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and we connect this with certain phenomena which are not possible in the algebraic
world, namely the existence of limit circles, limit points, or spiral branches. On the
practical side, we provide an algorithm which has been implemented in the computer
algebra system Maple to visualize this kind of curves. Our implementation makes
use (and improves some aspects of) the command polarplot currently available in
Maple for plotting curves in polar form.
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1 Introduction

Plotting and correct visualization of algebraic curves, both in the case when
they are implicitly defined by means of a polynomial f(x, y) = 0, or by a
parametrization ϕ(t) = (x(t), y(t)) with x(t), y(t) being rational, have re-
ceived a great deal of attention in the literature on scientific computation
(see for example [1], [4], [6], [7], [8], [9], [11]). With this paper, we want to
initiate a similar study for curves which are written in polar coordinates. Such
curves may appear in Engineering and Physics, in particular in Mechanics
(very specially in Celestial Mechanics), and also in Cartography. In this sense,
here we address those curves which are rational when considered in polar
form, i.e. curves defined by means of a parametrization (r(t), θ(t)) where both
r(t), θ(t) are rational functions. Arquimedes’ spiral, Cote’s spiral under cer-
tain conditions, Fermat’s spiral or Lituus’ spiral (some of these can be found
in www.mathematische-basteleien.de/spiral.htm), for example, belong to this
class; also, in Cartography these curves may appear when using for example
conic, pseudo-conic or polyconic projections ([3], [13]).

It is quite natural to start wondering if this kind of curves can be algebraic,
when considered in cartesian coordinates. However, one may prove (see The-
orem 1 in Subsection 2.1) that, with the exceptions of lines and circles, this
cannot happen. As a consequence they can exhibit properties that algebraic
curves cannot have. Here we analyze some of them which are relevant from the
point of view of plotting, in particular the existence or not of infinitely many
self-intersections (see Subsection 2.2), the appearance of limit points, limit
circles and spiral branches, all of them introduced in Subsection 2.3, and the
relationship between both phenomena. Our results are of algorithmic nature,
and so they can be used to effectively detect all these situations just from the
parametrization (in polar form) defining the curve.

The possibility of detecting in advance the above phenomena is very useful to
improve the plotting of these curves, which can be really “devilish”. To give an
idea, one may use the computer algebra system Maple, where the instruction
polarplot is available (we have also tried other packages like Maxima, SAGE
and Mathematica; however, either no similar instruction was available, or the
corresponding command behaved in a very similar way to polarplot). This in-
struction allows to draw curves defined in polar coordinates either by means of
an equation r = f(θ), or by a parametrization (r(t), θ(t)), and has a nice per-
formance for simple curves, but may not be enough for illustrating the behavior
of a more complicated curve. As an example, one may consider the following

parametrizations in polar coordinates: (1) r =
t2

t2 − 11t+ 30
, θ =

t2 + 78

t2 + 1
; (2)

r = t, θ =
t2 + 14

t2 + 1
; (3) r = t, θ =

t3 + 1

t2 − 3t+ 2
. If one uses polarplot to visual-
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ize these curves, one obtains the outputs in Fig. 1: here the curves (1), (2), (3)
are displayed from left to right; in (1) and (2) we have asked Maple to plot the
curve for t ∈ (−∞,∞), and in the case of (3) we have chosen t ∈ (−2.01, 2.01)
(because r, θ are both non-bounded for t → ±∞). However, in the three cases
it is clear that the output is not enough to properly understand the behavior
of the curve.

Fig. 1. Some complicated curves plotted with polarplot

By using our ideas, one can obtain an algorithm which provides, for a given
curve of the considered kind, information and several plottings corresponding
to the more interesting parts of it. We have implemented this algorithm, that
we call polares (the Spanish word for “polar coordinates”), in Maple 15.
Our algorithm analyzes the curve, detects its main features, and uses the
command polarplot, but for plotting the curve over intervals (generated by
our algorithm), each one showing certain features of the curve; together with
the provided information, this helps to clarify the behavior of the curve. The
outputs of our algorithm for the above curves can be checked in Subsection
3.2 (Figures 12 and 13 for (1) and (2) respectively) and Subsection 3.4 (Figure
15 for (3)).

The paper is structured as follows: in Section 2, the reader will find the the-
oretical results on the shape of these curves. In Section 3, we provide some
details on the algorithm, together with several examples of outputs. Finally,
in Section 4 we present some conclusions and suggest some future lines of
research.
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2 Geometrical Properties of Curves Rational in Polar Coordinates

2.1 Preliminaries and First Properties

In the present paper, given a point P ∈ R
2, its polar coordinates are denoted by

(r, θ), and its cartesian coordinates by (x, y). Notice that the polar coordinates
of P are not unique, since (r, θ), (r, θ+2kπ) with k ∈ Z, or (−r, θ+(2ℓ+1)π)
with ℓ ∈ Z, define the same point.

We are interested in analyzing the geometry of a planar curve C which is
rational when parametrized in polar coordinates. In other words, there exist
four real polynomials A(t), B(t), C(t), D(t) not all of them constant, with
gcd(A,B) = gcd(C,D) = 1, such that

ϕ(t) = (r(t), θ(t)) =

(

A(t)

B(t)
,
C(t)

D(t)

)

, t ∈ R,

parametrizes C in polar coordinates. We will refer to ϕ(t) as a “polar parametriza-
tion” of C and say that C is “algebraic in polar coordinates”; certainly this
does not mean that C is algebraic itself (i.e. that it has an implicit equation
in x, y).

