The T-function of a parametric curve
Authors
Pérez Díaz, SoniaIdentifiers
Permanent link (URI): http://hdl.handle.net/10017/49498DOI: 10.2989/16073606.2021.1895899
ISSN: 1607-3606
Publisher
Taylor & Francis
NISC
Date
2021-03-01Embargo end date
2022-03-01Funders
Agencia Estatal de Investigación
Bibliographic citation
Pérez Díaz, Sonia. 2021, “The T-function of a parametric curve”, Quaestiones Mathematicae, DOI: 10.2989/16073606.2021.1895899.
Keywords
Singularities of an algebraic curve
Multiplicity of a point
Resultant
T-function
Fibre function
Rational curve parametrization
Project
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-88796-P/ES/COMPUTACION SIMBOLICA: NUEVOS RETOS EN ALGEBRA Y GEOMETRIA Y SUS APLICACIONES/
Document type
info:eu-repo/semantics/article
Version
info:eu-repo/semantics/acceptedVersion
Publisher's version
https://doi.org/10.2989/16073606.2021.1895899Rights
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
© Taylor & Francis 2021
Access rights
info:eu-repo/semantics/openAccess
Abstract
In this paper, we introduce the T–function, T(s), which is a polynomial defined by means of a univariate resultant constructed from
a given parametrization P(t) ∈ K(t)
n
, n ≥ 2 of an algebraic space
curve C. It is shown that T(s) = Qn
i=1 HPi
(s)
mi−1
, where HPi
(s), i =
1, . . . , n are polynomials (the fibre functions) whose roots are the fibre
of the ordinary singularities Pi ∈ C of multiplicity mi
, i = 1, . . . , n of
C. Therefore, a complete classification of the singularities of C, via the
factorization of a resultant, is obtained.
Files in this item
Files | Size | Format |
|
---|---|---|---|
TFunction_Perez_Quaest_Math_20 ... | 710.3Kb |
![]() |
Files | Size | Format |
|
---|---|---|---|
TFunction_Perez_Quaest_Math_20 ... | 710.3Kb |
![]() |
Collections
- MATEMATIC - Artículos [138]