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Behavior of the Fiber and the Base Points of
Parametrizations under Projections

Sonia Pérez-Dı́az and J. Rafael Sendra

Abstract. Given a rational parametrization P( t ), t = (t1, . . . , tr), of an r-dimensional unira-
tional variety, we analyze the behavior of the variety of the base points of P( t ) in connection to
its generic fibre, when successively eliminating the parameters ti. For this purpose. we introduce
a sequence of generalized resultants whose primitive and content parts contain the different com-
ponents of the projected variety of the base points and the fibre. In addition, when the dimension
of the base points is strictly smaller than 1 (as in the well known cases of curves and surfaces), we
show that the last element in the sequence of resultants is the univariate polynomial in the corre-
sponding Gröbner basis of the ideal associated to the fibre; assuming that the ideal is in t1-general
position and radical.
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1. Introduction
We start this introduction by describing and motivating the concepts of fibre and base point as well
as its relations. We consider an algebraically close field K of characteristic zero and a unirational
variety V ⊂ Kn of dimension r = dim(V) < n. With unirational we mean that there exists a tuple
of rational functions (i.e. a rational parametrization)

P( t ) =

(
p1( t )

q( t )
, . . . ,

pn( t )

q( t )

)
∈ K( t )n, where t = (t1, . . . , tr)

(say w.l.o.g. that gcd(p1, . . . , pn, q) = 1 and that none pi/q is constant) depending on r independent
parameters, t1, . . . , tr, such that the rank of the jacobian of P( t ) is r, and such that

• for almost all (i.e. for a non-empty open Zariski subset of V) points P ∈ V there exists, at least
one, t 0 ∈ Kr such that P = P( t 0), and

• for all t 0, where P( t ) is defined, P( t 0) ∈ V .
Associated with P( t ) we want to define a map. Clearly it can be done as follows:

ΦP : Kr \ Λ → V
t 0 7→ P( t 0)

This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under the project MTM2008-
04699-C03-01 and by the Ministerio de Economı́a y Competitividad under the project MTM2011-25816-C02-01; both
authors are members of the of the Research Group ASYNACS (Ref. CCEE2011/R34).
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where Λ = { t ∈ Kr | q( t ) = 0}. Note that, because of the two requirements above, ΦP is well
defined and ΦP(Kr \ Λ) is dense (in the Zariski topology) in V . At this point, the first natural
questions appear: what is the cardinality of Φ−1

P (P ) for a generic point P ∈ ΦP(Kr \ Λ)? If this
cardinality is bigger than 1, can we replace P( t ) by another parametrization where this cardinality
is 1?

The cardinality of Φ−1
P (P ) is the degree of ΦP (see e.g. [9] for a formal definition) and the

set Φ−1
P (P ) is called the (generic) fibre of ΦP ; we denote the fibre by FP(h ), where the generic

point P has been taken as P(h ), being h a new tuple of parameters. When the degree of ΦP is
1, we say that the parametrization is rational and, hence, the second question asks whether the
concepts of rationality and unirationality are equivalent; question that is related to Lüroth’s theorem
and Castelnouvo’s theorem and that we do not deal with here.

Coming back to the definition of ΦP , one may try to get information on the parameter values in
Λ. Intuitively, they might be related to the points of V at infinity. For a deeper analysis of this, we pass
to the projective space. That is, we consider the projective closure VH of V . Moreover we consider
the projective parametrization PH( tH) associated with P( t ); that is, tH = (t0 : t1 : . . . : tr) and

PH( tH) = (pH1 ( tH) : . . . : pHn ( tH) : qH( tH)),

where pHi , qH are the homogenization of pi, q, respectively, multiplied by a suitable power of t0 such
that all the homogeneous polynomials pHi , qH have the same degree and gcd(pH1 , . . . , pHn , qH) = 1.
In this situation, we try to define a projective map, using PH( tH), from Pr(K) on VH . This can be
done as follows:

ΦPH : Pr(K) \ B(PH) → VH

tH,0 7→ PH( tH,0)

where B(PH) = { tH ∈ Pr(K) | pH1 ( tH) = · · · = pHn ( tH) = q( tH) = 0}. The points in B(PH)
are called the (projective) base points of PH( tH). Since, our starting object was P( t ), we are
interested in B(PH)∩{ tH ∈ Pr(K) | t0 ̸= 0}, that we can identify with the set { t ∈ Kr | p1( t ) =
· · · = pn( t ) = q( t ) = 0}; in the next paragraph we will extended this definition considering this
variety defined over a superfield of K. We call these points the (affine) base points of P( t ), and we
denote the set of affine base points by B(P). These are the points we deal with here; see e.g. [14]
for further comments on projective base points.

But, how are the base points related to the generic fiber? In order to define the fibre we have
considered a new tuple of parameters h . Let F be the algebraic closure of K(h ). Then, the generic
fibre consists in those t 0 ∈ Fr such that P( t 0) = P(h ). Therefore if V1 is variety defined by
the polynomials {pi( t )q(h ) = q( t )pi(h )}i=1,...,r and V2 the the variety defined by {q( t )}, both
over F, then

FP(h ) = V1 \ V2.

On the other hand, the base points is the variety defined over K by {p1, . . . , pr, q}. Now, let us see
the B(P) defined over F instead that over K; we call it again B(P). Then

FP(h ) = V1 \B(P).

Beside the above motivation on the definability of the rational map associated to the parametriza-
tion, why are the base points so important? The computation of the fibre, the degree of the map,
the implicit equations, the singularities of V , etc, all these questions can be translated to elimina-
tion theory problems and, consequently, approached by means of Gröbner bases or characteristic
sets. Nevertheless, many authors have been and are trying to approach these associated problems
by means of resultants (classical resultants, u-resultants, multivariate resultants, etc) appearing, for
instance, in the development of the µ-base, moving curves and moving surfaces theory, etc. The
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main motivation for using resultants, instead of stronger elimination techniques as Gröbner bases or
characteristic sets, is not unique but essentially is based on the translation of the problem into linear
algebra. This allows, for instance, the use of determinantal expressions for the implicit equations,
the application of interpolation, or more generally homomorphic, techniques and provides the es-
tablishment of an easier bridge to apply numerical techniques when dealing with the corresponding
approximated version of the problems.

However, most of these methods, based on resultants hit difficulties under the presence of base
points (see [1], [2], [3], [4], [5], [6], [7], [13], [14]). Nevertheless, for the surface case (r = 2), our
approaches, based on generalized resultants, to compute the implicit equation as well as the degree of
the map (see [10], [11], [12]) do work even under the presence of base points. All these algorithmic
methods play a crucial role in many applications, as for instance in computer aided geometric design,
and therefore the theoretical understanding of the base points helps in the improvement of these
potential practical applications.

Let us take a closer look at the base points of P( t ). If r = 1, since gcd(p1, . . . , pn, q) = 1,
one has that B(P) = ∅. So the curve case is trivial. If r = 2, B(P) is either empty or consists in the
intersection points of (n + 1) plane curves without common components, namely those defined by
p1(t1, t2), . . . , pn(t1, t2), q(t1, t2). Therefore, if r = 2 then either B(P) = ∅ or dim(B(P)) = 0.
The situation is more complicated when r > 2 since B(P) is the intersection of (n+1) varieties, of
dimension (r−1), without common components. Thus, either B(P) = ∅ or dim(B(P)) < r−2. In
Example 3, n = 5, r = 3 and dim(B(P)) = 1, and in Example 6, n = 5, r = 3 and dim(B(P)) =
0.

Motivated by this last fact, in this paper, we analyze the extension of the ideas in [11], [12] to
the case where r > 2. We introduce a sequence of generalized resultants associated to P( t ) that ends
in a univariate polynomial in t1 (see Section 4), and such that allows us to study how the successive
projections of the points in the generic fibre of P( t ), as well as of the points in B(P), behave
(see Section 5). The fibre is zero-dimensional and hence its projections. However, the base points
variety may have high dimensional components such that their projections fill the whole projection
space, and hence the information of the fiber is lost. For instance, in Example 3 where n = 5,
r = 3 and dim(B(P)) = 1, the second successive projection (i.e. (t1, t2, t3) 7→ (t1, t2) 7→ t1)
yields to the whole line K. To avoid this phenomenon, at each elimination step, one has to detect the
hypersurface components of the projection of the base points and excluded them from the process.
More precisely, say that we have eliminated ti, . . . , tr and we proceed to eliminate ti+1. Then, the
corresponding generalized resultant factors as its content times its primitive part. Associated to each
factor we introduce a variety in the i-dimensional space; let us call them Ci and Mi, respectively.
Alternatively, the fibre and B(P) are also projected onto the same space. Then the behavior of the
projections of the fibre and the base points is essentially as follows:

• the fibre projects into the primitive part variety Mi (see Theorem 5.7),
• the hypersurface components (if any) of the base points project into the content part variety Ci

(see Theorem 5.4),
• while the low dimensional components of the base points go into Mi (see Theorem 5.7).