Let C⋆ be the rational planar curve parametrized by ϕ(t) over the (r, θ)–plane.
This curve C⋆ will be useful in this section and the next one for proving certain
facts on C. Anyway our goal is not to describe C⋆ (which could be done, for
example, by using the results in [1]), but C.

Furthermore we assume that ϕ(t), as a parametrization of C⋆, is proper, i.e.
that it is injective for almost all values of t (equivalently, that almost all points
of C⋆ are generated by just one t-value). In order to check this property, we
consider the polynomials

G1(t, s) = A(t)B(s)−A(s)B(t)

G2(t, s) = C(t)D(s)− C(s)D(t)

obtained by setting r(t) = r(s) and θ(t) = θ(s), and clearing denominators.
Then it is well-known that ϕ(t) is proper iff gcd(G1, G2) = t− s (for modern
references, see Theorem 4.30 in [12]); furthermore, if ϕ(t) is not proper then it
can always be properly reparametrized by applying the algorithm in Chapter
6 of [12]. Also, we will say that a point P0 ∈ C⋆ is reached by the parametriza-
tion if there exists some t0 ∈ C such that ϕ(t0) = P0. It can be proven (see
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Proposition 4.2 in [2]) that the only point of C⋆ that may not be reached by
the parametrization is

P∞ = limt→∞ϕ(t)

whenever it exists. Furthermore, if ϕ(t) is proper then the real points of C⋆

that are reached by complex, but not real, values of the parameter are, ex-
cept perhaps for P∞, isolated points of C⋆ (see also Proposition 4.2 in [2]).
Therefore, the real part of C⋆ can be expressed as

ϕ(R) ∪ P∞ ∪ {Finitely many isolated points.}

In the sequel we will discard the isolated points of C⋆ and we will focus on
the remaining part of C⋆. Since polar coordinates provide a natural mapping
Π (not 1:1) from C⋆ onto C, we will say that a point of C is reached by ϕ(t)
if it has the form Π(P ), where P ∈ C⋆ has been reached by ϕ(t). In this
language, notice that we are identifying C = Π(C̃⋆) where C̃⋆ is the real part
of C⋆, discarding isolated singularities.

Now if C is either a circle centered at the origin or a line passing through the
origin, then it is algebraic in algebraic and polar form at the same time (in fact,
C⋆ is represented by an equation of the type r−r0 = 0 or θ−θ0 = 0). The next
theorem proves that circles and lines are the only cases when this phenomenon
happens. We acknowledge here the help of Fernando San Segundo for proving
the theorem.

Theorem 1 If C is an irreducible, real algebraic curve and is rational in polar
coordinates, then it is either a circle centered at the origin or a line passing
through the origin.

Proof. Let g(x, y) ∈ R[x, y] be the implicit equation of C, and let f(r, θ) ∈
R[r, θ] be the implicit equation of C⋆ in polar form. Now if f depends only on r,
since C is real and irreducible we deduce that it is a circle; similarly if f depends
only on θ, for the same reason it must be a line passing through the origin. So
let us assume that f depends on both r, θ. Now let h(r, θ) = g(rsin(θ), rcos(θ)),
in simplified form. This is an analytic function in r, θ with the property that
if a point P = (x0, y0) ∈ C is represented by any pair (r0, θ0) ∈ C

2, then
h(r0, θ0) = 0. As a consequence, every zero of f(r, θ) is also a zero of h(r, θ).
In this situation, consider the resultant M(θ, u, v) = Resr(f(r, θ), h(r, u, v)),
where h(r, u, v) is the function obtained when substituting formally sin(θ) = u
and cos(θ) = v in h(r, θ). Since C⋆ is rational then it is irreducible. Thus, since
f depends on both r, θ, it has no factor only depending on r, and therefore
f(r, θ) and h(r, u, v) cannot have any factor in common; hence, M(θ, u, v)
cannot be identically 0. Observe also that M(θ, u, v) must depend explicitly
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on either u or v, and on θ. Now we distinguish two situations:

(1) M = M(θ, u) or M = M(θ, v), but M does not depend simultaneously on
u, v. Let us assume w.l.o.g. that M depends on u. Then by Lemma 4.3.1 in
[14] we have that the resultant Resr(f(r, θ), h(r, u, v)) specializes properly
when u = sin(θ) and v = cos(θ), i.e.

M(θ, sin(θ)) = Resr(f(r, θ), h(r, sin(θ), cos(θ))).

Since f depends explicitly on both r, θ we can find an open interval I ⊂ R

such that for every θ0 ∈ I, the equation f(r, θ0) and therefore also h(r, θ0) =
0, have at least one real solution. Hence, by well-known properties of resul-
tants, for all θ0 ∈ I it holds that θ = θ0 is a zero of M(θ, sin(θ)), i.e.
M(θ, sin(θ)) vanishes over I. Hence, by the Identity Theorem (see page 81 in
[10]), and taking into account that M is analytic, it holds that M(θ, sin(θ))
is identically 0. Since M is a polynomial in θ and sin(θ), this implies that
θ and sin(θ) are algebraically dependent. However, this cannot happen be-
cause sin(θ) is a trascendental function.

(2) M = M(θ, u, v) (i.e. M explicitly depends on u, v, at the same time). In
this case, reasoning as in case (1) we end up with an algebraic relationship
M(θ, sin(θ), cos(θ)) = 0. Combining this relationship with the well-known
formula sin2(θ) + cos2(θ) = 1 (again substituting formally sin(θ) = u and
cos(θ) = v and using resultants, for instance), we can also find an algebraic
between θ, cos(θ) or θ, sin(θ), which again cannot happen because sin(θ) and
cos(θ) are trascendental functions.

