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ABSTRACT. In this extended abstract, we study the properties of ultraquadrics associated with au-
tomorphisms of the field K(α)(t1, . . . , tn), defined by linear rational (with common denominator)
or by polynomial (with polynomial inverse) coordinates. We conclude that ultraquadrics related to
polynomial automorphisms can be characterized as varieties K−isomorphic to linear varieties, while
ultraquadrics arising from projective automorphisms are isomorphic to the Segre embedding of a
blowup of the projective space along an ideal and, in some general case, linearly isomorphic to a toric
variety. This information helps us to compute a parametrization of some ultraquadrics.

1. INTRODUCTION

The study and analysis of ultraquadrics was introduced in [2] as a higher dimensional general-
ization of the concept of hypercircle (cf. [1], [4], [5], [6]) and as a fundamental computational tool
to algorithmically solve the problem of the optimal algebraic reparametrization of rational varieties
of arbitrary dimension (e.g. rational surfaces, see [3]).

Given a rational variety V , presented by a rational parametrization with n parameters t1, . . . , tn
and coefficients in a certain algebraic extension K(α) of a ground field K, it is natural to ask for the
possibility of reparametrizing V over K. For this purpose the paper [2] introduces the concept of
“ultraquadrics” as varieties associated to automorphisms of the fieldK(α)(t1, . . . , tn), and describes
its application to computing the reparametrization of V over K, when possible.

In this extended abstract, we study the ultraquadrics associated to some important kind of au-
tomorphisms in the field K(α)(t1, . . . , tn), such as those defined by linear rational (with common
denominator) or polynomial (with inverse also polynomial) coordinates. The provided results rein-
force the computational usefulness of ultraquadrics.

A complete version of this extended abstract has been submitted to a journal.

1.1. Notation. In the sequel, K is a field of characteristic zero, α is an algebraic element over K,
L is the field extension K(α) and F is the algebraic closure of L. So K ⊂ L = K(α) ⊂ F. We
assume that [K : L] = r. We use the notation t = (t1, . . . , tn) and T = (t0 : . . . : tn) for affine
–respectively, projective– coordinates.

On the other hand, we will consider the following three groups of automorphisms under compo-
sition:
• BL is the group of all L-birational transformations (i.e. L-definable) of Fn onto Fn.
•AL is the group of all L-automorphism of the affine space Fn; that is, the subgroup of BL where
the transformation and its inverse are both described through polynomial coordinates.
• PGLL(n) is the group of all L-automorphism of the projective space Pn(F). Elements in
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PGLL(n) are represented by a (n+ 1)× (n+ 1) regular matrix L

(1) Pn(F)→ Pn(F); T 7→ L · (T t) = [L0(T ) : · · · : Ln(T )]

where the rows Li of L represent linear forms.

1.2. Ultraquadrics. Let Ψ = (ψ1, . . . , ψn) be a birational automorphism of Fn. Then, we express
Ψ in the basis {1, . . . , αr−1} as

Ψ( t ) =



r−1∑

j=0

ψ1,jα
j , . . . ,

r−1∑

j=0

ψn,jα
j


 , ψij ∈ K( t ).

Then, using this notation, we consider the expansion map

(2)
U : BL → K( t )nr

Ψ( t ) 7→ (ψ10( t ), . . . , ψ1(r−1)( t ), . . . , ψn0( t ), . . . , ψn(r−1)( t ))

We define the ultraquadric associated with Ψ, and we denote it by Ultra(Ψ), as the rational
variety of dimension n in Fnr parametrized by U(Ψ( t )). Different automorphisms Ψ1, Ψ2 may
define the same ultraquadric Ultra(Ψ1) = Ultra(Ψ2). This can happen if and only if Ψ2 = Ψ1 ◦Φ
with Φ an automorphism in BL with coefficients inK. We define [Ψ] as the coset [Ψ] = {Ψ◦Φ|Φ ∈
BL with coefficients in K}.

