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Abstract

In this paper we introduce the notion of rational Hausdorff divisor, we analyze
the dimension and irreducibility of its associated linear system of curves, and we
prove that all irreducible real curves belonging to the linear system are rational
and are at finite Hausdorff distance among them. As a consequence, we provide
a projective linear subspace where all (irreducible) elements are solutions to the
approximate parametrization problem for a given algebraic plane curve. Further-
more, we identify the linear system with a plane curve that is shown to be rational
and we develop algorithms to parametrize it analyzing its fields of parametriza-
tion. Therefore, we present a generic answer to the approximate parametrization
problem. In addition, we introduce the notion of Hausdorff curve, and we prove
that every irreducible Hausdorff curve can always be parametrized with a generic
rational parametrization having coefficients depending on as many parameters
as the degree of the input curve.
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1 Introduction

The research in mathematics has shown that not all (mathematical) problems can be
solved algorithmically, as for instance the negative solution of Hilbert’s tenth problem
given by Matiyasevich or the unsolvability, as a consequence of Abel’s Theorem, of the
general equation of degree n if n > 4. However, even in these cases, the developed
techniques to yield to these conclusions have a lot of applications in computational
mathematics and in other areas of mathematics as algebra, number theory, etc.

A similar, in some sense, phenomenon appears when computational mathematics
mixes with applied mathematics or, more precisely, with practical applications. In
this situation, even though one may be dealing with a problem that can be solved
algorithmically, and even though one has good algorithms for approaching the solution,
it can happen, and often it is the case, that the problem has to be reformulated and
analyzed from a different point of view. To be more precise in this claim, let E be
a mathematical entity appearing in the resolution of a practical problem (e.g. E is a
real polynomial) that is known, because of the nature of the treated applied problem,
to satisfy certain property P (e.g. being reducible over Q) that implies the existence
of certain associated objects E1, . . . , En (e.g. the irreducible factors over Q of the
polynomial), and let the goal of the problem be to compute E1, . . . , En. However,
often in practical applications, we receive a perturbation E ′ of E instead of E , where
the property P does not hold anymore neither the associated objects Ei exist; for
instance, a perturbation of a Q-reducible polynomial will be, in general, Q-irreducible
and, therefore, the application of the existing polynomial factorization algorithms will
just not solve our problem. One may try to recover the original unperturbed entity
E . Since, this is essentially impossible, a more realistic version of the problem is to
determine a new object E ′′ near E ′, and satisfying P , as well as computing the associated
objects E ′′i to E ′′. We call approximate to an algorithm solving a problem of the above
type; a solution for the illustrating example on polynomial factorization is given in [7].
Some papers treating this type of problems with the same, or similar, strategy are [3],
[4] [5], [8], [9], [10], [11], [13], [14], [15], [17], [20]; see also [16].

Both situations, described above, far from being a weakness of computational math-
ematics, are a source of motivation and scientific challenges. Our paper is framed within
the second phenomenon, and more precisely when the mathematical entity E is a real
algebraic plane curve, P is the property of the curve of being parametrizable by means
of rational functions (i.e. genus 0 property), and the associated objects Ei are the
rational functions in one parametrization of E . We refer to this particular problem as
the approximate parametrization problem.

But, above, what does it mean that E ′′ is near E ′? Depending on the goal of the
problem one uses different distances. When working with sets, as it is our case, one
often uses the Hausdorff distance (see a brief description of this distance at the end of
this introduction). Indeed, the Hausdorff distance has proven to be an appropriate tool
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for measuring the resemblance between two geometric objects, becoming in consequence
a widely used tool in fields as computer aided design, pattern matching and pattern
recognition (see for instance [2], [12]).

A main difficulty when working with the Hausdorff distance is that, if not both sets
are bounded, the distance between them can be infinity. Most of the papers deal with
bounded real algebraic curves or with part of the curves framed into a box, and do not
face the unbounded case. We, in our previous papers [13], [17], do not restrict to the
bounded case. However, in those (our) papers we provided algorithms to derive ”one”
solution for the approximate parametrization problem. Here we develop a theory from
where, and under the assumption that the given curve has as many different points at
infinity as degree, the set of all possible solutions of the approximate parametrization
problem is described. From this analysis, one may determine an optimal or almost
optimal (under certain given additional criteria) solution of the problem. For instance,
one may try to provide a rational parametrization with small height (i.e. integer
coefficients with small absolute value), or with a Hausdorff distance smaller than a
given tolerance, or satisfying certain additional geometric features as having particular
ramification points, type of singularities, tangencies, or topological graphs.

Theorem 6.4, in [17], gives necessary conditions for having finite Hausdorff distance
between two real algebraic curves. Based on this, we introduce the notion of Hausdorff
divisor, we study the dimension and irreducibility of its linear associated system of
curves (it is a projective linear subspace), and we prove that all irreducible real curves
belonging to the linear system are at finite Hausdorff distance among them (see The-
orem 2.11). In addition, we introduce the notion of rational Hausdorff divisor, we also
study the dimension and irreducibility, and we prove that all irreducible real curves
in the linear associated system are parametrizable by means of rational functions and
are at finite Hausdorff distance (see Theorem 3.5). Therefore, we describe a projec-
tive linear subspace where all (irreducible) elements are solutions to the approximate
parametrization problem. In a second stage, we identify the linear system of a rational
Hausdorff divisor with a plane curve over the algebraic closure of a (in general) tran-
scendental extension of C. This curve is shown to be rational and we provide algorithms
to parametrize it over simpler subfields (see Theorem 4.1 and its corollaries). This im-
plies that we provide a generic answer to the approximate parametrization problem;
that is a rational curve parametrization with coefficients depending polynomially on
a finite set of parameters. Finally, we introduce the notion of Hausdorff curve, that
essentially asks the curve to have as many different points at infinity as degree. Fur-
thermore, we prove that every irreducible Hausdorff curve can always be parametrized
with a generic parametrization having coefficients depending on as many parameters
as degree; so, with as many degrees of freedom as the degree of the curve (see Theorem
5.4 and its corollary). Therefore, we present an alternative algorithm to the algorithm
in [13] that is applicable to a wider family of curves and that provides, not one, but
infinitely many solutions to the problem. We do not present any systematic study of
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how to proceed to choose an optimal (under a given criterion) solution from the set of
infinitely many provided solutions; this is left as future research. Here instead, with
an example, we illustrate the potential applicability of the method.

The computations in this paper has been performed with the mathematical software
Maple.

Hausdorff Distance

We briefly recall the notion of Hausdorff distance; for further details we refer to [1].
In a metric space (X, d), for ∅ 6= B ⊂ X and a ∈ X we define d(a,B) = infb∈B{d(a, b)}.
Moreover, for A,B ⊂ X \ ∅ we define

Hd(A,B) = max{supa∈A{d(a,B)}, supb∈B{d(b, A)}}.

By convention Hd(∅, ∅) = 0 and, for ∅ 6= A ⊂ X, Hd(A, ∅) = ∞. The function Hd

is called the Hausdorff distance induced by d. In our case, since we will be working in
(R2, d), d being the usual Euclidean distance, we simplify the notation writing H(A,B).