So, we deduce that under the considered hypotheses, f cannot simultaneously
depend on r, θ, and therefore the statement follows.

If the curve C in the above theorem is reducible, it suffices to reason for each
component. So, we deduce the following corollary.

Corollary 2 The only algebraic curves which are rational in polar coordi-
nates, are circles centered at the origin, and lines passing through the origin.

The above theorem proves that in general the curves we are dealing with are
not algebraic. Hence, it is expectable that we encounter phenomena which are
different from those arising in the algebraic world. Some of these phenomena
are analyzed in the next subsections.

Hereafter we exclude the cases when either r(t) or θ(t) are constant; notice
that these cases correspond to circles centered at the origin and lines passing
through the origin respectively.
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2.2 Self-intersections

Since the polar coordinates of a point are not unique, we have that a point
generated by t ∈ R corresponds to a self-intersection of C if it exists s ∈ R,
t 6= s, and k ∈ Z, such that (t, s, k) is solution of some of the following two
systems:

(⋆)1 =











r(t) = r(s)

θ(t) = θ(s) + 2kπ
(⋆)2 =











r(t) = −r(s)

θ(t) = θ(s) + (2k + 1)π

Moreover, when P∞ = (r∞, θ∞) exists, we will also have to consider the self-
intersections involving P∞, i.e. the solutions of

(⋆)3 =











r∞ = r(s)

θ∞ = θ(s) + 2kπ
(⋆)4 =











r∞ = −r(s)

θ∞ = θ(s) + (2k + 1)π

So, in order to study the self-intersections of C we have to study the above
systems. Additionally, whenever the equation r(t) = 0 has more than one
solution, or one solution and r∞ = 0, the origin is also a self-intersection.

Now in the algebraic case, Bezout’s theorem forces every algebraic curve to
have finitely many self-intersections. However, in our case this does not nec-
essarily hold: the number of self-intersections can be either finite, or infinite.
Hence, in this subsection we will address the problem of detecting whether we
have infinitely many self-intersections, or not.

Notice that since r(t) is rational, the number of t-values reaching a certain
point P ∈ C must be necessarily finite; so, the existence of infinitely many in-
tersections implies not that a point is crossed by infinitely many real branches
of C, but that infinitely many points are crossed by more than one branch of
C. In order to detect whether we have finitely many self-intersections or not,
it suffices to analyze (⋆)1 and (⋆)2; indeed, if P∞ exists, since r(t) is rational
it is clear that the first equations r∞ = r(t) and r∞ = −r(t) of (⋆)3 and (⋆)4,
respectively, have just finitely many solutions, and therefore that we have just
finitely many self-intersections involving P∞. So, in the sequel we focus on (⋆)1
and (⋆)2.
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We start with (⋆)1. For this purpose, we write

r(t)− r(s) =
A(t)B(s)− A(s)B(t)

B(t)B(s)
,

θ(t)− θ(s)− 2kπ =
C(t)D(s)− C(s)D(t)− 2kπD(t)D(s)

D(t)D(s)
.

We denote the numerator of r(t)−r(s) by α(t, s), and the numerator of θ(t)−
θ(s)− 2kπ by β(t, s, k).

Lemma 3 There do not exist a(t, s) 6= 1 and k0 ∈ Z (in fact, k0 ∈ R) such that
a(t, s) simultaneously divides gcd(α(t, s), β(t, s, k0)) and B(t)·B(s)·D(t)·D(s).

Proof. Assume that we have an irreducible polynomial a(t, s) and k0 ∈ Z such
that a(t, s) divides both gcd(α(t, s), β(t, s, k0)) and B(t) ·B(s) ·D(t) ·D(s). We
need to show that a(t, s) = 1. Suppose that a(t, s) divides B(t) (resp. B(s)).
Since it also divides gcd(α(t, s), β(t, s, k0)), it divides α(t, s), and therefore
it also divides A(t) (resp. A(s)). On the other hand, gcd(A(t), B(t)) = 1 by
hypothesis. That shows that a(t, s) = 1. If a(t, s) divides D(t) (resp. D(s)) we
argue similarly with β(t, s, k).

Then we are ready to proceed with the following theorem, that will have
important consequences on the study of (⋆)1.

Theorem 4 For any k 6= 0, k ∈ Z, (in fact, k ∈ R) the system (⋆)1 has
finitely many solutions.

Proof. In order to prove the statement, we need to show that for k ∈ Z, k 6= 0,
gcd(α(t, s), β(t, s, k)) = 1. For this purpose, assume by contradiction that
there exists some k ∈ Z, k 6= 0, such that H(t, s) = gcd(α(t, s), β(t, s, k)) 6=
1. Then H(t, s) defines an algebraic curve H over C

