Recio T., Sendra J.R. Tabera L.F., Villarino C. (2014). Ultraquadrics associated to affine and projective automorphims. Libro de Resúmenes del XIV Encuentro de Álgebra Computacional y Aplicaciones EACA 2014, pp. 147-150 (I.S.B.N. 978-84-697-0651-0)

ULTRAQUADRICS ASSOCIATED TO AFFINE AND PROJECTIVE AUTOMORPHISMS

TOMÁS RECIO, J. RAFAEL SENDRA, LUIS F. TABERA, AND CARLOS VILLARINO

Abstract

In this extended abstract, we study the properties of ultraquadrics associated with automorphisms of the field $\mathbb{K}(\alpha)\left(t_{1}, \ldots, t_{n}\right)$, defined by linear rational (with common denominator) or by polynomial (with polynomial inverse) coordinates. We conclude that ultraquadrics related to polynomial automorphisms can be characterized as varieties \mathbb{K}-isomorphic to linear varieties, while ultraquadrics arising from projective automorphisms are isomorphic to the Segre embedding of a blowup of the projective space along an ideal and, in some general case, linearly isomorphic to a toric variety. This information helps us to compute a parametrization of some ultraquadrics.

1. Introduction

The study and analysis of ultraquadrics was introduced in [2] as a higher dimensional generalization of the concept of hypercircle (cf. [1], [4], [5], [6]) and as a fundamental computational tool to algorithmically solve the problem of the optimal algebraic reparametrization of rational varieties of arbitrary dimension (e.g. rational surfaces, see [3]).

Given a rational variety \mathcal{V}, presented by a rational parametrization with n parameters t_{1}, \ldots, t_{n} and coefficients in a certain algebraic extension $\mathbb{K}(\alpha)$ of a ground field \mathbb{K}, it is natural to ask for the possibility of reparametrizing \mathcal{V} over \mathbb{K}. For this purpose the paper [2] introduces the concept of "ultraquadrics" as varieties associated to automorphisms of the field $\mathbb{K}(\alpha)\left(t_{1}, \ldots, t_{n}\right)$, and describes its application to computing the reparametrization of \mathcal{V} over \mathbb{K}, when possible.

In this extended abstract, we study the ultraquadrics associated to some important kind of automorphisms in the field $\mathbb{K}(\alpha)\left(t_{1}, \ldots, t_{n}\right)$, such as those defined by linear rational (with common denominator) or polynomial (with inverse also polynomial) coordinates. The provided results reinforce the computational usefulness of ultraquadrics.

A complete version of this extended abstract has been submitted to a journal.
1.1. Notation. In the sequel, \mathbb{K} is a field of characteristic zero, α is an algebraic element over \mathbb{K}, \mathbb{L} is the field extension $\mathbb{K}(\alpha)$ and \mathbb{F} is the algebraic closure of \mathbb{L}. So $\mathbb{K} \subset \mathbb{L}=\mathbb{K}(\alpha) \subset \mathbb{F}$. We assume that $[\mathbb{K}: \mathbb{L}]=r$. We use the notation $\bar{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\bar{T}=\left(t_{0}: \ldots: t_{n}\right)$ for affine -respectively, projective- coordinates.

On the other hand, we will consider the following three groups of automorphisms under composition:

- $\mathbf{B}_{\mathbb{L}}$ is the group of all \mathbb{L}-birational transformations (i.e. \mathbb{L}-definable) of \mathbb{F}^{n} onto \mathbb{F}^{n}.
- $\mathbf{A}_{\mathbb{L}}$ is the group of all \mathbb{L}-automorphism of the affine space \mathbb{F}^{n}; that is, the subgroup of $\mathbf{B}_{\mathbb{L}}$ where the transformation and its inverse are both described through polynomial coordinates.
- $\mathbf{P G L}_{\mathbb{L}}(n)$ is the group of all \mathbb{L}-automorphism of the projective space $\mathbb{P}^{n}(\mathbb{F})$. Elements in
$\mathbf{P G} \mathbf{L}_{\mathbb{L}}(n)$ are represented by a $(n+1) \times(n+1)$ regular matrix L