If Ψ ∈ PGLL(n), say Ψ(T ) = [L0(T ) : . . . : Ln(T )], we will denote as Ultra(Ψ) the
(affine) ultraquadric generated by the associated affine mapping

(3) Ψa( t ) =

(
L1(1, t1, . . . , tn)

L0(1, t1, . . . , tn)
, . . . ,

Ln(1, t1, . . . , tn)

L0(1, t1, . . . , tn)

)

2. ULTRAQUADRICS ASSOCIATED TO AFFINE AND PROJECTIVE AUTOMORPHISMS

Next statement characterizes the ultraquadrics associated with automorphisms in AL.

Theorem 2.1. Let Ψ ∈ BL. The following statements are equivalent
(1) Ultra(Ψ) is K-isomorphic to Fn.
(2) [Ψ] ∩AL 6= ∅.

Moreover, Ultra(Ψ) is a linear variety if and only if [Ψ] contains a linear automorphism.

Proof. (sketch) A K-definable proper parametrization P( t ) = (P10, . . . , P1(r−1), . . . , Pn0, . . . ,
Pn(r−1)) parametrizes Ultra(Ψ) if and only if Q( t ) := (

∑r−1
j=0 P1,jα

j , . . . ,
∑r−1

j=0 Pn,jα
j) ∈ [Ψ].

Now, P−1 is the expansion map obtained from Q−1. Hence, P and P−1 are polynomial (resp.
linear) if and only if Q and Q−1 are polynomial (resp. linear). �

Now, we study the case of projective automorphisms. Let Ψ = L ∈ PGLL(n), we describe the
structure of Ultra(Ψ) as a blowup of Pn(F), (see [7]). Write Ψ as

Ψ(T ) = L · T t = [L0(T ) : L1(T ) : . . . : Ln(T )]

where Li is the linear form represented by the i-th row of L. Let α = α1, α2, . . . , αr be the
conjugates of α in F and let σ1, . . . , σr be K-automorphisms of F such that σi(α) = αi, and let
gi be the form of degree r − 1 that is the product of all conjugate forms {Lσ10 , . . . , Lσr0 } with the
exception of Lσi0 ; where Lσi is the linear form obtained from L substituting α by αi. Furthermore,
let I = (g1, . . . , gr) be the homogeneous ideal generated by {g1, . . . , gr} in F[t0, . . . , tn]. Then
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Theorem 2.2. The projective closure of the ultraquadric Ultra(Ψ) is L-linearly isomorphic to the
Segre embedding of the blowup of Pn(F) along the ideal I .

Proof. We consider the map

η : Pn(F) −→ Pn(F)× Pr−1(F)
T 7→ (T ; (g1(T ) : g2(T ) : . . . : gr(T )))

which is a blowup of Pn(F) along I . Now, we compose this map with the Segre embedding of
Pn(F) × Pr−1(F) to get the blowup of Pn(F) as isomorphic to the subvariety W of Prn+r−1(F)
parametrized by P := [t0g1 : . . . : t0gr : . . . : tng1 : . . . : tngr]. On the other hand, Ultra(Ψ)
is (linearly) L-isomorphic to the affine variety V parametrized by Ψa ×Ψσ2

a × · · · ×Ψσr
a (see [3]).

Projectively, the parametrization Ψa × Ψσ2
a × · · · × Ψσr

a can be expressed as [L0g1 : L1g1 : . . . :
Lng1 : Lσ21 g2 : . . . : Lσ2n g2 : . . . : Lσr1 gr : . . . : Lσrn gr]. This variety is isomorphic to the subvariety
of Pnr+r−1 parametrized by

Q := [L0g1 : . . . : Lng1 : Lσ20 g2 : . . . : Lσ2n g2 : . . . : Lσr0 gr : . . . : Lσrn gr]

since Lσi0 gi = L0g1, and we are just duplicating the first coordinate of each block.
Since by definition Ψσi(T )t = Lσi · T t, then