2; furthermore, since by
hypothesis k 6= 0, H(t, s) cannot be t− s. So, there are infinitely many points
(t0, s0) ∈ H with t0 6= s0. Now by Lemma 3 only finitely many of them fulfill
B(t) ·B(s) ·D(t) ·D(s) = 0. So, for almost all points (t0, s0) ∈ H it holds that
r(t), r(s), θ(t) and θ(s) are well-defined, and r(t0) = r(s0), θ(t0) = θ(s0)+2kπ.
Since for a fixed t0 there can only be finitely many values of s such that
r(t0) = r(s) (because r(t) is rational) we deduce then that there are infinitely
many points (r0, θ0) ∈ C⋆ such that (r0, θ0+2kπ) ∈ C⋆ too. In other words, the
curves defined over the (r, θ)-plane by f(r, θ) and f(r, θ+2kπ) have infinitely
many points in common, and since f is irreducible and both have the same
degree, then they must define C⋆. Now let (r0, θ0) ∈ C⋆; then (r0, θ0 + 2kπ) is
a zero of f(r, θ + 2kπ), and since f(r, θ + 2kπ) also defines C⋆ then it is also
a point of C⋆. Following the same reasoning, we conclude that (r0, θ0 + 4kπ)
also belongs to C⋆, and in fact that (r0, θ0 + 2nkπ) ∈ C⋆ for all n ∈ N. Since
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k 6= 0 we have that these are all different points of C⋆. Hence, we have that
C⋆ intersects the line r = r0 at infinitely many points. But this is impossible
because C⋆ is algebraic.

We can obtain similar results for (⋆)2. For this purpose, we denote the numer-
ator of r(t) + r(s) by µ(t, s), and the numerator of θ(t)− θ(s)− (2k + 1)π by
ν(t, s, k). Then the following lemma, analogous to Lemma 3, holds.

Lemma 5 There does not exist b(t, s) 6= 1 and k0 ∈ Z (in fact, k0 ∈ R) such
that b(t, s) simultaneously divides gcd(µ(t, s), ν(t, s, k0)) and B(t) ·B(s) ·D(t) ·
D(s).

The following theorem, very similar to Theorem 4, holds.

Theorem 6 For any k ∈ Z (in fact, k0 ∈ R), it holds that gcd(µ(t, s), ν(t, s, k)) =
1.

Proof. Arguing by contradiction as in the proof of Theorem 4, we conclude
that f(r, θ) and f(−r, θ + 2kπ) define the same curve (namely, C⋆). So, let
(r0, θ0) ∈ C⋆ where r− r0 does not divide f(r, θ). Then (−r0, θ0+(2k+1)π) ∈
C⋆, and for the same reason (r0, θ0 +(4k+2)π) ∈ C⋆ too. Proceeding this way
we get that all the points of the form (r0, 2n(k + 1)π), with n ∈ N, belong
to C⋆. For any value k ∈ Z all these points are different; so, we get that the
intersection of C⋆ with the line r = r0 consists of infinitely many different
points. But this cannot happen because C⋆ is algebraic.

Hence, by Theorem 4 and Theorem 6, we obtain the following result on the
existence of infinitely many self-intersections of C.

Corollary 7 C has infinitely many self-intersections if and only if (⋆)1 or (⋆)2
have solutions for infinitely many values k ∈ Z.

Based on Corollary 7, we have the following result which provides a sufficient
condition for C to have finitely many self-intersections.

Theorem 8 If θ(t) is bounded, then there are at most finitely many self-
intersections.

Proof. If θ(t) is bounded, the number of integer values of k satisfying the
second equation of (⋆)1 or (⋆)2 for some (t, s) is necessarily finite. Then the
result follows from Corollary 7.

The converse of Theorem 8 is not necessarily true (see Example 2). So, we still
need a characterization of the existence of infinitely many self-intersections.

Lemma 9 The polynomial Ress(α(t, s), β(t, s, k)) cannot be constant. More
precisely, it has positive degree in k.
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Proof. By Theorem 4, Ress(α(t, s), β(t, s, k)) cannot be identically 0. More-
over, by writing explicitly the system S ≡ {α(t, s) = 0, β(t, s, k) = 0},











A(t)B(s)−A(s)B(t) = 0

C(t)D(s)− C(s)D(t)− 2kπD(t)D(s) = 0

we observe that the points (t′, t′, 0), t′ ∈ R, are solutions of S. So, for any
t′ ∈ R, Ress(α(t, s), β(t, s, k)) vanishes at (t′, 0) and therefore it cannot be
constant. For the same reason, Ress(α(t, s), β(t, s, k)) cannot be an univariate
polynomial in t. In fact, k is a divisor of Ress(α(t, s), β(t, s, k)).

Lemma 10 The polynomial Ress(µ(t, s), ν(t, s, k)) cannot be constant. More-
over, if (⋆2) has solutions for infinitely many values of k ∈ Z, then Ress(µ(t, s), ν(t, s, k))
has positive degree in k.

Proof. By Theorem 6, Ress(µ(t, s), ν(t, s, k)) cannot be identically 0. More-
over, by writing explicitly the system S ′ ≡ {µ(t, s) = 0, ν(t, s, k) = 0},











A(t)B(s) + A(s)B(t) = 0

C(t)D(s)− C(s)D(t)− (2k + 1)πD(t)D(s) = 0

we observe that if A(t′) = 0 with D(t′) 6= 0 then there exists k′ ∈ R such that
the point (t′, t′,−1/2) is a solution of S. If D(t′) = 0, then the points (t′, t′, k)
are solutions of S for any k. As a consequence, the polynomial Ress(µ(t, s), ν(t, s, k))
cannot be a constant.

Now assume that (⋆)2 has infinitely many solutions. That implies that there
are infinitely (t′, s′, k′) solutions of S with D(t′) 6= 0, D(s′) 6= 0, B(t′) 6= 0 and
B(s′) 6= 0 . Due to Theorem 6 and the linearity of k in ν(t, s, k),the polynomial
Ress(µ(t, s), ν(t, s, k)) has positive degree in both t and k.