For analyzing the next elimination step, we control and indeed exclude the components embedded
in Ci ∩Mi. All these problems are studied in Section 5. Finally, in Section 6, we prove that in the
cases where either B(P) = ∅ or dim(B(P)) = 0, the last element in the sequence of resultants
is the univariate polynomial in the corresponding Gröbner basis of the ideal associated to the fibre;
assuming that the ideal is in t1-general position and radical. This can be seen as a generalization of
the results for curves and surfaces in [11] to the case r > 3. Note that the above hypotheses, namely
either B(P) = ∅ or dim(B(P)) = 0, always hold for the case of curves and surfaces. Nevertheless,
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they still can be fulfilled for unirational varieties of high dimension. When this is not the case, i.e.
when dim(B(P)) > 0, we cannot ensure the claim in Lemma 6.1, and more precisely statement
2 (the up property), and therefore, in this case, we cannot state the connection of the generalized
resultant sequence and and Gröbner bases.

We cannot finish this introduction without saying that, although from our ideas one can derive
an algorithm for the computation of the degree (when dim(B(P)) < 1), this algorithm is not effi-
cient in its current form. The inefficiency of the algorithm is essentially due to the number of new
variables that the generalized resultant sequence introduces. In order to improve this situation, one
might think on a probabilistic version of the algorithm where the news variables are specialized, or
on a homomorphic-based technique, but we have not explored these potential approaches. On the
other hand, we should emphasize that our main goal in this paper, being more theoretical than algo-
rithmic, is to provide the first steps towards the establishment of the theoretical framework to better
understanding the behavior of the base points. Let us briefly motivate this necessity. As we have said
above in this introduction, the use of resultants to solve problems related to parametrizations is an
active area. However, in many of these approaches, the algorithms require that the parametrization
does not have base points (see [1], [2], [3], [4], [5], [6], [7]). Also, when analyzing the surjectivity of
a parametrization one hits problems under the presence of base points (see [13]). Therefore, it is not
only the fact of computing the base points to decide that the corresponding algorithm will not work
properly. One may think on how to find (if any) a parametrization without base points or finitely
many parametrizations, each of them with different based points, but covering whole variety. For
this, a good understanding of the behavior can be helpful.

Parts of our proofs presented in this paper are very technical. So, we leave most of the details
of the reasonings to Section 7.

2. Notation and Preliminary Remarks
Throughout this paper, we will use the following notation and terminology. K is an algebraically
closed field of characteristic zero. V ⊂ Kn is a unirational algebraic variety, of dimension r =
dim(V), rationally parametrized by

P( t ) =

(
p1( t )

q( t )
, . . . ,

pn( t )

q( t )

)
∈ K( t )n,

where t = (t1, . . . , tr), and such that gcd(p1, . . . , pn, q) = 1.

Remark 2.1. We assume (see below) that none of the rational functions pi/q is constant. Further-
more, although the reasonings in this paper can be adapted for r ∈ {1, 2}, for simplicity in the
explanation, we assume that r > 2; note that essentially case r = 1 is treated in [15], and r = 2 in
[11].

Associated with P( t ), we have the rational map

ΦP : Kr −→ V
t 7−→ P( t ).

Observe that ΦP(Kr) is dense in V and that the jacobian of ΦP has rank r; being both remarks a
consequence of the fact that P( t ) is a rational parametrization. We denote by deg(ΦP) the degree
of ΦP (see Section 1).

Moreover, we consider the following polynomials, where the new variables h = (h1, . . . , hr)
and Z = (Z1, . . . , Zn−2) are introduced (note that n− 2 > 1):
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• Gi( t , h ) = pi( t )q(h )− pi(h )q( t ) ∈ K[h ][ t ], for i ∈ {1, . . . , n},
• G( t , h , Z ) = G2( t , h ) + Z1G3( t , h ) + · · ·+ Zn−2Gn( t , h ) ∈ K[h , Z ][ t ].

Proposition 2.2. If pi/q is not constant (see Remark 2.1), then Gi is not constant.

Proof. Gi is identically zero iff pi/q is constant. Thus Gi is not zero. Now, if Gi( t , h ) = λ ∈ K,
then 0 = Gi( t , t ) = λ which is impossible because of our previous remark.

For a field L we denote by L its algebraic closure. Let F = K(h ). Moreover, if G is a finite set of
polynomials over L, we represent by VL(G), the algebraic variety defined by G over L. We introduce
the algebraic sets:

• for each i ∈ {1, . . . , n}, W h
i = VF(Gi) ⊂ Fr.

• Wn+1 = VF(q) ⊂ Fr; note that Wn+1 is empty if and only if P( t ) is a polynomial parametriza-
tion.

• We denote by B(P) the algebraic set of base points of the parametrization P( t ), i.e. B(P)
is the variety defined by {p1, . . . , pn, q}. We will see B(P), as we have done with Wn+1,
embedded in Fr. So B(P) = VF({p1, . . . , pn, q}). Note that then

B(P) = W h
1 ∩ · · · ∩W h

n ∩Wn+1.

For every α ∈ Kr such that P(α ) is defined, we denote by FP(α ) the fibre of α via ΦP ;
i.e.

FP(α ) = { t ∈ Kr | P( t ) = P(α )}.
Note that deg(ΦP) is the cardinality of a generic fibre.

In addition, we consider a non-empty open Zariski set of Kr, that we denote by Ω(P), such
that for α ∈ Ω(P) it holds that card(FP(α )) = deg(ΦP) (see Theorem 7.16 in [9]). Abusing of
the notation, we will denote by FP(h ) the generic fibre

FP(h ) = { t ∈ Fr | P( t ) = P(h )}.

Note that FP(h ) = (W h
1 ∩ · · · ∩W h

n ) \B(P); see e.g. Theorem 2 in [15].

Finally, if A is a subset of an affine space, we will denote by A∗ its Zariski closure. More-
over, for a polynomial g(x) with coefficients over a unique factorization domain, we denote by
LCoeff(g, x) its leading coefficient w.r.t. x.

3. General Assumptions and Preliminary Results
Throughout this paper, we assume (see also Remark 2.1) the following general assumptions:

A-1 None of the rational function pi/q is constant and gcd(p1, . . . , pn, q) = 1.
A-2 Let M be the subset of those polynomials in {p1, . . . , pn, q} that are not constant. We assume

that the hypersurfaces in Kr, defined by each of the polynomials in M, do not pass through
the point at infinity (0 : · · · : 0 : 1 : 0), where the homogeneous variables are (t1, . . . , tr, w);
note that this is equivalent to require that for every g ∈ M it holds that degtr (g) is the total
degree of g and LCoeff(g, tr) ∈ K.

A-3 G1 does not divide G3.

These assumptions imply the following proposition.
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Proposition 3.1. If assumptions A-1 and A-2 hold, the following statements hold

1. Let GH
i ( t , w, h ) denote the homogenization of Gi( t , h ) as a polynomial in K[h ][ t ]. Then

GH
i (0, . . . , 0, 1, 0, h ) ̸= 0 for i = 1, . . . , n.

2. For i = 1, . . . , n, degtr (Gi) > 0 and LCoeff(Gi, tr) ∈ K[h ].

Proof. 1. If either pi or q is constant, it follows from A-2. Otherwise, homogenizing and taking into
account the total degrees of pi and q, the result follows from A-1, A-2.
2. We express GH

i as gm( t , h ) + · · · + g0( t , h )w
m, where gi is homogeneous in t of degree i.

By (i) gm does depend on tr and α = LCoeff(Gi, tr) only depends on h .

Next, we see that the above assumptions do not imply any loss of generality.

A-1. Say w.l.o.g. that P( t ) = (p1/q, . . . , ps/q, λs+1, . . . , λn) with λi ∈ K and pi/q non-constant,
we consider the projection

π : V → π(V)∗; (x1, . . . , xn) 7→ (x1, . . . , xs)

and the parametrization H( t ) = π(P( t )) of π(V)∗. Now, since π is birational then deg(ΦP) =
deg(Φπ(P)). Therefore, we can work with H( t ) where A-1 holds.