2 Hausdorff Divisors

Throughout this paper we denote by P2(C) the projective plane over the field C of
complex numbers. Let us start recalling the notion of divisor. A divisor is, intuitively
speaking, a way of describing finite collections of points in P2(C) with assigned (maybe
negative) multiplicities. More precisely, a divisor in P2(C) is a formal expression

m∑
i=1

siPi

where si ∈ Z and Pi are different points in P2(C); if si are all non-negative integers,
the divisor is called effective. In this paper, we are only interested in effective divisors;
non-effective divisors are used when poles of rational functions need to be analyzed.
We define the degree of the divisor D =

∑m
i=1 siPi as the number

deg(D) :=
m∑
i=1

si.

Definition 2.1. We say that a divisor
∑m

i=1 siPi is a Hausdorff divisor if, for all i ∈
{1, . . . ,m}, si = 1 and Pi is of the form (a : b : 0) ∈ P2(C). •

Let n be a positive integer, and let C be a projective algebraic plane curve of degree
n. C will be defined by a homogeneous polynomial F (x, y, z) with coefficients in C, then
we can identify C with the projective point given by its coefficients after fixing a term
order. For instance, if n = 2, let us fix e.g. the order y2 < xy < x2 < yz < xz < z2,
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then the circle x2 + y2 − z2 = 0 is seen as (1 : 0 : 1 : 0 : 0 : −1) ∈ P5(C) and any
other conic (including double lines) is a point in P5(C). In this situation, the set of
all projective curves of degree n is identified with the projective space P`−1(C), where
` = (n+ 1)(n+ 2)/2. Now, a linear system of curves of degree n is a linear subspace of
P`(C). Considering parametric equations of the linear system one can see the system
as a homogeneous form whose coefficients are those equations. This form is called
the defining polynomial of the linear system. For instance, let n = 1 and x < y < z,
then the linear subspace, of degree 1, parametrized as (λ : µ : 0) corresponds to the
form λx + µy that defines the pencil of projective lines passing through the origin
(0 : 0 : 1). We, indistinctly, will see the linear system as a projective linear subspace
or as a homogeneous polynomial.

Associated with an effective divisor, one can consider a linear system of curves for
a positive integer n, big enough. More precisely, let D =

∑m
i=1 siPi be an effective

divisor, then we consider the set of all projective curves of degree n passing through
Pi with multiplicity, at least, si, for i = 1, . . . ,m. Observe that these requirements are
linear conditions on the coefficients of the generic form of degree n. Therefore, this set
is a linear system of curves. We denote it by H(n,D).

Definition 2.2. Let D be an n-degree Hausdorff divisor, the linear system H(n,D) is
called the Hausdorff linear system associated to D. •

A natural question is the analysis of the dimension of a linear system. In general,
if D is an effective divisor it holds (see Theorem 2.59 in [18])

dim(H(n,D)) ≥ n(n+ 3)

2
−

m∑
i=1

si(si + 1)

2
. (1)

One may also consider the notion of divisor in general position (see Section 2.4 in [18]).
From (1), the following result is deduced.

Proposition 2.3. Let D be an n-degree Hausdorff divisor. Then

dim(H(n,D) ≥ n(n+ 1)

2
.

Let D be an effective divisor such that H(n,D) 6= ∅, and let H(Λ, x, y, z) be its
defining polynomial, where Λ is a tuple of parameters. For each specialization Λ0 of Λ,
taking values in C, we get a projective curve, namely the curve defined by H(Λ0, x, y, z).
Alternatively, we can see H(n,D) as a projective plane curve over the algebraic closure
of C(Λ) defined by H(Λ, x, y, z). This, motivates the following definition.

Definition 2.4. Let D be an effective divisor, let ∅ 6= H ⊆ H(n,D), and let
H(Λ, x, y, z) be the defining polynomial of H. The projective plane curve defined
by H(Λ, x, y, z), over the algebraic closure of C(Λ), is called the projective algebraic
curve associated to H and we denote it by Curve(H); in general we will identify H and
Curve(H). •
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Example 2.5. We illustrate the previous concept in this example. Let D = (0 : 0 : 1).
The defining polynomial of H(1, D) is (here Λ = (λ1, λ2))

H(Λ, x, y, z) = λ1x+ λ2y

Therefore, H(1, D) consists in all lines in P2(C) passing through (0 : 0 : 1). However,
Curve(H(1, D) is a particular line in P2(C(Λ)) namely the line y = −λ1/λ2x, where
C(Λ) is the algebraic closure of C(Λ). �

Our main goal will be to parametrize the projective algebraic curve associated to
a linear system. This implies that the curve has to be irreducible, and hence the next
notion appears naturally.

Definition 2.6. Let D be an effective divisor such that H(n,D) 6= ∅. We say that
D is irreducible if Curve(H(n,D)) is irreducible; that is, if the defining polynomial
H(Λ, x, y, z) of the linear system H(n,D) is irreducible over the algebraic closure of
C(Λ). •

Example 2.7. Let D = 2(1 : 0 : 0). The defining polynomial of H(2, D) is (here
Λ = (λ1, λ2, λ3))

H(Λ, x, y, z) = λ1z
2 + λ2yz + λ3y

2.

This polynomial is irreducible over C. However, over the algebraic closure C(Λ) of
C(Λ), H factors as

H(Λ, x, y, z) = λ1

(
z +

1

2

λ2y

λ1

)2

+

(
λ3 −

1

4

λ2
2

λ1

)
y2 =

=

√λ1

(
z +

1

2

λ2y

λ1

)
+

1

2
i

√
4λ3 −

λ2
2

λ1
y

·
√λ1

(
z +

1

2

λ2y

λ1

)
− 1

2
i

√
4λ3 −

λ2
2

λ1
y

 .

Thus D is reducible or, equivalently Curve(H(2, D)) is reducible; indeed, it is a pair of
lines. Note that D is not Hausdorff. �

In the next theorem, we study the irreducibility of Curve(H(n,D)), when D is a
Hausdorff divisor; observe that a Hausdorff linear system is never empty (see Prop.
2.3), and hence Curve(H(n,D)) always exists. We start with the following lemma.

Lemma 2.8. Let D be an n-degree Hausdorff divisor. The defining polynomial of
H(n,D) is irreducible over C.

Proof. LetH(Λ, x, y, z) be the defining polynomial ofH(n,D) and let F be the algebraic
closure of C(Λ). If H(Λ, x, y, z) factors over C, with factors depending not only on Λ,
then all curves in the linear system are reducible. So, to prove the statement, we find
an specific irreducible projective curve in H(n,D). Let us assume that D =

∑n
i=1(ai :
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bi : 0). Let (a : b : 0) be different to all points in D. We consider the projective curve
C defined by

F (x, y, z) = z(bx− ay)n−1 −
n∏

i=1

(bix− aiy).

Since (a : b : 0) is different to (ai : bi : 0), F is irreducible and clearly C ∈ H(n,D).

Theorem 2.9. Let D be an n-degree Hausdorff divisor. Then, D is irreducible.