Q = (giΨ
σi)t = Lσi(gi · T )t

where the super-index t denotes the transpose of the matrix. Finally observe that the parametrization
provided by the right side of the formula above is just a re-ordering of the coordinates of P . Thus,
W is linearly isomorphic to the projective closure of Ultra(Ψ). �

Remark 2.3. The center of the blowup, i.e. the variety defined by the ideal I , is

Z =
⋃

Lσi 6=Lσj
{Lσi0 = L

σj
0 = 0}.

If L0 does not have coefficients in K, then the ultraquadric is not a linear variety.

Corollary 2.4.
(1) U(Ψ) is an isomorphism of Pn(F) \ Z onto its image. In particular, the affine part of

Ultra(Ψ) is always smooth.
(2) Let r ≤ n and let Lσ10 , . . . , L

σr
0 be hyperplanes in general position in Pn(F). Then, the

ultraquadric Ultra(Ψ) is (linearly isomorphic to) a toric variety.

In some applications it is interesting to restrict to real-complex case and surfaces, see for instance
[3]. Hence, we take now a closer look to the case of algebraic extensions of degree r = 2 and
automorphisms of P2(F). Next result describes in this context the intersection of ultraquadrics with
the hyperplane at infinity (cf. [4] for the hypercircle case).

Corollary 2.5. Let r = 2, Φ = [L0 : L1 : L2] ∈ PGLL(2), let x2 + ax + b be the minimal
polynomial of α over K.

(1) If the primitive part of L0 is in K[s, t], then Ultra(Ψ) is a plane.
(2) If the primitive part of L0 is in L[s, t] \ K[s, t], then Ultra(Ψ) is linearly isomorphic to a

blowup of the plane at a point. In particular, it is smooth.
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Moreover, let {L0 = 0} and {Lσ0 = 0} be the lines defined, respectively, by the denominator and by
its conjugate, let p = {L0 = Lσ0 = 0} be the intersection point. Then, the intersection of Ultra(Ψ)
with the hyperplane at infinity consists in three lines L, Lσ, E. Furthermore:

(1) Ultra(Ψ) is the blowup of the plane at p.
(2) L does not depend on Ψ (and hence neither does Lσ), it only depends on the minimal

polynomial of α. In fact L = V ({x0, 2x1 − (2α+ a)x2, 2x3 − (2α+ a)x4}).
(3) q = [0 : (α + a/2)L1(p) : L1(p), (α + a/2)L2(p) : L2(p)] ∈ L is such that L \ {q}

corresponds, by the parametrization, to {L0 = 0} \ {p}.
(4) E = 〈q, qσ〉, the line through q and qσ, is the exceptional divisor of the blowup.

Example 2.6. Consider the extension R ⊆ R(i) = C and the automorphism of the plane given by
L(t0 : t1 : t2) = (t1 + it2, t0, t1). Then L0 = {t1 + it2 = 0}, Lσ0 = {t1 − it2 = 0}. The center
of the blowup is the origin (1 : 0 : 0). Ultra(L) = V (x2x3 − x1x4, x3 − x23 − x24, x1 − x1x3 −
x2x4) ⊆ C5. The projectivization of Ultra(L) intersects the hyperplane at infinity at the three lines
L = V (x0, x1 − ix2, x3 − ix4), Lσ = V (x0, x1 + ix2, x3 + ix4) and E = V (x0, x3, x4). In this
case q = (0 : i : 1 : 0 : 0). This information suggests to parametrize the ultraquadric by intersecting
it with the pencils of hyperplanes x1 + ix2 = t, x3 + ix4 = s, yielding the parametrization
x1 = st/(2s− 1), x2 = (s− 1)t/(2is− i), x3 = s2/(2s− 1), x4 = (−is2 + is)/(2is− 1).
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