. After incubation, filters were centrifuged (20 min, 12,100 × g) and the eluates were 

collected. Filters were washed with a solution containing 50 μL of 0.5 M NaCl and centrifuged 

(20 min, 12,100 × g). Both eluates were combined. The reaction was stopped and the eluates 

were analyzed. 

2.5. Solid phase extraction (SPE) 

Two different kinds of C18 cartridges were tested for the desalting of extracts using SPE: 

C18 Sep-Pak (Waters Associates Inc., Milford, MA, USA) and C18 Supelco (Sigma, St. Louis, 

MO, USA). Sample (0.25 mL) acidified with 10% of AA was loaded onto SPE columns, 

previously conditioned with 2 mL of ACN and 2 mL of solvent A. Solvent A for Sep-Pak 

cartridge was 0.1 M AA and for Supelco cartridge was 0.1% TFA. SPE columns were washed 

twice with 1 mL of solvent A. Peptides from cartridges were eluted with 0.5 mL (Sep-Pak 

cartridge) or 3 mL (Supelco cartridges) of solvent B. Solvent B consisted of 80% ACN in 

solvent A. Collected eluates from Sep-Pak or Supelco cartridges were evaporated and 

resuspended into 0.25 mL of 10% AA. 

2.6. HPLC analysis 

The separations were performed on a modular Agilent Technologies liquid chromatograph 

(Pittsburgh, PA, USA) consisting of a degassing system, a quaternary pump, a thermostabized 

compartment for the column, an injection system, and an UV detector (series 1100). Separation 

was performed using previously optimized conditions [10]. The Ascentis Express Peptide ES-
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C18 column (100 mm × 2.1 mm I.D., with 2.7 μm particle size) with an Ascentis Express Guard 

column (5 mm × 2.1 mm I.D., with 2.7 μm particle size), both from Supelco (Bellefonte, PA, 

USA), were employed. The optimized conditions for the separation of peptides were: mobile 

phase A, Milli-Q water/20 mM AA; mobile phase B, ACN/20 mM AA; flow-rate, 0.4 mL/min; 

temperature, 40 °C. The optimized gradient was: 3% B for 5 min, 3–5% B in 5 min, 5–97% B 

in 2 min, and 97–3% B in 2 min. The injection volume was 5 μL. Peptides were detected using 

quadrupole-time-of-flight (Q-ToF) MS (instrument series 6530) with electrospray ionization 

(ESI) jet stream ionization from Agilent Technologies. 

2.7. MS analysis 

The mass spectrometer operated in the positive ion mode using only ToF analyzer and a 

mass range 100-3200 m/z. Optimization of ESI conditions was performed by injecting in 

triplicate a standard solution containing the three peptides at a concentration of 10 ppm. 

Samples were analyzed immediately after preparation. The extracted ion chromatogram (EIC) 

peak areas obtained for each peptide ion and their fragments were compared using one-way 

ANOVA test. Optimized ESI conditions were: fragmentator voltage, 100 V for 3.5 min and 

150 V till the end of analysis; nozzle voltage, 0 V; nebulizer pressure, 50 psig; capillary voltage, 

3500 V; gas temperature, 300 °C; gas flow, 10 L/min. The jet stream sheath gas flow and 

temperature were 5.5 L/min and 250 °C, respectively. 

2.8. Characterization of the method and calibration 

All solutions were injected, at least by triplicate. Calibration was performed by the external 

standard, the standard addition, and the single point calibration methods. The external 

calibration method was performed in ranges 1–59 ppb (9 points) for LRP, 25–2297 ppb (10 

points) for LSP, and 3–304 ppb (8 points) for LQP. Each peptide calibration solution was 

prepared by individual dilution of peptide standard stock solution to desired peptide 

concentration. For each injection, the EIC of peptides was extracted with different extraction 

windows (EW) (10–200 ppm) and EIC peak areas were averaged. The EZ6 maize line was 

employed for the characterization of the method and the EZ6 and EZ9 lines for the study of the 

existence of the matrix interferences. The standard addition method was performed by the 

addition of known amounts of peptide standard solution to two individual digested extract 

samples so that the concentration of peptides in the sample was 0%, 10%, 20% and 30%. 

Samples were injected in triplicate and EIC peak areas of peptides were extracted, averaged, 
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and plotted against the amount of added peptide standard. The comparison of standard addition 

method with external standard method enabled to establish the existence of matrix 

interferences. The quantification of the three antihypertensive peptides in different maize lines 

was performed by means of the single point calibration method [37]. Single point calibration 

was performed by the injection of two different sample solutions for every maize sample: one 

maize solution and an identical maize solution spiked with known amounts of peptide standards. 

This kind of calibration was carried out after checking that the intercept did not significantly 

differ from zero. EIC peak areas for LRP, LSP, and LQP were extracted, respectively, using 

200 ppm, 100 ppm, and 100 ppm extraction windows. Limits of detection and quantification 

(LOD and LOQ) were calculated using two approaches. Repeatability was evaluated by five 

repeated injections (n = 5) of standard solutions at two concentration levels. First solution 

contained 8 ppb, 53 ppb, and 62 ppb of LRP, LSP, and LQP, respectively, and the second one 

consisted of 41 ppb, 1159 ppb, and 155 ppb of these peptides. The EIC signals were extracted 

using different EW (10–200 ppm). Inter-day precision was determined by the triplicate injection 

of an extract in two consecutive days (n = 6). Inter-sample precision was established using five 

individually desalted maize samples. The relative standard deviation (RSD) was calculated 

using different EW. Selectivity was evaluated by the comparison of total ion chromatogram 

(TIC) obtained for the digested extract with its corresponding EIC of peptides using different 

EW. Recovery was estimated by the analysis of a digested extract spiked with peptide standards. 

Added standard concentrations corresponded to 0%, 20%, or 40% of each peptide concentration 

in the maize line. 

2.9. Data analysis 

MassHunter® Workstation Software (B.04.00) was used to carry out mass spectrometer 

control, data acquisition, and data analysis. After optimization, peptide ions for LRP (m/z 

193.1315, and 385.2558) were extracted with 200 ppm EW while peptide ions for LSP (m/z 

316.1867) and LQP (m/z 357.2132) were extracted using 100 ppm extraction window. 

Statistical analysis was performed using Software Statgraphics Plus 5.1 (Statpoint 

Technologies, Inc., Warrenton, VA, USA). 

3. Results and disscusion 

MS spectra of LRP, LSP, and LQP standard peptides were obtained using the following MS 

starting conditions: positive ion mode; mass range 100–3200 m/z: (just ToF mode) 
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fragmentator: 200 V; skimmer: 60 V; OCT 1 RF: 750 V; Gas temp.: 300 °C; drying gas: 

10 L/min; Nebulizer: 30 psig; Capillary voltage: 3500 V; Sheath gas temp. and flow: 400 °C, 

12 L/min; nozzle: 0 V. In all cases, in-source fragmentation of peptides was observed. Fig. 1 

depicts the MS spectrum of LRP (Fig. 1A), LSP (Fig. 1B), and LQP (Fig. 1C). The MS spectrum 

of LRP contained singly [M+H]+ and doubly charged [M+2H]2+ peptide ions with m/z values 

385.2558 and 193.1315, respectively. Moreover, the LRP ion fragment y2
+ with m/z 272.1717 

was also observed as a consequence of in-source ion fragment. This effect is probably due to 

the strong effect of basic arginine (R) which maintains the positive charge of the peptide. 

Spectra corresponding to LSP and LQP were much more complex than the LRP spectrum. In 

both cases just singly charged peptide ions were observed, with m/z 316.1867 and 357.2132 for 

LSP and LQP, respectively. Moreover, sodium adducts [M+Na]+ and dimmer ions [2M+H]+ 

(part of the spectrum not shown) were also present in both peptide spectra. Due to similar 

elution times, LSP spectrum showed signals corresponding to LQP and vice versa (signals 

marked with an X). Furthermore, highly abundant y2
+ and b2

+ ions were observed after in-source 

fragmentation of singly charged peptides. For LQP, the b2
+ ion was more intense than y2

+ ion 

which would suggest the preferable cleavage between Q and P. Strong ion with m/z 116 would 

suggest the presence of y1
+ ion in both spectra. The extraction of EIC for the proline residue ion 

(m/z 116.0706) confirmed that this ion was present just during the elution time of LSP/LQP 

peptides. However, due to the high co-elution of these two peptides the y1
+ ion could not be 

assigned to one peptide. The same approach was applied for ion with m/z 114 (possible b1
+ ion). 

However, in this case, the ion was present during all analysis and was labeled as background 

(BS). Moreover, both peptides also showed the neutral loss of CO (−28 Da) from b2
+ ions (a2

+ 

ions). The specific neutral loss of ammonia (−17 Da) from y2
+ ion was also observed in the 

spectra.   

Optimization of ESI parameters. In order to reduce the spontaneous fragmentation of 

peptides and to increase the intensity of peptide signals these starting ESI conditions were next 

optimized. The instrumental parameters to optimize were divided into two groups. First group 

was constituted by parameters depending on the analyte nature (fragmentator voltage, capillary 

voltage, and nozzle voltage) and the second group included the parameters depending on the 

flow and composition of the mobile phase (nebulizer pressure, temperature and flow of the 

drying gas, and temperature and flow of sheath gas). 
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Fig. 2 depicts the influence of optimization of ESI parameters on the relative abundance of 

peptide signals. Since at the beginning of the optimization, peptide ions underwent the 

spontaneous fragmentation in the ESI source, all its fragmented ions has been merged in order 

to calculate a reliable intensity of presented peptide ion in the analysis. Relative abundance 

corresponding to the first measurement (*) was considered 100% and abundance signals 

obtained with the different parameters were related to this first abundance signal. The voltage 

of fragmentator is responsible for the introduction of the analyte into the MS system. 

Application of high fragmentator voltages can improve the sensitivity of detected ions by their 

faster transmission into the MS. At the same time, too high voltages can break the molecule and 

produce spontaneous fragmentation. Four fragmentator voltages were studied: 50 V, 100 V, 

150 V, and 200 V. Decreasing the voltage of fragmentator to 100 V, slightly decreased the 

intensities of singly charged LRP ion, and noticeably of the y2
+ ion. In addition, it rose up the 

intensity of doubly charged LRP ion by 400%. For LSP and LQP peptides, the use of 150 V 

eliminated almost all spontaneous fragmentation. It also enabled the improvement of intensities 

corresponding to peptide ions by 500% for LSP and by 270% for LQP. Taking into account 

these results, the analysis was divided into two MS time segments. The fragmentator voltage 

was maintained at 100 V during the first 3.5 min of analysis, at which LRP is eluting. 

Afterwards, the voltage rose up till 150 V for the elution of LSP (4.2 min) and LQP (4.5 min). 

Following capillary voltages were tested: 2500 V, 3000 V, 3500 V, 4000 V, and 4500 V. No 

change in the LRP signal was observed when varying the capillary voltage. For LSP and LQP 

peptides, just a slight improvement was observed for 3500 V, which was selected as the 

optimum for further analysis. Three nozzle voltages were tried: 0 V, 500 V, and 1000 V. The 

nozzle voltage can improve the ionization of compounds with heteroatoms. However, for all 

targeted peptide ions, there were no changes (500 V), or the intensities of ions were slightly 

decreased (1000 V) in comparison with the absence of nozzle voltage. In this regards, the nozzle 

voltage was maintained at 0 V. Nebulizer pressure was optimized in the range 30–60 psig. 

Highest pressure values (50 psig and 60 psig) resulted in a better ionization of peptides. Finally, 

a 50 psig nebulizer pressure was selected for next investigations. In order to improve the 

evaporation of the mobile phase and to reduce the diameter of micro-drops, the influence of gas 

temperature was studied in the range 200–350 °C. While LSP and LQP did not show any 

significant improvement when increasing gas temperature, LRP yielded the best ionization at 

300 °C. This gas temperature was selected as the optimum. 
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Together with the gas temperature, higher nitrogen gas flow enhances the ionization of ions. 

Examined gas flows were: 6 L/min, 8 L/min, 10 L/min, and 12 L/min. The highest signal 

intensities were observed with 10 L/min (for LRP), with 8–12 L/min (for LSP), and with 10–

12 L/min (for LQP). As a consequence, 10 L/min gas flow was chosen. Next optimized 

parameters were sheath gas temperature and flow. Both parameters are connected and cannot 

be studied separately since the use of higher sheath gas flows involves the use of higher sheath 

gas temperatures. The sheath gas is applied around the nebulizer needle, focusing the nebulizer 

cone, and improving the signal to noise ratio. Studied temperatures were in the range 200–

400 °C and flow rates were between 3.5 and 12 L/min. In all cases, improved peptide intensities 

were observed for 250 °C with 5.5 L/min sheath gas flow. After optimization of all ESI 

parameters, the in-source fragmentation decreased significantly (see Fig. 1 and Fig. 2). The 

peptide LRP was detected as singly (m/z 385.2558) and doubly charge (m/z 193.1315) peptide 

ions, which represented, respectively, 14% and 83% of all detected LRP ions. On the other 

hand, LSP and LQP were detected just as singly protonated peptides, representing 95% of all 

detected ions in their MS spectra. Finally, the ions with m/z 193.1315, and 385.2558 for LRP, 

m/z 316.1867 for LSP, and m/z 357.2132 for LQP were selected for their determination. In 

comparison with the first measurement considered as 100% (*), the abundance obtained using 

the optimized parameters is more than twice higher.  

3.1. Stability of  peptide standard solutions 

Stability of standard solutions of LRP, LSP, and LQP was studied by the comparison of 

chromatograms obtained when they were injected into the chromatographic system at different 

times. Peptide standards at a concentration of 20 ppm were dissolved in water (LRP and LQP) 

or in ACN (LSP) (according to the recommendation guide of Genescript). Samples were 

injected twice immediately after preparation, and after 4 h or 24 h kept to room temperature. 

Changes in the EIC peak areas of peptides were observed in all cases. After one day the most 

dramatic differences were observed for LRP (a decrease in EIC peak area of 55% relative to 

the initial EIC peak area was observed) and LSP (an increase in EIC peak area of 220% relative 

to the initial EIC peak area was observed) while just slight modifications were detected in the 

LQP area (106%). In order to increase this stability, a 10% of FA or AA was added to each 

solution. A standard solution containing the three peptides (10 ppm) was injected in triplicate 

after 0 h, 7 h, 24 h, and 96 h from the preparation. Experiments were performed with samples 

stored at room temperature, 4 °C or −20 °C. Comparison of EIC peak areas showed that peptides 

were more stable when prepared with 10% AA than with 10% FA or with water or ACN. The 
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EIC peak areas for peptide standards stored at 4 °C or −20 °C did not keep. The application of 

one-way ANOVA test and Multiple Range Test showed that LSP and LQP were stable during 

7 h while LRP was stable during 96 h (P-value 0.16) at room temperature. 

3.2. Sample preparation 

An analytical methodology for the extraction of α-zeins from whole maize kernels, their 

further purification, and digestion by thermolysin has been recently developed [10]. For the 

first time zein proteins were digested after their extraction from whole maize kernels. The 

challenge to select a suitable buffer to dissolve alcohol soluble proteins and to keep active the 

enzyme had been overcome. This analytical methodology showed to be precise, effective, and 

robust being its main drawback the time required for the acetone precipitation of proteins, their 

further air drying, and overnight dissolution in an appropriate buffer. In order to reduce sample 

preparation time, filter aided sample preparation (FASP) approach was tested in this work. The 

base of this recently introduced approach is the enzymatic digestion of retained proteins on a 

weight cut-off membrane [36]. In our case, direct introduction of α-zeins, on a membrane with 

molecular weight cut-off of 10 kDa, would avoid the previous purification of proteins by 

acetone precipitation and overnight dissolution. Small molecular weight interferences should 

pass through the membrane while α-zeins (21–25 kDa) should be retained. After thermolysin 

digestion on a membrane, peptides could be recovered by simple centrifugation since their 

molecular masses would be smaller than 10 kDa. This was the first time that the FASP approach 

was tested for the analysis of bioactive peptides in foods. Two extracts of α-zeins were also 

introduced on a membrane and digested using the FASP protocol. The same extracts were 

purified, dried, dissolved, and in-solution digested by thermolysin, using previously optimized 

conditions [10]. Afterwards, extracts were diluted to an appropriate volume in order to reach 

the same peptide concentration of the extracts obtained by FASP. Samples were injected in 

triplicate. Comparison of peptide profiles obtained with the FASP protocol and with in-solution 

digestion showed, at a glade, a high similarity. Nevertheless, the attempt to obtain the EIC 

signals for LRP, LSP, and LQP was not successful, probably because these peptides were fully 

or partly retained on the membrane. As a consequence, the in-solution digestion protocol was 

selected in this work. 
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3.3. Desalting of digested extract 

Several compounds such as urea are well known to suppress ionization in ESI. In order to 

remove high concentration of urea (6 M) in the digested extract of α-zeins, solid-phase 

extraction (SPE) was proposed. Two different C18 cartridges containing different amounts of 

beads were compared. Two digested extracts of α-zeins (0.25 mL) were subjected to Sep-Pak 

(50 mg of beads) or Supelco (500 mg of beads) cartridges. Peptides were retained and desalted 

from both C18 cartridges by employing a 0.1 M AA solution. Peptides were eluted with a 80% 

ACN/0.1 M AA solution. After evaporation and dilution of pellet in 0.25 mL with a 10% AA 

solution, samples were injected by triplicate into the HPLC–MS system. Elimination of urea 

from sample resulted in higher intensities, better defined EIC peaks, improved ionization of 

ions (particularly ion with m/z 193.1315), and improved repeatability. Indeed, RSDs of two 

samples injected by triplicate improved from 10.25% (in urea) to 5.09% (Sep-Pak) and 4.12% 

(Supelco) for LRP, from 7.87% (in urea) to 2.07% (Sep-Pak) and 0.46% (Supelco) for LSP, 

and from 10.14% (in urea) to 3.75% (Sep-Pak) and 1.05% (Supelco) for LQP. On the other 

hand, the comparison of Sep-Pak and Supelco cartridges was not so straightforward. In fact, 

injection repeatability and TICs and base peak chromatograms (BPCs) were very similar. 

