RT info:eu-repo/semantics/article T1 Analysis of pre-ignited Improvised Incendiary Devices using portable Raman A1 Martín Alberca, Carlos A1 López López, María A1 García Ruiz, Carmen K1 Molotov cocktail K1 Containers K1 Ignitable liquid K1 Improvised incendiary device K1 Raman spectroscopy. K1 Química K1 Chemistry AB In this work, the use of a portable Raman spectrometer is evaluated for the non-invasive analysis of two types of pre-ignited improvised incendiary devices (IIDs), the classic Molotov cocktails and the chemical ignition Molotov cocktails (CIMCs). The most common ignitable liquids (ILs) used to make classic Molotov cocktails (gasoline, diesel fuel, kerosene and ethanol) were measured in seven different clear and colored glass bottles to evaluate if the container features could hamper the Raman measurements. The results showed that the portable Raman spectrometer can be employed to detect ILs in glass bottles without disturbances. Chemical changes on the ILs are produced when they are mixed with acid; therefore, to evaluate the use of the portable Raman spectrometer for the analysis of CIMCs required an investigation of how time and movement influence the measurements. Thus, two different IL&-sulfuric acid mixtures commonly used to make CIMCs (gasoline&-sulfuric acid and diesel fuel&-sulfuric acid) were measured over time under static and motion conditions. In spite of the intense fluorescence encountered in both CIMCs, it was possible to identify the acid and the gasoline for the first hours of the reaction both in the static and motion experiments. Concerning the diesel fuel present in the CIMC, it underwent instantaneous chemical changes under both measurement conditions, showing high fluorescence that impeded its identification. In view of the results achieved, the portable Raman spectrometer can be a useful instrument for the rapid, non-invasive and safe analysis of pre-ignited IIDs. SN 0039-9140 YR 2015 FD 2015-11-01 LK http://hdl.handle.net/10017/50166 UL http://hdl.handle.net/10017/50166 LA eng DS MINDS@UW RD 23-abr-2024