dc.contributor.author | Pérez Díaz, Sonia | |
dc.contributor.author | Sendra Pons, Juana | |
dc.contributor.author | Sendra Pons, Juan Rafael | |
dc.date.accessioned | 2021-10-08T15:47:03Z | |
dc.date.available | 2021-10-08T15:47:03Z | |
dc.date.issued | 2006 | |
dc.identifier.bibliographicCitation | Pérez Díaz, S., Sendra, J. & Sendra, J.R. 2006, “Distance bounds of ϵ-points on hypersurfaces”, Theoretical Computer Science, vol. 359, no. 1-3, pp. 344-368. | |
dc.identifier.issn | 0304-3975 | |
dc.identifier.uri | http://hdl.handle.net/10017/49600 | |
dc.description.abstract | ϵ-points were introduced by the authors (see [S. Pérez-Díaz, J.R. Sendra, J. Sendra, Parametrization of approximate algebraic curves by lines, Theoret. Comput. Sci. 315(2–3) (2004) 627–650 (Special issue); S. Pérez-Díaz, J.R. Sendra, J. Sendra, Parametrization of approximate algebraic surfaces by lines, Comput. Aided Geom. Design 22(2) (2005) 147–181; S. Pérez-Díaz, J.R. Sendra, J. Sendra, Distance properties of ϵ-points on algebraic curves, in: Series Mathematics and Visualization, Computational Methods for Algebraic Spline Surfaces, Springer, Berlin, 2005, pp. 45–61]) as a generalization of the notion of approximate root of a univariate polynomial. The notion of ϵ-point of an algebraic hypersurface is quite intuitive. It essentially consists in a point such that when substituted in the implicit equation of the hypersurface gives values of small module. Intuition says that an ϵ-point of a hypersurface is a point close to it. In this paper, we formally analyze this assertion giving bounds of the distance of the ϵ-point to the hypersurface. For this purpose, we introduce the notions of height, depth and weight of an ϵ-point. The height and the depth control when the distance bounds are valid, while the weight is involved in the bounds. | en |
dc.description.sponsorship | Ministerio de Educación y Ciencia | es_ES |
dc.description.sponsorship | Comunidad de Madrid | es_ES |
dc.description.sponsorship | Universidad de Alcalá | es_ES |
dc.format.mimetype | application/pdf | en |
dc.language.iso | eng | en |
dc.publisher | Elsevier | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) | * |
dc.rights | © 2006 Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | ϵ-points | en |
dc.subject | Distance bounds | en |
dc.subject | Hypersurfaces | en |
dc.subject | Approximate algorithms | en |
dc.title | Distance bounds of ϵ-points on hypersurfaces | en |
dc.type | info:eu-repo/semantics/article | en |
dc.subject.eciencia | Matemáticas | es_ES |
dc.subject.eciencia | Mathematics | en |
dc.contributor.affiliation | Universidad de Alcalá. Departamento de Física y Matemáticas. Unidad docente Matemáticas | es_ES |
dc.date.updated | 2021-10-08T15:46:25Z | |
dc.relation.publisherversion | https://doi.org/10.1016/j.tcs.2006.05.020 | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | en |
dc.identifier.doi | 10.1016/j.tcs.2006.05.020 | |
dc.relation.projectID | Info:eu-repo/grantAgreement/MEC//MTM2005-08690-C02-01 | |
dc.relation.projectID | CAM-UAH2005/053 (Comunidad de Madrid y Universidad de Alcalá) | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | en |
dc.identifier.uxxi | AR/0000011814 | |
dc.identifier.publicationtitle | Theoretical Computer Science | |
dc.identifier.publicationvolume | 359 | |
dc.identifier.publicationlastpage | 368 | |
dc.identifier.publicationissue | 1-3 | |
dc.identifier.publicationfirstpage | 344 | |