Nevertheless, the EIC peak area for LRP was around three times lower in the sample extracted 

with the Sep-Pak cartridge than in the sample obtained with the Supelco cartridge. Unlike LRP, 

the signals for LSP and LQP were around three times higher when the Sep-Pak cartridge was 

applied. In order to explain this behavior, the elution order of these peptides when using similar 

conditions in a C18 HPLC column was taken into account. Smaller signal obtained for LRP on 

the Sep-Pak cartridge and higher for LSP and LQP could be due to LRP lost during the cleaning 

step, while LSP and LQP were totally eluted. Regarding the Supelco cartridge, with ten times 

more C18 beads than the Sep-Pak one, LRP seemed to be properly eluted which would explain 

the higher signal observed for this peptide using this cartridge. Nevertheless, the LSP and LQP 

peptides were probably much retained in this cartridge which would explain their lower 

recovery. In order to recover all peptides with the highest score, experimental conditions using 

the Supelco cartridge were optimized. 

3.4. Optimization of new SPE method on Supelco cartridge 

Optimization of new SPE method was performed using a standard solution containing the 

three peptides. Firstly, different ion pairing agents (20 mM AA and 0.1% TFA) and ACN 

concentrations were tested. The stepwise elution was performed using 5%, 30%, and two times 
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80% ACN (each time 0.25 mL) in 0.1% TFA. In addition, the loading and washing eluates were 

collected and analyzed. All eluates were evaporated and resuspended in 0.25 mL of 10% AA. 

Results showed higher effectiveness of 0.1% TFA to retain peptides on the bead, especially for 

LRP. All peptides eluted with 80% of ACN. Moreover, less than 1.4% of each peptide was lost 

during the loading and washing steps when using 0.1% TFA. In order to obtain a higher 

recovery, the elution volume was optimized. The use of 3 mL of 80% ACN with 0.1% TFA 

enabled to obtain recoveries of the standard peptides very close to 100%. Selectivity of the two 

SPE methods was demonstrated by the comparison of TIC with EIC of peptides in a maize line 

digest (see Fig. 3). Both methods were highly selective for LSP and LQP peptides, since just 

one intense signal was observed (E and F). In addition, the EIC signals for both peptides were 

detected at exactly the same retention time as their peptide standards. The results for LRP 

peptide showed that just the use of Sep-Pak protocol provided selectivity for this peptide (Fig. 

3, 1C) while the Supelco optimized method did not enable its detection in the digested sample. 

Although, some additional signals in the EIC of LRP peptide were detected, its unambiguous 

identification was undisputed. The comparison of TIC and BPC for both SPE methodologies 

demonstrated that the sample obtained with the Supelco cartridge and 0.1% TFA yielded more 

intense signals, especially in the zone where first eluting compound, like LRP appeared while 

sample obtained with the Sep-Pak cartridge resulted in a more clean profile. The greater amount 

of compounds eluting at the same elution time of LRP, when the sample was obtained with the 

Supelco cartridge, could suppress LRP ionization which would explain the obtained results. 

From these results, the Sep-Pak protocol, which proved to be a robust approach for all three 

peptides, was selected for their quantification. 

3.5. Method characterization 

The optimized method was characterized by the evaluation of linearity in the working 

concentration range, limits of detection and quantification, repeatability, intermediate precision, 

recovery, inter-sample precision, and matrix effects. In all cases, sample was injected at least 

by triplicate and different EW values (from 10 to 200 ppm) were employed. Table 1 groups the 

results obtained. Calibration by the external standard method yielded correlation coefficients 

close to unit for the three peptides. Slopes of calibration line were highly dependent on the EW. 

http://www.sciencedirect.com/science/article/pii/S0021967313002859#tbl0005
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Fig. 3. Comparison of digested extract of α-zeins obtained after SPE methods using Sep-Pak or Supelco 

cartridges: (1) Sep-Pak cartridge with 0.1 M AA as solvent A, or (2) Supelco cartridge with 0.1% TFA as solvent 

A. Comparison of BPC (A), TIC (B) and EICs for LRP (C), LSP (D), and LQP (E) peptide ions, using extraction 

window 100 ppm. MS conditions: positive ion mode; mass range 100–3200 m/z; just ToF mode. ESI conditions: 

fragmentator: (1) 100 V then (2) 150 V; skimmer: 60 V; OCT 1 RF: 750 V; gas temp.: 300 °C; drying gas: 

10 L/min; nebulizer: 50 psig; capillary voltage: 3500 V; sheath gas temp. and flow: 250 °C, 5.5 L/min; nozzle: 

0 V. Chromatographic conditions as in Fig. 1. The line 1|2 indicated the change in capillary voltage.

http://www.sciencedirect.com/science/article/pii/S0021967313002859#fig0005
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The application of wider EW increased the slopes of all calibration curves. LOD and LOQ 

were calculated as the standard deviation divided by the slope value and multiplied by 3 or 10, 

respectively, and as the minimum concentration yielding a SNR equal to 3 and 10 times, 

respectively. LOD and LOQ were estimated at different EW values and when using the first 

approach they showed a strong dependence with EW while it did not have any influence on the 

LOD and LOQ calculated from the SNR. Thus, this was the method finally selected to calculate 

these parameters. Estimated LODs using EW 200 ppm for LRP and 100 ppm for LSP, and LQP 

were 0.0039 μg/g maize, 0.0003 μg/g maize, and 0.0073 μg/g maize, respectively. Moreover, 

estimated LOQs using the same EWs were 0.0021 μg/g maize, 0.0130 μg/g maize, and 

0.0010 μg/g maize for LRP, LSP, and LQP, respectively. Instrumental repeatability was 

evaluated using two standard solutions. RSD values for EIC peak areas for the most 

concentrated solution were always better than the obtained with the less concentrated solution. 

Furthermore, the RSD for all peptides using different EW did not vary significantly. 

Determined repeatability with 10 ppm EW was 0.51%, 0.73%, and 0.72%, while with 200 ppm 

EW was 0.64%, 0.69% and 0.71%, for LRP, LSP and LQP, respectively. Inter-day precision 

yielded RSD values of 5.66%, 3.54%, and 5.10%, for LRP, LSP, and LQP, respectively. This 

result demonstrated the stability of the cleaned extract. A similar experiment was performed 

with an extract stored without the previous removing of urea observing RSD (n = 6) values of 

87.75%, 66.13%, and 75.75% for LRP, LSP, and LQP, respectively. These results indicate that 

peptides are not stable in the sample containing urea. Inter-sample precision was determined 

using five individual maize samples extracted, purified, digested by thermolysin, and desalted 

using the Sep-Pak. The RSDs (n = 15) did not depend on the extraction window for LSP, LQP, 

and LRP. Evaluated inter-sample precision for LSP and LQP peptides using EW 100 ppm 

showed RSD lower than 9.36%, while for LRP and EW 200 ppm it is equal to 11.43%. On the 

other hand, although the use of different EW did not have any significant influence on 

correlation coefficients, LOD/LOD calculated using SNR ratio approach, repeatability, and 

inter-sample precision it significantly influenced the slopes of the calibration curves and 

selectivity. In order to choose the suitable EW for every peptide, the area of every EIC peptide 

signal obtained in a sample was divided by the area of every EIC peptide signal obtained for 

the standard injected at a similar concentration. Suitable EW will be that extracting exclusively 

the peptide ions in the sample. In that case, the ratio between areas of peptide ions in the 

standard and the sample will be equal to 1. In this case, no additional noises from sample will 

be extracted. The estimated ratios have shown to be the closest to 1 when EW was 200 ppm for 

LRP and 100 ppm for LSP and LQP peptides. Therefore, selected EWs have been used to refine 
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and summarized results obtained for the three peptides in the characterization of the method 

(Table 1).  

Table 1. Analytical characterictics of the developed method. 

Characterization parameter LRP LSP LQP 

Extraction window   200 ppm 100 ppm 100 ppm 

External calibration curve 

 Range 1-59 ppb 25-2297 ppb 3-304 ppb 

 Slopes 152,708.0 97,394.4 113,243.0 

 Linearity 

(R2) 
0.9996 0.9998 0.9989 

LOD [µg/g maize]1   0.0039  0.0021 0.0003 

LOQ [µg/g maize]2   0.0130 0.0073 0.0010 

Repeatability %RSD 

(n=5)3 

 1 1.94 0.74 0.69 

 2 0.64 0.62 0.69 

Inter-day precision 

%RSD (n=6)4 

  
5.66 3.54 5.10 

Inter-sample precision 

%RSD (n=15)5 

  

11.43 9.36 8.81 

Standard addition 

calibration curve 

Slopes EZ6 148,894.0 46,257.9 50,385.4 

EZ9 2.75*106 4.02*107 7.30*106 

Linearity 

(R2)  

EZ6 0.8387 0.9913 0.9892 

EZ9 0.9763 0.9921 0.9963 

Recovery (%) 
 20% 51.7 109.1 92.8 

 40% 48.2 110.7 94.4 

 

In order to study the effect of the matrix, digested extracts prepared from two maize lines 

(EZ6 and EZ9) were spiked with peptide standards so that the concentration of peptides in the 

sample increased by 10%, 20%, and 30%. The slopes estimated by the standard addition method 

were compared with slopes obtained for the external calibration curves (Table 1). The results 

showed no effect of the matrix just in case of LRP peptide in the EZ6 maize line. Rest of assays 

                                                           
1 Determined as the minimum concentration which yielded an SNR equal to 3. Expressed in the µg/g units which 

was determined relative to 1 g of maize sample.     
2 Determined as the minimum concentration which yielded an SNR equal to 10. Expressed in the µg/g units which 

was determined relative to 1 g of maize sample.   
3 The repeatability was measured at two concentration levels: 1) LRP, 8 ppb; LSP, 53 ppb; LQP, 62 ppb; and 2) 

LRP, 41 ppb; LSP, 1159 ppb; LQP, 155 ppb. 
4 Precision determined in two consecutive days by the injection of desalted digested extract by triplicate.  
5Determined as the RSD (%) value calculated for five individually prepared digested extracts of maize proteins 

injected by triplicate.  
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demonstrated the need of standard addition calibration for the quantification of these peptides. 

In order to evaluate the recovery of peptides, two individual digested extracts were spiked 

before the desalting step with different amounts of standard peptides. Recoveries were very 

close to 100% for LSP and LQP. Only for LRP resulted in a low recovery (averaged recovery 

49,99%). In order to be able to calculate the final absolute concentration of this peptide, the use 

of a correction coefficient for this peptide (estimated as “2”) can be applied. 

3.6. Analysis of maize crops 

The optimized method was applied to the quantification of the three peptides in six maize 

lines (seeTable 2) using the single point calibration method.  

Table 2. Concentration of LRP, LSP, and LQP peptides in different maize lines6.  

Maize line 
LRP  

[µg/g maize] 

LSP  

[µg/g maize] 

LQP  

[µg/g maize] 

AEF  

[µg/g maize]7 

EZ6 0.11±0.02  20.37±0.05  2.74 ±0.09 3.98 

EZ9 0.80±0.03  19.46 ±0.06  2.68 ±0.11 4.51 

MC 0.84±0.01  38.40 ±0.05  3.03 ±0.27 7.83 

A632 1.26±0.21  24.56 ±0.41  6.54 ±0.15 6.40 

B73 0.40±0.05  28.65 ±0.26  3.01 ±0.19 5.73 

EZ11A 1.10±0.07  41.06 ±0.59  5.78 ±0.24 8.94 

 

The highest concentration of LRP peptide was found in A632 and EZ11A lines while the 

lowest concentration was observed in the EZ6 variety. Moreover, EZ11A and MC showed the 

highest content of LSP peptide. The highest yield of LQP peptide was found in the A632 

variety. Thus, the EZ11A line could be assumed as the maize variety with the strongest 

antihypertensive capacity, which is in accordance with our previous results [10]. According to 

the Uniprot protein database, 19 α-zein proteins have been fully sequenced and confirmed. In 

addition, there are several α-zein proteins, with no confirmed sequences, that can also be present 

in maize. Study of these sequences demonstrated that within 19 α-zein proteins, LSP sequence 

                                                           
6 For every maize line two individually prepared extracts were obtained. Every sample was injected by triplicate. 
7AEF (antihypertensive equivalent factor)- total antihypertensive activity expressed in terms of equivalent 

concentration of the most active peptide, LRP.  
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was present 24 times, LQP 9 times, and LRP was absent. However, the comparison of not 

confirmed α-zein sequences showed the presence of the LRP peptide. These findings are in 

accordance with the concentration order obtained in our samples: most concentrated peptide is 

LSP, followed by LQP, and LRP. In order to do more straightforward comparison of 

antihypertensive activities of maize lines containing different antihypertensive peptides, a 

unique parameter is needed. For that purpose, total antihypertensive activity was expressed in 

terms of equivalent concentration of the most active peptide, LRP. Thus, antihypertensive 

equivalent factors (AEF) were defined for LSP and LQP using the following expression: 

𝐴𝐸𝐹 =
𝐼𝐶50(𝐿𝑅𝑃)

𝐼𝐶50
 

AEF was “1” for LRP, “0.17” (0.29/1.7) for LSP, and “0.14” (0.29/2.0) for LQP. Using these 

AEF values is possible to express total antihypertensive activity of maize lines as a single 

number resulting from the product of each peptide concentration and each peptide AEF. As 

example, for maize line EZ6, the equivalent concentration of antihypertensive peptide in terms 

of LRP is obtained from: 

AEF(EZ6 line)= 0.11 μg/g × 1 + 20.37 μg/g × 0.17 + 2.74 μg/g × 0.14 = 3.98 μg/g 

This means that the ingestion of 1 g of maize line containing 0.11 μg of LRP, 20.37 μg of LSP, 

and 2.74 μg of LQP has the same antihypertensive effect to the ingestion of 1 g of maize line 

containing just 3.98 μg of LRP peptide. Taking into account AEFs, the maize line with the 

highest antihypertensive activity is line EZ11A while the maize line with the lowest 

antihypertensive activity is line EZ6. Due to the fact that studied maize varieties were grown in 

the same conditions, it can be postulated that observed variability between maize lines is due to 

their different genetic background. This fact is particularly important in terms of production of 

functional foods. 

4. Conclusions 

This work proposes novel analytical methodology for the determination of three highly 

antihypertensive peptides (LRP, LQP, and LSP) in maize lines by HPLC–ESI-Q-ToF-MS. 

Optimization of ESI parameters enabled a significant reduction of spontaneous fragmentation. 

Peptide standard solutions prepared in 10% AA demonstrated to be stable for at least 7 h at 

room temperature. A FASP approach, applied for the first time for the digestion of food 

proteins, was investigated as an alternative to the conventional sample preparation procedure 
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for the extraction and digestion of α-zeins from maize lines observing that approach was not 

useful in this case. Ionization suppression in the MS due to the presence of urea and other 

compounds employed during the extraction and digestion of α-zeins forced to desalt extracts 

previously to their analysis. Two different C18 cartridges were used and compared observing 

that Supelco gave the best results with the peptide standards. Nevertheless, application of such 

cartridge to desalt maize extracts resulted in a higher extraction of other compounds suppressing 

the ionization of peptide LRP. The method using the Sep-Pak cartridge was then selected and 

linearity, LOD, LOQ, repeatability, inter-sample precision, and recovery were evaluated 

observing adequate results. Comparison of external standard and standard addition calibration 

curves demonstrated the existence of matrix interferences. Quantification of LRP, LQP, and 

LSP in six different maize crops showed that the EZ11A variety presented the highest 

antihypertensive power. Since all maize genotype grow under the same agronomic conditions, 

peptide content difference could be attributed mainly to their different genetic background. 
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Abstract 

 Soybean peptide VLIVP presents a very high antihypertensive activity (IC50 value 1.69 

µM), even higher than extensively studied IPP and VPP peptides from milk. Nevertheless, no 

much attention has been paid to this peptide and there is no method enabling its determination 

in soybeans. The aim of this work was the development of an analytical methodology for this 

purpose. A methodology consisting of the extraction of soybean proteins, their digestion with 

protease P enzyme, their chromatographic separation using capillary-HPLC, and IT-MS 

detection was optimized. Protein extraction was performed by the use of high intensity focused 

ultrasounds to obtain a reduced extraction time. Optimization of chromatographic and mass 

spectrometry parameters enabled the separation of VLIVP peptide within just 7 min and its 

sensitive detection. The analytical characteristics of the capillary-HPLC-IT-MS method were 

evaluated through the study of linearity, LOD, LOQ, study of the presence of matrix 

interferences, precision, and recovery. The method enabled to detect  as low as 3.6 ng of peptide 

and to determine  as low as 12 ng of peptide in 1 g of soybean (as dry basis).  Finally, the 

developed method was applied to the determination of the antihypertensive peptide VLIVP in 

different soybean varieties. The results showed the highest yield of VLIVP peptide in variety 

Mazowiecka II from Poland. 

 

Keywords: 

Antihypertensive peptide; Soybean; Quantification; Ion Trap; Micro-HPLC
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1. Introduction 

World Health Organization (WHO) recognizes hypertension as a serious global health 

problem which is associated with the development of cardiovascular disease [1]. The treatment 

of hypertension is mainly based on the blockage of an enzyme (angiotensin-I converting 

enzyme, ACE) involved in the renin-angiotensin system [2-4]. Different drugs have been 

designed as effective inhibitors of ACE (e.g. captopril, enalapril, alecepril and lisinopril etc.) 

but they are usually accompanied by undesirable side effects, such as hypotension, cough, or 

reduced renal function [5,6]. On the other hand, some peptides present in foods have also been 

recognized as ACE inhibitors [4]. In fact, milk and dairy products, chicken, pork, eggs, fishes 

like tuna or bonito and soybean are just some examples of food products containing 

antihypertensive peptides. These peptides are of great interest since they do not present side 

effects like synthetic drugs. Nevertheless, the interest for these peptides should not be only 

focused on their identification but also on their quantitative determination since, obviously, the 

performance of these peptides is highly dosage dependence. Despite this, the literature 

concerning this topic is surprisingly scarce. 