Proof. Let H(Λ, x, y, z), H(n,D) and F as in the proof of Lemma 2.8. We may assume
w.l.o.g. that H is monic w.r.t. y (this is equivalent to (0 : 1 : 0) 6∈ D): indeed, if
it is not the case, we can always perform a projective change of coordinates over C,
such that (0 : 1 : 0) 6∈ D and D stays Hausdorff; then the irreducibility of H over F
is preserved. Since D is Hausdorff, by Lemma 2.8, x does not divide H. Therefore, H
is irreducible over F iff h(y, z) = H(1, y, z) is irreducible over F. h(y, z) is monic in y.
Moreover, since D is Hausdorff, h(y, 0) is square-free. Therefore, using Theorem 5.5.2
in [21], we have that h is irreducible over F iff h is irreducible over C. Now, the result
follows from Lemma 2.8.

Corollary 2.10. Let D be an n-degree Hausdorff divisor, and let H(Λ, x, y, z) be the
defining polynomial of a non-empty linear subsystem H ⊆ H(n,D). Then, H is irre-
ducible over the algebraic closure of C(Λ) if and only if H is irreducible over C; that
is, Curve(H) is irreducible if and only if H is irreducible over C.

Proof. Let left-right implication is trivial. The right-left implication follows as the
proof of Theorem 2.9 but using the irreducibility of H over C, instead of Lemma 2.8.

The next theorem states the main result on Hausdorff divisors. For this purpose,
if C is the projective algebraic curve defined by the form F (x, y, z), and it is different
to the line at infinity z = 0, we denote by Ca the affine algebraic curve defined by
F (x, y, 1). Furthermore, for an affine algebraic curve Ca we denote by C∞a the points
at infinity of Ca. We recall that an affine curve is real if it contains infinitely many real
points.

Theorem 2.11. Let D be an n-degree Hausdorff divisor. For every two real irreducible
curves C1, C2 ∈ H(n,D), such that deg(Ci,a) = n, it holds that

H(C1,a ∩ R2, C2,a ∩ R2) <∞.

Proof. Let D =
∑n

i=1 Pi. Since C1, C2 ∈ H(n,D) then C∞1,a = C∞2,a = {P1, . . . , Pn}.
Moreover, card(C∞1,a) = card(C∞2,a) = deg(C1,a) = deg(C2,a). Now, the result follows
from Theorem 6.4. in [17]
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In the following we find necessary conditions on the Hausdorff divisor D =
∑n

i=1 Pi

such that H(n,D) contains curves verifying the hypotheses of Theorem 2.11. For this
purpose, we will use the concept of family of conjugate points that can be introduced
as follows; see Def. 3.15 in [18] for further details. Let K be a subfield of C, e.g. K = R,
then a finite family of points is P2(C) is K-conjugate if it can be expressed as

{(p1(t) : p2(t) : p3(t)) |m(t) = 0}

where pi,m ∈ K[t] and gcd(p1, p2, p3) = 1; for instance, the points in F := {(±i : 1 : 0)}
are Q-conjugated since F = {(t : 1 : 0) | t2 + 1 = 0}.

Let C ∈ H(n,D) be such that deg(Ca) = n, and Ca is real and irreducible. Let
F (x, y, z) be the defining polynomial of C. Then, {P1, . . . , Pn} is the family of conjugate
points {(t : h : 0)|F (t, h, 0) = 0}. Moreover, since C is real, then F is a real polynomial
(see Lemma 7.2 in [18]), and thus the family is R-conjugated. This motivates the
following definition.

Definition 2.12. Let K be a subfield of C. We say that a Hausdorff divisor D =∑m
i=1 Pi is K-definable if {P1, . . . , Pm} is a K-conjugate family of points. •

In the next examples, we illustrate the notion of R-definability as well as Theorem
2.11.

Example 2.13. We consider the Hausdorff divisor (i is the imaginary unit)

D =

(
1

2

√
2 +

1

2
i
√

2 + 1 : i : 0

)
+

(
−1

2

√
2 +

1

2
i
√

2 + 1 : −i : 0

)
+

+

(
−1

2

√
2− 1

2
i
√

2 + 1 : i : 0

)
+

(
1

2

√
2− 1

2
i
√

2 + 1 : −i : 0

)
.

D can be expressed as D =
∑

(α + 1 : α2 : 0), where α4 + 1 = 0. Therefore, D is
R-definable. �

Example 2.14. We consider the 4-degree Hausdorff divisor

D = (1 : 1 : 0) + (−1 : 1 : 0) + (0 : 1 : 0) + (1 : 0 : 0).

The defining polynomial of H(4, D) is

H(x, y, z) = λ11z
4 + λ10yz

3 + λ9y
2z2 + λ8y

3z + λ7xz
3 + λ6xyz

2 + λ5xy
2z − λ1xy

3 +
λ4x

2z2 + λ3x
2yz + λ2x

3z + λ1x
3y.

Observe that the number of parameters λi is 11, and hence dim(H(4, D)) = 10;
compare to Prop. 2.3. In Fig. 1 one may see 8 different curves in the linear
system. Observe that all of them have asymptotes in the direction of the vectors
(1, 1), (−1, 1), (1, 0), (0, 1). �
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Figure 1: Some curves in H(4, D) in Example 2.14

Conics: 2-degree R-definable Hausdorff divisors

In this subsection we analyze the 2-degree R-definable Hausdorff divisors. We
distinguish two cases: first the two points of the divisor are real, and second the
two points are complex in which case they have to be conjugated because of the R-
definability.

[Real points: the non-compact case] We consider 2-degree Hausdorff divisors with real
points. We distinguish several cases. We start with D = (1 : 0 : 0) + (0 : 1 : 0). The
defining polynomial of H(2, D) is H = a0,0z

2 +a0,1yz+a1,0xz+a1,1xy. We may assume
w.l.o.g. that a1,1 6= 0, since otherwise for all C, in the linear system, deg(Ca) = 1.
Then, H(x, y, 1) can be expressed as

H(x, y, 1) =

(
x+

a0,1
a1,1

)(
y +

a1,0
a1,1

)
+
a0,0
a1,1
− a0,1a1,0

a1,12
.