$$
\begin{equation*}
\mathbb{P}^{n}(\mathbb{F}) \rightarrow \mathbb{P}^{n}(\mathbb{F}) ; \bar{T} \mapsto L \cdot\left(\bar{T}^{t}\right)=\left[L_{0}(\bar{T}): \cdots: L_{n}(\bar{T})\right] \tag{1}
\end{equation*}
$$

where the rows L_{i} of L represent linear forms.
1.2. Ultraquadrics. Let $\Psi=\left(\psi_{1}, \ldots, \psi_{n}\right)$ be a birational automorphism of \mathbb{F}^{n}. Then, we express Ψ in the basis $\left\{1, \ldots, \alpha^{r-1}\right\}$ as

$$
\Psi(\bar{t})=\left(\sum_{j=0}^{r-1} \psi_{1, j} \alpha^{j}, \ldots, \sum_{j=0}^{r-1} \psi_{n, j} \alpha^{j}\right), \quad \psi_{i j} \in \mathbb{K}(\bar{t})
$$

Then, using this notation, we consider the expansion map

$$
\begin{align*}
\mathrm{U}: & \mathbf{B}_{\mathbb{L}} \tag{2}\\
\Psi(\bar{t}) & \rightarrow \mathbb{K}(\bar{t})^{n r} \\
& \mapsto\left(\psi_{10}(\bar{t}), \ldots, \psi_{1(r-1)}(\bar{t}), \ldots, \psi_{n 0}(\bar{t}), \ldots, \psi_{n(r-1)}(\bar{t})\right)
\end{align*}
$$

We define the ultraquadric associated with Ψ, and we denote it by $\operatorname{Ultra}(\Psi)$, as the rational variety of dimension n in $\mathbb{F}^{n r}$ parametrized by $\mathrm{U}(\Psi(\bar{t}))$. Different automorphisms Ψ_{1}, Ψ_{2} may define the same ultraquadric $\operatorname{Ultra}\left(\Psi_{1}\right)=\operatorname{Ultra}\left(\Psi_{2}\right)$. This can happen if and only if $\Psi_{2}=\Psi_{1} \circ \Phi$ with Φ an automorphism in $\mathbf{B}_{\mathbb{L}}$ with coefficients in \mathbb{K}. We define $[\Psi]$ as the $\operatorname{coset}[\Psi]=\{\Psi \circ \Phi \mid \Phi \in$ $\mathbf{B}_{\mathbb{L}}$ with coefficients in $\left.\mathbb{K}\right\}$.

If $\Psi \in \mathbf{P G L}_{\mathbb{L}}(n)$, say $\Psi(\bar{T})=\left[L_{0}(\bar{T}): \ldots: L_{n}(\bar{T})\right]$, we will denote as Ultra (Ψ) the (affine) ultraquadric generated by the associated affine mapping

$$
\begin{equation*}
\Psi_{a}(\bar{t})=\left(\frac{L_{1}\left(1, t_{1}, \ldots, t_{n}\right)}{L_{0}\left(1, t_{1}, \ldots, t_{n}\right)}, \ldots, \frac{L_{n}\left(1, t_{1}, \ldots, t_{n}\right)}{L_{0}\left(1, t_{1}, \ldots, t_{n}\right)}\right) \tag{3}
\end{equation*}
$$

2. ULTRAQUADRICS ASSOCIATED TO AFFINE AND PROJECTIVE AUTOMORPHISMS

Next statement characterizes the ultraquadrics associated with automorphisms in $\mathbf{A}_{\mathbb{L}}$.
Theorem 2.1. Let $\Psi \in \mathbf{B}_{\mathbb{L}}$. The following statements are equivalent
(1) Ultra (Ψ) is \mathbb{K}-isomorphic to \mathbb{F}^{n}.
(2) $[\Psi] \cap \mathbf{A}_{\mathbb{L}} \neq \emptyset$.

Moreover, $\mathrm{Ultra}(\Psi)$ is a linear variety if and only if $[\Psi]$ contains a linear automorphism.
Proof. (sketch) A \mathbb{K}-definable proper parametrization $\mathcal{P}(\bar{t})=\left(P_{10}, \ldots, P_{1(r-1)}, \ldots, P_{n 0}, \ldots\right.$, $\left.P_{n(r-1)}\right)$ parametrizes $\operatorname{Ultra}(\Psi)$ if and only if $\mathcal{Q}(\bar{t}):=\left(\sum_{j=0}^{r-1} P_{1, j} \alpha^{j}, \ldots, \sum_{j=0}^{r-1} P_{n, j} \alpha^{j}\right) \in[\Psi]$. Now, \mathcal{P}^{-1} is the expansion map obtained from \mathcal{Q}^{-1}. Hence, \mathcal{P} and \mathcal{P}^{-1} are polynomial (resp. linear) if and only if \mathcal{Q} and \mathcal{Q}^{-1} are polynomial (resp. linear).