The quantification of peptides in hydrolyzed food protein matrices is a huge challenge. This 

difficultly increases when food proteins are hydrolyzed using low specificity enzymes, which 

are those mostly required to obtain antihypertensive peptides. This kind of enzymatic digestion 

leads to a great peptide length distribution, a high peptide dynamic range, and high sample 

complexity [7]. Therefore, highly sensitive, selective, and effective peptide separation, and 

detection methods are required. HPLC has shown to be the only technique applied for this 

purpose. Despite the miniaturization of the column dimension in LC provides significant 

enhancement of method sensitivity [8], there is just one work where capillary- HPLC was used 

for the quantification of bioactive peptide in food hydrolysate [9]. Typically conventional 

HPLC is hyphenated with MS detector, where MS [10-15], MS/MS [16-19], or MS3 modes [20, 

21] are applied. Indeed, the use of highly accurate mass spectrometers, and/or monitoring of 

peptide fragmented ions, can ensure high selectivity of the method. 

Soybean contains a highly antihypertensive peptide with sequence VLIVP. This peptide is 

derived from 11S globulin soybean protein fraction and is obtained by hydrolysis with protease 

P enzyme. ACE inhibitory activity of VLIVP peptide (IC50 value (half maximal inhibitory 

concentration) is 1.69 µM) [22] is much higher than the activity of famous VPP (IC50 = 9.13 

µM) or IPP (IC50 = 5.15 µM) peptides from milk. Taking into account that soybean protein 
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content, and thus, peptide content, is greatly affected by genotype [23], it is clear the need for 

methods enabling the reliable quantitation of VLIVP peptide [24, 25].  

The aim of presented work was the development of an analytical methodology for a sensitive 

quantification of the highly antihypertensive peptide VLIVP in different soybean varieties. For 

that purpose, the extraction and digestion with protease P enzyme were optimized. Moreover, 

a capillary HPLC separation method in combination with mass spectrometry detection using an 

ion trap mass spectrometer in pseudo selected reaction monitoring (SRM) mode was developed. 

The characterization and critical evaluation of the performance of the method together with its 

application to the determination of VLIVP peptide in different soybean varieties was also 

planned.  

2. Materials and methods 

2.1. Chemicals and samples 

HPLC grade solvents were used. Water was freshly taken from a Milli-Q system (Millipore, 

Bedfore, MA, USA). Tris- (hydroxymethyl) aminomethane hydrochloride (Tris-HCl), sodium 

hydroxide, and hydrochloric acid were supplied by Merck (Darmstadt, Germany). 

Trifluoroacetic acid (TFA) and sodium bisulfite (SBS) were purchased from Sigma (St. Luis, 

MO, USA), acetic acid (AA) from Scharlau Chemie (Barcelona, Spain), andacetonitrile (ACN) 

from Fischer Scientific (Madrid, Spain). Protease P was kindly donated by Amano (Amano 

Enzyme Inc., Nagoyo, Japan). VLIVP standard was synthesized by Genescript (Genescript 

Corp. Piscataway, NJ, USA). Soybean varieties (A, B, C, and D) were kindly donated by CRF-

INIA (Centro de Recursos Fitogenéticos del Instituto Nacional deInvestigaciones Agrarias, 

Madrid, Spain). One commercial soybean was acquired in a market at Alcala de Henares. 

Moisture content of soybean samples was determined using an official reference method [26].  

Protease P powder was stored in the fridge at 4 °C while its stock solution (3 mg/mL in 

water) was kept at -20°C, both protected from light. VLIVP peptide powder was stored at -20°C 

while its standard solution prepared in 10% AA was kept at 4°C. 

2.2. Soybean protein extraction 

Soybean seeds were ground with a domestic miller, sieved through a 60-mesh sieve, and 

defatted with n-hexane. Protein extraction was carried out by mixing 0.5 g of defatted soybean 

powder with 7.5 mL of 0.03 M Tris-HCl buffer, pH 8.5 as previously described [27]. Extraction 
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method was accelerated using ultrasonic probe (VCX.130, Sonic Vibra-Cell, Hartord, CT, 

USA). Optimized extraction time and probe amplitude were 2 min and 40%, respectively. 

Sample was, then, centrifuged (4000 × g, 10 min, 20 °C) and the procedure was repeated. The 

two supernatants were collected and combined. 

2.3. Isolation of 11S globulins from whole soybean protein extract 

11S globulins were isolated from the soybean protein extract using the procedure of Liu et 

al. [27] with modifications. For that purpose, SBS was added to the protein extract up to a SBS 

concentration of 0.01M. Then, the pH was adjusted to 6.4 with 2 N HCl and the extract was left 

at 4°C overnight. Obtained pellet (11S globulins) was centrifuged (4000 × g, 10 min, 4 °C), 

dissolved in an appropriate volume of water, and, together with supernatant and whole extract, 

it was injected into the HPLC-UV system. 

2.4. Digestion of soybean proteins 

In order to optimize protein digestion protocol, experiments were performed in duplicate and 

injected twice into the capillary HPLC-MS system. Prior to the digestion, the pH of whole 

soybean protein extract was adjusted to pH 9.0 with 1 N NaOH. To decrease the complexity of 

sample, extract was diluted five times with 0.03 M Tris-HCl buffer, pH 9.0. Then, 1 mL of 

protein extract was mixed with protease P stock solution (3.0 mg/mL) in order to reach enzyme 

to substrate ratio 0.1:100 (w:w). Mixture was incubated in a hot air oven (Memmert, model 

300, Schwabach, Germany) for 18 h, at 40°C. To stop the reaction, solution was boiled for 10 

min and centrifuged (21130 × g, 1 min, and 20 °C). Digested extract was diluted twenty times 

with 0.03 M Tris-HCl buffer (pH 9.0) just before its injection.  

2.5. HPLC analysis 

Separation of soybean proteins extracts and their fractions was performed on a modular 

Agilent Technologies liquid chromatograph (Pittsburg, PA, USA) consisting of a degassing 

system, a quaternary pump, a thermostatized compartment for the column, an injection system, 

and an UV detector (series 1100). HP Chemstation software was used to control HPLC 

instrument. Experiments were  performed in duplicate and injected twice. Protein separation 

was obtained using a method developed by García et al. [3]. Whole protein extract and its 

fractions were separated in a POROS R2/10 perfusion column (50 mm × 4.6 mm I.D.) 

(Perspective Biosystem, Framingham, MA, USA) using the following chromatographic 
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conditions: mobile phases, Milli-Q water/0.1% (v:v) TFA (A) and  ACN/0.1% (v:v) TFA (B); 

binary gradient, 5-25% B in 1.7 min, 25-45% B in 1.3 min, 45-95% B in 1 min, and 95-5% B 

in 1 min; flow rate, 3 mL/min; temperature, 60 ˚C; injection volume, 20 μL; detection was 

performed λ=254 nm. 

The separation of digested soybean extract and VLIVP standard solution was performed on 

a modular capillary chromatographic system (Agilent Technologies, Pittsburgh, PA) consisting 

of a micro vacuum degasser, a capillary LC pump, a thermostatized autosampler (all model 

1100) and a thermostatized column compartment (model 1200). Capillary chromatographic 

system was connected to the mass spectrometry detector. Separation was performed on a C18 

Zorbax 300 SB (150 mm × 0.5 mm I.D., with 5 µm particle size) column from Agilent 

Technologies. The optimized chromatographic conditions for the separation of VLIVP peptide 

were: Milli-Q water/0.1% (v:v) AA (A) and  ACN/0.1% (v:v) AA (B), binary gradient,18-30% 

B in 8 min, 30-95% B in 1 min, 95-5% B in 1 min, 5% B for 5 min; flow rate, 20 µL/min; 

temperature, 25˚C; injection volume, 2 µL.    

2.6. MS/MS analysis 

An ion trap (IT) mass spectrometer model amaZon SL (Bruker Daltonics, Bremen, 

Germany), equipped with an electrospray (ESI) source was employed. HyStar software was 

used to control HPLC and MS instruments. The mass spectrometer was operated in the positive 

ion mode, in the ultrascan mode, and with a mass scan range from 70 to 700 m/z. Optimization 

of IT conditions was performed by injecting two individual digested soybean extracts twice into 

the system. Optimized conditions were: capillary voltage, 5000 V; end plate voltage, -600 V; 

nebulizer pressure, 7 psi; dry gas flow, 2 L/min; dry gas temperature, 150°C; ion charge control 

(ICC) target, 150 000; collision energy, 0.5 amplitude. Extracted ion chromatogram (EIC) was 

obtained by the addition of the signals corresponding to six different transitions (540.4 

(425.3+397.3+326.2+281.1+215.0+213.0)) (extraction window ±0.5).   

2.7. Characterization of the method and calibration 

Both external standard and standard addition calibrations were used. The external calibration 

curve was obtained in the range from 5 to 100  ng/L. Each peptide calibration solution was 

obtained by the individual dilution of peptide stock solution to a desired concentration and 

injected three times. A commercial soybean was used for the development and characterization 

of the method. The same commercial soybean together with the soybean variety B, were 



III.1.2. Article 6 
 

304 
 

C
H

A
P

T
E

R
 III R

E
S

U
L

T
S

 A
N

D
 D

IS
C

U
S

S
IO

N
 

 

employed to evaluate the presence of the matrix interferences. The standard addition method 

was carried out by the addition of appropriate amounts of VLIVP standard solution to two 

individually digested soybean samples of the commercial soybean and the soybean variety B. 

Hereby, the concentration of VLIVP peptide increased in digested extract sample by 0%, 10%, 

20%, and 30%. Each sample was injected in triplicate, EIC of peptide transition was extracted, 

averaged, and plotted against added amount of peptide standard. In order to evaluate the 

existence of matrix effects, comparison of external standard curve and standard addition curve 

was performed using Statgraphics Software Plus 5.1 (Statpoint Technologies, Inc., Warrenton, 

VA, USA). 

Limits of detection and quantification (LOD and LOQ) were calculated as the minimum 

concentration yielding a signal to noise ratio (SNR) equal to 3 and 10, respectively. For the 

evaluation of repeatability and inter-day and inter-sample precision, the relative standard 

deviation (%RSD) was calculated. Repeatability was estimated at two concentration levels (10 

and 100 ng/L) by five repeated injections (n=5) of a peptide standard solution. The 

determination of inter-day precision was performed by the triplicate injection of a digested 

soybean protein extract in two consecutive days (n=6). The inter-sample precision was 

evaluated by the triplicate injection in the same day of five individual digested soybean protein 

extracts (n=15). Recovery was evaluated by spiking of soybean sample before protein 

extraction with known peptide amounts so that the final peptide concentration in the digested 

extract sample increased by 0%, 20%, 40%, and 60%. 

3. Results and discussion 

3.1. Extraction of soybean VLIVP peptide 

VLIVP peptide is released during protease P digestion of 11S soybean globulin. Therefore, 

in order to obtain VLIVP peptide, soybean proteins must be extracted. Different methods have 

been published for this purpose being the methods of Nagano et al. [28] and Thanh and Shibaski 

[29] the most frequently reported. They enable both the extraction of soybean proteins and 

further isolation of 11S and 7S globulin fractions. Based on these two methods, an improved 

protocol taking 2 hours has lately been presented [27]. In order to reduce this extraction time, 

high intensity focused ultrasounds were applied. Different extraction times (1, 2, 5, 10, and 15 

min) and ultrasonic amplitudes (20, 40, 60, 80, and 100%) were tried and peak areas 

corresponding to proteins were monitored by HPLC-UV. Results (not shown) demonstrated 
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that an extraction time of 2 min at a probe amplitude of 40% enabled a similar extraction to the 

observed with the original method taking 2 hours. The inter-sample precision (n=4) of two 

soybean protein extracts accelerated by the ultrasonic probe at optimal conditions (2 min, 

amplitude 40%) was 1.19% which suggested a high reproducibility.  

A further fractionation of the protein extract was next proposed to reduce sample complexity. 

Protein fraction 11S, containing target peptide, was precipitated at its isoelectric point following 

the method of Liu et.al [27], redissolved, and injected into the HPLC. Comparison of the 

chromatogram corresponding to the whole protein extract and that of the 11S fraction (see Fig. 

1) revealed that 11S globulins eluted at the end of the chromatogram (around 2.5-4 min).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Chromatograms obtained for the whole protein extract of soybean, for the 11S glycinin fraction, and 

for the remaining supernatant. Chromatographic conditions: column: POROS R2/10 (50 x 4.6 mm); mobile phases, 

Milli-Q water/0.1% (v:v) TFA (A); ACN/0.1% (v:v) TFA (B); binary gradient, 5-25% B in 1.7 min, 25-45% B in 

1.3 min, 45-95% B in 1 min, 95-5% B in 1 min; flow rate, 3 mL/min; temperature, 60˚C; injection volume, 20 μL; 

and detection, λ=254 nm.  

 

However, the intensity of signals obtained for this protein group was significantly lower than 

in the whole extract suggesting a non-quantitative precipitation. Indeed, the injection of 
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supernatant revealed that a significant part of this fraction remained in it. In order to improve 

11S globulin recovery, it was reprecipited from the supernatant. This additional step improved 

slightly the recovery of 11S globulins but it did not provide its quantitative precipitation. Taking 

into account this result, this fractionation was discarded and the whole soybean protein extract 

was digested. Due to the high protein concentration of the extract and in order to avoid problems 

due to the complexity of sample, the protein extract was diluted five times before its digestion.  

3.2. Identification of VLIVP in the soybean proteins digested extract 

Soybean extract digestion with protease P was performed with the diluted extract using 

following starting conditions: pH 8.5, enzyme to substrate ratio 1:100 (w:w), 18 h, and 40°C.In 

order to identify the presence of target peptide in the soybean protein digested extract, a peptide 

standard solution (9  mg/L) was firstly injected into the capillary-HPLC-IT-MS system using 

the following conditions: chromatographic: Milli-Q water/0.3% (v:v) AA (A) and  ACN/0.3% 

(v:v) AA (B), binary gradient, 5-40% B in 30 min, 40-95% B in 2 min, 95-5% B in 2 min, 5% 

B during 7 min; flow rate, 20 µL/min; temperature, 25 ˚C; injection volume, 2 µL; and MS: 

capillary voltage, 4500 V; end plate voltage, -500 V; nebulizer pressure, 6 psi; dry gas flow, 3 

L/min; dry gas temperature, 200 °C; ion charge control (ICC) target, 100 000; collision energy, 

0.5 amplitude. The MS spectrum of peptide VLIVP showed just single [M+H]+ peptide ion with 

m/z value 540.4 (see Fig. 2.). The MS/MS spectrum of precursor ion (540.4 m/z) revealed that 

b ion series was mostly produced during the cleavage of target peptide. Some other minor ions 

like neutral loss of CO (-28 Da) from b4
+ ion with 397.3 m/z (a4

+ ion) and y2
+ ion with 215.0 

m/z were also present in the MS/MS spectra of VLIVP peptide. Next, the soybean proteins 

hydrolysate was injected into the capillary-HPLC-IT-MS system using previously employed 

MS and MS/MS conditions. Fig. 3.1 shows the EICs of ion 540.4 m/z obtained from the MS 

analysis of the digested extract and peptide standard solution. In both cases, an intense signal 

eluting around 19 min was detected. However, the MS spectrum of the digested extract also 

showed a strong signal at 540.5 m/z that was not well isolated from signal at 540.4 m/z 

corresponding to target peptide. In order to assure a high selectivity, MS/MS analysis of 540.4 

m/z ion was required. 
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The EIC of transition 540.4 m/z425.3 m/z (see Fig. 3.2) for both digested extract and 

peptide standard solution were obtained. The presence of signal at 19 min in the digested 

soybean extract and the presence of ion 425.3 m/z in the MS/MS spectrum confirmed clearly 

the presence of peptide VLIVP in the digested soybean extract. However, it must be highlighted 

that the EIC intensity of transition 540.4 m/z425.3 m/z in the digested extract (Fig. 3.2. A) 

was surprisingly low in comparison to the same transition in the peptide standard (Fig. 3.2. B). 

This could be explained taking into account the high complexity of the sample. Indeed, the 

signal intensity corresponding to ion 540.4 m/z in the EIC could derive from more than one 

molecule and not just from the target peptide while transition 540.4 m/z425.3 m/z should 

derive just from the VLIVP peptide. In addition to transition 540.4 m/z425.3m/z, other minor 

transitions were also observed (540.4 (425.3+397.3+326.2+281.1+215.0+213.0)) and 

monitored for a more selective and sensitive determination of target peptide. 

3.3. Optimization of the chromatographic separation of the soybean proteins digested extract 

Once target peptide was identified in the protease P digested soybean protein extract, the 

chromatographic conditions were optimized. Since VLIVP peptide eluted at 19 min, the 

chromatographic gradient was changed in order to reduce analysis time. Five different 

chromatographic gradients were tried. The best separation was obtained with  the following 

gradient: 18-30% of B in 8 min; 30-95% of B in 1 min; 95-5% of B in 1 min; 5% of B for 5 

min. As a consequence, total analysis time was reduced from 41 min to just 15 min and VLIVP 

peptide eluted at 7 min. Ion-pairing reagent (AA) concentration was also optimized within the 

range 0.1-0.4% (v/v) observing the highest peak area for target peptide with 0.1% (v/v) of AA. 