Now, observe that all real irreducible affine curves derived from the system are hyper-
bolas with parallel asymptotes, indeed with direction vectors (1, 0) and (0, 1) (compare
to Theorem 3 in [6] or Lemma 6.1 in [13]), and hence Theorem 2.11 holds.
Second, we take D = (a : 1 : 0) + (b : 1 : 0), with a, b ∈ R, a 6= b. The defining polyno-
mial of H(2, D) is H = a0,0z

2 + a0,1yz + ba2,0ay
2 + a1,0xz − a2,0axy − xya2,0b+ a2,0x

2.
We may assume w.l.o.g. that a2,0 6= 0, since otherwise for all C, in the linear system,
deg(Ca) = 1. Then, H(x, y, 1) can be expressed as

1

4

(
2x+

a1,0
a2,0
− ay − by

)2

− 1

4

(
(a− b) y − ∆

(a− b) a2,02

)2

+

+
1

4

4a0,0a2,0 − a1,02

a2,02
+

1

8

∆2

(a− b)2 a2,04
,
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where ∆ = a2,0 (2a0,1 + a1,0a+ a1,0b). Now, observe that all real irreducible affine
curves derived from the system are hyperbolas with parallel asymptotes, indeed with
direction vectors (a, 1) and (b, 1) (compare to Theorem 3 in [6] or Lemma 6.1 in [13]),
and hence Theorem 2.11 holds.
Third, we take D = (1 : 0 : 0) + (b : 1 : 0), with b ∈ R, b 6= 0. The defining polynomial
ofH(2, D) is H = a0,0z

2+a0,1yz−a1,1by2+a1,0xz+a1,1xy. We may assume w.l.o.g. that
a1,1 6= 0, since otherwise for all C, in the linear system, deg(Ca) = 1. Then, H(x, y, 1)
can be expressed as(

y − a0,1
2a1,1b

− x

2b

)2

− 1

4b2

(
x+ 2

a1,0b

a1,1
+
a0,1
a1,1

)2

− 1

b2

(
ba0,0
a1,1

+
a0,1

2

a1,12

)

+
1

4b2

(
2
a1,0b

a1,1
+
a0,1
a1,1

)2

.

Now, observe that all real irreducible affine curves derived from the system are hyper-
bolas with parallel asymptotes, indeed with direction vectors (1, 0) and (b, 1) (compare
to Theorem 3 in [6] or Lemma 6.1 in [13]), and hence Theorem 2.11 holds.

[Complex points: the compact case] Since both points have to be complex and conju-
gated, we can assume w.l.o.g. that D is of the form D = (a + i : 1 : 0) + (a − i :
1 : 0), where i is the imaginary unit. The defining polynomial of H(2, D) is
H = a0,0z

2 + a0,1yz + y2a2,0a
2 + y2a2,0 + a1,0xz − 2a2,0axy + a2,0x

2. We may assume
w.l.o.g. that a2,0 6= 0, since otherwise for all C, in the linear system, deg(Ca) = 1.
Then, H(x, y, 1) can be expressed as(
x+

a1,0
2a2,0

− ay
)2

+

(
y +

a0,1 + a1,0a

2a2,0

)2

−−4a0,0a2,0 + a1,0
2 + a0,1

2 + 2a0,1a1,0a+ a1,0
2a2

4a2,0
2 .

So, if a 6= 0 we get ellipses and for a = 0 we get circles (note that for a = 0 the divisor
is defined by the cyclic points)(

x+
a1,0
2a2,0

)2

+

(
y +

a0,1
2a2,0

)2

− −4a0,0a2,0 + a1,0
2 + a0,1

2

4a2,0
2 .

In both cases, the statement is Theorem 2.11 clearly holds.

3 Rational Hausdorff Divisors

We start this section recalling briefly the concept of rational curve. An algebraic curve
is called rational if it can be parametrized by means of rational functions; in other
words, if F (x, y, z) is the homogeneous polynomial defining a projective curve C, then
C is rational if there exist three polynomials p1(t), p2(t), p3(t), not all constant, such
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that gcd(p1, p2, p3) = 1, and F (p1(t), p2(t), p3(t)). In this case, (p1(t), p2(t), p3(t)) is a
rational parametrization of C. If C is not the line at infinity z = 0, we usually write
the parametrization as (p1(t)/p3(t), p2(t)/p3(t), 1). The rationality of a curve can be
deduced from its genus. An irreducible curve is rational if and only if its genus is
0. The genus, intuitively speaking, measures the difference between the maximum of
singularities the curve may have an the actual number of them. More precisely, the
genus is given by the formula

(deg(C)− 1)(deg(C)− 2)

2
−
∑
P∈C

mult(C, P )(mult(C, P )− 1)

2

where deg(C) denotes the degree of C (i.e. the degree of the form F ), mult(C, P )
denotes the multiplicity of C at P , and where the sum is taken also over the infinitely
near, or neighboring, points (see Chapter 3 in [18] for further details). Note that if C is
irreducible and has a point of multiplicity (deg(C)− 1) then the genus is 0, and hence
C is rational. Curves satisfying this particular case are called monomial curves.

In this section, we introduce the notion of rational divisor or genus 0 divisor. Sim-
ilarly, one can consider the concept of genus g divisor but, here, we are only interested
in the genus 0 case. The definition we give here focuses on singularities of ordinary
type; i.e. all tangents at the point are different. The case of non-ordinary singularities
can also be introduced. For that case, associated to each point in the divisor a sequence
of linear transformations and ”neighboring” divisors would have to be attached.

Definition 3.1. Let n ∈ N, n > 0, and D =
∑m

i=1 siPi an effective divisor. If
n ∈ {1, 2}, we say that D is an n-rational divisor if deg(D) = 1. If n > 2, we say that
D is an n-rational divisor if si > 1 for i = 1, . . . ,m, and

(n− 1)(n− 2) =
m∑
i=1

si(si − 1).

If D is n-rational, and only contains a point, we say that D is an n-monomial divisor. •
Note that D = P is a 1-monomial and a 2-monomial divisor. In general, for n > 2,

D = (n−1)P is an n-monomial divisor. On the other hand, for n = 3 the only possible
rational divisors are monomial, i.e. D = 2P , while for n > 3 the situation is open to
more possibilities; for instance, for n = 4, one has D = 3P or D = 2P1 + 2P2 + 2P3.

The singular locus, and hence the rational divisor, of a real irreducible plane curve
can be decomposed as the union of conjugate singularities (see Section 3.3 in [18]; more
particularly Corollary 3.23). We introduce the next definition.

Definition 3.2. Let K be a subfield of C. We say that a rational divisor D is K-
definable if D can be expressed as

D =

m1∑
i=1

s1P1,i + · · ·+
mk∑
i=1

skPk,i

11



where {Pj,1, . . . , Pj,mj
} is a family of K-conjugated points, for j = 1, . . . , k. •

Observe that a monomial divisor is R-definable if and only if the point in the divisor
is real. The next results deal with the dimension.

Theorem 3.3. Let D be an n-rational divisor, then dim(H(n,D)) ≥ 3n− 1−deg(D).

Proof. It follows from inequality (1) and Def. 3.1.

Corollary 3.4. Let D be an n-monomial divisor, then dim(H(n,D)) ≥ 2n.

The main property on this type of divisors is the following.

Theorem 3.5. Let D be an n-rational divisor.

1. Every irreducible curve in H(n,D) is rational.

2. If D is irreducible (see Def. 2.6), then Curve(H(n,D)) is rational.

Proof. Since D is rational, if the curve is irreducible, its genus is zero. So the curve is
rational.

Our next step is to combine both notions, Hausdorff and rational divisor.

Definition 3.6. We say that an effective divisor D is an n-rational Hausdorff divisor if
D can be expressed as

D = D1 +D2

where D1 is n-degree Hausdorff, and D2 is n-rational and no point in D2 is on the line
z = 0 (i.e. all points in D2 are affine). If both D1, D2 are K-definable, we say that D
is K-definable, where K is a subfield of C. Given a rational Hausdorff divisor D, we
denote by DH and by DS the Hausdorff and the singular part of D, respectively. In
addition, we say that H(n,D) is the rational Hausdorff linear space associated to D. •

Note that, since all points in D1 have to be at infinity and all points in D2 have to
be affine, the decomposition D1 +D2 is unique.

