Dynamic electric dispatch for wind power plants: a new automatic controller system using evolutionary algorithms
Authors
Gil Marcelino, CarolinaIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/49808DOI: 10.3390/su132111924
ISSN: 2071-1050
Publisher
MDPI
Date
2021-10-28Funders
European Commission
Agencia Estatal de Investigación
Comunidad de Madrid
Bibliographic citation
Marcelino, C.G. et al. 2021, "Dynamic electric dispatch for wind power plants: a new automatic controller system using evolutionary algorithms", Sustainability, vol. 13, n. 21, art. no. 11924.
Keywords
Offshore wind power
Optimization
Energy efficiency
Energy resources
Clean energies
Project
info:eu-repo/grantAgreement/EC/H2020/754382/EU/GOT Energy Talent/GET
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-85887-C2-2-P/ES/NUEVOS ALGORITMOS HIBRIDOS DE INSPIRACION NATURAL PARA PROBLEMAS DE CLASIFICACION ORDINAL Y PREDICCION/
info:eu-repo/grantAgreement/CAM//S2018%2FEMT4366/ES/PROgrama Microredes INTeligentes-CM/PROMINT-CM
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.3390/su132111924Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper, we use an evolutionary swarm intelligence approach to build an automatic electric dispatch controller for an offshore wind power plant (WPP). The optimal power flow (OPF) problem for this WPP is solved by the Canonical Differential Evolutionary Particle Swarm Optimization algorithm (C-DEEPSO). In this paper, C-DEEPSO works as a control system for reactive sources in energy production. The control operation takes place in a daily energy dispatch, scheduled into 15 min intervals and resulting in 96 operating test scenarios. As the nature of the optimization problem is dynamic, a fine-tuning of the initialization parameters of the optimization algorithm is performed at each dispatch interval. Therefore, a version of the C-DEEPSO algorithm has been built to automatically learn the best set of initialization parameters for each scenario. For this, we have coupled C-DEEPSO with the irace tool (an extension of the iterated F-race (I/F-Race)) by using inferential statistic techniques. The experiments carried out showed that the methodology employed here is robust and able to tackle this OPF-like modeling. Moreover, the methodology works as an automatic control system for a dynamic schedule operation.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Dinamic_Marcelino_Sustainabili ... | 3.202Mb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Dinamic_Marcelino_Sustainabili ... | 3.202Mb |
![]() |