Next we denote by ξ1(t, k) (resp. ξ2(t, k)) the result of taking out from the
square-free part of Ress(α(t, s), β(t, s, k)) (resp. Ress(µ(t, s), ν(t, s, k))) the
univariate factors in t.

Theorem 11 C has infinitely many self-intersections if and only if either
ξ1(t, k) = 0 and/or ξ2(t, k) = 0 are algebraic curves (in the {t, k}-plane) non-
bounded in k.

Proof. If C has infinitely many self-intersections, by Corollary 7 the systems
(⋆)1 or/and (⋆)2 have solutions for infinitely many values k ∈ Z. Due to the
linearity of k, that implies that they are also solutions for infinitely many
values of t and s. Consequently the systems S ≡ {α(t, s) = 0, β(t, s, k) = 0}
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and/or S ′ ≡ {µ(t, s) = 0, ν(t, s, k) = 0}) have infinitely many solutions too.
Since resultants are combinations of the polynomials which define the systems
S and S ′ and they are non-zero by Lemma 9 and Lemma 10, ξ1(t, k) = 0
and/or ξ2(t, k) = 0 are non-bounded in k.

Conversely, assume that ξ1(t, k) is non-bounded in k (we would argue in a
similar way with ξ2(t, k) = 0). Since it has by definition no univariate factors
depending on t, there are at most finitely many points (t′, k′) with ξ1(t

′, k′) = 0
where the leading coefficient of α(t, s) with respect to s, D(t) and B(t) vanish.
By the specialization property of resultants, any other point of ξ1(t, k) = 0
corresponds to a solution of (⋆)1. Since ξ1(t, k) = 0 is non-bounded in k,
observe that it contains infinitely many points with k ∈ Z and so with t 6= s.
Therefore C has infinitely many self-intersections.

The above results are illustrated in the following examples.

Example 1. Let C be parametrized in polar coordinates by ϕ(t) = (t, t). The
plotting of this curve for t ∈ [−5π, 5π] is shown in Figure 2. One may see that
θ(t) = t is not bounded; so, there might be infinitely many self-intersections.
In this case we get ξ1(t, k) = 2kπ and ξ2(t, k) = 2t − 2kπ − π. Finally, it is
easy to see that ξ1(t, k) = 0 is bounded in k, but ξ2(t, k) = 0 is not. So, from
Theorem 11 we conclude that C has infinitely many self-intersections. In fact,
one may see that all these self-intersections lay on the y-axis.

Fig. 2. ϕ(t) = (t, t): θ(t) non-bounded, infinitely many self-intersections

Example 2. Let C be parametrized in polar coordinates by ϕ(t) =

(

t,
t4

t2 + 1

)

.

Again θ(t) is not bounded. However, the plotting of this curve for t ∈
[

−
3

2
,
3

2

]

,

shown in Figure 3, suggests that the curve has not infinitely many self-intersections
(in fact, it has no self-intersections at all). Let us check this by using Theorem
11. We get ξ1(t, k) = 2kπ and ξ2(t, k) = (2k + 1)π. Both curves are clearly
bounded in k; therefore, we conclude that there are at most finitely many
self-intersections.

11



Fig. 3. ϕ(t) =

(

t,
t4

t2 + 1

)

: θ(t) non-bounded, finitely many self-intersections

Example 3. Let C be parametrized by ϕ(t) =

(

t

t2 + 1
,

t2

t2 + 1

)

. Since θ(t) =

t2

t2 + 1
is bounded, from Theorem 8 it follows that there are at most finitely

many self-intersections. Furthermore, ξ1(t, k) = 2kπ(2kπt2+2kπ− t2+1) and
ξ2(t, k) = π(2k + 1)(2kπt2 + 2kπ − t2 + πt2 + 1 + π), both bounded in k. So,
by Theorem 11 we derive the same conclusion. The plotting of the curve for
t ∈ (−∞,∞) is shown in Figure 4.

Fig. 4. ϕ(t) =

(

t

t2 + 1
,

t2

t2 + 1

)

: θ(t) bounded.

2.3 Limit Circles, Limit Points and Spiral Branches

Figure 5 shows the plotting of the curves defined by ϕ1(t) =

(

t2

t2 + 1
,

t3

t2 + 1

)

for t ∈ (0, 6π) (left), and ϕ2(t) = (t, 1/t) for t ∈ (0, π/4) (right).

In the first case, one sees that the curve winds infinitely around the circle

12



r = 1, coming closer and closer to it. In the second case (which is in fact a
degeneration of the first one), the curve winds infinitely around the origin of
coordinates, somehow “converging” to it. Finally, in the Example 2 of Subsec-
tion 2.2, Figure 3) shows a curve that winds infinitely around the origin, but
getting further and further from it. Notice that these three situations cannot
arise in the algebraic world, because Bezout’s Theorem forces every algebraic
curve to have finitely many intersections with every line which is not a com-
ponent of it. We will refer to the first situation by saying that here the curve
exhibits a limit circle (r = 1 in this example).

In the second case, we will say that the origin is a limit point; finally, we will
refer to the third situation by saying that the curve presents a spiral branch.
Along this subsection, we address these phenomena from a theoretical point of
view and relate them to the appearance of infinitely many self-intersections.

Fig. 5. Example of Limit Circle (left) and Limit Point (right)

Definition 12 Let t0 ∈ R ∪ {±∞}. We say that C exhibits, for t = t0:

(1) A limit circle if limt→t0
r(t) = r0 ∈ R, r0 6= 0, and limt→t0

θ(t) = ±∞.
(2) A limit point at the origin if limt→t0

r(t) = 0, and limt→t0
θ(t) = ±∞.