A-2. For every g ∈ M, let tdeg(g) denote the total degree of g, and let gtdeg(g)( t ) denote the
homogeneous form of maximum degree of g( t ); i.e. of degree tdeg(g). Let α = (α1, . . . , αr) ∈
Kn, with αr ̸= 0, be such that gtdeg(g)(α ) ̸= 0 for all g ∈ M; note that, by definition, gtdeg(g)
is not identically zero, and hence α always exists. We then consider the linear parameter change
t = L( t ∗) defined by t = (t∗1 +α1t

∗
r , . . . , t

∗
r−1 +αr−1t

∗
r , αrt

∗
r). Now, for all g ∈ M, it holds that

g(L( t ∗)) is not constant, and tdeg(g) = tdeg(g(L)). Moreover, the homogeneous form of g(L) of
degree tdeg(g(L)) is of the form

gtdeg(g)(α )(t∗r)
tdeg(g) + h(t∗1, . . . , t

∗
r−1).

Since gtdeg(g)(α ) ̸= 0, A-2 holds for Q( t ∗) = P(L( t ∗)). Moreover, deg(ΦP) = deg(ΦQ).

A-3. This assumption is not used till Section 4. Moreover, in Remark 3.4, we see that as a conse-
quence of the other assumptions there always exists Gi such that G1 does not divide Gi. Hence a
simple change of coordinates yields to the required condition.

Therefore, one has the following theorem.

Theorem 3.2. The above assumptions can be assumed without loss of generality.

In the following example, we illustrate the above ideas.

Example. We consider the 3-dimensional rational variety V ⊂ C5 (so, n = 5 and r = 3) given by
the parametrization

P( t ) =

(
t1
t2
,
t1

2t3
t2

,
t1

2

t2t3
, t2t3,

t1
3

t2

)
.

[General Assumptions] Although the assumptions A-1 and A-3 are satisfied, A-2 does not hold.
Therefore, we perform the linear transformation

t = L( t ) = (t1 + t3, t2 − t3, t3)
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to replace P( t ) by the new parametrization

P( t ) =

(
t1 + t3
t2 − t3

,
(t1 + t3)

2
t3

t2 − t3
,
(t1 + t3)

2

(t2 − t3) t3
, (t2 − t3) t3,

(t1 + t3)
3

t2 − t3

)
.

This new parametrization fulfills all the general assumptions. The polynomials Gi are

G1( t , h ) = (t1 + t3) t3 (h2 − h3)h3 − (h1 + h3)h3 (t2 − t3) t3
G2( t , h ) = (t1 + t3)

2
t3

2 (h2 − h3)h3 − (h1 + h3)
2
h3

2 (t2 − t3) t3
G3( t , h ) = (t1 + t3)

2
(h2 − h3)h3 − (h1 + h3)

2
(t2 − t3) t3

G4( t , h ) = (t2 − t3)
2
t3

2 (h2 − h3)h3 − (h2 − h3)
2
h3

2 (t2 − t3) t3
G5( t , h ) = (t1 + t3)

3
t3 (h2 − h3)h3 − (h1 + h3)

3
h3 (t2 − t3) t3

G( t , h , Z ) = G2 + Z1G3 + Z2G4 + Z3G5.

[Base Points] We analyze the base points. For this purpose, we consider the ideal I, in C[ t ], gener-
ated by {p1, . . . , p5, q}, and we take the Gröbner basis G of I w.r.t. the lex order with t3 > t2 > t1:

G = {t12 (t2 + t1) , t1 (t1 + t3) ,−t1
2 + t2t3,− (t1 − t3) (t1 + t3)}.

I decomposes as
I = ⟨t1, t3⟩ ∩ ⟨t1 + t3, t2 + t1⟩ ∩ ⟨t1, t2, t3⟩.

Thus, the base points decomposes as union of two lines, namely

B(P) = {(0, λ, 0) |λ ∈ C(h )} ∪ {(−λ, λ, λ) |λ ∈ C(h )}.

In particular, we deduce that dim(B(P)) = 1.
[Fibre] We deal now with FP(h ). For this, we consider the ideal J, in C(h )[ρ, t ], generated by
{G1, . . . , G5, ρq − 1}, and we take the Gröbner basis F of J w.r.t. the lex order with ρ > t3 > t2 >
t1:

F = {−h1
2 + t1

2,−t1h2 + h1t2, h1t3 − t1h3,−1 +
(
h2h3 − h3

2
)
ρ}.

From F , we get that
FP(h ) = {h ,−h }.

Therefore, deg(ΦP) = 2.

In the following lemma, assuming the general assumptions, we summarize the basic properties
of the varieties W h

i .

Lemma 3.3. It holds that

1. (W h
1 ∩ · · · ∩W h

n ) \B(P) ⊂ (F\K)r and is zero-dimensional.
2. Let F be a finite subset of K[ t ]. If the ideal generated by F is zero dimensional, then VF(F) ⊂

Kr.
3. If dim(B(P)) = 0, then B(P) ⊂ Kr.
4. For α ∈ Ω(P), let W α

i = VK(Gi( t , α )). Then, dim(W α
1 ∩ · · · ∩W α

n ) < r − 1.
5. dim(W h

1 ∩ · · · ∩W h
n ) < r − 1.

Remark 3.4. Because of Lemma 3.3, statement 5, gcd(G1, . . . , Gn) = 1. Therefore there exists Gi,
with i > 1, such that G1 does not divide Gi. In particular, as imposed in assumption A-3, we can
assume w.l.o.g. that i = 3.
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4. Generic Resultant Sequence
In this section we introduce the notion of generic resultant sequence, and we study its first properties.
For this purpose, we need some additional notation. For i = 1, . . . , r − 2 (recall that r > 2; see Re-
mark 2.1), let W i = (Z1i, . . . , Z(n−2)i) be a tuple of new variables. Let W = (W 1, . . . , W r−2).
For j ∈ {1, . . . , r − 1} we use the notation t j = (t1, . . . , tj). We also denote by ppvar(M) and
contvar(M) the primitive part and the content of the polynomial M w.r.t. the set of variables var. For
the following construction we observe that, by Proposition 3.1, statement 2, G1 and G do depend on
tr. Let

• Rr−1 = restr (G1, G), Sr−1 = ppZ (Rr−1).
Rr−1 ∈ K[ t r−1, h , Z ], and Sr−1 ∈ K[ t r−1, h , Z ]\K[h , Z ]; see Theorem 4.3, statement
3.

•


Rr−2 =

{
Sr−1 if Sr−1 does not depend on tr−1, otherwise
restr−1(Sr−1( t

r−1, h , W r−2), Sr−1( t
r−1, h , Z ))

Sr−2 =

{
Sr−1 if Sr−1 does not depend on tr−1, otherwise
ppZ (Rr−2)

Rr−2, Sr−2 ∈ K[ t r−2, h , W r−2, Z ].

•


Rr−3 =

{
Sr−2 if Sr−2 does not depend on tr−2, otherwise
restr−2(Sr−2( t

r−2, h , W r−2, W r−3), Sr−2( t
r−1, h , W r−2, Z ))

Sr−3 =

{
Sr−2 if Sr−2 does not depend on tr−2, otherwise
ppZ (Rr−3)

Rr−3, Sr−3 ∈ K[ t r−3, h , W r−2, W r−3, Z ].
...

•


R2 =

{
S3 if S3 does not depend on t3, otherwise
rest3(S3( t

3, h , W r−2, . . . , W 2), S3( t
3, h , W r−2, . . . , W 3, Z ))

S2 =

{
S3 if S3 does not depend on t3, otherwise
ppZ (R2)

R2, S2 ∈ K[ t 2, h , W r−2, . . . , W 2, Z ].

•


R1 =

{
S2 if S2 does not depend on t2, otherwise
rest2(S2( t

2, h , W r−2, . . . , W 1), S2( t
2, h , W r−2, . . . , W 2, Z ))

S1 = contW r−2,...,W 1, Z
(R1)

R1 ∈ K[t1, h , W r−2, . . . , W 1, Z ], and S1 ∈ K[t1, h ].
• S0 = pph (S1) ∈ K[t1, h ].

Definition 4.1. We say that {S0, (S1, R1), . . . , (Sr−1, Rr−1)} is the generic resultant sequence
(shorten, in the following, by GRS) of P( t ). We denote it by GRS(P).

Before establishing the basic properties on GRS(P), we state some technical lemmas on re-
sultants and generalized resultants.