Furthermore, several separation temperatures (25°C, 35°C, 45°C, 55°C, and 65°C) were also 

tried but no significant change in both separation time and EIC peak area was observed. Hence, 

25°C was selected as optimal. Optimal conditions were employed in the analysis of a solution 

of standard peptide and a solution consisting of digested extract spiked with the same 

concentration of standard peptide. Comparison of EIC peak areas showed that just 32% of the 

peptide standard signal was observed when adding the digested extract under the optimized 

chromatographic conditions. This result could suggest the existence of strong peptide ionization 

suppression effects in the ESI source. In order to reduce ionization suppression, the dilution of 

digested extract in Tris-HCl buffer prior to the injection into the capillary-HPLC-IT-MS system 

was suggested. To study the effect of dilution, digested extracts were spiked with equal amounts 

of peptide standard and diluted at different levels (no dilution and 2, 5, 10, 20, and 50 times 

dilution). Surprisingly, the EIC peak areas of studied dilutions of digested extract  increased. 
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The maximum peak area was observed when extract was diluted twenty times. Under these 

conditions, no ion suppression was observed.  

3.4. Optimization of protease P digestion of soybean proteins extract 

Soybean extract digestion with protease P was performed using some starting conditions 

chosen based on previous parameters used in bibliography. In order to obtain a better digestion 

performance and to reduce the digestion time, different parameters were optimized. Different 

buffer pHs were tested (7.0, 7.5, 8.0, 8.5, and 9.0). The highest signal intensity was obtained at 

pH 9.0 while for pH 8.5 the signal was lower and no peptide was detected from pH 7.0 to pH 

8.0. In an attempt to accelerate the digestion using high intensity focused ultrasounds, different 

ultrasonic times (0.5, 1, 2, 5, 10, 15, 20 min) and ultrasonic amplitudes (20, 40, 60, and 100%) 

were tested. Unfortunately, no conditions enabled to observe target peptide and it was 

discarded. Moreover, different digestion times (0.5, 1, 3, 6, 12, 18, and 24 hours) and 

temperatures (room temperature, 30°C, 40°C, and 50°C) were tried. The highest signal intensity 

was detected at 18 h and 40°C, respectively. Other temperatures resulted in a   lower or null 

peptide signal . Finally, the enzyme to substrate ratio (w:w) was optimized within the following 

values: 0.1:100, 0.5:100, 1:100, 5:100, 10:100, and 15:100 (w:w). The best enzyme to substrate 

ratio turned out to be 0.1:100. Rising up the enzyme amount resulted in a decreased signal 

intensity, which could suggest a strong autodigestion of the protease P enzyme. The blank 

digestion at selected enzyme to substrate ratio (0.1:100) did not show autodigestion. 

Furthermore, the effect of alkylation and reduction of soybean proteins before protease P 

digestion was also evaluated. The addition of these two steps led to the worst generation of 

target peptide and it was discarded.  

3.5. Optimization of MS parameters 

In order to increase sensitivity, the following IT parameters were optimized: capillary 

voltage, end plate voltage, nebulizer pressure, dry gas flow and temperature, ICC  target, and 

collision energy. First parameters were related to the ESI ionization while the ICC and collision 

energy parameters were strictly connected to the IT performance.  

 Following capillary voltages were tried: 3000 V, 3500 V, 4000 V, 4500 V, 5000 V, 5500 

V, and 6000 V. Maximum EIC peak area was obtained at 5000V. End plate voltage was 

evaluated in the range from -400 V to -650 V. Despite there was no significant signal variation, 

the use of -600 V yielded the most repeatable results and it was selected as optimal. Moreover, 
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the following nebulizer pressures were checked: 5 psi, 6 psi, 7 psi, and 8 psi. Also in this case, 

the influence of this parameter in the EIC peptide signal was not noticeable and the value giving 

the most repeatable results (7 psi) was chosen. Various dry gas flows (2, 3, 4, 5, and 6 L/min) 

were studied and 2 L/min resulted in the highest signal intensity. Regarding dry gas temperature 

(150°C, 200°C, 250°C, 300°C, 350°C), best results were observed at 150°C. Moreover, several 

ICC target values (50 000, 100 000, 150 000, and 200 000) were examined. EIC peak area 

increased together with ICC target until it reached 150 000, which was considered as optimal. 

Regarding collision energy, different amplitudes (0.1, 0.3, 0.5, 0.7, and 1.0) were tested. No 

peptide signal was detected with a collision energy amplitude of 0.1 while no significant 

differences were observed when collision energy amplitude was in the range from 0.3 to 0.7, 

and an amplitude of 1.0 showed no reproducible results. As a consequence, an amplitude of 0.5 

was finally chosen.  

3.6. Analytical characteristics of the developed methodology 

Optimized methodology was characterized by the evaluation of the following parameters: 

linearity in the working concentration range, limits of detection and quantification (ng/mg dried 

soya), existence of matrix interferences, precision, and recovery. Table 1 summarizes obtained 

results.  

Good linear correlation (R2> 0.99) was observed between signal and concentration in the 

range from 5 to 100  ng/L of target peptide. The lowest concentration of target peptide detected 

by the method was 3.6 ng/g of soybean (as dry basis) (estimated as the minimum concentration 

yielding a SNR equal to 3) while the lowest concentration of target peptide that could be reliably 

determined was 12.1 ng/g of soybean (as dry basis) (estimated as the minimum concentration 

yielding a SNR equal to 10). The existence of matrix interferences was studied using two 

different soybean varieties. For that purpose, calibration plots obtained by the external and by 

the standard additions calibration methods were compared and no significant differences were 

observed (P > 0.05) showing that the proposed method did not suffer from matrix interferences.  

Precision of the method was evaluated by the determination of instrumental repeatability, 

inter-day precision, and inter-sample precision. Instrumental repeatability, calculated by five 

consecutive injections of two VLIVP peptide solutions (10 and 100  ng/L), was always better 

than 3%. Inter-sample precision, determined by the consecutive injection of five individual 

soybean samples, was 6.35% while inter-day precision, calculated by the injection of one 
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sample solution in two consecutive days, was better than 4%.Recovery was determined by 

spiking soybean samples with known amounts of peptide standard, so peptide concentration 

after whole procedure increased by 20%, 40%, or 60%. Peptide recoveries were always very 

close to 100%.  

Table 1. Analytical characteristics of the developed method.  

Characterization parameter   VLIVP 

Extraction window   ±0.5 

External calibration Range  5-100 ppt 

 Slope  821 

 Linearity (R2)  0.9983 

Standard addition calibration Slope Commercial soya 862 

  Variety B 848 
 

Linearity (R2) Commercial soya 0.9995 

  Variety B 0.9998 

LOD (ng/g dried soybean)1   3.6 

LOQ (ng/g dried soybean)2   12.1 

Repeatability % RSD (n=5)3 at 10 ppt  2.34 

 at 100 ppt  0.76 

Inter-day precision % (n=6)4   3.83 

Inter-sample precision %RSD (n=15)5   6.35 

Recovery (%)6 20%  102 

 40%  97 

 60%  102 

 

3.7. Application of developed methodology to the analysis of soybean varieties 

The developed method was finally applied to the determination of VLIVP peptide content 

in five different soybean varieties (Table 2).   

                                                           
1Determined as the minimum concentration which yielded an SNR equal to 3. Expressed in the ng/g units which 

was determined relative to 1 g of soybean sample.   
2Determined as the minimum concentration which yielded an SNR equal to 10. Expressed in the ng/g units which 

was determined relative to 1 g of soybean sample.   
3The repeatability was measured by five consecutive injection of peptide standard at two concentration levels.  
4Precision determined in two consecutive days by the injection of soybean digested extract by triplicate. 
5Determined as the RSD (%) value calculated for five individually prepared digested extracts of soybean proteins 

injected by triplicate. 
6Percentage of peptide content added to the sample. 



 III.1.2. Article 6 

313 
 

C
H

A
P

T
E

R
 III R

E
S

U
L

T
S

 A
N

D
 D

IS
C

U
S

S
IO

N
 

 

Table 2. Concentration of VLIVP peptide in different soybean varieties.1 

Soybean Country of origin Name 
VLIVP  

[ng/g dried soybean] 

Aa Poland Mazowiecka II 880 ±10 

Ba Japan Kachslung-4 798±8 

Ca USA Gieso 530±40 

Da USA Davis 607 ±3 

Sb Unknown No information 562 ±7 

a from CRF-INIA Soybean Germplasm collection 
bcommercial soybean 

The content of the studied antihypertensive peptide ranged from 562 to 880 ng/g of soybean 

(as dry basis) being the variety from Poland that showing The highest VLIVP peptide yield 

These results demonstrated that the VLIVP peptide content varied among soybean genotypes 

and that not all soybean varieties present the same antihypertensive capacity.  

4. Conclusions 

An analytical methodology enabling the quantitation of the antihypertensive peptide VLIVP 

in different soybean varieties has been developed for the first time. The extraction of soybean 

proteins was carried out in just 2 minutes using a high intensity focused ultrasounds probe. A 

further fractionation of proteins was proposed to reduce sample complexity by the precipitation 

of 11S globulin but it resulted not quantitative. The optimization of the procedure for soybean 

proteins digestion with protease P revealed that it was very sensitive to variations of pH, 

temperature, and enzyme to substrate ratio and to the use of high intensity focused ultrasounds. 

A capillary-HPLC-MS/MS method was developed for the selective detection of the target 

peptide. Suitable optimization of chromatographic conditions and sample dilution was required 

to reduce peptide ionization suppression due to the matrix. The optimization of IT-MS 

parameters improved peptide signal intensity being the capillary voltage, dry gas flow and 

temperature, ICC target, and collision energy the parameters most affecting. The method 

enabled to detect up to 3.6 ng of peptide and to determine up to 12 ng of peptide in 1 g of 

soybean (as dry basis).  Developed method showed to be precise, sensitive, and accurate and it 

was lack of matrix interferences. The method was applied to the quantitative determination of 

                                                           
1For every soybean variety two individually prepared extracts were obtained, and digested. Every sample was 

injected in triplicate. 
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VLVIP peptide in five different soybean varieties observing significant differences among 

peptide contents. 
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III.1.3. Development of an analytical methodology for the determination of protein kinase 

subunits by selected reaction monitoring assay in various rat tissues. 

Preface 

Protein phosphorylation is one of the most important post-translational modifications 

playing a central role in cell regulation. Phosphorylation by protein kinases plays an essential 

role in signal transduction pathways transmitting stimulation by external signals from the 

membrane to the cell. Usually, an external impact (e.g. hormone) stimulates a receptor at the 

cell membrane which triggers the cascade of phosphorylation events within the cell [254, 255]. 

As previously mentioned, cAMP and cGMP are secondary messengers targeting PKA and PKG 

proteins, respectively. Upon activation of these two kinases, the phosphorylation occurs in the 

cell exerting important cardiovascular functions. PKA has an important role in cardiac 

contractility, while PKG is essential in BP regulation. CaMKII protein kinase, regulated by the 

Ca2+/CAM level, is involved in many physiological responses. Increased activity of CaMKII 

protein was detected in failing heart of humans and animal models. Interestingly, all these 

proteins can be found as different variants [13]. PKA contains two regulatory and two catalytic 

subunits that are encoded in the genome as various isoforms (RIα, RIβ, RIIα, RIIβ and Cα, Cβ, 

and Cγ). On the other hand, PKG is expressed in variants Iα, Iβ, and II, while CaMKII as α, β, 

γ (A-C), and δ (1-7) isoforms. Although there are very small differences between these 

isoforms, it is suspected that they have very different specificity and funtions. Since differences 

among these isoforms used to be really small, there are no antibodies to distinguish among 

them. However, knowledge on how these specific isoforms work and are expressed is limited, 

let alone to understand their role in disease mechanisms. Therefore, the development of a 

method for the absolute quantification of these protein kinases isoforms in different tissues is 

of high interest.  

 SRM targeted proteomics is an important technique for unambiguous detection and 

quantification of a set of specific proteins in complex matrices. It consists of the selection of a 

group of proteotypic peptides for a specific protein or its isoforms and peptides fragments. Due 

to the unique triple quadrupole filtering feature, the appropriate selection of peptide to fragment 

(transition) ion settings enables to obtain extented dynamic range of the method. PKA, PKG, 

and CaMKII isoforms have highly similar sequences. Therefore, the appropriate selection of 

proteotypic peptides for every isoform could be a big challenge.  
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Objectives  

The specific objectives of this work were: 

 To select a set of proteotypic peptides that uniquely identify targeted PKA, PKG, and 

CaMKII isoforms.  

 To select a set of highly abundant transitions for every proteotypic peptide. 

 To validate proteotypic peptides and transitions using heavily labeled peptides. 

 To increase the sensitivity of the method by its scheduling and the optimization of 

collision energy in the CID cell. 

 To apply the SRM developed method to real samples.  

Results 

The results obtained in this research work will be included in the following scientific article: 

 Article 7: Nano-LC-QqQ-MS selected reaction monitoring (SRM) assay in the determination of 

PKA, PKG, and CaMKII isoforms in rat tissues. 

P. Puchalska, G. Maddalo, P. Wijten, S. Soni, M. C. García, M. L. Marina, M. A. F. Altelaar, A. 

J. R. Heck, A. Scholten. 
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Abstract 

PKA, PKG and CaMKII proteins exert highly important cardiovascular functions in the 

organism. They are encoded in the genome as a set of various isoforms. High sequence 

similarity of these isoforms renders their detection using antibodies impossible. Despite their 

high sequence similarity, the different isoforms display huge variability in terms of 

representation in different tissues. In order to assess the distribution of all these kinase isoforms 

within specific tissues, a selected reaction monitoring (SRM) assay using triple quadrupole 

mass spectrometry (QqQ) was developed. Information from various sources (in-silico digestion 

simulation, previous results, Peptide Atlas, and BLAST) was used to set up a preliminary SRM 

assay. To facilitate the SRM development, digestions of the different kinases obtained by pull-

downs performed on tissues were analyzed by Orbitrap Velos with HCD fragmentation. The 

application of this new approach enabled us to confirm the theoretical selection of proteotypic 

peptides and to define a list of possible transitions. Most of the transitions were confirmed on 

a QqQ instrument. Peptides and transitions were validated using isotopic heavily labeled 

peptides and possible interfering transitions were omitted. In order to gain sensitivity, the 

developed method was scheduled over the chromatographic run and the collision energy for 

every peptide was optimized. The developed assay was applied to digested lysates of heart, 

liver, and kidney. The high dynamic range of these samples prevented the determination of all 

isoforms. The application of SDS-PAGE to separate CaMKII isoforms enabled to reduce 

sample complexity from the heart lysate but, when it was applied to a big set of heart lysates, 

it showed high irreproducibility. Although the appropriate SRM assay has been set, additional 

studies are needed to reduce sample complexity and to remove the lack of reproducibility.  

Keywords: 

Protein kinases isoforms; SRM; Absolute quantification; Cardiovascular disease
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1. Introduction 

The proteome is a highly variable dynamic system which depends on various external 

factors, like state of development, metabolic state, tissue type, or interaction with other 

organisms or substances. Protein expression levels can change due to aging, influence of 

diseases, infections, etc. [1]. Advances in mass spectrometry (MS) instrumentation enabled to 

gain deep insight into signal transduction. However, in order to understand the dynamics nature 

of protein interaction networks from cell to cell and how they are influenced due to i.e. 

stimulation, the absolute quantification of selected sets of proteins at the exact cell/tissue state 

is crucial [2].  

Signal transduction in the myocardium involves a broad range of multifunctional protein 

kinases like protein kinase A (PKA) or Ca2+/calmodulin-dependent kinase II (CaMKII) [3]. 

PKA and protein kinase G (PKG) are essential components in the cardiovascular system being 

involved in heart contractility and regulation of blood pressure [4-6]. They are activated 

through the signaling pathway of secondary messengers such as cyclic adenosine 3’,5’-

monophosphate (cAMP) and cyclic guanosine 3’,5’-monophosphate (cGMP), respectively. 

Although cAMP and cGMP are involved in a variety of physiological responses, their major 

targets are, in fact, PKA and PKG protein kinases [4]. Other important roles in cardiac events 

is played by the CaMKII protein [7, 8], which is activated by a raised level of calcified 

calmodulin. In addition, this protein can be activated by autophosphorylation within the protein 

amino acid sequence [9]. Moreover, CaMKII levels have been shown to be overexpressed in 

heart pathological response mechanisms [10]. Mammalian PKA encompasses two regulatory 

(R) and two catalytic (C) subunits. Each subunit can be expressed as different isoforms: 4 

regulatory (Iα, Iβ, Iiα, and IIβ) and 3 catalytic (α, β, and γ) [11]. PKG can be found as isoform 

type I with two versions (α and β) and as type II [6]. Finally, CaMKII presents 4 isoforms: α, 

β, γ, and δ [3, 9, 12, 13]. The differences between these protein kinases isoforms can be very 

small and, thus, their detection and quantification using antibodies is not possible. Despite these 

small differences, it has been shown that the actual function and distribution of these isoforms 

in organism tissues may be significantly different [7, 14]. Indeed, PKA RIα is mainly expressed 

in the heart and central nervous system, while PKA RIβ is the main isoform in nervous tissues 

such as spinal cord and brain. PKA RIIα and RIIβ were both determined in brain, when RIIα 

subunits is dominant in heart and RIIβ in liver and fat tissues [6]. PKG Iα was mainly detected 

in lung, heart, dorsal root gangalia, and cerebellum, while PKG Iβ in platelets, hippocampal 
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neurons, and olfactory bulb neurons [4]. On the other hand, CaMKII α and β are expressed in 

neuronal tissues [12] while CaMKII δ and γ are concentrated in myocardium [8]. Therefore, 

the information about the expression level of these isoforms in various tissues or in the same 

tissue at different disease levels, seems to be essential to deeply understand their function in 

the organism. Thus, a method that enables the absolute quantification of these isoforms in 

different tissues is highly desired.  

