Properness and inversion of rational parametrizations of surfaces
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/49638DOI: 10.1007/s002000100089
ISSN: 0938-1279
Editor
Springer
Fecha de publicación
2002Cita bibliográfica
Pérez Díaz, S., Schicho, J. & Sendra, J.R. 2002, “Properness and inversion of rational parametrizations of surfaces”, Applicable Algebra in Engineering, Communication and Computing, vol. 13, pp. 29-51.
Palabras clave
Proper rational parametrization
Parametrization inverse
Unirrationality
Proyectos
DGES PB98-0713-C02-01
DGES HU1999-0029
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Versión del editor
https://doi.org/10.1007/s002000100089Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2002 Springer-Verlag
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
In this paper we characterize the properness of rational parametrizations of hypersurfaces by means of the existence of intersection points of some additional algebraic hypersurfaces directly generated from the parametrization over a field of rational functions. More precisely, if V is a hypersurface over an algebraically closed field ? of characteristic zero and is a rational parametrization of V, then the characterization is given in terms of the intersection points of the hypersurfaces defined by x i q i (t¯)−p i (t¯), i=1,...,n over the algebraic closure of ?(V). In addition, for the case of surfaces we show how these results can be stated algorithmically. As a consequence we present an algorithmic criteria to decide whether a given rational parametrization is proper. Furthermore, if the parametrization is proper, the algorithm also computes the inverse of the parametrization. Moreover, for surfaces the auxiliary hypersurfaces turn to be plane curves over ?(V), and hence the algorithm is essentially based on resultants. We have implemented these ideas, and we have empirically compared our method with the method based on Gröbner basis.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Properness_Perez_Appl_Algebra_ ... | 458.2Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Properness_Perez_Appl_Algebra_ ... | 458.2Kb |
![]() |
Colecciones
- MATEMATIC - Artículos [138]