Computing tensor generalized inverses via specialization and rationalization
Authors
Stanimirovic, Predrag S.; Sendra Pons, Juan RafaelIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/50517DOI: 10.1007/s13398-021-01057-9
ISSN: 1578-7303
Publisher
Springer Nature
Date
2021-05-11Embargo end date
2022-05-11Funders
Agencia Estatal de Investigación
Universidad de Alcalá
Bibliographic citation
Stanimirovic, P.S., Sendra, J.R., Behera, R., Sahoo, J.K., Mosic, D., Sendra, J. & Lastra, A. 2021, “Computing tensor generalized inverses via specialization and rationalization”, Rev. Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, vol. 115, art. no. 116.
Keywords
Tensor
Einstein product
Tensors of functions
Outer inverse
Meromorphic functions
Symbolic computation
Project
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105621GB-I00/ES/METODOS ASINTOTICOS, ALGEBRAICOS Y GEOMETRICOS EN FOLIACIONES SINGULARES Y SISTEMAS DINAMICOS/
info:eu-repo/grantAgreement/UAH//CM-JIN-2019-010
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.1007/s13398-021-01057-9Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2021 Springer Nature
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper, we introduce the notion of outer generalized inverses, with predefined range and none space, of tensors with rational function entries equipped with the Einstein product over an arbitrary field, of characteristic zero, with or without involution. We assume that the involved tensor entries are rational functions of unassigned variables or rational expressions of functional entries. The research investigates the replacements in two stages. The lower-stage replacements assume replacements of unknown variables by constant values from the field. The higher-order stage assumes replacements of functional entries by unknown variables. This approach enables the calculation on tensors over meromorphic functions to be simplified by analogous calculations on matrices whose elements are rational expressions of variables. In general, the derived algorithms permit symbolic computation of various generalized inverses which belong to the class of outer generalized inverses, with prescribed range and none space, over an arbitrary field of characteristic zero. More precisely, we focus on a few algorithms for symbolic computation of outer inverses of matrices whose entries are elements of a field of characteristic zero or a field of meromorphic functions in one complex variable over a connected open subset of C. Illustrative numerical results validate the theoretical results.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Computiing_Stanimirovic_RACSAM ... | 679.4Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Computiing_Stanimirovic_RACSAM ... | 679.4Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]