(3) A spiral brancht if limt→t0
r(t) = ±∞, and limt→t0

θ(t) = ±∞

In each case, we will say that t0 generates the limit circle, the limit point or
the spiral branch.

Notice that limit points are degenerated cases of limit circles, namely when
r0 = 0. One might wonder if limit circles can be centered at a point different
from the origin, or if there can be limit points other than the origin. The
answer, negative in both cases, is given by the following theorem.

Theorem 13 A curve rational in polar coordinates cannot have a limit circle
centered at a point different from the origin, or a limit point at a point different
from the origin.

Proof. If C had a limit circle centered at P 6= (0, 0), or a limit point Q 6= (0, 0),

13



we would have infinitely many local maxima and minima of r(t), namely the
t-values generating the contact points of tangents to C passing through the
origin (see Figure 6; local maxima and minima are shown as thick points).
However, this cannot happen because r(t) is a rational function, and therefore
the number of t-values fulfilling r′(t) = 0 is finite.

Fig. 6. A limit point different from the origin

Remark 1 The same argument of Theorem 13 proves that a curve rational in
polar coordinates cannot have any other “attractor” different from the origin,
or a circle centered at the origin.

Note that if C has infinitely many self-intersections, by Theorem 8 the function
θ(t) is not bounded and so there must be limit points, limit circles or spiral
branches. More concretely, we obtain the following result.

Proposition 14 Let I be a subset of R (not necessarily an interval) with
infinitely many t-values generating self-intersections of C. Then I contains
some t-value giving rise to either a limit point, or a limit circle, or a spiral
branch of C.

Proof. By the second equation of (⋆)1 or (⋆)2 it follows that θ(t) is not
bounded in I. That implies that there is t0 ∈ I with limt→t0

θ(t) = ±∞.
Thus t0 must generate a limit point, a limit circle or a spiral branch.

The converse of Proposition 14 is not true; for instance, in Example 2 we have
a curve with a spiral branch for t0 = ∞ without self-intersections.

Now we want to characterize the situation when a limit point, a limit circle
or a spiral branch have infinitely many close self-intersections. This is done in
the following definition.

Definition 15 We say that a limit circle, a limit point or a spiral branch
generated by t0 ∈ R ∪ ±∞ has infinitely many close self-intersections, if there
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exists some real interval I verifying:

(1) t0 ∈ I;
(2) I does not contain any other t-value generating a limit circle, limit point

or spiral;
(3) infinitely many t ∈ I generate self-intersections of C.

Definition 15 is illustrated in Figure 7; the thin lines correspond to the branch
generated by the interval I appearing in Definition 15.

Fig. 7. Infinitely many close self-intersections

Theorem 16 Let t0 ∈ R ∪ ±∞ generating a limit circle, a limit point or a
spiral branch. Then

(1) If t0 ∈ R, then t0 has infinitely many close self-intersections if and only if
t = t0 is an asymptote of some of the curves ξ1(t, k) = 0 or ξ2(t, k) = 0.

(2) If t0 = ±∞, then it has infinitely many close self-intersections if and
only if some of the curves ξ1(t, k) = 0 or ξ2(t, k) = 0 exhibits an infinite
branch as t → ±∞ which is not an asymptote (i.e. there exists a sequence
of real points (tn, kn) of the curve with tn → ±∞ and kn → ±∞).

Proof. We prove (1); the proof of (2) is similar. Assume that there exists
an interval I ⊂ R satisfying Definition 15. Then the set of points of either
ξ1(t, k) = 0 or ξ2(t, k) = 0 with t ∈ I must be non-bounded in k. This can
only happen if there exists ta ∈ I such that t = ta is an asymptote of either
ξ1(t, k) = 0 or ξ2(t, k) = 0. However, if t = ta is an asymptote then for any
interval Ia containing ta, and not containing any other t-value where θ(t) is
infinite, we can find a non-bounded portion of either ξ1(t, k) = 0 or ξ2(t, k) = 0,
therefore giving rise to infinitely many self-intersections of C, with t-values in
Ia. So, from Proposition 14 we have that t0 = ta. Using this same argument
we can prove the converse statement, i.e. if t = t0 is an asymptote then any
interval containing it has the desired properties.

The detection of asymptotes of an algebraic curve is addressed for example in
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[15].

Corollary 17 If t = t0 has infinitely many close self-intersections, then any
interval containing t0 generates infinitely many self-intersections of C.

The above results are illustrated in the following examples.

Example 1 (cont.): Recall that ξ1(t, k) = 2kπ and ξ2(t, k) = 2t − 2kπ − π.
The second one has an infinite branch as t → ±∞; so, from Theorem 16 we
deduce that every t-interval of the form (−∞, a) or (b,∞) contains infinitely
many t-values generating self-intersections of C.

Example 4. Consider the curve defined by ϕ(t) =

(

1

t2
,
t3 + t− 1

t

)

. This

curve has a spiral branch for t = 0 and a limit point for t → ±∞. In order to
have a more precise idea of its behavior, one can examine Figure 8 where the
curve is plotted for different values of t. A direct computation yields ξ1(t, k) =
k(kπt+ 1) and

ξ2(t, k) = 4 t6 − 4 π (2 k + 1) t4 − 4 t3 + π2 (2 k + 1)2 t2 + 2 π (2 k + 1) t+ 2.

