Same sensitivity with shorter exposure: behavior as an appropriate parameter to assess metal toxicity
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/60849DOI: 10.1007/s10646-022-02584-w
ISSN: 0963-9292
Date
2022Academic Departments
Universidad de Alcalá. Departamento de Ciencias de la Vida
Teaching unit
Unidad Docente Ecología
Funders
Ministerio de Economía y Competitividad
Fondo Social Europeo
Ministerio de Ciencia, Innovación y Universidades
Bibliographic citation
Ecotoxicology, 2022, v. 31, n. 8, p. 1254-1265
Keywords
Metal toxicity
Aquatic animals
Ecotoxicological bioassays
Chemical toxicity distributions
Description / Notes
12 p.
Project
info:eu-repo/grantAgreement/MEC//INTERTOX RTI2018-096046-B-C21/ES//
info:eu-repo/grantAgreement/MEC//EXARBIN RTI2018-093504-B-I00/ES//
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Rights
©2022 The Author(s)
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
The exposure of animals to toxicants may cause a depletion in the energy uptake, which compromises reproduction and growth. Although both parameters are ecologically relevant, they usually need long-term bioassays. This is a handicap for the availability of toxicological data for environmental risk assessment. Short-term bioassays conducted with environmental concentrations, and using relevant ecological parameters sensitive to short-term exposures, such as behavior, could be a good alternative. Therefore, to include this parameter in the risk assessment procedures, it is relevant the comparison of its sensitivity with that of growth and reproduction bioassays. The study aim was the assessment of differences between endpoints based on mortality, behaviour, reproduction, and growth for the toxicity of metals on aquatic animals. We used the ECOTOX database to gather data to construct chemical toxicity distribution (CTD) curves. The mean concentrations, the mean exposure time, and the ratio between the mean concentration and the exposure time were compared among endpoints. Our results showed that behavioral, growth, and reproduction bioassays presented similar sensitivity. The shortest exposure was found in behavioral and reproduction bioassays. In general, the amount of toxicant used per time was lower in growth and reproduction bioassays than in behavioral and mortality bioassays. We can conclude that, for metal toxicity, behavioral bioassays are less time-consuming than growth bioassays. As the sensitivity of behavior was similar to that of growth and reproduction, this endpoint could be a better alternative to longer bioassays.
Files in this item
| Files | Size | Format |
|
|---|---|---|---|
| same_alonso_Ecotoxicology_2022.pdf | 1.902Mb |
|
| Files | Size | Format |
|
|---|---|---|---|
| same_alonso_Ecotoxicology_2022.pdf | 1.902Mb |
|
Collections
- Ciencias de la Vida [536]