Recently, selected (/multiple) reaction monitoring (SRM/MRM) has emerged as a 

promising technique for accurate quantification of low concentration targeted proteins [15-17]. 

SRM is carried out using a liquid chromatography (LC)/tandem MS/MS method in scan mode 

using a triple quadrupole (QqQ) MS instrument [18] that might enable rapid, sensitive, and 

specific quantification of proteins. SRM uses the unique capability of QqQ to act as a double 

filter. The first and third quadrupoles specifically select predefined mass per charge (m/z) 

values of peptide ion precursors and their fragmented ions (transitions), respectively, while the 

second quadrupole serves as a collision cell [15]. The combination of retention time, peptide 

mass, and its fragments practically eliminates ambiguities in peptide assignments [19]. SRM 

assay development consists of five general steps: biological question/definition of a set of 

proteins; determination of a set of representative peptides; selection of transitions 

(peptide/fragments pairs) that maximize sensitivity and selectivity; experimental validation of 

transitions; optimization of transitions [20]. Among these steps, the critical point is the 

selection of targeted peptides (commonly called proteotypic peptides (PTPs)) that need to 

fulfill very stringent criteria [15, 20]. Indeed, PTPs have to be uniquely associated with the 

protein of interest and routinely observed in LC-MS analysis [15]. SRM also requires to know 

the peptide fragmentation pattern by collision induced dissociation (CID). Commonly, the 

selection of transitions for SRM assays relies on shotgun proteomics from the discovery phase 

[18], mostly acquired using low energy ion-trap (IT) fragmentation. However, differences in 

terms of peptide fragmentation spectra observed in QqQ and IT might lead to erroneous and/or 

time consuming selection of inappropriate transitions. The latest development in LTQ-Orbitrap 

allows to perform peptide fragmentation in higher energy dissociation (HCD) that has shown 

to be highly correlated with conventional CID in QqQ [21]. Therefore, peptide fragmentation 

spectra obtained by HCD using LTQ-Orbitrap Velos have been proposed in this study to 

develop the SRM assay.  

The aim of this work was to set up a SRM assay QqQ to assess the specific tissue 

distribution of PKA, PKG, and CaMKII kinase isoforms. 
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2. Materials and methods 

2.1. Chemicals and samples 

2.1.1. Materials 

Water was freshly taken from a MilliQ system (Millipore, Bedford, MA, USA). Complete 

mini EDTA-free Cocktail and PhosSTOP phosphate inhibitor and enzyme Lys-C were from 

Roche (Disgnostics, Almere, Netherlands). Acetonitrile (ACN) was from Biosolve 

(Netherlands). Acetic acid (AA), formic acid (FA), KPO4, NaCl, ammonium bicarbonate 

(ABC), sodium dodecyl sulfate (SDS), and tris(hydroxymethyl)aminomethane (Tris) were 

purchased from Merck (Darmstadt, Germany). Adenosine-5’-diphosphate (ADP), guanosine-

5’- diphosphate (GDP), Tween-20, dithiotreitol (DTT), iodoacetamide (IAA), and urea were 

supplied by Sigma (St.Louis, MO). XT-Mops and Laemmli buffer were from Bio-Rad 

(Hercules, USA). Trypsin was from Promega (Benelux, BV), 8-AHA-cAMP beads from 

BIOLOG (Bremen, Germany), BenchMarkTM Protein Ladder from Life Technologies 

(Gaithersburg, MD, USA) and Page RulerTM Prastained from Pierce (Rockford, IL USA). 

Heavily labeled peptides (C-terminal heavy Arginine (U- 13C6, 
15N4/ +10 Da) or Lysine 

(U- 13C6, 
15N2/ +8 Da)) were supplied by JPT (Berlin, Germany). Peptides have been dissolved 

in 80% ACN/ 1% FA (peptide IVVQGEPGDEFFIILEGTAAVLQR was in 40% ACN/ 1% 

FA) to different concentrations, frozen, and stored at -80°C until use.  

2.1.2. Animal samples 

All animal samples were provided by the Department of Medical Physiology, Division of 

Heart & Lungs, University Medical Centre in Utrecht (the Netherlands) (S. Soni). Animal care 

and handling was performed in accordance with the ‘European Directive for the protection of 

Vertebrate animals used for Experimental and Scientific Purpose, European Community 

Directive 86/609/CEE’. Experiments were approved by the committee for experiments on 

animals at Utrecht University. Male Wistar rats were housed in defined growing conditions 

(21°C, 60% humidity, 12:12 h light dark cycle) and fed with standard chow and water. Heart, 

kidney and liver were obtained from the rats. Some of the rats were subjected to transverse 

aortic constriction (TAC) or SHAM-12 surgeries. Rats were monitored and sacrificed at three 

different points. SHAM-12 (n=4) rats were sacryfied by blocking and unblocking aorta (control 

sample). TAC-4, TAC-12 and TAC-16 (n=4 in every group) rats were sacrified by blocking 

aorta during 4, 12, or 16 weeks, respectively.  
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2.2. Sample preparation methods 

2.2.1. Tissue lysate preparation 

Hearts, kidney and liver tissues were cut into small pieces and pulverized by pre-cooling 

with a liquid nitrogen pestle and mortar. Various lysis procedures were used. Lysis procedure 

1 was performed as previously [4] with modifications. Procedure 1 consisted of mixing 

pulverized tissue with 500 μL of lysis buffer 1 (15 mL phosphate buffer solution (PBS) (50 

mM KPO4, 150 mM NaCl), 0.2% Tween 20, 1 tablet of Complete mini EDTA-free Cocktail 

and 1 tablet of PhosSTOP phosphate inhibitor) and keep at room temperature for 5 minutes. 

The sample was then vortex and centrifuged (14,000 g x 10 min, 4°C). The supernatant was 

collected. The lysis procedure was repeated twice and three supernatants were combined and 

kept on ice until further use. Lysates obtained from procedure 1 were exclusively used for the 

pull-down preparation. Lysis procedure 2 was carried out like previously described [22] with 

some modifications. Pulverized tissue was mixed with 500 μL of lysis buffer 2 (50 mM ABC 

solution, 2% SDS, 1 tablet of Complete mini EDTA-free Cocktail, and 1 tablet of PhosSTOP 

phosphate inhibitor) and kept at room temperature for 5 minutes. Sample was then 

homogenized and centrifuged (14,000 g x 10 min, 4°C). The supernatant was collected, 

procedure repeated, and, the two supernatants combined. Third step of lysis procedure 2 was 

enhanced by sonication with an ultrasound probe (0.5 cycle, 80% amplitude, three times 0.5 

min with 0.5 min stops, sample placed on ice). After centrifugation (14,000 g x 10 min, 4°C), 

three supernatants were combined and analyzed.  

SHAM and TAC hearts lysates (Lysis procedure 3) were provided by S. Soni (University 

Medical Centre in Utrecht). The procedure of lysis was similar to procedure 1. RIPA buffer 

(20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM Na2HPO4, 1% (v/v) Triton X-100, 1% (w/v) 

Na-deoxycholate, 0.1% (w/v) SDS, 1 mM EDTA, 50 mM NaF, 2 mM phenylmethylsulfonyl 

fluoride, and 14 µg·mL−1 aprotinin) was used as lysis buffer [23].  

The protein yield in the lysates obtained by the three procedures was determined using 

Bradford assay kit from Bio-Rad. 

2.2.2. cAMP- pull-downs preparation 

Pull-downs were prepared following a previously described procedure [4]. Prior to the pull-

down procedure, around 50 µL of immobilized 8-AHA-cAMP beads were washed with 1 mL 
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of PBS buffer. Lysates obtained using lysis procedure 1 (heart, kidney, and liver) were 

incubated with 10 mM ADP/GDP at 4°C for 15 min to reduce non-specific binding. Therefore, 

lysate was incubated with beads (lysate to beads ratio, 1:100) for 2 h at 4°C by rotary shaking. 

The supernatant was separated from beads (bound fraction). The bound fraction was washed 

several times (total volume 12 mL) with buffer (PBS, 0.2% Tween 20, 1 tablet of protease 

inhibitor mixture) to further reduce non-specific binding. The bound fraction was mixed with 

90 µL of 8 M urea in order to elute proteins. Enriched proteins were digested by in-solution 

digestion. 

2.2.3. In-solution digestion 

This two-steps digestion was performed for all pull-downs as follow [4]. The reduction was 

performed by the addition of 200 mM DTT (reduction agent ratio to protein, 1:100 (v:w)) and 

samples were incubated for 15 min at 50°C in a shaker. Next, an alkylation step was executed 

by addition of 200 mM of IAA (alkylation agent to protein ratio, 1:200 (v:w)) and incubation 

for 20 min in the dark. The digestion with Lys-C enzyme (0.2 μg/μL) was performed for 4 h at 

37°C (protein to enzyme ratio, 1:75 (v:w)). The concentration of urea was diluted till 2 M and 

lysates were digested overnight with trypsin enzyme (0.1 μg/μL) at 37°C (protein:enzyme ratio, 

1:50 (v:w)). The digestion was stopped by the addition of 10% FA (FA solution to sample ratio, 

1:100 (v:w)).   

2.2.4. Filter aided sample preparation (FASP) digestion 

Original FASP protocol [24] was modified and performed as follows: the filter with Mwco 

of 30 kDa (Amicon, Ultra, Millipore) was pre-rinsed with 0.25 mL of fresh MilliQ water and 

centrifuged for 15 min (14,000 x g). Around 200 μg of heart, kidney or liver protein lysates 

(lysis procedure 2) were taken, dissolved in FASP solution A (8 M urea in 0.1 M Tris buffer 

pH 8.5) to reach a volume of 230 μL, and reduced with 10 mM DTT in FASP solution B (8 M 

urea in 0.1 M Tris buffer pH 8.0) (reduction agent to protein ratio, 1:100 (v:w)) for 20 min at 

56 °C in shaker. Reduced protein sample was introduced into the filters and centrifuged (14,000 

g x 15 min, 20°C). Filter was washed with 200 μL of FASP solution A and centrifuged as 

previously. To alkylate proteins, 100 μL of 200 mM IAA in FASP solution A were added and 

filters were incubated in the thermomixer (600 g) for 20 min at room temperature in the dark. 

After the incubation, filters were centrifuged (14,000 g x 10 min, 20°C). To wash the filter, 

FASP solution B was added and centrifuged (14,000 g x 15 min, 20°C). This step was repeated 

and 40 μL of Lys-C enzyme (0.2 μg/μL) (enzyme to protein ratio, 1:50 (v:w)) in FASP solution 
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B was applied on the filter. Filter was incubated in hot air oven for 4 hours at 37°C. Then, 180 

μL of trypsin solution (0.1 μg/μL) in ABC (enzyme to protein ratio, 1:50 (v:w)) was applied 

on the filter and left overnight in hot air oven at 37°C. Mwco filters were next transferred to a 

new collective tubes and obtained peptides centrifuged (14,000 g x 10 min, 20°C). Filter was 

washed with 50 μL of 0.5 M NaCl and, once again, centrifuged (14,000 g x 10 min, 20°C). 

Obtained eluates were acidified with 10% FA (FA solution to sample ratio, 1:100 (v:w)) to stop 

enzymatic reaction. 

2.2.5. SDS-PAGE separation 

A Bio-Rad system was used for the electrophoretic separation of proteins. Separation was 

carried out on Criterion XT precast gels 12% Bis-Tris (Bio-Rad) using XT -MOPS (diluted 

twenty times) as running buffer. Tissue lysate obtained with lysis procedure 2 containing 30 

µg of proteins was mixed with Laemmli buffer and DTT (5.4 mg/mL) so that volume ratios 

were 2:1:1 (v:v:v). Mixture was boiled at 95°C for 5 min in a thermostat and spin. Protein 

standards (BenchMark™ or Page RulerTM Prestained Protein Ladders) were injected in the first 

lane and used as molecular weight ladders. SDS-PAGE was performed at 20 mA for 30 min 

and 50 mA until the dye-front reached the bottom. Proteins were fixed by gentle agitation in 

100 mL of 10% (v:v) glacial AA and 40% methanol for 30 min, stained with 50 mL of Bio-

Safe Coomassie stain for 1 h, and washed with Milli-Q water. SDS-PAGE gels (n=12) of 

SHAM and TAC heart lysates were performed by S. Soni (University Medical Centre in 

Utrecht). Twelve heart lysates were divided into four groups, so that every group contained 

one SHAM-12, one TAC-4, one TAC-12, and one TAC-16 member. Separation of these lysates 

was performed by triplicate. In total, 12 gels containing 4 lysates were obtained and in-gel 

digestion was performed.  

All gels were scanned on the GS-800 calibrated densitometer (Bio-Rad) using the highest 

resolution. The amount of loaded protein on SHAM and TAC gels was normalized by the 

comparison of the density of line with Mw around 17 kDa. The density of this line was 

corrected with the background and normalization was applied to the maximum value in the 

replicate.  

2.2.6. In-gel digestion 

Bands were cut from the gel under sterile conditions and washed with Milli-Q water. To 

shrink gel pieces, ACN was added for 15 min and removed. Therefore, 100 µL of 6.5 mM DTT 

in 50 mM ABC was added and samples were incubated for 1 h at 60 °C in shaker. After 
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removing DTT, gel pieces were shrunk once again (ACN, 15 min), 100 µL of 54 mM IAA was 

added, and samples were left at room temperature in the dark for 20 min. IAA was removed. 

Gel pieces were shrunk with ACN (15 min) and incubated for 15 min with 50 mM ABC (step 

repeated). Afterwards, gel pieces were shrunk once again, ACN removed, and 20 µL of cold 

trypsin solution (3 ng/µL) in 50 mM ABC was added to every sample to cover gel pieces. 

Samples were incubated for 90 min on ice. The excess of trypsin was removed and appropriate 

volume of 50 mM ABC was added to cover gel pieces. Samples were incubated overnight at 

37°C in a stove. After digestion, peptides were extracted using an extended three step extraction 

procedure. Gel pieces were incubated for 20 min in the sonication bath in an appropriate 

volume (to cover gel pieces) of 5% (v/v) formic acid (FA), then 50% (v/v) ACN/5% (v/v) FA, 

and ACN, respectively. After each step, a fraction was collected and combined with the 

previous one. These three step extraction procedure was performed twice. Extracted peptides 

were dried in a SpeedVac™ system (Thermo, Bremen, Germany) and stored in -80°C until use. 

Prior to the analysis, samples were dissolved in 10% FA to attain appropriate concentration. 

2.2.7. Solid phase extraction (SPE) 

All digests were desalted by SPE using C18 Sep-Pak (Waters Associates Inc., Milford, 

Massachusetts) cartridges as previously described [21]. Briefly, acidified sample was loaded 

onto the SPE column, previously conditioned with 2 mL of ACN and 2 mL of 0.1 M AA 

(solvent A). Column with retained sample was washed twice with solvent A and eluted with 

0.5 mL of 80% ACN in solvent A. Eluents were evaporated in a SpeedVac™ system and stored 

at -80°C till analysis. Prior to the analysis, samples were dissolved in 10% FA to attain 

appropriate concentration.  

2.3. Nano-LC-MS 

The same nano-LC configuration was performed on all used MS experiments. A 1100 series 

liquid chromatograph from Agilent Technologies (Pittsburg PA, USA) was used. Mobile 

phases consisted of water/0.1 M AA (mobile phase A) and ACN/water (80:20) containing 0.1 

AA (mobile phase B). Prior to the separation, sample was trapped on a Reposil C18-AQ (Dr. 

Maisch, Ammerbuch, Germany), (100 μm x 20 mm, 3 μm, 120 Å double frit) trapping column 

at a flow rate of 5 μL/min for 10 min in mobile phase A. Afterwards, tryptic digests were 

separated on Reposil C18-AQ (Dr. Maisch, Ammerbuch, Germany) (50 μm x 400 mm, 3 μm, 

120 Å) analytical column using the binary gradient: 0-24% B in 115 min, 24-50% B in 45 min, 

50-100% B in 3 min, and 100% B during 17 min (total 180 min). For the optimization of the 
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collision energy, the following short gradient (total 95 min) was used: 0-8% B in 13 min, 8% 

B during 3 min, 8-15% B in 30 min, 15-63% B in 5 min, 63-84% B in 35 min, 84-100% B in 

1 min, and 100% B during 1 min. In all cases, the flow rate was passively splitted to attain 600 

nL/min during the analysis and the injected volume was 10 μL. The concentration of samples 

before injection was adjusted as follows: 5% of pull-downs, 200 ng of FASP digest, and around 

10% of in-gel digests. Nanospray was achieved with in-house pulled and gold-coated fused 

silica capillaries (o.d. 360 μm; i.d. 20 μm; tip i.d. 10 μm) and an applied voltage of 1.7 kV. 

Heart, kidney, and liver digested pull-downs were analyzed on LTQ-Orbitrap Velos™, where 

peptide fragmentation involved Fourier Transform (FT) survey scan from 350-1500 m/z 

(resolution 30 000) and accumulation to a target value of 500,000 followed by HCD 

fragmentation (target value 30 000) of the 10 most intense peaks, and readout in the FT analyzer 

(resolution 7500). Normalized HCD collision energy was set following the equations: collision 

energy = 0.041*m/z-0.573 and collision energy = 0.051*m/z +0.095, for doubly and triply 

charged precursors, respectively. The rest of samples were analyzed on TSQ Vantage™  (QqQ) 

in data dependent tandem MS/MS mode. Q1 and Q3 window were set at 3.0 and 0.4 Da, 

respectively. To analyze all targeted proteins, 162 transitions corresponding to 27 PTPs with 

optimized collision energy were set up. In case of CaMKII, 40 transitions corresponding to 7 

PTPs were selected. In both setups, analyzed transitions were scheduled in time with a time 

window of 12 min. Xcalibur™ software was used to control both MS equipments. 

