A multi-label approach for diagnosis problems in energy systems using LAMDA algorithm
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/53456DOI: 10.1109/FUZZ-IEEE55066.2022.9882828
ISBN: 978-1-6654-6710-0
Publisher
IEEE
Date
2022-07-18Funders
European Commission
Agencia Estatal de Investigación
Junta de Comunidades de Castilla-La Mancha
Bibliographic citation
Quintero Gull, C., Aguilar Castro, J.L. & Rodriguez Moreno, M.D. 2022, "A multi-label approach for diagnosis problems in energy systems using LAMDA algorithm", in 2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 18-23 July 2022.
Keywords
Multilabel classification
Fuzzy systems
LAMDA
Diagnosis problems
Description / Notes
2022 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 18-23 July 2022, Italia.
Project
info:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GET
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-109891RB-I00/ES/MEJORA DE LA GESTION DE RECURSOS HOSPITALARIOS MEDIANTE LA PREDICCION DE LA DEMANDA CON APRENDIZAJE AUTOMATICO Y PLANIFICACION/
info:eu-repo/grantAgreement/JCCM//SBPLY%2F19%2F180501%2F000024
Document type
info:eu-repo/semantics/conferenceObject
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1109/FUZZ-IEEE55066.2022.9882828Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2022 IEEE
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper, we propose a supervised multilabel algorithm called Learning Algorithm for Multivariate Data Analysis for Multilabel Classification (LAMDA-ML). This algorithm is based on the algorithms of the LAMDA family, in particular, on the LAMDA-HAD (Higher Adequacy Grade) algorithm. Unlike previous algorithms in a multi-label context, LAMDA-ML is based on the Global Adequacy Degree (GAD) of an individual in multiple classes. In our proposal, we define a membership threshold (Gt), such that for all GAD values above this threshold, it implies that an individual will be assigned to the respective classes. For the evaluation of the performance of this proposal, a solar power generation dataset is used, with very encouraging results according to several metrics in the context of multiple labels.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Multi_label_Quintero_FUZZ_IEEE ... | 1.002Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Multi_label_Quintero_FUZZ_IEEE ... | 1.002Mb |
![]() |