The curve ξ2(t, k) = 0 is empty over the reals. However a factor of ξ1(t, k) = 0
corresponds to a hyperbola whose asymptotes are t = 0 and k = 0. Hence,
from statement (1) of Theorem 16 we deduce that the spiral branch generated
by t0 = 0 has infinitely many self-intersections.

t ∈ (1, 5) t ∈ (−5,−1) t ∈ (−5,−0.15) ∪ (0.15, 5)

Fig. 8. ϕ(t) =

(

1

t2
,
t3 + t− 1

t

)
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2.4 Asymptotes

It is classical (see for example [5]) that asymptotes in polar form correspond
to values t = t0 ∈ R ∪ {±∞} such that:

• limt→t0
r(t) = ±∞.

• limt→t0
θ(t) = α ∈ R.

• limt→t0
r(t) · (θ(t)− α) ∈ R.

If the above conditions hold, then the asymptote is the line parallel to the line
with slope α, at distance δ = limt→t0

r(t) · (θ(t)− α) of the origin.

Example 5. Consider the curve ϕ3(t) =

(

t,
t2

t2 + 1

)

. Then we have that

limt→±∞ r(t) = ±∞, limt→±∞ θ(t) = 1 and limt→±∞ r(t) · (θ(t) − 1) = 0. So,
the line passing through the origin and with slope 1, i.e. y = x, is an asymptote
of the curve for t → ±∞ (see Figure 9).

Fig. 9. An asymptote

3 Visualizing Curves that are Rational in Polar Coordinates

The goal of this section is to introduce an algorithm, polares, for visualizing
the “interesting” part of C, providing as well relevant information about the
curve. We have implemented it in Maple 15 and tested it over several examples,
some of which are presented in this section.

Next we describe the algorithm in the following different cases:

(1) r(t) and θ(t) are both bounded
(2) θ(t) is bounded and r(t) is not.
(3) r(t) is bounded and θ(t) is not.
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(4) r(t) and θ(t) are both unbounded.

Obviously, the first step of the algorithm is to detect the case we are in; then
the algorithm proceeds accordingly.

3.1 Algorithm polares when r(t) and θ(t) bounded

Input: A proper polar parametrization ϕ(t) = (r(t), θ(t)).
Output:

(1) Information about the existence of P∞.
(2) Information about the self-intersections.
(3) Plot of ϕ(t) for t in R using the Maple command polarplot.

Examples:

• ϕ1(t) = ( t

1+t2
, t

2

1+t2
)

>polares([ t

1+t2
, t2

1+t2
]);

r and theta both bounded

Real point at the infinity such that (r, theta)=[0, 1] and the point

is [0, 0]

The point at infinity (0,0) is reached 1 times in R, so self-intersection

at the origin

Fig. 10. ϕ1(t)

• ϕ2(t) = ( t

1+t2
, t

2+14

1+t2
)

>polares([ t

1+t2
, t2+14

1+t2
]);

r and theta both bounded

Real point at the infinity such that (r, theta)=[0, 1] and the point

is [0, 0]
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The point at infinity (0,0) is reached 1 times in R, so self-intersection

at the origin

System (1) gives self-intersections for k in [[ -2,2]], k<>0
System (2) gives self-intersections for k in [[ -2,1]]

Fig. 11. ϕ2(t)

3.2 Algorithm polares when θ(t) is bounded and r(t) not

Input: A proper polar parametrization ϕ(t) = (r(t), θ(t)).
Output:

(1) Information about the existence of P∞.
(2) Information about the self-intersections.
(3) Information about the existence of asymptotes.
(4) Plot of ϕ(t) using the Maple command polarplot:

(a) If there are not values of t generating asymptotes, then we plot the
curve for t ∈ (−∞,∞);

(b) Otherwise, let T1 be the set of values of t generating asymptotes, let
T2 be the set of real values of t such that r(t) = 0 and, if |θ(t)| < 2 π
for t ∈ R, let T3 be the real values of t generating the maximum and
minimum of θ(t).
Let P := T1 ∪ T2 ∪ T3 = {t1, . . . , tm} with t1 < . . . < tm.
Now,
(i) If {t1, tm} 6= {∞,−∞}, then P∞ ∈ R

2 and its plot may be of
interest. So we add t0 := −∞ and tm+1 := ∞ to the set P .
For every ti ∈ P, 1 < i < m, we plot the curve ϕ(t) for t ∈
( ti+ti−1

2
, ti+ti+1

2
). For t in ( ti+ti−1

2
, ti), the color of the plot will be

red and for (ti,
ti+ti+1

2
) the color will be blue.

As for t1 and tm, we plot ϕ(t) in the ranges (2t1 −
t1+t2

2
, t1+t2

2
)

and ( tm−tm−1

2
, 2tm − tm+tm+1

2
).

As for t0 and tm+1, we plot ϕ(t) in the ranges (−∞, 2t1 −
t1+t2

2
)
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and (2tm − tm+tm+1

2
,∞).

(ii) If {t1, tm} = {∞,−∞}, then for every ti ∈ P, 2 < i < m − 1,
we plot the curve ϕ(t) in the range ( ti+ti−1

2
, ti+ti+1

2
). For t in

( ti+ti−1

2
, ti), the color of the plot will be red and for (ti,

ti+ti+1

2
)

the color will be blue.
As for t2 and tm−1, we plot ϕ(t) for the ranges (t2 − 10, t2+t3

2
)

and ( tm−1−tm−2

2
, tm−1 + 10).

Finally, as for {∞,−∞}, we plot ϕ(t) for the ranges (t2−20, t2−
10) and (tm−1 + 10, tm−1 + 20).

Let us point out that we border the values of t generating the asymptotes
for plotting.