2.4. Data Analysis 

Peptides from LTQ-Orbitrap Velos experiments were identified from raw files using 

Proteome Discoverer version 1.3. Peptide identification was performed by searching against 

IPI rat database 3.68. A maximum of two missed cleavages for trypsin digestion and 

carbamidomethylation (C) (fixed) and oxidation (M) (variable) modifications were set. Peptide 

and fragment tolerances were set at 0.6 Da. Further filtering was performed using the decoy 

search option utilizing percolator algorithm. Resulting data files were exported and filtered for 

<1% false discovery rate (FDR) at peptide level. SRM assay creation and analysis were 

performed using Skyline software (MacCoss Lab, Department of Genome Sciences, UW, 

USA). 
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3. Results and discussion 

3.1. SRM method development 

Investigation of proteins of interest. Basic information about studied proteins isoforms from 

rat (Rattus norvegicus) species have been searched and extracted from the Uniprot database 

(see supplemental material 1).  Within all possible isoforms, PKA Cγ and PKG Iβ have not 

been yet sequenced in rat tissues, thus they had to be excluded from the list of studied protein 

isoforms. Uniprot alignment tool permitted to observe very high proteins similarities between 

PKA Cα-Cα2 (96.01%), PKA Cα-Cα1-Cβ (88.60%), CaMKII γ A-B (91.45%), and CaMKII δ 

1-7 (89.31%) isoforms. The comparison of PKA R subunits (I α, I β, II α, II β) revealed a 

26.44% of homology, while CaMKII isoforms (α, β, γA, δ1) showed 66.07% of similarity. Due 

to the high similarity of these protein isoforms, the selection of PTPs was challenging. 

Selection of PTPs candidates. In order to choose a list of potential PTPs candidates, various 

information sources have been used. First, all targeted protein isoforms were digested in-silico 

with trypsin by Skyline software. The obtained peptides were refined, according to the 

following criteria: peptide length range from 8 to 25 amino acids, with a maximum of one 

missed cleavage within the sequence, 25 N-terminal amino acids, and exclusion of peptides 

containing methionine. Additionally, a vast set of mass spectrometry data obtained from rat 

tissues (13000 identified peptides) was also analyzed. Candidates fulfilling the following 

requirements were taken into account: unique peptides, without any observed modifications 

(carboamidomethylation, phosphorylation, oxidation, etc.) under the experimental conditions, 

with a maximum of one missed cleavage, and not present within other observed missed cleaved 

peptides. Subsequently, selected peptides were verified by ‘Peptides Atlas’ and using standard 

protein BLAST (Basic Local Alignment Search Tool ) that evaluate these peptides were unique 

for every targeted protein isoform. Additionally, possible posttranslational modifications for 

each protein isoform were checked using Uniprot database and aligned with selected PTPs. 

Based on this information, it was possible to theoretically select 28 PTP candidates having 39 

precursors (2+ and 3+ peptide ions) and 302 transitions for six PKA isoforms. Due to the high 

similarity of PKA Cα and Cα2, it was not possible to indicate any PTP to differentiate between 

them. For two isoforms of PKG, 9 PTPs candidates having 10 precursors and 71 transitions 

were selected. Interestingly, CaMKII α and β isoforms did not show any peptide enabling their 

differentiation. Therefore, PTPs for all CaMKII isoforms, without differentiation of them, were 

chosen. It was also not possible to indicate PTPs for γ (A-B) or δ (1-7) isoforms, thus they were 
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treated as one group of γ and δ isoforms. Consequently, 14 PTPs with 14 precursors and 99 

transitions for three proteins (CaMKII as a whole and CaMKII γ and CaMKII δ groups) were 

obtained. In total, the preliminary method contained 11 protein isoforms with 51 PTPs 

candidates, 63 precursors, and 472 transitions.  

Selection of transitions. Peptides predicted in-silico can facilitate SRM assay development, 

but they cannot constitute the unique criterium for the selection of PTPs for our SRM assay. 

Therefore, a novel approach based on LTQ-Orbitrap HCD measurements [21] was applied. 

Heart, kidney, and liver pull-downs, that contained high concetration of targeted kinases 

isoforms, were digested and analyzed. Due to the lower complexity of these samples, the 

confirmation or rejection of previously selected PTPs and transitions candidates could be 

performed. All isoforms of PKG and CaMKII proteins were identified in all digested pull-

downs. In case of PKA, isoforms RIα, RIIα, RIIβ, and Cα were observed in all digested pull-

downs. Isoform RIβ was presented just in the heart and kidney digested pull-downs, while Cβ 

was just detected in the kidney sample. Kidney digested pull-down was the only one that 

contained all targeted isoforms. Next step was the creation of a spectral library from LTQ-

Orbitrap HCD digested pull-down experiments using Skyline. The highest ranking of y- and b- 

ions transitions (at least 4) for all PTPs precursors were selected. Elimination of some PTPs 

and transitions enabled the design of the SRM method that contained 6 PKA isoforms (20 

peptides, 25 precursors, and 189 transitions), 2 PKG isoforms (7 peptides, 8 precursors, and 56 

transitions), and 3 CaMKII isoforms (11 peptides, 11 precursors, and 76 transitions). In total, 

38 peptides, 44 precursors, and 321 transitions were left. Although HCD and CID in QqQ 

(TSQTM) fragmentations are highly similar, the appropriate selection of PTPs and transitions 

need to be confirmed using a real SRM assay in the TSQ equipment. Since all studied isoforms 

have been previously detected in the digested kidney pull-down, this sample was analyzed on 

TSQ. The results showed that although most peptides and transitions had been confirmed, some 

of them had to be excluded. The final SRM assay contained 27 PTPs with 27 precursors and 

162 transitions (see Table 1).  
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Scheduling of transitions in time. Taking into account that in nano-LC peak width is around 

30-40 seconds and 11 points is the minimum to quantify a targeted peptide, a cycle time of 3 

seconds must be selected. Therefore, if 162 transitions are used, the transmission efficiency for 

every transition is 185 msec. However, an increase of the transmission efficiency can 

significantly rise ion signal sensitivity. Increased sensitivity for a set of ions can be achieved 

by scheduling transitions during LC run time.  From previous digested pull-down experiments 

on TSQ, the retention times (RT) of all 27 PTPs were determined (see Table 1). Measured RT 

were correlated with results calculated by Sequence Specific Retention Calculator (SSRCalc 

3.0) that predicts peptide retention time in the LC. Results showed a high correlation (data not 

shown) between measured and predicted RT (r=0.9402), that confirmed their proper 

identification. Afterwards, the transitions at a certain elution time were overlapped (2, 5, 10, 

and 12 minutes) (see Fig. 1). It was observed that scheduling with a 12 minute window 

decreased the concurrent transitions to 45 (66 msec/transition) which resulted in the raise of 

transmission efficiency and sensitivity by at least 2.8 times.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Graph representing changes in concurrent transitions while various time windows (2, 5, 10, and 12 

minutes) around the retention time of a peptide are set.   

 

Validation of peptides using heavily labeled isotopic peptides. In order to validate PTPs and 

transitions, 27 heavily labeled counterparts were synthetized. Labeling of peptides was 

performed at the C-terminal arginine (U- 13C6, 
15N4) and lysine (U- 13C6, 

15N2) residues and 

their molecular masses were increased by 10 and 8 Da, respectively. A method containing both 

ordinary (light) and increased masses (heavy) of precursors and fragments for every peptide 

was created (overall 327 transitions). In order not to lose previously achieved sensitivity, the 

method was divided into three individual sub-methods, so as the maximum concurrent 
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transitions were 40. A kidney digested pull-down containing 1 pmol of every peptide was 

injected. In such a reduced background, the transitions should not show interferences. In all 

cases, heavily labeled peptides co-eluted with selected PTPs. Moreover, most of selected 

transitions could be validated (see examples on Fig. 2). Relative peak areas of all light and 

heavy transitions have been extracted and compared. The relative standard 

deviation (%RSD) between areas were calculated. For 15 transitions, the RSD was higher than 

20% and, therefore, these transitions were removed from the SRM assay (see Table 1, deleted 

transitions underlined). Although HCD libraries have facilitated the development of the SRM 

assay, the ranks of some transitions varied when TSQ equipment was used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Validation of peptides A) LEFSFK (from PKA Cα) and B) FTDEYQLFEELGK (from CaMKIIδ). Top 

graphs represent overlapped signals for light transitions (kidney digested pull-down) and histograms 

corresponding to their relative peak areas. Accordingly, bottom graphs correspond to heavy transitions (synthetic 

peptide) and their relative peak areas. Areas for library were obtained from the HCD measurements.    

 

Optimization of the collision energy. In TSQ, applied collision energy for every peptide is 

calculated using standard equations (collision energy =0.03*m/z+2.905, for doubly charged 

precursors, and collision energy =0.038*m/z+2.281, for triply charged precursors). In order to 
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additionally increase peptide sensitivity, the collision energy was optimized using 10 values in 

a range from -5 to +5 V around the previously applied standard values. For this purpose just 

heavily labeled peptides were injected into the TSQ using shorter gradient. The areas of 

transitions were summarized and compared. The highest area was selected and used for further 

analysis (see Table 1). Although the optimization of the collision energy enabled to increase 

the transition signals, it did not vary significantly from the standard collision energy values. 

The correlation of standard and optimal collision energies for doubly and triply charged 

peptides is presented on Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Correlation of the selected collision energies using the supplier equations and optimal collision energies 

values for 27 selected PTPs precursor (doubly and triply charged).  
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3.2. Application of the developed method to heart, liver, and kidney lysates  

In order to maximize protein extraction yield, heart, liver, and kidney lysates were obtained 

in harsh SDS conditions. To decrease the complexity of the sample, FASP digestion using a 

filter with 30 kDa Mwco was performed. All samples were injected twice in the TSQ equipment 

using the developed SRM assay. The results showed that just a few predicted PTPs and 

transitions could be detected during the analysis. The summary of all results is presented in 

supplemental material 2 (sample where PTP was found is marked with green box). The highest 

number of PTPs was determined in heart (7 peptides) and kidney (6 peptides), while in liver 

lysate just one PTP could be detected. This could be explained by the complexity of the sample. 

These results suggested that the most complex proteome was in the liver tissue or that, in this 

particular tissue, these isoforms were less abundant.  

3.3. SDS-PAGE in-gel digestion SRM method 

In order to decrease the complexity of lysates, a separation step using SDS-PAGE was 

applied. Therefore, the digestion with trypsin was accomplished using in-gel digestion. First, 

the lysate of kidney was separated into two independent wells. Therefore, from each separation, 

two individual bands A (90-50 kDa) and B (50-35 kDa) were cut and digested. After digestion, 

peptides were extracted using an extended extraction procedure. The application of SDS-PAGE 

before SRM assay did not enable to determine all expected PTPs (see supplemental material 

2). Although two additional PTPs (9 in total) were detected, it was not enough to quantify 

targeted isoforms. The same procedure was tried for the heart lysate. In this case, 13 out of all 

27 PTPs were detected. These results suggested that the complexity of the sample was the 

biggest issue hindering the application of the designed SRM assay. Interestingly, 7 PTPs for 

CaMKII isoforms were determined in the heart lysate previously separated by SDS-PAGE. To 

study whether this methodology enabled the quantification of CaMKII isoforms in various 

heart lysates, the SRM method with previous SDS-PAGE separation was applied to a rat heart 

model with progression to heart failure.  

3.4. Application of the SDS-PAGE in-gel digestion SRM method to a rat heart model with 

progression to heart failure 

A heart model with TAC was the experimental portrait for pressure overloaded 

(hypertension) induced cardiac hypertrophy and heart failure. Heart contractility was 
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temporary enhanced, which led to myocardium hypertrophy and, over the time, to heart dilation 

and failure [25]. Therefore, in this study three groups of rats (each group n=4) with blocked 

aorta (TAC) during different periods of time (4, 12 and 16) were chosen for investigation. 

SHAM-12 (n=4) was a control group where the aorta was blocked and unblocked. For all rats 

lysates (n=16), the SDS-PAGE separation was performed. Rat lysates were divided into 4 series 

where in every gel, one member of every group (SHAM-12, TAC-4, TAC-12 and TAC-16) 

was separated. Three technical replicates for every gel were performed. Moreover, one test gel 

for the preliminary studies was done. All gels were digested using the same procedure. SRM 

method was reduced to 7 PTPs and 40 transitions corresponding to just CaMKII isoforms. 

Firstly, four digests (representing every group member), obtained from test gels, were mixed. 

In this way, sample background that could influence the detection of PTPs was obtained. 

Various percentages of gels were evaluated (5%, 10%, and 20%). To such mixtures, heavily 

labeled counterparts of PTPs were added (10 pmol), so that possible interferences from the 

background could be determined. The relative areas of transitions for light and heavy peptides 

were extracted and compared. All transitions were detected in the gel mixture sample. Results 

showed that when 5% and 10% of gel was injected, areas of 6 transitions were slightly 

influenced by the background interferences, while when 20% of gel was injected, areas of 9 

transitions were interfered. Finally, 48 samples of heart lysates prepared by the SDS-PAGE in-

gel digestion were spiked with various amounts of heavily labeled peptides (see supplemental 

material 3) and injected in the TSQ equipment using the developed SRM assay. Interestingly, 

just two PTPs corresponding to the CaMKII δ isoforms were determined (FTDEYQLFEELGK 

and IPTGQEYAAK). For these peptides, the areas of transitions for light and heavily labeled 

peptides were extracted and summarized. Based on this information, the amount of 

FTDEYQLFEELGK and IPTGQEYAAK peptides in every sample was calculated. Results 

showed that quantification of peptides was highly irreproducible. The RSD (%) between 

technical SDS-PAGE replicates varied significantly. Combined RSD (%) for every rat group 

(SHAM-12, TAC-4, TAC-12 and TAC-16) yielded a RSD in range 18-90%. Combined results  

showed in Fig. 4, suggested that developed procedure was not reproducible at some stage 

during the sample preparation.  

 

 

 



III.1.3. Article 7  
 
 

344 
 

C
H

A
P

T
E

R
 III R

E
S

U
L

T
S

 A
N

D
 D

IS
C

U
S

S
IO

N
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Quantification of FTDEYQLFEELGK and IPTGQEYAAK peptides for the CaMKII δ isoform 

obtained by SDS-PAGE in-gel digestion SRM approach.  

 

4. Conclusions 

A SRM assay for PKA, PKG, and CaMKII isoforms determination has been established in 

this work. PTPs and transitions for every isoform were set up using the information collected 

by a vast set of MS data acquired previously, in-silico prediction, the Peptide Atlas database 

information, and experiments performed on an Orbitrap Velos with HCD. High similarity 

between targeted isoforms was detected which hindered the selection of PTPs. Due to this high 
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similarity, it was not possible to select any PTP to differentiate PKA Cα from Cα2, CaMKII α, 

and β, from other CaMKII isoforms, and among CaMKII isoforms groups γ (A-C) and δ (1-7). 

The final SRM assay design for 11 isoforms consisted of 27 PTPs with 27 precursors and 162 

transitions. Selected transitions were verified on the TSQ showing that most of the HCD spectra 

were correctly translated to TSQ. The method was also scheduled in time over the LC-run and 

sensitivity increased at least 2.8 times. The collision energy for every 27 PTPs was optimized 

in the range from -5 to +5V, showing not significant differences between standard and 

optimized collision energy values. All PTPs were validated using heavily labeled peptide 

counterparts leading to exclusion of some interfered transitions. Optimized SRM assay was 

applied to heart, kidney, and liver lysates. However, due to the complexity of the sample, just 

some transitions were detected. In order to reduce complexity, tissue lysates were separated by 

SDS-PAGE. Although the complexity of samples decreased, still several peptides were not 

detected. For heart lysates previously separated by SDS-PAGE, 13 PTPs were detected, where 

6 were for the CaMKII isoforms. SRM assay for just CaMKII isoforms was applied to a set of 

rat hearts with progression to heart failure. Transitions were validated in such a matrix and 

appropriate percentage of sample amount and heavily labeled peptides was selected. However, 

due to the high sample complexity, just two peptides for the CaMKII δ isoform were detected. 

Overall, this approach was highly irreproducible which could be caused by the SDS-PAGE 

procedure (separation, digestion, or extraction of peptides from gel). As alternative, 

implementation of different separation techniques (e.g. enrichment using agarose beads) can 

be proposed for the reduction of sample complexity.     
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Appendix A. Supplementary data 

Supplemental material 1. List of studied proteins. 

