Distance bounds of ϵ-points on hypersurfaces
Identificadores
Enlace permanente (URI): http://hdl.handle.net/10017/49600DOI: 10.1016/j.tcs.2006.05.020
ISSN: 0304-3975
Editor
Elsevier
Fecha de publicación
2006Patrocinadores
Ministerio de Educación y Ciencia
Comunidad de Madrid
Universidad de Alcalá
Cita bibliográfica
Pérez Díaz, S., Sendra, J. & Sendra, J.R. 2006, “Distance bounds of ϵ-points on hypersurfaces”, Theoretical Computer Science, vol. 359, no. 1-3, pp. 344-368.
Palabras clave
ϵ-points
Distance bounds
Hypersurfaces
Approximate algorithms
Proyectos
Info:eu-repo/grantAgreement/MEC//MTM2005-08690-C02-01
CAM-UAH2005/053 (Comunidad de Madrid y Universidad de Alcalá)
Tipo de documento
info:eu-repo/semantics/article
Versión
info:eu-repo/semantics/acceptedVersion
Versión del editor
https://doi.org/10.1016/j.tcs.2006.05.020Derechos
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© 2006 Elsevier
Derechos de acceso
info:eu-repo/semantics/openAccess
Resumen
ϵ-points were introduced by the authors (see [S. Pérez-Díaz, J.R. Sendra, J. Sendra, Parametrization of approximate algebraic curves by lines, Theoret. Comput. Sci. 315(2–3) (2004) 627–650 (Special issue); S. Pérez-Díaz, J.R. Sendra, J. Sendra, Parametrization of approximate algebraic surfaces by lines, Comput. Aided Geom. Design 22(2) (2005) 147–181; S. Pérez-Díaz, J.R. Sendra, J. Sendra, Distance properties of ϵ-points on algebraic curves, in: Series Mathematics and Visualization, Computational Methods for Algebraic Spline Surfaces, Springer, Berlin, 2005, pp. 45–61]) as a generalization of the notion of approximate root of a univariate polynomial. The notion of ϵ-point of an algebraic hypersurface is quite intuitive. It essentially consists in a point such that when substituted in the implicit equation of the hypersurface gives values of small module. Intuition says that an ϵ-point of a hypersurface is a point close to it. In this paper, we formally analyze this assertion giving bounds of the distance of the ϵ-point to the hypersurface. For this purpose, we introduce the notions of height, depth and weight of an ϵ-point. The height and the depth control when the distance bounds are valid, while the weight is involved in the bounds.
Ficheros en el ítem
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Distance_Perez_Theor_Comput_Sc ... | 1.431Mb |
![]() |
Ficheros | Tamaño | Formato |
|
---|---|---|---|
Distance_Perez_Theor_Comput_Sc ... | 1.431Mb |
![]() |
Colecciones
- MATEMATIC - Artículos [138]