Computing all parametric solutions for blending parametric surfaces
Identifiers
Permanent link (URI): http://hdl.handle.net/10017/49618DOI: 10.1016/S0747-7171(03)00072-5
ISSN: 0747-7171
Publisher
Elsevier
Date
2003-12Bibliographic citation
Pérez Díaz, S. & Sendra, J.R. 2003, "Computing all parametric solutions for blending parametric surfaces", Journal of Symbolic Computation, vol. 36, no. 6, pp. 925-964.
Description / Notes
Publicado en OA (open archive)
Project
BMF2002-04402-C02-01
HU2001-0002
GAIA II (IST-2002-35512)
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/publishedVersion
Publisher's version
https://doi.org/10.1016/S0747-7171(03)00072-5Rights
Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
© 2003 Elsevier
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper we prove that, for a given set of parametric primary surfaces and parametric clipping curves, all parametric blending solutions can be expressed as the addition of a particular parametric solution and a generic linear combination of the basis of a free module of rank 3. As a consequence, we present an algorithm that outputs a generic expression for all the parametric solutions for the blending problem. In addition, we also prove that the set of all polynomial parametric solutions (i.e. solutions that have polynomial parametrizations) for a parametric blending problem can also be expressed in terms of the basis of a free module of rank 3, and we prove an algorithmic criterion to decide whether there exist parametric polynomial solutions. As a consequence we also present an algorithm that decides the existence of polynomial solutions, and that outputs (if this type of solution exists) a generic expression for all polynomial parametric solutions for the problem.
Files in this item
Files | Size | Format |
|
---|---|---|---|
Computing_Perez_J_Symb_Comput_ ... | 852.8Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
Computing_Perez_J_Symb_Comput_ ... | 852.8Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]