Now, we analyze H(n,D) where D is an n-rational Hausdorff divisor. First, we
observe that every irreducible curve inH(n,D) is smooth at the line z = 0 and rational.
Let us study the dimension. By Proposition 2.3 and Theorem 3.3, we get the following
result.

Theorem 3.7. Let D = DH +DS be an n-rational Hausdorff divisor then

dim(H(n,D)) ≥ 2n− 1− deg(DS).

Corollary 3.8. If D is an n-monomial Hausdorff divisor, then dim(H(n,D)) ≥ n.

We illustrate the previous results by some examples.

12



Example 3.9. We consider the divisor D = (1 : 1 : 0) + (−1 : 1 : 0) + (0 : 1 : 0) + (1 :
0 : 0) + 2(3 : −2 : 1) + 2(1 : 1 : 1) + 2(2 : 3 : 1). D can be expressed as D = DH + DS

where
DH = (1 : 1 : 0) + (−1 : 1 : 0) + (0 : 1 : 0) + (1 : 0 : 0),
DS = 2(3 : −2 : 1) + 2(1 : 1 : 1) + 2(2 : 3 : 1).

Note that DH is a 4-degree Hausdorff divisor (indeed, the one in Example 2.14) and
DS is a 4-rational divisor. So, D is a 4-rational Hausdorff divisor, in fact R-definable.
The defining polynomial of H(4, D) is (where Λ = (λ1, λ2))

H(Λ, x, y, z) = (
65

2
λ2 −

8175

98
λ1)z

4 + (17λ2 −
1518

49
λ1)yz

3 + (−29

2
λ2 +

2787

98
λ1)y

2z2

+λ2y
3z + (−97λ2 +

11618

49
λ1)xz

3 + (
11

2
λ2 −

1789

98
λ1)xyz

2 + (
9

2
λ2 −

121

14
λ1)xy

2z

−λ1xy3+(
143

2
λ2−

16873

98
λ1)x

2z2+(−11

2
λ2+

163

14
λ1)x

2yz+(−15λ2+
254

7
λ1)x

3z+λ1x
3y.

Observe that the number of parameters λi is 2, and hence dim(H(4, D)) = 1; check
with Theorem 3.7. In Fig. 2 one may see 5 different curves in the linear system. �

Figure 2: Some curves in H(4, D) of Example 3.9. Left: Zoom at the singular area.
Right: general view

Example 3.10. In Example 3.9, we took D = DH +DS with

DH = (1 : 1 : 0) + (−1 : 1 : 0) + (0 : 1 : 0) + (1 : 0 : 0),
DS = 2(3 : −2 : 1) + 2(1 : 1 : 1) + 2(2 : 3 : 1),

and H(4, D) was irreducible over C. However, if DS = 2(2 : 2 : 1) + 2(1 : 1 : 1) + 2(2 :
3 : 1), H(4, D) decomposes as the union of two lines and a system of conics. More
precisely, the defining polynomial is

4 (x− 2z) (x− y)
(
2xλ2z + 2xyλ1 − z2λ2 + 9z2λ1 − yzλ2 − 13yzλ1 + 2λ1y

2
)
.

Obviously the reason, in this example, is that two double points, namely (2 : 2 : 1), (1 :
1 : 1), and one simple point, namely (1 : 1 : 0), are on the same line. �
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The next theorem shows how to analyze the irreducibility of rational Hausdorff
divisors.

Theorem 3.11. Let D be an n-rational Hausdorff divisor. Then, D is irreducible (see
Def. 2.6) if and only if the defining polynomial of H(n,D) is irreducible over C.

Proof. Let D = DH + DS. Now, observe that H(n,D) is a linear subsystem of
H(n,DH). Now the result follows from Corollary 2.10.

The bounds in Theorem 3.7 and Corollary 3.8 are equalities in general position, but
in some cases are strict inequalities as the following example shows.

Example 3.12. Let D = DH + DS be a 5-rational Hausdorff divisor, where DS =∑6
i=1 2Pi with Pi = (i3 : i2 : 1). Theorem 3.7 ensures that dim(H(5, D)) ≥ 9−12 = −3;

i.e. in general H(5, D) = ∅. However, taking DH =
∑

(α : 1 : 0), with p(α) = 0, where
(µ4, µ3 ∈ C)

p(t) = t5+µ4t
4+µ3t

3−820955079

2000
µ4t

2−39925319

4000
µ3t

2−37424614507

4000
t2+

1609223259

200
µ4t

+
73371752447

400
t+

78188299

400
µ3t−

1369716346817

1000
− 30038293649

500
µ4 −

1459046589

1000
µ3,

it holds that dim(H(5, D)) = 0. Indeed, in this case, H(5, D) consists in the curve
defined by

−59099417781138y4zµ4 − 40586935102980x3z2µ4 − 66732447304488x2z3µ4 −
1111124672000y2z3µ3 + 1295029858022677x2yz2 + 872619620320000xyz3 +
1948148631x4zµ3 − 1956340631x2y3µ3 + 196000µ4x

4y + 935066250218170xy3z −
11652560640000yz4µ4 − 1437222765209y4zµ3 + 80264569742x4zµ4 +
796735296000xz4µ3 + 32965011072000xz4µ4 − 985374741890x3z2µ3 + 196000µ3x

3y2 +
1577038793820xy4µ4 − 279861120000yz4µ3 + 44812924280488y3z2µ4 −
45598986048000y2z3µ4 + 38312266510xy4µ3 + 1081197980884y3z2µ3 +
189114415140000xy2z2 + 267281628256132x2y2z − 80453597742x2y3µ4 −
1628676180884x2z3µ3−35862859923030x3yz+20736000000z5µ3+870912000000z5µ4−
285973131444y5µ3 − 11775011110408y5µ4 − 268037400960000yz4 −
1036755669824000y2z3 + 1026724988552452y3z2 − 1346097219374677y4z +
754414452288000xz4 + 35952158699030xy4 − 1515620122272452x2z3 −
1833806110843x2y3−925538635338170x3z2+1830618086843x4z+20176128000000z5−
268464403976132y5 + 196000x5 + 953164576000xyz3µ3 + 38702489280000xyz3µ4 +
218934548000xy2z2µ3 + 8600406696000xy2z2µ4 + 997711569890xy3zµ3 +
41040600622980xy3zµ4 + 1375331229209x2yz2µ3 + 56732067257138x2yz2µ4 +
284276051444x2y2zµ3 + 11716423378408x2y2zµ4 − 38158910510x3yzµ3 −
1572326561820x3yzµ4. �
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4 Parametrization of Rational Hausdorff Linear

Systems

Let K be a subfield of C, and let D = DH +DS be a K-definable n-rational Hausdorff
divisor. Our goal in this section is to parametrize the curve Curve(H(n,D)) associated
to D; that is the curve defined, over the algebraic closure of C(Λ), by the defining
polynomial H(Λ, x, y, z) of the rational Hausdorff linear space H(n,D) (see Def. 2.4).
Recall that, by Theorem 3.5, if D is irreducible, then Curve(H(n,D)) is rational.