Lemma 4.2. Let L be a unique factorization domain. It holds that:

1. Let M1, . . . ,Mℓ ∈ L[x], ℓ ≥ 3, M1 non-constant, and gcd(M1, . . . ,Mℓ) = 1. resx(M1,M2+
Z1M3+ · · ·+Zℓ−2Mℓ) does not depend on {Z1, . . . , Zℓ−2} iff M1 divides all Mi with i ≥ 3.
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2. Let ∆ be a tuple of variables, M ∈ L[∆][x] \ L[x] without factors in L[x], and N(∆∗,∆) =
resx(M(∆∗, x),M(∆, x)), where ∆∗ is a tuple of new variables. N depends on ∆, and on
∆∗, and has no factor depending only on ∆∗ nor only on ∆.

Theorem 4.3 (Basic Properties of GRS). Let GRS(P) be the GRS of P( t ). It holds that:
1. Ri, for 1 ≤ i ≤ r − 1, depends on Z ; in particular it is not zero.
2. Si, for 0 ≤ i ≤ r−1, is not zero, and for 2 ≤ i ≤ r−1 they depend on Z , and have no factor

in K[ t , h ].
3. Sr−1 depends on t r−1.

The results in the next sections use that the generic resultant sequence satisfies certain condi-
tions on the dependencies on the variable t i as well as the requirement of having constant (i.e. in
K(h , W )) leading coefficients; this motivates the notion of normality.

Definition 4.4. We say that GRS(P) is normal if, for i ∈ {2, . . . , r − 1}, degti(Si) > 0 and
LCoeff(Si, ti) does not depend on t i−1.

If GRS(P) is not normal, we perform a linear transformation t = L( t ′) such that the GRS of
the transformed parametrization P( t ′) = P(L( t ′)) is normal. Note that, under a linear transforma-
tion, the degree of the induced rational maps is preserved and both, base points and fibres, are under
control. We have not proved that such a linear transformation exists, although empirically we have
seen that for random linear transformations one yields normality.

5. Base Points, Fibres and GRS(P)

In this section we study the connection of the base points and the fibre with the varieties defined
from

GRS(P) = {S0, (S1, R1), . . . , (Sr−1, Rr−1)}.
To be more precise we will see how the different projections of B(P) of FP(h ) and the varieties
defined the polynomials in GRS(P) are related. For this purpose, for r ≥ ℓ > i ≥ 1, we denote by
πi the projection map

πi : Fℓ → Fi;πi( t
ℓ) = t i,

and by coeffsvar(f) the set of coefficients of a polynomial f w.r.t. the set of variables var. Moreover,
we consider the fields

Fj =

{
K(h , W r−2, . . . , W j) if 2 ≤ j < r − 1 and r > 3
F if j = r − 1

In addition, throughout this section we assume that GRS(P) is normal. In this situation, for j ∈
{2, . . . , r − 1}, we consider the following varieties:

• Related to GRS(P).

Rj = VFj (coeffsZ (Rj)),Mj = VFj (coeffsZ (Sj)),Cj = VFj (contZ (Rj)).

Note that Rj = Cj ∪Mj .
• Related to FP(h ). We decompose πj(FP) as πj(FP(h )) = (FP)

P
j ∪ (FP)

I
j where

(FP)
P
j = πj(FP(h )) \ πj(B(P))∗ (pure part of the projection)

(FP)
I
j = πj(FP(h )) ∩ πj(B(P))∗ (impure part of the projection)
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• Related to B(P). Since gcd(p1, . . . , pn, q) = 1, we have that dim(B(P)) ≤ r − 2. Thus,
dim(πr−1(B(P))) ≤ r − 2. Then, we decompose πr−1(B(P)) as

Fr−1 ⊃ πr−1(B(P))∗ = Hr−1 ∪ Lr−1

where
◦ Hr−1 is either the hypersurface contained in πr−1(B(P)) if dim(πr−1(B(P))) = r− 2

or, otherwise, the empty set, and
◦ Lr−1 is the union of all the components of πr−1(B(P))∗ of dimension strictly smaller

than r − 2.
Additionally, we decompose Mr−1 and Lr−1 as

Mr−1 = MP
r−1 ∪MI

r−1, Lr−1 = LP
r−1 ∪ LI

r−1

as follows:
– MP

r−1 is the union of the components of Mr−1 not included in Hr−1, and MI
r−1 is the

union of the components of Mr−1 included in Hr−1.
– Similarly, LP

r−1 is the union of the components of Lr−1 not included in Hr−1, and LI
r−1

is the union of the components of Lr−1 included in Hr−1.
If dim(πr−2(B(P))) = r − 2, then πr−2(B(P))∗ = Fr−2. However, dim(πr−2(L

P
r−1)) ≤

r − 3. Thus, we decompose it as

Fr−2 ⊃ πr−2(L
P
r−1)

∗ = Hr−2 ∪ Lr−2

where
◦ Hr−2 is either the hypersurface contained in πr−2(L

P
r−1)

∗ if dim(πr−2(L
P
r−1)) = r− 3

or, otherwise, the empty set, and
◦ Lr−2 is the union of all the components of πr−2(L

P
r−1)

∗ of dimension strictly smaller
than r − 3.

Additionally, we decompose Mr−2 and Lr−2 as

Mr−2 = MP
r−2 ∪MI

r−2, Lr−2 = LP
r−2 ∪ LI

r−2

as follows:
– MP

r−2 is the union of the components of Mr−2 not included in πr−2(M
I
r−1)

∗ ∪ Hr−2,
and MI

r−2 is the union of the components of Mr−2 included in πr−2(M
I
r−1)

∗ ∪ Hr−2.
– Similarly, LP

r−2 is the union of the components of Lr−2 not included in πr−2(M
I
r−1)

∗ ∪
Hr−2, and LI

r−2 is the union of the components of Lr−2 included in πr−2(M
I
r−1)

∗ ∪
Hr−2.

Repeating the argument, we decompose πj(L
P
j+1) as Fj ⊃ πj(L

P
j+1)

∗ = Hj ∪ Lj , and we
introduce MP

j ,M
I
j ,L

P
j ,L

I
j analogously.

Remark 5.1. By definition, Rj and Mj , MP
j ,M

I
j are Fj-definable. Furthermore, from the theorem

of the closure (see [8], pp. 122) and taking into account that B(P) is K-definable, one deduces that
Hj and Lj are also K-definable. Thus, LP

j ,L
I
j are also K-definable. See also Theorem 5.8 for the

K–definability of Cj .

Remark 5.2. Observe that if dim(B(P)) = 0 then for j ∈ {2, . . . , r − 1} it holds that Hj = MI
j =

LI
j = ∅, MP

j = Mj ,L
P
j = Lj and dim(Lj) = 0.

Example. In this example, we illustrate the above varieties. For this purpose, we continue working
with Example 3 and, hence, we use the notation introduced there. First we observe, that GRS(P) is
normal. Since r = 3 the associated varieties are:
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• For the resultant sequence: R2 = C2 ∪M2.
• For the fibre: π2(FP(h )) = (FP)

P
2 ∪ (FP)

I
2.

• For the base points: π2(B(P))∗ = H2 ∪ L2 with the related decompositions
– M2 = MP

2 ∪MI
2

– L2 = LP
2 ∪ LI

2.
[Varieties associated to GRS(P)] The content of R2 w.r.t. Z is t12 (t2 + t1) . So,

C2 = {(0, λ) |λ ∈ C(h )} ∪ {(−λ, λ) |λ ∈ C(h )} .

On the other hand, the coefficients of S2 w.r.t. Z are

coeffsZ (S2) = {− (h1 + h3)
2
(h2 + h1)

2
(−t1h2 + h1t2) ,

− (h1 + h3)
2
∆1∆2,

− (h2 − h3)
2
∆1∆2,

(h1 + h3)
3
(h2 + h1 + t1 + t2) (h2 + h1 − t1 − t2)∆1}

where
∆1 = t1h3 + h3t2 − t1h2 + h1t2
∆2 = h2

2h3 + 2h1h2h3 + t1
2h2 + t2h2t1 −t1

2h3 − 2t1h3t2 −h1t2t1 −t2
2h3 + h1

2h3 −h1t2
2.