Now, we study the case of projective automorphisms. Let $\Psi=L \in \mathbf{P G L}_{\mathbb{L}}(n)$, we describe the structure of $\operatorname{Ultra}(\Psi)$ as a blowup of $\mathbb{P}^{n}(\mathbb{F})$, (see [7]). Write Ψ as

$$
\Psi(\bar{T})=L \cdot \bar{T}^{t}=\left[L_{0}(\bar{T}): L_{1}(\bar{T}): \ldots: L_{n}(\bar{T})\right]
$$

where L_{i} is the linear form represented by the i-th row of L. Let $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be the conjugates of α in \mathbb{F} and let $\sigma_{1}, \ldots, \sigma_{r}$ be \mathbb{K}-automorphisms of \mathbb{F} such that $\sigma_{i}(\alpha)=\alpha_{i}$, and let g_{i} be the form of degree $r-1$ that is the product of all conjugate forms $\left\{L_{0}^{\sigma_{1}}, \ldots, L_{0}^{\sigma_{r}}\right\}$ with the exception of $L_{0}^{\sigma_{i}}$; where $L^{\sigma_{i}}$ is the linear form obtained from L substituting α by α_{i}. Furthermore, let $I=\left(g_{1}, \ldots, g_{r}\right)$ be the homogeneous ideal generated by $\left\{g_{1}, \ldots, g_{r}\right\}$ in $\mathbb{F}\left[t_{0}, \ldots, t_{n}\right]$. Then

Theorem 2.2. The projective closure of the ultraquadric $\operatorname{Ultra}(\Psi)$ is \mathbb{L}-linearly isomorphic to the Segre embedding of the blowup of $\mathbb{P}^{n}(\mathbb{F})$ along the ideal I.
Proof. We consider the map

$$
\begin{array}{rlr}
\eta: \quad \mathbb{P}^{n}(\mathbb{F}) & \longrightarrow & \mathbb{P}^{n}(\mathbb{F}) \times \mathbb{P}^{r-1}(\mathbb{F}) \\
\bar{T} & \mapsto & \mapsto \\
& \left.\mapsto\left(g_{1}(\bar{T}): g_{2}(\bar{T}): \ldots: g_{r}(\bar{T})\right)\right)
\end{array}
$$

which is a blowup of $\mathbb{P}^{n}(\mathbb{F})$ along I. Now, we compose this map with the Segre embedding of $\mathbb{P}^{n}(\mathbb{F}) \times \mathbb{P}^{r-1}(\mathbb{F})$ to get the blowup of $\mathbb{P}^{n}(\mathbb{F})$ as isomorphic to the subvariety \mathcal{W} of $\mathbb{P}^{r n+r-1}(\mathbb{F})$ parametrized by $P:=\left[t_{0} g_{1}: \ldots: t_{0} g_{r}: \ldots: t_{n} g_{1}: \ldots: t_{n} g_{r}\right]$. On the other hand, Ultra (Ψ) is (linearly) \mathbb{L}-isomorphic to the affine variety \mathcal{V} parametrized by $\Psi_{a} \times \Psi_{a}^{\sigma_{2}} \times \cdots \times \Psi_{a}^{\sigma_{r}}$ (see [3]). Projectively, the parametrization $\Psi_{a} \times \Psi_{a}^{\sigma_{2}} \times \cdots \times \Psi_{a}^{\sigma_{r}}$ can be expressed as $\left[L_{0} g_{1}: L_{1} g_{1}: \ldots\right.$: $\left.L_{n} g_{1}: L_{1}^{\sigma_{2}} g_{2}: \ldots: L_{n}^{\sigma_{2}} g_{2}: \ldots: L_{1}^{\sigma_{r}} g_{r}: \ldots: L_{n}^{\sigma_{r}} g_{r}\right]$. This variety is isomorphic to the subvariety of $\mathbb{P}^{n r+r-1}$ parametrized by