Thus, throughout this section we assume that D is irreducible (see Def. 2.6 and
Theorem 3.11) which, in particular, implies that H(n,D) is not empty (see also Theo-
rem 3.7 and Corollary 3.8). Moreover, let H(Λ, x, y, z) ∈ K[Λ][x, y, z], where Λ is a set
of parameters, be the defining polynomial of H(n,D); observe that the K-definability
of D implies that H is a polynomial over K.

But before going into details, let us recall, at least intuitively, how the parametriza-
tion algorithms, based on adjoint curves, work. Since, we will be dealing only with
ordinary singularities we simplify the exposition to that case; for further details, see
[18]. Say that C is a rational projective curve of degree k. The simplest case is when C
is monomial; let P be the (k−1) fold-point of C. In this situation, the intersection of C
with Curve(H(1, P )) consists in P and an additional point that depends rationally on
a parameter. This last point is indeed a parametrization of C. This method is called
parametrization by lines. In general, let {P1, . . . , Ps} be the singularities of C, then an
adjoint curve to C of degree ` (in general, ` ≥ k − 2) is any curve in the linear system
of curves

H(`,
s∑

i=1

(mult(C, Pi)− 1)Pi).

Let A`(C) denote the linear system above, that is the linear system of all adjoints to
C of degree `. Because of the genus formula and the dimension of A`(C) it holds that
taking a finite set of simple points {Q1, . . . , Qr} of C, for a suitable r, and considering
H∗ := A`(C) ∩ H(`,Q1 + · · · + Qr) it holds that the intersection of C with Curve(H∗)
consists in {P1, . . . , Ps}∪{Q1, . . . , Qr} and an additional point that depends rationally
on a parameter. This last point is indeed a parametrization of C. Let us assume that
the homogeneous form defining C has coefficients in K. Then an important property,
of these type of algorithms, is that the coefficients of the parametrization (field of
parametrization) are in K (if C was parametrized by lines) or in the smallest field
containing K and the coefficients of the chosen points {Q1, . . . , Qs}.

As we said, our goal is to parametrize Curve(H(n,D)), but sometimes, we will
also parametrize the curve Curve(H) associated to a non-empty linear subsystem H of
H(n,D). Applying the well-known parametrization algorithms, since the coefficients of
the input curve are in K(Λ), one derives a rational parametrization of Curve(H(n,D))
over the algebraic closure of C(Λ). The challenge is to parametrize Curve(H(n,D))

15



over the smallest possible field extension of K(Λ). We start observing that, as a conse-
quence of Hilbert-Hurwitz’s Theorem (see Theorem 5.8. in [18]) and Tsen’s Theorem
(Corollary 4 in [19], Vol. I. pg. 73), every irreducible linear subsystem of dimension
0 or 1 of H(n,D) is parametrizable over C(Λ), where Λ are the parameters involved
in the definition of the subsystem. Nevertheless, as a consequence of the Hausdorff
divisor, we can improve this statement (note that no hypothesis on the dimension is
required). We recall that proper means that the parametrization defines a 1:1 map
from a non-empty Zariski open subset of the parameter space and the curve.

Theorem 4.1. [General Parametrization Theorem] There exists a rational proper
parametrization of Curve(H(n,D)) with coefficients in L(Λ), where L is a finite al-
gebraic extension of K of degree at most n. Furthermore, the degree of the extension is
the lowest degree of the nontrivial irreducible factors, in K[Λ][x, y] of H(Λ, x, y, 0).

Proof. Since DH is Hausdorff, and deg(DH) = deg(Curve(H(n,D))), by Bézout’s The-
orem it holds that all points of Curve(H(n,D)) on the line z = 0 are simple. Moreover,
these points are over C. Furthermore, since DH is K-definable, these points at infinity
form a K-conjugate family of points that can be decomposed as union of families, each
defined by a factor of H(Λ, x, y, 0) in K[Λ][x, y]; say that k is the lowest degree of these
factors. On the other hand, since DS is K-definable, one has that the linear system of
n-degree adjoint curves to Curve(H(n,D)) can be defined over K (see Theorem 4.66. in
[18]). Therefore, using the parametrization algorithm by n-degree adjoint curves (see
Section 4.8 in [18]) and taking the simple point in one of the families of cardinality k,
one deduces that Curve(H(n,D)) can be properly parametrized over L(Λ), where L is
a finite algebraic extension of K of degree k.

From the previous proof one can derive an algorithm to parametrize Curve(H(n,D))
over L(Λ). Indeed, the extension L is the extension needed to express the simple points
in DH used in the parametrization algorithm. In the following we analyze how to
decrease the degree of the extension in some special cases.

Corollary 4.2. If one of the points in DH has coordinates over K, there exists a
rational proper parametrization of Curve(H(n,D)) with coefficients in K(Λ).

Example 4.3. Let D be the 4-rational divisor in Example 3.9. Since DH has points
in Q, Corollary 4.2 ensures that Curve(H(4, D)) can be parametrized over Q(Λ). In-
deed, if we take 2-degree adjoints and we use the simple point (1 : 0 : 0), we get the
parametrization (

A1(t)

A2(t)
,
A3(t)

A4(t)
, 1

)
where

A1(t) = −238λ1t
3λ2 + 2240λ2t

2λ1 + 98λ1
2t3 − 2787λ2

2t2 + 1470λ1
2 − 6986λ1λ2 −

539λ1
2t+ 8328λ2

2 + 1792λ1λ2t− 441λ1
2t2 − 1209λ2

2t,
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A2(t) = 14λ2 (2λ2 − 2λ2t
2 − 17a3,1t

3 + 17λ2t− 7λ1t+ 7λ1t
3) ,

A3(t) = 486λ2 + 77λ1t+ 34λ2t
3 + 63a0,3t

2 − 145λ2t− 147λ2t
2 − 14λ1t

3 − 210λ1,

A4(t) = 14λ2 (−1 + t2).

Here Λ = (λ1, λ2). �

Example 4.4. Let us consider the 4-degree Q-definable rational Hausdorff divisor

D =
∑

t4−4=0

(1 : t : 0) + 2
∑

t3+1=0

(t : t2 : 1).

Note that
DH =

∑
t4−4=0

(1 : t : 0), DS = 2
∑

t3+1=0

(t : t2 : 1).

The rational Hausdorff linear systemH(4, D) associated toD is given by the polynomial
(where Λ = (λ1, λ2))

H(Λ, x, y, z) = −λ1z4 + λ2y
2z2 − λ1y

3z − 4a4,0y
4 − 3λ1xyz

2 − 8λ2xy
2z − 4λ2x

2z2 −
2λ2x

2yz + λ1x
3z + λ2x

4.

Observe that dim(H(4, D)) = 1 and compare to Theorem 3.7. We observe that the
Hausdorff divisor can be expressed by conjugate families as

DH =
∑

t2−2=0

(1 : t : 0) +
∑

t2+2=0

(1 : t : 0).