Furthermore, the Gröbner basis of coeffsZ (S2) w.r.t. lex order with t2 > t1, as ideal in C(h )[t1, t2]
is

M = {−h2
2t2 + t2

3,−h1t2 + t1h2}.
Therefore,

M2 = {(0, 0), (h1, h2), (−h1,−h2)}

[Fibre] In Example 3, we have seen that FP(h ) = {h ,−h }. Thus

π2(FP(h )) = {(h1, h2), (−h1,−h2)}
and, taking into account π2(B(P))∗ (see below), we get that

(FP)
P
2 = {(h1, h2), (−h1,−h2)}, and (FP)

I
2 = ∅ .

[Base Points] In Example 3 we have seen that

B(P) = {(0, λ, 0) |λ ∈ C(h )} ∪ {(−λ, λ, λ) |λ ∈ C(h )}.
Therefore, projecting the lines, one gets that

π2(B(P))∗ = {(0, λ) |λ ∈ C(h )} ∪ {(−λ, λ) |λ ∈ C(h )}.
Thus, π2(B(P))∗ = H2 ∪ L2, where

H2 = {(0, λ) |λ ∈ C(h )} ∪ {(−λ, λ) |λ ∈ C(h )}, and L2 = ∅.

Furthermore, see above, M2 decomposes as M2 = MP
2 ∪MI

2, where

MP
2 = {(h1, h2), (−h1,−h2)}, and MI

2 = {(0, 0)}.

Obviously LP
2 = LI

2 = ∅.

Next, we analyze the relations among the varieties we have introduced in connection to the
projection of the fibre and of the base point variety. As mentioned in the introduction, we will see
that essentially the behavior is as follows

• the projection of the fibre goes into the pure part MP
i of the primitive variety Mi (see Theorem

5.7),
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• the high dimensional components of the base points project into the content variety Ci (see
Theorem 5.4),

• while the low dimensional components of the base points go into MP
i (see Theorem 5.7).

We know that
W h

1 ∩ · · · ∩W h
n = FP(h ) ∪B(P).

We start with the next lemma where a similar decomposition holds for MP
j . This first lemma, indeed,

establishes that all points in the pure part of the primitives varieties are either projections of base
points or of fibre points. This will be used in the next theorems to first state that the content varieties
are essentially defined by the projection of the sufficiently high dimensional components of the base
points (see Theorem 5.4), and to afterwards provide a clearer decomposition of the pure part of the
primitive part variety (see Theorem 5.7).

Lemma 5.3. For j ∈ {2, . . . , r − 1}, MP
j = (MP

j ∩ πj(FP(h ))) ∪ (MP
j ∩ LP

j ).

As consequence of this lemma, we get the following theorem. We recall that the varieties
introduced above are defined for j ∈ {2, . . . , r − 1}, where we have assumed that r ≥ 3.

Theorem 5.4 (Decomposition of Cj). It holds that:
1. If dim(B(P)) < r − 2 then Cr−1 = ∅.
2. If r > 3 and dim(πj((M

P
j+1 ∩LP

j+1)∪MI
j+1)) < j − 1 for j ∈ {2, . . . , r− 2}, then Cj = ∅.

3. If dim(πr−1(B(P))∗) = r − 2, then Cr−1 = Hr−1.
4. If r > 3 and dim(πj((M

P
j+1 ∩ LP

j+1) ∪MI
j+1)) = j − 1 for j ∈ {2, . . . , r − 2}, then Cj is

the hypersurface included in πj((M
P
j+1 ∩ LP

j+1) ∪MI
j+1)

∗.

Remark 5.5. In Example 3, we have seen that dim(B(P)) = 1 = r − 2, and in Example 5 we have
seen that C2 = H2; compare to Theorem 5.4, statement 3.

Corollary 5.6. If dim(B(P)) = 0, for j ∈ {2, . . . , r − 1}, Cj = ∅.

Proof. By Theorem 5.4, statement 1, since r > 2 (see Remark 2.1), Cr−1 = ∅. For j ∈ {2, . . . , r −
2}, the result follows from Theorem 5.4, statement 2, taking into account that πj((M

P
j+1 ∩ LP

j+1) ∪
MI

j+1) = πj(Mj+1 ∩Lj+1) ⊂ πj(Lj+1) (see Remark 5.2), from where dim(πj((M
P
j+1 ∩LP

j+1)∪
MI

j+1)) ≤ dim(πj(Lj+1)) = 0 < j − 1.

Theorem 5.7. [Decomposition of Rj ,Mj] It holds that:
1. Rr−1 = πr−1(B(P))∗ ∪ (FP)

P
r−1.

2. If r > 3 and j ∈ {2, . . . , r − 2}, Rj = πj(Mj+1)
∗.

3. For j ∈ {2, . . . , r − 1}, MP
j = (FP)

P
j ∪ LP

j ∪Qj , where Qj ⊂ (FP)
I
j .

Example. We illustrate the theorem by means of Examples 3 and 5. Let L1 = {(0, λ) |λ ∈ C(h )}
and L2 = {(−λ, λ) |λ ∈ C(h )}. Then (compare to Theorem 5.7, statement 1),

R2 = C2 ∪M2 = L1 ∪ L2 ∪ {(0, 0), (h1, h2), (−h1,−h2)} =

= L1 ∪ L2 ∪ {(h1, h2), (−h1,−h2)} = π2(B(P))∗ ∪ (FP)
P
2

Moreover (compare to Theorem 5.7, statement 3), M2 = (FP)
P
2 ∪ L2 ∪Q2, with Q2 = ∅.
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Theorem 5.8. [K-definability of Cj]
1. Cr−1 is K-definable.
2. If r > 3 and dim(πj(M

I
j+1)

∗) < j − 1 for j ∈ {2, . . . , r − 2}, then Cj is K-definable.

Proof. By Theorem 5.4, we only need to prove the theorem if j < r−1 and dim(πj((M
P
j+1∩LP

j+1)∪
MI

j+1) = j− 1. By Theorem 5.4, Cj is the hypersurface included in πj((M
P
j+1 ∩LP

j+1)∪MI
j+1)

∗.
Thus, reasoning as in the proof of Theorem 5.7, Cj is the hypersurface included in ∆ = Hj ∪
πj(M

I
j+1)

∗. Thus, Cj ⊂ Hj . Now the theorem follows from Remark 5.1.

6. Connection of GRS(P) to Gröbner Bases
In the previous section we have analyzed some varieties of the GRS(P) in connection to the base
points and a generic fibre. In this section, we study the connection to Gröbner bases. We assume that

GRS(P) = {S0, (S1, R1), . . . , (Sr−1, Rr−1)}

is normal. In addition, in the sequel, we assume that either B(P) = ∅ or dim(B(P)) = 0. We start
with the following lemma.

Lemma 6.1. [Up and down property] It holds that:
1. If P ∈ FP(h ), then π1(P ) is a root of S0(t1).
2. If α is a root of S0(t1), then there exists P ∈ FP(h ) such that π1(P ) = α.

From Lemma 6.1, one directly gets the following theorem.

Theorem 6.2. π1(FP(h )) = VF(S0).

From this result we get the following corollaries.

Corollary 6.3. Let I be the ideal, in K(h )[ρ, t ], generated by {G1, . . . , Gn, ρq − 1}, and G be a
reduced Gröbner basis of I w.r.t. the lex order with ρ > tr > · · · > t1. Let {g1(t1)} = G∩K(h )[t1],
then the square-free part of g1 and of S0 are equal, up to multiplication by a non-zero element in K.

Proof. First we observe that I is zero dimensional, since its variety over F is FP(h ). Now, the result
follows from the closure theorem, the elimination property of Gröbner bases, Hilbert’s Nullstellen-
satz, and Theorem 6.2.

In the next corollary we use the notion of ti-regular position of an ideal of t -multivariate
polynomials over a field (see [16], pp. 194), that says that if I is zero-dimensional then it is in ti-
regular position if any two zeros of I, over the algebraic closure of the ground field, have different
ti-coordinate. As commented in [16], we observe that nearly every linear change of coordinates will
set the ideal in regular position.

Corollary 6.4. Let I be as in Corollary 6.3. If I is t1-regular and radical then

deg(ΦP) = degt1

 S0

gcd

(
S0,

∂S0

∂t1

)
 .
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Proof. It follows from Corollary 6.3 and the Shape Lemma (see Theorem 8.4.6 in [16], pp. 195;
observe that the notion used in this paper of reduced Gröbner basis is the notion of normed reduced
Gröbner basis used in [16]).