$$
Q:=\left[L_{0} g_{1}: \ldots: L_{n} g_{1}: L_{0}^{\sigma_{2}} g_{2}: \ldots: L_{n}^{\sigma_{2}} g_{2}: \ldots: L_{0}^{\sigma_{r}} g_{r}: \ldots: L_{n}^{\sigma_{r}} g_{r}\right]
$$

since $L_{0}^{\sigma_{i}} g_{i}=L_{0} g_{1}$, and we are just duplicating the first coordinate of each block.
Since by definition $\Psi^{\sigma_{i}}(\bar{T})^{t}=L^{\sigma_{i}} \cdot \bar{T}^{t}$, then

$$
Q=\left(g_{i} \Psi^{\sigma_{i}}\right)^{t}=L^{\sigma_{i}}\left(g_{i} \cdot \bar{T}\right)^{t}
$$

where the super-index t denotes the transpose of the matrix. Finally observe that the parametrization provided by the right side of the formula above is just a re-ordering of the coordinates of P. Thus, \mathcal{W} is linearly isomorphic to the projective closure of $\operatorname{Ultra}(\Psi)$.

Remark 2.3. The center of the blowup, i.e. the variety defined by the ideal I, is

$$
\mathcal{Z}=\bigcup_{L^{\sigma_{i}} \neq L^{\sigma_{j}}}\left\{L_{0}^{\sigma_{i}}=L_{0}^{\sigma_{j}}=0\right\}
$$

If L_{0} does not have coefficients in \mathbb{K}, then the ultraquadric is not a linear variety.

Corollary 2.4.

(1) $\mathrm{U}(\Psi)$ is an isomorphism of $\mathbb{P}^{n}(\mathbb{F}) \backslash \mathcal{Z}$ onto its image. In particular, the affine part of $\mathrm{Ultra}(\Psi)$ is always smooth.
(2) Let $r \leq n$ and let $L_{0}^{\sigma_{1}}, \ldots, L_{0}^{\sigma_{r}}$ be hyperplanes in general position in $\mathbb{P}^{n}(\mathbb{F})$. Then, the ultraquadric Ultra (Ψ) is (linearly isomorphic to) a toric variety.

In some applications it is interesting to restrict to real-complex case and surfaces, see for instance [3]. Hence, we take now a closer look to the case of algebraic extensions of degree $r=2$ and automorphisms of $\mathbb{P}^{2}(\mathbb{F})$. Next result describes in this context the intersection of ultraquadrics with the hyperplane at infinity (cf. [4] for the hypercircle case).

Corollary 2.5. Let $r=2, \Phi=\left[L_{0}: L_{1}: L_{2}\right] \in \mathbf{P G L}_{\mathbb{L}}(2)$, let $x^{2}+a x+b$ be the minimal polynomial of α over \mathbb{K}.
(1) If the primitive part of L_{0} is in $\mathbb{K}[s, t]$, then $\mathrm{Ultra}(\Psi)$ is a plane.
(2) If the primitive part of L_{0} is in $\mathbb{L}[s, t] \backslash \mathbb{K}[s, t]$, then $\operatorname{Ultra}(\Psi)$ is linearly isomorphic to a blowup of the plane at a point. In particular, it is smooth.

Moreover, let $\left\{L_{0}=0\right\}$ and $\left\{L_{0}^{\sigma}=0\right\}$ be the lines defined, respectively, by the denominator and by its conjugate, let $p=\left\{L_{0}=L_{0}^{\sigma}=0\right\}$ be the intersection point. Then, the intersection of $\mathrm{Ultra}(\Psi)$ with the hyperplane at infinity consists in three lines $\mathcal{L}, \mathcal{L}^{\sigma}, E$. Furthermore:
(1) $\operatorname{Ultra}(\Psi)$ is the blowup of the plane at p.
(2) \mathcal{L} does not depend on Ψ (and hence neither does \mathcal{L}^{σ}), it only depends on the minimal polynomial of α. In fact $\mathcal{L}=V\left(\left\{x_{0}, 2 x_{1}-(2 \alpha+a) x_{2}, 2 x_{3}-(2 \alpha+a) x_{4}\right\}\right)$.
(3) $q=\left[0:(\alpha+a / 2) L_{1}(p): L_{1}(p),(\alpha+a / 2) L_{2}(p): L_{2}(p)\right] \in \mathcal{L}$ is such that $\mathcal{L} \backslash\{q\}$ corresponds, by the parametrization, to $\left\{L_{0}=0\right\} \backslash\{p\}$.
(4) $E=\left\langle q, q^{\sigma}\right\rangle$, the line through q and q^{σ}, is the exceptional divisor of the blowup.