Corollary 4.2 ensures that Curve(H(4, D)) can be parametrized over Q(
√

2)(Λ). Indeed,
if we take 2-degree adjoints and we use the simple point (1 :

√
2 : 0), we get the

parametrization (
A1(t)

B(t)
,
A2(t)

B(t)
, 1

)
where

A1(t) = 1
14

(−4 +
√

2)(
√

2t4λ1
2 + 33λ1

2t
√

2 + 16tλ2λ1 − 4λ2
2t3
√

2 + 12λ2t
3λ1 +

16t3
√

2λ1
2 + 16t4λ1λ2 + 12λ1

2t2
√

2 + 32t2λ2λ1 + 20λ1
2t+ 14t4λ2

2 − 16t3λ2
2 + 8t3λ1

2 +
48λ1

2t2+4t4λ1
2+4
√

2t4λ1λ2+4λ2λ1t
√

2+31t3λ2λ1
√

2+8λ2t
2
√

2λ1+18λ1
2+8
√

2λ1
2),

A2(t) = −1
7
(1 + 2

√
2)(−16λ2

2t3
√

2 + 3λ1
2t2
√

2 + 8tλ2λ1 − 12λ1
2t
√

2 + 10λ2t
3λ1 −

4t4λ1λ2 − 50t2λ2λ1 + 6λ1
2t − 7t4λ2

2 + 8t3λ2
2 − 2t3

√
2λ1

2 − 12λ1
2t2 +

√
2t4λ1λ2 −

16λ2λ1t
√

2 + t3λ1
2 + 16λ2t

2
√

2λ1 − 7λ1
2 − 20t3λ2λ1

√
2),

B(t) = λ2t
(
t3λ1 + 12λ1t+ 4λ2t

3 + 16tλ2 + 4t2λ1
√

2 + 8λ1
√

2 + 8λ2t
2
√

2
)
. �
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Corollary 4.5. If dim(H(n,D)) > 0, for every P ∈ P2(K) such that H := H(n,D) ∩
H(n, P ) is irreducible, then Curve(H) can be rationally and properly parametrized over
K(Λ).

Proof. It follows by using P in the parametrization algorithm.

Example 4.6. LetD be as in Example 4.4. Since dim(H(4, D)) = 1 we apply Corollary
4.5. We take a point P := (a : b : 1) ∈ P2(C) and we consider H = H(4, D) ∩H(4, P ).
In order to avoid reducibility, computations show that P has to be taken not satisfying
the equation

(a− 1− b)(a2 + a+ ab− b+ 1 + b2) = 0.

The defining polynomial of H is

H(x, y, z) = −24xyz2ab2 − 6xyz2a2b+ 24xy2zab+ 6x2yzab+ 4 y4 − x4 − 12xyz2a2 +
3xyz2a4 + 8xy2zb3− 8xy2za3 + 12x2z2ab+ 2x2yzb3− 2x2yza3 + 8x3zab2 + 2x3za2b−
3 y2z2ab−8 y3zab2−2 y3za2b+3xyz2b2−12xyz2b4−4 y3zb4−x3za4+4x2z2b3+y3za4−
y2z2b3−4x2z2a3+12 y4ab−x3zb2−2 z4a2b+4x3zb4+y3zb2+y2z2a3+8xy2z−8 z4ab2−
4 y3za2 − 3x4ab + 2x2yz + 4 x3za2 − y2z2 + 4 x2z2 + z4b2 − 4 z4b4 − 4 z4a2 + z4a4 +
4 y4b3 − 4 y4a3 − x4b3 + x4a3.

In this situation, we consider the system of conics H∗ = H(2,
∑

t3+1=0(t : t2 :
1)) ∩H(2, P ), that is defined by

H∗(t, x, y, z) = z2b2 + z2a− tyzb2− tyza−y2 +y2tb−y2ab−y2ta2−xz+xztb−xzab−
xzta2 + xyb2 + xya+ tx2b2 + tx2a.

Then, the intersection of H and H∗ provides a parametrization of Curve(H) with
coefficients in Q(a, b); we do not show the output here because it is too large. Instead,
we illustrate it with particular values of P , for instance P = (1 : 1 : 1). In this case,
we get the parametrization(

1024 + 1024t+ 960t4 + 4096t2 + 4352t3

−4 (16− 16t− 4t2) (16 + 16t+ 12t2)
,
1024 + 2048t− 192t4 + 3584t2 + 512t3

4 (16− 16t− 4t2) (16 + 16t+ 12t2)
, 1

)
.

Similarly, for P = (0 : 1 : 1) we get(
−1

2

18− 15 t+ 6 t2 + 74 t3 + 21 t4

(−t2 − 6 t+ 9) (3 t2 + 2 t+ 1)
,
1

2

−3 t− 6 t4 + 75 t2 + 23 t3

(−t2 − 6 t+ 9) (3 t2 + 2 t+ 1)
, 1

)
.

Both parametrizations have coefficients in Q. �

Let us assume that D is monomial, then one can parametrize Curve(H(n,D)) by
lines (see Section 4.6 in [18]). In addition, since D is K definable, then the field of
parametrization is K(Λ). Therefore, one has the following theorem.

Theorem 4.7. Let D be monomial, then there exists a rational proper parametrization
of Curve(H(n,D)) with coefficients in K(Λ).
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Example 4.8. We consider the divisor

D =
∑

t4+1=0

(t : 1 : 0) + 3(0 : 0 : 1).

D is a Q-definable 4-monomial Hausdorff divisor. So, by Corollary 3.8, dim(H(4, D)) =
4. Indeed, the defining polynomial of H(4, D) is

H = λ1y
3z + λ2y

4 + λ3xy
2z + a2,1x

2yz + λ4x
3z + λ2x

4.

We observe that H is irreducible over C, and hence D is irreducible (see Theorem 3.11).
Now, parametrizing with the pencil of lines ty+ x = 0 one gets the parametrization of
the linear system

P(t) =

(
−t (tλ3 − λ1 + t3λ4 − t2a2,1)

λ2 (t4 + 1)
,
tλ3 − λ1 + t3λ4 − t2a2,1

λ2 (t4 + 1)
, 1

)
.

Theorem 4.9. Let DS have at least a triple point over K, then there exists a rational
proper parametrization of Curve(H(n,D)) with coefficients in K(Λ).

Proof. Using the triple point one can generate families of (n−3) conjugate points over
K(Λ) (see Section 3.3 in [18]) to afterwards parametrize with (n − 2)-degree adjoint
curves (see Section 4.7 in [18]).

5 Application to the Approximate Parametrization

Problem

Given a non-rational irreducible curve, the approximate parametrization problem con-
sists in providing a rational curve being at close Hausdorff distance of the input curve;
see the Introduction for further details. In this section we show, as a sample of ap-
plication of the ideas developed, that every Hausdorff curve (see definition below) can
always be parametrized approximately.

Definition 5.1. We say that an affine plane algebraic curve C is a Hausdorff curve if
card(C∞) = deg(C); recall that C∞ denotes the points at infinity of C.
Example 5.2. Observe that all lines are Hausdorff and the only conics that are not
Hausdorff are the parabolas. For degree 3 or higher the number of possibilities increases.