Protein name Uniprot accession Amino acids length 
Protein molecular 

weight (Da) 

PKA RI α P09456 381 43.095 

PKA RI β P81377 381 43.282 

PKA RII α P12368 401 45.540 

PKA RII β P12369 416 46.123 

PKA Cα P27791 351 40.620 

PKA Cα2 P27791 343 39.879 

PKA Cβ P68182 351 39.870 

PKA Cγ not sequenced 

PKG Iα A9LNM8 671 76.369 

PKG Iβ not sequenced 

PKGII Q64595 762 87.182 

CaMKII α P11275 478 54.115 

CaMKII β P08413 542 60.402 

CaMKII γA P11730 527 59.038 

CaMKII γB P11730 517 58.493 

CaMKII γC P11730 533 55.961 

CaMKII δ1 P15791 533 60.081 

CaMKII δ2 P15791 499 56.447 

CaMKII δ3 P15791 510 57.709 

CaMKII δ4 P15791 519 58.549 

CaMKII δ5 P15791 478 54.191 

CaMKII δ6 P15791 512 57.825 

CaMKII δ7 P15791 498 56.293 
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Supplemental material 2. Summary of results obtained using the developed SRM assay in   heart, kidney, and 

liver lysates

Protein isoform Kidney Heart Liver 
SDS-PAGE 

Kidney 

SDS-PAGE 

Heart 

PKA RI α      

K.HNIQALLK.D [24. 31]      

K.IVVQGEPGDEFFIILEGTAAVLQR.R [281. 304]      

PKA RI β      

K.HGIQQVLK.E [24. 31]      

K.VSILESLEK.W [252. 260]      

PKA RII α      

R.QQPPDLVDFAVEYFTR.L [23. 38]      

R.AATIVATSDGSLWGLDR.V [214. 230]      

R.AASAYAVGDVK.C [344. 354]      

PKA RII β      

R.HQPADLLEFALQHFTR.L [22. 37]      

R.GTFDIYVK.C [194. 201]      

R.AASAHAIGTVK.C [359. 369]      

PKA C α      

K.AKEDFLK.K [22. 28] (missed 1)      

K.TLGTGSFGR.V [48. 56] (in common with Cβ)      

K.LEFSFK.D [106. 111]      

PKA C β      

K.AKEDFLR.K [22. 28] (missed 1)      

R.LEYSFK.D [106. 111]      

PKG I      

K.DSCIIK.E [126. 131]      

K.VFGELAILYNCTR.T [164. 176]      

K.TYNIILR.G [565. 571]      

PKG II   

R.NYQQGSYIVK.Q [187. 196]      

K.ALISDDVR.S [358. 365]      

CaMKII all    

K.GAFSVVR.R [21. 27]      

R.DLKPENLLLASK.L [134. 145]      

K.AGAYDFPSPEWDTVTPEAK.D [226. 244]      

CaMKII γ    

R.FTDDYQLFEELGK.G [9. 21]      

K.FYFENLLSK.N [445. 453]      

CaMKII δ   

R.FTDEYQLFEELGK.G [9. 21]      

K.IPTGQEYAAK.I [33, 42]      
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Supplemental material 3. Amount of spiked heavily labeled peptides into the SDS-PAGE in-gel digested of 

SHAM-12, TAC-4, TAC-12, and TAC-16 heart lysates. 

 

Protein Sequence* Spiked amount 

CamKII all GAFSVVX 20 fmol 

CamKII all DLKPENLLLASB 5 fmol 

CamKII all AGAYDFPSPEWDTVTPEAB 10 fmol 

CamKII γ FTDDYQLFEELGB 10 fmol 

CamKII γ FYFENLLSB 2.5 fmol 

CamKII δ FTDEYQLFEELGB 10 fmol 

CamKII δ IPTGQEYAAB 2.5 fmol 

 

*(X= heavily labeled arginine; B=heavily labeled lysine) 
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III.2. Global discussion of results  

The main goal of this doctoral thesis was the characterization, identification, and 

quantification of peptides and proteins having significant influence on the prevention and 

understanding of hypertension. For that purpose, different analytical strategies were developed 

and applied to the determination and characterization of peptides and proteins in plant 

(vegetables and foods) and animal (rat organs) tissues. 

The identification by mass spectrometry of native bioactive peptides in SBIFs required their 

previous extraction, characterization. The determination of peptides with significant 

antihypertensive activity in soybean (peptide VLIVP from the 11S globulin fraction) and maize 

(LRP, LQP, and LSP peptides from the α-zein fraction) required the previous extraction of 

proteins containing those peptides, their digestion using suitable enzymes and conditions, and 

their quantification by mass spectrometry. The determination of proteins involved in the 

regulation of blood pressure (PKA, PKG, and CaMKII) in different animal tissues required their 

previous extraction followed by tryptic digestion and quantification by mass spectrometry. 

New approaches for the extraction, purification, and digestion of all these peptides and 

proteins were proposed and optimized. Regarding extraction, high intensity focused ultrasounds 

were applied in all cases for the acceleration of extraction procedures. In addition, a wide variety 

of novel separation, purification, and detection techniques of peptides and proteins were also 

implemented. In all cases, mass spectrometry using different mass analyzers (IT, Q-TOF, QqQ, 

and LTQ-Orbitrap) were employed. 

This part of the thesis globally discusses all results obtained and compares the techniques 

and methodologies used in every case for the extraction, purification, isolation, 

characterization, detection, and determination of peptides and proteins of interest in the 

prevention and understanding of hypertension. 

Development of methods for the extraction of proteins with significant influence in the 

prevention and understanding of hypertension from different plant and animal tissues 

Different methods were developed for the extraction of proteins containing highly 

antihypertensive peptides in plant tissues (soybean and maize) and proteins involved in the 

regulation of hypertension in animal tissues (heart, kidney, and liver). For that purpose, 

different buffers were selected depending on the nature of targeted proteins and further 
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analytical workflows. In all cases, high intensity focused ultrasounds were employed to 

accelerate extraction process. 

Regarding plant tissues, different methods were developed for the extraction of 11S 

globulins from soybean and of α-zeins from maize since they are important sources of 

antihypertensive peptides (LRP, LSP, and LQP in maize α-zeins and VLIVP in soybean 

proteins). Existing methods enabling the extraction of 11S globulins from soybean seeds were 

very time consuming (extraction times of 2 h) while there was no method suitable for the 

extraction of α-zeins from whole maize kernels. According to their different nature, globulins 

are extractable in salty solutions while zeins (prolamins) are soluble in alcohol solutions. This 

fact was reflected when extraction buffers were proposed. Soybean globulins were easily 

extracted with a 0.03 M Tris-HCl buffer at pH 8.5, while maize α-zeins in 70% of EtOH. 

Nevertheless, under these conditions, various protein families of soybean globulins (mainly 11S 

and 7S globulins) were extracted at the same time, while for maize proteins almost exclusively 

α-zeins were obtained. The use of an ultrasound probe enabled to reduce the extraction time: 

the highest protein yield of soybean globulins was obtained within 2 min while 10 min were 

needed for the extraction of maize α-zeins. In the case of globulins, this constituted a significant 

improved with respect to a previously reported method (reduction of the extraction time from 

2 h to 2 min). Additional differences between these plant proteins were observed in ultrasound 

power being necessary a higher probe amplitude in the case of maize α-zeins (a 40% of probe 

amplitude for soybean globulins and a 90% of probe amplitude for maize α-zeins).  

On the other hand, the selection of a extraction procedure for proteins from animal tissues 

highly depended on the further step in the workflow. Targeted proteins (PKA, PKG, and 

CaMKII) were extractable in PBS, ABC or RIPA buffers using both mild (Tween 20) or harsh 

(SDS) conditions. When the interest was to keep proteins assemblies together, milder conditions 

were preferred. When the interest was to extract all proteins with a high protein yield, harsh 

conditions were applied. While this step allowed to obtain the highest possible protein yield, it 

also produced the highest sample complexity. In comparison to plant proteins, during the 

extraction of animal tissues proteins, various enzyme inhibitors had to be added to buffer 

solutions. This step was necessary in order to avoid targeted protein digestion by co-extracted 

enzymes in the lysis buffer.  
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Assessment of clean up strategies for the purification of extracted proteins  

Clean-up procedures were employed for the purification of proteins extracted from plant and 

animal tissues. In the case of soybean globulins and proteins extracted from animal tissues, this 

step enabled to reduce sample complexity for its further study. In the case of maize α-zeins, a 

purification step was necessary to remove interferences and to change the surrounding 

environment by one suitable for the digesting enzyme employed afterwards. 

Various strategies like precipitation at pI, precipitation with acetone, enrichment of targeted 

proteins or separation by SDS-PAGE were carried out for this purification. For soybean 

globulins and maize α-zeins, that are major proteins in these plant tissues, simple purification 

by precipitation was employed. Nevertheless, the selective precipitation of 11S globulins from 

the previously obtained soybean globulin extract at its pI (pH 6.4) did not show to be 

quantitative. Therefore, this step was rejected and the whole globulin extract was used in further 

studies for the determination of the antihypertensive peptide VLIVP. Unlike 11S globulins, the 

use of a non-selective precipitation of α-zeins with acetone enabled its quantitative 

precipitation. 

In the case of targeted PKA, PKG, and CaMKII isoforms, that are low abundant proteins in 

animal tissues, a more sophisticated enrichment using agarose beads with attached secondary 

messengers (cAMP) or SDS-PAGE was addressed. Agarose beads were effective for the 

purification of PKA, PKG, and CaMKII isoforms from the protein extracts obtained from 

animal tissues (liver, kidney, and heart). On the other hand, SDS-PAGE enabled the reduction 

of sample complexity in these extracts but recovery of proteins from gels was limited.  

Development of approaches to obtain bioactive and tryptic peptides 

In this work, peptides were obtained and employed with different purposes. In some cases, 

peptides were obtained for their characterization and the evaluation of their bioactive properties 

(bioactive peptides from SBIFs). In other cases, targeted peptides were obtained for their 

quantification (antihypertensive peptides from maize and soybean). A final purpose for the 

extraction of peptides was their further use for the quantification of parent proteins (PKA, PKG, 

and CaMKII).  

Two different approaches were used to obtain peptides depending whether these peptides 

were naturally present in the sample or they were within a parent protein. When peptides were 



III.2.  
 
 

356 
 

C
H

A
P

T
E

R
 III R

E
S

U
L

T
S

 A
N

D
 D

IS
C

U
S

S
IO

N
 

 

naturally occurring, such as native peptides in SBIFs, it was not necessary the previous 

extraction of proteins. In this case, a direct extraction of peptides by UF of SBIFs through 10 

kDa Mwco filters resulted suitable for this purpose. When peptides were within the sequence 

of protein, such as antihypertensive peptides in soybean and maize and peptides from PKA, 

PKG, and CaMKII, extracted and purified proteins had to be hydrolyzed with suitable enzymes 

in order to release peptides. The enzyme employed in every case was selected according to the 

aim of the work. 

Antihypertensive peptides were released from 11S soybean globulin by the action of 

protease P (peptide VLIVP) and from maize α-zeins by the action of thermolysin (peptides 

LRP, LSP, and LQP). Protease P and thermolysin are both enzymes from bacterial origin and 

for both of them the enzymatic digestion was performed in-solution. Protease P required a low 

enzyme to substrate ratio (0.1:100 (w:w)) and a long digestion time (18 h) while thermolysin 

digestion required a higher enzyme to substrate ratio (5:100 (w:w)) but a shorter digestion time 

(6 h). These bacterial enzymes could not withstand the high energy produced by the high 

intensity focused ultrasounds and they inactivate. Additionally, the enzymatic digestion with 

both enzymes either was worse or did not occur when including alkylation and reduction steps  

previous to the digestion. 

The thermolysin digestion of maize α-zeins to obtain antihypertensive peptides LRP, LQP, 

and LSP was also performed on a membrane (FASP). FASP approach was, to the best of our 

knowledge, implemented for the first time in this work into food matrices. FASP approach 

separates proteins from smaller interferences previously to their digestion. Nevertheless, the 

analysis of the sample using ESI-Q-ToF-MS revealed that targeted peptides were not present 

in the digested extract probably because peptides could not be released from intact proteins or 

may be retained on the membrane itself. 

Digestion with trypsin enzyme was employed to release proteotypic peptides from PKA, 

PKG, and CaMKII. These tryptic peptides were used for the quantification of these proteins in 

animal tissues (heart, kidneys, and liver) by tandem mass spectrometry. In-solution, FASP, and 

in-gel digestions were implemented in this case. Unlike maize proteins, FASP approach resulted 

useful for the digestion of PKA, PKG, and CaMKII from animal tissues. Moreover, previous 

alkylation and reduction of proteins were, in this case, crucial steps within the digestion 

procedure. While the peptide digest obtained by in-solution and FASP digestions showed a high 
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complexity, peptide extraction from gels in the in-gel digestion strategy resulted non 

reproducible.  

Purification strategies were also applied to remove interferences from peptide extracts. In 

some cases, these interferences disturbed the assays conducted for the evaluation of peptide 

bioactivity (such as in the evaluation of bioactive peptides in SBIFs) while, in other cases, they 

interfered the peptide ionization in the ESI source (such as in the quantification of peptides). 

SPE was used to clean tryptic digest and to remove urea (ionization inhibitor in ESI) from the 

digested extract of maize α-zeins. In the case of maize α-zeins, two different SPE cartridges 

(Sep-Pak and Supelco) containing different amounts of beads were employed to remove 

ionization suppressors in the quantification of LRP, LSP, and LQP peptides. The use of Sep-

Pak cartridges enabled the removal of ionization interferences. Peptide ionization suppression 

was also observed in the quantification of VLIVP peptide obtained by the digestion of soybean 

proteins with protease P. Indeed, just a 32% of peptide standard signal was detected when it 

was added to the digested extract. In this case, the ionization suppression effect was reduced 

just by the simple dilution of the digested extract. In fact, when the digested extract was diluted 

twenty times, ion suppression was not observed.  

Development of analytical methodologies for the separation and identification of targeted 

and non-targeted peptides  

Peptide separations were performed using nano-, micro- and conventional RP–HPLC 

columns with new fused-core stationary phases. Ion-pairing reagent type and concentration, 

elution gradient, and column temperature were carefully optimized to obtain the best separation 

of peptides in every case. In general, the ion-pairing reagent enabling the most suitable peptide 

separation by RP-LC and ionization by ESI was AA. Indeed, separation of VLIVP bioactive 

peptide from soybean 11S globulin with suitable ESI ionization was obtained with a 0.1% (v/v) 

AA while smaller peptides (LRP, LSP, and LQP) from maize α-zeins preferred 0.3% (v/v) of 

AA. Regarding the elution gradients, VLIVP peptide was retained quite well on the stationary 

phase and, therefore, a gradient starting with a 18% mobile phase B (containing ACN) was 

designed. Unlike VLIVP from soybean, smaller peptides from maize were not much retained 

on the stationary phase and the initial mobile phase composition was decreased to the minimum 

(3% ACN).  
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UV-Vis detection of peptides was carried out at 210 nm. Moreover, different MS 

spectrometers with ESI ionization were also used, all working in the positive ion mode. While 

for tryptic peptides, standard ESI source parameters were applied, for bioactive peptides, these 

parameters had to be optimized. Indeed, as presented before, for small bioactive peptides, an 

appropriate selection of ESI parameters was essential to obtain an abundant peptide signal. This 

fact was especially important when there was no basic amino acid within the peptide sequence 

such as in the case of peptides LSP and LQP from maize α-zeins. For these two peptides, a 

strong fragmentation was observed in the ESI source. In order to reduce spontaneous 

fragmentation of these peptides and to increase peptide signal intensity, ESI parameters were 

carefully investigated. The use of a lower fragmentator voltage removed almost all spontaneous 

fragmentation and improved signal intensities. Moreover, other parameters also affecting 

peptides signal intensities were nebulizer pressure and sheath gas flow and temperature. 

Antihypertensive peptide VLIVP in soybean was also analysed by ESI-MS. In this case, no 

in-source peptide fragmentation was observed, probably due to its longer peptide sequence. A 

suitable optimization of parameters enabled, again, to increase method sensitivity. In this case, 

parameters mostly affecting the MS signal were capillary voltage and, like previously for maize 

peptides, dry gas flow and temperature.  

Different types of MS and MS/MS analyzers were employed. High resolution MS systems 

were selected for the identification of non-targeted peptides: a Q-ToF for non-targeted 

identification of bioactive peptides and a LTQ-Orbitrap Velos for non-targeted identification of 

tryptic peptides. Non-targeted identification of native bioactive peptides obtained from SBIFs 

required the use of PEAKS software that enables to carry out both de novo sequencing and 

database searching. The application of both procedures in parallel for the identification of these 

native peptides yielded more confidence results. Therefore, several potential antioxidant and 

antihypertensive peptides were identified in SBIFs. On the other hand, non-targeted 

identification of tryptic peptides from animal tissues was performed using Proteome Discoverer 

software. Digested pull-downs of liver, kidney and heart were successfully analyzed and these 

proteotypic peptides most commonly observed and corresponding to PKA, PKG, and CaMKII 

isoforms were detected and next used for the quantification of these parent proteins.  

Targeted bioactive peptides (LRP, LSP, and LQP from maize and VLIVP from soybean) 

were analyzed with ToF and IT mass spectrometers while for targeted tryptic peptides, a QqQ 

was employed. All targeted peptides were identified by the comparison of MS/MS or/and MS 
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spectra of peptide standards and studied samples, by comparison of their elution time, and by 

spiking studied samples with targeted peptide standards.  

Quantification of small peptides LRP, LSP, and LQP was carried out from the MS spectrum 

since their MS/MS spectrum was too poor for their quantification. Therefore, the identification 

of these peptides in highly complex food matrices required high resolution MS analyzer as ToF. 

For the longer bioactive peptide VLIVP, the IT analyzer in the pseudo-SRM mode was used, 

while for tryptic peptides the QqQ equipment in SRM mode was applied. Both IT and QqQ are 

low resolution mass spectrometers, thus, the MS/MS mode was necessary. Higher sensitivities 

were obtained when coupling nano- and micro-LC separations to QqQ and IT analyzers, 

respectively. 

Assessment of sensitivity improvement strategies 

It is important to highlight some approaches to significantly improve method sensitivity. 

Few of them, like nano- and capillary-LC or the optimization of ESI source parameters, were 

already mentioned. For IT and QqQ, method sensitivity is very affected by the amount of ions 

that can be analyzed at any instant. In the case of the IT, the ICC (ion charge control) target is 

the parameter controlling this feature being necessary its optimization to obtain a suitable signal 

intensity for the detection of the antihypertensive peptide VLIVP in soybean digested extracts. 

On the other hand, when analyzing prototypic peptides by QqQ, the amount of ions analyzed at 

every instant was controlled by scheduling the number of transitions (peptidefragment ions) 

over the LC-run. Therefore, a lower number of transitions resulted in a higher number of ions 

and a higher sensitivity. Thanks to this strategy, the sensitivity of the developed method to 

quantify PKA, PKG, and CaMKII isoforms was increased at least 2.8 times. 