Example. Through this example, we illustrate the results in this section. We consider the 3-dimen-
sional rational variety V ⊂ C5 (so, n = 5 and r = 3) given by the parametrization

P( t ) =

(
t3

t2 − t3
,
(t1 + t3)

4

t2 − t3
,
(t1 + t3)

2

t2 − t3
,

t3
4

t2 − t3
,

t3
3

t2 − t3

)
,

that satisfies our assumptions. The polynomials Gi are

G1( t , h ) = t3 (h2 − h3)− h3 (t2 − t3)

G2( t , h ) = (t1 + t3)
4
(h2 − h3)− (h1 + h3)

4
(t2 − t3)

G3( t , h ) = (t1 + t3)
2
(h2 − h3)− (h1 + h3)

2
(t2 − t3)

G4( t , h ) = t3
4 (h2 − h3)− h3

4 (t2 − t3)

G5( t , h ) = t3
3 (h2 − h3)− h3

3 (t2 − t3)

G( t , h , Z ) = G2 + Z1G3 + Z2G4 + Z3G5.

[Base Points] We analyze the base points. For this purpose, we consider the ideal I, in C[ t ], gener-
ated by {p1, . . . , p5, q}, and we take the Gröbner basis G of I w.r.t. the lex order with t3 > t2 > t1:

G = {t21, t2, t3}.

Thus,
B(P) = {(0, 0, 0)}

and, hence, dim(B(P)) = 0. Therefore, H2 = MI
2 = LI

2 = ∅ and LP
2 = L2 = {(0, 0)}.

[Fibre] We deal now with FP(h ). For this, we consider the ideal J, in C(h )[ρ, t ], generated by
{G1, . . . , G5, ρq−1}, and we take the Gröbner basis F of J w.r.t. the lex order with ρ > t3 > · · · >
t1:

F = {−h1
2 + 2 t1h3 + t1

2 − 2h1h3,−h2 + t2, t3 − h3,−1 + (h2 − h3) ρ}.
One can check that J as ideal in C(h )[ρ, t ] is radical and t1-regular. From F , we get that

FP(h ) = {(h1, h2, h3), (−h1 − 2h3, h2, h3)}.

Thus
π2(FP(h )) = {(h1, h2), (−h1 − 2h3, h2}

and,
(FP)

P
2 = π2(FP(h )), (FP)

I
2 = ∅.

[Varieties associated to GRS(P)] Since r = 3, we only analyze M2 = MP
2 ; recall that R2 = M2

and that C2 = MI
2 = ∅. First we observe that GRS(P) is normal. On the other hand, the Gröbner

basis of coeffsZ (S2) w.r.t. lex order with t2 > t1, as ideal in C(h )[t1, t2] is

M = {−t2 (h2 − t2) , t1
2h2 − h1

2t2 − 2h1h3t2 + 2h3t2t1}.

Therefore,
M2 = {(0, 0), (h1, h2), (−h1 + 2h3, h2)}

that decomposes as (see Theorem 5.7)

M2 = MP
2 = (FP)

P
2 ∪ LP

2 ∪Q0 with Q0 = ∅,

or as
R2 = M2 = π2(B(P))∗ ∪ (FP)

P
2 .
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[Connection to Gröbner bases] The polynomials S1 and S0 are

S1(t1, t2) = t1
2 (−t1 + h1) (h1 + 2h3 + t1)

S0(t1) = (−t1 + h1) (h1 + 2h3 + t1) .

On the other hand, the univariate polynomial (in t1) of the ideal of the fibre, namely J, is (compare
to Corollary 6.3)

−h1
2 + 2 t1h3 + t1

2 − 2h1h3 = −S0(t1),

and deg(ΦP) = degt1(S0) = 2 (see Corollary 6.4).

7. Appendix
In this section we give the details of some technical proofs in the paper. More precisely, of the proofs
of Lemmas 3.3, 4.2, 5.3 and 6.1, and Theorems 4.3, 5.4 and 5.7.

[Proof of Lemma 3.3]
1. Let I be the ideal of K(h )[ρ, t ], generated by A(h , t , ρ) = {G1, . . . , Gn, qρ − 1}, where ρ is
a new variable. Since FP(h ) = (W h

1 ∩ · · · ∩W h
n ) \B(P), I is zero-dimensional. Let G(h , t , ρ)

be a reduced Gröbner basis of I w.r.t. the lex order with ρ > tr > · · · > t1; reduced in the sense of
Definition 5 in [8], pp. 90. There exists an open subset Σ of Kr such that for h 0 ∈ Σ, G(h 0, t , ρ)
is the Gröbner basis of A(h 0, t , ρ), see e.g. Example 7 in [8], pp. 283. Moreover, since I is zero-
dimensional, G(h , t , ρ) ∩K(h )[t1] = {g(h , t1)} and every solution of g over F can be continued
to a solution of the full system (see e.g. [16], pp. 194). Now, let α = (a1, . . . , an) ∈ FP(h ) be
such that al least one ai is constant, say a1 ∈ K. Let W∗ be the algebraic set generated, over K, by
P(a1, t2, . . . , tr). Note that dim(W∗) < r, and that t1 − a1 divides g(h , t1). We consider the open
set Ω(P) ∩ Σ. Let h 0 ∈ Ω(P) ∩ Σ. Then, P(h 0) is well defined, and G(h 0, t , ρ) is a Gröbner
basis of A(h 0, t , ρ). Since g(h 0, a1) = 0, a1 is extended to a solution (A, ρ0) of the full system,
where the first component of A is a1. Therefore, P(h 0) = P(A) and hence P(Ω(P) ∩ Σ) ⊂ W∗

which is a contradiction.
2. It is a direct consequence of the triangular structure of the reduced Gröbner basis, w.r.t. the lex
order, of a zero-dimensional ideal K-definable.
3. It follows from statement 2.
4. Let W α

1 ∩ · · · ∩ W α
n contain a hypersurface in Kr, and M( t ) its defining polynomial. Then,

there exist Ni ∈ K[ t ] such that

Gi( t , α ) = pi( t )q(α )− pi(α )q( t ) = M( t )Ni( t ), for i = 1, . . . , n.

Observe that, since gcd(p1, . . . , pn, q) = 1, then gcd(q( t ),M( t )) = 1. Now, we consider the set
Λα := {β̄ ∈ Kn /M(β̄) = 0, q(β̄) ̸= 0}. Λα ̸= ∅ is an open subset of VK(M). Moreover
Λα ⊂ FP(α ), which is impossible since card(Λα ) = ∞ and FP(α ) is zero dimensional because
α ∈ Ω(P).
5. This statement follows from statement 4.

[Proof of Lemma 4.2]
1. Let M = M2+Z1M3+ · · ·+Zℓ−2Mℓ, and let R be the set of all the roots of M1 in the algebraic
closure of the quotient field of L. The result follows from

0 ̸= resx(M1,M) = LCoeff(M1)
degx(M)

∏
α∈R

M(α).

2. Since M does not have factors in L[x] then gcd(M(∆∗, x),M(∆, x)) = 1, and hence N ̸= 0.
Let T be the set of non-constant monomials in ∆ appearing in M . We express M as M(∆, x) =
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a(x) +
∑

T∈T aT (x)T. If R is the set of all roots of M(∆∗, x), in the algebraic closure of the
quotient field of L[∆∗], as univariate polynomial in x, then

N = LCoeff(M(∆∗, x), x)degx(M)
∏
α∈R

M(∆, α).

Since N ̸= 0, if N does not depend on ∆, then aT (α) = 0 for all T ∈ T and for all α ∈ R. So,
M(∆, x) − a(x) = B(∆,∆∗, x)M(∆∗, x) for some polynomial B. If a = 0, M(∆∗, x) divides
M(∆, x). Thus M(∆∗, x) ∈ L[x], and hence M(∆, x) ∈ L[x] which is a contradiction. If a ̸= 0
then M(∆∗, x)(1 − B(∆∗,∆∗, x)) = a(x). So, M divides a which is again a contradiction. So
N depends on ∆, and reasoning similarly we get that also depends on ∆∗. For the second part,
let C(∆∗) be a factor of N depending only on ∆∗; similarly if it only depends on ∆. Let P be a
solution of C over the algebraic closure M of the quotient field of L. Then, N(P,∆) = 0 and since
LCoeff(M,x)(∆) ̸= 0 there exists a ∈ M such that M(P, a) = 0 = M(∆, a) = 0. This implies
that (x− a) divides M , which is a contradiction.