Remark 5.3. Observe that, if C is a K-definable Hausdorff curve of degree n, then

D =
∑
P∈C∞

P

is an n-degree K-definable Hausdorff divisor. We call D the Hausdorff divisor associated
to C.
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The following theorem states the main property of Hausdorff curves.

Theorem 5.4. Let C be a real irreducible affine Hausdorff curve of degree n, and
let D =

∑n
i=1(ai : bi : 0) be its associated Hausdorff divisor. Then, for every point

P = (a : b : 1) ∈ P2(C), such that abi − bai 6= 0 with i = 1, . . . , n, D + (n− 1)P is an
irreducible Hausdorff monomial divisor.

Proof. Let D = D+ (n− 1)P . Taking DH = D and DS = (n− 1)P , one has that D is
Hausdorff and monomial. In order to prove that D is irreducible, by Corollary 2.10, we
prove that the defining polynomial H(Λ, x, y, z) of H(n,D) is irreducible over C(Λ).
Moreover, since P has coefficients in C, we can consider w.l.o.g. that P = (0 : 0 : 1);
otherwise one performs a suitable linear change over C. In this situation, the proof is
analogous to the proof of Lemma 2.8.

The next result follows from Theorem 5.4, Theorem 4.7, Theorem 2.11, and Corol-
lary 3.8.

Corollary 5.5. Let K be a subfield of C, let C be a real irreducible affine K-definable
Hausdorff curve of degree n. Then, there exist infinitely many real monomial plane
curves D, parametrizable over K, such that d(C ∩ R2,D ∩ R2) <∞. Furthermore, for
any fixed point P , chosen as in Theorem 5.4, the dimension of the linear system of n-
degree monomial curves, having P as singular point, is n. That is, for every P chosen
as above, there exists an n-dimensional linear system where all irreducible curves are
solutions of the approximate parametrization problem applied to C.

From the previous result, one may proceed as follows. Let us say that we are given a
real irreducible affine Hausdorff curve C of degree n, and we want to provide a rational
curve D, at finite Hausdorff distance of C, passing through a fixed affine point P . We
may assume that P satisfies the conditions in Theorem 5.4, otherwise we apply an
small perturbation to P . In this situation, one computes H = H(n,D + (n − 1)P ),
where D is the Hausdorff divisor associated to C. We know that almost all curves in
H are irreducible, and hence rational. Moreover, we know that dim(H) = n. That is,
we still have n degrees of freedom to chose a suitable (under the requirements stated
by the user) rational curve to our particular problem. For instance, one may look for
a rational curve in H under the criterium of minimizing the Hausdorff distance, or
reducing the length of the coefficients in the parametrization, or passing thought the
ramification points of C, or having particular tangents at particular points, etc.

We finish this section, illustrating these ideas by an example

Example 5.6. We consider the affine curve C defined by

4 + 2y − 5y2 − 9y3 + 6y4 + x− 7xy − 5xy2 − 6x2 + 6x2y − 3x3 − 6x4.

C is real, irreducible and has degree 4. Moreover, C∞ = {(1 : ±1 : 0), (1 : ±i : 0)}.
Therefore, C is Hausdorff and its associated Hausdorff divisor is

D =
∑
t4=1

(1 : t : 0).
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On the other hand, C has genus 3; i.e. it is smooth. We take a point P = (41/64 :
−1/32 : 1) satisfying the conditions of Theorem 5.4; P has been taken as an approxima-
tion of a ramification points of C. Then, D = D+3P is an irreducible Hausdorff mono-
mial divisor. The associated linear systemH(4, D) is defined by (here Λ = (λ1, . . . , λ5))

H(Λ, x, y, z) = λ4x
3z + 2825745

524288
yz3λ4 + 1024xy2zλ2 + 1312xy2zλ3 + 1681

4
y2z2λ3 − λ4y4 +

13448y3zλ3 + 7236657
512

y3zλ4 + λ4x
4 + 32x2yzλ3 − 68921

2048
xyz2λ4 + λ3x

2z2 + 1312y2z2λ2 +
λ2xz

3 + 41xyz2λ3 + 32768y3zλ1 + 96yz3λ1 + 3072y2z2λ1 + 64xyz2λ2 + 8979
64
x2yzλ4 +

λ1z
4 − 2825809

16384
y2z2λ4 + 41

2
yz3λ2 + 149609

64
xy2zλ4 + 20992y3zλ2.

As expected, dim(H(4, D) = 4. Moreover, for every Λ0 ∈ C5, such that
H(Λ0, x, y, z) is irreducible over C, we get a monomial curve. Furthermore, the affine
curve H(Λ0, x, y, 1) is monomial and is at finite distance of C. Since we have 4 degrees
of freedom, we choose the curve such that it passes through 4 points of C. We intersect
C with the lines y = ±3 to get

Q1 =

(
89

32
: −3 : 1

)
, Q2 =

(
−101

32
: −3 : 1

)
, Q3 =

(
65

32
: 3 : 1

)
, Q4 =

(
−103

32
: 3 : 1

)
.

We consider H = H(4, D + 3P +Q1 +Q2 +Q3 +Q4). We note that dim(H) = 0 and
consists in the curve

G(x, y, z) = −11189780504385617373808yz3 − 64177446384507906894080y2z2 +
25328929045126690271232y3z − 68315663351181964574720x3z +
69446473202369720695808x2z2 − 30949472647714110913696xz3 −
24897211394328530780160y4 + 24897211394328530780160x4 +
28677478743593794827264xyz2 + 104113819442735106875392xy2z −
17303699534378810261504x2yz + 5094649843686955824985z4,

Figure 3: Plot of C and D in Example 5.6. Left: general view. Center: Non-asymptotic
area. Left: Singular area.

that is rational and can be parametrized by lines through P as(
1

94975324227632640

A1(t)

B(t)
,− 1

47487662113816320

A2(t)

B(t)
, 1

)
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where

A1(t) = 208880643591165188824385 + 1309845452973236446822400t4 +
3152348304551138336556032t2 + 1326609920992631925943776t+
3321871574175160774459392t3,

A2(t) = 30949472647714110913696t+ 68315663351181964574720t3 +
69446473202369720695808t2+5094649843686955824985+24897211394328530780160t4

B(t) = 2825745 + 41312256t2 + 42991616t3 + 16777216t4 + 17643776t.

Furthermore, the affine curve defined D by G(x, y, 1) is at finite distance of C (see
Figure 3). �.
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[15] Pérez–Dı́az S., Sendra J., Sendra J.R., (2005). Parametrization of Approximate
Algebraic Surfaces by Lines. Computer Aided Geometric Design. Vol. 22/2. pp.
147 - 181.

[16] Robbiano L, J. Abbott J. (2010). Approximate Commutative Algebra. Texts and
Monographs in Symbolic Computation. Springer-Velag.

[17] Rueda S.L., Sendra J., Sendra J.R., (2013). An Algorithm to Parametrize Approx-
imately Space Curves. Journal of Symbolic Computation (to appear).
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