Another important parameter affecting method sensitivity in both IT and QqQ was the 

applied collision energy. These two analyzers work in different manner and obtained mass 

spectra can be significantly different. Nevertheless, in both cases, the optimization of analyzed 

the collision energy (in the case of IT) or their previous estimation using theoretical equations 

(in the case of QqQ) was essential to obtain a high sensitivity.  
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Critical evaluation of the analytical characteristics of the developed methods for the 

quantification of bioactive peptides 

The methods developed for the quantification of bioactive peptides were characterized by 

the evaluation of several parameters like linearity in the working concentration range, limits of 

detection and quantification, existence of matrix interferences, precision, and recovery. The 

quantification of LRP, LSP, and LQP antihypertensive peptides from maize α-zeins was 

performed by conventional HPLC using a fused-core column connected to a Q-ToF MS system. 

The quantification of VLIVP antihypertensive peptide in the protease P digested extract of 

soybean proteins was carried out by micro-HPLC connected to an IT analyzer. Maize 

antihypertensive peptides were analyzed using just the MS mode, while the soybean peptide 

was quantified using the pseudo-SRM mode. 

Due to the high mass accuracy of the ToF analyzer, some parameters (slope of the calibration 

curve, selectivity, and LOD or LOQ) highly depended on the applied EW value. Hence, EW 

for every peptide was carefully examined and selected. For LRP, the EW was 200 ppm while 

for LSP and LQP was 100 ppm. On the other hand, a standard EW of ±0.5 was selected in the 

case of the IT analyzer. For both methods, LOD and LOQ were calculated as the minimum 

concentration yielding a SNR equal to 3 and 10 times, respectively. The comparison of the 

values obtained for the two quantification methods showed that micro-HPLC-IT using pseudo-

SRM mode provided around 1000 times lower LOD/LOQ than HPLC-Q-ToF. In fact, the 

calibration curve was at the ppt level in micro-HPLC-IT and at ppb level in conventional HPLC-

Q-ToF. It can be concluded that micro-HPLC-IT represented much more sensitive 

quantification than the method where conventional HPLC-Q-ToF system was used. 

Matrix effects were evaluated in both methods by the comparison of slopes obtained by the 

external standards and standard additions calibrations. For the conventional HPLC-Q-ToF 

method, the effect of the matrix was observed for almost all peptides, while in the micro-HPLC-

IT method, matrix effects were absent.  

Application of the developed methods to the quantification of targeted peptides and proteins 

in plant and animal tissues  

The quantification of targeted proteins and peptides can be carried out using label free or 

label based methods. Bioactive antihypertensive peptides (LRP, LSP, and LQP in maize and 

VLIVP in soybean) were quantified using the label free approach. For that purpose, the standard 
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additions method was used to quantify LRP, LSP, and LQP peptides by HPLC-Q-ToF and the 

external standard calibration method was employed in the quantification of VLIVP peptide by 

micro-HPLC-IT. Previous to the quantification, a stability study of the peptide standards over 

time was conducted. This study reported, for both soybean and maize peptides, that the best 

conditions for storing peptides were 10% AA at temperatures from 4 °C to RT.  

The VLIVP peptide was quantified in soybean protein extracts digested with protease P 

using micro-HPLC-IT in pseudo-SRM mode. Five different soybean crops were analyzed and 

significant differences (562-880 ng/g) among peptide contents were observed. These results 

suggested that not all soybean crops presented the same antihypertensive properties. On the 

other hand, LRP, LSP, and LQP antihypertensive peptides were quantified in the thermolysin 

digests of maize α-zeins. Results firstly obtained by relative quantification using UV detection 

were next confirmed by the absolute quantification of these peptides by mass spectrometry 

(ToF). In general, the most abundant peptide was LSP, followed by LQP and LRP. In order to 

facilitate the comparison of the antihypertensive capacity of maize varieties containing these 

three antihypertensive peptides, the activity of LSP and LQP was expressed in terms of 

equivalent concentration of the most active peptide LRP. These results demonstrated that the 

antihypertensive properties of maize crops varied with the variety. In addition to the maize 

crops included in the manuscripts, the content in antihypertensive peptides in a genetically 

modified maize variety and in its isogenic non-transgenic line were also estimated. Comparison 

of genetically modified and its non-transgenic lines showed just slight differences in the level 

of the antihypertensive peptide LSP while LQP and LRP contents were identical.  

Proteotypic peptides from CaMKII isoforms were quantified using heavily labeled peptide 

counterparts on a nano-LC-QqQ system using the SRM mode. However, due to the sample 

complexity, just two out of seven CaMKII proteotypic peptides were identified using this 

approach. Moreover, the results obtained for these peptides varied significantly, which 

suggested that some stage of the sample preparation procedure was poorly repeatable.  

Isolation and identification of antioxidant and antihypertensive peptides in SBIFs 

Fractionation of antioxidant and antihypertensive peptides from SBIFs has been performed 

according to their molecular weights by UF and according to their pI by OFFGEL 

isoelectrofocusing. UF was employed as a first fractionation step. The identification of peptides 

by MS after this fractionation showed the limited resolution of the technique when it was used 
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for the separation of molecules with similar molecular weights. Nevertheless, UF resulted 

suitable when separating molecules presented more different molecular weights (e.g. UF with 

Mwco filters of 3 kDa was successfully employed to separate α-zeins (19 and 22 kDa) and 

polyamine conjugates (440 and 410 Da)). In order to overcome the limited resolution of UF, a 

further fractionation by OFFGEL isoelectrofocusing was proposed for the separation of 

antioxidant peptides. Nevertheless, ampholytes needed to establish the pH gradient in 

isoelectrofocusing significantly interfered on following assays. Several approaches were tried 

for the removal of these ampholytes (Zip-tips, spin-columns, UF, and monolithic columns). 

Zip-tips, spin-columns, and UF failed in the attempt to remove ampholytes due to the similar 

size of peptides and ampholytes. The proper optimization of the chromatographic separation 

conditions on a monolithic column enabled to clean the peptide fraction from closely related 

ampholytes.  

Extracted native peptides from five different SBIFs have been explored for their antioxidant 

and antihypertensive capacities. The antioxidant capacity in all SBIFs was high and very 

similar. This behavior contrasted with the observed in the case of the ACE inhibitor capacity 

that varied significantly among SBIFs (IC50 values from 2.45 μg/mL to 63.90 μg/mL). The 

highest antioxidant capacity was always observed in the fraction containing peptides from 5 to 

10 kDa while this was the fraction exerting the lowest antihypertensive capacity.  

Moreover, antioxidant capacity of this fraction did not vary significantly after 

gastrointestinal digestion observing the opposite behavior in the fractions exerting the highest 

ACE inhibitor capacity (fractions from 3 to 5 kDa and < 3 kDa). In both cases, an HPLC-Q-

ToF system and the PEAKS program enabled to identify more than 100 different peptides in 

every fraction. It is remarkable the presence of RPSYT peptide since it was present in all SBIFs 

and yielded both antioxidant and antihypertensive activities. Additionally, this peptide could 

withstand gastrointestinal digestion and resisted high processing temperatures. 
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IV. Conclusions 

From the results obtained in this doctoral thesis, it can be concluded that: 

 The investigation on the presence of native ACE inhibitory and antioxidant peptides in 

different soybean commercial infant formulas showed that, from the four proposed 

peptide isolation methods, ultrafiltration was the simplest and the most adequate. In 

fact, the use of 12% TCA resulted in the co-precipitation of peptides together with 

proteins, while slow heating with 5% TCA did not allow to completely precipitate 

proteins.  

 

 Extracts obtained from soybean infant formulas showed both antioxidant and ACE 

inhibitory capacities. The antioxidant capacity was high and very similar for all the 

samples analyzed. The highest ACE inhibitory capacity was observed for those 

soybean based infant formulas with the highest degree of hydrolysis. 

 

 Fractionation of peptide extracts from commercial soybean based infant formulas 

revealed the highest antioxidant capacity for peptide fractions from 5 to 10 kDa. The 

highest ACE inhibitory capacities were found in peptide fractions below 5 kDa. 

Peptide fractions below 3 kDa from soybean infant formulas 4 and 5 showed 

exceptionally high ACE inhibitory capacities exerting IC50 values (1.20 ± 0.05 and 

0.57 ± 0.04 μg/ mL) higher than those corresponding to known antihypertensive milk 

peptides VPP (2.80 µg/mL) and IPP (1.67 µg/mL).  

 

 Although the use of OFFGEL isoelectrofocusing to fractionate bioactive peptides from 

food matrices was proposed for the first time in this doctoral thesis, individual 

fractions obtained by OFFGEL showed lower antioxidant capacities than whole 

peptide fractions from 5 to 10 kDa suggesting a synergic effect among antioxidant 

peptides. Thus, the OFFGEL separation step was omitted. 
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 Fractions showing the highest antioxidant or antihypertensive capacities were 

submitted to simulated gastrointestinal digestion observing no significant change in 

the antioxidant capacity and a slight reduction in the ACE inhibitory capacity. 

Nevertheless, ACE inhibitory capacity was still maintained at a high level.  

 

 Peptides present in the fractions with the highest antioxidant and ACE inhibitory 

capacities were identified by HPLC-Q-ToF and PEAKS software. Poor ultrafiltration 

performance was found especially for peptides with low molecular weights. 

Comparison of identified peptides before and/or after the gastrointestinal digestion 

enabled the selection of various potential antioxidant and ACE inhibitory peptides that 

could resist the action of gastrointestinal enzymes. 

 

 The peptide with the sequence RPSYT showed moderate ACE inhibitory activity and 

high antioxidant activity being resistant to simulated gastrointestinal digestion and 

high temperatures.  

 

 Soybean based infant formulas were proposed, for the first time, as a source of ACE 

inhibitory and antioxidant peptides which could have a huge impact on the pediatric 

and medicinal areas taking into account the poor literature dealing with these foods.  

 

 A first rapid analytical methodology for the estimation of the content of LRP, LSP, 

and LQP antihypertensive peptides in maize crops was developed by RP-HPLC with 

UV detection. The accelerated extraction using high intensity focused ultrasounds and 

the purification of α-zeins from whole maize kernels were optimized. An adequate 

solvent enabling the solubilization of precipited α-zeins and their suitable thermolysin 

digestion was selected. Peptides were separated in the protein hydrolysate in less than 

5 min and identified by HPLC-Q-ToF. 
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 The application of the developed HPLC-UV methodology enabled to estimate the 

relative content of the three highly antihypertensive peptides in various maize crops. 

The LRP content was very low in all maize crops, while LQP (IC50 = 2.0 μM) and LSP 

(IC50 = 1.7 μM) peptides, presenting an activity more than twice that of the known 

VPP and IPP peptides (IC50 = 9.13 and 5.15 μM, respectively) from milk, were present 

in much higher concentrations. It was possible to observe significant differences 

among maize crops suggesting different antihypertensive capacities of maize lines.   

 

 In order to obtain better selectivity and sensitivity and to perform an absolute 

quantification of LRP, LSP, and LQP peptides in digested α-zeins extracts, an HPLC-

Q-ToF methodology was developed. Optimization of ESI parameters enabled to 

remove in-source peptide fragmentation and significantly increase peptide signal 

intensities. Parameters mostly affecting peptides signal intensities were fragmentator 

voltage, nebulizer pressure, and sheath gas flow and temperature. Two different SPE 

(Sep-Pak and Supelco) cartridges were compared to remove ionization suppression 

effects. The Sep-Pak cartridge provided an appropriate selectivity for all three targeted 

antihypertensive peptides.   

 

 The developed HPLC-Q-ToF method was characterized by the evaluation of various 

parameters. Some parameters highly depended on the applied extraction window and 

optimum extraction windows had to be selected for every antihypertensive peptide. 

Since the method suffered from matrix interferences, the standard additions calibration 

method was used for the quantification of the three peptides in maize crops. 

 

 The application of the developed HPLC-ESI-Q-ToF methodology enabled to 

determine the concentration of the three antihypertensive peptides in six maize crops. 

The highest LRP yield was found in A632 and EZ11A lines. The content of LSP was 

the highest in EZ11A and MC lines, while LQP peptide was more concentrated in the 

EZ11A variety. In order to comprehensively assess, the antihypertensive capacity of 

maize lines, a new parameter (antihypertensive equivalent factor) taking into account 
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the antihypertensive activity of every peptide and its content in every maize line was 

proposed and estimated. According to these antihypertensive equivalent factors, the 

highest antihypertensive capacity corresponded to the EZ11A line.  

 

 The comparison of the results obtained using UV and Q-ToF detectors showed, in 

general, the same concentration order for the three antihypertensive peptides 

determined in the maize lines. Nevertheless, for the LQP peptide, strong interferences 

resulted in an overestimation of its content when using the UV detector.  

 

 A first analytical methodology for the estimation of VLIVP peptide in soybean 

genotypes has been developed by μHPLC-IT. A soybean protein extraction method 

was improved by the application of high intensity focused ultrasounds resulting in the 

significant reduction of the extraction time from 120 min to just 2 min. The attempt to 

purify just 11S globulins from the whole protein extract showed to be not quantitative 

and was rejected.  

 

 Optimization of conditions used in the digestion of the whole soybean protein extract 

with protease P revealed their strong sensitivity to pH, temperature, and enzyme to 

substrate ratio.  

 

 Peptide VLIVP was identified in digested soybean proteins extracts by μHPLC-IT 

using both MS and MS/MS modes. The appropriate optimization of chromatographic 

parameters enabled the separation of the peptide from the rest of the extract in an 

analysis time of 7 min. Matrix effects were reduced by diluting twenty times the 

digested extracts. ESI and IT parameters were optimized. The parameters most 

affecting peptide signal intensity were the capillary voltage, dry gas flow and 

temperature, ion charge control target, and collision energy.  
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 The μHPLC-IT method was characterized by the evaluation of its analytical 

characteristics. The results showed that the method was very sensitive, precise, and 

free of matrix interferences which permitted the use of the external standard 

calibration method. The method enabled to detect up to 3.6 ng of peptide and to 

determine up to 12 ng of peptide in 1 g of soybean (as dry basis).  

 

 The developed μHPLC-IT methodology was applied to the quantification the  

antihypertensive VLIVP peptide in five soybean crops. The highest VLIVP peptide 

content was found in the variety Mazowiecka II from Poland. The significant 

differences in VLIVP peptide content observed among soybean varieties suggested 

different antihypertensive capacity of these soybean crops.  

 

 The comparison of the protein extraction methods showed that soybean globulins are 

much easily extracted by high intensity focused ultrasounds than maize α-zeins 

proteins.  

 

 The comparison of bacterial enzymes showed that thermolysin required higher enzyme 

to substrate ratio and shorter digestion times than protease P. At the same time, both of 

these proteases were inactivated when high intensity focused ultrasounds were 

applied. Additionally, the introduction of reduction and alkylation steps previous to 

the digestion resulted in the reduction of enzymes activities.  

 

 Quantification studies presented in this thesis confirmed significant differences in 

antihypertensive capacities of plant crops. In addition, they highlight the importance of 

the development of analytical methodologies for the absolute quantification of 

antihypertensive peptides in highly complex food matrices. 

 



Conclusions 
 

370 
 

C
H

A
P

T
E

R
 IV

 C
O

N
C

L
U

S
IO

N
S

 

 To assess the distribution of PKA, PKG, and CaMKII isoforms in specific tissues, an 

SRM assay using nano-LC-QqQ was developed. Final SRM assay consisted of 27 

PTPs with 27 precursors and 162 transitions. The scheduling of the transitions over the 

LC run increased sensitivity. Selected PTPs and most of the transitions were validated 

by the analysis of digested kidney pull-down spiked with heavily labeled isotopic 

peptides counterparts. The optimization of collision energy for all PTPs revealed that 

it strongly influenced peptide signal intensities but it did not vary significantly from 

the collision energy values theoretically calculated using standard equations.  

 

 Application of the developed SRM assay did not enable to quantify selected PKA, 

PKG, and CaMKII isoforms in heart, liver, and kidney lysates. In order to decrease 

sample complexity, kidney and liver lysates were previously separated using SDS-

PAGE. Nevertheless, the application of the SDS-PAGE in-gel digestion SRM method 

to a rat heart model enabled to determine just two PTPs for the δ isoform of CaMKII. 

Moreover, the quantification of these two peptides showed significant differences 

among technical replicates. Results suggested a lack of reproducibility at some stage 

of the procedure used for sample preparation. To solve this issue, an appropriate 

selection of separation techniques to reduce the sample complexity seems to be 

crucial. 
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Amino acid 
Three letter 

abbreviation 
 

One letter 

abbreviation 
Polarity 

Alanine Ala 

 

A Weak Polar 

Arginine Arg 

 

R Polar 

Asparagine Asn 

 

N Polar 

Aspartic acid Asp 

 

D Polar 

Cysteine Cys 

 

C Non-Polar 
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Amino acid 
Three letter 

abbreviation 
 

One letter 

abbreviation 
Polarity 

Glutamic acid Glu 

 

E Polar 

Glutamine Gln 

 

Q Polar 

Glycine Gly 

 

G Weak Polar 

Histidine His 

 

H Polar 

Isoleucine Ile 

 

I Non-Polar 
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Amino acid 
Three letter 

abbreviation 
 

One letter 

abbreviation 
Polarity 

Leucine Leu 

 

L Non-Polar 

Lysine Lys 

 

K Polar 

Methionine Met 

 

M Non-Polar 

Phenylalanine Phe 

 

F Non-Polar 

Proline Pro 

 

P Weak Polar 
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Amino acid 
Three letter 

abbreviation 
 

One letter 

abbreviation 
Polarity 

Serine Ser 

 

S Weak Polar 

Threonine Thr 

 

T Weak Polar 

Tryptophan Trp 

 

W Non-Polar 

Tyrosine Tyr 

 

Y Non-Polar 

Valine Val 

 

V Non-Polar 
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