[Proof of Theorem 4.3]
We prove statements 1 and 2 simultaneously. We start with the case i = r − 1. By Lemma 3.3,
statement 5, gcd(G1, . . . , Gr) = 1, and by Proposition 2.2, we deduce that G1 is not constant.
Therefore, by assumption A-3, and Lemma 4.2, statement 1, applied to Rr−1, we get that Rr−1

depends on Z and so Sr−1 does. Moreover, by definition, Sr−1 does not have factors in K[ t , h ].
Now, for i = r − 2, applying Lemma 4.2, statement 2, to Sr−1, and taking L = K[ t r−2, h ] and
∆ = Z , one gets the result. Similarly, for Ri with i < r− 2 and for Si with 2 < i < r− 2. Finally,
since R1 is not zero it follows that S1, S0 are not zero either.
To prove statement 3, let us assume that Sr−1 does not depend on t . By statement 2, Sr−1 depends
on Z . Let α ∈ Fr−2 be such that Sr−1 vanishes at Z = α . By Proposition 3.1, there exists a
such that G1( t

r−1, a, h , α ) = G( t r−1, a, h , α ) = 0. Moreover, since G1( t
r−1, tr, h , α ) ∈

F[ t r−1][tr], one has that a does not depends on Z , and hence Gi( t
r−1, a, h , α ) = 0 for i =

1, . . . , n. Let us see that q( t r−1, a) ̸= 0. Indeed, if it vanishes, then pi( t
r−1, a) = 0 for i =

1, . . . , n. Therefore (tr − a) divides to the gcd(p1, . . . , pn, q) which is a contradiction. This implies
that P( t ) = P( t r−1, a). But this is impossible because a belongs to the algebraic closure of
F[ t r−1] and hence it does not depend on tr while P( t ) does since dim(V) = r.

[Proof of Lemma 5.3]
The right-left inclusion is clear. We prove MP

j ⊂ (MP
j ∩πj(FP(h )))∪(MP

j ∩LP
j ) by induction. We

start with j = r−1. let P ∈ Ω = MP
r−1 \Hr−1; note that, since no component of MP

r−1 is included
in HP

r−1, Ω∗ = MP
r−1. Then, Sr−1(P ) = 0 and hence Rr−1(P ) = 0. By Proposition 3.1, statement

2, P extends to a common solution P ∗ of {G1, G}. Moreover, since P ∈ Fr−1
r−1 and G1(P, tr, h ) ∈

Fr−1[tr] one gets that P ∗ ∈ Fr
r−1. Therefore, G(P ∗, h , Z ) = 0 implies that Gi(P

∗, h ) = 0 for
all i = 1, . . . , n. Thus, P ∗ ∈ W h

1 ∩ · · · ∩ W h
n = FP(h ) ∪ B(P). So, P ∈ πr−1(FP(h )) ∪

πr−1(B(P)) ⊂ πr−1(FP(h )) ∪ πr−1(B(P))∗ = πr−1(FP(h )) ∪ Lr−1 ∪ Hr−1. But P ̸∈ Hr−1

and hence P ∈ πr−1(FP(h )) ∪ LP
r−1. Thus, Ω ⊂ (MP

r−1 ∩ πr−1(FP(h ))) ∪ (MP
r−1 ∩ LP

r−1).
Therefore, MP

r−1 = Ω∗ ⊂ (MP
r−1 ∩ πr−1(FP(h ))) ∪ (MP

r−1 ∩ LP
r−1).

Now, let the inclusion hold for j and we prove it for j − 1. Let Ω = MP
j−1 \ (πj−1(M

I
j )

∗ ∪
Hj−1). As above, note that Ω∗ = MP

j−1. Let P ∈ Ω. Then, Sj−1(P ) = 0 and hence Rj−1(P ) = 0.
By the normality assumption, P extends to a common solution P ∗ of

{Sj( t
j , h , W r−2, . . . , W j−1), Sj( t

j , h , W r−2, . . . , W j , Z )};
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if j = r − 2 then {Sr−1( t
r−1, h , W r−2), Sr−1( t

r−1, h , Z )}. Moreover, since P ∈ Fj−1
j−1 and

Sj(P, tj , h , W r−2, . . . , W j−1) ∈ Fj−1[tj ] one gets that P ∗ ∈ Fj
j−1. Therefore,

Sj(P
∗, h , W r−2, . . . , W j , Z ) = 0

implies that P ∗ ∈ Mj . Moreover, by construction, P ̸∈ πj−1(M
I
j )

∗ and hence P ∗ ̸∈ MI
j . Thus,

P ∗ ∈ MP
j . Now, by the induction hypothesis, P ∗ ∈ (MP

j ∩ πj(FP(h ))) ∪ (MP
j ∩ LP

j ). So P ∗ ∈
πj(FP(h )) ∪ LP

j . Therefore, P ∈ πj−1(FP(h )) ∪ πj−1(L
P
j ) ⊂ πj−1(FP(h )) ∪ πj−1(L

P
j )

∗ =

πj−1(FP(h )) ∪ Lj−1 ∪ Hj−1. Now, since P ̸∈ πj−1(M
I
j )

∗ ∪ Hj−1, the proof follows as above.

[Proof of Theorem 5.4]
We prove statements 1 and 2 simultaneously. Let contZ (Rj) have a factor M depending on t j ;
assume w.l.o.g. that M is irreducible. Let A = VFj (M) ⊂ Fj

j , and Ω = A \ πj(FP(h )). Since
dim(FP(h )) = 0, Ω ̸= ∅ and open in A. Thus, dim(Ω) is r − 2 for statement 1, and j − 1 for
statement 2. Since GRS(P) is normal, every point in P ∈ Ω extends to a common solution P ∗ of
{G1, G} (for statement 1) or of

{Sj+1( t
j+1, h , W r−2, . . . , W j), Sj+1( t

j+1, h , W r−2, . . . , W j+1, Z )}

(for statement 2); if j = r − 2 then {Sr−1( t
r−1, h , W r−2), Sr−1( t

r−1, h , Z )}. Say that Ωe is
the set of extended common solutions. For every P ∈ Ω ⊂ Fj

j , since G1(P, tr, h ) ∈ F[tr] (for
statement 1) and Sj+1(P, tj+1, h , W r−2, . . . , W j) ∈ Fj [tj+1] (for statement 2), its extension P ∗

belongs to Fr (for statement 1) or to Fj+1
j (for statement 2). Therefore, Ωe ⊂ Fr (for statement 1) and

Ωe ⊂ Fj+1
j (for statement 2). Thus, Ωe ⊂ (W h

1 ∩· · ·∩W h
n )\FP(h ) = B(P) (for statement 1) or,

by Lemma 5.3, Ωe ⊂ Mj+1 \πj+1(FP(h )) = (MP
j+1 \πj+1(FP(h ))∪ (MI

j+1 \πj+1(FP(h )) =

[((MP
j+1∩πj+1(FP(h ))∪(MP

j+1∩LP
j+1))\πj+1(FP(h ))]∪(MI

j+1 \πj+1(FP(h )) = [(MP
j+1∩

LP
j+1) \ πj+1(FP(h ))] ∪ (MI

j+1 \ πj+1(FP(h ))) ⊂ (MP
j+1 ∩ LP

j+1) ∪ MI
j+1 (for statement 2).

Then, Ω ⊂ πj(Mj+1 ∩ πj+1(B(P)))∗), and hence r − 2 = dim(Ω) ≤ dim(πr−1(B(P))) (for
statement 1) and j − 1 = dim(Ω) ≤ dim(πj((M

P
j+1 ∩ LP

j+1) ∪MI
j+1))) (for statement 2); which

is a contradiction.
In order to prove statement 3, let H ∈ K[ t r−1] be the defining polynomial of Hr−1. G1

and G vanish on B(P), so Rr−1 vanishes on πr−1(B(P)); in particular on Hr−1. Furthermore,
since Hr−1 ⊂ Fr−1, all coefficients of Rr−1 w.r.t. Z vanish on Hr−1. Thus, Hr−1 ⊂ Rr−1.
Furthermore, since dim(Hr−1) = r − 2, Hr−1 ⊂ Cr−1. Now, let us assume that contZ (Rr−1)
has another factor H∗, coprime with H , and depending on t r−1. Let H∗

r−1 = VF(H
∗). We take

Ω = H∗
r−1 \ πr−1(B(P))∗ = H∗

r−1 \ (Hr−1 ∪ Lr−1). Since H∗
r−1 ̸= Hr−1, dim(Ω) = r − 2.

