RT info:eu-repo/semantics/conferenceObject T1 Ultra-long range distributed fibre sensing using virtually transparent propagation A1 González Herráez, Miguel A1 Martín López, Sonia A1 Alcón-Camas, M. A1 Corredera, Pedro A1 Thévenaz, Luc A1 Ania Castañón, Juan Diego K1 Ciencias tecnológicas K1 Electrónica K1 Technology K1 Electronics AB Distributed fibre sensors provide unique capabilities for monitoring large infrastructures with high resolution. Practically, all these sensors are based on some kind of backscattering interaction. A pulsed activating signal is launched on one side of the sensing fibre and the backscattered signal is read as a function of the time of flight of the pulse along the fibre. A key limitation in the measurement range of all these sensors is introduced by fibre attenuation. As the pulse travels along the fibre, the losses in the fibre cause a drop of signal contrast and consequently a growth in the measurement uncertainty. In typical single-mode fibres, attenuation imposes a range limit of less than 30km, for resolutions in the order of 1-2 meters. An interesting improvement in this performance can be considered by using distributed amplification along the fibre [1]. Distributed amplification allows having a more homogeneous signal power along the sensing fibre, which also enables reducing the signal power at the input and therefore avoiding nonlinearities. However, in long structures (≥ 50 km), plain distributed amplification does not perfectly compensate the losses and significant power variations along the fibre are to be expected, leading to inevitable limitations in the measurements. From this perspective, it is simple to understand intuitively that the best possible solution for distributed sensors would be offered by a virtually transparent fibre, i.e. a fibre exhibiting effectively zero attenuation in the spectral region of the pulse. In addition, it can be shown that lossless transmission is the working point that allows the minimization of the amplified spontaneous emission (ASE) noise build-up. PB IEEE SN 978-1-45770-533-5 YR 2011 FD 2011-05-22 LK http://hdl.handle.net/10017/26521 UL http://hdl.handle.net/10017/26521 LA eng NO 2011 Conference on Lasers & Electro-Optics Europe & 12th European Quantum Electronics Conference CLEO EUROPE/EQEC, 22-26 May 2011, Munich, Germany. DS MINDS@UW RD 25-abr-2024