Example 2.6. Consider the extension $\mathbb{R} \subseteq \mathbb{R}(\mathrm{i})=\mathbb{C}$ and the automorphism of the plane given by $L\left(t_{0}: t_{1}: t_{2}\right)=\left(t_{1}+\mathrm{i} t_{2}, t_{0}, t_{1}\right)$. Then $L_{0}=\left\{t_{1}+\mathrm{i} t_{2}=0\right\}, L_{0}^{\sigma}=\left\{t_{1}-\mathrm{i} t_{2}=0\right\}$. The center of the blowup is the origin (1:0:0). $\mathrm{Ultra}(L)=V\left(x_{2} x_{3}-x_{1} x_{4}, x_{3}-x_{3}^{2}-x_{4}^{2}, x_{1}-x_{1} x_{3}-\right.$ $\left.x_{2} x_{4}\right) \subseteq \mathbb{C}^{5}$. The projectivization of Ultra (L) intersects the hyperplane at infinity at the three lines $\mathcal{L}=V\left(x_{0}, x_{1}-\mathrm{i} x_{2}, x_{3}-\mathrm{i} x_{4}\right), \mathcal{L}^{\sigma}=V\left(x_{0}, x_{1}+\mathrm{i} x_{2}, x_{3}+\mathrm{i} x_{4}\right)$ and $E=V\left(x_{0}, x_{3}, x_{4}\right)$. In this case $q=(0: \mathrm{i}: 1: 0: 0)$. This information suggests to parametrize the ultraquadric by intersecting it with the pencils of hyperplanes $x_{1}+i x_{2}=t, x_{3}+i x_{4}=s$, yielding the parametrization $x_{1}=s t /(2 s-1), x_{2}=(s-1) t /(2 i s-i), x_{3}=s^{2} /(2 s-1), x_{4}=\left(-i s^{2}+i s\right) /(2 i s-1)$.

Acknowledgements

Authors supported by the Spanish Ministerio de Economía y Competitividad and by the European Regional Development Fund (ERDF), under the Project MTM2011-25816-C02-(01,02). J. R. Sendra and C. Villarino are members of the research group ASYNACS (Ref. CCEE2011/R34).

References

[1] C. Andradas, T. Recio and J. R. Sendra. Base field restriction techniques for parametric curves. Proc. ISSAC99, ACM Press, 1:17-22, 1999.
[2] C. Andradas, T. Recio, J. R. Sendra and L. F. Tabera. On the simplification of the coefficients of a parametrization. J. Symbolic Comput., 44(2):192-210, 2009.
[3] C. Andradas, T. Recio, J. R. Sendra, L. F. Tabera and C. Villarino. Proper Real Reparamtrization of Rational Ruled Surfaces. Computer Aided Geometric Design, 28(2):102-113, 2011.
[4] T. Recio, J. R. Sendra, L. F. Tabera and C. Villarino. Generalizing circles over algebraic extensions. Math. Comp., 79(270):1067-1089, 2010.
[5] T. Recio, J. R. Sendra, L. F. Tabera and C. Villarino. Algorithmic Detection of Hypercircles. Mathematics and Computers in Simulation, 82(1):54-67, 2011.
[6] T. Recio, J. R. Sendra and C. Villarino. From Hypercircles to Units. Proc. ISSAC-2004 ACM-Press, 1:258-265, 2004.
[7] K.E. Smith, L. Kahanpää, P. Kekäläinenn, W. Traves. An Invitation to Algebraic Geometry. Universititext, Springer Velag, 2000.

Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, 39071, Santander, Spain

E-mail address: tomas.recio@unican.es, luisfelipe.tabera@unican.es
Dpto. de Física y Matemáticas, Universidad de Alcalá E-28871, Alcalá de Henares, Madrid, Spain
E-mail address: rafael.sendra@uah.es, carlos.villarino@uah.es