Examples:

• ϕ3(t) = ( t
2

t2−11 t+30
, t

2+78

1+t2
)

>polares([t2/(t2 − 11 t + 30), (t2 + 78)/(t2 + 1)]);
r unbounded and theta bounded

Real point at the infinity such that (r, theta)=[1, 1] and the point

is [cos(1), sin(1)]

Point at infinity is not reached with k=0

Point at infinity is not reached with k<>0
System (1) gives self-intersections for k in [[ -2,2]], k<>0
The values of t generating asymptotes are {5., 6.}
Values of t considered in the plot {0., 5., 6.,∞,−∞}

• ϕ4(t) = (t, t
2+14

1+t2
)

>polares([t, (t2 + 14)/(t2 + 1)]);
r unbounded and theta bounded

There is no point at infinity

Values of t generating asymptotes [∞,−∞]
Values of t considered in the plot {0.,∞,−∞}

3.3 Algorithm polares when r(t) is bounded and θ(t) not

Input: A proper polar parametrization ϕ(t) = (r(t), θ(t)).
Output:

(1) Information about the existence of P∞.
(2) Information about the existence of limit circles.
(3) Information about the existence of limit points.
(4) Information about the self-intersections.
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Fig. 12. ϕ3(t)

Fig. 13. ϕ4(t)

(5) Plot of ϕ(t) for t in R using the Maple command polarplot.
Let T1 be the set of values of t generating limit circles, let T2 be
the set of values of t generating limit points, let T3 be the set of
real values of t such that r(t) = 0 and let T4 be the real values of t
generating the maximum of |r(t)|.
Let P := T1 ∪ T2 ∪ T3 ∪ T4 = {t1, . . . , tm} with t1 < . . . < tm. Then
we proceed similar to the case (4) of Section 3.2. Now we border the
values of t generating limit circles for plotting.

Example:

• ϕ5(t) = (t2/(t2 + 1), t3/(t2 + 1))
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>polares([t2/(t2 + 1), t3/(t2 + 1)]);
r bounded and theta unbounded

There is no point at infinity

Values of t generating limit circles [−∞,∞]

There are infinitely many self-intersections

t=infinity has infinitely many close self-intersections

There are no limit points

Values of t considered in the plot {0.,∞,−∞}

Fig. 14. ϕ5(t)

3.4 Algorithm polares when both r(t) and θ(t) are unbounded

Input: A proper polar parametrization ϕ(t) = (r(t), θ(t)).
Output:

(1) Information about the existence of P∞.
(2) Information about the existence of limit circles.
(3) Information about the existence of limit points.
(4) Information about the existence of spiral branches.
(5) Information about the existence of asymptotes.
(6) Information about the self-intersections.
(7) Plot of ϕ(t) for t in R using the Maple command polarplot.

Let T1 be the set of values of t generating limit circles, let T2 be the
set of values of t generating limit points, let T3 be the set of values of
t generating spiral branches, let T4 be the set of values of t generating
asymptotes and let T5 be real the values of t such that r(t) = 0
Let T1 ∪ T2 ∪ T3 ∪ T4 ∪ T5 = {t1, . . . , tm} with t1 < . . . < tm.
Then we proceed similar to the case (4) of Section 3.2. Here we
border the values of t generating asymptotes, limit circles and spiral
branches for plotting.
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Example:

• ϕ6(t) = (t, (t3 + 1)/(t2 − 3 t+ 2))

>polares([t, (t3 + 1)/(t2 − 3 t + 2)]);
r and theta both unbounded

There is no point at infinity

Values of t generating limit circles [1., 2.]

There are no limit points

Values of t generating spiral branches [−∞,∞]

There are not values of t generating asymptotes

There are infinitely many self-intersections

t=1 has infinitely many close self-intersections

t=2 has infinitely many close self-intersections

t=infinity has infinitely many close self-intersections

Values of t considered in the plot {−∞, 0., 1., 2.,∞}

Fig. 15. ϕ6(t)
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4 Conclusions/Further Work

In this paper we have presented several theoretical results and an algorithm
for properly plotting curves parametrized by rational functions in polar form.
Our results allow to algorithmically identify phenomena which are typical
of these curves, like the existence of infinitely many self-intersections, spiral
branches, limit points or limit circles. Furthermore, the algorithm has been
implemented in Maple 15, and provides good results. Natural extensions of
the study here are space curves which are rational in spherical or cylindrical
coordinates, curves which are algebraic, although non-necessarily rational, in
polar coordinates (i.e. fulfilling h(r, θ) = 0, with h algebraic), and similar
phenomena for the case of surfaces. It would be also interesting to analyze the
curves defined by (implicit) expressions of the type f(r, sin(θ), cos(θ)) = 0,
where f is algebraic, since this class contains, and in fact extends, the class
of algebraic curves; also, it includes the important subclass of curves defined
by equations rn = g(θ), with g(θ) a rational function, which often appear in
Geometry and Physics. Some of these questions will be explored in the future.
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[12] Sendra J.R., Winkler F., Pérez-Dı́az P. (2008). Rational Algebraic Curves,
Springer-Verlag.

[13] Snyder, J. P. (1997). Flattening the earth: two thousand years of map

projections, University of Chicago Press

[14] Winkler F. (1996), Polynomial Algorithms in Computer Algebra. Springer
Verlag, ACM Press.

[15] Zeng G. (2007), Computing the asymptotes for a real plane algebraic curve,
Journal of Algebra, Vol. 316, Issue 2, pp. 680-705.

25