Every P ∈ Ω, by the normality, extends to P ∗ ∈ W h
1 ∩ · · · ∩ W h

n = FP(h ) ∪ B(P); note that
P does not depend on Z and G1 ∈ F[ t ]. Let Ωe ⊂ FP(h ) ∪B(P) be the set of extended points
from Ω. dim(Ωe) ≥ r − 2. Therefore, since r > 2 and dim(B(P)) = r − 2, Ωe ∩B(P) ̸= ∅. Let
P ∗ ∈ Ωe ∩B(P). Thus, πr−1(P

∗) ∈ Ω ∩ πr−1(B(P)) = ∅, which is a contradiction. Therefore,
Hr−1 = Cr−1.

To prove statement 4, let Q be the hypersurface included in πj((M
P
j+1 ∩LP

j+1)∪MI
j+1)

∗ and
let H be its defining polynomial.

Sj+1( t
j+1, h , W r−2, . . . , W j), Sj+1( t

j+1, h , W r−2, . . . , W j+1, Z )

vanish on Mj+1; in particular, Rj vanishes on Q ⊂ πj(Mj+1)
∗. Furthermore, since Q ⊂ Fj

j ,
all coefficients of Rj w.r.t. Z vanish on Q. Thus, Q ⊂ Rj . Furthermore, since dim(Q) = j − 1,
Q ⊂ Cj . Now, let us assume that contZ (Rj) has another factor H∗, coprime with H , and depending
on t j ; say that T = VFj (H

∗). We consider the non-empty open set Ω = T \ (Q ∪ πj(FP)); note
that dim(πj(FP)) = 0 and that gcd(H,H∗) = 1. Every P ∈ Ω extends to a common solution P ∗ of
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Sj+1( t
j+1, h , W r−2, . . . , W j) and Sj+1( t

j+1, h , W r−2, . . . , W j+1, Z ). Since P does not
depend on Z , P ∗ ∈ Mj+1. By construction P ∗ ̸∈ πj+1(FP). Thus, by Lemma 5.3, P ∗ ∈ (MP

j+1 ∩
LP
j+1) ∩ MI

j+1. Therefore, if we denote by Ωe the set of extended solutions of Ω, Ωe ⊂ (MP
j+1 ∩

LP
j+1) ∩MI

j+1. Furthermore, Ω = πj(Ω
e) ⊂ πj((M

P
j+1 ∩ LP

j+1) ∩MI
j+1). But dim(Ω) = j − 1,

and hence Ω ⊂ Q which is a contradiction.

[Proof of Theorem 5.7]
Statements 1 and 2 follow from the normality and from the fact that the involved points do not
depend on Z .

We prove statement 3 by induction. Rr−1 = Cr−1∪MP
r−1∪MI

r−1. By Theorem 5.4, Cr−1 = Hr−1

and, by statement 1, Rr−1 = πr−1(B(P))∗ ∪ (FP)
P
r−1 = Hr−1 ∪ Lr−1 ∪ (FP)

P
r−1 = Hr−1 ∪

LP
r−1 ∪ (FP)

P
r−1. Thus, Hr−1 ∪MP

r−1 ∪MI
r−1 = Hr−1 ∪ LP

r−1 ∪ (FP)
P
r−1. So ((Hr−1 ∪MP

r−1 ∪
MI

r−1) \ Hr−1)
∗ = ((Hr−1 ∪ LP

r−1 ∪ (FP)
P
r−1) \ Hr−1)

∗. Therefore (Hr−1 \ Hr−1)
∗ ∪ (MP

r−1 \
Hr−1)

∗ ∪ (MI
r−1 \ Hr−1)

∗ = (Hr−1 \ Hr−1)
∗ ∪ (LP

r−1 \ Hr−1)
∗ ∪ ((FP)

P
r−1 \ Hr−1)

∗. Hence,
MP

r−1 = LP
r−1 ∪ (FP)

P
r−1 ∪Qr−1, where Qr−1 = ∅.

Let the result be true for j + 1 ≤ r − 1. By the induction hypothesis, (MP
j+1 ∩ LP

j+1) ∪
MI

j+1 = [((FP)
P
j+1∪LP

j+1∪Qj+1)∩LP
j+1]∪MI

j+1 = LP
j+1∪ (Qj+1∩LP

j+1)∪MI
j+1. Therefore,

πj((M
P
j+1 ∩ LP

j+1) ∪ MI
j+1)

∗ = πj(L
P
j+1)

∗ ∪ πj(Qj+1 ∩ LP
j+1) ∪ πj(M

I
j+1)

∗ = Hj ∪ Lj ∪
πj(Qj+1∩LP

j+1)∪πj(M
I
j+1)

∗ and, by Theorem 5.4, Cj is either empty or the hypersurface included
in Hj ∪ Lj ∪ πj(Qj+1 ∩ LP

j+1) ∪ πj(M
I
j+1)

∗; that is, the hypersurface included in ∆ = Hj ∪
πj(M

I
j+1)

∗. On the other hand, by the induction hypothesis and by statement 2, Cj ∪Mj = Rj =

πj(Mj+1)
∗ = πj(M

P
j+1 ∪ MI

j+1)
∗ = πj((FP)

P
j+1 ∪ LP

j+1 ∪ Qj+1 ∪ MI
j+1)

∗ = πj((FP)
P
j+1) ∪

πj(L
P
j+1)

∗ ∪ πj(Qj+1) ∪ πj(M
I
j+1)

∗ = πj((FP)
P
j+1) ∪Hj ∪ Lj ∪ πj(Qj+1) ∪ πj(M

I
j+1)

∗. Now,
we express πj((FP)

P
j+1) ∪ πj(Qj+1) as (FP)

P
j ∪ Q0 where Q0 ⊂ (FP)

I
j . Then, Cj ∪ Mj =

(FP)
P
j ∪ Hj ∪ Lj ∪Q0 ∪ πj(M

I
j+1)

∗. In this situation, we subtract ∆ to get Mj \∆ = ((FP)
P
j \

∆)∪ (Hj \∆)∪ (Lj \∆)∪ (Q0 \∆)∪ (πj(M
I
j+1)

∗ \∆) = (FP)
P
j ∪ (LP

j \∆)∪ (Q0 \∆). Taking
Zariski closures we get that MP

j = (FP)
P
j ∪ LP

j ∪Qj with Qj = Q0 \∆ ⊂ Q0 ⊂ (FP)
I
j .

[Proof of Lemma 6.1]
1. Let P ∈ FP(h ) and Pi = πi(P ). The proof goes as follows: (a) we prove by induction that, for
i ∈ {2, . . . , r − 1}, Pi ∈ Mi; (b) we prove that S0(P1) = 0.

(a) Since Gi vanishes at P , and P does not depend on Z , Pr−1 ∈ Rr−1 = Cr−1 ∪ Mr−1. So,
by Corollary 5.6, Pr−1 ∈ Mr−1. Now, let Pi ∈ Mi. Then Pi does not depend on Z and, hence,
Pi−1 ∈ Ri−1 = Ci−1 ∩Mi−1. Now, by Corollary 5.6, Pi−1 ∈ Mi−1.

(b) Since P2 ∈ M2, P2 does not depend on Z , and hence R1(P1) = 0. Moreover, since P1 does
not depend on Z , W ℓ, and since R1 is univariate in t1, one has that S1(P1) = 0. Finally, since
the polynomial S1 is univariate in t1 and P1 does depend on h (see Lemma 3.3, statement 1), one
concludes that S0(P1) = 0.

2. Since h ∈ FP(h ), by statement 1, S0(h1) = 0. Hence S0 is not constant. Moreover, since S0

is primitive w.r.t. h , all roots of S0 are in F \ K. On the other hand, by definition, LP
2 is either

empty or zero-dimensional. In this situation, if S0(α) = 0, then S1(α) = 0, and hence R1(α) = 0.
Moreover, by the normality assumption, α extends to a common solution (α, β) not depending on
Z . So, (α, β) ∈ MP

2 = M2 (see Remark 5.2). By Theorem 5.7, (α, β) ∈ Q2 ∪ LP
2 ∪ (FP)

P
2 .

Moreover, by Remark 5.1, LP
2 is K-definable. So, since LP

2 is zero-dimensional and α ̸∈ K, one has
that (α, β) ̸∈ LP

2 . Thus, (α, β) ∈ Q2 ∪ (FP)
P
2 ⊂ π2(FP). Therefore, there exists P ∈ FP such that

π1(P ) = α.



Behavior of the Fiber and the Base Points 19

References
[1] Adkins W. A., Wang H.H., Hoffman J.W.: Equations of parametric surfaces with base points via syzygies.

Journal of Symbolic Computation. 39/1, 73-101 (2005).
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