Computing all parametric solutions for blending parametric surfaces
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/49618DOI: 10.1016/S0747-7171(03)00072-5
ISSN: 0747-7171
Editor
Elsevier
Fecha de publicación
2003-12Cita bibliográfica
Pérez Díaz, S. & Sendra, J.R. 2003, "Computing all parametric solutions for blending parametric surfaces", Journal of Symbolic Computation, vol. 36, no. 6, pp. 925-964.
Descripción
Publicado en OA (open archive)
Proyectos
BMF2002-04402-C02-01
HU2001-0002
GAIA II (IST-2002-35512)
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/publishedVersion
Versión del editor
https://doi.org/10.1016/S0747-7171(03)00072-5Derechos
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
© 2003 Elsevier
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
In this paper we prove that, for a given set of parametric primary surfaces and parametric clipping curves, all parametric blending solutions can be expressed as the addition of a particular parametric solution and a generic linear combination of the basis of a free module of rank 3. As a consequence, we present an algorithm that outputs a generic expression for all the parametric solutions for the blending problem. In addition, we also prove that the set of all polynomial parametric solutions (i.e. solutions that have polynomial parametrizations) for a parametric blending problem can also be expressed in terms of the basis of a free module of rank 3, and we prove an algorithmic criterion to decide whether there exist parametric polynomial solutions. As a consequence we also present an algorithm that decides the existence of polynomial solutions, and that outputs (if this type of solution exists) a generic expression for all polynomial parametric solutions for the problem.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Computing_Perez_J_Symb_Comput_ ... | 852.8Kb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Computing_Perez_J_Symb_Comput_ ... | 852.8Kb |
![]() |
Colecciones
- MATEMATIC - Artículos [138]