Inner Bohemian inverses
Authors
Chan, Eunice Y.S.; Corless, Robert M.; González Vega, Laureano; Sendra Pons, Juan RafaelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/50529DOI: 10.1016/j.amc.2022.126945
ISSN: 0096-3003
Publisher
Elsevier
Date
2022-01-26Funders
Agencia Estatal de Investigación
Natural Sciences and Engineering Research Council of Canada
Bibliographic citation
Chan, E.Y.S., Corless, R.M., Gonzalez-Vega, L., Sendra, J.R. & Sendra, J. 2022, "Inner Bohemian inverses", Applied Mathematics and Computation (New York), vol. 421, art. no. 126945.
Keywords
Bohemian matrices
Rhapsodic matrices
Inner inverses
Generalized inverses
Project
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113192GB-I00/ES/VISUALIZACION MATEMATICA: FUNDAMENTOS, ALGORITMOS Y APLICACIONES/
NSERC grant number 2020-06438
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.1016/j.amc.2022.126945Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper, for certain type of structured {0, 1, -1}-matrices, we give a complete description of the inner Bohemian inverses over any population containing the set {0, 1, -1}. In addition, when the population is exactly {0, 1, -1}, we provide explicit formulas for the number of inner Bohemian inverses of these type of matrices.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Inner_Chan_Appl_Math_Comput_20 ... | 518.4Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Inner_Chan_Appl_Math_Comput_20 ... | 518.4Kb |
![]() |
Collections
- MATEMATIC - Artículos [143]